人教版九年级数学上专题复习 图形的变换培优-精选文档
人教版九年级中考数学知识点专题集训《图形的变换》 题型突破与提升练习
人教版中考数学知识点专题集训《图形的变换》经典题型突破与提升练习一.选择题.1. 下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A B C D2.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分的面积为( )A.48B.96C.84D.423. 如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B′的坐标是( )A.(-1,2)B.(1,4)C.(3,2)D.(-1,0)4.下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是()A B CA.(0,0)B.(1,1)C.(0,1)D.(1,0)5. 如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是( )A .33 B .4 C .5 D . 6 6. 如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .2B .32α C .α D .180°-α 7. 剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )8. 如图,在四边形ABCD 中(AB >CD ),∠ABC =∠BCD =90°AB =3,BC =3,把Rt △ABC 沿着AC 翻折得到Rt △AEC ,若tan ∠AED =32,则线段DE 的长度为( )A D EB C A . B . C . D .A.63B.73C.32D.2759. 如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F,若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为()A B C D10.如图,在平面直角坐标系xOy中,Rt△AOB的直角顶点B在y轴上,点A的坐标为(1,将Rt△AOB沿直线y=-x翻折,得到Rt△A′OB′,过A′作A′C 垂直于OA′交y轴于点C,则点C的坐标为( )A.(0,-) B.(0,-3) C.(0,-4) D.(0,-)二.填空题.11. 如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于.12.如图,将周长为8的△ABC沿BC边向右平移2个单位,得到△DEF,则四边形ABFD的周长为______.13. 如图,正方形ABCD的边长为1,将其绕顶点C按逆时针方向旋转一定角度到CEFG位置,使得点B落在对角线CF上,则阴影部分的面积是______.14. 如图,已知△ABC中,∠C=90°,AC=BC=2√2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为.15.如图,在矩形ABCD中,AD=4,将∠A向内翻析,点A落在BC上,记为A1,折痕为DE.若将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB=.16. 如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB′C′,AB′,AC′分别交对角线BD于点E,F,若AE=4,则EF•ED的值为 .17.如图,矩形纸片ABCD,AB=6cm,BC=8cm,E为边CD上一点.将△BCE 沿BE所在的直线折叠,点C恰好落在AD边上的点F处,过点F作FM⊥BE,垂足为点M,取AF的中点N,连接MN,则MN=cm.18.△ABC内接于⊙O,AB为⊙O的直径,将△ABC绕点C旋转到△EDC,点E在⊙上,已知AE=2,tanD=3,则AB= .三.解答题.19. 如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC的三个顶点A(5,2)、B(5,5)、C(1,1)均在格点上.(1)将△ABC向下平移5个单位得到△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕点C1逆时针旋转90°后得到的△A2B2C1,并写出点A2的坐标;(3)在(2)的条件下,求△A1B1C1在旋转过程中扫过的面积(结果保留π).20. 如图,AB的垂直平分线MP交BC于点P,AC的垂直平分线NQ交BC于点Q,若△APQ的周长为16cm,求BC的长.21.如图,Rt△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,点D落在线段AB上,连接BE.(1)求证:DC平分∠ADE;(2)试判断BE与AB的位置关系,并说明理由;(3)若BE=BD,求tan∠ABC的值.22.图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E 、E ′两点的距离.23. 已知: △ABC 为等边三角形,点E 为射线AC 上一点,点D 为射线CB 上一点, AD=DE.(1)如图1,当E 在AC 的延长线上且 CE=CD 时,AD 是 △ABC 的中线吗?请说明理由.(2)如图2,当E 在AC 的延长线上时, AB+BD 等于AE 吗?请说明理由.(3)如图3,当D 在线段CB 的延长线上,E 在线段AC 上时,请直接写出AB,BD,AE 的数量关系.24. 如图1,在等腰直角三角形ADC 中,4,90==∠AD ADC .点E 是AD 的中点,以DE 为边作正方形DEFG ,连接CE AG ,.将正方形DEFG 绕点D 顺时针旋转,旋转角为)900( <<αα.(1)如图2,在旋转过程中,①判断AGD ∆与CED ∆是否全等,并说明理由;②当CD CE =时,AG 与EF 交于点H ,求GH 的长.(2)如图3,延长CE 交直线AG 于点P .①求证:CP AG ⊥;②在旋转过程中,线段PC 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.。
(图形的变换专题复习)
--------专题复习
图 形 的 变 换
知识回顾 变换名称
轴对称
要素
作图
A F
性质
点P(x,y) 关于x轴对称的点P′ 的坐标为P′(x,-y) 关于y轴对称的点P′的坐标 为P′(-x,y);
E
对称轴的 位置
B
C
E
D
平移
方向、 距离
A
B
C
D
F
(1)平移变换不改变图形的形状,大 小和方向. (2)连接对应点的线段平行(或在同 一条直线上)而且相等. (1)图形旋转不改变图形的形状 和大小; (2)对应点到旋转中心的距离相 等,对应点与旋转中心连线所成的 角 度等于旋转角.
