九年级数学上学期开学试卷(含解析) 新人教版
2023-2024学年河南省郑州实验外国语学校九年级(上)开学数学试卷(含解析)
2023-2024学年河南省郑州实验外国语学校九年级(上)开学数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 一元二次方程2x2−2x+3=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定2. 若关于x的一元二次方程x2−8x+c=0配方后得到方程(x−4)2=3c,则c的值为( )A. −4B. 0C. 4D. 63. 如图,在菱形ABCD中,∠ABC=50°,对角线AC,BD交于点O,E为CD的中点,连接OE,则∠AOE的度数是( )A. 110°B. 112°C. 115°D. 120°4. 已知一元二次方程x2−4x−1=0的两根分别为m,n,则m+n−mn的值是( )A. 5B. 3C. −3D. −45. 如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段AC=152,则线段AB的长是( )A. 52B. 2 C. 32D. 56. 如图,用一根绳子检测一个平行四边形书架的侧边是否和上、下底都垂直,只需要用绳子分别测量两条对角线就可以判断了.在如下定理中:①两组对边分别相等的四边形是平行四边形,②对角线相等的平行四边形是矩形,③矩形的四个角都是直角,④三个角都是直角的四边形是矩形,这种检测方法用到的数学根据是( )A. ①B. ②C. ③D. ④7. 在“双减政策”的推动下,我县某中学学生每天书面作业时长明显减少.2022年上学期每天书面作业平均时长为100min,经过2022年下学期和2023年上学期两次调整后,2023年上学期平均每天书面作业时长为70min.设该校这两学期平均每天作业时长每期的下降率为x,则可列方程为( )A. 70(1+x2)=100B. 70(1+x)2=100C. 100(1−x)2=70D. 100(1−x2)=708. 如图,在菱形ABCD中,AB=2,∠B=60°,E、F分别是边BC、CD中点,则△AEF周长等于( )A. 23B. 33C. 43D. 39. 如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连结EF,则线段EF的最小值为( )A. 24B. 3.6C. 4.8D. 510. 如图,矩形ABCD中,P是CD的中点,点Q为AB上的动点(不与A、B重合),过Q作QM⊥PA,垂足为M,QN⊥PB,垂足为N,BC=3,CD=8,MQ=x,QN=y,则y与x之间的函数关系式为( )A. y=4.8−xB. y=5x C. y=11−x D. y=24x二、填空题(本大题共5小题,共15.0分)11. 若关于x的方程(m−3)x|m−1|+5x−3=0是一元二次方程,则m的值为______.12. 如图,矩形ABCD中,AE⊥BD于E,∠DAE:∠BAE=3:2,则∠EAC的度数等于______.13. 三角形两边的长分别是2和4,第三边的长是方程x2−10x+24=0的根,则该三角形的周长为.14. 已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为______.15. 如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴的负半轴、y轴的正半轴上,点D在边BC上,将该矩形沿AD折叠,点B恰好落在边OC上的E处,且△CDE为等腰直角三角形,若OA=4,则点D的坐标是______.三、解答题(本大题共5小题,共55.0分。
浙江省金华市义乌市绣湖中学2022-2023学年九年级上学期开学数学试卷(含解析)
2022-2023学年浙江省金华市义乌市绣湖中学九年级(上)开学数学试卷(附答案与解析)一、单选题(共10小题,30分)1.(3分)如图,P是▱ABCD内一点,连接P与▱ABCD各顶点,▱EFGH各顶点分别在边AP、BP、CP、DP上,且AE=2EP,EF∥AB.若△PEF与△PGH的面积和为1.则▱ABCD 的面积为()A.4B.6C.12D.182.(3分)要使在实数范围内有意义,则()A.x为任何值B.x≤﹣C.x≥D.x≥﹣3.(3分)下列二次根式计算正确的是()A.=±7B.=4C.=1﹣D.()2=4.(3分)若关于x的一元二次方程(a﹣1)x2+a2x﹣a=0有一个根是x=1,则a的值为()A.﹣1B.0C.1D.﹣1或15.(3分)某校举办主题为“关爱身心健康,致敬可爱守护者”的演讲比赛,进入决赛的6名选手的成绩(单位:分)分别为:9.0,8.4,9.2,8.5,9.2,9.5,则这组数据的中位数和众数分别是()A.9.1,9.2B.9.1,9.5C.9.0,9.2D.8.5,9.56.(3分)已知关于x的一元二次方程x2﹣3x+1=0有两个不相等的实数根x1,x2,则x12+x22的值是()A.﹣7B.7C.2D.﹣27.(3分)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,点E在▱ABCD 的对角线AC上,AE=BE=BC,∠D=105°,则∠BAC的度数是()A.35°B.30°C.25°D.20°8.(3分)已知点A(1,y1),B(2,y2),C(﹣2,y3)都在反比例函数y=(k>0)的图象上,则()A.y1>y2>y3B.y3>y2>y1C.y2>y3>y1D.y1>y3>y2 9.(3分)如图,在平面直角坐标系中,菱形ABCO的顶点O为坐标原点,边CO在x轴正半轴上,∠AOC=60°,反比例函数y=(x>0)的图象经过点A,交菱形对角线BO于点D,DE⊥x轴于点E,则CE长为()A.1B.C.2﹣D.﹣110.(3分)如图,在正方形ABCD的对角线AC上取一点E.使得∠CDE=15°,连接BE 并延长BE到F,使CF=CB,BF与CD相交于点H,若AB=1,有下列结论:①BE=DE;②CE+DE=EF;③S△DEC=﹣;④=2﹣1.则其中正确的结论有()A.①②③B.①②③④C.①②④D.①③④二、填空题(共6小题,24分)11.(4分)已知y=(m﹣2)x|m|+2是y关于x的二次函数,那么m的值为.12.(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是9环,方差分别是:,,则射击成绩较稳定的是.(填“甲”或“乙”)13.(4分)如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是边形.14.(4分)已知反比例函数y=,若﹣3≤y≤6,且y≠0,则x的取值范围是.15.(4分)在平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(ka+b,a+)(其中k为常数且k≠0),则称点P′为点P的“k关联点”.已知点A在反比例函数y=的图象上运动,且点A是点B的“关联点”,当线段OB最短时,点B的坐标为.16.(4分)如图1是伸缩式雨棚的实物图,由骨架与伞面两部分组成,可抽象成矩形ABCD (如图2),其中实线部分表示雨棚的骨架,矩形ABCD为雨棚的伞面,CD固定不动,当横杆AB自由伸缩时,骨架与伞面也跟着伸缩,当点D,G,E在一条直线上时,雨棚伞面面积最大,伸缩过程中伞面ABCD始终是矩形.若测得AB=5m,DG=CH=2.5m,GE=HF=m,AE=BF=0.5m.(1)当∠DGE=90°时,雨棚伞面的面积等于m2;(2)当cos∠CDG=时,雨棚伞面的面积等于m2.三、解答题(共8小题,66分)17.(8分)计算题:(1)+﹣+;(2)(+)2×(5﹣2).18.(8分)解一元二次方程:(1)(x+2)2=3(x+2);(2)(x﹣2)2﹣4(2﹣x)=5.19.(8分)已知点E、F分别是▱ABCD的边BC、AD的中点.(1)求证:四边形AECF是平行四边形;(2)若BC=12,∠BAC=90°,求▱AECF的周长.20.(8分)甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)数与代数空间与图形统计与概率综合与实践学生甲93938990学生乙94929486(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?21.(8分)如图,在7×4方格纸中,点A,B,C都在格点上(△ABC称为格点三角形,即格点△ABC),用无刻度直尺作图.(1)在图1中的线段AC上找一个点D,使CD=AC;(2)在图2中作一个格点△CEF,使△CEF与△ABC相似.22.(8分)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B 两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.23.(8分)已知一块矩形草坪的两边长分别是2米与3米,现在要把这个矩形按照如图1的方式扩大到面积为原来的2倍,设原矩形的一边加长a米,另一边长加长b米,可得a 与b之间的函数关系式b=﹣2.某班“数学兴趣小组”对此函数进一步推广,得到更一般的函数y=﹣2,现对这个函数的图象和性质进行了探究,研究过程如下,请补充完整:(1)类比反比例函数可知,函数y=﹣2的自变量x的取值范围是,这个函数值y的取值范围是.(2)“数学兴趣小组”进一步思考函数y=|﹣2|的图象和性质,请根据函数y=﹣2的图象,画出函数y=|﹣2|的图象;(3)结合函数y=|﹣2|的图象解答下列问题:①求出方程|﹣2|=0的根;②如果方程|﹣2|=a有2个实数根,请直接写出a的取值范围.24.(10分)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,3)三点,D 为直线BC上方抛物线上一动点,DE⊥BC于E.(1)求抛物线的函数表达式;(2)如图1,求线段DE长度的最大值;(3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得△CDE中有一个角与∠CFO相等?若存在,求点D的横坐标;若不存在,请说明理由.2022-2023学年浙江省金华市义乌市绣湖中学九年级(上)开学数学试卷参考答案与试题解析一、单选题(共10小题,30分)1.(3分)如图,P是▱ABCD内一点,连接P与▱ABCD各顶点,▱EFGH各顶点分别在边AP、BP、CP、DP上,且AE=2EP,EF∥AB.若△PEF与△PGH的面积和为1.则▱ABCD 的面积为()A.4B.6C.12D.18【分析】根据平行四边形的性质和平行线的性质推出EH∥AD,FG∥BC,根据相似三角形的性质得到=()2=,同理,=,于是得到结论.【解答】解:∵AE=2EP,∴=,∵四边形ABCD与四边形EFGH是平行四边形,∴EF=GH,AB=CD,AD∥BC,AB∥CD,EF∥GH,EH∥FG,∵EF∥AB,∴GH∥CD,=,∴=,∵=,∴=,∴∴AD∥EH,同理:FG∥BC,∵EF∥AB,∴△PEF∽△P AB,∴==,∴=()2=,同理,=,∵S△P AB+S△PCD=S平行四边形ABCD,∴△PEF与△PGH的面积和为1=(S△P AB+S△PCD)=×S平行四边形ABCD,∴▱ABCD的面积=18.故选:D.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,熟练掌握相似三角形的判定和性质是解题的关键.2.(3分)要使在实数范围内有意义,则()A.x为任何值B.x≤﹣C.x≥D.x≥﹣【分析】二次根式的被开方数是非负数,即9+2x≥0.通过解该不等式求得x的取值范围.【解答】解:依题意得:9+2x≥0.解得x≥﹣.故选:D.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.(3分)下列二次根式计算正确的是()A.=±7B.=4C.=1﹣D.()2=【分析】根据二次根式的性质对各选项进行判断.【解答】解:A、原式=7,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣1,所以C选项错误;D、原式=,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.(3分)若关于x的一元二次方程(a﹣1)x2+a2x﹣a=0有一个根是x=1,则a的值为()A.﹣1B.0C.1D.﹣1或1【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.【解答】解:根据题意,得a﹣1+a2﹣a=0,解得,a=1或﹣1,∵a﹣1≠0,∴a≠1,∴a=﹣1.故选:A.【点评】本题主要考查了方程解的定义,已知x=1是方程的解实际就是得到了一个关于a的方程.5.(3分)某校举办主题为“关爱身心健康,致敬可爱守护者”的演讲比赛,进入决赛的6名选手的成绩(单位:分)分别为:9.0,8.4,9.2,8.5,9.2,9.5,则这组数据的中位数和众数分别是()A.9.1,9.2B.9.1,9.5C.9.0,9.2D.8.5,9.5【分析】根据中位数和众数的定义求解可得.【解答】解:由题意可知,6名选手的成绩中出现次数最多的是9.2,故众数为9.2,将这组数据排好顺序为:8.4,8.5,9.0,9.2,9.2,9.5,故中位数为=9.1,故选:A.【点评】本题主要考查众数和中位数,熟练掌握中位数和众数的定义是解答此题的关键.6.(3分)已知关于x的一元二次方程x2﹣3x+1=0有两个不相等的实数根x1,x2,则x12+x22的值是()A.﹣7B.7C.2D.﹣2【分析】先利用根与系数的关系得到x1+x2=3,x1x2=1,再利用完全平方公式得到x12+x22=(x1+x2)2﹣2x1x2,然后利用整体代入的方法计算.【解答】解:根据根与系数的关系得x1+x2=3,x1x2=1,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×1=7.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=﹣,x1x2=.7.(3分)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,点E在▱ABCD 的对角线AC上,AE=BE=BC,∠D=105°,则∠BAC的度数是()A.35°B.30°C.25°D.20°【分析】根据平行四边形的性质得到∠ABC=∠D=105°,AD=BC,根据等腰三角形的性质得到∠EAB=∠EBA,∠BEC=∠ECB,根据三角形外角的性质得到∠ACB=2∠CAB,由三角形的内角和定理即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=105°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣105°=75°,∴∠BAC=25°,故选:C.【点评】本题考查了平行四边形的性质,三角形的内角和定理,三角形外角的性质,正确的识别图形是解题的关键.8.(3分)已知点A(1,y1),B(2,y2),C(﹣2,y3)都在反比例函数y=(k>0)的图象上,则()A.y1>y2>y3B.y3>y2>y1C.y2>y3>y1D.y1>y3>y2【分析】画出函数图象,利用图象法即可解决问题.【解答】解:函数图象如图所示:y1>y2>y3,故选:A.【点评】本题考查反比例函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.9.(3分)如图,在平面直角坐标系中,菱形ABCO的顶点O为坐标原点,边CO在x轴正半轴上,∠AOC=60°,反比例函数y=(x>0)的图象经过点A,交菱形对角线BO于点D,DE⊥x轴于点E,则CE长为()A.1B.C.2﹣D.﹣1【分析】作AH⊥OC于H.分别求出OA、OE即可解决问题;【解答】解:作AH⊥OC于H.∵∠AOH=60°,设OH=m,则AH=m,OA=2m,∴A(m,m),∴m2=2,∴m=或﹣(舍弃),∴OA=2,∵四边形OABC是菱形,∴∠DOE=∠AOC=30°,设DE=n,则OE=n,∴D(n,n),∴n2=2,∴n=或﹣(舍弃),∴OE=,∴EC=OC﹣OE=2﹣,故选:C.【点评】本题考查反比例函数图象上的点的特征、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.10.(3分)如图,在正方形ABCD的对角线AC上取一点E.使得∠CDE=15°,连接BE 并延长BE到F,使CF=CB,BF与CD相交于点H,若AB=1,有下列结论:①BE=DE;②CE+DE=EF;③S△DEC=﹣;④=2﹣1.则其中正确的结论有()A.①②③B.①②③④C.①②④D.①③④【分析】①由正方形的性质可以得出AB=AD,∠BAC=∠DAC=45°,通过证明△ABE ≌△ADE,就可以得出BE=DE;②在EF上取一点G,使EG=EC,连接CG,再通过条件证明△DEC≌△FGC就可以得出CE+DE=EF;③过D作DM⊥AC交于M,根据勾股定理求出AC,根据三角形的面积公式即可求出高DM,根据三角形的面积公式即可求得S△DEC=﹣;④解直角三角形求得DE,根据等边三角形性质得到CG=CE,然后通过证得△DEH∽△CGH,求得==+1.【解答】证明:①∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=90°,∠BAC=∠DAC=∠ACB=∠ACD=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),∴BE=DE,故①正确;②在EF上取一点G,使EG=EC,连接CG,∵△ABE≌△ADE,∴∠ABE=∠ADE.∴∠CBE=∠CDE,∵BC=CF,∴∠CBE=∠F,∴∠CBE=∠CDE=∠F.∵∠CDE=15°,∴∠CBE=15°,∴∠CEG=60°.∵CE=GE,∴△CEG是等边三角形.∴∠CGE=60°,CE=GC,∴∠GCF=45°,∴∠ECD=GCF.在△DEC和△FGC中,,∴△DEC≌△FGC(SAS),∴DE=GF.∵EF=EG+GF,∴EF=CE+ED,故②正确;③过D作DM⊥AC交于M,根据勾股定理求出AC=,由面积公式得:AD×DC=AC×DM,∴DM=,∵∠DCA=45°,∠AED=60°,∴CM=,EM=,∴CE=CM﹣EM=﹣∴S△DEC=CE×DM=﹣,故③正确;④在Rt△DEM中,DE=2ME=,∵△ECG是等边三角形,∴CG=CE=﹣,∵∠DEF=∠EGC=60°,∴DE∥CG,∴△DEH∽△CGH,∴===+1,故④错误;综上,正确的结论有①②③,故选:A.【点评】本题主要考查对正方形的性质,全等三角形的性质和判定,三角形的面积,勾股定理,含30度角的直角三角形的性质等知识点的理解和掌握,综合运用这些性质进行证明是解此题的关键.二、填空题(共6小题,24分)11.(4分)已知y=(m﹣2)x|m|+2是y关于x的二次函数,那么m的值为﹣2.【分析】直接利用二次函数的定义分析得出答案.【解答】解:∵y=(m﹣2)x|m|+2是y关于x的二次函数,∴|m|=2,且m﹣2≠0,解得:m=﹣2.故答案为:﹣2.【点评】此题主要考查了二次函数的定义,正确把握系数与次数是解题关键.12.(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是9环,方差分别是:,,则射击成绩较稳定的是甲.(填“甲”或“乙”)【分析】根据方差的定义,方差越小数据越稳定.【解答】解:∵,,∴S甲2<S乙2,∴射击成绩较稳定的是甲;故答案为:甲.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.(4分)如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是六边形.【分析】n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.【解答】解:设多边形的边数为n,依题意,得:(n﹣2)•180°=2×360°,解得n=6,故答案为:六.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.14.(4分)已知反比例函数y=,若﹣3≤y≤6,且y≠0,则x的取值范围是x≤﹣2或x≥1.【分析】利用反比例函数增减性分析得出答案.【解答】解:∵﹣3≤y≤6且y≠0,∴y=﹣3时,x=﹣2,∴在第三象限内,y随x的增大而减小,∴x≤﹣2;当y=6时,x=1,在第一象限内,y随x的增大而减小,则x≥1故x的取值范围是:x≤﹣2或x≥1.故答案为:x≤﹣2或x≥1.【点评】此题主要考查了反比例函数图象上点的坐标特征,正确掌握反比例函数增减性是解题关键.15.(4分)在平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(ka+b,a+)(其中k为常数且k≠0),则称点P′为点P的“k关联点”.已知点A在反比例函数y =的图象上运动,且点A是点B的“关联点”,当线段OB最短时,点B的坐标为(,)或(﹣,﹣).【分析】由点A是点B的“关联点”,可设点B坐标,表示出点A坐标,由点A在函数y=的图象上,就得到点B在一个一次函数的图象上,可求出这条直线与坐标轴的交点M、N,过Q作这条直线的垂线,这点到垂足之间的线段QB,此时QB最小,由∠NMO=60°可得出点B的坐标.【解答】解:设B(x,y),∵点A是点B的“关联点”,∴A(x+y,x+)∵点A在函数y=(x>0)的图象上,∴(x+y)(x+)=,即:x+y=或x+y=﹣,当点B在直线y=﹣x+上时,设直线y=﹣x+与x轴、y轴相交于点M、N,则M(1,0)、N(0,),当OB⊥MN时,线段OB最短,此时OB==,由∠NMO=60°,可得点B(,);设直线y=﹣x﹣时,同理可得点B(﹣,﹣);故答案为:(,)或(﹣,﹣).【点评】考查反比例函数的图象上点的坐标特征、一次函数的图象和性质等知识,合理地把“坐标与线段的长”互相转化,是解决问题的关键,由于新定义一种概念,切实理解“关联点”的意义是解决问题的前提.16.(4分)如图1是伸缩式雨棚的实物图,由骨架与伞面两部分组成,可抽象成矩形ABCD (如图2),其中实线部分表示雨棚的骨架,矩形ABCD为雨棚的伞面,CD固定不动,当横杆AB自由伸缩时,骨架与伞面也跟着伸缩,当点D,G,E在一条直线上时,雨棚伞面面积最大,伸缩过程中伞面ABCD始终是矩形.若测得AB=5m,DG=CH=2.5m,GE=HF=m,AE=BF=0.5m.(1)当∠DGE=90°时,雨棚伞面的面积等于m2;(2)当cos∠CDG=时,雨棚伞面的面积等于15m2.【分析】(1)根据勾股定理可以得到DE的长,然后再根据∠DAE=90°,AE=0.5m,即可求得AD的长,然后即可计算出当∠DGE=90°时,雨棚伞面的面积;(2)根据锐角三角函数可以求得DM和MG的长,然后计算出GN的长,即可得到MN 的长,然后即可计算出当cos∠CDG=时,雨棚伞面的面积.【解答】解:(1)连接DE,如右图2所示,∵DG=2.5m,GE=m,∠DGE=90°,∴DE=(m),∵∠DAE=90°,AE=0.5m,∴AD=(m),∵AB=5m,∴雨棚伞面的面积是:AB•AD=5×2=10(m2),故答案为:10;(2)过点G作MN⊥AB交AB于点N,交DC于点M,如图2所示,则∠GMD=∠GNE=90°,∵cos∠CDG=,DG=2.5m,∴,解得DM=1.5m,∴MG=(m),∵AE=0.5m,AN=DM,∴EN=1.5﹣0.5=1(m),∵GE=m,∠GNE=90°,∴GN==1(m),∴MN=MG+GN=2+1=3(m),∵AB=5m,∴当cos∠CDG=时,雨棚伞面的面积是AB•MN=5×3=15(m2),故答案为:15.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,求出矩形的宽.三、解答题(共8小题,66分)17.(8分)计算题:(1)+﹣+;(2)(+)2×(5﹣2).【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先根据完全平方公式计算,然后根据平方差公式计算.【解答】解:(1)原式=++﹣+4=﹣;(2)原式=(5+2)(5﹣2)=25﹣24=1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)解一元二次方程:(1)(x+2)2=3(x+2);(2)(x﹣2)2﹣4(2﹣x)=5.【分析】(1)把(x+2)看作一个整体,先移项,然后利用因式分解法解方程;(2)把(x﹣2)看作一个整体,先移项,然后利用因式分解法解方程.【解答】解:(1)(x+2)2=3(x+2),(x+2)2﹣3(x+2)=0,(x+2﹣3)(x+2)=0,x+2﹣3=0或x+2=0,解得x1=1,x2=﹣2;(2)(x﹣2)2﹣4(2﹣x)=5,(x﹣2)2+4(x﹣2)﹣5=0,(x﹣2﹣1)(x﹣2+5)=0,x﹣2﹣1=0或x﹣2+5=0,解得x1=3,x2=﹣3.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.19.(8分)已知点E、F分别是▱ABCD的边BC、AD的中点.(1)求证:四边形AECF是平行四边形;(2)若BC=12,∠BAC=90°,求▱AECF的周长.【分析】(1)根据平行四边形的性质得AD∥BC,AD=BC,再证AF=CE,即可得出结论;(2)根据直角三角形斜边上的中线性质得到AE=CE=BC=6,再证平行四边形AECF 是菱形,于是得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E、F分别是▱ABCD的边BC、AD的中点,∴AF=AD,CE=BC,∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵BC=12,∠BAC=90°,E是BC的中点.∴AE=CE=BC=CE=6,∴平行四边形AECF是菱形,∴▱AECF的周长=4×6=24.【点评】此题主要考查了平行四边形的判定与性质、菱形的判定与性质、直角三角形斜边上的中线性质等知识,熟练掌握平行四边形的判定与性质是解题的关键.20.(8分)甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)数与代数空间与图形统计与概率综合与实践学生甲93938990学生乙94929486(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?【分析】(1)由中位数的定义求解可得;(2)根据加权平均数的定义计算可得.【解答】解:(1)甲的中位数=,乙的中位数=;(2)甲的数学综合成绩=93×0.4+93×0.3+89×0.1+90×0.2=92,乙的数学综合成绩=94×0.4+92×0.3+94×0.1+86×0.2=91.8.【点评】此题考查了中位数和加权平均数,用到的知识点是中位数和加权平均数,掌握它们的计算公式是本题的关键.21.(8分)如图,在7×4方格纸中,点A,B,C都在格点上(△ABC称为格点三角形,即格点△ABC),用无刻度直尺作图.(1)在图1中的线段AC上找一个点D,使CD=AC;(2)在图2中作一个格点△CEF,使△CEF与△ABC相似.【分析】(1)根据“8字形”相似,可得CD:AD=2:3,从而得出点D的位置;(2)根据∠ACB=90°,AC=2BC,即可画出△CEF.【解答】解:(1)如图1,点D即为所求;(2)如图2,△CEF即为所求.【点评】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.22.(8分)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B 两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.【分析】(1)由题意,根据对称性得到B的横坐标为1,确定出C的坐标,根据三角形AOC的面积求出A的纵坐标,确定出A坐标,将A坐标代入一次函数与反比例函数解析式,即可求出m与n的值;(2)设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出直线AC的解析式.【解答】解:(1)∵直线y=mx与双曲线y=相交于A(﹣1,a)、B两点,∴B点横坐标为1,即C(1,0),∵△AOC的面积为1,∴A(﹣1,2),将A(﹣1,2)代入y=mx,y=可得m=﹣2,n=﹣2;(2)设直线AC的解析式为y=kx+b,∵y=kx+b经过点A(﹣1,2)、C(1,0)∴,解得k=﹣1,b=1,∴直线AC的解析式为y=﹣x+1.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:反比例函数的图象与性质,待定系数法确定函数解析式,熟练掌握待定系数法是解本题的关键.23.(8分)已知一块矩形草坪的两边长分别是2米与3米,现在要把这个矩形按照如图1的方式扩大到面积为原来的2倍,设原矩形的一边加长a米,另一边长加长b米,可得a 与b之间的函数关系式b=﹣2.某班“数学兴趣小组”对此函数进一步推广,得到更一般的函数y=﹣2,现对这个函数的图象和性质进行了探究,研究过程如下,请补充完整:(1)类比反比例函数可知,函数y=﹣2的自变量x的取值范围是x≠﹣3,这个函数值y的取值范围是y≠﹣2.(2)“数学兴趣小组”进一步思考函数y=|﹣2|的图象和性质,请根据函数y=﹣2的图象,画出函数y=|﹣2|的图象;(3)结合函数y=|﹣2|的图象解答下列问题:①求出方程|﹣2|=0的根;②如果方程|﹣2|=a有2个实数根,请直接写出a的取值范围.【分析】(1)根据函数本身的性质,分母不为零可得出x的取值范围;进而可求出y的取值范围;(2)根据函数的平移可知,函数y=﹣2可看作反比例函数y=的图象向左平移3个单位,再向下移动2个单位得到;函数y=|﹣2|的图象即y=﹣2的图象,x 轴下方的图象关于x对称后得到的图象;(3)①由(2)中的函数图象可得出方程|﹣2|=0的根;②方程|﹣2|=a根的个数情况,可看作函数y=|﹣2|与y=a的交点的个数问题,由图象可得出结果.【解答】解:(1)y=﹣2的自变量x的取值范围是x≠﹣3,这个函数值y的取值范围是y≠﹣2,故答案为:x≠﹣3;y≠﹣2.(2)函数y=|﹣2|的图象,如图所示:(3)①方程|﹣2|=0该方程的根是x=3;②如果方程|﹣2|=a有2个实数根,则a的取值范围是0<a<2或a>2.【点评】本题主要考查函数图象的应用,涉及函数的平移,数形结合思想等内容,熟知函数图象的平移规则“左加右减,上加下减”由反比例函数得出给出题干中函数图象是解题关键.24.(10分)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,3)三点,D 为直线BC上方抛物线上一动点,DE⊥BC于E.(1)求抛物线的函数表达式;(2)如图1,求线段DE长度的最大值;(3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得△CDE中有一个角与∠CFO相等?若存在,求点D的横坐标;若不存在,请说明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得DM,根据相似三角形的判定与性质,可得DE的长,根据二次函数的性质,可得答案;(3)根据正切函数,可得∠CFO,根据相似三角形的性质,可得GH,BH,根据待定系数法,可得CG的解析式,根据解方程组,可得答案.【解答】解:(1)由题意,得,解得,抛物线的函数表达式为y=﹣x2+x+3;(2)设直线BC的解析式为y=kx+b,,解得∴y=﹣x+3,设D(a,﹣a2+a+3),(0<a<4),过点D作DM⊥x轴交BC于M点,如图1,M(a,﹣a+3),DM=(﹣a2+a+3)﹣(﹣a+3)=﹣a2+3a,∵∠DME=∠OCB,∠DEM=∠BOC,∴△DEM∽△BOC,∴=,∵OB=4,OC=3,∴BC=5,∴DE=DM∴DE=﹣a2+a=﹣(a﹣2)2+,当a=2时,DE取最大值,最大值是,(3)存在.假设存在这样的点D,△CDE使得中有一个角与∠CFO相等,∵点F为AB的中点,∴OF=,tan∠CFO==2,过点B作BG⊥BC,交CD的延长线于G点,过点G作GH⊥x轴,垂足为H,如图2,①若∠DCE=∠CFO,∴tan∠DCE==2,∴BG=10,∵△GBH∽BCO,∴==,∴GH=8,BH=6,∴G(10,8),设直线CG的解析式为y=kx+b′,∴,解得∴直线CG的解析式为y=x+3,∴,解得x=,或x=0(舍).②若∠CDE=∠CFO,同理可得BG=,GH=2,BH=,∴G(,2),同理可得,直线CG的解析式为y=﹣x+3,∴,解得x=或x=0(舍),综上所述,存在点D,使得△CDE中有一个角与∠CFO相等,点D的横坐标为或.【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法,解(2)的关键是利用相似三角形的性质得出DE的长,又利用了二次函数的性质;解(3)的关键是利用相似三角形的性质得出G点的坐标,利用了待定系数法求函数解析式,解方程组求得横坐标.。
