2 地震反演技术

合集下载

地震资料反演技术概论

地震资料反演技术概论

地震资料反演技术概论(波阻抗、岩性反演处理技术)一九九八年九月辽河油藏工程培训班材料编写人:钟俊地震资料反演技术概论前言一.反演的概念、目的二.反演的发展历史及趋势三.反演的基本方法四.反演的限制条件五.反演的基本流程六.反演实例前言地震、测井、钻井是石油工作者认识地下地质构造、地层、岩性、物性、含油气性的最重要的信息来源。

虽然测井、钻井仅能提供井孔附近的有关信息,尤其是有关岩性、物性、含油气性的信息,但是这些信息往往具有很高的分辨率,可信度、准确性,能确切地指出含油气层的位置,定量化分析与储层、油藏有关的参数。

然而一个油气田勘探、开发方案的设计、实施、调整仅靠测井、钻井资料是远远不够的,必须与地震资料相结合进行综合分析才能取得良好效果。

地震资料的分辨率虽然远远不及测井、钻井,但是随着地震勘探技术的发展,从光电记录、模拟记录到数字记录,从二维到三维,地震资料的信噪比、分辨率、成像的准确性都获得了极大的提高,由于地震资料包含大量地下地质信息,覆盖面积广,具有三维特性,所以这项技术的使用越来越受到石油工作者的重视,如何利用地震资料研究地下地质构造、地层?如何进行储层预测、油藏描述?如何进行油藏、含油气层的预测?这些问题促使地球物理学家、地质学家开发应用了一系列地震资料特殊处理技术,如地震资料反演技术、地震属性分析技术、AVO分析技术,这些技术充分利用测井、钻井、地震的长处,使人们对地下储层、油藏的研究从点到面、从二维到三维、从三维可视化研究到油藏动态监测、从定性研究到定量化研究,大大提高了钻探成功率,有效地指导了油田开发,为提高油田最终采收率起到了积极的作用,因此地震技术被列为二十一世纪石油工业发展的首要技术,相信地震资料特殊处理技术(地震资料反演技术、地震属性分析技术、AVO分析技术)也必将在我国油田勘探、开发中起到越来越重要的作用。

一. 反演的概念、目的地震资料反演技术就是充分利用测井、钻井、地质资料提供的丰富的构造、层位、岩性等信息,从常规的地震剖面推导出地下地层的波阻抗、密度、速度、孔隙度、渗透率、沙泥岩百分比、压力等信息。

地震数据处理与反演方法研究

地震数据处理与反演方法研究

地震数据处理与反演方法研究地震是地球上自然界最为剧烈的运动之一,对人类社会造成了巨大的威胁。

在地震预测和灾害评估中,地震数据处理和反演方法的研究起着至关重要的作用。

本文将介绍地震数据处理的基本原理和几种常用的反演方法。

一、地震数据处理地震数据处理是指通过对地震波形数据的处理和分析,来获取地震事件的有用信息。

地震波形数据是地震学家通过地震台网和其他观测设备获得的,它们记录了地震发生时的地震波传播过程。

地震数据处理主要包括以下几个方面:1. 数据采集和预处理:地震仪器会采集到大量的地震波形数据,这些数据需要进行预处理,包括去噪、去除仪器响应、时间对齐等,以提高数据的质量和准确性。

2. 数据分析和解释:通过对地震数据的分析和解释,可以获取地震源的信息,如震源深度、震级、震源机制等。

常用的分析方法包括震相的拾取和振幅的测定等。

3. 数据可视化:为了更好地理解地震数据,对其进行可视化处理是十分重要的。

常见的可视化方法有时间序列图、震相的时距曲线和震源位置的地图等。

二、地震数据反演方法地震数据反演是根据地震波形数据,通过一定的数学模型和算法,来推导地震源的参数和地下介质的结构。

主要的反演方法有以下几种:1. 前向模拟法:前向模拟法是根据已知地下介质模型和震源参数,模拟产生的合成地震波形数据与观测数据进行比较,来逆推地下介质模型和震源参数。

2. 反射走时反演法:反射走时反演法是基于地震波在不同地层边界上的反射特性,通过分析波形的走时差异,来推断地下介质的界面。

该方法在地震勘探中得到广泛应用。

3. 反射幅度反演法:反射幅度反演法是通过分析地震波的振幅信息,来推断地下介质的性质和结构。

该方法在勘探环境中可以解决非均匀介质和复杂地质结构的问题。

4. 震源机制反演法:震源机制反演法是通过分析地震波的振动传播过程,推断地震产生的应力、应变和破裂过程。

该方法对于了解地震的本质和预测地震危险性具有重要意义。

三、地震数据处理与反演方法的应用地震数据处理和反演方法在地震科学研究和地震工程中发挥着重要的作用。

地震反演技术和实际应用

地震反演技术和实际应用

Jason(StarMod)
(三) jason软件的主要功能简介:
jason软件能做什么? 1、各种算法的反演 2、综合分析 3、油藏精细表征
油藏的描述内容 油藏的几何形态 流体内容(油,气,水) 空隙度的分布 渗透率的分布 压力
jason软件的主要模块:
Environment 基本环境包括:平面图,剖面图,地震解释, 合成记录制作,属性提取,沿层切片,三维 可视化等
(二)主要反演软件简介: 软件内容:
早期: 道积分(相对阻抗) 递归反演(绝对阻抗)
中期:基于模型的宽带反演 近期:约束稀疏脉冲反演(优化的地震反演)
基于模型的测井属性反演 基于地质统计的随机模拟与随机反演 弹性阻抗与横波阻抗反演
基于地震的声反演
道积分 递归反演 (相对阻抗) (绝对阻抗)
约束稀疏 脉冲反演
三、各种反演技术与软件简介
(一)主要地震反演技术简介: 1、基于地震数据的声阻抗反演
acoustic impedance (AI) 纵波阻抗,声阻抗 elastic impedance (EI) 弹性阻抗 shear impedance (SI) 横波阻抗
2、基于模型的测井属性反演 3、基于地质统计的随机模拟与随机反演
基于模型的 测井属性反演
地质统计随机模拟 与随机反演
道积分
G-LOG
ISIS
LandMark VELOG
PIVT
SEISLOG
DELOG RM(GeoQuest)
Paradigm(叠前)
Strata
Jason
jason
SLIM
RC2
BCI(宽带约束反演)
广义逆波阻抗反演
PARM
Strata Jason(InverMod)