旋转
旋转中心、 方向、 角度
A F B D E
E
相似
放大或缩 小的倍数
C A B D
图形的相似变换不改变图形中 的每一个角的大小, 图形中的每条线段都扩大(或 缩小)相同的倍数。
诊断练习
1、在如图所示的四个汽车标志图案中,能用平移变换 来分析其形成过程的图案是( D )
A. 2
B.
C. 120
D.
例3. 如图,将矩形ABCD沿BD对折,点A落 在E处,BE与CD相交于F,若AD=3, BD=6. (1)求证:△EDF≌△CBF; (2)求∠EBC.
总结反思
感悟收获
形状、大小 都不变,位 置改变
轴对称变换
改变方向
旋转变换 不改变方向 平移变换
图 形 与 变 换
形状不变, 大小位置都 可以改变 变换后点的 坐标的变化
达标测评
1.下列图形中既是轴对称图形又是中心对称图形的 是………………………………( )
专题04 图形的变换(课件)
例2 (2017辽宁铁岭)如图,在射线AB上顺次取两点C,D,使 AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针 方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射 线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下 列函数图象中,能反映y与x之间关系的是( D )
考点五 几何体的三视图
例9(2017湖北省黄冈模拟(c卷))由若干个相同的小正方体组合而 成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个 数是( C )
A. 3
B. 4
C. 5
D. 6
【方法指导】理解口诀“俯视图打地基,正视图疯狂盖,左视图拆违章” 就更容易解决问题.
A 例10(2017内蒙古赤峰卷)下面几何体的主视图为( )
【知识归纳】此题主要考查了平移变换以 及旋转变换和扇形面积求法,正确得出对 应点位置是解题关键.
例4. (2017四川攀枝花)如图,D是等边△ABC边AB上的点,AD=2,
DB=4.现将△ABC折叠,使得点C与点D重合,折痕为EF,且点E、F分
别在边AC和BC上,则
CF CE
5 =_______ . 4
【知识归纳】本题主要考查了旋转、相似等知识,解题的关键是根据 已知得出△ACG∽△ADH.
例3.(2017贵州黔南州卷)如图,在边长为1个单位长度的小正方形组成的 网格中,给出了格点三角形ABC(顶点是网格线的交点) (1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到 △A1B1C1,请画出△A1B1C1; (2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2; (3)求线段B1C1变换到B1C2的过程中扫过区域的面积.