2019-2020学年人教版九年级数学上学期同步测试专题24-1:圆的有关性质(含解析)
专题24.1圆的有关性质(测试)一、单选题1.下列各角中,是圆心角的是( )A .B .C .D .【答案】D 【解析】顶点在圆心,两边和圆相交的角是圆心角,选项D 中,是圆心角, 故选D .2.一个周长是l 的半圆,它的半径是( ) A .l π÷ B .2l π÷C .()2l π÷+D .()1l π÷+【答案】C 【解析】半圆的周长为半径的π倍加上半径的2倍,所以一个周长是l 的半圆,它的半径是()2l π÷+,所以选C. 3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .B .4C .D .4.8【答案】C【解析】∵AB 为直径, ∴90ACB ︒∠=,∴6BC =, ∵OD AC ⊥, ∴142CD AD AC ===,故选C . 4.如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,30ADC ∠=︒,则BOC ∠的度数为( ).A .30°B .40°C .50°D .60°【答案】D【解析】解:如图,∵30ADC ∠=︒, ∴260AOC ADC ∠=∠=︒. ∵AB 是O 的弦,OC AB ⊥交O 于点C ,∴AC BC =.∴60AOC BOC ∠=∠=︒. 故选:D ..5.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器( )台.A .3B .4C .5D .6【答案】A【解析】设需要安装n (n 是正整数)台同样的监控器,由题意,得:65°×2×n ≥360°, 解得n ≥3613,∴至少要安装3台这样的监控器,才能监控整个展厅.故选:A .且10CD m =,则这段弯路所在圆的半径为( )A .25mB .24mC .30mD .60m【答案】A 【解析】解:OC AB ⊥,20AD DB m ∴==,在Rt AOD ∆中,222OA OD AD =+, 设半径为r 得:()2221020r r =-+, 解得:25r m =,∴这段弯路的半径为25m故选:A .7.若AB 和CD 的度数相等,则下列命题中正确的是( ) A .AB =CDB .AB 和CD 的长度相等C .AB 所对的弦和CD 所对的弦相等D .AB 所对的圆心角与CD 所对的圆心角相等 【答案】D【解析】如图,AB 与CD 的度数相等,A 、根据度数相等,不能推出弧相等,故本选项错误;B 、根据度数相等,不能推出两弧的长度相等,故本选项错误;C 、根据度数相等,不能推出所对应的弦相等,故本选项错误;D 、根据度数相等,能推出弧所对的两个圆心角相等,故本选项正确;8.如图,C、D为半圆上三等分点,则下列说法:①AD=CD=BC;②∠AOD=∠DOC=∠BOC;③AD =CD=OC;④△AOD沿OD翻折与△COD重合.正确的有()A.4个B.3个C.2个D.1个【答案】A【解析】∵C、D为半圆上三等分点,∴»»»AD CD BC==,故①正确,∵在同圆或等圆中,等弧对的圆心角相等,等弧对的弦相,∴AD=CD=OC,∠AOD=∠DOC=∠BOC=60°,故②③正确,∵OA=OD=OC=OB,∴△AOD≌△COD≌△COB,且都是等边三角形,∴△AOD沿OD翻折与△COD重合.故④正确,∴正确的说法有:①②③④共4个,故选A.9.下列说法:①优弧一定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆内的一个定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.其中不正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】解:在同圆或等圆中,优弧一定比劣弧长,所以①错误;面积相等的两个圆半径相等,则它们是等圆,所以②正确;能完全重合的弧是等弧,所以③错误;经过圆内一个定点可以作无数条弦,所以④正确;经过圆内一定点可以作无数条直径或一条直径,所以⑤错误.10.如图所示,AB 是半圆O 的直径。
九年级数学第一次月考卷01(全解析)【九年级上册第二十一章~第二十二章】人教版-初中上学期第一次月考
2024-2025学年九年级数学上学期第一次月考卷01(人教版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版九年级上册第二十一章~第二十二章。
5.难度系数:0.8。
一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,属于一元二次方程的是()A.x―2y=1B.x2―2x+1=0C.x2―2y+4=0D.x2+3=2x2.将方程x2―8x=10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A.―8,―10B.―8,10C.8,―10D.8,10【答案】A【详解】将x2―8x=10化为一般形式为:x2―8x―10=0,∴一次项系数、常数项分别是-8,-10.故选A.3.对于二次函数y=3(x+4)2,其图象的顶点坐标为()A.(0,4)B.(0,―4)C.(4,0)D.(―4,0)【答案】D【详解】解:因为二次函数y=3(x+4)2,所以其图象的顶点坐标为(―4,0).故选:D.4.一元二次方程x2―2x+3=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.只有一个实数根【答案】C【详解】∵Δ=(―2)2―4×1×3=―8<0,∴一元二次方程没有实数根.故选:C.5.淄博烧烤火爆出圈,各地游客纷纷“进淄赶烤”.某烧烤店5月1日收入约为5万元,之后两天的收入按相同的增长率增长,5月3日收入约为9.8万元,若设每天的增长率为x,则x满足的方程是()A.5(1+x)=9.8B.5(1+2x)=9.8C.5(1―x)2=9.8D.5(1+x)2=9.86.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是ℎ=30t―5t2.小球运动到最高点所需的时间是( )A.2s B.3s C.4s D.5s【答案】B【详解】解:ℎ=30t―5t2=―5(t―3)2+45,∵―5<0,∴当t=3时,ℎ有最大值,最大值为45.故选:B.7.中秋节当天,某微信群里的每两个成员之间都互发一条祝福信息,共发出72条信息,设这个微信群的人数为x,则根据题意列出的方程是()A .x(x ―1)=72B .12x(x +1)=72 C .x(x +1)=72D .12x(x ―1)=72【答案】A【详解】解:根据题意可得x (x ―1)=72,故选:A .8.如果三点P 1(1,y 1),P 2(3,y 2)和P 3(4,y 3)在抛物线y =―x 2+6x +c 的图象上,那么y 1,y 2与y 3之间的大小关系是( )A .y 1<y 3<y 2B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 1<y 2<y 3【答案】A【详解】解:∵y =-x 2+6x +c =-(x -3)2+9+c ,∴图象的开口向下,对称轴是直线x =3,P 1(1,y 1)关于对称轴的对称点为(5,y 1),∵3<4<5,∴y 2>y 3>y 1,故选:A .9.对于二次函数y =(x ―1)2―2的图象,下列说法正确的是( )A .开口向下B .对称轴是直线x =―110.如图是抛物线y =a(x +1)2+2的一部分,该抛物线在y 轴右侧部分与x 轴的交点坐标是( )A.(1,0)B.(1,0)C.(2,0)D.(3,0)211.二次函数y=x―+3的图象(1≤x≤3)如图所示,则该函数在所给自变量的取值范围内,函数值y4的取值范围是()A.y≥1B.1≤y≤3C.3≤y≤3D.0≤y≤3412.定义新运算“a⊗b”:对于任意实数a,b,都有a⊗b=(a﹣b)2﹣b,其中等式右边是通常的加法、减法和乘法运算,如3⊗2=(3﹣2)2﹣2=﹣1.若x⊗k=0(k为实数)是关于x的方程,且x=2是这个方程的一个根,则k的值是( )A.4B.﹣1或4C.0或4D.1或4【答案】D【详解】解:∵a⊗b=(a﹣b)2﹣b,∴关于x的方程x⊗k=0(k为实数)化为(x―k)2―k=0,∵x=2是这个方程的一个根,∴4-4k+k2-k=0,解得:k1=4,k2=1,故选:D.二、填空题(本题共6小题,每小题2分,共12分.)13.把方程x2=2x―3化为一般形式是.【答案】x2―2x+3=0【详解】解:由x2=2x―3得:x2―2x+3=0,故答案为:x2―2x+3=0.14.已知x=1是方程x2+bx―2=0的一个根,则b的值为.15.若x1,x2是一元二次方程x2+2x―5=0的两个根,则x1+x2=.【答案】―2【详解】解:∵x1,x2是一元二次方程x2+2x―5=0的两个根,方程中二次项系数a=1,一次项系数b=2,常数项c=―5,∴x1+x2=―2.故答案为:―2.16.若抛物线y=(m―1)x m2―2―mx有最小值,则常数m的值为.【答案】2【详解】解:∵抛物线y=(m―1)x m2―2―mx有最小值,∴m―1>0(开口向上),m2―2=2,解得m>1,m=±2,即m=2,故答案为:2.17.已知等腰三角形的底边长为7,腰长是x2―8x+15=0的一个根,则这个三角形周长为.【答案】17【详解】解:x2―8x+15=0,(x―5)(x―3)=0,x―5=0,x―3=0,x1=5,x2=3,即①等腰三角形的三边为7,5,5,此时符合三角形三边关系定理,三角形的周长是5+5+7=17;②等腰三角形的三边为3,3,7,此时不符合三角形三边关系定理,故答案为:17.18.已知二次函数y=ax2+bx+c的图象如图所示,若方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围是.故答案为k<5.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)x(2x+1)=2x+1;(2)4x2﹣3x=x+1.20.(6分)已知关于x的方程x2+ax+a―2=0.(1)若该方程的一个根为2,求a的值及该方程的另一根.(2)求证:不论a取何实数,该方程都有两个不相等的实数根.△=a2―4×1×(a―2)=a2―4a+8=(a―2)2+4,(4分)∵(a―2)2≥0,∴(a―2)2+4≥4,∴不论a取何实数,该方程都有两个不相等的实数根;(6分)21.(10分)已知二次函数y=―x2+2x+3;(1)把该二次函数化成y=a(x+m)2+k的形式为______;(2)当x______时,y随x的增大而增大;(3)若该二次函数的图像与x轴交于点A、B,与y轴交于点C,求△ABC的面积.22.(10分)如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m,另三边用竹篱笆围成,篱笆总长35m,围成长方形的养鸡场四周不能有空隙.(1)要围成养鸡场的面积为150m2,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到200m2?请说明理由.【详解】解:(1)设养鸡场的宽为x m,根据题意得:x(35﹣2x)=150,(2分)解得:x1=10,x2=7.5,当x1=10时,35﹣2x=15<18,当x2=7.5时35﹣2x=20>18,(舍去),则养鸡场的宽是10m,长为15m.(5分)(2)设养鸡场的宽为x m,根据题意得:x(35﹣2x)=200,(7分)整理得:2x2﹣35x+200=0,△=(﹣35)2﹣4×2×200=1225﹣1600=﹣375<0,因为方程没有实数根,所以围成养鸡场的面积不能达到200m2.(10分)23.(10分)为了加强安全教育,某校对学生进行“防溺水知识应知应答”测评.该校随机选取了八年级300名学生中的20名学生在10月份测评的成绩,数据如下:收集数据:9791899590999097919890909188989795909688整理、描述数据:数据分析:样本数据的平均数、众数、中位数和极差如表:平均数中位数众数极差93b c d(1)a=______,b=______,c=______,d=______;(2)该校决定授予在10月份测评成绩优秀(96分及以上)的八年级的学生“防溺水小卫士”荣誉称号,请估计评选该荣誉称号的人数.(3)若被选取的20名学生在11月份测评的成绩的平均数、众数、中位数和极差如表:平均数中位数众数极差95939410结合相关数据,从一个方面评价10月份到11月份开展的“防溺水知识应知应答”测评活动的效果.24.(10分)杭州亚运会的三个吉祥物“琮琮”“宸宸”“莲莲”组合名为“江南忆”,出自唐朝诗人白居易的名句“江南忆,最忆是杭州”,它融合了杭州的历史人文、自然生态和创新基因.吉祥物一开售,就深受大家的喜爱.某商店以每件35元的价格购进某款亚运会吉祥物,以每件58的价格出售.经统计,4月份的销售量为256件,6月份的销售量为400件.(1)求该款吉祥物4月份到6月份销售量的月平均增长率;(2)经市场预测,7月份的销售量将与6月份持平,现商场为了减少库存,采用降价促销方式,调查发现,该吉祥物每降价1元,月销售量就会增加20件.当该吉祥物售价为多少元时,月销售利润达8400元?【详解】(1)设该款吉祥物4月份到6月份销售量的月平均增长率为m,则6月份的销售量为256(1+m)2,根据题意得:256(1+m)2=400,解得:m1=0.25=25%,m2=―2.25(不符合题意,舍去),答:该款吉祥物4月份到6月份销售量的月平均增长率为25%;(4分)(2)设该吉祥物售价为y元,则每件的销售利润为(y―35)元,月销售量为400+20(58―y)=(1560―20y)(件),根据题意得:(y―35)(1560―20y)=8400,(7分)整理得:y2―113y+3150=0,解得:y1=50,y2=63(不符合题意,舍去),答:该款吉祥物售价为50元时,月销售利润达8400元.(10分)25.(10分)如图,点E,F,G,H分别在边长为6的正方形ABCD的四条边上运动,四边形EFGH也是正方形.(1)求证:△AEH≌△BFE;(2)设AE的长为x,正方形EFGH的面积为y,求y关于x的函数解析式;(3)在(2)的条件下,当AE的长为多少时,正方形EFGH的面积最小?最小值是多少?26.(10分)如图,在平面直角坐标系xOy中,抛物线y=―x2+bx+c交x轴于C(1,0),D(―3,0)两点,交y轴于点E,连接DE.(1)求抛物线的解析式及顶点坐标;(2)在线段DE上,是否存在一点P,使得△DCP是等腰直角三角形,如果存在,求出点P的坐标;如果不存在,请说明理由;(3)点A(―3,5),B(0,5),连接AB,若二次函数y=―x2+bx+c的图象向上平移m(m>0)个单位时,与线段AB有一个公共点,结合函数图象,直接写出m的取值范围.∠PCM=45°,时,5=―9+6+3+m,解得m=5,∴当m=1,或2<m≤5时,函数图象与线段AB有一个公共点.(10分)。
广东省2024届九年级上学期开学考试数学试卷(含答案)
2023-2024学年人教版数学九年级上学期开学摸底测验试题一、选择题(本大题共12小题.每小题只有一个正确选项,每小题3分,共36分)1.式子在实数范围内有意义,则x的取值范围是( )A.B.C.D.2.下列运算正确的是( )A.+=B.-=1C.=D.=3.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A.2,3,4B.3,4,5C.6,8,10D.5,12,134.矩形具有而菱形不具有的性质是( )A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等5.在国内投寄到外地质量为80g以内的普通信函应付邮资如下表:信件质量m/g0<m≤2020<m≤4040<m≤6060<m≤80邮资y/元 1.20 2.40 3.60 4.80某同学想寄一封质量为15g的信函给居住在外地的朋友,他应该付的邮资是( )A.4.80B.3.60C.2.40D.1.20 6.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的( )A.众数B.平均数C.中位数D.方差7.某班班长统计去年1∼8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )A.每月阅读数量的平均数是50B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月8.如图,直线l1:y=x+3与l2:y=mx+n交于点A(﹣1,b),则不等式x+3>mx+n的解集为( )A.x≥﹣1B.x<﹣1C.x≤﹣1D.x>﹣1 9.如图,正方体的棱长为2cm,点B为一条棱的中点.蚂蚁在正方体表面爬行,从点A爬到点B的最短路程是( )A.B.C.D.10.如图,在中,E为边上一点,且,的度数为( )A.B.C.D.11.已知在等腰三角形ABC中,D为BC的中点AD=12,BD=5,AB=13,点P为AD边上的动点,点E为AB边上的动点,则PE+PB的最小值是( )A.10B.12C.D.12.如图,正方形的对角线相交于点,将正方形沿直线折叠,点C落在对角线上的E处,折痕与交于点G,则( )A.B.C.D.二、填空题(本大题共4小题,每小题2分,共8分)13.化简: .(其中a>0,b>0)14.已知一次函数y = kx + b图像不经过第二象限,那么b的取值范围是 . 15.某运动队要从甲、乙、丙三名跳高运动员中选拔一人参加比赛,教练组统计了最近几次队内选拔赛的成绩并进行了分析,得到下表:甲乙丙平均数(cm)176173176方差()10.510.542.1根据表中数据,教练组应该选择 参加比赛(填“甲”或“乙”或“丙”)16.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,AC=8,BD=6,点E是CD的中点,连接OE,则OE的长是 .三、解答题(本答题共8小题,共56分)17.计算(1);(2)18.某商场家电销售部有营业员20名,为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售额目标,根据目标完成情况对营业员进行适当的奖惩.为此,商场统计了这20名营业员在某月的销售额,数据如下:(单位:万元)2526211728262025263020212026302521192826(1)请根据以上信息完成下表:销售额(万元)1719202125262830频数(人数)1133(2)上述数据中,众数是万元,中位数是万元,平均数是万元;(3)如果将众数作为月销售额目标,能否让至少一半的营业员都能达到目标?请说明理由.19.某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.(1)求A、B两种纪念品的进价分别为多少?(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出后总获利不低于216元,有哪几种进货方案?(3)通过计算说明:在(2)问的前提下应该怎样进货,才能使总获利最大?20.如图所示,一个梯子长2.5米,顶端A靠墙上,这时梯子下端B与墙角C的距离为1.5米,梯子滑动后停在上的位置上,如图,测得的长0.5米,求梯子顶端A下落了多少米?21.如图,在中,,,在中,是边上的高,,的面积为60.(1)求的长.(2)求四边形的面积.22.如图,直线与直线相交于点A,直线与y轴相交于点B.(1)求点A的坐标;(2)P为x轴上一动点,当的值最小时,求点P的坐标.23.如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.(1)求∠AEG的度数;(2)求证:四边形BEGF是平行四边形.24.如图,平行四边形的对角线与相交于点O,点E为的中点,过点A作交的延长线于点F,连接.(1)求证:四边形是平行四边形.(2)若,,,求平行四边形的面积.参考答案:1.B 2.C 3.A 4.B 5.D 6.C 7.C 8.D 9.C 10.B 11.D 12.A 13.14.b≤015.甲16.17.(1)解:=(2)解:=.18.(1)根据销售额统计表中的数据可得:25 26 28 30的人数依次为3,5,2,2;(2)众数即出现次数最多的数据,分析可得众数为26;第10名、11名的平均数为25,所以中位数为25;先将20个人的销售额相加可得其和为480,所以平均数为480/20=24;答:上述数据中,众数是26万元,中位数是25万元,平均数是24万元。
九年级数学上学期周练试卷(4)(含解析) 新人教版
2015-2016学年北京市北达资源中学九年级(上)周练数学试卷(4)一、选择题(每题4分,共24分)1.已知⊙O的半径是5,OP的长为7,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定2.若两圆没有公共点,则两圆的位置关系是()A.外离B.外切C.内含D.外离或内含3.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°4.如图所示,O是线段AB上的一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.50°B.40°C.60°D.70°5.如图,正三角形的内切圆半径为1,那么三角形的边长为()A.2 B.3 C.D.26.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是()A.B.4.75 C.5 D.4.8二、填空题(每小题4分,共40分)7.如图,△ABC中,∠A=45°,I是内心,则∠BIC=°.8.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为(度).9.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是cm.10.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知PA=7cm,则△PCD的周长等于cm.11.如图,已知⊙O是△ABC的内切圆,切点为D、E、F,如果AE=2,CD=1,BF=3,则内切圆的半径r=.12.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于.13.如图,在△ABC中,已知∠ABC=90°,在AB上取一点E,以BE为直径的☉O恰与AC相切于点D.若AE=2,AD=4.则☉O的直径BE=;△ABC的面积为.14.平面上有⊙O及一点P,P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.15.直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C 不重合),若∠A=40°,则∠BDC的度数是.16.已知⊙O的半径OA=1,弦AB、AC的长分别是、,则∠BAC的度数是.三、解答题(第17题16分,第18、19题每题10分,共36分)17.如图,C为圆周上一点,BD是☉O的切线,B为切点.(1)在图(1)中,AB是☉O的直径,∠BAC=30°,则∠DBC的度数为.(2)在图(2)中,∠BA1C=40°,求∠DBC的度数.(3)在图(3)中,∠BA1C=α,求∠DBC的大小.(4)通过(1)、(2)、(3)的探究,你发现的结论是(5)如图(4),AC是☉O的直径,∠ACB=60°,连接AB,过A、B两点分别作☉O的切线,两切线交于点P.若已知☉O的半径为1,则△PAB的周长为.(6)如图(5),C是⊙O的直径AB延长线上的一点,CD切⊙O于D,∠ACD的平分线分别交AD、BD于E、F,试猜想∠DEF的度数并说明理由.18.如图,直线AB、BC、CD分别与⊙O相切于A、E、D,且AB∥CD,若OB=6cm,OC=8cm,求(1)∠BOC 的度数;(2)⊙O的半径;(3)AB+CD的值.19.如图,Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O上,CE=CA,AB,CE的延长线交于点F.(1)求证:CE与⊙O相切;(2)若⊙O的半径为3,EF=4,求BD的长.2015-2016学年北京市北达资源中学九年级(上)周练数学试卷(4)参考答案与试题解析一、选择题(每题4分,共24分)1.已知⊙O的半径是5,OP的长为7,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【考点】点与圆的位置关系.【分析】直接根据点与圆的位置关系即可得出结论.【解答】解:∵⊙O的半径是5,OP的长为7,5<7,∴点P在圆外.故选C.2.若两圆没有公共点,则两圆的位置关系是()A.外离B.外切C.内含D.外离或内含【考点】圆与圆的位置关系.【分析】此题要求两个圆的位置关系,可观察两个圆之间的交点个数,一个交点两圆相切(内切或外切),两个交点两圆相交,没有交点两圆相离(外离或内含).【解答】解:外离或内含时,两圆没有公共点.故选D.3.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°【考点】切线的性质.【分析】根据切线的性质可判断∠OBA=90°,再由∠BAO=40°可得出∠O=50°,在等腰△OBC 中求出∠OCB即可.【解答】解:∵AB是⊙O的切线,B为切点,∴OB⊥AB,即∠OBA=90°,∵∠BAO=40°,∴∠O=50°,∵OB=OC(都是半径),∴∠OCB==65°.故选C.4.如图所示,O是线段AB上的一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.50°B.40°C.60°D.70°【考点】切线的性质;圆周角定理.【分析】连接OC,由CE为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE 为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角∠CDB的度数,求出圆心角∠COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出∠E的度数.【解答】解:连接OC,如图所示:∵圆心角∠BOC与圆周角∠CDB都对弧BC,∴∠BOC=2∠CDB,又∠CDB=20°,∴∠BOC=40°,又∵CE为圆O的切线,∴OC⊥CE,即∠OCE=90°,则∠E=90°﹣40°=50°.故选A.5.如图,正三角形的内切圆半径为1,那么三角形的边长为()A.2 B.3 C.D.2【考点】三角形的内切圆与内心;锐角三角函数的定义.【分析】欲求三角形的边长,已知内切圆半径,可过内心向正三角形的一边作垂线,连接顶点与内切圆心,构造直角三角形求解.【解答】解:过O点作OD⊥AB,则OD=1;∵O是△ABC的内心,∴∠OAD=30°;Rt△OAD中,∠OAD=30°,OD=1,∴AD=OD•cot30°=,∴AB=2AD=2.故选D.6.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是()A.B.4.75 C.5 D.4.8【考点】切线的性质;勾股定理的逆定理;圆周角定理.【分析】设EF的中点为O,圆O与AB的切点为D,连接OD,连接CO,CD,则有OD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形OC+OD=EF,由三角形的三边关系知,CO+OD >CD;只有当点O在CD上时,OC+OD=EF有最小值为CD的长,即当点O在直角三角形ABC 的斜边AB的高上CD时,EF=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【解答】解:如图,∵∠ACB=90°,∴EF是直径,设EF的中点为O,圆O与AB的切点为D,连接OD,CO,CD,则OD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴EF为直径,OC+OD=EF,∴CO+OD>CD=4.8,∵当点O在直角三角形ABC的斜边AB的高上CD时,EF=CD有最小值∴由三角形面积公式得:CD=BC•AC÷AB=4.8.故选D.二、填空题(每小题4分,共40分)7.如图,△ABC中,∠A=45°,I是内心,则∠BIC=115°.【考点】三角形的内切圆与内心.【分析】由三角形内切定义可知:IB、IC是∠ABC、∠ACB的角平分线,所以可得到关系式∠IBC+∠ICB=(∠ABC+∠ACB),把对应数值代入即可解出∠BIC的值.【解答】解:∵IB、IC是∠ABC、∠ACB的角平分线,∴∠IBC+∠ICB=(∠ABC+∠ACB)==65°,∴∠BIC=180°﹣65°=115°.故答案为:115.8.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为55(度).【考点】切线的性质.【分析】首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.【解答】解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,∴∠C=∠AOB=55°.故答案为:55.9.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是10 cm.【考点】切线的性质;勾股定理;垂径定理.【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【解答】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R﹣2)2,解得R=5,∴该光盘的直径是10cm.故答案为:1010.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知PA=7cm,则△PCD的周长等于14cm.【考点】切线长定理.【分析】由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为PA、PB的长,然后再进行求解.【解答】解:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB=7cm;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=14cm;故△PCD的周长是14cm.11.如图,已知⊙O是△ABC的内切圆,切点为D、E、F,如果AE=2,CD=1,BF=3,则内切圆的半径r=1.【考点】三角形的内切圆与内心;切线长定理.【分析】根据切线长定理得出AF=AE,EC=CD,DB=BF,进而得出△ABC是直角三角形,再利用直角三角形内切圆半径求法得出内切圆半径即可.【解答】解:∵⊙O是△ABC的内切圆,切点为D、E、F,∴AF=AE,EC=CD,DB=BF,∵AE=2,CD=1,BF=3,∴AF=2,EC=1,BD=3,∴AB=BF+AF=3+2=5,BC=BD+DC=4,AC=AE+EC=3,∴△ABC是直角三角形,∴内切圆的半径r==1,故答案为:1.12.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于69°.【考点】圆内接四边形的性质.【分析】由∠BOD=138°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠A的度数,又由圆的内接四边四边形的性质,求得∠BCD的度数,继而求得∠DCE的度数【解答】解:∵∠BOD=138°,∴∠A=∠BOD=69°,∴∠BCD=180°﹣∠A=111°,∴∠DCE=180°﹣∠BCD=69°.故答案为:69°.13.如图,在△ABC中,已知∠ABC=90°,在AB上取一点E,以BE为直径的☉O恰与AC相切于点D.若AE=2,AD=4.则☉O的直径BE=6;△ABC的面积为24.【考点】切线的性质.【分析】连接OD,由切线的性质可知△OAD为直角三角形,设半径为x,在Rt△AOD中由勾股定理可列方程,可求得x的值,则可求得BE的长;再由条件可证明△AOD∽△ACB,由相似三角形的性质可求得BC的长,则容易求得△ABC的面积.