基于反演技术的地震成像方法研究

基于反演技术的地震成像方法研究

基于反演技术的地震成像方法研究一、引言地震成像是地球科学中重要的手段之一,地震成像技术可以直接或者间接地探测地下结构和性质,为石油、矿产资源的勘探提供科学的依据。

地震反演技术是地震成像的一种基础方法,它通过观测波场数据并利用地球物理学理论和数学方法来恢复地下介质模型。

本文将重点介绍基于反演技术的地震成像方法。

二、地震反演技术基础地震反演技术是一种基于数学方法的地球物理探测方法。

利用地震波在地下传播过程中受到地下介质的反射、折射、穿透等作用,记录地震波传播路径上的信息,再利用数学方法反演出地下介质的物理参数,如速度、密度等的分布规律。

其中地震波传播路径上的信息包括,波头到达时刻、震级、波形等。

地震反演技术基础主要包括数值模拟、正演模拟和反演算法等。

1. 数值模拟数值模拟是指利用计算机技术对复杂物理模型进行数值计算,用于预测或模拟自然现象。

地震成像中的数值模拟通常指的是地震波的数值模拟,地震波传播是一种具有时间和空间因素的复杂物理现象,需要对地下介质和地震波等进行各种参数的计算和设置。

地震波数值模拟的基本方程是弹性波动方程,利用数值方法,将具体解析模型转化为离散型计算模型,经过计算,得出相关的波形和参数。

数值模拟是地震成像的基础,用于模拟各种地震探测情况,从而为反演算法提供数据支持。

2. 正演模拟正演模拟是指在已知地下介质条件下,利用波动方程模拟地震波的传播,得到模拟数据。

正演模拟常用于验证反演算法的可行性以及对比反演结果,是评价反演算法技术和反演成像效果的基础。

正演模拟的关键就是确定地下介质的模型和初始条件,基于这些已知数据进行计算模拟。

正演模拟得出的数据可以与实际观测数据进行对比,从而判断反演算法的可靠性以及反演结果优劣。

3. 反演算法反演算法是通过计算地震波传播路径上的数据,利用各种数学算法对地下介质进行恢复和成像,从而得到地下介质的参数分布。

反演算法的核心是根据已知数据反演未知模型,反演算法在数学上可以看作是最优化问题的解决方案,目标是使地下介质模型与真实情况尽可能接近。

地震反演技术解析

地震反演技术解析

地震反演技术解析地震是地球内部强烈能量释放的一种自然现象,经常给人类造成严重的损失。

为了提前预警和减轻地震带来的影响,科学家们不断研究并发展地震反演技术,通过分析地震波传播过程,从而推断地球内部的物质性质和结构。

在本文中,我们将对地震反演技术进行详细解析。

一、地震反演的基本原理地震反演技术是通过分析地震波在地球内部传播的方式来推断地下的物质组成和结构。

它的基本原理是利用地震波在不同介质中传播速度的变化,推断地下结构的差异性。

地震波在不同介质中的传播速度受到介质密度、弹性模量和损耗等因素的影响。

通过测量地震波的传播速度和到达时间,科学家可以对地下结构进行反演。

二、地震波的测量方法地震波的测量是地震反演技术的基础。

常用的地震波测量方法包括接收地震波的地震仪、利用爆炸物或震源人工产生的地震波、以及记录地震波传播路径上的速度和振幅等。

这些测量数据会成为地震反演的基础输入。

三、地震波的模拟与正演为了研究地震波在地球内部的传播规律,科学家们利用计算机模拟和数值方法进行地震波的正演。

正演模拟可以根据地震波的源和介质参数,计算出地震波在地下的传播路径、速度和振幅等。

通过与实际观测数据进行对比,可以验证地震模型的准确性。

四、地震波的反演方法为了从地震观测数据中推断地下结构,科学家们发展了多种地震波反演方法。

其中,最常用的方法包括走时反演、频率反演、波动方程反演等。

走时反演是基于地震波到达时间的变化来进行反演。

通过测量地震波的传播时间和地震波速度模型,可以推断地下结构的速度分布。

频率反演是基于地震波信号频率的变化来进行反演。

通过分析地震波信号的频谱特征,可以推断地下结构的频率响应和介质的频率衰减特性。

波动方程反演是一种基于波动方程的直接反演方法。

通过求解波动方程,建立地震波传播的物理模型,进而推断地下结构的物质组成和弹性参数。

五、地震反演技术的应用地震反演技术在地球物理勘探、地球内部结构研究、地震灾害预警等领域都有广泛的应用。

地震波形指示反演方法、原理及其应用

地震波形指示反演方法、原理及其应用

地震波形指示反演方法、原理及其应用1. 地震波形指示反演方法是一种通过分析地震波形数据来推断地下介质结构和地震源机制的方法。

2. 地震波形指示反演方法的基本原理是利用地震波在地下传播时受到地下介质的变化而产生的波形变化。

3. 地震波形指示反演方法可以应用于地震勘探、地震监测和地震灾害评估等领域。

4. 波形反演方法通常基于正演模拟,将地震波场的观测数据与最优化的模拟波形进行比较,以获得地下结构的信息。

5. 传统的波形反演方法包括偏移反演、全波形反演和散射波波形反演等。

6. 偏移反演是一种通过将地震道数据与合适的速度域反射系数进行相关计算,以获得地下结构的方法。

7. 全波形反演是一种基于非线性优化算法的波形反演方法,它利用射线追踪和波数积分模拟地震波传播,通过反复迭代优化得到地下模型。

8. 散射波波形反演是一种通过分析地震波的散射模式来反演地下结构的方法,它适用于复杂介质和多尺度问题。

9. 波形反演方法需要准确的初始模型,反演算法的收敛性和速度都与初始模型有关。

10. 噪声对波形反演方法有较大的影响,需要进行信噪比的优化和噪声去除处理。

11. 波形反演方法通常需要大量的计算资源和时间,对于大规模三维反演问题往往需要高性能计算平台的支持。

12. 地震波形指示反演方法也可以应用于地下水资源勘探、地质灾害研究等领域。

13. 地震波形指示反演方法广泛应用于石油勘探和地震勘探领域,对于油气勘探、勘探目标确定和优化井位选择等方面具有重要意义。

14. 波形反演方法也可以应用于地震监测和预测,通过监测地震波形的变化,提前判断地震活动性和地震风险。

15. 波形反演方法在地震灾害评估方面也有重要应用,可以通过分析地震波形数据来确定地震烈度和地震震源参数。

16. 波形反演方法还可以用于地下岩体稳定性评估、地下水动力响应分析等工程应用。

17. 通过结合不同类型的波形数据,如P波、S波和面波,可以获得更全面的地下结构信息。

18. 地震波形指示反演方法的精度和可靠性受到地震源机制、速度模型和反演算法的影响。

反演原理——精选推荐

反演原理——精选推荐

第二章地震反演技术地震反射波法的基础是由于地下不同的地层存在着波阻抗的差异,从而形成了反射波法。

所以从本质上来讲,地震反演的目标就是根据已经获得的地震反射波形,以已知地质规律和钻井、测井资料为约束,对地下岩层空间结构和物理性质所进行的成像(求解),广义的地震反演包含了地震资料处理解释的整个内容。