图形的变换(初三数学专题复习)
教案内容备课记录专题复习《图形与变换》1.考点分析:内容要求1、轴对称图形的识别,轴对称的性质及其应用Ⅰ2、中心对称图形的识别,中心对称的性质及其应用Ⅱ3、图形的平移与旋转的性质及应用Ⅱ4、相似三角形的性质与判定的应用Ⅱ5、位似图形的识别,位似性质的简单应用Ⅰ本专题主要包括图形的变换和相似形.其中轴对称图形、平移、中心对称图形的识别,相似三角形性质以填空和选择题为主,主要是考查对图形的识别和性质;图形的折叠、平移、旋转与几何图形面积相关的计算问题以填空题和解答题为主,主要是考查对几何问题的综合运用能力;而相似三角形的性质及判断定的应用往往还会结合圆或者解直角三角形等问题一并考查,主要是以解答题为主。
图形的轴对称、平移、旋转是近年中考的新题型、热点题型,它主要考查学生的观察与实验能力,探索与实践能力,因此在解题时应注意以下方面:1.熟练掌握图形的轴对称、图形的平移、图形的旋转的基本性质和基本方法。
2.结合具体问题大胆尝试,动手操作平移、旋转,探究发现其内在规律是解答操作题的基本方法。
3.注重图形与变换的创新题,弄清其本质,掌握其基本的解题方法,尤其是折叠与旋转等。
典例分析:例1如图9-1,把一个正方形三次对折后沿虚线剪下,则所得图形是()图9-1【考点要求】本题考查学生轴对称知识的灵活应用。
【思路点拔】通过实物的演示或者操作以及空间想象,不难得到正确答案。
【方法点拨】在解答图形的折叠问题时,有时可借助实物进行操作、演示,帮助理解,从而弥补空间思维上出现的盲区。
【考点要求】本题考查平面镜的轴对称变换。
【思路点拔】观察所给的“小狗照镜子”图,可以发现小狗的尾巴向左,并且正面向镜子,由于平面镜成像是轴对称变换,由性质可知,像的尾巴应向左且正面向前。
【答案】选A 。
【错解剖析】部分学生未能抓住平面镜成像的轴对称变换特性而选择错误答案。
解题关键:先分析清问题是何种对称变换,然后利用性质解题。
例3如图9-3,下列图案②③④⑤⑥⑦中, 是由①平移得出的, 是由①平移且旋转得出的。
数学人教版九年级上册《图形变换》专题复习教学设计
初中学业水平考试数学《图形变换》专题复习教学设计课时1、图形的平移、旋转与轴对称一、复习目标【知识与技能】理解轴对称、轴对称图形、中心对称、中心对称图形、平移和图形旋转的概念,并掌握它们的性质。
能按平移、旋转或轴对称的要求作出简单的图形,并作一些简单计算。
【过程与方法】通过例举生活实例,帮助学生温习知识点。
【情感态度与价值观】通过本节内容的复习,让学生走进中考,增加挑战中考的信心。
二、学情分析本届九年级学生基础高低参差不齐,有的基础较牢,成绩较好。
在复习中,既要注意概念的科学性,又要注意概念形成的阶段性。
在教学中要尽可能做到通俗易懂,通过对分析、比较、抽象、概括,使学生形成概念,并注意引导学生在学习,生活和劳动中应用学过的概念,以便不断加深对概念的理解和提高运用数学知识的能力。
要在区别的基础上进行记忆,在掌握时应进行对比,抓住本质、概念特征,加以记忆。
激发学生学习数学的兴趣,帮助学生获得知识和技能,培养观察和分析推理能力,培养学生实事求是、严肃认真的科学态度和科学的学习方法。
所以在复习中再加强指导和练习,加大对学生所学知识的检查,并做好及时的讲评和反馈学生情况。
三、中考热点与特点1.热点:平移、旋转、轴对称的特征,中心对称和轴对称的性质。
2.特点:轴对称、中心对称、点的坐标特征多在选择题,填空题中考查;简单的平移和旋转作图多在解答题中考查,难度中等。
四、复习过程1、知识点梳理我们复习的目的是考好学业水平考试,那么我们首先就得搞清图形变换在学业水平考试中的热点和特点。
热点:平移、旋转、轴对称的特征,中心对称和轴对称的性质。
特点:轴对称、中心对称、点的坐标特征多在选择题,填空题中考查;简单的平移和旋转作图多在解答题中考查,难度中等。
当然还会掺杂些综合性的问题,详见后面的题目。
下面我们先回忆下初中阶段的图形变换有哪些知识点。
图形的变换包括图形的平移、旋转、翻折(轴对称),图形在运动的过程中,对应线段、对应角的大小不变,也就是说这三种变换都是全等变换。
中考数学总复习训练 图形的变换(含解析)-人教版初中九年级全册数学试题
图形的变换一、选择题1.下列几何图形中,一定是轴对称图形的有()A.2个B.3个C.4个D.5个2.有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90°,则完成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是()A.上B.下C.左D.右3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形 B.平行四边形C.正三角形 D.矩形4.如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为()A.①③ B.①④ C.②③ D.②④5.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°6.下面四X扑克牌中,图案属于中心对称图形的是图中的()A.B.C.D.7.