【解答】解:如图,连接OD,∵AC与⊙O相切,∴OD⊥AC,设⊙O的半径为x,则OE=OB=OD=x,∴AO=AE+OE=2+x,在Rt△AOD中,由勾股定理可得AO2=OD2+AD2,即(2+x)2=x2+42,解得x=3,∴BE=2x=6,∴AB=AE+BE=2+6=8,∵∠ABC=∠ADO=90°,∠OAD=∠CAB,∴△AOD∽△ACB,∴=,即=,解得BC=6,∴S△ABC=AB•BC=×8×6=24,故答案为:6;24.14.平面上有⊙O及一点P,P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为4或2cm.【考点】点与圆的位置关系.【分析】解答此题应进行分类讨论,点P可能位于圆的内部,也可能位于圆的外部.【解答】解:当点P在圆内时,则直径=6+2=8cm,因而半径是4cm;当点P在圆外时,直径=6﹣2=4cm,因而半径是2cm.所以⊙O的半径为4或2cm.故答案为:4或2.15.直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C 不重合),若∠A=40°,则∠BDC的度数是25°或155°.【考点】切线的性质.【分析】连结OB,根据切线的性质得OB⊥BA,可求出∠AOB=50°,然后讨论:当点D在优弧BC上时,根据圆周角定理即可得到∠BDC=∠AOB=25°;当点D在劣弧BC上时,即在D′点处,则可根据圆内接四边形的性质求出∠BD′C=180°﹣25°=155°.【解答】解:当点D在优弧BC上时,如图,连结OB,∵直线AB与⊙O相切于B点,∴OB⊥BA,∴∠OBA=90°,∵∠A=40°,∴∠AOB=50°,∴∠BDC=∠AOB=25°;当点D在劣弧BC上时,即在D′点处,如图,∵∠BDC+∠BD′C=180°,∴∠BD′C=180°﹣25°=155°,∴∠BDC的度数为25°或155°.故答案为:25°或155°.16.已知⊙O的半径OA=1,弦AB、AC的长分别是、,则∠BAC的度数是15°或75°.【考点】垂径定理;勾股定理.【分析】根据垂径定理和勾股定理可得.【解答】解:分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,根据垂径定理得AE=AC=,AD=AB=,∴sin∠AOE===,sin∠AOD==,根据特殊角的三角函数值可得∠AOE=60°,∠AOD=45°,∴∠BAO=45°,∠CAO=90°﹣60°=30°,∴∠BAC=45°+30°=75°,或∠BAC′=45°﹣30°=15°.故答案为:15°或75°.三、解答题(第17题16分,第18、19题每题10分,共36分)17.如图,C为圆周上一点,BD是☉O的切线,B为切点.(1)在图(1)中,AB是☉O的直径,∠BAC=30°,则∠DBC的度数为30°.(2)在图(2)中,∠BA1C=40°,求∠DBC的度数.(3)在图(3)中,∠BA1C=α,求∠DBC的大小.(4)通过(1)、(2)、(3)的探究,你发现的结论是弦切角等于它夹的弧所对的圆周角(5)如图(4),AC是☉O的直径,∠ACB=60°,连接AB,过A、B两点分别作☉O的切线,两切线交于点P.若已知☉O的半径为1,则△PAB的周长为3.(6)如图(5),C是⊙O的直径AB延长线上的一点,CD切⊙O于D,∠ACD的平分线分别交AD、BD于E、F,试猜想∠DEF的度数并说明理由.【考点】圆的综合题.【分析】(1)由切线的性质和圆周角定理以及角的互余关系得出∠DBC=∠A=30°即可;(2)连接AC,由(1)得出∠DBC=∠A,由圆周角定理得出∠A=∠A1,即可得出∠DBC=∠BA1C=40°;(3)由(2)得出∠DBC=∠BA2C=α即可;(4)∠DBC等于所对的圆周角,得出弦切角定理;(5)先在RtABC求出BC,再判断出三角形PAB是等边三角形即可求出结论;(6)先判断出∠CAD=∠COD,∠ACE=∠ACD,再利用切线得出∠COD+∠ACD=90°,最后用三角形的外角的性质即可得出结论;【解答】解:(1)∵BD是⊙0的切线,∴∠ABO=90°,即∠ABC+∠DBC=90°,∵AB是⊙O的直径,∴∠ACB=90°∴∠A+∠ABC=90°,∴∠DBC=∠A=30°;故答案为:30°,(2)连接BO交⊙O于A,连接AC,如图所示:由(1)得:∠DBC=∠A,又∵∠A=∠A1,∴∠DBC=∠BA1C=40°;(3)由(2)得:∠DBC=∠BA2C=α;(4)∠DBC等于所对的圆周角;弦切角等于它夹的弧所对的圆周角,故答案为:弦切角等于它夹的弧所对的圆周角;(5)连接如图OB,在Rt△ABC中,AC=2OA=2,∠ACB=60°,∴AB=,∠AOB=120°∵PA,PB分别与⊙O相切,∴∠PAO=∠PBO=90°,PA=PB∴∠APB=60°,∴△PAB是等边三角形,∴PA=PB=AB=,∴△PAB的周长为3,故答案为3;(6)如图5,连接OD,∴∠DAC=∠COD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠ACD+∠COD=90°,∵CE是∠ACD的角平分线,∴∠ACE=∠ACD∴∠DEF=∠DAC+∠ACE=∠COD+∠ACD=(∠COD+∠ACD)=45°.18.如图,直线AB、BC、CD分别与⊙O相切于A、E、D,且AB∥CD,若OB=6cm,OC=8cm,求(1)∠BOC 的度数;(2)⊙O的半径;(3)AB+CD的值.【考点】切线的性质.【分析】(1)连接OA,OE,证明Rt△OAB≌Rt△OEB,由此可得∠ABO=∠OBE,再由平行的性质即可求解∠BOC 的度数;(2)由勾股定理求得BC,再由三角形的面积求得⊙O的半径.(3)利用(1)中所得AB=BE、CE=CD即可.【解答】解:(1)连接OA,OE.∵直线AB、BC、CD分别与⊙O相切于A、E、D,∴OA⊥AB,OE⊥BC,∴∠OAB=∠OEB=90°,OA=OE在Rt△OAB 与Rt△OEB中∴Rt△OAB≌Rt△OEB(HL)∴∠ABO=∠OBE,AB=BE同理可证:∠OCE=∠OCD,CE=CD,又∵AB∥CD,∴∠ABC+∠DCB=180°,∴∠OBC+∠OCB=90°,∴∠BOC=90°(2)在Rt△BOC中,BC==10∴OB•OC=BC•rr==4.8即:⊙O的半径为4.8(3)由(1)可知:AB=BE,CE=CD,∴AB+CD=BE+CE=BC=10即:BC的值为1019.如图,Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O上,CE=CA,AB,CE的延长线交于点F.(1)求证:CE与⊙O相切;(2)若⊙O的半径为3,EF=4,求BD的长.【考点】切线的判定;勾股定理.【分析】(1)连接OE,OC,通过三角形求得证得∠OEC=∠OAC,从而证得OE⊥CF,即可证得结论;(2)根据勾股定理求得OF,解直角三角形求得.进而求得AC=6,从而求得△ABC是等腰直角三角形,根据勾股定理求得BC,然后根据等腰三角形三线合一的性质求得DB即可.【解答】(1)证明:连接OE,OC.在△OEC与△OAC中,∴△OEC≌△OAC(SSS),∴∠OEC=∠OAC.∵∠OAC=90°,∴∠OEC=90°.∴OE⊥CF于E.∴CF与⊙O相切.(2)解:连接AD.∵∠OEC=90°,∴∠OEF=90°.∵⊙O的半径为3,∴OE=OA=3.在Rt△OEF中,∠OEF=90°,OE=3,EF=4,∴,.在Rt△FAC中,∠FAC=90°,AF=AO+OF=8,∴AC=AF•tanF=6,∵AB为直径,∴AB=6=AC,∠ADB=90°.∴BD=.在Rt△ABC中,∠BAC=90°,∴.∴BD=.文本仅供参考,感谢下载!。
2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)
20232024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)一、选择题(每题2分,共40分)1. 下列选项中,哪个是方程的正确表示形式?A. 2x + 3 = 7B. x + y = 5C. 3x 4yD. 2(x + 1) = 62. 下列哪个选项是二元一次方程组?A. 3x + 4y = 7B. 2x y = 5C. 4x + 3y = 8D. 3x + 2y = 6, 2x y = 43. 下列哪个选项是二次方程?A. x^2 5x + 6 = 0B. 2x + 3 = 7C. x^2 + 3x + 2D. 3x^2 4x4. 下列哪个选项是一次函数的图像?A. y = x^2B. y = 2x + 3C. y = x^3D. y = 1/x5. 下列哪个选项是反比例函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^36. 下列哪个选项是二次函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^37. 下列哪个选项是等差数列的通项公式?A. a_n = a_1 + (n 1)dB. a_n = a_1 + ndC. a_n = a_1 + (n + 1)dD. a_n = a_1 + (n 2)d8. 下列哪个选项是等比数列的通项公式?A. a_n = a_1 r^(n 1)B. a_n = a_1 r^nC. a_n = a_1 r^(n + 1)D. a_n = a_1 r^(n 2)9. 下列哪个选项是概率的基本性质?A. 0 <= P(A) <= 1B. P(A) > 1C. P(A) < 0D. P(A) = 210. 下列哪个选项是勾股定理的表述?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^2二、填空题(每题2分,共20分)1. 一元一次方程的解是________。
新】人教版九年级数学上册第一次月考试卷含答案
新】人教版九年级数学上册第一次月考试卷含答案九年级(上)第一次月考数学试卷(解析版)一、选择题:1.下列方程中,是关于x的一元二次方程的有()A。
x(2x-1)=2x^2 B。
-2x=1 C。
ax^2+bx+c=0 D。
x^2=02.方程x^2=x的解是()A。
x=1 B。
x=0 C。
x1=-1,x2=0 D。
x1=1,x2=03.用配方法解方程x^2-2x-5=0时,原方程应变形为()A。
(x+1)^2=6 B。
(x-1)^2=6 C。
(x+2)^2=9 D。
(x-2)^2=94.设a,b是方程x^2+x-2015=0的两个实数根,则a^2+2a+b的值为()A。
2012 B。
2013 C。
2014 D。
20155.为了庆祝教师节,市教育工会组织篮球比赛,赛制为单循环比赛(即每两个队比赛一场)共进行了45场比赛,则这次参加比赛的球队个数为()A。
8 B。
9 C。
10 D。
116.等腰三角形两边长为方程x^2-7x+10=0的两根,则它的周长为()A。
12 B。
12或9 C。
9 D。
77.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A。
200(1+x)^2=1000 B。
200+200×2x=1000 C。
200+200×3x=1000 D。
200[1+(1+x)+(1+x)^2]=10008.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm^2,设金色纸边的宽为xcm,那么x满足的方程是()A。
x^2+130x-1400=0 B。
x^2+65x-350=0 C。
x^2-130x-1400=0 D。
x^2-65x-350=09.已知a,b是方程x^2-6x+4=0的两实数根,且a≠b,则a+b的值是()A。
7 B。
-7 C。
11 D。
安徽省合肥五十五中九年级数学上学期段考试题(含解析) 新人教版
安徽省合肥五十五中2016届九年级数学上学期段考试题一、选择题(本大题共10分,每小题4分,满分40分)1.下列函数中一定是二次函数的是()A.y=(x+3)2﹣x2B.y=x2﹣C.y=ax2+bx+c D.y=(2x﹣1)(x+2)2.抛物线y=3x2,y=﹣3x2,y=x2+1共有的性质是()A.开口向上B.对称轴是y轴C.顶点坐标都是(0,0)D.在对称轴的右侧y随x的增大而增大3.抛物线y=﹣2(x﹣3)2+5的顶点坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)4.下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是()A.B.C.D.5.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A. B. C.D.6.二次函数y=kx2﹣6x+3的图象与x轴有两个交点,则k的取值范围是()A.k<3 B.k<3且k≠0C.k≤3 D.k≤3且k≠07.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于()A.8 B.14 C.8或14 D.﹣8或﹣148.无论m为任何实数,二次函数y=x2+(2﹣m)x+m的图象总过的点是()A.(1,3)B.(1,0)C.(﹣1,3)D.(﹣1,0)9.如图为抛物线y=ax2+bx+c的图象,A,B,C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系正确的是()A.a+b=﹣1 B.a﹣b=﹣1 C.b<2a D.ac<010.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.二、填空题(本答题共4小题每小题5分,满分20分)11.抛物线y=3x2﹣4向上平移4个单位,得到的抛物线的解析式是.12.若点A(2,y1),B(﹣3,y2),C(﹣1,y3)三点在抛物线y=x2﹣4x﹣m的图象上,则y1、y2、y3的大小关系是.13.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是.14.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …﹣2 ﹣1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法中正确的是(填写序号)①抛物线与x轴的一个交点为(3,0)②函数y=ax2+bx+c的最大值为6.125③抛物线的对称轴是直线x=④在对称轴左侧,y随x增大而增大.三、解答题(本大题共2小题,每小题8分,满分16分)15.用配方法求二次函数y=﹣x2﹣x+的对称轴和顶点坐标.16.已知二次函数的顶点坐标为(4,﹣2),且其图象经过点(5,1),求此二次函数的解析式.四、解答题(本大题共2小题,每小题8分,满分16分)17.抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(0,﹣3),C(3,0)三点.(1)求次抛物线的解析式.(2)画出它的图象.(3)当x为何值时,y随x的增大而增大.(4)当x为何值时,函数值y>0;当x为何值时,函数值y<0.18.观察二次函数y=x2﹣x﹣6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B (,);(2)当x= 时,函数值y=0;(3)方程x2﹣x﹣6=0的解是;(4)当x 时,不等式x2﹣x﹣6>0.五、计算题(本大题共2小题,每小题10分,满分20分)19.合肥市府广场喷泉的喷嘴安装在平地上.有一喷嘴喷出的水流呈喷物线状,喷出的水流高度y(m)与喷出水流喷嘴的水平距离x(m)之间满足y=x2+2x.(l)喷嘴能喷出水流的最大高度是多少?(2)喷嘴喷出水流的最远距离为多少?20.某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个;(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是元;这种篮球每月的销售量是个;(用含x的代数式表示)(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大利润,此时篮球的售价应定为多少元?五、解答题(本大题共2小题,每小题12分,满分24分)21.如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线对称轴上,使得MD+MC的值最小,并求出点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.22.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.七、解答题(本题满分14分)23.如图(1),抛物线y=x2﹣2x+k与x轴交于A、B两点,与y轴交于点C(0,﹣3).[图(2)、图(3)为解答备用图](1)k= ,点A的坐标为,点B的坐标为;(2)设抛物线y=x2﹣2x+k的顶点为M,求四边形ABMC的面积;(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.2015-2016学年安徽省合肥五十五中九年级(上)段考数学试卷参考答案与试题解析一、选择题(本大题共10分,每小题4分,满分40分)1.下列函数中一定是二次函数的是()A.y=(x+3)2﹣x2B.y=x2﹣C.y=ax2+bx+c D.y=(2x﹣1)(x+2)【分析】根据y=ax2+bx+c(a≠0)是二次函数,可得答案.【解答】解:A、是一次函数,故A错误;B、是反比例函数,故B错误;C、a=0时是一次函数,故C错误;D、是二次函数,故D正确;故选:D.2.抛物线y=3x2,y=﹣3x2,y=x2+1共有的性质是()A.开口向上B.对称轴是y轴C.顶点坐标都是(0,0)D.在对称轴的右侧y随x的增大而增大【分析】根据二次函数的性质解题.【解答】解:①y=3x2,开口向上,对称轴是y轴,顶点坐标都是(0,0),对称轴的右侧y 随x的增大而增大;②y=﹣3x2,开口向下,对称轴是y轴,顶点坐标都是(0,0),对称轴的右侧y随x的增大而减小;③y=x2+1开口向上,对称轴是y轴,顶点坐标都是(0,1),对称轴的右侧y随x的增大而增大.故选B.3.抛物线y=﹣2(x﹣3)2+5的顶点坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)【分析】根据抛物线的顶点式,可直接得出抛物线的顶点坐标.【解答】解:∵抛物线的解析式为y=﹣2(x﹣3)2+5,∴抛物线的顶点坐标为(3,5).故选C.4.下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是()A.B.C.D.【分析】根据函数的图象分析函数的增减性,即可求出当x<0时,y随x的增大而减小的函数.【解答】解:A、根据函数的图象可知y随x的增大而增大,故本选项错误;B、根据函数的图象可知在第三象限内y随x的增大而增大,故本选项错误;C、根据函数的图象可知,当x<0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,故本选项错误;D、根据函数的图象可知,当x<0时,y随x的增大而减小;故本选项正确.故选:D.5.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A. B. C.D.【分析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【解答】解:当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选C.6.二次函数y=kx2﹣6x+3的图象与x轴有两个交点,则k的取值范围是()A.k<3 B.k<3且k≠0C.k≤3 D.k≤3且k≠0【分析】根据根的判别式与二次函数的定义列出关于k的不等式组,求出k的取值范围即可.【解答】解:∵二次函数y=kx2﹣6x+3的图象与x轴有两个交点,∴,即,解得k<3且k≠0.故选B.7.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于()A.8 B.14 C.8或14 D.﹣8或﹣14【分析】根据题意,知顶点的纵坐标是3或﹣3,列出方程求出解则可.【解答】解:根据题意=±3,解得c=8或14.故选C.8.无论m为任何实数,二次函数y=x2+(2﹣m)x+m的图象总过的点是()A.(1,3)B.(1,0)C.(﹣1,3)D.(﹣1,0)【分析】无论m为任何实数,二次函数y=x2+(2﹣m)x+m的图象总过该点,即该点坐标与m 的值无关.【解答】解:原式可化为y=x2+2x﹣mx+m=x2+2x+m(1﹣x),二次函数的图象总过该点,即该点坐标与m的值无关,于是1﹣x=0,解得x=1,此时y的值为y=1+2=3,图象总过的点是(1,3).故选A.9.如图为抛物线y=ax2+bx+c的图象,A,B,C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系正确的是()A.a+b=﹣1 B.a﹣b=﹣1 C.b<2a D.ac<0【分析】由抛物线与y轴相交于点C,就可知道C点的坐标(0,1)以及A的坐标,然后代入函数式,即可得到答案.【解答】解:A不正确:由图象可知,当x=1时,y>0,即a+b>0;B正确:由抛物线与y轴相交于点C,就可知道C点的坐标为(0,c),又因为OC=OA=1,所以C(0,1),A(﹣1,0),把它代入y=ax2+bx+c,即a•(﹣1)2+b•(﹣1)+1=0,即a﹣b+1=0,所以a﹣b=﹣1.C不正确:由图象可知,﹣<﹣1,解得b>2a;D不正确:由图象可知,抛物线开口向上,所以a>0;又因为c=1,所以ac>0.故选:B.10.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.二、填空题(本答题共4小题每小题5分,满分20分)11.抛物线y=3x2﹣4向上平移4个单位,得到的抛物线的解析式是y=3x2.【分析】按照“左加右减,上加下减”的规律求则可.【解答】解:根据题意,y=3x2﹣4向上平移4个单位得y=3x2﹣4+4.所以得到的抛物线解析式是y=3x2.故答案是:y=3x2.12.若点A(2,y1),B(﹣3,y2),C(﹣1,y3)三点在抛物线y=x2﹣4x﹣m的图象上,则y1、y2、y3的大小关系是y1<y3<y2.【分析】先得到抛物线的对称轴为直线x=2,根据二次函数的性质,通过三点与对称轴距离的远近来比较函数值的大小.【解答】解:由抛物线y=x2﹣4x﹣m可知对称轴x=﹣=2,∵抛物线开口向上,而点A(2,y1)在对称轴上,B(﹣3,y2)到对称轴的距离比C(﹣1,y3)远,∴y1<y3<y2.故答案为y1<y3<y2.13.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是x1=﹣1,x2=5 .【分析】由二次函数y=﹣x2+4x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+4x+m=0的解.【解答】解:根据图示知,二次函数y=﹣x2+4x+m的对称轴为x=2,与x轴的一个交点为(5,0),根据抛物线的对称性知,抛物线与x轴的另一个交点横坐标与点(5,0)关于对称轴对称,即x=﹣1,则另一交点坐标为(﹣1,0)则当x=﹣1或x=5时,函数值y=0,即﹣x2+4x+m=0,故关于x的一元二次方程﹣x2+4x+m=0的解为x1=﹣1,x2=5.故答案是:x1=﹣1,x2=5.14.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …﹣2 ﹣1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法中正确的是①②③④(填写序号)①抛物线与x轴的一个交点为(3,0)②函数y=ax2+bx+c的最大值为6.125③抛物线的对称轴是直线x=④在对称轴左侧,y随x增大而增大.【分析】根据表中数据和抛物线的对称性:可知当x=0时,y=6,当x=1时,y=6,可得对称轴为x==;(﹣2,0)与(3,0)对称,即抛物线与x轴的交点为(﹣2,0)和(3,0);抛物线的开口向下,求得函数y=﹣(x﹣)2+的最大值为6.125;在对称轴左侧,y随x 增大而增大.【解答】解:∵当x=0时,y=6,当x=1时,y=6,∴对称轴为x==;∴(﹣2,0)与(3,0)对称,∴抛物线与x轴的一个交点为(3,0),设抛物线解析式为y=a(x﹣)2+k,代入(﹣2,0),0,6)求得函数y=﹣(x﹣)2+,∵抛物线的开口向下,∴函数的最大值为6.125;在对称轴左侧,y随x增大而增大;正确的是①②③④.故答案为:①②③④.三、解答题(本大题共2小题,每小题8分,满分16分)15.用配方法求二次函数y=﹣x2﹣x+的对称轴和顶点坐标.【分析】用配方法把一般式改为顶点式,令平方的底数为0,求出x的值即为顶点的横坐标,将求出的横坐标代入解析式求出顶点的纵坐标,从而确定对称轴和顶点坐标.【解答】解:∵二次函数为,∴二次函数y=﹣(x2+2x+1)++=﹣(x+1)2+2,∴对称轴是直线x=﹣1,顶点坐标为(﹣1,2).16.已知二次函数的顶点坐标为(4,﹣2),且其图象经过点(5,1),求此二次函数的解析式.【分析】已知了二次函数的顶点坐标,可用二次函数的顶点式来设抛物线的解析式,再将抛物线上点(5,1)代入,即可求出抛物线的解析式.【解答】解:设此二次函数的解析式为y=a(x﹣4)2﹣2;∵二次函数图象经过点(5,1),∴a(5﹣4)2﹣2=1,∴a=3,∴y=3(x﹣4)2﹣2=3x2﹣24x+46.四、解答题(本大题共2小题,每小题8分,满分16分)17.抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(0,﹣3),C(3,0)三点.(1)求次抛物线的解析式.(2)画出它的图象.(3)当x为何值时,y随x的增大而增大.(4)当x为何值时,函数值y>0;当x为何值时,函数值y<0.【分析】(1)由于已知抛物线与x轴的交点坐标,则可设交点式y=a(x+1)(x﹣3),然后把B点坐标代入求出a即可;(2)先把解析式配成顶点式,然后利用描点画出二次函数图象;(3)根据二次函数的性质求解;(4)观察函数图象,写出图象在x轴上方所对应的自变量的范围即可满足y>0;写出图象在x轴下方所对应的自变量的范围即可满足y<0.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),把B(0,﹣3)代入得a•1•(﹣3)=﹣3,解得a=1,所以抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3;(2)如图,y=(x﹣1)2﹣4,抛物线的顶点坐标为(1,﹣4);(3)当x>1时,y随x的增大而增大;(4)当x<﹣1或x>3时,y>0;当﹣1<x<3时,y<0.18.观察二次函数y=x2﹣x﹣6的图象,回答问题:(1)图象与x轴的交点的坐标为A(﹣2 ,0 ),B( 3 ,0 );(2)当x= ﹣2或3 时,函数值y=0;(3)方程x2﹣x﹣6=0的解是x1=﹣2,x2=3 ;(4)当x <﹣2或x>3 时,不等式x2﹣x﹣6>0.【分析】(1)利用图象直接得到A点和B点坐标;(2)由(1)得,x取A点和B点的横坐标时,函数值为0;(3)由(2)直接得到方程x2﹣x﹣6=0的解;(4)观察函数图象,写出函数图象在x轴上方所对应的自变量的取值范围即可.【解答】解:(1)图象与x轴的交点的坐标为A(﹣2,0),B(3,0);(2)当x=﹣2或3时,y=0;(3)方程x2﹣x﹣6=0的解是x1=﹣2,x2=3;(4)当x<﹣2或x>3时,不等式x2﹣x﹣6>0.故答案为﹣2,0,3,0;﹣2或3;x1=﹣2,x2=3;<﹣2或x>3.五、计算题(本大题共2小题,每小题10分,满分20分)19.合肥市府广场喷泉的喷嘴安装在平地上.有一喷嘴喷出的水流呈喷物线状,喷出的水流高度y(m)与喷出水流喷嘴的水平距离x(m)之间满足y=x2+2x.(l)喷嘴能喷出水流的最大高度是多少?(2)喷嘴喷出水流的最远距离为多少?【分析】(1)二次函数的关系式y=x2+2x=(x﹣2)2+2,求二次函数的最值即可.(2)由(1)可知,当y=0时,x1=0,x2=4,则x2﹣x1即可得出.【解答】解:二次函数y=x2+2x,整理得,y=(x﹣2)2+2,(1)∵<0,∴当x=2时,喷嘴喷出水流的最大高度是y=2m;答:喷嘴能喷出水流的最大高度是2m;(2)令y=0,则x2+2x=0,解得,x1=0,x2=4,∴x2﹣x1=4m.答:喷嘴喷出水流的最远距离为4m.20.某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个;(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是(10+x)元;这种篮球每月的销售量是个;(用含x的代数式表示)(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大利润,此时篮球的售价应定为多少元?【分析】(1)依题意易得解.(2)设月销售利润为y元可得y=﹣(10+x),化简后得x=20时,y有最大值.【解答】解:(1)依题意得销售每个篮球所获得的利润是(10+x)元,这种篮球每月的销售量是个.(2)设月销售利润为y元.由题意得:y=(10+x),整理得:y=﹣10(x﹣20)2+9000,当x=20时,y有最大值9000.20+50=70.答:8000元不是最大利润,最大利润是9000元,此时篮球售价为70元.五、解答题(本大题共2小题,每小题12分,满分24分)21.如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线对称轴上,使得MD+MC的值最小,并求出点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)令y=0,解方程x2﹣x﹣3=0可得到A点和D点坐标;令x=0,求出y=﹣3,可确定C点坐标;(2)找到点D关于抛物线对称轴的对称点A,连结AC,根据待定系数法可得直线AC的解析式,令x=1,求得抛物线对称轴与直线AC的解析式的交点坐标,即为所求点M的坐标;(3)根据梯形定义确定点P,如图所示:①若B C∥AP1,确定梯形ABCP1.此时P1与D点重合,即可求得点P1的坐标;②若AB∥CP2,确定梯形ABCP2.先求出直线CP2的解析式,再联立抛物线与直线解析式求出点P2的坐标.【解答】解:(1)∵y=x2﹣x﹣3,∴当y=0时, x2﹣x﹣3=0,解得x1=﹣2,x2=4.当x=0,y=﹣3.∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);(2)如图1,连结AC.∵点D关于抛物线对称轴的对称点A,∴由轴对称﹣最短路线问题可知,抛物线对称轴与直线AC的解析式的交点坐标,即为所求点M的坐标,设直线AC的解析式为:y=kx+b,∵A点坐标为(4,0),C点坐标为(0,﹣3),∴,解得.故直线AC的解析式为:y=x﹣3,令x=1,则y=x﹣3=﹣.故点M的坐标(1,﹣);(3)结论:存在.在抛物线上有两个点P满足题意:①如图2,若BC∥AP1,此时梯形为ABCP1.由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四边形ABCP1为梯形;②如图3,若AB∥CP2,此时梯形为ABCP2.∵A点坐标为(4,0),B点坐标为(2,﹣3),∴直线AB的解析式为y=x﹣6,∴可设直线CP2的解析式为y=x+n,将C点坐标(0,﹣3)代入,得n=﹣3,∴直线CP2的解析式为y=x﹣3.∵点P2在抛物线y=x2﹣x﹣3上,∴x2﹣x﹣3=x﹣3,化简得:x2﹣6x=0,解得x1=0(舍去),x2=6,∴点P2横坐标为6,代入直线CP2解析式求得纵坐标为6,∴P2(6,6).∵AB∥CP2,AB≠CP2,∴四边形ABCP2为梯形.综上所述,在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(﹣2,0)或(6,6).22.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.【分析】(1)将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可;(2)由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围.【解答】解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4),代入得:,解得:,∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1;(2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2的最小值为﹣4,由函数图象得出D纵坐标最小值为﹣4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,∴直线BC解析式为y=x,当x=1时,y=,则t的范围为﹣4≤t≤.七、解答题(本题满分14分)23.如图(1),抛物线y=x2﹣2x+k与x轴交于A、B两点,与y轴交于点C(0,﹣3).[图(2)、图(3)为解答备用图](1)k= ﹣3 ,点A的坐标为(﹣1,0),点B的坐标为(3,0);(2)设抛物线y=x2﹣2x+k的顶点为M,求四边形ABMC的面积;(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.【分析】(1)将C点坐标代入抛物线的解析式中,即可求出k的值;令抛物线的解析式中y=0,即可求出A、B的坐标;(2)将抛物线的解析式化为顶点式,即可求出M点的坐标;由于四边形ACMB不规则,可连接OM,将四边形ACMB的面积转化为△ACO、△MOC以及△MOB的面积和;(3)当D点位于第三象限时四边形ABCD的最大面积显然要小于当D位于第四象限时四边形ABDC的最大面积,因此本题直接考虑点D为与第四象限时的情况即可;设出点D的横坐标,根据抛物线的解析式即可得到其纵坐标;可参照(2)题的方法求解,连接OD,分别表示出△ACO、△DOC以及△DOB的面积,它们的面积和即为四边形ABDC的面积,由此可得到关于四边形ABDC的面积与D点横坐标的函数关系式,根据函数的性质即可求出四边形ABDC的最大面积及对应的D点坐标.【解答】解:(1)由于点C在抛物线的图象上,则有:k=﹣3;∴y=x2﹣2x﹣3;令y=0,则x2﹣2x﹣3=0,解得x=﹣1,x=3,∴A(﹣1,0),B(3,0);故填:k=﹣3,A(﹣1,0),B(3,0);(2)抛物线的顶点为M(1,﹣4),连接OM;则△AOC的面积=AO•OC=×1×3=,△MOC的面积=OC•|x M|=×3×1=,△MOB的面积=OB•|y M|=×3×4=6;∴四边形ABMC的面积=△AOC的面积+△MOC的面积+△MOB的面积=9;(3)设D(m,m2﹣2m﹣3),连接OD;则0<m<3,m2﹣2m﹣3<0;且△AOC的面积=,△DOC的面积=m,△D OB的面积=﹣(m2﹣2m﹣3);∴四边形ABDC的面积=△AOC的面积+△DOC的面积+△DOB的面积=﹣m2+m+6=﹣(m﹣)2+;∴存在点D(,﹣),使四边形ABDC的面积最大,且最大值为.。