波阻抗反演是利用地震资料反演地层波阻抗(或)速度的地震特殊处理解释技术。

与地震模式识别预测油气、神经网络预测地层参数、振幅拟合预测储层厚度等统计性方法相比,波阻抗反演具有明确的物理意义,是储层岩性预测、油藏特征描述的确定性方法,在实际应用中取得了明显的地质效果,因此地震反演通常特指波阻抗反演。

李庆忠院士指出:“波阻抗反演是高分辨率地震资料处理的最终表达方式”,说明了波阻抗反演在地震技术中的特殊地位。

地震数据的反演可以用图2.1所示的框图来概括(R.Brain,1993)。

最完善的反演方法是叠前反演,它分为振幅反演(如AVO分析,叠前波动方程波形反演等)和旅行时反演(常称层析法)。

然而,由于叠前反演信噪比低,稳定性差,分辨率低,正演模拟困难以及计算量大等原因,所以,叠后反演仍然是当前最常用的方法。

图2.1 地震反演方法概况示意图叠后地震道反演方法可分为:①递推反演,如D.W.Oldenoburg(1983)和C.Walker(1983)的最大熵(MED)及自回归(AR)方法,B.Ursin(1985)的最大似然反褶积(MLD)方法,vielle(1991)的贝叶斯估计反褶积(MED);②广义线性反演(GLI),如 D.A.Cooke(1983);③非线性约束反演(BCI),如B.Cornish (1988)的宽带约束反演(BCI)、S.Gluck(1989)的随机反演(ROVIN)、R.D.Martinez(1988)的多参数约束反演(包括BCI、WLI和LCI)。

根据反演结果的频带特性又可分为:①带限法(如GLI、合成声波测井);②稀疏脉冲法(如MED、AR、MLD、BED方法等);③模型法(如BCI、ROVIN、LCI、Strata和Jason 方法等)。

地震反演技术

地震反演技术

Ri
i1vi(11) i vi v i1 i1 i vi
递推可得:
nvn
n
0(v20) i0
1 Ri 1 Ri
n
对(2)式取对数:
ln(
nvn
/
0v0
)
i0
ln[( 1 (3)
Ri
)
/(1
Ri
)]
对(3)式右边求和号内旳对数项按Taylor级数展开,得(4)式:
ln[( 1
井约束模型反演:
测井
地震
突出优点:地震与测井有机地结合 反演剖面:低、高频信息起源于测井资料
1、反演
从广义上讲,反演就是根据多种位场(电位、 重力位等)、波场(声波、弹性波等)电磁场和热 学场等旳地球物理观察数据去推测地球内部旳 构造形态及物质成份,定量计算其有关物理参 数旳过程。
2、反演理论
这是从一种物理系统上旳观察值来恢复该物理 系统有用信息旳一套数学和统计技术(如微积 分、微分方程、矩阵理论、统计估算和推测 等)。
精细解释好地震层位,它关系到模型建立旳精度,必须确保 层位解释旳合理性和可靠性。
根据工区旳地质构造背景,定义好地层之间旳接触关系,确 保模型旳合理性。
对测井曲线进行分析研究、编辑校正,做好同一种测井曲线 旳归一化处理。
选择合理旳处理流程和反演参数,确保反演处理旳合理性和 可行性。
➢煤厚变化趋势预测
3、地震反演技术 指利用人工激发产生旳地震波场推测地下地
质构造和地层内部特征变化旳措施技术。 4、正演与反演问题
给定模型及参数拟定模型旳响应即正演。
模型参数 输入
系统体现 正演理论
算子
输出
观察数据
数学工具 反演理论

地震反演技术回顾与展望

地震反演技术回顾与展望

地震反演技术回顾与展望一、概述地震反演技术,作为地球物理学领域的重要分支,一直以来在油气资源勘探、地质构造解析以及地震灾害预测等方面发挥着关键作用。

该技术利用地震波在地下介质中传播的信息,通过反演算法处理地震数据,进而推导出地下岩层的物理属性,如速度、密度等。

这些属性信息对于深入了解地下构造、识别油气藏以及评估地震风险具有不可估量的价值。

随着科技的不断进步,地震反演技术也经历了从简单到复杂、从粗放到精细的发展历程。

早期的地震反演方法主要基于射线理论或波动方程的一阶近似,这些方法虽然计算效率高,但精度相对较低,难以满足复杂地质条件下的勘探需求。

随着计算机技术的发展,基于全波形反演、多属性联合反演等高精度反演方法逐渐得到应用,这些方法能够更准确地刻画地下介质的物理属性,为油气勘探等领域提供了更为可靠的依据。

地震反演技术仍面临诸多挑战。

一方面,地震数据的采集和处理过程中不可避免地存在噪声干扰和信号衰减等问题,这些问题会严重影响反演的准确性和稳定性。

另一方面,地下介质的复杂性以及地震波传播的多路径效应也给反演工作带来了极大的困难。

如何在保证计算效率的同时提高反演的精度和稳定性,是当前地震反演技术研究的热点和难点。

展望未来,随着计算机技术的持续进步和人工智能等新技术的应用,地震反演技术有望实现更大的突破。

一方面,高性能计算技术的发展将为地震反演提供更为强大的计算支持,使得更复杂的反演算法得以实施。

另一方面,人工智能技术的应用将有助于提高地震数据的处理效率和反演的准确性,例如通过深度学习等方法对地震数据进行智能降噪和增强,以及通过机器学习等方法优化反演算法等。