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.8.将如图所示的图案按顺时针方向旋转90°后可以得到的图案是()A.B.C.D.9.若将图中的每个字母都看成独立的图案,则这七个图案中是中心对称图形的有()A.1个B.2个C.3个D.4个10.下列图形中,是轴对称图形的是()A.B.C.D.11.下面的图形中,是中心对称图形的是()A.B. C.D.二、填空题12.如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°得到△BDE,则DE=cm,△ABC的面积=cm2.13.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为.14.将线段AB平移1cm,得到线段A′B′,则点A到点A′的距离是cm.三、解答题15.如图,方格纸中的每个小正方形的边长均为1.(1)观察图1、2中所画的“L”型图形,然后各补画一个小正方形,使图1中所成的图形是轴对称图形,图2中所成的图形是中心对称图形;(2)补画后,图1、2中的图形是不是正方体的表面展开图?(填“是”或“不是”)16.如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.(1)画出对称中心E,并写出点E、A、C的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P2(a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;(3)判断△A2B2C2和△A1B1C1的位置关系.(直接写出结果)17.在一平直河岸l同侧有A,B两个村庄,A,B到l的距离分别是3km和2km,AB=akm(a >1).现计划在河岸l上建一抽水站P,用输水管向两个村庄供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为d1,且d1=PB+BA(km)(其中BP⊥l于点p);图2是方案二的示意图,设该方案中管道长度为d2,且d2=PA+PB(km)(其中点A'与点A关于I对称,A′B与l交于点P.观察计算:(1)在方案一中,d1=km(用含a的式子表示);(2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,d2=km(用含a的式子表示).探索归纳(1)①当a=4时,比较大小:d1()d2(填“>”、“=”或“<”);②当a=6时,比较大小:d1()d2(填“>”、“=”或“<”);(2)请你参考右边方框中的方法指导,就a(当a>1时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?图形的变换参考答案与试题解析一、选择题1.下列几何图形中,一定是轴对称图形的有()A.2个B.3个C.4个D.5个【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:所有图形沿某条直线折叠后直线两旁的部分能够完全重合,那么一定是轴对称图形的有5个,故选D.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90°,则完成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是()A.上B.下C.左D.右【考点】旋转的性质.【专题】压轴题;操作型;规律型.【分析】根据题意可知每一次变换后相当于逆时针旋转了90°,经过4次变换后会回到原始位置,所以按上述规则完成第9次变换后,相当于第一次变化后的位置关系,分析比较可得答案.【解答】解:根据题意可知每一次变换后相当于逆时针旋转了90度,经过4次变换后会回到原始位置,所以按上述规则完成第9次变换后,“众”字位于转盘的位置是应该是第一次变换后的位置即在左边,比较可得C符合要求.故选C.【点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.关键是找到旋转的方向和角度.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形 B.平行四边形C.正三角形 D.矩形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念和等腰梯形、平行四边形、正三角形、矩形的性质解答.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选D.【点评】掌握中心对称图形与轴对称图形的概念.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.4.如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为()A.①③ B.①④ C.②③ D.②④【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念和各图的特点求解.