2024年新九年级数学开学摸底考试卷+解析(江西专用,人教版)(解析版)
新九年级数学开学摸底考试卷解析(江西专用,人教版)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试范围:八下全册+九上第1章4.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题有6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程是一元二次方程的是( )A .x x +=−531B .210ax x ++=C .237x y +=D .2312x x −=A B .2C 2= D =故选:D .3.用配方法解方程2810x x −+=,变形后的结果正确的为( )A .()2415x −=−B .()241x −=−C .()2415x −=D .()2417x −= 【答案】C【分析】本题考查了配方法解一元二次方程,一般步骤是:先把二次项系数化为1,加上一次项系数一半的平方,再减去这个数,即完成了配方;根据配方过程即可完成.【详解】解:配方,得:22284410x x −+−+=,即()24150x −−=,则()2415x −=;故选:C .4.在ABC 中,,,A B C ∠∠∠所对的边分别为,,,a b c 由下列条件不能判断它是直角三角形的是( ) A .222+=a b cB .222a c b =−C .A B C =+∠∠∠D .1,2,BC AC AB === 、22a b +=即ABC 是直角三角形,故本选项不符合题意;即ABC 是直角三角形,故本选项不符合题意;、A B ∠=∠180A ∠=︒即ABC 是直角三角形,故本选项不符合题意;、1BC =,22BC AB +≠ABC ∴不是直角三角形,故本选项符合题意;故选:D5.函数y kx b =+的图象如图所示,下列说法正确的是( )A .当2x =−时,1y ≠B .0k <C .若y kx b =+的图象与坐标轴围成的三角形面积为2,则2b =D .若点()1,m −和点()1,n 在直线上,则m n >M ,N 分别是边AD ,边BC 上的动点.下列四种说法:①存在无数个平行四边形MENF :②存在无数个正方形MENF ;③当0.5EF =时,存在唯一的矩形MENF ;④当1EF =时,存在唯一的矩形MENF .其中正确的个数是( )A .1B .2C .3D .4【答案】B7x 的取值范围为 .【答案】3x ≤【分析】本题考查了二次根式有意义的条件.熟练掌握二次根式有意义的条件是解题的关键. 由题意知,30x −≤,计算求解即可.【详解】解:由题意知,30x −≥,解得,3x ≤,故答案为:3x ≤.8.若关于x 的一元二次方程()22110m x m x ++−=有一个根为1,则m = .【答案】0【分析】本题考查了一元二次方程的定义,一元二次方程的根;根据一元二次方程的定义可得出1m ≠−;根据题意将1x =代入方程求出m 的值,即可求解.【详解】解:∵该方程是一元二次方程,∴10m +≠,即1m ≠−;∵关于x 的一元二次方程()22110m x m x ++−=有一个根为1,故将1x =代入方程为2110m m ++−=,整理得:()10m m +=,解得:0m =或1m =−(舍去),故答案为:0.9.若点19,2A x ⎛⎫ ⎪⎝⎭,()2,4B x 都在一次函数31y x =+的图象上,则1x 2x (填“>”或“<”).250x x +−=3a a b ++的值为 .【答案】3【分析】本题考查一元二次方程的根与系数的关系、一元二次方程解的定义、代数式求值,熟练掌握一元二次方程的根与系数的关系和一元二次方程解的定义是解题的关键.根据一元二次方程的根与系数之间的关系可得2a b +=−,再根据一元二次方程解的定义可得225a a +=,再整体代入求解即可.【详解】解:∵a ,b 分别是方程2250x x +−=的两根,∴2a b +=−,把x a =代入方程得,2250a a +−=,即225a a +=,∴223=2=25=3a a b a a a b +++++−+,故答案为:3.11.如图,已知钓鱼杆AC 的长为10米,露在水面上的鱼线BC 长为6米,把鱼竿AC 转动到AC '的位置,此时露在水面上的鱼线B C''长度为8米,则BB'的长为米.连接CE,CF,若EFC是等腰三角形,则CF的长为.,根据EFC是等腰三角形,分菱形EFC是等腰三角形,==EF CH∴三、(本大题共5小题,每小题6分,共30分,解答应写出文字说明、证明过程或演算步理) 13.计算(1) (2)(1)()()1356x x x ++=+(配方法);(2)()()221420x x +−−=(自选方法)∴()()()()1221220x x x x ⎡⎤⎡⎤++−+−−=⎣⎦⎣⎦∴()()3350x x −−+=,∴330x −=或50x −+=,∴11x =,25x =.15.如图,在ABC 中,3,4,5AB AC BC ===.(1)直接写出ABC 的形状是_________;(2)若点P 为线段AC 上一点,连接BP ,且BP CP =,求AP 的长. Rt ABP 中,根据勾股定理可得关于,∴ABC 是直角三角形;故答案为:直角三角形Rt ABP 中,(24x +=−按下列要求作图.(1)如图1,若AE AB=,在DE上找一点F,使点F为DE的中点;(2)如图2,点AE AB≠,在平面内找一点G,使BCG与DAE全等.17.为巩固脱贫攻坚成果,实行乡村振兴,某村村民利用网络平台“直播带货”,销售一批成本为每件50元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,部分数据如表所示:(2)销售期间,网络平台要求该商品每件商品售价不得高于100元,要使该商品每天的销售利润为700元,求此时商品售价;四、(本大题共3小题,每小题8分,共24分,解答应写出文字说明、证明过程或演算步理)18.定义:若两个二次根式a,b满足a b c⋅=,且c为有理数,则称a与b是关于c的共轭二次根式.______的共轭二次根式;(2)若m与2的共轭二次根式,则m=______;(3)若36是关于12的共轭二次根式,求n的值.,.AE BF(1)求证:四边形ABFE为平行四边形;(2)当AB=4ADE∠=︒时,求BF的长.BC=,135AB CD,AB EF DC,EFAB CD,AB四边形DCFEEF DC,EF∥,ABEF名同学进行了8次一分钟跳绳测试,现将测试结果绘制成如下统计图表,请根据统计图表中的信息解答下列问题:a______;b=______.(1)表中=(2)求出乙得分的方差.(3)根据已有的信息,你认为应选谁参赛较好,请说明理由.【答案】(1)177.5,185(2)乙的方差为37.5(3)应选甲参赛较好(答案不唯一),理由见解析【分析】(1)先把甲的成绩按照从小达到排列,再根据中位数与众数的含义求解即可;(2)直接利用方差公式进行计算即可得到答案;(3)可以从平均数,中位数与众数的角度进行分析,从而可得答案.185出现了∴众数b 是21.如图,在平面直角坐标系中,四边形OCDE 为矩形,点C 的坐标为()3,0,正比例函数2y x =的图象交DE 于点A ,过点A 作AO 的垂线交CD 于点B ,且满足AO AB =.(1)求点B 的坐标;(2)点M 在线段AB 上,横坐标为a ,设OCM 的面积为S ,请用含a 的式子表示S .,证明AEO BDA ≌,得到的解析式,表示出点M 的坐标,然后利用三角形面积公式即可求出答案.)解:点OA AB⊥∴∠=OAB四边形=OA AB(AAS ∴≌AEO BDA点点A m.相交于点(,3)(1)求直线y kx b=+的函数解析式;(2)点F在直线y kx b=+上,使COF的面积为3,求出点F的坐标;(3)若点P在线段OA上,点D在直线AC上,点H在x轴上,当四边形OPHD是正方形时,求点P的坐标.,则COF的面积可用)解:点点OCF S =四边形OH PD ∴=,OH PD ⊥,OM 点P 在直线y x =上,∴设(,)P x x .点D 在直线23y x =−上,∴设点D 的坐标为:(,2x x 23.【问题情景】如图1,在菱形ABCD 中,AB =N 为菱形ABCD 外部一点,连接AN 交对角线BD 于点M ,且满足180AMD ANC ∠+∠=︒.【初步探究】(1)求证:AM MN =;【解决问题】(2)如图2,连接DN ,当AM =6CN =时,①求线段BM 的长;②求BDN ∠的度数;【类比探究】(3)如图3,在菱形ABCD 中,当90BCD ∠=︒时,AN 交CD 于点E ,连接BE ,DN ,并延长BE 交DN于点F .若DM AD =NF 的长____________.证明ABM CBM ≌,得到,得到ANC AMB ∠=∠中点,证明ADM DCN ≌,ADE △利用勾股定理22DF BD BF =−四边形AB CB ∴=,ABM CBM =∠∠BM BM =,ABM CBM ∴△△≌.AMD ∠+∠又AMD ∠+∠ANC ∴∠=∠BD CN .BMC MCN =∠AMD ∠+∠又180AMD AMB ∠+∠=︒, ANC AMB ∴∠=∠.BDCN ∴. BD CN ,EN ∴四边形是平行四边形,又四边形OA OC ∴=,OB OD =,BD AC ⊥.由(1)得,AM MN =,OM ∴为ACN 的中位线.1Rt AOB 中,BM OB OM =+∴∠由(1)得,∥BD CN ,90ACE AOD ∴∠=∠=︒.90CED ACE COD ∴∠=∠=∠=︒.∴ 90QNC ∠=︒,由(1)得,∥BD CN ,∴ 四边形ABCD 是正方形,∴ AD CD AB BC ====设DG x =,则2DM x =,MD≌,ADM DCN10。
新人教版2024届九年级上学期月考数学试卷(含解析)
2023—2024学年第一学期自主学习反馈一九年级数学试题注意事项:考试时间120分钟,满分120分.一、单选题(1-6题每题3分,7-16题每题2分,共38分)1. 关于的方程中:①;②;③;④;其中一定是一元二次方程的个数有()A. 1B. 2C. 3D. 4解析:解:①当是一元一次方程,故不符合题意;②是一元二次方程,故符合题意;③是一元二次方程,故符合题意;④是分式方程,故不符合题意;所以是一元二次方程有②③,共2个.故选:B.2. 已知,则下列比例式成立的是()A. B. C. D.解析:解:∵,∴,,,则A、C、D选项均不正确,B正确,故选:B3. 如图,如果,那么下列结论不成立的是()A. B. C. D.解析:解:∵,∴,故A选项成立;∴,即,故B选项成立;∴,即,故C选项成立;∴,故D选项不成立;故选:D.4. 解方程最合适的方法是()A. 直接开平方法B. 配方法C. 公式法D. 因式分解法解析:解:,移项得,,因式分解得,,即,∴最合适的方法是因式分解法,故选:D.5. 若一元二次方程的常数项是,则等于()A. -3B. 3C. ±3D. 9解析:∵一元二次方程的常数项是,∴,≠0,∴m=3.故选B.6. 下列用配方法解方程的四个步骤中,出现错误的是( )A. ①B. ②C. ③D. ④解析:解:解方程,去分母得:,即,配方得:,即,开方得:,解得:,则四个步骤中出现错误的是④.故选:.7. 如图,△ABC中,∠A=65°,AB=6,AC=3,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不构成相似的是()AB.C.D.解析:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意;C、两三角形的对应角不一定相等,故两三角形不相似,故本选项符合题意;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项不符合题意.故选:C.8. 根据下表确定方程的解的取值范围是( ) (456)135 (513)A. 或B. 或C. 或D. 或解析:解:根据表格,当和时,,当和时,,∴该方程的解的取值范围为或,故选:A.二次方程的近似解是解答的关键.9. 如图,在中,,,,,则长为()A. B. C. D.解析:解:∵在中,,,,,∴,即:,∴AE=4,故选B.10. 如图,△ABC∽△ACP,若∠A=75°,∠APC=65°,则∠B的大小为()A. 40°B. 50°C. 65°D. 75°解析:∵∠A=75°,∠APC=65°,∴∠ACP=40,∵△ABC∽△ACP,∴∠B=∠ACP=40°,故选A.11. 四边形中,点在边上,的延长线交的延长线于点,下列式子中能判断的式子是()解析:解:A.,结合不能证明,不能推出,因此不能判断,不合题意;B.,结合,可证,可得,可以判断,不能判断,不合题意;C.,结合,不能证明,不能判断,也不能判断,不合题意;D.,结合可证,推出,能够判断,符合题意;故选D.12. 三角形的两边长分别为和,第三边的长是方程的一个根,则这个三角形的周长是()A. B. C. D. 或解析:解:解方程得,∴,故第三边边长为或.设第三边的长为m,∵三角形的两边长分别为和,∴,第三边的边长为,这个三角形的周长是.故选:C.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.13. 对于实数,定义新运算:,若关于的方程有两个不相等的实数根,则的取值范围()且解析:解:∵,∴,即,∵关于的方程有两个不相等的实数根,∴,解得:,故A正确.故选:A.14. 某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是,则这种植物每个支干长出的小分支个数是( )A. B. C. D.解析:设种植物主支干长出x个,小分支数目为个,依题意,得:,解得:(舍去),.故选C.15. 在直角坐标系中,已知点、、,过点C作直线交x轴于点D,使得以D、O、C为顶点的三角形与相似,这样的直线最多可以作()A. 2条B. 3条C. 4条D. 6条解析:解:∵、、,∴,,,若,则,∴,则或.若,则,∴,则或.所以可以作出四条直线.故选:C.16. 对于一元二次方程,下列说法:①若,则;②若方程有两个不相等的实根,则方程必有两个不相等的实根;③若c是方程的一个根,则一定有成立;④存实数,使得;其中正确的( )A. ①②③B. ①②④C. ②③④D. ①③④解析:解:∵∴是一元二次方程的一个解,即方程有解,∴,①正确;方程有两个不相等的实根,则,即方程的判别式为,∴方程必有两个不相等实根,②正确;若c是方程的一个根,则,即∴或,③错误;由可得,即∵∴∴所以只需要满足即可得到,④正确;故选:B二、填空题(每空2分,共10分)17. 若==(b+d0),则=____.解析:已知==(b+d0),根据等比性质可得=.18. 若一元二次方程满足;则有一个根为_______.若,则有一个根为_______.解析:解:∵,∴,∴原方程可化为,∴,∵,∴,,∴满足时,有一个根为.∵,∴,原方程可化为,∴,∵,∴,,∴满足时,有一个根为.故答案为:,19. 如图,是的中线.①若为的中点,射线交于点,则的值为______;②若为上的一点,且,射线交于点,则的值为_______.解析:解:①过点D作于点G,∴,,∵是的中线,∴,∴,即,∵为的中点,∴,∴,即,∴,∴,∴;故答案为:②∵,,∴,即,∵,∴,∴.故答案为:三、解答题(共7个小题,共72分)20. 解下列方程:(1);(2).【小问1解析】解:,移项得,,因式分解得,,∴或,∴或;【小问2解析】解:,移项得,,因式分解得,,∴或,∴或.21. 已知关于x的一元二次方程x2+(2a+1)x+a2=0.(1)若方程有两个不相等的实数根,求a的取值范围;(2)若方程有两个相等的实数根,求a的值,并求出这两个相等的实数根.【小问1解析】解:∵关于x的一元二次方程x2+(2a+1)x+a2=0有两个不相等的实数根,,解得:,即当时,方程有两个不相等的实数根;【小问2解析】解:∵方程有两个相等的实数根,,解得:,即当时,方程有两个相等的实数根;把代入原方程得:,即,解得:.22. 如图,在中,点,,分别在,,边上,,.求证:解析:证明:∵,∴,∵,∴,∴.23. 随着正定旅游业的快速发展,外来游客对住宿的需求明显增大,某宾馆拥有的床位数不断增加.(1)该宾馆床位数从2016年底的200个增长到2018年底的288个,求该宾馆这两年(从2016年底到2018年底)拥有的床位数的年平均增长率;(2)根据市场表现发现每床每日收费40元,288张床可全部租出,若每床每日收费提高10元,则租出床位减少20张.若想平均每天获利14880元,同时又减轻游客的经济负担每张床位应定价多少元?解析:解:(1)设该宾馆这两年床位的年平均增长率为x,依题意,得:200(1+x)2=288,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该宾馆这两年床位的年平均增长率为20%.(2)设每张床位定价m元,依题意,得:m(288﹣20•)=14880,整理,得:m2﹣184m+7440=0,解得m1=60,m2=124.∵为了减轻游客的经济负担,∴m2=124(舍去).答:每张床位应定价60元.24. 定义:若关于x的一元二次方程的两个实数根为和,分别以为横、纵坐标得到点,则称点P为该一元二次方程的“两根点”.(1)请你直接写出方程的“两根点”P的坐标:(2)点P是关于x的一元二次方程的“两根点”,若点P在直线上,求k的值.【小问1解析】解:解得,,∴;【小问2解析】解:∵,∴,∵,∴,,∴,∵点P在直线上,∴,∴.25. 如图所示,A、B、C、D是矩形的四个顶点,,动点P、Q分别从点A、C同时出发,点P以的速度向点B移动,一直到达点B为止,点Q以的速度向点D移动一直到达点B为止,点Q以的速度向点D移动.(1)P、Q两点从出发开始到几秒时,四边形的面积为?(2)P、Q两点从出发开始到几秒时,点P和点Q的距离第一次是?【小问1解析】解:当运动时间为t秒时,,,由题意得,,解得,答:P、Q两点从出发开始到5秒时,四边形的面积为;【小问2解析】解:过点Q作于点M,如图,∵,,∴,即,解得,(舍),答:P、Q两点从出发开始到秒时,点P和点Q的距离第一次是.26. 如图,正方形的边长为4,是边的中点,点在射线上.过点作于点.(1)判断与的大小关系:______(填“>”、“<”“=”);(2)与相似吗?说明理由.(3)当点在射线上运动时,设,是否存在实数,使以为顶点三角形与相似?若存在,请求出的值;若不存在,请说明理由.【小问1解析】解:∵正方形,,∴,,∵,∴,故答案为:;【小问2解析】解:相似,理由如下:由(1)可知,,∵,∴;【小问3解析】解:由题意知,分,,两种情况求解:①当时,如图1,∴,,即,,由勾股定理得,,∵,∴,∴,∴,∵,∴,由勾股定理得,,即;②当,如图2,∴,∴,∴,∴四边形是矩形,∴,即;综上所述,存在,的值为2或5.。
九年级数学上学期第一次月考试卷(含解析) 新人教版2 (2)
安徽省亳州市谯城区黉学中学2016-2017学年老校区九年级(上)第一次月考数学试卷一、选择题(本题10小题,每小题4分,共40分)1.下列函数不属于二次函数的是()A.y=(x﹣1)(x+2)B.y=(x+1)2C.y=1﹣x2D.y=2(x+3)2﹣2x22.抛物线y=(x+2)2+1的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)3.已知二次函数y=mx2+x+m(m﹣2)的图象经过原点,则m的值为()A.0或2 B.0 C.2 D.无法确定4.如图为抛物线y=ax2+bx+c的图象,A,B,C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系正确的是()A.a+b=﹣1 B.a﹣b=﹣1 C.b<2a D.ac<05.已知抛物线y=﹣x2+mx+n的顶点坐标是(﹣1,﹣3),则m和n的值分别是()A.2,4 B.﹣2,﹣4 C.2,﹣4 D.﹣2,06.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位7.同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是()A.B.C.D.8.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣39.若A(﹣7,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y310.二次函数y=x2﹣2x﹣3的图象如图所示.当y>0时,自变量x的取值范围是()A.﹣1<x<3 B.x<﹣1 C.x>3 D.x<﹣1或x>3二、填空题11.抛物线y=2x2﹣8x﹣3的顶点坐标是.12.当m=时,函数y=(m2﹣4)x+3是二次函数.13.若二次函数y=﹣x2﹣4x+k的最大值是9,则k=.14.如图,二次函数y=ax2+bx+c的图象,图象经过点(﹣1,2)和(1,0),给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1;⑤9a+6b+4c>0.其中正确结论的序号是.三、解答题(本题共4题,每题各8分)15.已知二次函数y=﹣x2+2x+3的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)求点A、B、C、D的坐标,并在直角坐标系中画出该二次函数的大致图象;(2)求四边形OCDB的面积.16.抛物线与x轴的交点为(﹣1,0)、(3,0),且过点(1,4),并直接写出该抛物线关于x轴对称的抛物线的解析式.17.拱桥的形状是抛物线,其函数关系式为,当水面离桥顶的高度为m时,水面的宽度为多少米?18.已知二次函数y=x2﹣2x﹣8.(1)求此二次函数的图象与x轴的交点坐标.(2)将y=x2的图象经过怎样的平移,就可以得到二次函数y=x2﹣2x﹣8的图象.四、(本题共2题,每题各10分)19.(10分)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.20.(10分)抛物线y=x2﹣2x﹣3的图象交x轴与A,B两点,在该二次函数的图象上是否存在一点P(且在y轴的右侧),使得△ABP的面积是10?若存在请求出P点坐标;若不存在,请说明理由.五、(本题共2题,每题各12分)21.(12分)王大爷要围成一个如图所示的矩形ABCD花圃.花圃的一边利用20米长的墙,另三边用总长为36米的篱笆恰好围成.设AB边的长为x米,BC的长为y米,且BC>AB.(1)求y与x之间的函数关系式(要求直接写出自变量的取值范围);(2)当x是多少米时,花圃面积S最大?最大面积是多少?22.(12分)如图,隧道的截面由抛物线和长方形构成.长方形的长是8m,宽是2m,抛物线可以用表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?六、(本题满分14分)23.(14分)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.2016-2017学年安徽省亳州市谯城区黉学中学老校区九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本题10小题,每小题4分,共40分)1.下列函数不属于二次函数的是()A.y=(x﹣1)(x+2)B.y=(x+1)2C.y=1﹣x2D.y=2(x+3)2﹣2x2【考点】二次函数的定义.【分析】整理一般形式后根据二次函数的定义判定即可解答.【解答】解:A、整理为y=x2+x﹣3,是二次函数,不合题意;B、整理为y=x2+x+,是二次函数,不合题意;C、整理为y=﹣x2+1,是二次函数,不合题意;D、整理为y=12x+18,是一次函数,符合题意.故选D.【点评】本题考查二次函数的定义.2.抛物线y=(x+2)2+1的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)【考点】二次函数的性质.【分析】已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:因为y=(x+2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选B.【点评】考查顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.要掌握顶点式的性质.3.已知二次函数y=mx2+x+m(m﹣2)的图象经过原点,则m的值为()A.0或2 B.0 C.2 D.无法确定【考点】二次函数图象上点的坐标特征.【分析】本题中已知了二次函数经过原点(0,0),因此二次函数与y轴交点的纵坐标为0,即m(m﹣2)=0,由此可求出m的值,要注意二次项系数m不能为0.【解答】解:根据题意得:m(m﹣2)=0,∴m=0或m=2,∵二次函数的二次项系数不为零,所以m=2.故选C.【点评】此题考查了点与函数的关系,解题时注意分析,理解题意.4.如图为抛物线y=ax2+bx+c的图象,A,B,C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系正确的是()A.a+b=﹣1 B.a﹣b=﹣1 C.b<2a D.ac<0【考点】二次函数图象与系数的关系.【分析】由抛物线与y轴相交于点C,就可知道C点的坐标(0,1)以及A的坐标,然后代入函数式,即可得到答案.【解答】解:A、由图象可知,当x=1时,y>0,即a+b+1>0,所以a+b>﹣1,故A不正确;B、由抛物线与y轴相交于点C,可知道C点的坐标为(0,c),又因为OC=OA=1,所以C(0,1),A(﹣1,0),把它代入y=ax2+bx+c,即a•(﹣1)2+b•(﹣1)+1=0,即a﹣b+1=0,所以a﹣b=﹣1.故B正确;C、由图象可知,﹣<﹣1,解得b>2a,故C错误;D、由图象可知,抛物线开口向上,所以a>0;又因为c=1,所以ac>0,故D错误.故选:B.【点评】解决本题的关键在于根据抛物线与x轴,y轴的交点判断交点坐标,然后代入函数式,推理a,b,c之间的关系.5.已知抛物线y=﹣x2+mx+n的顶点坐标是(﹣1,﹣3),则m和n的值分别是()A.2,4 B.﹣2,﹣4 C.2,﹣4 D.﹣2,0【考点】二次函数的性质.【分析】根据函数的顶点坐标公式作为相等关系列方程求解.【解答】解:根据顶点坐标公式,得横坐标为:=﹣1,解得m=﹣2;纵坐标为:=﹣3,解得n=﹣4.故选B.【点评】本题主要考查了求抛物线的顶点坐标、对称轴的方法,比较简单.6.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位【考点】二次函数图象与几何变换.【分析】根据“左加右减,上加下减”的原则进行解答即可.【解答】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.【点评】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.7.同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据一次函数和二次函数的解析式可得一次函数与y轴的交点为(0,1),二次函数的开口向上,据此判断二次函数的图象.【解答】解:当a<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;当a>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限.故选C.【点评】此题主要考查了二次函数及一次函数的图象的性质,用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标.8.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3【考点】二次函数的性质.【分析】采用逐一排除的方法.先根据对称轴为直线x=2排除B、D,再将点(0,1)代入A、C两个抛物线解析式检验即可.【解答】解:∵抛物线对称轴为直线x=2,∴可排除B、D选项,将点(0,1)代入A中,得(x﹣2)2+1=(0﹣2)2+1=5,故A选项错误,代入C中,得(x﹣2)2﹣3=(0﹣2)2﹣3=1,故C选项正确.故选:C.【点评】本题考查了二次函数的性质.关键是根据对称轴,点的坐标与抛物线解析式的关系,逐一排除.9.若A(﹣7,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3【考点】二次函数图象上点的坐标特征.【分析】二次函数抛物线向下,且对称轴为x=﹣=﹣2.根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:∵二次函数y=x2+4x﹣5=(x+2)2﹣9,∴该二次函数的抛物线开口向上,且对称轴为:x=﹣2.∵点A(﹣7,y1),B(﹣3,y2),C(1,y3)都在二次函数y=x2+4x﹣5的图象上,而三点横坐标离对称轴x=﹣2的距离按由远到近为:(﹣7,y1)、(1,y3)、(﹣3,y2),∴y2<y3<y1.故选B.【点评】此题主要考查二次函数图象上点的坐标特征,解题的关键是根据函数关系式,找出对称轴.10.二次函数y=x2﹣2x﹣3的图象如图所示.当y>0时,自变量x的取值范围是()A.﹣1<x<3 B.x<﹣1 C.x>3 D.x<﹣1或x>3【考点】二次函数的图象.【分析】求出函数图象与x轴的交点坐标,再根据函数图象的特征判断出y>0时,自变量x的取值范围.【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.结合图象可见,x<﹣1或x>3时,y>0.故选D.【点评】本题考查了二次函数的图象,求出函数与x轴的交点坐标并结合函数的图象是解答此类题目的关键.二、填空题11.抛物线y=2x2﹣8x﹣3的顶点坐标是(2,﹣11).【考点】二次函数的性质.【分析】把二次函数化为顶点式,可求得顶点坐标.【解答】解:∵y=2x2﹣8x﹣3=2(x﹣2)2﹣11,∴抛物线顶点坐标为(2,﹣11),故答案为:(2,﹣11).【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x ﹣h)2+k中,顶点坐标为(h,k).12.当m=3时,函数y=(m2﹣4)x+3是二次函数.