随着多源多尺度地球物理数据的融合利用以及大数据、云计算等技术的引入,地震反演技术有望进一步拓展其应用领域和深化其研究内涵。

地震反演技术作为地球物理学领域的重要技术手段,在油气勘探、地质构造解析以及地震灾害预测等方面具有广泛的应用前景。

面对当前的挑战和未来的机遇,地震反演技术的研究和发展需要不断创新和突破,以更好地服务于人类社会的可持续发展。

地震反演方法概述

地震反演方法概述

地震反演方法概述地震反演是地球物理学中一种重要的方法,它通过分析地震波的传播和干涉现象,来推断地球内部结构和性质的手段。

地震反演方法广泛应用于地球内部结构研究、油气勘探和地震监测等领域。

本文将对几种常见的地震反演方法进行概述,并介绍其原理和应用。

一、层析成像法层析成像法是一种常见且较为简单的地震反演方法。

它基于地震波在地下传播的散射和衍射现象,通过收集地震记录并运用数学模型进行重构,来获得地下结构的图像。

层析成像法通常分为正演和反演两个步骤。

在正演过程中,我们根据地下介质密度、速度等参数,通过数值模拟计算地震波的传播路径和特征。

而在反演过程中,我们则根据实际观测的地震记录,通过优化算法来调整模型参数,以使计算结果与观测结果尽可能匹配。

通过多次迭代,最终得到地下结构的层析图像。

层析成像法在地球物理勘探、地震监测和地质调查中得到了广泛的应用。

它可以提供地下埋藏物、地质构造和油气储层的信息,对于资源勘探和环境灾害预测都具有重要意义。

二、全波形反演法全波形反演法是一种较为复杂但是精确度较高的地震反演方法。

它利用地震波传播的全部信息,即全波形数据,来获取地下介质的详细结构和性质。

全波形反演法需要对地下介质的密度、速度和衰减等参数进行高精度的估计。

全波形反演法的原理是通过对比模拟的地震波与实际观测波形之间的差异,来优化反演模型参数。

反演过程中,我们需要利用正演模拟得到的地震记录与实际观测记录之间的残差进行匹配,从而获取最优的地下介质参数。

全波形反演法在油气勘探、地球内部结构研究和地震灾害监测等方面具有重要应用价值。

它对于解决复杂地下介质中的高分辨率问题以及水下地质灾害预测等领域具有重要意义。

三、统计反演法统计反演法是一种基于概率统计理论的地震反演方法。

它通过对大量地震记录的分析与统计,来获得地下介质的统计属性和模型参数。

统计反演法在解决地球内部介质的不确定性和非均匀性方面具有独特优势。

统计反演法利用统计学的方法,构建许多模型样本,通过与实际观测数据的比较,从而推断地下介质的分布和性质。

地震波反演及其应用研究

地震波反演及其应用研究

地震波反演及其应用研究地震波反演是指通过观测到的地震波传播数据,来推断地下介质模型的物理属性。

在地球科学研究中,地震波反演被广泛应用于勘探油气、地震灾害预测、地球内部结构、板块构造等领域。

一、地震波反演原理地震波反演的基本原理是正演与反演。

正演是指通过已知的地下介质模型,模拟计算地震波在该模型中的传播情况。

反演是指通过观测到的地震波数据,来推断地下介质的模型参数。

在反演过程中,需要将多个正演计算结果与观测数据进行匹配,以找到最优的地下介质模型参数。

地震波传播的基本理论是弹性波理论。

在地震波传播的过程中,地震波可以被分为纵波和横波两种。

纵波是指波动方向与能量传播方向相同的波,既能在固体、液体和气体中传播,也能通过地球内核而传播。

横波是指波动方向与能量传播方向垂直的波,只能在固体介质中传播,在地球内核中不能传播。

地震波反演的目标是推断地质体的物理参数,比如密度、速度、衰减系数等。

在反演过程中,需要根据地震波传播模型,建立数学模型和算法,来推断地下介质的物理属性。

基于弹性波理论和反向算法,可以得到不同深度、不同分辨率的地下介质物理模型。

二、地震波反演方法地震波反演方法包括正演计算、反演算法、优化策略三个主要部分。

正演计算是指基于地质模型,计算地震波在该模型中的传播情况,用来生成合成地震波数据。

反演算法是指基于观测到的地震波数据,推断地质模型的物理参数。

优化策略是指在反演过程中,通过不断调整参数,以达到最小化目标函数的目的。

地震波反演方法可以分为初值反演、定常反演、逆时偏移等几种主要方法。

初值反演是指根据经验或调查数据,给定地下结构的初值,在初值的基础上不断寻找最优解的过程。

定常反演是指假设地下介质的物理参数随深度变化不大,采用多尺度反演方法进行反演。

逆时偏移是目前应用最广泛、效果最好的一种地震波反演方法。

它利用前向计算和后向传播的原理,将正演计算结果投影到地球表面,通过不断调整模型参数和反转梯度的方法,来寻求最优模型。

地震波形指示反演方法原理及其应用

地震波形指示反演方法原理及其应用

地震波形指示反演方法原理及其应用地震波形反演是地震学中一种重要的方法,它通过解析地震记录中的波形特征,推导出地下结构的物理属性。

地震波形反演方法可以分为多种类型,包括位移反演、速度反演和密度反演等,每种方法都有其特定的原理和应用。

位移反演是一种常用的地震波形反演方法。

其原理是通过将地震数据与已知源函数卷积,然后与观测数据进行比较,进而得到地下介质的位移分布。

位移反演方法的应用广泛,可以用于研究地下介质的构造和动力学特性,并可用于勘探石油、矿产等资源。

速度反演是另一种常见的地震波形反演方法。

速度反演基于反射地震波数据,通过匹配数据与模拟波形之间的差异,来推导出地下介质的速度分布。

速度反演方法在地震勘探中应用广泛,可以用于研究地层的速度变化,并进一步确定油气储层的位置和性质等。

密度反演是地震波形反演的另一种重要方法。

该方法通过解析地震波波形的振幅和相位信息,推导出地下介质的密度分布。

密度反演方法在地震勘探中被广泛应用,可以用于研究地下介质的密度变化,进而推断出地层的物性和油气圈闭等重要信息。

此外,还有其他地震波形反演方法,如走时反演、频散反演和波形反演等。

走时反演基于地震波到达时间的变化,推导出地下介质的速度分布。

频散反演则通过解析地震波在频率域上的特征,推导出地下介质的频散特性。

波形反演是一种基于全波形数据的反演方法,该方法可以更准确地描述地震波的传播,并推导出地下介质的细节结构。

地震波形反演方法在地震学中具有重要的应用价值。

通过反演地震波形,可以揭示出地下介质的物理特性和结构信息,如岩石速度、密度、衰减等。