【解答】解:①、是轴对称图形,不是中心对称图形;②、是轴对称图形,也是中心对称图形;③、是轴对称图形,不是中心对称图形;④、是轴对称图形,也是中心对称图形.满足条件的是①③,故选A.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°【考点】翻折变换(折叠问题).【专题】压轴题.【分析】根据折叠的性质,对折前后角相等.【解答】解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.6.下面四X扑克牌中,图案属于中心对称图形的是图中的()A.B.C.D.【考点】中心对称图形;生活中的旋转现象.【分析】依据中心对称图形的定义即可求解.【解答】解:其中A选项、C选项及D选项旋转180度后新图形中间的桃心向下,原图形中间的桃心向上,所以不是中心对称图形.故选B.【点评】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.7.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.将如图所示的图案按顺时针方向旋转90°后可以得到的图案是()A.B.C.D.【考点】生活中的旋转现象.【分析】根据旋转的意义,找出图中眼,眉毛,嘴5个关键处按顺时针方向旋转90°后的形状即可选择答案.【解答】解:根据旋转的意义,图片按顺时针方向旋转90°,即正立状态转为顺时针的横向状态,从而可确定为A图,故选A.【点评】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.9.若将图中的每个字母都看成独立的图案,则这七个图案中是中心对称图形的有()A.1个B.2个C.3个D.4个【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:根据中心对称图形的概念可知,图案O、I是中心对称图形;而图案L、Y、M、P、C都不是中心对称图形.故选B.【点评】解答此题要掌握中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点,就叫做中心对称点.10..下列图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.【解答】解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.下面的图形中,是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题12.如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°得到△BDE,则DE=2 cm,△ABC的面积=18 cm2.【考点】旋转的性质.【专题】压轴题.【分析】三角形的重心是三条中线的交点,根据中线的性质,S△ACD=S△BCD;再利用勾股定理逆定理证明BG⊥CE,从而得出△BCD的高,可求△BCD的面积.【解答】解:∵点G是△ABC的重心,∴DE=GD=GC=2,CD=3GD=6,∵GB=3,EG=GC=4,BE=GA=5,∴BG2+GE2=BE2,即BG⊥CE,∵CD为△ABC的中线,∴S△ACD=S△BCD,∴S△ABC=S△ACD+S△BCD=2S△BCD=2××BG×CD=18cm2.填:2,18.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.13.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为 4 .【考点】等腰三角形的性质;勾股定理.【分析】根据等腰三角形三线合一的性质及勾股定理不难求得底边上的高.【解答】解:根据等腰三角形的三线合一,知:等腰三角形底边上的高也是底边上的中线.即底边的一半是3,再根据勾股定理得:底边上的高为4.故答案为:4【点评】考查等腰三角形的三线合一及勾股定理的运用.14.将线段AB平移1cm,得到线段A′B′,则点A到点A′的距离是1 cm.【考点】平移的性质.【专题】压轴题.【分析】根据题意,画出图形,由平移的性质直接求得结果.【解答】解:在平移的过程中各点的运动状态是一样的,现在将线段平移1cm,则每一点都平移1cm,即AA′=1cm,∴点A到点A′的距离是1cm.【点评】本题考查了平移的性质:由平移知识可得对应点间线段即为平移距离.学生在学习中应该借助图形,理解掌握平移的性质.三、解答题15.如图,方格纸中的每个小正方形的边长均为1.(1)观察图1、2中所画的“L”型图形,然后各补画一个小正方形,使图1中所成的图形是轴对称图形,图2中所成的图形是中心对称图形;(2)补画后,图1、2中的图形是不是正方体的表面展开图?(填“是”或“不是”)【考点】利用旋转设计图案;利用轴对称设计图案.【专题】网格型.【分析】(1)根据轴对称图形与中心对称的定义即可作出,首先确定对称轴,即可作出所要作的正方形;(2)利用折叠的方法进行验证即可.【解答】解:(1)如图(画对一个得3分).(2)图1(不是)或图2(是),图3(是).