【考点】二次函数的定义.【分析】根据二次函数的定义得到m2﹣m﹣4=2且m2﹣4≠0,据此求得m的值即可.【解答】解:依题意得:m2﹣m﹣4=2且m2﹣4≠0,整理,得(m﹣3)(m+2)=0,且m≠±2,解得m=3.故答案是:3.【点评】本题考查二次函数的定义.注意:二次项系数不为0.13.若二次函数y=﹣x2﹣4x+k的最大值是9,则k=5.【考点】二次函数的最值.【分析】利用最值的公式,把a、b、c的值代入,即可得关于k的一元一次方程,解即可.【解答】解:根据题意可知=9,即=9,解得k=5,故答案是5.【点评】本题考查了二次函数的最值问题,解题的关键是熟练掌握最值的计算公式.14.如图,二次函数y=ax2+bx+c的图象,图象经过点(﹣1,2)和(1,0),给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1;⑤9a+6b+4c>0.其中正确结论的序号是②③④.【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由抛物线的开口方向向上可推出a>0;因为对称轴在y轴右侧,对称轴为x=﹣>0,又∵a>0,∴b<0;∵抛物线与y轴的交点在y轴的负半轴上,∴c<0,故abc>0,故①错误;∵由图象可知:对称轴x=﹣>0且对称轴x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;∵由题意可知:当x=﹣1时,y=2,∴a﹣b+c=2,当x=1时,y=0,∴a+b+c=0.a﹣b+c=2与a+b+c=0相加得2a+2c=2,即a+c=1,移项得a=1﹣c,又∵a>0,c<0,∴a>1,故③④正确.∵a>0,c<0,∴﹣3a<0,4c<0,∴﹣3a+4c<0,∵0<﹣<1,∴b>﹣2a,∴9a+6b+4c<9a﹣12a+4c=﹣3a+4c<0,即9a+6b+4c<0.故⑤错误.故答案是:②③④.【点评】主要考查图象与二次函数系数之间的关系,难度不大,做题的关键是画出图形,题图结合认真分析出a,b,c的符号.三、解答题(本题共4题,每题各8分)15.已知二次函数y=﹣x2+2x+3的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)求点A、B、C、D的坐标,并在直角坐标系中画出该二次函数的大致图象;(2)求四边形OCDB的面积.【考点】抛物线与x轴的交点.【分析】(1)先把此二次函数化为y=﹣(x+1)(x﹣3)的形式,即可求出A、B两点的坐标,由二次函数的解析式可知c=3,故可知C点坐标,由二次函数的顶点式即可求出其顶点坐标;(2)根据四边形OCDB的面积=S矩形OEFB﹣S△BDF﹣S△CED即可解答.【解答】解:(1)∵二次函数y=﹣x2+2x+3可化为y=﹣(x+1)(x﹣3),A在B的左侧,∴A(﹣1,0),B(3,0),∵c=3,∴C(0,3),∵x=﹣=﹣=1,y===4,∴D(1,4),故此函数的大致图象为:(2)连接CD、BD,则四边形OCDB的面积=S矩形OEFB﹣S△BDF﹣S△CED=OB•|OE|﹣DF•|BF|﹣DE•CE=3×4﹣×2×4﹣×1×1=12﹣4﹣=.【点评】本题考查的是二次函数图象的画法及矩形、三角形的面积公式,能根据题意画出图形,再利用数形结合求解是解答此题的关键.16.抛物线与x轴的交点为(﹣1,0)、(3,0),且过点(1,4),并直接写出该抛物线关于x轴对称的抛物线的解析式.【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】利用两点式求出已知抛物线的解析式.因为关于x轴对称的两个抛物线,自变量x 的取值相同,函数值y互为相反数,由此可直接写出所求抛物线的解析式.【解答】解:设已知抛物线的解析式为:y=a(x+1)(x﹣3)∵该抛物线经过点(1,4),∴4=(1+1)•(4﹣3)a∴a=2即已知抛物线的解析式为:y=2x2﹣4x﹣6∴该抛物线关于x轴对称的抛物线的解析式:y=﹣2x2+4x+6【点评】本题考查了抛物线与x轴的交点、二次函数图象与几何变换问题,解题的关键是掌握关于x轴对称的两条抛物线的图象及其解析式的特点.17.拱桥的形状是抛物线,其函数关系式为,当水面离桥顶的高度为m时,水面的宽度为多少米?【考点】二次函数的应用.【分析】根据题意,把y=直接代入求解即可.【解答】解:在y=﹣中,当y=﹣时,x=±5,故水面的宽度为2×5=10米.答:水面的宽度为10米.【点评】本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.18.已知二次函数y=x2﹣2x﹣8.(1)求此二次函数的图象与x轴的交点坐标.(2)将y=x2的图象经过怎样的平移,就可以得到二次函数y=x2﹣2x﹣8的图象.【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)令二次函数解析式中y=0,得到关于x的一元二次方程,求出方程的解可得出二次函数与x轴的交点坐标;(2)将二次函数y=x2﹣2x﹣8化为顶点形式,然后比较y=x2与y=(x﹣1)2﹣9,根据图象的平移规律“上加下减、左加右减”,可得出平移的过程.【解答】解:(1)二次函数的解析式y=x2﹣2x﹣8,令y=0,得到x2﹣2x﹣8=0,解得:x1=4,x2=﹣2;则此二次函数的图象与x轴的交点坐标分别为(﹣2,0)、(4,0);(2)将二次函数y=x2﹣2x﹣8化为顶点式为y=(x﹣1)2﹣9,∴将y=x2的图象先向右平移1个单位,再向下平移9个单位,可得到二次函数y=x2﹣2x﹣8的图象.【点评】此题考查了抛物线与x轴的交点,以及二次函数图象与几何变换,要求二次函数与x轴的交点,即要y=0,得到关于x的方程来求解;要求二次函数与y轴的交点,即要x=0,求出y的值即可,此外熟练掌握二次函数图象的平移规律是解本题第二问的关键.四、(本题共2题,每题各10分)19.(10分)(2016•龙东地区)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.【考点】二次函数与不等式(组);待定系数法求一次函数解析式;待定系数法求二次函数解析式.【分析】(1)先利用待定系数法先求出m,再求出点B坐标,利用方程组求出一次函数解析式.(2)根据二次函数的图象在一次函数的图象上面即可写出自变量x的取值范围.【解答】解:(1)∵抛物线y=(x+2)2+m经过点A(﹣1,0),∴0=1+m,∴m=﹣1,∴抛物线解析式为y=(x+2)2﹣1=x2+4x+3,∴点C坐标(0,3),∵对称轴x=﹣2,B、C关于对称轴对称,∴点B坐标(﹣4,3),∵y=kx+b经过点A、B,∴,解得,∴一次函数解析式为y=﹣x﹣1,(2)由图象可知,写出满足(x+2)2+m≥kx+b的x的取值范围为x≤﹣4或x≥﹣1.【点评】本题考查二次函数与不等式、待定系数法等知识,解题的关键是灵活运用待定系数法确定好像解析式,学会利用图象根据条件确定自变量取值范围,属于中考常考题型.20.(10分)(2016秋•谯城区校级月考)抛物线y=x2﹣2x﹣3的图象交x轴与A,B两点,在该二次函数的图象上是否存在一点P(且在y轴的右侧),使得△ABP的面积是10?若存在请求出P点坐标;若不存在,请说明理由.【考点】二次函数图象上点的坐标特征.【分析】首先求出A、B两点的坐标,得出AB的长,再设P(a,b),根据△ABP的面积为10可以计算出b的值,然后再利用二次函数解析式计算出a的值即可得到P点坐标.【解答】解:∵当y=0时,x2﹣2x﹣3=0,解得:x1=﹣1,x2=3;∴A(﹣1,0),B(3,0),∴AB=4,设P(a,b),则a>0.∵△ABP的面积为10,∴AB•|b|=10,解得:b=±5,当b=5时,a2﹣2a﹣3=5,解得:a1=4,a2=﹣2(不合题意舍去),∴P(4,5);当b=﹣5时,a2﹣2a﹣3=﹣5,a无实数根.故所求P点坐标为(4,5).【点评】此题主要考查了二次函数图象上点的坐标特征,三角形的面积,关键是掌握凡是函数图象上的点必满足函数解析式.五、(本题共2题,每题各12分)21.(12分)(2012•城中区校级模拟)王大爷要围成一个如图所示的矩形ABCD花圃.花圃的一边利用20米长的墙,另三边用总长为36米的篱笆恰好围成.设AB边的长为x米,BC的长为y米,且BC>AB.(1)求y与x之间的函数关系式(要求直接写出自变量的取值范围);(2)当x是多少米时,花圃面积S最大?最大面积是多少?【考点】二次函数的应用.【分析】(1)根据矩形的对边相等可得CD=AB,然后根据篱笆总长列式整理即可得到y与x的关系式,再根据BC的长不大于墙长,与BC>AB列出不等式组求解即可得到x的取值范围;(2)根据矩形的面积公式列式整理得到S与x的函数关系式,再根据二次函数的最值问题解答.【解答】解:(1)∵四边形ABCD是矩形,∴CD=AB=x,∴x+y+x=36,∴y=﹣2x+36,∵墙长20米,BC>AB,∴,由①得,x≥8,由②得,x<12,所以,8≤x<12;(2)S=xy=x(﹣2x+36),=﹣2(x2﹣18x),=﹣2(x2﹣18x+81),=﹣2(x﹣9)2+162,∴当x=9米时,花圃面积S最大,最大面积是162米2.【点评】本题考查的是二次函数在实际生活中的应用,主要利用了矩形的周长与面积,二次函数的最值问题,本题难点在于自变量的取值范围的求解,列出不等式组是解题的关键.22.(12分)(2006•南海区校级模拟)如图,隧道的截面由抛物线和长方形构成.长方形的长是8m,宽是2m,抛物线可以用表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?【考点】二次函数的应用.【分析】(1)可把y=2代入抛物线解析式,求得x的值,进而求得可通过隧道的物体的宽度,与汽车的宽比较,若大于则能通过;(2)利用(1)得到的x的值,与汽车的宽度2比较,若大于则能通过.【解答】解:(1)把y=4﹣2=2代入得:2=﹣x2+4,解得x=±2,∴此时可通过物体的宽度为2﹣(﹣2)=4>2,∴能通过;(2)∵一辆货运卡车高4m,隧道的截面由抛物线和长方形构成.长方形的长是8m,宽是2m,∴货车上面有2m,在矩形上面,当y=2时,2=﹣x2+4,解得x=±2,∵2>2,∴能通过.【点评】考查二次函数的应用;根据所给图形判断出汽车过隧道时抛物线上的点距离路面的距离及判断单行道与双行道汽车能否通过的做法的区别是解决本题的关键.六、(本题满分14分)23.(14分)(2009•江津区)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.【考点】二次函数综合题.【分析】(1)根据题意可知,将点A、B代入函数解析式,列得方程组即可求得b、c的值,求得函数解析式;(2)根据题意可知,边AC的长是定值,要想△QAC的周长最小,即是AQ+CQ最小,所以此题的关键是确定点Q的位置,找到点A的对称点B,求得直线BC的解析式,求得与对称轴的交点即是所求;(3)存在,设得点P的坐标,将△BCP的面积表示成二次函数,根据二次函数最值的方法即可求得点P的坐标.【解答】解:(1)将A(1,0),B(﹣3,0)代y=﹣x2+bx+c中得(2分)∴(3分)∴抛物线解析式为:y=﹣x2﹣2x+3;(2)存在理由如下:由题知A、B两点关于抛物线的对称轴x=﹣1对称∴直线BC与x=﹣1的交点即为Q点,此时△AQC周长最小∵y=﹣x2﹣2x+3∴C的坐标为:(0,3)直线BC解析式为:y=x+3(6分)Q点坐标即为解得∴Q(﹣1,2);(7分)(3)存在.(8分)理由如下:设P点(x,﹣x2﹣2x+3)(﹣3<x<0)∵S△BPC=S四边形BPCO﹣S△BOC=S四边形BPCO﹣若S四边形BPCO有最大值,则S△BPC就最大,∴S四边形BPCO=S△BPE+S直角梯形PEOC(9分)=BE•PE+OE(PE+OC)=(x+3)(﹣x2﹣2x+3)+(﹣x)(﹣x2﹣2x+3+3)=当x=﹣时,S四边形BPCO最大值=∴S△BPC最大=(10分)当x=﹣时,﹣x2﹣2x+3=∴点P坐标为(﹣,).(11分)【点评】此题考查了二次函数的综合应用,要注意距离最短问题的求解关键是点的确定,还要注意面积的求解可以借助于图形的分割与拼凑,特别是要注意数形结合思想的应用.文本仅供参考,感谢下载!。
2024年九年级上学期开学考数学(人教版)试题及答案
九年级上学期开学摸底卷02 重难点检测卷【考试范围:人教版八下全部内容+九年级上衔接内容】注意事项:本试卷满分100分,考试时间120分钟,试题共26题。
答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置一、选择题(10小题,每小题2分,共20分)1.(2024·山东潍坊·模拟预测)计算()23−的结果是( )A .3B .9C .23D .3 2.(23-24八年级上·甘肃酒泉·期末)如图,一张长方形纸片剪去一个角后剩下一个梯形,则这个梯形的周长为( )A .30B .32C .34D .363.(23-24八年级下·云南昆明·期末)已知正比例函数的解析式为7x y =,下列结论正确的是( ) A .图象是一条线段B .图象必经过点(1,6)−C .图象经过第一、三象限D .y 随x 的增大而减小4.(23-24八年级下·湖北恩施·期末)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数5.(22-23八年级下·广东揭阳·期中)如图,在ABCD 中,对角线AC ,BD 交于点O ,下列结论一定成立的是( )A .AC BD ⊥B .=AC BD C .OB OD =D .ABC BAC∠=∠6.(22-23八年级下·四川广安·期末)如图,在作线段AB 的垂直平分线时,小聪是这样操作的:分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点C ,D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( )A .矩形B .菱形C .正方形D .平行四边形7.(23-24八年级上·安徽合肥·期末)下图中表示一次函数y mx n =+与正比例函数y mnx = (m ,n 是常数,且<0mn )图象是( )A .B .C .D .8.(23-24八年级下·云南昭通·期末)为了培养学生的数学核心素养,提高学生发现问题,分析问题,解决问题的能力.2024年昭通市某学校的156班组织了一次课外研学活动.在研学活动中,王宇同学欲控制遥控轮船匀速垂直横渡一条河,但由于水流的影响,实际上岸地点F 与欲到达地点E 相距10米,结果轮船在水中实际航行的路程HF 比河的宽度EH 多2米,则河的宽度EH 是( ).A .8米B .12米C .16米D .24米9.(2024·重庆·模拟预测)设一元二次方程()200ax bx ca ++=≠的两个根分别为1x ,2x ,则方程可写成()()12a x x x x 0−−=,即()212120ax a x x x ax x −++=.容易发现:12b x x a +=−,12c x x a=.设一元三次方程()3200ax bx cx d a +++=≠的三个非零实根分别为1x ,2x ,3x ,则以下正确命题的序号是( ) ①123b x x x a ++=−;②122313c x x x x x x a ++=;③123111cx x x d ++=;④123d x x x a =−. A .①②③ B .①②④ C .②③④ D .①③④10.(2023·湖北黄冈·模拟预测)如图,抛物线()20y ax bx c a ++≠与x 轴的一个交点坐标为(1,0)−,抛物线的对称轴为直线1x =,下列结论:①0abc <;②30a c +=;③当0y >时,x 的取值范围是13x −≤<;④点1(2,)y −,2(2,)y 都在抛物线上,则有120.y y <<其中结论正确的个数是( )A .2个B .3个C .4个D .5个二、填空题(8小题,每小题2分,共16分)11.(23-24八年级下·广东惠州·期中)如果最简二次根式1a +与21a −是同类二次根式,那么a = .12.(23-24八年级下·山西晋城·期末)若点()13,A y ,()25,B y 都在一次函数y x b =+的图象上,则1y 2y .(填“>”“<”“=”)13.(2024·四川乐山·二模)若关于x 的方程()22140x m x m −+++=两根互为负倒数,则m 的值为 .14.(22-23八年级下·广东惠州·阶段练习)如图,Rt ABC △中,90C ∠=°,AB 比AC 长1,3BC =,则AC = .15.(22-23八年级下·湖南衡阳·期末)如图,已知直线y ax b =+和直线y kx =交于点P ,则关于x ,y 的二元一次方程组y kx y ax b = =+ 的解是.16.(23-24八年级下·广东惠州·期中)如图,在平行四边形ABCD 中,DDDD 平分ADC ∠,5AD =,2BE =,则平行四边形ABCD 的周长是 .17.(22-23八年级下·湖北黄冈·期中)如图,电工黄师傅为了确定新栽的电线杆与地面是否垂直,他从电线杆上离地面2.5m 处向地面拉一条长6.5m 的缆绳,当黄师傅量得这条缆绳在地面的固定点距离电线杆底部距离为 m 时,这根电线杆便与地面垂直了.18.(2024·吉林·模拟预测)已知抛物线2y ax bx c ++(a ,b ,c 是常数,0a c <<)经过点()1m −,,其中0m >.下列结论:①0b <;②当12x >−时,y 随x 的增大而减小; ③关于x 的方程()20ax b m x c n ++++=有实数根,则n 是非负数;④代数式3m a b++的值大于0.其中正确的结论是(填写序号).三、解答题(8小题,共64分)19.(23-24八年级下·广东广州·期末)计算:()243332+−.20.(23-24八年级下·海南省直辖县级单位·阶段练习)用适当的方法解下列方程:(1)21690x −=;(2)231212x x −=−;(3)()33x x x +=+;(4)24240x x −+=.21.(23-24八年级下·广东广州·期末)如图,在 Rt ABC △中,90ACB ∠=°,68AC BC ==,,以点 A 为圆心,AC 长为半径画弧交AB 于点 D ,求BD 的长.22.(23-24八年级上·四川达州·期末)如图,在ABC 中,5cm AB =,26cm BC =,AD 是BC 边上的中线,12cm AD =,求ABC 的面积.23.(23-24八年级下·福建泉州·期末) 某公司随机抽取一名职员,统计了他一个月 (30天) 每日上班通勤费用通勤费用 (元/天) 0 48 36 天数(天) 8 12 64 (1)该名职工上班通勤费用的中位数是 元,众数是 元:(2)若该公司每天补贴该职员上班通勤费用6元,请你利用统计知识判断该职员是否还需自行补充上班通勤费用?24.(23-24八年级下·山东临沂·期中)如图,点D ,C 在BF 上,AC DE ∥,A E ∠=∠,BD CF =.(1)求证:AB EF =;(2)连接AF ,BE ,猜想四边形ABEF 的形状,并说明理由.25.(22-23八年级下·四川广安·期末)如图,已知函数12y x b =−+的图象与x 轴,y 轴分别交于点A 、B ,与函数y x =的图象交于点M ,点M 的横坐标为2,在x 轴上有一点(,0)P a (其中2)a >,过点P 作x 轴的垂线,分别交函数12y x b =−+和y x =的图象于点C 、D .(1)求点A 的坐标;(2)若OB CD =,求a 的值.26.(2024·山西晋中·模拟预测)鹰眼技术助力杭州亚运,提升球迷观赛体验.如图分别为足球比赛中某一时刻的鹰眼系统预测画面(如图1)和截面示意图(如图2),攻球员位于点O ,守门员位于点A ,OA 的延长线与球门线交于点B ,且点A ,B 均在足球轨迹正下方,足球的飞行轨迹可看成抛物线.水平距离s 与离地高度h 的鹰眼数据如表: /m s 0 9 12 1518 21 … /m h 0 4.2 4.8 5 4.8 4.2 …(2)求h关于s的函数解析式.九年级上学期开学摸底卷02 重难点检测卷【考试范围:人教版八下全部内容+九年级上衔接内容】注意事项:本试卷满分100分,考试时间120分钟,试题共26题。
山东省枣庄四十一中九年级数学上学期10月月考试卷(含解析) 新人教版-新人教版初中九年级全册数学试题
2016-2017学年某某省枣庄四十一中九年级(上)月考数学试卷(10月份)一、选择题1.用配方法解一元二次方程x2﹣4x+2=0时,可配方得()A.(x﹣2)2=6 B.(x+2)2=6 C.(x﹣2)2=2 D.(x+2)2=22.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±23.方程(x﹣2)(x+3)=0的解是()A.x=2 B.x=﹣3 C.x1=﹣2,x2=3 D.x1=2,x2=﹣34.方程x2﹣ax+4=0有两个相等的实数根,则a的值为()A.2 B.±2 C.±4 D.45.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2016﹣a﹣b的值是()A.2018 B.2011 C.2014 D.20216.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()A.x(x+1)=182 B.x(x﹣1)=182 C.x(x+1)=182×2 D.x(x﹣1)=182×27.如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值X围是()A.a>﹣B.a≥﹣C.a≥﹣且a≠0 D.a>且a≠08.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD9.下列四边形中,对角线一定相等的是()A.菱形 B.矩形 C.平行四边形D.梯形10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④11.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6cm和9cm B.5cm和10cm C.4cm和11cm D.7cm和8cm12.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下(如图1),再打开,得到如图2所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2 D.80cm2二、填空题13.若方程mx2+3x﹣4=3x2是关于x的一元二次方程,则m的取值X围是.14.一元二次方程(x+1)(3x﹣2)=10的一般形式是.15.方程x2=3x的解为:.16.如图所示,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC的长是.17.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为.18.如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为.三、解答题(共60分)19.解方程:①x2﹣4x﹣3=0②(x﹣3)2+2x(x﹣3)=0.20.有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?21.如图,在△ABC中,∠B=90°,点P从点A开始沿AB边向点B以1cm/s的速度移动,Q从点B 开始沿BC边向C点以2cm/s的速度移动,如果点P、Q分别从A、B同时出发,几秒钟后,△PBQ的面积等于8cm2?22.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.23.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.24.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.2016-2017学年某某省枣庄四十一中九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题1.用配方法解一元二次方程x2﹣4x+2=0时,可配方得()A.(x﹣2)2=6 B.(x+2)2=6 C.(x﹣2)2=2 D.(x+2)2=2【考点】解一元二次方程-配方法.【专题】压轴题.【分析】根据配方法的方法,先把常数项移到等号右边,再在两边同时加上一次项一般的平方,最后将等号左边配成完全平方式,利用直接开平方法就可以求解了.【解答】解:移项,得x2﹣4x=﹣2在等号两边加上4,得x2﹣4x+4=﹣2+4∴(x﹣2)2=2.故C答案正确.故选C.【点评】本题是一道一元二次方程解答题,考查了解一元二次方程的基本方法﹣﹣配方法的运用,解答过程注意解答一元二次方程配方法的步骤.2.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±2【考点】一元二次方程的定义.【专题】压轴题.【分析】本题根据一元二次方程的定义,必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此即可求解.【解答】解:由一元二次方程的定义可得,解得:m=2.故选B.【点评】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.3.方程(x﹣2)(x+3)=0的解是()A.x=2 B.x=﹣3 C.x1=﹣2,x2=3 D.x1=2,x2=﹣3【考点】解一元二次方程-因式分解法.【分析】根据已知得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣2)(x+3)=0,x﹣2=0,x+3=0,x1=2,x2=﹣3,故选D.【点评】本题考查了解一元关键是能把一元一次方程和解一元二次方程的应用,关键是能把一元二次方程转化成一元一次方程.4.方程x2﹣ax+4=0有两个相等的实数根,则a的值为()A.2 B.±2 C.±4 D.4【考点】根的判别式.【分析】利用方程有两个相等的实数根时,△=0,建立关于a的等式,求出a的值.【解答】解:由题意知,方程有两个相等的实数根.则△=a2﹣16=0∴a=±4故选C【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2016﹣a﹣b的值是()A.2018 B.2011 C.2014 D.2021【考点】一元二次方程的解.【分析】根据方程解的定义,求出a+b,利用整体代入的思想即可解决问题.【解答】解:∵关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,∴a+b+5=0,∴a+b=﹣5,∴2016﹣a﹣b=2016﹣(a+b)=2016+5=2021故选D.【点评】本题考查一元二次方程的解,解题的关键是理解方程的解的定义,属于基础题,中考常考题型.6.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()A.x(x+1)=182 B.x(x﹣1)=182 C.x(x+1)=182×2 D.x(x﹣1)=182×2【考点】由实际问题抽象出一元二次方程.【分析】先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.【解答】解:设全组有x名同学,则每名同学所赠的标本为:(x﹣1)件,那么x名同学共赠:x(x﹣1)件,所以,x(x﹣1)=182.故选B.【点评】本题考查一元二次方程的实际运用:要全面、系统地弄清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.7.如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值X围是()A.a>﹣B.a≥﹣C.a≥﹣且a≠0 D.a>且a≠0【考点】根的判别式;一元二次方程的定义.【分析】在判断一元二次方程根的情况的问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根的情况下必须满足△=b2﹣4ac≥0.【解答】解:依题意列方程组,解得a≥﹣且a≠0.故选C.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【考点】矩形的判定;平行四边形的性质.【专题】证明题;压轴题.【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.9.下列四边形中,对角线一定相等的是()A.菱形 B.矩形 C.平行四边形D.梯形【考点】多边形.【分析】根据菱形、矩形、平行四边形、梯形的性质对各个选项进行判断即可.【解答】解:菱形的对角线不一定相等,A错误;矩形的对角线一定相等,B正确;平行四边形的对角线不一定相等,C错误;梯形的对角线不一定相等,D错误;故选:B.【点评】本题考查的是特殊四边形的性质,掌握菱形、矩形、平行四边形、梯形的性质是解题的关键.10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④【考点】中点四边形.【分析】有一个角是直角的平行四边形是矩形,根据此可知顺次连接对角线垂直的四边形是矩形.【解答】解:AC⊥BD,E,F,G,H是AB,BC,CD,DA的中点,∵EH∥BD,FG∥BD,∴EH∥FG,同理;EF∥HG,∴四边形EFGH是平行四边形.∵AC⊥BD,∴EH⊥EF,∴四边形EFGH是矩形.所以顺次连接对角线垂直的四边形是矩形.而菱形、正方形的对角线互相垂直,则菱形、正方形均符合题意.故选:D.【点评】本题考查矩形的判定定理和三角形的中位线的定理,从而可求解.11.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6cm和9cm B.5cm和10cm C.4cm和11cm D.7cm和8cm【考点】矩形的性质.【分析】根据已知条件以及矩形性质证△ABE为等腰三角形得到AB=AE,注意“长和宽分别为15cm 和10cm”说明有2种情况,需要分类讨论.【解答】解:∵矩形ABCD中,BE是角平分线.∴∠ABE=∠EBC.∵AD∥BC.∴∠AEB=∠EBC.∴∠AEB=∠ABE∴AB=AE.当AB=15cm时:则AE=15cm,不满足题意.当AB=10cm时:AE=10cm,则DE=5cm.故选B.【点评】此题考查了矩形的性质与等腰三角形的判定与性质.注意出现角平分线,出现平行线时,一般出现等腰三角形,需注意等腰三角形相等边的不同.12.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下(如图1),再打开,得到如图2所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2 D.80cm2【考点】剪纸问题.【分析】利用折叠的方式得出AC,BD的长,再利用菱形面积公式求出即可.【解答】解:如图2,由题意可得:AC=4cm,BD=5cm,故小菱形的面积为:×4×5=10(cm2).故选:A.【点评】此题主要考查了菱形的性质以及剪纸问题,得出菱形对角线的长是解题关键.二、填空题13.若方程mx2+3x﹣4=3x2是关于x的一元二次方程,则m的取值X围是m≠3 .【考点】一元二次方程的定义.【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:把方程mx2+3x﹣4=3x2转化成一般形式,(m﹣3)x2+3x﹣4=0,(m﹣3)是二次项系数不能为0,即m﹣3≠0,得m≠3.故答案为:m≠3.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.14.一元二次方程(x+1)(3x﹣2)=10的一般形式是3x2+x﹣12=0 .【考点】一元二次方程的一般形式.【分析】先把一元二次方程(x+1)(3x﹣2)=10的各项相乘,再按二次项,一次项,常数项的顺序进行排列即可.【解答】解:∵一元二次方程(x+1)(3x﹣2)=10可化为3x2﹣2x+3x﹣2=10,∴化为一元二次方程的一般形式为3x2+x﹣12=0.【点评】去括号的过程中要注意符号的变化,不要漏乘,移项时要注意符号的变化.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号.15.方程x2=3x的解为:x1=0,x2=3 .【考点】解一元二次方程-因式分解法.【分析】首先把方程移项,把方程的右边变成0,然后对方程左边分解因式,根据几个式子的积是0,则这几个因式中至少有一个是0,即可把方程转化成一元一次方程,从而求解.【解答】解:移项得:x2﹣3x=0,即x(x﹣3)=0,于是得:x=0或x﹣3=0.则方程x2=3x的解为:x1=0,x2=3.