这些信息对于地质勘探、地震风险评估、地球内部结构研究等都具有重要的意义。

此外,地震波形反演方法还可以应用于地震监测和地震预测等领域,为地震灾害的预防和减灾提供有力支持。

总之,地震波形反演方法通过解析地震波记录,推导出地下介质的物理属性,具有重要的原理和应用。

不同的反演方法对应不同的原理和应用范围,可以揭示出地下介质的位移、速度、密度等重要信息,为地质勘探、地震监测和地震预测等领域提供决策依据。

地震波特性分析及反演技术

地震波特性分析及反演技术

地震波特性分析及反演技术地震是人类面临的一种重大自然灾害,它给人类的生命和财产造成了严重的威胁和损失。

了解地震波特性是研究地震的重要途径之一,而地震波的反演技术则是在震源机制、地壳结构等方面的研究中的重要方法之一。

本文将分析地震波的特性并介绍地震波反演技术。

地震波的特性地震波是由地震引起的弹性波。

根据传播方式,地震波分为纵波和横波两种。

纵波是因压强变化而引起的传播,波速较快,纵波振动与传播方向一致;横波是因剪切变形而引起的传播,波速较慢,横波振动垂直于传播方向。

在实际传播中,纵波和横波会相互转换,形成复合波,而复合波的传播速度不同于纯纵波和纯横波的传播速度。

地震波的传播速度受到地壳介质的影响。

在不同的介质中,地震波的传播速度不同,在介质变化的地方,地震波会发生折射和反射,形成一个复杂的波场。

地震波在地下介质中的传播路径也与地震波传播速度的差异有关,低速波沿着高密度物质传播,高速波则沿着低密度物质传播。

对于反演分析来说,地震波在地下介质中的传播路径是非常重要的信息。

地震波反演技术地震波反演是指根据地震波在地面和地下的传播特性,推求地震波的源和介质特性的技术。

它是研究地震的重要方法,广泛应用于地震预测、地震勘探、地下水监测等领域。

地震波的反演技术有多种方法,常用的有正演模拟法、位错反演法、全波形反演法和层析反演法等。

正演模拟法是指根据给定介质模型,模拟地震波在该介质中的传播路径和地震波波形,以此推求介质特性和源信息。

位错反演法是指借助地震成像等方法,推求地震断层的几何和物理属性,进而推求地震源信息和介质特性。

全波形反演法是指测量地震波在地面和地下的波形信息,以此进行反演分析。

层析反演法是指在已知地震波源信息的情况下,采用数学优化方法,反演出地下介质的速度和密度等参数。

以上方法都有优缺点,需要根据实际情况选择。

在反演分析中,数据质量是决定反演精度的关键因素之一。

地震波在地壳介质中的传播路径、反射和折射等地貌复杂性都会影响数据的质量,因此,如何获得高质量的数据对地震波反演至关重要。

地震研究领域中的反演方法

地震研究领域中的反演方法

地震研究领域中的反演方法地震研究是一门极为重要的地球物理学科,对于地球内部的结构和表层的变化进行研究具有非常重要的意义。

在地震研究领域中,反演方法是一种非常重要的手段。

在本文中,我们将会对地震研究领域中的反演方法进行详细的介绍。

一、地震反演方法简介地震反演方法是指在一定的条件下,通过测量地震波的传播信息,来估计出地震波传播路径以及地球结构和物性参数的研究方法。

在地震学研究中,地震反演方法是一个非常重要的工具,可以用来研究地球结构和物性参数等信息。

地震反演方法研究的核心是如何求解正演问题和反演问题,因此这个问题已经成为了反演方法研究的热点问题。

二、基于偏微分方程的反演方法基于偏微分方程的反演方法通常被称为数值反演方法。

数值反演方法是地震反演中最常用的反演方法之一。

数值反演方法解决了波动方程反演和非线性反演中的很多问题,并且具有一定的通用性。

例如,在张一心教授和夏庆元教授的研究中,介绍了通过有限差分技术对波动方程进行求解的方法。

三、基于统计学的反演方法除了基于偏微分方程的反演方法外,还有一类非常常见的反演方法是基于统计学的反演方法。

比如基于模拟退火等算法的反演方法就是类似的统计学方法。

这类反演方法通常是通过统计分析,对观测数据集合进行分析,并与计算机模拟的合成数据进行比较。

从而获得目标参数的估计值。

在这类反演方法中,Bayes理论得到了广泛的应用。

举一个例子,孙春阳教授和刘广田教授的研究就是基于Bayes理论的反演方法。

四、基于机器学习的反演方法近年来,机器学习技术的发展已经对许多科学领域产生了革命性影响。

在地震反演领域中也不例外。

机器学习技术的出现,为地震反演领域带来了一个新的研究方向。

基于机器学习的反演方法通过建立一个非线性映射,将地震学中的输入信号转换成相应的输出信号。

这个方法特别适用于大数据情况,能够快速判断一个大型数据集中的异常和规律,如根据数据集的熵来确定分层结构变化等。

事实上,许多机器学习技术,如神经网络、支持向量机等,已经在地震研究中得到广泛应用。

地震反演技术

地震反演技术
地震反演技术
中国矿业大学 二零一零年四月
2011-9-29
中国矿业大学
1
一、地震反演技术简介
• 地震反演利用地表观测地震资料,以已知地质规律和 地震反演利用地表观测地震资料, 钻井、测井资料为约束, 钻井、测井资料为约束,对地下岩层空间结构和物理 性质进行成像(求解)的过程,是反演地层波阻抗( 性质进行成像(求解)的过程,是反演地层波阻抗(或速 的地震特殊处理解释技术。 度)的地震特殊处理解释技术。地震反演具有明确的物 理意义,是预测岩性的确定性方法, 理意义,是预测岩性的确定性方法,在实际应用中取 得了显著的地质效果,地震反演通常指波阻抗反演。 得了显著的地质效果,地震反演通常指波阻抗反演。
2011-9-29 中国矿业大学 13
图8 D9井测井曲线
2011-9-29 中国矿业大学 14
图9 D9井Inline方向常规地震剖面
2011-9-29 中国矿业大学 15
泥岩顶板 13-1煤 炭质泥岩底板
图10 D9井Inline方向波阻抗反演剖面
2011-9-29 中国矿业大学 16
图11 常规数据体550ms时间切片
2011-9-29 中国矿业大学 22
图16 D19井Inline方向常规地震剖面和波阻抗反演剖面
2011-9-29
中国矿业大学
23
图17 D13井Inline方向常规地震剖面和波阻抗反演剖面
2011-9-29
中国矿业大学
24
图18 188井Inline方向常规地震剖面和波阻抗反演剖面
2011-9-29
2011-9-方式
• 技术咨询 • 技术服务
2011-9-29
中国矿业大学
28
谢谢