【点评】掌握轴对称的性质:沿着一直线折叠后重合.中心对称的性质:绕某一点旋转180°以后重合.16.如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.(1)画出对称中心E,并写出点E、A、C的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P2(a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;(3)判断△A2B2C2和△A1B1C1的位置关系.(直接写出结果)【考点】作图﹣旋转变换;作图﹣平移变换.【专题】作图题;压轴题.【分析】(1)连接对应点,对应点的中点即为对称中心,在网格中可直接得出点E、A、C 的坐标;(2)根据“(a+6,b+2)”的规律求出对应点的坐标A2(3,4),C2(4,2),顺次连接即可;(3)由△A2B2C2和△A1B1C1的位置关系直接看出是关于原点O成中心对称.【解答】解:(1)如图,E(﹣3,﹣1),A(﹣3,2),C(﹣2,0);(4分)(2)如图,A2(3,4),C2(4,2);(8分)(3)△A2B2C2与△A1B1C1关于原点O成中心对称.(10分)【点评】本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特殊情况.17.在一平直河岸l同侧有A,B两个村庄,A,B到l的距离分别是3km和2km,AB=akm(a >1).现计划在河岸l上建一抽水站P,用输水管向两个村庄供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为d1,且d1=PB+BA(km)(其中BP⊥l于点p);图2是方案二的示意图,设该方案中管道长度为d2,且d2=PA+PB(km)(其中点A'与点A关于I对称,A′B与l交于点P.观察计算:(1)在方案一中,d1= a+2 km(用含a的式子表示);(2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,d2=km(用含a的式子表示).探索归纳(1)①当a=4时,比较大小:d1()d2(填“>”、“=”或“<”);②当a=6时,比较大小:d1()d2(填“>”、“=”或“<”);(2)请你参考右边方框中的方法指导,就a(当a>1时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?【考点】作图—应用与设计作图.【专题】压轴题;阅读型;方案型.【分析】运用勾股定理和轴对称求出d2,根据方法指导,先求d12﹣d22,再根据差进行分类讨论选取合理方案.【解答】解:(1)∵A和A'关于直线l对称,∴PA=PA',d1=PB+BA=PB+PA'=a+2;故答案为:a+2;(2)因为BK2=a2﹣1,A'B2=BK2+A'K2=a2﹣1+52=a2+24所以d2=.探索归纳:(1)①当a=4时,d1=6,d2=,d1<d2;②当a=6时,d1=8,d2=,d1>d2;(2)=4a﹣20.①当4a﹣20>0,即a>5时,d12﹣d22>0,∴d1﹣d2>0,∴d1>d2;②当4a﹣20=0,即a=5时,d12﹣d22=0,∴d1﹣d2=0,∴d1=d2③当4a﹣20<0,即a<5时,d12﹣d22<0,∴d1﹣d2<0,∴d1<d2综上可知:当a>5时,选方案二;当a=5时,选方案一或方案二;当1<a<5(缺a>1不扣分)时,选方案一.【点评】本题为方案设计题,综合考查了学生的作图能力,运用数学知识解决实际问题的能力,以及观察探究和分类讨论的数学思想方法.。
人教版九年级数学上专题复习 图形的变换培优-最新教育文档
初三数学培优测试题(七)图形的变换 出题人:訾秦英培优班级: 姓名 考场: 座号: 一、选择题(每小题3分,满分30分 )1、如下是一种电子计分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.2在平面直角坐标系中,点(3,-2)关于原点对称的点是( ) A .(-3,2) B .(-3,-2) C .(3,-2) D .(3,2)3.如图所示,三架飞机P,Q,R 保持编队飞行,某时刻在坐标系中的坐标分别为(−1,1),(−3,1),(−1,−1),30秒后,飞机P 飞到P′(4,3)位置,则飞机Q,R 的位置Q′,R′分别为( )A. Q′(2,3),R′(4,1)B. Q′(2,3),R′(2,1)C. Q′(2,2),R′(4,1)D. Q′(3,3),R′(3,1)第3题 第4题 第5题4.如图,已知在△ABC 中,∠BAC>90°,点D 为BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得点C 恰好落在BA 的延长线上的点F 处,连结AD,则下列结论不一定正确的是( )A.AE=EFB.AB=2DEC.△ADF 和△ADE 的面积相等D.△ADE 和△FDE 的面积相等 5.数学兴趣小组开展以下折纸活动:①对折矩形ABCD ,使AD 和BC 重合,得到折痕EF ,把纸片展平;②再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN.观察,探究可以得到∠ABM 的度数是( )A .25°B .30°C .36°D .45° 6. 如图,在平面直角坐标系中,点 A ,C 在 x 轴上,点 C 的坐标为 (﹣1,0),AC=2.将 Rt △ABC 先绕点 C 顺时针旋转 90°,再向右平移 3 个单位长度, 则变换后点 A 的对应点坐标是 ( )A .(2,2)B .(1,2)C .(﹣1,2)D .(2,﹣1)第6题 第7题 第8题为圆心,适当长度为半径作弧,分别交边为圆心,大于DE .(﹣.(,﹣,.(﹣12.如图,在平面直角坐标系中,△ABC 的顶点A 在第一象限,点B 、C 的坐标分别为(2,1)、(6,1),∠BAC=90°,AB=AC ,直线AB 交x 轴于点P.若△ABC 与△A′B′C′关于点P 成中心对称,则点A′的坐标为_________ .第12题 第13题13. 如图,在直角三角形ABC 中,∠C=90°,BC=6,AC=8,点D 是AC 边上一点,将△BCD沿BD 折叠,使点C 落在AB 边的E 点,那么AE 的长度是__________14. 如图,在矩形纸片ABCD 中,AB=2,AD=3,点E 是AB 的中点,点F 是AD 边上的一个动点,将△AEF 沿EF 所在直线翻折,得到△A ′EF ,则A ′C 的长的最小值是_____第14题 第15题15.(2019河南中考).如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E .当△A′EF 为直角三角形时,AB 的长为________. 三.解答题(共六大题,共75分)16.(12分)如图,在Rt △ABC 中,∠A =90°,∠C=30°.将△ABC 绕点B 顺时针旋转60°得到△A BC '', 其中点A ', C '分别是点A ,C 的对应点.(1)作出△A BC ''(要求尺规作图,不写作法,保留作图痕迹); (2)连接AA ',求∠C A A ''的度数.17.(12分)如图,矩形ABCD 中,AB >AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE . (1)求证:△ADE ≌△CED ;(2)求证:△DEF 是等腰三角形.18.(12分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A (1,1),B (4,1),C (3,3) (1)将△ABC 向下平移5个单位后得到△111C B A ,请画出△111C B A ;(2)将△ABC 绕原点O 逆时针旋转90°后得到△222C B A ,请画出△222C B A ;(3)判断以O ,1A ,B 为顶点的三角形的形状(无须说明理由)19(12分).将一个直角三角形纸片ABO 放置在平面直角坐标系中,点A (3,0),点B (0,1),点O (0,0).P 是边AB 上的一点(点P 不与点A ,B 重合),沿着OP 折叠该纸片,得点A 的对应点A'.(1)如图①,当点A′在第一象限,且满足A′B ⊥OB 时,求点A′的坐标; (2)如图②,当P 为AB 中点时,求A′B 的长;20. (13分)如图,已知︒=∠60AOB ,在A O B ∠的平分线OM 上有一点C ,将一个︒120角的顶点与点C 重合,它的两条边分别与直线OA 、OB 相交于点D 、E .(1)当DCE ∠ 绕点C 旋转到CD 与OA 垂直时如图),请猜想OD OE +与OC 的数量关系,并说明理由;(2)当DCE ∠绕点C 旋转到CD 与OA 不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;21(14分).(1)问题发现如图1,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE. 填空:①∠AEB 的度数为___;②线段AD ,BE 之间的数量关系为___. (2)拓展探究如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90∘,点A ,D ,E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由。
九年级数学专题复习图形的变换