故答案是:x1=0,x2=3.【点评】本题考查了因式分解法解二元一次方程,理解因式分解法解方程的依据是关键.16.如图所示,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC的长是 4 .【考点】矩形的性质.【分析】根据矩形性质得出AC=2AO,BD=2BO,AC=BD,推出AO=OB,得出等边三角形AOB,求出AO,即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD,∴AO=OB,∵∠A OB=60°,∴△AOB是等边三角形,∴AB=AO=2,即AC=2AO=4,故答案为:4.【点评】本题考查了等边三角形的性质和判定,矩形的性质的应用,注意:矩形的对角线互相平分且相等.17.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为 5 .【考点】正方形的性质;三角形的面积;勾股定理.【分析】根据正方形性质得出AD=BC=CD=AB,根据面积求出EM,得出BC=4,根据勾股定理求出即可.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.【点评】本题考查了三角形面积,正方形性质,勾股定理的应用,解此题的关键是求出BC的长,难度适中.18.如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为1:..【考点】菱形的性质.【分析】首先设设AC,BD相较于点O,由菱形ABCD的周长为8cm,可求得AB=BC=2cm,又由高AE 长为cm,利用勾股定理即可求得BE的长,继而可得AE是BC的垂直平分线,则可求得AC的长,继而求得BD的长,则可求得答案.【解答】解:如图,设AC,BD相较于点O,∵菱形ABCD的周长为8cm,∴AB=BC=2cm,∵高AE长为cm,∴BE==1(cm),∴CE=BE=1cm,∴AC=AB=2cm,∵OA=1cm,AC⊥BD,∴OB=(cm),∴BD=2OB=2cm,∴AC:BD=1:.故答案为:1:.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的四条边都相等,对角线互相平分且垂直.三、解答题(共60分)19.解方程:①x2﹣4x﹣3=0②(x﹣3)2+2x(x﹣3)=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】①利用配方法解方程:将常数项﹣3移到等式的右边,然后在等式的两边同时加上一次项系数一半的平方;②利用“提取公因式法”对等式的左边进行因式分解,将原等式转化为两因式之积为零的形式.【解答】解:①由原方程,得x2﹣4x=3,等式的两边同时加上一次项系数一半的平方,得x2﹣4x+4=7,配方,得(x﹣2)2=7,∴x﹣2=±,解得,x1=2+,x2=2﹣;②由原方程,得3(x﹣3)(x﹣1)=0,∴x﹣3=0或x﹣1=0,解得,x=3或x=1.【点评】本题考查了解一元二次方程﹣﹣配方法、因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.20.有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设养鸡场的宽为xm,则长为(35﹣2x),根据矩形的面积公式即可列方程,列方程求解.【解答】解:设养鸡场的宽为xm,则长为(35﹣2x),由题意得x(35﹣2x)=150解这个方程;x2=10当养鸡场的宽为时,养鸡场的长为20m不符合题意,应舍去,当养鸡场的宽为x1=10m时,养鸡场的长为15m.答:鸡场的长与宽各为15m,10m.【点评】本题考查的是一元二次方程的应用,难度一般.21.如图,在△ABC中,∠B=90°,点P从点A开始沿AB边向点B以1cm/s的速度移动,Q从点B 开始沿BC边向C点以2cm/s的速度移动,如果点P、Q分别从A、B同时出发,几秒钟后,△PBQ的面积等于8cm2?【考点】一元二次方程的应用.【专题】几何动点问题.【分析】本题中根据直角三角形的面积公式和路程=速度×时间进行求解即可.【解答】解:设x秒钟后,△PBQ的面积等于8cm2,其中0<x<6,由题意可得:2x(6﹣x)÷2=8解得x1=2,x2=4.经检验均是原方程的解.答:2或4秒钟后,△PBQ的面积等于8cm2.【点评】找到关键描述语“△PBQ的面积等于8cm2”,找到等量关系是解决问题的关键.22.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.23.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.【考点】全等三角形的判定与性质;等腰三角形的性质;平行四边形的判定与性质.【专题】证明题.【分析】(1)运用AAS证明△ABD≌△CAE;(2)易证四边形ADCE是矩形,所以AC=DE=AB,也可证四边形ABDE是平行四边形得到AB=DE.【解答】证明:(1)∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°在△ABD和△CAE中∴△ABD≌△CAE(AAS);(2)AB=DE,AB∥DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.∵AB=AC,∴BD=DC,∵四边形ADCE是矩形,∴AE∥CD,AE=DC,∴AE∥BD,AE=BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.【点评】本题主要考查了三角形全等的判定与性质,矩形的判定与性质以及平行四边形的判定与性质,难度不大,比较灵活.24.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.【考点】菱形的性质;全等三角形的判定与性质;勾股定理.【专题】计算题;矩形菱形正方形.【分析】(1)根据四边形ABCD是菱形,判断出AD∥BC,AO=OC,即可推得OM=ON.(2)首先根据四边形ABCD是菱形,判断出AC⊥BD,AD=BC=AB=6,进而求出BO、BD的值是多少;word然后根据DE ∥AC,AD∥CE,判断出四边形ACED是平行四边形,求出DE=AC=6,即可求出△BDE的周长是多少.【解答】解:(1)∵四边形ABCD是菱形,∴AD∥BC,AO=OC,∴,∴OM=ON.(2)∵四边形ABCD是菱形,∴AC⊥BD,AD=BC=AB=6,∴BO==2,∴,∵DE∥AC,AD∥CE,∴四边形ACED是平行四边形,∴DE=AC=8,∴△BDE的周长是:BD+DE+BE=BD+AC+(BC+CE)=4+8+(6+6)=20即△BDE的周长是20.【点评】(1)此题主要考查了菱形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.(2)此题还考查了三角形的周长的含义以及求法,以及勾股定理的应用,要熟练掌握.21 / 21。
北京市人大附中九年级数学上学期开学摸底试题(含解析) 新人教版
北京市人大附中2015-2016学年九年级数学上学期开学摸底试题一、单项选择题(本大题包括10个小题,每小题3分,共30分).1.下列各图中,是中心对称图形的为()A.B.C.D.2.下列函数中,y是x的二次函数的为()A.y=﹣3x2B.y=2x C.y=x+1 D.y=x33.抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面的点数为3的倍数的概率为()A.B.C.D.4.二次函数y=﹣(x﹣1)2+2的最大值是()A.﹣2 B.2 C.﹣1 D.15.如图,P是等边△ABC内部一点,把△ABP绕点A逆时针旋转,使点B与点C重合,得到△ACQ,则旋转角的度数是()A.70° B.80° C.60° D.50°6.将抛物线y=x2向上平移1个单位,得到的抛物线的解析式为()A.y=x2+1 B.y=x2﹣1 C.y=(x+1)2+1 D.y=(x﹣1)2+17.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD被纸板覆盖部分的面积为()A. a2 B. a2 C. a2 D. a8.用配方法解方程x2﹣2x﹣5=0时,原方程变形正确的是()A.(x﹣1)2=6 B.(x﹣2)2=9 C.(x+1)2=6 D.(x+2)2=99.在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的白菜价格进行调查.四个城市5个月白菜的平均值均为3.50元,方差分别为S甲2=18.3,S乙2=17.4,S丙2=20.1,S丁2=12.5.一至五月份白菜价格最稳定的城市是()A.甲B.乙C.丙D.丁10.如图1,正方形ABCD中,点M是AB的中点,点P在某条线段上匀速运动,若运动的时间为x,点P与点M之间的距离为y,且表示y与x的函数关系的图象大致如图2所示,则点P的运动路线可能是()A.A→B B.A→D C.B→D D.D→C二、填空题(本大题包括6个小题,每小题3分,共18分).11.点A(2,y1)、B(3,y2)是二次函数y=(x﹣1)2的图象上两点,则y1与y2的大小关系为y1y2(填“>”、“<”、“=”).12.在平面直角坐标系中,点P(5,3)关于原点对称的点的坐标为.13.如图,P是正方形ABCD内一点,将△PCD绕点C逆时针方向旋转后与△P′CB重合,若PC=1,则PP′=.14.关于x的一元二次方程ax2+bx+1=0有两个相等的实数根,写出一组满足条件的实数a、b的值:a= ,b= .15.在某中学开展的“书香伴我行”读书活动中,为了解九年级300名学生一个月的读书情况,随机调查了九年级50名学生读书的册数,统计数据如表所示:册数0 1 2 3 4人数 1 13 16 17 3估计这所中学九年级学生一个月共读书约册,你的估计理由是.16.阅读下面材料,在数学课上,老师提出如下问题:已知:线段AB.尺规作图:以线段AB为对角线作一个菱形ADBC.小颢这样操作的:如图:(1)分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D;(2)作四边形ADBC.老师说:“小颢的做法是正确的.”请回答:小颢的作图依据是.三、解答题(本大题包括6个小题,每小题5分,共30分).17.解方程:x2﹣4x+2=0.18.如图,正方形网格中,△ABC的顶点及点O在格点上.画出与△ABC关于点O对称的△A′B′C′.19.若二次函数y=2x2﹣4x+1过点(m,0),求代数式2(m﹣1)2+3的值.20.如图,矩形ABCD.AE=CD,DF⊥BE于F.求证:∠E=∠ADF.21.已知二次函数的图象经过点(1,0),且顶点坐标为(2,5).求此二次函数的解析式.四、解答题(本大题包括6个小题,每小题5分,共30分).22.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,m)、B(1,1).(1)求m的值及直线y=bx+c的解析式;(2)直接写出关于x的不等式ax2<bx+c的解集为.23.如图,四边形ABCD中,AD∥BC,AB⊥BC,∠BCD=45°,将CD绕点D逆时针旋转90°至ED,延长AD交EC于点F.(1)求证:四边形ABCF是矩形;(2)若AD=2,BC=3,求AE的长.24.某商店以每件20元的价格购进一批商品,每种商品售价x元.(1)每件商品的利润是元;(2)若每月可卖出(800﹣10x)件,商店每月的总盈利为y元,求y与x之间的函数关系式,并求出每月的最大利润是多少?25.如图,在△ABC中,∠C=90°,AC=BC,点D在BC边上,连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE,作DF⊥BC交AB于点F.(1)求证:AB⊥BE;(2)若AC=8,DF=3,求BE的长.26.有这样一个问题:探究函数y=x2﹣2的图象与性质.小峰根据学习函数的经验,对函数y=x2﹣2的图象与性质进行了探究.下面是小峰的探究过程,请补充完整:(1)函数y=x2﹣2的自变量的取值范围是;(2)下表是y与x的几组对应值.x …﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 …y … n 3 0 ﹣1 0 ﹣1 0 3 m …求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第四象限内的最低点是(1,﹣1),结合函数的图象,写出该函数的其它性质(一条即可):.五、解答题(本大题包括3个小题,第27题7分,第28题7分,第29题8分;共22分).27.在平面直角坐标系xOy中,抛物线C1:y=mx2﹣2mx+m+4与y轴交于点A(0,3),与x轴交于点B、C(点B在点C左侧).(1)求该抛物线的解析式;(2)求点B的坐标;(3)若抛物线C2:y=a(x﹣1)2﹣1(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.28.在菱形ABCD中,∠ABC=60°,点P在对角线BD上,点Q在直线AD上,且∠CPQ=120°.(1)如图1,若点P为菱形ABCD的对角线的交点.①依题意补全图1;②猜想PC与PQ的数量关系并加以证明;(2)如图2,若∠CPD=80°,连接CQ,写出求∠PQD度数的思路.29.如图,平面直角坐标系中,点P关于点A的关联点P′的定义如下:若在线段PA的延长线上存在一点P′,满足AP+AP′=2,则称为点P′为点P关于点A的关联点.特别地,当点P′是与点A 重合时,规定:AP′=0.(1)分别判断点M(1,0)、N(1,2)关于原点O(0,0)的关联点是否存在?若存在,求出其坐标;(2)如图,直线y=﹣x+1分别与x、y轴交于点B、C.①若点P(m,n)在直线y=﹣x+1上,且点P关于原点O(0,0)的关联点P′存在,求m的取值范围;②若对于线段BC上的任意一点P,使得点P关于点A(a,0)的关联点P′存在,且点P′不在x轴上,求a的取值范围.2015-2016学年北京市人大附中九年级(上)开学摸底数学试卷参考答案与试题解析一、单项选择题(本大题包括10个小题,每小题3分,共30分).1.下列各图中,是中心对称图形的为()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故错误;B、不是中心对称图形,故错误;C、不是中心对称图形,故错误;D、是中心对称图形,故正确.故选D.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列函数中,y是x的二次函数的为()A.y=﹣3x2B.y=2x C.y=x+1 D.y=x3【考点】二次函数的定义.【分析】根据二次函数的定义:形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数,对各选项进行逐一分析即可.【解答】解:A、是二次函数,故此选项正确;B、是一次函数,故此选项错误;C、是一次函数,故此选项错误;D、是三次函数,故此选项错误;故选:A.【点评】此题主要考查了二次函数的定义,判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.3.抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面的点数为3的倍数的概率为()A.B.C.D.【考点】概率公式.【分析】由骰子的六个面上分别刻有1到6的点数,点数为3的倍数的有2个,利用概率公式直接求解即可求得答案.【解答】解:∵骰子的六个面上分别刻有1到6的点数,点数为3的倍数的有2个,∴掷得朝上一面的点数为3的倍数的概率为: =.故选C.【点评】此题考查了概率公式的应用.注意掌握概率=所求情况数与总情况数之比.4.二次函数y=﹣(x﹣1)2+2的最大值是()A.﹣2 B.2 C.﹣1 D.1【考点】二次函数的最值.【分析】因为此题中解析式为顶点式的形式,所以根据其解析式即可求解.【解答】解:∵二次函数y=﹣(x﹣1)2+2,∴当x=1时,二次函数y=﹣(x﹣1)2+2的最大值为2,故选B.【点评】考查了二次函数的最值,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.5.如图,P是等边△ABC内部一点,把△ABP绕点A逆时针旋转,使点B与点C重合,得到△ACQ,则旋转角的度数是()A.70° B.80° C.60° D.50°【考点】旋转的性质.【分析】先根据等边三角形的性质得AB=AC,∠BAC=60°,然后根据旋转的性质可得到∠BAC为旋转角,从而得到旋转角的度数.【解答】解:∴△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵△ABP绕点A逆时针旋转,使点B与点C重合,得到△ACQ,∴∠BAC为旋转角,即旋转角的度数为60°.故选C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.6.将抛物线y=x2向上平移1个单位,得到的抛物线的解析式为()A.y=x2+1 B.y=x2﹣1 C.y=(x+1)2+1 D.y=(x﹣1)2+1【考点】二次函数图象与几何变换.【分析】先得到抛物线y=x2的顶点坐标为(0,0),再利用点的平移规律得到点(0,0)向上平移1个单位得到的点的坐标为(0,1),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),点(0,0)向上平移1个单位得到的点的坐标为(0,1),所以所得到的抛物线的解析式为y=x2+1.故选A.【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD被纸板覆盖部分的面积为()A. a2 B. a2 C. a2 D. a【考点】旋转的性质.【专题】计算题.【分析】扇形的半径交AD于E,交CD于F,连结OD,如图,利用正方形的性质得OD=OC,∠COD=90°,∠ODA=∠OCD=45°,再利用等角的余角相等得到∠EOD=∠FOC,于是可证明△ODE≌△OCF,得到S△ODE=S2.△OCF,所以S阴影部分=S△DOC=S正方形ABCD=a【解答】解:扇形的半径交AD于E,交CD于F,连结OD,如图,∵四边形ABCD为正方形,∴OD=OC,∠COD=90°,∠ODA=∠OCD=45°,∵∠EOF=90°,即∠EOD+∠DOF=90°,∠DOF+∠COF=90°,∴∠EOD=∠FOC,在△ODE和△OCF中,,∴△ODE≌△OCF,∴S△ODE=S△OCF,∴S阴影部分=S△DOC=S正方形ABCD=a2.故选B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.8.用配方法解方程x2﹣2x﹣5=0时,原方程变形正确的是()A.(x﹣1)2=6 B.(x﹣2)2=9 C.(x+1)2=6 D.(x+2)2=9【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项,配方得到结果,即可做出判断.【解答】解:方程变形得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6,故选A【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.9.在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的白菜价格进行调查.四个城市5个月白菜的平均值均为3.50元,方差分别为S甲2=18.3,S乙2=17.4,S丙2=20.1,S丁2=12.5.一至五月份白菜价格最稳定的城市是()A.甲B.乙C.丙D.丁【考点】方差.【分析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.根据方差分别为S甲2=18.3,S乙2=17.4,S丙2=20.1,S丁2=12.5.可找到最稳定的.【解答】解:因为丁城市的方差最小,所以丁最稳定.故选D.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.如图1,正方形ABCD中,点M是AB的中点,点P在某条线段上匀速运动,若运动的时间为x,点P与点M之间的距离为y,且表示y与x的函数关系的图象大致如图2所示,则点P的运动路线可能是()A.A→B B.A→D C.B→D D.D→C【考点】动点问题的函数图象.【专题】几何图形问题.【分析】根据题意和函数图象以及选项可以推测出哪个选项是正确的.【解答】解:∵正方形ABCD中,点M是AB的中点,点P在某条线段上匀速运动,若运动的时间为x,点P与点M之间的距离为y,∴如果从A→B,则点P的距离与M的距离由大到0再变大,与函数图象不符,故选项A错误;如果从A→D,则点P的距离与M的距离一直变大,与函数图象不符,故选项B错误;如果从B→D,则点P的距离与M的距离由大变小,再由小变大,并且到D的距离大于到点B的距离,与图象符合,故选项C正确;如果从D→C,则点P的距离与M的距离由大变小,再由小变大,并且到D的距离等于到点C的距离,与图象不符,故选项D错误.故选C.【点评】本题考查动点问题的函数图象,解题的关键是利用数形结合的思想,分不同情况看函数的图象.二、填空题(本大题包括6个小题,每小题3分,共18分).11.点A(2,y1)、B(3,y2)是二次函数y=(x﹣1)2的图象上两点,则y1与y2的大小关系为y1<y2(填“>”、“<”、“=”).【考点】二次函数图象上点的坐标特征.【分析】先根据函数解析式确定出对称轴为直线x=1,再根据二次函数的增减性,x<1时,y随x 的增大而减小解答.【解答】解:∵y═(x﹣1)2,∴二次函数图象的对称轴为直线x=1,∵x2>x1>1,∴y1<y2.故答案为:<【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性,求出对称轴解析式是解题的关键.12.在平面直角坐标系中,点P(5,3)关于原点对称的点的坐标为(﹣5,﹣3).【考点】关于原点对称的点的坐标.【分析】直接利用关于原点对称点的性质得出即可.【解答】解:点P(5,3)关于原点对称的点的坐标为:(﹣5,﹣3).故答案为:(﹣5,﹣3).【点评】此题主要考查了关于原点对称点的性质,得出对应点坐标是解题关键.13.如图,P是正方形ABCD内一点,将△PCD绕点C逆时针方向旋转后与△P′CB重合,若PC=1,则PP′=.【考点】旋转的性质.【专题】计算题.【分析】根据正方形的性质得CD=CB,∠BCD=90°,再根据旋转的性质得CP=CP′,∠PCP′=∠DCB=90°,则可判断△PCP′为等腰直角三角形,于是PP′=CP=.【解答】解:∵四边形ABCD为正方形,∴CD=CB,∠BCD=90°,∵△PCD绕点C逆时针方向旋转后与△P′CB重合,∴CP=CP′,∠PCP′=∠DCB=90°,∴△PCP′为等腰直角三角形,∴PP′=CP=.故答案为.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.14.关于x的一元二次方程ax2+bx+1=0有两个相等的实数根,写出一组满足条件的实数a、b的值:a= 1 ,b= 2 .【考点】根的判别式.【专题】开放型.【分析】利用一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根;进而得出答案.【解答】解:∵关于x的一元二次方程ax2+bx+1=0有两个相等的实数根,∴△=b2﹣4ac=b2﹣4a=0,符合一组满足条件的实数a、b的值:a=1,b=2等.故答案为:1,2.【点评】此题主要考查了根的判别式,正确求出a,b之间的关系是解题关键.15.在某中学开展的“书香伴我行”读书活动中,为了解九年级300名学生一个月的读书情况,随机调查了九年级50名学生读书的册数,统计数据如表所示:册数0 1 2 3 4人数 1 13 16 17 3估计这所中学九年级学生一个月共读书约648 册,你的估计理由是50名学生读书的平均册数等于全年级学生读书的册数.【考点】用样本估计总体;加权平均数.【分析】根据图表所给出的数据求出50名学生读书的平均册数,然后乘以九年级的总人数即可.【解答】解:根据题意得:=2.16(册),则这所中学九年级学生一个月共读书约2.16×300=648(册);估计理由是:50名学生读书的平均册数等于全年级学生读书的册数.故答案为:648,50名学生读书的平均册数等于全年级学生读书的册数.【点评】本题考查了用样本估计总体,关键是根据统计表得出50名学生读书的平均册数,运用了样本估计总体的思想.16.阅读下面材料,在数学课上,老师提出如下问题:已知:线段AB.尺规作图:以线段AB为对角线作一个菱形ADBC.小颢这样操作的:如图:(1)分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D;(2)作四边形ADBC.老师说:“小颢的做法是正确的.”请回答:小颢的作图依据是四边相等的四边形为菱形.【考点】作图—复杂作图;菱形的判定.【专题】作图题.【分析】利用作图可判断AC=AD=BC=BD,然后根据菱形的判定方法可判断四边形ACBD为菱形.【解答】解:由作图可得AC=AD=BC=BD,所以四边形ACBD为菱形,则小颢的作图依据为四边相等的四边形为菱形.故答案为四边相等的四边形为菱形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.三、解答题(本大题包括6个小题,每小题5分,共30分).17.解方程:x2﹣4x+2=0.【考点】解一元二次方程-配方法.【分析】本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【解答】解:x2﹣4x=﹣2x2﹣4x+4=2(x﹣2)2=2或∴,.【点评】配方法的步骤:形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.18.如图,正方形网格中,△ABC的顶点及点O在格点上.画出与△ABC关于点O对称的△A′B′C′.【考点】作图-旋转变换.【专题】作图题.【分析】利用网格特点和中心对称的性质分别画出点A、B、C的对应点A′、B′、C′,则可得到△A′B′C′.【解答】解:如图,△A′B′C′为所作;【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.19.若二次函数y=2x2﹣4x+1过点(m,0),求代数式2(m﹣1)2+3的值.【考点】二次函数图象上点的坐标特征.【分析】由于y=2x2﹣4x+1经过点(m,0),则2m2﹣4m+1=0,代数式2(m﹣1)2+3=2m2﹣4m+1+4=0+4=4即可.【解答】解:抛物线y=2x2﹣4x+1经过点(m,0),则2m2﹣4m+1=0,因此2(m﹣1)2+3=2m2﹣4m+1+4=0+4=4.【点评】本题考查了二次函数图象上点的坐标特征,正确将代数式变形是解决本题的关键.20.如图,矩形ABCD.AE=CD,DF⊥BE于F.求证:∠E=∠ADF.【考点】矩形的性质;等腰三角形的性质.【专题】证明题.【分析】由矩形的性质得出AB=CD,∠BAD=90°,得出∠ABE+∠1=90°,再由已知条件得出AE=AB,由等腰三角形的性质得出∠E=∠ABE,证出∠ADF+∠2=90°,由对顶角相等得出∠ABE=∠ADF,即可得出结论.【解答】证明:如图所示:∵四边形ABCD是矩形,∴AB=CD,∠BAD=90°,∴∠ABE+∠1=90°,∵AE=CD,∴AE=AB,∴∠E=∠ABE,∵DF⊥BE,∴∠DFB=90°,∴∠ADF+∠2=90°,∵∠1=∠2,∴∠ABE=∠ADF,∴∠E=∠ADF.【点评】本题考查了矩形的性质、等腰三角形的判定与性质、角的互余关系;熟练掌握矩形的性质,证明三角形是等腰三角形是解决问题的关键.21.已知二次函数的图象经过点(1,0),且顶点坐标为(2,5).求此二次函数的解析式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】由于已知抛物线的顶点坐标,则可设顶点式y=a(x﹣2)2+5,然后把(1,0)代入求出a 的值即可.【解答】解:设抛物线解析式为y=a(x﹣2)2+5,把(1,0)代入得a+5=0,解得a=﹣5,所以抛物线解析式为y=﹣5(x﹣2)2+5.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.四、解答题(本大题包括6个小题,每小题5分,共30分).22.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,m)、B(1,1).(1)求m的值及直线y=bx+c的解析式;(2)直接写出关于x的不等式ax2<bx+c的解集为﹣2<x<1 .【考点】二次函数与不等式(组).【分析】(1)先把B(1,1)代入抛物线y=ax2与求出a的值,故可得出抛物线的解析式,再把点A (﹣2,m)代入抛物线的解析式即可得出m的值,把A、B两点代入直线y=bx+c求出B、C的值即可;(2)直接根据两函数图象的交点即可得出结论.【解答】解:(1)∵B(1,1)在抛物线y=ax2上,∴1=a,∴抛物线的解析式为y=x2.∵点A(﹣2,m)在此抛物线上,∴m=4,∴A(﹣2,4).∵A、B两点在直线y=bx+c上,∴,解得.∴直线y=bx+c的解析式为y=﹣x+2;(2)∵由函数图象可知,当﹣2<x<1时,二次函数的图象在一次函数图象的下方,∴不等式ax2<bx+c的解集为:﹣2<x<1.故答案为:﹣2<x<1.【点评】本题考查的是二次函数与不等式组,能根据题意利用函数图象求出不等式的解集是解答此题的关键.23.如图,四边形ABCD中,AD∥BC,AB⊥BC,∠BCD=45°,将CD绕点D逆时针旋转90°至ED,延长AD交EC于点F.(1)求证:四边形ABCF是矩形;(2)若AD=2,BC=3,求AE的长.【考点】矩形的判定与性质.【分析】(1)根据平行线求出∠B=∠BAF=90°,∠BCD=∠FDC=45°,根据旋转得出DE=DC,∠EDC=90°,根据等腰三角形性质求出∠AFC=90°,根据矩形的判定得出即可;(2)求出AF和DF,求出DF=EF=1,根据勾股定理求出即可.【解答】(1)证明:∵AD∥BC,AB⊥BC,∠BCD=45°,∴∠B=∠BAF=90°,∠BCD=∠FDC=45°,∵将CD绕点D逆时针旋转90°至ED,∴DE=DC,∠EDC=90°,∴∠EDF=45°=∠FDC,∴DF⊥CE,∴∠AFC=90°,即∠B=∠BAF=∠AFC=90°,∴四边形ABCF是矩形;(2)解:∵四边形ABCF是矩形,∴AF=BC=3,∴DF=3﹣2=1,∵∠EDF=45°,∠DFE=90°,∴∠DEF=∠EDF=45°,∴DF=EF=1,在Rt△AFE中,由勾股定理得:AE===.【点评】本题考查了平行线的性质,矩形的性质和判定,旋转的性质,勾股定理的应用,能综合运用性质进行推理是解此题的关键.24.某商店以每件20元的价格购进一批商品,每种商品售价x元.(1)每件商品的利润是x﹣20 元;(2)若每月可卖出(800﹣10x)件,商店每月的总盈利为y元,求y与x之间的函数关系式,并求出每月的最大利润是多少?【考点】二次函数的应用.【分析】(1)根据利润=售价﹣进价即可得到结论;(2)根据总盈利=销量乘以每件商品的利润求出y与x之间的函数关系式,然后求二次函数的最大值即可.【解答】解:(1)每件商品的利润=(x﹣20)元,故答案为:x﹣20;(2)根据题意得:y=(800﹣10x)(x﹣20)=﹣10x2+1000x﹣16000,∴y=﹣10(x﹣50)2+9000,∴每月的最大利润是9000元.【点评】本题考查的是二次函数的应用,根据题意列出关于x、y的关系式是解答此题的关键.25.如图,在△ABC中,∠C=90°,AC=BC,点D在BC边上,连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE,作DF⊥BC交AB于点F.(1)求证:AB⊥BE;(2)若AC=8,DF=3,求BE的长.【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)作EH⊥BC于H,如图,根据旋转的性质得∠ADE=90°,DA=DE,再利用等角的余角相等得到∠EDH=∠DAC,则可根据“AAS”证明△ACD≌△DHE得到AC=DH,CD=EH,接着利用∠C=90°,AC=BC和等线段代换可得BH=EH,于是可判断△BEH为等腰直角三角形,所以∠EBH=45°,则可得到∠ABE=90°,然后根据垂直的定义得AB⊥BE;(2)由于DF⊥BC,∠FBD=45°,则可判断△DBF为等腰直角三角形,得到BD=DF=3,再利用BC=AC=8得到CD=5,然后利用(1)中的证明过程得EH=CD=5,△BEH为等腰直角三角形,于是BE=EH=5.【解答】(1)证明:作EH⊥BC于H,如图,∵AD绕点D顺时针旋转90°得到DE,∴∠ADE=90°,DA=DE,∴∠ADC+∠EDH=90°,而∠ADC+∠DAC=90°,∴∠EDH=∠DAC,在△ACD和△DHE中,∴△ACD≌△DHE,∴AC=DH,CD=EH,∵∠C=90°,AC=BC,∴∠ABC=45°,∵AC=BC=DH,∴CD=BH,∴BH=EH,∴△BEH为等腰直角三角形,∴∠EBH=45°,∴∠ABE=90°,∴AB⊥BE;(2)解:∵DF⊥BC,∠FBD=45°,∴△DBF为等腰直角三角形,∴BD=DF=3,∵BC=AC=8,∴CD=5,由(1)得EH=CD=5,△BEH为等腰直角三角形,∴BE=EH=5.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和等腰直角三角形的判定与性质.26.有这样一个问题:探究函数y=x2﹣2的图象与性质.小峰根据学习函数的经验,对函数y=x2﹣2的图象与性质进行了探究.下面是小峰的探究过程,请补充完整:(1)函数y=x2﹣2的自变量的取值范围是任意实数;(2)下表是y与x的几组对应值.x …﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 …y … n 3 0 ﹣1 0 ﹣1 0 3 m …求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第四象限内的最低点是(1,﹣1),结合函数的图象,写出该函数的其它性质(一条即可):对称轴是y轴.【考点】二次函数的图象;二次函数的性质.【分析】(1)由图表可知x是任意实数;(2)根据图表可知当x=4时的函数值为m,把x=4代入解析式即可求得;(3)根据坐标系中的点,用平滑的直线连接即可;(4)观察图象即可得出该函数的其他性质.【解答】解:(1)任意实数,(2)令x=4,∴y=x2﹣2=42﹣2=16﹣8=8,∴m=8;(3)如图(4)该函数的其它性质:①该函数有最小值﹣1;。