地震波传播与地震波反演技术

地震波传播与地震波反演技术

地震波传播与地震波反演技术地震是一种自然灾害,不仅对人类社会造成巨大的影响,还对地壳结构和地下资源的研究提供了重要的信息。

地震波传播与地震波反演技术是地震学中的重要研究内容,它们通过分析地震波的传播规律和特征,研究地壳结构和地震源等问题。

本文将从地震波的传播原理、地震波反演技术的基本原理以及其在地震学研究中的应用等方面进行探讨。

一、地震波传播原理地震波是地壳中能量传播的一种形式,通常分为纵波(P波)和横波(S波)。

P波是一种纵向振动的压力波,具有传播速度快、能量损失少的特点,它可以穿过固体、液体和气体介质;而S波是一种横向振动的剪切波,具有速度较快但能量损失较大的特点,只能穿过固体介质。

地震波在地球内部的传播受到地壳结构的影响,波传播的路径会受到地下介质的吸收、散射和反射等过程的影响。

通过分析地震波的传播路径和传播速度,地震学家可以了解地球的内部结构,如地震波在不同介质中的传播速度差异可以揭示地球的层状结构。

二、地震波反演技术的基本原理地震波反演技术是利用地震波在地球内部传播的规律,通过观测地震波的数据反推地下介质的物理特性。

地震波反演技术包括传统的层析成像方法和近年来发展起来的全波形反演方法。

层析成像方法是一种基于射线理论的反演方法,它以地震数据为输入,通过计算地震波在地下介质中的传播路径和传播时间,进而推断地下介质的物理特性。

这种方法通常假设地下介质是均匀的,通过计算射线与介质之间的相互作用,建立地下介质模型。

然而,由于地震波与地下介质的相互作用是复杂的,层析成像方法的分辨率和准确度有一定的限制。

全波形反演方法是一种基于波动理论的反演方法,它是对传统层析成像方法的扩展和改进。

与层析成像方法不同,全波形反演方法不仅考虑射线的传播路径和传播时间,还考虑了波动方程的求解。

全波形反演方法通过不断迭代,将观测到的地震记录与计算出的地震记录进行匹配,最终反演出地下介质的物理特性。

与层析成像方法相比,全波形反演方法在地震学中具有更高的分辨率和准确度。

GeoEast2D_3D反演介绍0812new

GeoEast2D_3D反演介绍0812new

二.反演前的准备工作
15
③ 子波估算应注意的问题:
1)子波长度:
子波太长不好,一般尽量保证有一个主峰,两个旁瓣即可; 2)估算子波的时窗:
包含目的层,并包含明显地震响应,时窗长度至少是子波长度的 2.5~3倍以上,并且时窗边界不要卡在强同向轴上,要放在地震响应 的过渡带上。 3)估算子波时井旁道的选择:
Check,选择Curve List中选中要采样的曲线;
2)选择菜单Processing->Resample。
三.GeoEast中反演配套功能
25
3、反演可行性分析和结果分析
主要是通过交汇图,直方图分析工具,分析测井曲线对岩性、含 油气性的分辨能力,确定反演方式。
➢如果纵波速度对砂、泥岩地层有较好的分辨能力,则可以采用叠 后反演;
➢叠前反演模块:2个
叠前弹性参数反演(Prestack Elastic Parameters Inversion) 叠前AVA同步反演(Prestack AVA Inversion)
➢叠后反演模块:3个
宽带约束反演(Broad-band Constrained Inversion) 模拟退火反演(Simulating Annealing Inversion) BP神经网络反演(BP Network Inversion) 稀疏脉冲反演(Sparse Spike Inversion)
➢断层解释
对断面的解释结果,要在3D空间浏览,确认断层的空间形态 是否合理,断层空间形态合理有利于构造建模。
二.反演前的准备工作
18
阻抗剖面可以检查解释方案的合理性!
二.反演前的准备工作
19
4. 初始模型建立。 建模应注意的问题:
1)单井异常 属性建模完成后,一定要注意单井异常问题。表明该井的合成

地震反演方法概述

地震反演方法概述

地震反演方法概述地震反演:由地震信息得到地质信息的过程。

地震反射波法勘探的基础在于:地下不同地层存在波阻抗差异,当地震波传播有波阻抗差异的地层分界面时,会发生反射从而形成地震反射波。

地震反射波等于反射系数与地震子波的褶积,而某界面的法向入射发射系数就等于该界面上下介质的波阻抗差与波阻抗和之比。

也就是说,如果已知地下地层的波阻抗分布,我们可以得到地震反射波的分布,即地震反射剖面。

即由地层波阻抗剖面得到地震反射波剖面的过程称为地震波阻抗正演,反之,由地震反射剖面得到地层波阻抗剖面的过程称为地震波阻抗反演。

叠前反演主要是指AVO反演,通过AVO反演,可以获得全部的岩石参数,如:岩石密度、纵横波速度、纵横波阻抗、泊松比等。

叠前反演与叠后反演的根本区别在于叠前反演使用了未经叠加的地震资料。

多道叠加虽然能够改善资料的品质,提高信噪比,但是另一方面,叠加技术是以东校正后的地震反射振幅、波形等特征不随炮检距变化的假设为基础的。

实际上,来自同一反射点的地震反射振幅在不同炮检距上是不同的,并且反射波形也随炮检距的变化而发生变化。

这种地震反射振幅、波形特征随炮检距的变化关系很复杂,主要原因就在于不同炮检距的地震波经过的地层结构、弹性性质、岩性组合等许多方面都是不同的。

叠加破坏了真实的振幅关系,同时损失了横波信息。

叠前反演通过叠前地震信息随炮检距的变化特征,来揭示岩性和油气的关系。

叠前反演的理论基础是地震波的反射和透射理论。

理论上讲,利用反射振幅随入射角的变化规律可以实现全部岩性参数的反演,提取纵波速度、横波速度、纵横波速度比、岩石密度、泊松比、体积模量、剪切模量等参数。

叠后地震剖面相当于零炮检距的自激自收记录。

与叠前反演不同,叠后反演只能得到纵波阻抗。

虽然叠后反演与叠前反演想必有很多不足之处,但由于其技术方法成熟完备,到目前为止,叠后反演仍然是主流的反演类型,是储层预测的核心技术。

介绍几种叠后反演方法:1)道积分:利用叠后地震资料计算地层相对波阻抗(速度)的直接反演方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 地震反演技术中国东部主要矿区经过多年的开采,浅部资源已亮红灯,迫切需要开采深部的煤炭资源。

如何提高地质成果的勘探精度,在深部实现安全开采是我国煤炭行业今后的主要奋斗目标。

影响深部煤层开采地质条件的因素很多,如构造、水文、瓦斯、煤层顶底板条件等。

目前,主要的成熟勘探手段是地震勘探,也仅限于解决构造问题。

而煤矿深部安全开采中的主要地质问题,包括煤层顶底板水文地质条件、瓦斯突出条件与力学性质均属岩性勘探范畴。

地震反演技术是岩性地震勘探的重要手段之一,是一门集地震、测井、地质、计算机等多学科的综合地球物理勘探技术。

地震反演利用地表观测地震资料,以已知地质规律和钻井、测井资料为约束,对地下岩层空间结构和物理性质进行成像(求解)的过程,是反演地层波阻抗(或速度)的地震特殊处理解释技术。

地震反演方法具有明确的物理意义,是预测岩性的确定性方法,在油气勘探中取得了显著的地质效果。

煤田地震反演工作起步较晚,处在叠后地震反演的研究和初步应用阶段。

近年来,我们把地震反演技术应用于多家煤矿,其关注的重点是煤矿安全开采的有关地质问题,获得了丰富的地质成果,主要包括:(1) 提高弱反射煤层的可检测性;(2) 利用反演剖面提供的岩性信息来划分地层,研究煤层顶板的稳定性;(3) 确定奥陶系灰岩顶部岩层中的含隔水性,查明含、隔水层的空间分布和厚度分布;(4) 圈定火成岩侵入煤层的范围;(5) 预测煤层厚度;(6) 划分新生界下部地层岩性和含隔水性。

2.1 地震反演方法的分类从使用的地震资料来分,地震反演可分为叠前反演(基于旅行时的层析成象技术和基于振幅的A VO分析技术)和叠后反演(基于旅行时的构造反演和基于振幅的波阻抗反演);从利用的地震信息来分,地震反演可分为旅行时反演和振幅反演;从反演的地质结果来分,地震反演可分为构造反演、波阻抗反演和多参数岩性(地震属性)反演;从实现方法上来为,地震反演可分为递推反演、基于模型的反演和地震属性反演。

地震反演方法基本上分成两大类,一类是建立在较精确的波动理论基础上,即波动方程反演。

这类方法主要在理论上进行探讨,尚未达到实用阶段。

另一类是以地震褶积模型为基础的反演方法,目前流行的都属于这一类。

具体地说,它又分成两类:一类是由反射系数推得的直接反演法,如虚测井、道积分等;另一类是以正演模型(褶积模型)为基础的间接(迭代)反演法,如无井资料的广义线性反演和有井资料的宽带约束反演、基于模型地震反演等。

2.2 基于模型的地震反演基于模型的地震反演方法根据钻孔测井数据纵向分辨率很高的有利条件,对井旁地震资料进行约束反演,并在此基础上对孔间地震资料进行反演,推断煤系地层岩性在平面上的变化情况,这样就把具有高纵向分辨率的已知测井资料与连续观测的地震资料联系起来,实行优势互补,大大提高三维地震资料的纵、横向分辨率和对地下地质情况的勘探研究程度。

目前,国内比较盛行的反演软件主要有STRA TA、JASON、ISIS、PARM,这些软件各有特色。

使用最多的反演软件是STRATA,它使用起来相当方便,无论是是地质人员还是物探人员都可以直接做反演工作。

基于模型地震反演的基本原理是建立在地震记录褶积模型基础上,即地震记录S(t)是反射系数R(t)和地震子波W(t)的褶积:S(t)=R(t)*W(t)。

其实质就是从测井资料出发,根据钻井分层数据及时深关系对井进行精细时深标定,建立一个初始波阻抗模型,用此模型合成地震剖面与实际地震剖面作比较,然后不断修改模型,使合成剖面最佳地逼近实际剖面,得到最终的地质模型。

基于模型的地震反演流程见图2—1,其基本步骤包括:图2—1 基于模型的地震反演流程图(1) 测井资料的处理如果是模拟测井资料,首先要对其进行数字化处理。

同时,由于每一口井的位置及其他干扰因素的存在,每条测井曲线的值存在较大的差异。

因此,要根据每口井的柱状图及实际物性参数对每口井进行归一化处理。

而对于数字测井可免去这一步骤。

最后在由测井资料计算出岩层的反射系数序列。

(2) 层位解释将地震数据进行常规的处理以后,要进行精确的层位解释,层位是建立模型的基础,层位解释的精确与否直接影响着模型的精度。

(3) 子波提取合成记录的制作以及下面的反演运算中都要用到子波,子波的提取是重要的一环。

(4) 合成记录制作及层位标定将子波与反射系数序列进行褶积得出合成记录,然后将合成记录与地震记录进行精确的标定,标定的结果是拉伸或压缩了井曲线。

(5) 模型建立与修正初始模型的建立是一个人机交互的处理过程,对反演结果的好坏有直接影响。

首先通过地震资料进行层位解释,制作合成记录,对每口井与井旁地震道做层位标定;并以层位解释为控制,从井点出发,将测井数据外推内插,在三维空间的每一个点建立初始模型。

这个过程实际上是把横向上连续变化的地震界面信息,与垂向上具有高分辨率的测井信息相结合的过程。

(6) 地震反演有了子波和初始模型,下一步就可以进行反演运算。

运算过程主要通过修改初始模型,使合成剖面最佳逼近实际地震剖面。

2.3 地震反演关键技术2.3.1 地震资料高保真处理为了做好地震资料的高保真处理,通常应注意以下几点:(1) 对原始资料的异常道进行精细的剔除操作,这是最基本也是最重要的一个步骤;(2) 做好高精度静校正和精细速度分析工作;(3) 注意保护原始资料的带宽,防止片面强调提高资料的信噪比;(4) 尽量使用地表一致性反褶积等多道反褶积,防止使用单道反褶积,从而保证激发地震子波的一致性和横向变化的唯一性;(5) 做叠后修饰处理时,防止过度修饰而损失至关重要的振幅相对变化信息。