北京市丰台二中2023-2024学年九年级上学期开学数学模拟试卷(含解析)
2023-2024学年北京市丰台二中九年级上学期开学数学模拟试卷一.选择题(共7小题,满分21分,每小题3分)1.(3分)函数中,自变量x的取值范围是( )A.x≠2B.x≥2C.x≤2D.全体实数2.(3分)下列各组数中,是勾股数的( )A.,,1B.1,2,3C.1.5,2,2.5D.9,40,413.(3分)下列式子中属于最简二次根式的是( )A.B.C.D.4.(3分)已知点(﹣4,y1),(2,y2)都在直线y=﹣x+1上,则y1,y2的大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.无法比较5.(3分)如图,在▱ABCD中,AB=4,∠ABC的平分线BE交AD于点E,则DE的值是( )A.1B.2C.3D.46.(3分)如图所示是函数y=kx+b与y=mx+n的图象,则关于x,y的方程组( )A.B.C.D.7.(3分)如图,露在水面上的鱼线BC长为3m.钓鱼者想看看鱼钩上的情况把鱼竿AC提起到AC ′的位置,此时露在水面上的鱼线B'C′长为4m,试问的鱼竿AC有多长?设AB′长xm,则下所列方程正确的是( )A.x2+42=(x+1)2+32B.x2+42=(x+1)2﹣32C.(x﹣1)2+42=x2+32D.(x﹣1)2+32=x2+42二.填空题(共8小题,满分24分,每小题3分)8.(3分)化简:(a>0)= .9.(3分)计算(+1)(﹣1)的结果等于 .10.(3分)将直线y=10x向上平移3个单位长度,平移后直线的解析式为 .11.(3分)若(a﹣2)2=0,则= .12.(3分)一个y关于x的一次函数同时满足两个条件:①图象过(2,1)点;②y随x的增大而减小.这个函数解析式为 (写出一个即可).13.(3分)若直角三角形的三边分别为x,8,10,则x2= .14.(3分)小丽在本学期的数学成绩分别为:平时成绩为85分,期中考试成绩为80分,期末考试成绩为90分,20%,40%计算 分.15.(3分)如图是甲、乙两名射击运动员10次射击成绩的统计表和折线统计图.平均数中位数众数甲888乙888你认为甲、乙两名运动员, 的射击成绩更稳定.(填甲或乙)三.解答题(共11小题,满分65分)16.(5分)化简:(1)(2)(a>0,b≥0)(3)(x≥0,y>0)(4)(x≥0,y>0)(5)÷× (6)•(﹣)17.(5分)已知,求:(1)2xy;(2)x3y﹣xy3的值.18.(5分)已知,在矩形ABCD中,AB=10,E为线段AB上一点,连接DE (1)利用尺规作出∠EDC的平分线DM;(保留作图痕迹,不写作法)(2)在(1)的条件下,设DM交线段BC于点F,求EF的长.19.(5分)已知一次函数y=﹣2x+4,一次函数图象与x轴交于点A,与y轴交于点B.(1)直接写出点A、B的坐标;(2)在平面直角坐标系xOy中,画出函数图象;(3)当﹣1≤x<3时,直接写出y的取值范围.20.(5分)如图所示,在平行四边形ABCD中,∠BAD的平分线AE交CD于E,求∠C与∠B的度数.21.(6分)在平面直角坐标系中,已知A(1,1),B(2,2),C(0,3).(1)求直线BC的表达式;(2)求直线BC与坐标轴所围成的三角形面积;(3)若直线y=kx+3与线段AB有公共点,直接写出k的取值范围.22.(6分)如图,在菱形ABCD中,对角线AC,过点A作AE⊥BC于点E,延长BC到点F,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=423.(6分)某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB 表示该产品每千克生产成本y 1(单位:元)与产量x (单位:kg )之间的函数关系;线段CD 表示该产品销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系,已知0<x ≤120(1)求线段AB 所表示的y 1与x 之间的函数表达式;(2)若m =90,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m <70,该产品产量为多少时,获得的利润最大?最大利润是多少?24.(5分)为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩小悦、小涵的三项测试成绩和总评成绩如表,这20名学生的总评成绩频数分布直方图(每组含最小值,不含最大值)如图.测试成绩/分选手采访写作摄影总评成绩/分小悦83728078小涵8684▲▲(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,69,74,71.这组数据的中位数是 分,众数是 分,平均数是 分;(2)请你计算小涵的总评成绩;(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.25.(7分)在正方形ABCD中,如图1,点E是AB边上的一个动点(点E与点A、B不重合),过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE.(2)如图2,当点E运动到AB中点时,连接DG,求DG的长.26.(10分)一次函数y=3x+m的图象经过(﹣1,3),且与x轴、y轴分别交于点A、点B,一次函数y=k(x﹣3),且交x轴于点C.(1)求m、k的值;(2)当3x+m<k(x﹣3)时,求x的取值范围;(3)求∠ABC的度数;(4)爱动脑筋的小颖同学继续研究发现y轴上存在点Q,使得∠AQC=2∠ABC.亲爱的同学,请你求出Q点的坐标.2023-2024学年北京市丰台二中九年级上学期开学数学模拟试卷参考答案与试题解析一.选择题(共7小题,满分21分,每小题3分)1.(3分)函数中,自变量x的取值范围是( )A.x≠2B.x≥2C.x≤2D.全体实数【答案】B【解答】解:根据题意得:x﹣2≥0,解得x≥2.故选:B.2.(3分)下列各组数中,是勾股数的( )A.,,1B.1,2,3C.1.5,2,2.5D.9,40,41【答案】D【解答】解:A、和不是整数;B、∵16+22≠42,∴不是勾股数,此选项错误;C、1.2和2.5不是整数;D、∵62+402=415,∴是勾股数,此选项正确.故选:D.3.(3分)下列式子中属于最简二次根式的是( )A.B.C.D.【答案】A【解答】解:是最简二次根式;=2,不是最简二次根式;=2,不是最简二次根式;被开方数含分母,不是最简二次根式,故选:A.4.(3分)已知点(﹣4,y1),(2,y2)都在直线y=﹣x+1上,则y1,y2的大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.无法比较【答案】A【解答】解:∵直线y=﹣x+5中<2,∴y将随x的增大而减小.∵﹣4<2,∴y5>y2,故选:A.5.(3分)如图,在▱ABCD中,AB=4,∠ABC的平分线BE交AD于点E,则DE的值是( )A.1B.2C.3D.4【答案】C【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=7,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB=4,∴DE=AD﹣AE=3﹣4=3;故选:C.6.(3分)如图所示是函数y=kx+b与y=mx+n的图象,则关于x,y的方程组( )A.B.C.D.【答案】C【解答】解:根据图象可知,函数y=kx+b与y=mx+n的图象交于点(3,∴关于x,y的方程组,故选:C.7.(3分)如图,露在水面上的鱼线BC长为3m.钓鱼者想看看鱼钩上的情况把鱼竿AC提起到AC ′的位置,此时露在水面上的鱼线B'C′长为4m,试问的鱼竿AC有多长?设AB′长xm,则下所列方程正确的是( )A.x2+42=(x+1)2+32B.x2+42=(x+1)2﹣32C.(x﹣1)2+42=x2+32D.(x﹣1)2+32=x2+42【答案】A【解答】解:设AB'=xm,∵AC'=AC,∴根据勾股定理得:AB'2+B'C'2=AB8+BC2,即x2+52=(x+1)5+32.故选:A.二.填空题(共8小题,满分24分,每小题3分)8.(3分)化简:(a>0)= 3a .【答案】见试题解答内容【解答】解:∵a>0,∴=3a,故答案为:3a.9.(3分)计算(+1)(﹣1)的结果等于 4 .【答案】4.【解答】解:原式=5﹣1=7.故答案为:4.10.(3分)将直线y=10x向上平移3个单位长度,平移后直线的解析式为 y=10x+3 .【答案】y=10x+3.【解答】解:将直线y=10x向上平移3个单位长度,平移后直线的解析式为y=10x+3.故答案为:y=10x+4.11.(3分)若(a﹣2)2=0,则= 2 .【答案】见试题解答内容【解答】解:由题意得,a﹣2=0,解得a=3,b=2,所以,=2.故答案为:4.12.(3分)一个y关于x的一次函数同时满足两个条件:①图象过(2,1)点;②y随x的增大而减小.这个函数解析式为 y=﹣x+3 (写出一个即可).【答案】y=﹣x+3.【解答】解:设一次函数解析式为y=kx+b,∵y随着x的增大而减小,∴k<0,取k=﹣1,把(3,1)代入y=﹣x+b得﹣2+b=8,∴满足条件的一次函数可为y=﹣x+3.故答案为y=﹣x+3.13.(3分)若直角三角形的三边分别为x,8,10,则x2= 36或164 .【答案】见试题解答内容【解答】解:分两种情况:①两直角边分别为8,102=52+102=164,②一直角边为6,斜边为102=102﹣72=36;故答案为:36或164.14.(3分)小丽在本学期的数学成绩分别为:平时成绩为85分,期中考试成绩为80分,期末考试成绩为90分,20%,40%计算 86 分.【答案】86.【解答】解:小丽本学期的总评成绩是:85×40%+80×20%+90×40%=34+16+36=86(分).故答案为:86.15.(3分)如图是甲、乙两名射击运动员10次射击成绩的统计表和折线统计图.平均数中位数众数甲888乙888你认为甲、乙两名运动员, 乙 的射击成绩更稳定.(填甲或乙)【答案】见试题解答内容【解答】解:由统计表可知,甲和乙的平均数、中位数和众数都相等,由折线统计图可知,乙的波动小,故答案为:乙.三.解答题(共11小题,满分65分)16.(5分)化简:(1)(2)(a>0,b≥0)(3)(x≥0,y>0)(4)(x≥0,y>0)(5)÷× (6)•(﹣)【答案】见试题解答内容【解答】解:(1)原式==;(2)原式==;(3)原式==;(4)原式==;(5)原式=÷×==1;(6)原式=2b•(﹣)=﹣3ab=﹣3a7b2.17.(5分)已知,求:(1)2xy;(2)x3y﹣xy3的值.【答案】(1)2;(2)4.【解答】解:(1)∵,∴xy=2×(+)×(﹣)=()2﹣()2=3﹣2=1,∴2xy=4×1=2;(2)∵x=+,y=﹣,∴x+y=(+)+(﹣)=++﹣=5,x﹣y=(+)﹣(﹣)=+﹣+=2,又∵xy=5,∴x3y﹣xy3=xy(x4﹣y2)=xy(x+y)(x﹣y)=1×42=4.18.(5分)已知,在矩形ABCD中,AB=10,E为线段AB上一点,连接DE (1)利用尺规作出∠EDC的平分线DM;(保留作图痕迹,不写作法)(2)在(1)的条件下,设DM交线段BC于点F,求EF的长.【答案】(1)图形见解答;(2).【解答】解:(1)如图,DM即为所求;(2)在矩形ABCD中,∵∠A=∠B=90°,AB=DC=10,∴DE=DC=10,∴AE==5,∴BE=AB﹣AE=2,∵DM是∠EDC的平分线,∴∠CDF=∠EDF,在△CDF和△EDF中,,∴△CDF≌△EDF(SAS),∴FC=FE,∴BF=BC﹣FC=BC﹣EF=6﹣EF,在Rt△BEF中,根据勾股定理得:EF5=BE2+BF2,∴EF8=22+(6﹣EF)2,∴EF=.19.(5分)已知一次函数y=﹣2x+4,一次函数图象与x轴交于点A,与y轴交于点B.(1)直接写出点A、B的坐标;(2)在平面直角坐标系xOy中,画出函数图象;(3)当﹣1≤x<3时,直接写出y的取值范围.【答案】(1)A(2,0);B(0,﹣4);(2)函数图象见解析;(3)﹣2<y≤6.【解答】解:(1)令y=0,则﹣2x+5=0,解得:x=2.∴A(4,0).令x=0,则y=8.∴B(0,4).(2)经过A(8,0)和B(0,如图,则直线AB为一次函数y=﹣8x+4的图象.(3)当x=﹣1时,y=﹣3×(﹣1)+4=7,当x=3时,y=﹣2×2+4=﹣2,∵﹣5<0,∴函数y=﹣2x+7中y随x的增大而减小.∴y的取值范围为:﹣2<y≤6.20.(5分)如图所示,在平行四边形ABCD中,∠BAD的平分线AE交CD于E,求∠C与∠B的度数.【答案】见试题解答内容【解答】解:∵AE平分∠BAD,∠DAE=35°,∴∠BAD=2∠DAE=70°,∵四边形ABCD是平行四边形,∴∠C=∠DAB=70°,∵AB∥CD,∴∠B=180°﹣∠C=110°.21.(6分)在平面直角坐标系中,已知A(1,1),B(2,2),C(0,3).(1)求直线BC的表达式;(2)求直线BC与坐标轴所围成的三角形面积;(3)若直线y=kx+3与线段AB有公共点,直接写出k的取值范围.【答案】(1)y=﹣x+3;(2)9;(3)﹣2≤k≤﹣.【解答】解:(1)设直线BC的解析式为y=kx+b,把B(2,2),4)代入得,解得,∴直线BC的表达式为y=﹣x+2;(2)∵直线y=﹣x+6与x轴交于(6,3),∴直线BC与坐标轴所围成的三角形面积为3×4=9;(3)当点A(1,8)在直线y=kx+3上时,有1=k+7,解得:k=﹣2;当点B(2,4)在直线y=kx+3上时,有2=5k+3,解得:k=﹣.∴若直线y=kx+3与线段AB有公共点,则k的取值范围为﹣2≤k≤﹣.22.(6分)如图,在菱形ABCD中,对角线AC,过点A作AE⊥BC于点E,延长BC到点F,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4【答案】见试题解答内容【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)解:∵四边形ABCD是菱形,AD=10,∴AD=AB=BC=10,∵EC=4,∴BE=10﹣4=8,在Rt△ABE中,AE=,在Rt△AEC中,AC=,∵四边形ABCD是菱形,∴OA=OC,∴OE=AC=.23.(6分)某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=90,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?最大利润是多少?【答案】(1)y1=﹣x+60;(2)m=90,该产品产量为90kg时,获得的利润最大,最大利润是1350元;(3)该产品产量为120kg时,获得的利润最大,最大利润为1200元.【解答】解:(1)设线段AB所表示的y1与x之间的函数表达式为y1=k4x+b1,将(0,60),40)代入得:,解得:,∴线段AB所表示的y1与x之间的函数表达式为y1=﹣x+60;(2)若m=90,设y2与x之间的函数表达式为y3=k2x+90,根据题意得:50=120k2+90,解得:k2=﹣,∴y7=﹣x+90(6<x≤120),设产品产量为xkg时,获得的利润为w元,根据题意得:w=(y2﹣y1)x=[﹣x+90﹣(﹣=(﹣x+30)x=﹣x2+30x=﹣(x﹣90)2+1350(5<x≤120);∴当x=90时,w有最大值.∴若m=90,该产品产量为90kg时,最大利润是1350元;(3)设y=k2x+m,由题意得:120k2+m=50,解得:k4=,∴y=x+m,设产品产量为xkg时,获得的利润为w'元,∴w'=x[(x+m)﹣(﹣=x3+(m﹣60)x,∵60<m<70,∴a=>0,∴﹣<7,对称轴为直线x=<0,∴当0<x≤120时,w'随x的增大而增大,∴当x=120时,w'的值最大max=1200元.∴60<m<70时,该产品产量为120kg时,最大利润为1200元.24.(5分)为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩小悦、小涵的三项测试成绩和总评成绩如表,这20名学生的总评成绩频数分布直方图(每组含最小值,不含最大值)如图.测试成绩/分选手采访写作摄影总评成绩/分小悦83728078小涵8684▲▲(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,69,74,71.这组数据的中位数是 69 分,众数是 69 分,平均数是 70 分;(2)请你计算小涵的总评成绩;(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.【答案】(1)69,69,70;(2)82分;(3)不能判断小悦能否入选,但是小涵能入选,理由见解析.【解答】解:(1)七位评委给小涵打出的分数从小到大排列为:67,68,69,72,所以这组数据的中位数是69(分),众数是69(分)=70(分);故答案为:69,69;(2)=82(分),答:小涵的总评成绩为82分;(3)不能判断小悦能否入选,但是小涵能入选,理由:由20名学生的总评成绩频数分布直方图可知,小于80分的有10人、小涵82分,所以不能判断小悦能否入选,但是小涵能入选.25.(7分)在正方形ABCD 中,如图1,点E 是AB 边上的一个动点(点E 与点A 、B 不重合),过点B 作BF ⊥CE 于点G ,交AD 于点F .(1)求证:△ABF ≌△BCE .(2)如图2,当点E 运动到AB 中点时,连接DG ,求DG 的长.【答案】(1)证明过程见解答;(2)2.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠GBC=90°,又∵四边形ABCD为正方形,∴∠GBA+∠GBC=90°,∴∠GCB=∠FBA,又∵BC=AB,∠FAB=∠EBC=90°,在△ABF与△BCE中,,∴△ABF≌△BCE(SAS);(2)解:过点D作DH⊥CE于点H,∵E为AB中点,∴EB=1,∵AB=2,∴BC=5,∴CE===,在Rt△CEB中,由CE•BG=EB•BC得BG===,∴,∵∠DCE+∠BCE=∠BCE+∠CBF=90°,∴∠DCE=∠CBF, 又∵DC=BC=2,∠CHD=∠CGB=90°,在△CHD与△BGC中,,∴△CHD≌△BGC(AAS)∴CH=BG=,∴GH=CG﹣CH==CH,∵DH=DH,∠CHD=∠GHD=90°,在△DGH与△DCH中,,∴△DGH≌△DCH(SAS),∴DG=DC=4.26.(10分)一次函数y=3x+m的图象经过(﹣1,3),且与x轴、y轴分别交于点A、点B,一次函数y=k(x﹣3),且交x轴于点C.(1)求m、k的值;(2)当3x+m<k(x﹣3)时,求x的取值范围;(3)求∠ABC的度数;(4)爱动脑筋的小颖同学继续研究发现y轴上存在点Q,使得∠AQC=2∠ABC.亲爱的同学,请你求出Q点的坐标.【答案】(1)m=6,k=﹣2;(2)x的取值范围是x<0;(3)∠ABC=45°;(4)Q点的坐标为(0,)或(0,﹣).【解答】解:(1)∵一次函数y=3x+m的图象经过(﹣1,7)、y轴分别交于点A,∴3=3×(﹣8)+m,解得m=6,∴一次函数为y=3x+8,当y=0时;当x=0时,∴A(﹣7,0),6),∵一次函数y=k(x﹣3)的图象经过点B,且交x轴于点C,∴6=k×(0﹣8),∴k=﹣2,∴这个一次函数为y=﹣2(x﹣8)=﹣2x+6,即m=5,k=﹣2;(2)当3x+m<k(x﹣3)时,3x+6<﹣2x+6,解得:x<0,即x的取值范围是x<7;(3)一次函数y=﹣2x+6中,当y=8时,x=3,∴C(3,7),∵A(﹣2,0),5),∴OA=2,OB=6,∴AB==2=3,过点A作AD⊥BC于D,∴AD===2,∴BD==2,∴AD=BD,∵AD⊥BC,∴△ABD是等腰直角三角形,∴∠ABC=45°;(4)设Q点的坐标为(0,q),∵∠AQC=6∠ABC,∠ABC=45°.∴∠AQC=90°,如图,在Rt△AQC中,AQ2+CQ2=AC7,∴22+q4+32+q2=52,解得q=±,∴Q点的坐标为(0,)或(5,﹣).。
九年级数学上学期第一次月考试卷(含解析) 新人教版五四制
2015-2016学年山东省莱芜市莱城区刘仲莹中学九年级(上)第一次月考数学试卷一、选择题:(本题共12小题,每小题3分,共36分.)1.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(1,﹣6)D.(﹣6,1)2.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A. B. C. D.3.如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为α,那么滑梯长l为()A. B. C. D.h•sinα4.点A(﹣1,1)是反比例函数y=的图象上一点,则m的值为()A.﹣1 B.﹣2 C.0 D.15.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10m B. m C.15m D. m6.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y=的图象经过点B,则k的值是()A.1 B.2 C. D.8.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3米,坡顶有旗杆BC,旗杆顶端B 点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A.5米B.6米C.8米D.(3+)米9.如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.(11﹣2)米B.(11﹣2)米C.(11﹣2)米D.(11﹣4)米10.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A.12秒B.16秒C.20秒D.30秒.11.在△ABC中,若三边BC、CA、AB满足BC:CA:AB=5:12:13,则cosB=()A. B. C. D.12.如图,在平面直角坐标系中,A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的解析式为y2=k2x+b,当y1>y2时,x的取值范围是()A.﹣5<x<1 B.0<x<1或x<﹣5 C.﹣6<x<1 D.0<x<1或x<﹣6二、填空题(本共5小题,共20分,只求填写最后结果,每小题填对得4分.)13.已知点A(﹣1,y1),B(1,y2)和C(2,y3)都在反比例函数y=(k>0)的图象上.则______<______<______(填y1,y2,y3).14.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为______.15.已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是______.16.如图,先锋村准备在坡角为α=30°山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为______米.17.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为______.三、解答题:18.计算:(1)6tan230°﹣sin60°﹣2sin45°(2)2cos30°﹣|1﹣tan60°|+tan45°•sin45°.19.如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B (n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.20.为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到 1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x ≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?22.如图,已知反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8)、B(﹣4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.23.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.(≈2.236,结果精确到0.1m)24.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.2015-2016学年山东省莱芜市莱城区刘仲莹中学九年级(上)第一次月考数学试卷(五四学制)参考答案与试题解析一、选择题:(本题共12小题,每小题3分,共36分.)1.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(1,﹣6)D.(﹣6,1)【考点】反比例函数图象上点的坐标特征.【分析】把已知点坐标代入反比例解析式求出k的值,即可做出判断.【解答】解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选B.2.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A. B. C. D.【考点】勾股定理;锐角三角函数的定义.【分析】先设小正方形的边长为1,然后找个与∠B有关的RT△ABD,算出AB的长,再求出BD的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.3.如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为α,那么滑梯长l为()A. B. C. D.h•sinα【考点】解直角三角形的应用-坡度坡角问题.【分析】由已知转化为解直角三角形问题,角α的正弦等于对边比斜边求出滑梯长l.【解答】解:由已知得:sinα=,∴l=,故选:A.4.点A(﹣1,1)是反比例函数y=的图象上一点,则m的值为()A.﹣1 B.﹣2 C.0 D.1【考点】反比例函数图象上点的坐标特征.【分析】把点A(﹣1,1)代入函数解析式,即可求得m的值.【解答】解:把点A(﹣1,1)代入函数解析式得:1=,解得:m+1=﹣1,解得m=﹣2.故选B.5.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10m B. m C.15m D. m【考点】解直角三角形的应用-坡度坡角问题.【分析】由河堤横断面迎水坡AB的坡比是1:,可得到∠BAC=30°,所以求得AB=2BC,得出答案.【解答】解:河堤横断面迎水坡AB的坡比是1:,即tan∠BAC===,∴∠BAC=30°,∴AB=2BC=2×5=10m,故选:A.6.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值和三角形的内角和定理求出角的度数,再进行判断.【解答】解:∵cosA=,tanB=,∴∠A=45°,∠B=60°.∴∠C=180°﹣45°﹣60°=75°.∴△ABC为锐角三角形.故选A.7.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y=的图象经过点B,则k的值是()A.1 B.2 C. D.【考点】反比例函数图象上点的坐标特征;等边三角形的性质.【分析】首先过点B作BC垂直OA于C,根据AO=2,△ABO是等边三角形,得出B点坐标,进而求出反比例函数解析式.【解答】解:过点B作BC垂直OA于C,∵点A的坐标是(2,0),∴AO=2,∵△ABO是等边三角形,∴OC=1,BC=,∴点B的坐标是(1,),把(1,)代入y=,得k=.故选C.8.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3米,坡顶有旗杆BC,旗杆顶端B 点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A.5米B.6米C.8米D.(3+)米【考点】解直角三角形的应用-坡度坡角问题.【分析】设CD=x,则AD=2x,根据勾股定理求出AC的长,从而求出CD、AC的长,然后根据勾股定理求出BD的长,即可求出BC的长.【解答】解:设CD=x,则AD=2x,由勾股定理可得,AC==x,∵AC=3米,∴x=3,∴x=3米,∴CD=3米,∴AD=2×3=6米,在Rt△ABD中,BD==8米,∴BC=8﹣3=5米.故选A.9.如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.(11﹣2)米B.(11﹣2)米C.(11﹣2)米D.(11﹣4)米【考点】解直角三角形的应用.【分析】出现有直角的四边形时,应构造相应的直角三角形,利用相似求得PB、PC,再相减即可求得BC长.【解答】解:如图,延长OD,BC交于点P.∵∠ODC=∠B=90°,∠P=30°,OB=11米,CD=2米,∴在直角△CPD中,DP=DC•cot30°=2m,PC=CD÷(sin30°)=4米,∵∠P=∠P,∠PDC=∠B=90°,∴△PDC∽△PBO,∴=,∴PB===11米,∴BC=PB﹣PC=(11﹣4)米.故选:D.10.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A.12秒B.16秒C.20秒D.30秒.【考点】勾股定理的应用.【分析】过点A作AC⊥ON,利用锐角三角函数的定义求出AC的长与200m相比较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪音影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.故选:B.11.在△ABC中,若三边BC、CA、AB满足BC:CA:AB=5:12:13,则cosB=()A. B. C. D.【考点】勾股定理的逆定理;锐角三角函数的定义.【分析】设比例的每一份为k,由比例式表示出三角形的三边,然后利用勾股定理的逆定理判断出此三角形为直角三角形,根据锐角三角函数定义,用∠B的对边AC比上斜边AB,化简后可得出cosB的值.