2.3.2 P值剖面代替叠加剖面在地震反演理论的假设中,认为所使用的地震数据是零偏移距自激自收剖面。

而目前反演过程中使用的地震数据通常是叠加剖面。

叠加剖面是由多个非零偏移距的CDP道经过动校正处理后相加而得到的。

因此,这种剖面只是对自激自收的零偏移距剖面的一种近似。

但经过叠前A VO分析后,所得到的P值剖面是真正的零偏移距剖面。

另外,由于叠前A VO分析没有多道相加的步骤,其所得到的P值剖面要比叠加剖面具有更高的纵向分辩率。

因此,可以利用P值剖面代替叠加剖面,从而可以提高波阻抗反演的准确性和可靠性。

2.3.3 拟声波测井曲线目前煤田地震资料反演的一个关键难点是很多矿区只有密度测井和电阻率测井资料,而没有对地震反演至关重要的声波测井资料。

因此,必须通过Gardner 公式把密度测井曲线转换为拟声波测井曲线b v a =ρ (1)式中,ρ为密度,3/cm g ;v 为速度,s m /。

Gardner 公式的两个系数因子a 和b 是统计拟合值,对于油气勘探的目的层通常取0.31和0.25。

但是,它们不适用于煤系地层。

要取得好的地震反演效果,就必须在所研究区域中收集尽量多的钻井和测井资料,由最小二乘法拟合出适合本矿区的系数因子值。

2.4 地震反演技术在煤矿安全开采中的应用2.4.1 提高弱反射煤层的可检测性晋煤集团成庄煤矿的主要可采煤层为 3 煤、9煤和15煤。

3煤层厚且全区稳定,对应的T3波是一个能够稳定追踪的强反射波,在常规地震剖面上通常有两个强相位。

但是,3煤层厚度大,反射系数高,对下覆煤层具有较强的屏蔽作用。

因此,9煤层和15煤层所对应的T9波、T15波反射能量较弱,反射波同相轴连续性很差,时隐时现,在常规构造解释过程中,基本是依据与3煤层的层间距关系进行追踪对比,可靠程度较低,见图2—2。

图2—2 标准反射波剖面反演(波阻抗)地震剖面的纵向分辨率高于常规地震剖面。

从图2—3可以看出,从T3波到T15波之间有多个层位,而在图2的常规地震剖面上,这个范围内仅有两个同相轴。

图2—3 波阻抗反演剖面3煤层和15煤层的波阻抗(绿色标)明显低于围岩的波阻抗,9煤层的波阻抗(黄绿色标)略高于3煤层和15煤层,但与围岩的波阻抗仍有较大差异。

波阻抗的大小与煤层厚度有直接关系。

因此,在反演地震剖面上能够清楚地看到9煤和15煤的反映。

特别是T15波,由于煤层较厚,在常规地震剖面和反演地震剖面上的显示为大相径庭,这充分体现了地震反演技术(用测井资料约束)的优越性。

同时,沿层波阻抗切片能够提供整个勘探区内的煤层岩性信息。

9煤层的岩性信息非常典型,该煤层在区内沉积较稳定,但煤层厚度变化很大,从0.15~1.29m ,图2—4的沿层振幅切片基本不能提供任何信息,主要原因是受3煤层的屏蔽其振幅很弱;而图2—5的沿层波阻抗切片能够提供丰富的岩性信息,低波阻抗代表厚煤层区域,高波阻抗代表薄煤层或无煤区域,利用该信息能够比较准确地划分煤层厚度变化范围。

图2—4 9煤层的沿层振幅切片图2—5 9煤层的沿层波阻抗切片 2.4.2 研究煤层顶板的稳定性了解煤层顶、底板的岩性对后期的开采至关重要,常规地震剖面不能提供相关信息,而反演剖面则有助于解决类问题。

在时间切片上也可获得煤层及其顶、底板的岩性信息。

在阳煤集团二矿九采区三维地震资料解释过程中,利用波阻抗数据体,以15煤层底板为参考面向上每3ms(根据本区的煤系地层平均速度转换成5m)做一个沿层切片,共提取了5个波阻抗切片,即获得了15煤层及顶板以上5m 、10m 、15m 的岩性信息,见图2—6~图2—10。

波阻抗与速度和密度密切相关,从上述图件中可以看出,波阻抗值越大,则岩石的速度、密度和抗压强度也越大,煤层顶板也就越稳定。

图2—6 15煤层底板沿层波阻抗切片 图2—7 15煤层顶板沿层波阻抗切片 无煤带厚煤带图2—8 15煤层顶板上部5m沿层图2—9 15煤层顶板上部10m沿层波阻抗切片波阻抗切片图2—10 15煤层顶板上部15m沿层波阻抗切片2.4.3确定奥陶系灰岩顶部含、隔水层的空间分布和厚度分布传统煤田地质学认为,奥陶系灰岩岩溶地下水水压高,易对下组煤顶、底含水层产生垂向顶托或侧向补给,且补给水源充足,对采煤威胁最大。

因此,长期以来下组煤层是开采禁区。

在临沂矿业集团新驿煤矿下组煤水文地质补充勘探工作中,利用地震反演技术查明部分水文地质条件,主要包括奥陶系顶部含、隔水层的空间分布和厚度分布。

研究成果突破了传统煤田地质学理论,表明奥陶系灰岩不完全是一个含水层,其顶部就有隔水层存在,可以为建立矿井突水的水量预测模型提供基础资料。

在常规地震剖面上,无法对奥陶系内部进行分层,原因是信噪比低和反射系数小(相对煤层而言)。

但是利用地震反演剖面,借助相对波阻抗值的差异,便能够确定奥陶系顶部灰岩中的含、隔水层的空间分布和厚度分布。

图2—11是水1—群2联井反演地震剖面,从中可以看出奥陶系顶界面、隔水层和含水层的分层位置。

图2—12是隔水层底界面的沿层波阻抗切片;图2—13是含水层底界面的沿层波阻抗切片。

沿层波阻抗切片能够提供整个研究区域内的含、隔水层岩性信息,隔水层的平均波阻抗明显高于含水层的平均波阻抗,利用该信息能够比较准确地确定奥陶系灰岩中的含、隔水层的空间分布。

相关文档
最新文档