【解答】解:由△ABC三边满足BC:CA:AB=5:12:13,可设BC=5k,CA=12k,AB=13k,∵BC2+CA2=(5k)2+(12k)2=25k2+144k2=169k2,AB2=(13k)2=169k2,∴BC2+CA2=AB2,∴△ABC为直角三角形,∠C=90°,则cosB===.故选:C.12.如图,在平面直角坐标系中,A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的解析式为y2=k2x+b,当y1>y2时,x的取值范围是()A.﹣5<x<1 B.0<x<1或x<﹣5 C.﹣6<x<1 D.0<x<1或x<﹣6【考点】反比例函数与一次函数的交点问题.【分析】由△AOB是等腰三角形,先求的点B的坐标,然后利用待定系数法可求得双曲线和直线的解析式,然后将将y1=与y2=联立,求得双曲线和直线的交点的横坐标,然后根据图象即可确定出x的取值范围.【解答】解:如图所示:∵△AOB为等腰直角三角形,∴OA=OB,∠3+∠2=90°.又∵∠1+∠3=90°,∴∠1=∠2.∵点A的坐标为(﹣3,1),∴点B的坐标(1,3).将B(1,3)代入反比例函数的解析式得:3=,∴k=3.∴y1=将A(﹣3,1),B(1,3)代入直线AB的解析式得:,解得:,∴直线AB的解析式为y2=.将y1=与y2=联立得;,解得:,当y1>y2时,双曲线位于直线线的上方,∴x的取值范围是:x<﹣6或0<x<1.故选:D.二、填空题(本共5小题,共20分,只求填写最后结果,每小题填对得4分.)13.已知点A(﹣1,y1),B(1,y2)和C(2,y3)都在反比例函数y=(k>0)的图象上.则y1<y3<y2(填y1,y2,y3).【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数中k>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【解答】解:∵反比例函数y=(k>0)中k>0,∴函数图象的两个分式分别位于一、三象限,且在每一象限内y随x的增大而减小.∵﹣1<0,﹣1<0,∴点A(﹣1,y1)位于第三象限,∴y1<0,∴B(1,y2)和C(2,y3)位于第一象限,∴y2>0,y3>0,∵1<2,∴y2>y3,∴y1<y3<y2.故答案为:y1,y3,y2.14.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为24 .【考点】菱形的性质;解直角三角形.【分析】连接BD,交AC与点O,首先根据菱形的性质可知AC⊥BD,解三角形求出BO的长,利用勾股定理求出AO的长,即可求出AC的长.【解答】解:连接BD,交AC与点O,∵四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵AB=15,sin∠BAC=,∴sin∠BAC==,∴BO=9,∴AB2=OB2+AO2,∴AO===12,∴AC=2AO=24,故答案为24.15.已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是(﹣1,﹣3).【考点】反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(﹣1,﹣3).故答案为:(﹣1,﹣3).16.如图,先锋村准备在坡角为α=30°山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为米.【考点】解直角三角形的应用-坡度坡角问题.【分析】运用余弦函数求两树在坡面上的距离AB.【解答】解:由于相邻两树之间的水平距离为5米,坡角为α=30°,则两树在坡面上的距离AB==(米).17.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为﹣.【考点】反比例函数与一次函数的交点问题;坐标与图形变化-对称;翻折变换(折叠问题).【分析】先过点C作CD⊥x轴于D,作CE⊥y轴于E,构造矩形CDOE,再根据折叠的性质求得AC=2,∠ACD=30°,根据直角三角形的性质以及勾股定理,求得AD与CD的长,得出点C 的坐标,最后计算反比例函数解析式即可.【解答】解:过点C作CD⊥x轴于D,作CE⊥y轴于E,则CE=DO,CD=EO,∵A(﹣2,0),∴AO=2,由折叠得,AC=AO=2,∠CAO=2∠BAO=60°,∴Rt△ACD中,∠ACD=30°,∴AD=AC=1,CD==,∴DO=AO﹣AD=2﹣1=1,OE=,又∵点C在第二象限,∴C(﹣1,),∵点C在双曲线y=(k≠0)上,∴k=﹣1×=﹣,故答案为:﹣三、解答题:18.计算:(1)6tan230°﹣sin60°﹣2sin45°(2)2cos30°﹣|1﹣tan60°|+tan45°•sin45°.【考点】实数的运算;特殊角的三角函数值.【分析】(1)先根据特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先分别根据绝对值的性质、特殊角三角函数值、分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:(1)6tan230°﹣sin60°﹣2sin45°=6×()2﹣×﹣2×=﹣;(2)2cos30°﹣|1﹣tan60°|+tan45°•sin45°=2×﹣+1+1×=1+.19.如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B (n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A的坐标代入反比例函数的解析式,求出m的值,从而确定反比例函数的解析式,把B的坐标代入反比例函数解析式求出B的坐标,把A、B的坐标代入一次函数的解析式,即可求出a,b的值,从而确定一次函数的解析式;(2)根据函数的图象即可得出一次函数的值小于反比例函数的值的x的取值范围.【解答】解:(1)∵反比例函数y=的图象过点A(1,4),∴4=,即m=4,∴反比例函数的解析式为:y=.∵反比例函数y=的图象过点B(n,﹣2),∴﹣2=,解得:n=﹣2∴B(﹣2,﹣2).∵一次函数y=ax+b(k≠0)的图象过点A(1,4)和点B(﹣2,﹣2),∴,解得.∴一次函数的解析式为:y=2x+2;(2)由图象可知:当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.20.为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到 1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)【考点】解直角三角形的应用.【分析】(1)在RT△ACD中利用勾股定理求AD即可.(2)过点E作EF⊥AB,在RT△EFA中,利用三角函数求EF=AEsin75°,即可得到答案.【解答】解:(1)∵在RT△ACD中,AC=45cm,DC=60cm,∴AD==75,∴车架档AD的长为75cm,(2)过点E作EF⊥AB,垂足为点F,∵AE=AC+CE=45+20(cm)∴EF=AEsin75°=(45+20)sin75°≈62.7835≈63cm,∴车座点E到车架档AB的距离是63cm.21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x ≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【考点】反比例函数的应用;一次函数的应用.【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)利用y=4分别得出x的值,进而得出答案.【解答】解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,当4≤x≤10时,设反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=4,则4=2x,解得:x=2,当y=4,则4=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.22.如图,已知反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8)、B(﹣4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)先把A点坐标代入y=可求得k1=8,则可得到反比例函数解析式,再把B(﹣4,m)代入反比例函数求得m,得到B点坐标,然后利用待定系数法确定一次函数解析式即可求得结果;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为(0,6),可求S△AOB=×6×2+×6×1=15;(3)根据反比例函数的性质即可得到结果.【解答】解:(1)∵反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8)、B(﹣4,m),∴k1=8,B(﹣4,﹣2),解,解得;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为C(0,6),∴S△AOB=S△COB+S△AOC=×6×4+×6×1=15;(3)∵比例函数y=的图象位于一、三象限,∴在每个象限内,y随x的增大而减小,∵x1<x2,y1<y2,∴M,N在不同的象限,∴M(x1,y1)在第三象限,N(x2,y2)在第一象限.23.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.(≈2.236,结果精确到0.1m)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)根据坡度定义直接解答即可;(2)作DS⊥BC,垂足为S,且与AB相交于H.证出∠GDH=∠SBH,根据=,得到GH=1m,利用勾股定理求出DH的长,然后求出BH=5m,进而求出HS,然后得到DS.【解答】解:(1)∵坡度为i=1:2,AC=4m,∴BC=4×2=8m.(2)作DS⊥BC,垂足为S,且与AB相交于H.∵∠DGH=∠BSH,∠DHG=∠BHS,∴∠GDH=∠SBH,∴=,∵DG=EF=2m,∴GH=1m,∴DH==m,BH=BF+FH=3.5+(2.5﹣1)=5m,设HS=xm,则BS=2xm,∴x2+(2x)2=52,∴x=m,∴DS=+=2m≈4.5m.24.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.【考点】反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;轴对称-最短路线问题.【分析】(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A 的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.【解答】解:(1)把点A(1,a)代入一次函数y=﹣x+4,得:a=﹣1+4,解得:a=3,∴点A的坐标为(1,3).把点A(1,3)代入反比例函数y=,得:3=k,∴反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,∴点B的坐标为(3,1).(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.∵点B、D关于x轴对称,点B的坐标为(3,1),∴点D的坐标为(3,﹣1).设直线AD的解析式为y=mx+n,把A,D两点代入得:,解得:,∴直线AD的解析式为y=﹣2x+5.令y=﹣2x+5中y=0,则﹣2x+5=0,解得:x=,∴点P的坐标为(,0).S△PAB=S△ABD﹣S△PBD=BD•(x B﹣x A)﹣BD•(x B﹣x P)=×[1﹣(﹣1)]×(3﹣1)﹣×[1﹣(﹣1)]×(3﹣)=.。
河南省郑州市高新区朗悦慧外国语中学2022-2023学年上学期九年级开学数学试卷(含解析)
2022-2023学年河南省郑州市高新区朗悦慧外国语中学九年级(上)开学数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A. 2+xx−y B. 2yx2C. 2y33x2D. 2y2(x−y)22. 如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.设道路的宽为x m,则下面所列方程正确的是( )A. (32−x)(20−x)=32×20−570B. 32x+2×20x=32×20−570C. (32−2x)(20−x)=570D. 32x+2×20x−2x2=5703. 直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是( )A. 0个B. 1个C. 2个D. 1个或2个4. 若α、β为方程2x2−5x−1=0的两个实数根,则2α2+3αβ+5β的值为( )A. −13B. 12C. 14D. 155. 如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为( )A. 平行四边形→菱形→平行四边形→矩形B. 平行四边形→正方形→平行四边形→矩形C. 平行四边形→正方形→菱形→矩形D. 平行四边形→菱形→正方形→矩形6. 如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于( )A. 245B. 125C. 5D. 47. 如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( ) A. x>−2 B. x>0 C. x>1 D. x<18. 如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )A. 15B. 18C. 21D. 249. 如图,边长为6的大正方形中有两个小正方形.若两个小正方形面积分别为S1,S2,则S1+S2的值为( )A. 16B. 17C. 18D. 1910. 如图1,点F从四条边都相等的▱ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )A. 5B. 2D. 25C. 52二、填空题(本大题共5小题,共15.0分)11. 分解因式:x3−4x=.12. 在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=______.13. 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为______.14. 对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①a+c=0,方程ax2+bx+c=0,有两个不相等的实数;②若方程ax2+bx+c=0有两个不相等的实根.则方程cx2+bx+a=0也一定有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立.④若m是方程ax2+bx+c=0的一个根,则一定有b2−4ac=(2am+b)2成立.其中正确的结论是______ .(把你认为正确结论的序号都填上)15. 如图,正方形ABCD的边长是9,点E是AB边上的一个动点,点F是CD边上一点,CF=4,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点A′,D′处,当点D′落在直线BC上时,线段AE的长为______.三、解答题(本大题共8小题,共7.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年江苏省盐城市鞍湖实验学校九年级(上)开学数学试卷一、选择题(本项共8题,每题3分,计24分.请将正确答案的序号填入题前表格内)1.如图图形中,既是轴对称图形又是中心对称图形的是()A. B. C.D.2.下面与是同类二次根式的是()A.B. C.D.﹣13.在反比例函数图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是()A.k>3 B.k>0 C.k<3 D.k<04.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等5.在同一直角坐标系中,函数y=3x与图象大致是()A. B.C.D.6.将方程x2+8x+9=0左边配方后,正确的是()A.(x+4)2=﹣9 B.(x+4)2=25 C.(x+4)2=7 D.(x+4)2=﹣77.火车提速后,从盐城到南京的火车运行速度提高了25%,运行时间缩短了1h.已知盐城到南京的铁路全长约460km.设火车原来的速度为xkm/h,则下面所列方程正确的是()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=18.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4二、填空题(本项共10题,每题2分,计20分)9.化简: = .10.当x= 时,分式无意义.11.一组数据:﹣3,5,9,12,6的极差是.12.已知点(1,﹣2)在反比例函数y=的图象上,则k= .13.已知a=99时,则的值为.14.(﹣)= .15.如图,若D、E、F分别是△ABC的三边的中点,则△DEF与△ABC的周长之比= .16.方程x(x+4)=﹣3(x+4)的解是.17.如图,在菱形ABCD中,AB=5,对角线AC=6,若过点A作AE⊥BC,垂足为E,则AE的长为.18.如果m是自然数,且分式的值是整数,则m的最大值是.三、解答题(本项共8题,计56分)19.化简:1﹣÷.20.解方程: =1﹣.21.已知+=0,求+的值.22.在Rt△ABC中,∠ABC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是队.24.将一条长为40cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于52cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于48cm2吗?若能,求出两段铁丝的长度;若不能,请说明理由.25.如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的函数关系式;(2)求△AOB的面积;(3)我们知道,一次函数y=x﹣1的图象可以由正比例函数y=x的图象向下平移1个长度单位得到.试结合平移解决下列问题:在(1)的条件下,请你试探究:①函数y=的图象可以由y=的图象经过怎样的平移得到?②点P(x1,y1)、Q (x2,y2)在函数y=的图象上,x1<x2.试比较y1与y2的大小.26.在矩形纸片ABCD中,AB=6,BC=8.(1)如图①,将矩形纸片沿AN折叠,点B落在对角线AC上的点E处,求BN的长;(2)如图②,点M为AB上一点,将△BCM沿CM翻折至△ECM,ME与AD相交于点G,CE与AD相交于点F,且AG=GE,求BM的长;(3)如图③,将矩形纸片ABCD折叠,使顶点B落在AD边上的点E处,折痕所在直线同时经过AB、BC(包括端点),设DE=x,请直接写出x的取值范围:.2016-2017学年江苏省盐城市鞍湖实验学校九年级(上)开学数学试卷参考答案与试题解析一、选择题(本项共8题,每题3分,计24分.请将正确答案的序号填入题前表格内)1.如图图形中,既是轴对称图形又是中心对称图形的是()A. B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形.故错误;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.不是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形.是中心对称图形,故正确.故选D.2.下面与是同类二次根式的是()A.B. C.D.﹣1【考点】同类二次根式.【分析】先化简,再根据同类二次根式的定义解答.【解答】解:A、与被开方数不同,不是同类二次根式;B、=2与被开方数不同,不是同类二次根式;C、=2与被开方数相同,是同类二次根式;D、﹣1与不是同类二次根式.故选C.3.在反比例函数图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是()A.k>3 B.k>0 C.k<3 D.k<0【考点】反比例函数的性质.【分析】利用反比例函数的性质可得出k﹣3>0,解不等式即可得出k的取值范围.【解答】解:在图象的每一支曲线上,y都随x的增大而减小,根据反比例函数的性质,得k﹣3>0,k>3.故选A.4.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.5.在同一直角坐标系中,函数y=3x与图象大致是()A. B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】分别根据正比例函数和反比例函数图象的性质解答即可.【解答】解:一次函数y=3x中k=3>0,其图象在一、三象限;反比例函数y=﹣中,k=﹣1,其图象在二、四象限.故选D.6.将方程x2+8x+9=0左边配方后,正确的是()A.(x+4)2=﹣9 B.(x+4)2=25 C.(x+4)2=7 D.(x+4)2=﹣7【考点】解一元二次方程-配方法.【分析】方程移项后,利用完全平方公式配方即可得到结果.【解答】解:方程x2+8x+9=0,移项得:x2+8x=﹣9,配方得:x2+8x+16=7,即(x+4)2=7,故选C7.火车提速后,从盐城到南京的火车运行速度提高了25%,运行时间缩短了1h.已知盐城到南京的铁路全长约460km.设火车原来的速度为xkm/h,则下面所列方程正确的是()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【考点】由实际问题抽象出分式方程.【分析】设火车原来的速度为xkm/h,根据运行时间缩短了1h,列出方程即可.【解答】解:设火车原来的速度为xkm/h,根据题意得:﹣=1,故选:C.8.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【考点】反比例函数综合题.【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB≌△FDA≌△BEC,求得A、B的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选:B.二、填空题(本项共10题,每题2分,计20分)9.化简: = 3 .【考点】二次根式的性质与化简.【分析】先算出(﹣3)2的值,再根据算术平方根的定义直接进行计算即可.【解答】解: ==3,故答案为:3.10.当x= 1 时,分式无意义.【考点】分式有意义的条件.【分析】因为分式无意义,所以x﹣1=0,即可求得.【解答】解:根据题意得:x﹣1=0,解得x=1.11.一组数据:﹣3,5,9,12,6的极差是15 .【考点】极差.【分析】极差就是最大值与最小值的差,根据定义即可求解.【解答】解:最大的值是:12,最小的是﹣3.则极差是:12﹣(﹣3)=15.故答案为:15.12.已知点(1,﹣2)在反比例函数y=的图象上,则k= ﹣2 .【考点】待定系数法求反比例函数解析式.【分析】已知点(1,﹣2)在反比例函数y=的图象上,则把(1,﹣2),代入解析式就可以得到k的值.【解答】解:根据题意得:﹣2=k,则k=﹣2.故答案为:﹣2.13.已知a=99时,则的值为101 .【考点】分式的值.【分析】将分式化简,再代入即可.【解答】解:∵a=99,∴==a+2,原式=a+2=99+2=101,故答案为:101.14.(﹣)= 3 .【考点】二次根式的混合运算.【分析】先把括号内各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.【解答】解:原式=(5﹣2)÷=3÷=3.故答案为3.15.如图,若D、E、F分别是△ABC的三边的中点,则△DEF与△ABC的周长之比= 1:2 .【考点】三角形中位线定理.【分析】根据三角形中位线定理易得所求的三角形的各边长为原三角形各边长的一半,那么所求的三角形的周长就等于原三角形周长的一半.【解答】解:∵点D、E、F分别是AB、BC、AC的中点,∴DE,EF,DF分别是原三角形三边的一半,∴△DEF与△ABC的周长之比=1:2.故答案为1:2.16.方程x(x+4)=﹣3(x+4)的解是x1=﹣3,x2=﹣4 .【考点】解一元二次方程-因式分解法.【分析】先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解.【解答】解:x(x+4)=﹣3(x+4)x(x+4)+3(x+4)=0(x+4)(x+3)=0∴x1=﹣3,x2=﹣4故答案为:x1=﹣3,x2=﹣417.如图,在菱形ABCD中,AB=5,对角线AC=6,若过点A作AE⊥BC,垂足为E,则AE的长为.【考点】菱形的性质.【分析】连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.【解答】解:连接BD,交AC于O点,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴AC⊥BD,AO=AC,BD=2BO,∴∠AOB=90°,∵AC=6,∴AO=3,∴B0==4,∴DB=8,∴菱形ABCD的面积是×AC•DB=×6×8=24,∴BC•AE=24,AE=,故答案为:18.如果m是自然数,且分式的值是整数,则m的最大值是2000 .【考点】分式的值.【分析】先把原式化简成3+,再根据分式的值是整数且m的最大值满足的条件即可求出m【解答】解: ===3+,要使分式的值是整数,且m最大,只有m+4=2004,∴m=2000,故答案为2000.三、解答题(本项共8题,计56分)19.化简:1﹣÷.【考点】分式的混合运算.【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=1﹣•=1﹣=.20.解方程: =1﹣. 【考点】解分式方程.【分析】把分式方程化为整式方程,再求解.【解答】解:原方程即去分母得x=2x ﹣1+2x=﹣1经检验:x=﹣1是原方程的解.所以原方程的解是x=﹣121.已知+=0,求+的值. 【考点】非负数的性质:算术平方根.【分析】根据非负数的性质列出算式,求出a 、b 的值,根据二次根式的混合运算法则计算即可.【解答】解:由已知得,a ﹣12=0,15﹣b=0,解得,a=12,b=15,原式=+=+=.22.在Rt △ABC 中,∠ABC=90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F .(1)证明四边形ADCF 是菱形;(2)若AC=4,AB=5,求菱形ADCF 的面积.【考点】菱形的判定与性质.【分析】(1)首先根据题意画出图形,由E是AD的中点,AF∥BC,易证得△AFE≌△DBE,即可得AF=BD,又由在Rt△ABC中,∠ABC=90°,D是BC的中点,可得AD=BD=CD=AF,证得四边形ADCF是平行四边形,继而判定四边形ADCF是菱形;(2)首先连接DF,易得四边形ABDF是平行四边形,即可求得DF的长,然后由菱形的面积等于其对角线积的一半,求得答案.【解答】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.)甲队成绩的中位数是9.5 分,乙队成绩的众数是10 分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是乙队.【考点】方差;加权平均数;中位数;众数.【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【解答】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.24.将一条长为40cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于52cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于48cm2吗?若能,求出两段铁丝的长度;若不能,请说明理由.【考点】一元二次方程的应用.【分析】(1)这段铁丝被分成两段后,围成正方形.其中一个正方形的长为xcm,表示出另一个的长,然后根据“两个正方形的面积之和等于52cm2”作为相等关系列方程,解方程即可求解;(2)与(1)一样列出方程,利用根的判别式进行判断即可.【解答】解:设剪成两段后其中一段为xcm,则另一段为(40﹣x)cm由题意得: =52,解得:x1=16,x2=24,当x1=16时,40﹣x=24,当x2=24时,40﹣x=16,答:两段的长度分别为16和24cm;(2)不能理由是:=48,整理得:x2﹣40x+416=0∵△=b2﹣4ac=﹣64<0∴此方程无解即不能剪成两段使得面积和为48cm2.25.如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的函数关系式;(2)求△AOB的面积;(3)我们知道,一次函数y=x﹣1的图象可以由正比例函数y=x的图象向下平移1个长度单位得到.试结合平移解决下列问题:在(1)的条件下,请你试探究:①函数y=的图象可以由y=的图象经过怎样的平移得到?②点P(x1,y1)、Q (x2,y2)在函数y=的图象上,x1<x2.试比较y1与y2的大小.【考点】反比例函数与一次函数的交点问题;坐标与图形变化-平移.【分析】(1)有点A的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数解析式,进而即可求出点B的坐标,根据点A、B的坐标利用待定系数法即可求出直线AB的解析式;(2)根据一次函数图象上点的坐标特征求出直线AB与x轴的交点坐标,利用三角形的面积公式结合A、B点的纵坐标即可得出△AOB的面积;(3)①将反比例函数解析式进行化简,再结合平移的性质即可得出结论;②根据反比例函数在每个象限内单调递减,即可得出结论.【解答】解:(1)∵点A(1,3)在反比例函数y=的图象上,∴k=1×3=3,∴反比例函数的解析式为y=;∵点B(n,﹣1)在反比例函数y=的图象上,∴点B的坐标为(﹣3,﹣1).∵点A(1,3),点B(﹣3,﹣1),∴利用待定系数法即可得出直线AB的解析式为y=x+2.(2)当y=0时,有x+2=0,解得:x=﹣2,∴直线AB与x轴的交点坐标为(﹣2,0),∴S△AOB=×[0﹣(﹣2)]×[3﹣(﹣1)]=4.(3)①∵y===﹣2,∴函数y=的图象可以由y=的图象向右平移2个单位,向下平移2个单位得到.②∵反比例函数y=的图象在每个象限内都是单调递减,当x1<x2<2或2<x1<x2时,y1>y2;当x1<2<x2时,y1<y2.26.在矩形纸片ABCD中,AB=6,BC=8.(1)如图①,将矩形纸片沿AN折叠,点B落在对角线AC上的点E处,求BN的长;(2)如图②,点M为AB上一点,将△BCM沿CM翻折至△ECM,ME与AD相交于点G,CE与AD相交于点F,且AG=GE,求BM的长;(3)如图③,将矩形纸片ABCD折叠,使顶点B落在AD边上的点E处,折痕所在直线同时经过AB、BC(包括端点),设DE=x,请直接写出x的取值范围:2≤x≤2.【考点】四边形综合题.【分析】(1)设BN=x,在Rt△ENC中,由勾股定理得出方程,解方程即可;(2)由ASA证明△GAM≌△GEF(ASA),得出GM=GF,AF=ME=BM=x,EF=AM=6﹣x,因此DF=8﹣x,CF=x+2,在Rt△DFC中,由勾股定理得出方程,解方程即可;(3)当折痕所在直线经过点A时,如图1所示;此时DE最小=AD﹣AB=8﹣6=2;当折痕所在直线经过点C时,如图2所示:此时DE最大,CE=CB=8,由勾股定理得:DE==2;∴x的取值范围是2≤x≤2;故答案为:2≤x≤2.【解答】解:(1)设BN=x,在Rt△ENC中,由勾股定理得:x2+42=(8﹣x),解得:x=3,∴BN=3;(2)设BM=x,由折叠的性质得:∠E=∠B=90°=∠A,在△GAM和△GEF中,,∴△GAM≌△GEF(ASA),∴GM=GF,∴AF=ME=BM=x,EF=AM=6﹣x,∴DF=8﹣x,CF=8﹣(6﹣x)=x+2,在Rt△DFC中,由勾股定理得:(x+2)2=(8﹣x)2+62,解得:x=,∴BM=;(3)当折痕所在直线经过点A时,如图1所示:此时DE最小=AD﹣AB=8﹣6=2;当折痕所在直线经过点C时,如图2所示:此时DE最大,CE=CB=8,由勾股定理得:DE==2;∴x的取值范围是2≤x≤2;故答案为:2≤x≤2.。