总复习:图形的变换【考纲要求】1.通过具体实例认识轴对称、平移、旋转,探索它们的基本性质;2.能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;3.探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及其相关性质.4.探索图形之间的变换关系(轴对称、平移、旋转及其组合);5.利用轴对称、平移、旋转及其组合进行图案设计;认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【考点梳理】考点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.【要点进阶】(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.2.平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.【要点进阶】(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;(2)“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.考点二、轴对称变换1.轴对称与轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点. 轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.轴对称变换的性质①关于直线对称的两个图形是全等图形.②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.3.轴对称作图步骤①找出已知图形的关键点,过关键点作对称轴的垂线,并延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.4.翻折变换:图形翻折问题是近年来中考的一个热点,其实质是轴对称问题,折叠重合部分必全等,折痕所在直线就是这两个全等形的对称轴,互相重合的两点(对称点)连线必被折痕垂直平分.【要点进阶】翻折的规律是,折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等,折叠图形中有相似三角形,常用勾股定理.考点三、旋转变换1.旋转概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角.2.旋转变换的性质图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.3.旋转作图步骤①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.【要点进阶】1.图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.2.平移、旋转和轴对称之间的联系一个图形沿两条平行直线翻折(轴对称)两次相当于一次平移,沿不平行的两条直线翻折两次相当于一次旋转,其旋转角等于两直线交角的2倍.【典型例题】类型一、平移变换例1.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′.(1)证明△A′AD′≌△CC′B;(2)若∠ACB=30°,试问当点C′在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由.例2.操作与探究:(1)对数轴上的点P进行如下操作:先把点P表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是-3,则点A′表示的数是________;若点B′表示的数是2,则点B表示的数是_____;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是__________.(2)如图2,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.举一反三:【变式】如图,若将边长为cm 2的两个互相重合的正方形纸片沿对角线AC 翻折成等腰直角三角形后,再抽出一个等腰直角三角形沿AC 移动,若重叠部分PC A ' 的面积是21cm ,则移动的距离'AA 等于 .类型二、轴对称变换例3.如图,矩形ABCD 中,AB=6,BC=8,点E 是射线CB 上的一个动点,把△DCE 沿DE 折叠,点C 的对应点为C′.(1)若点C′刚好落在对角线BD 上时,BC′= ;(2)若点C′刚好落在线段AB 的垂直平分线上时,求CE 的长; (3)若点C′刚好落在线段AD 的垂直平分线上时,求CE 的长.举一反三:【变式】如图所示,有一块面积为1的正方形纸片ABCD ,M 、N 分别为AD 、BC 的边上中点,将C 点折至MN 上,落在P 点的位置,折痕为BQ ,连接PQ . (1)求MP 的长;(2)求证:以PQ 为边长的正方形的面积等于13.例4.已知:矩形纸片ABCD 中,AB=26厘米,5.18=BC 厘米,点E 在AD 上,且6=AE 厘米,点P 是AB 边上一动点,按如下操作:步骤一,折叠纸片,使点P 与点E 重合,展开纸片得折痕MN (如图(1)所示); 步骤二,过点P 作,AB PT ⊥交MN 所在的直线于点Q ,连结QE (如图(2)所示); (1)无论点P 在AB 边上任何位置,都有PQ QE (填“>”、“=”、“<”号 ) (2)如图(3)所示,将矩形纸片ABCD 放在直角坐标系中,按上述步骤一、二进行操作: ①当点P 在A 点时,PT 与MN 交于点,1Q ,1Q 点的坐标是( , ); ②当6=PA 厘米时,PT 与MN 交于点2Q ,2Q 点的坐标是( , ); ③当12=PA 厘米时,在图(3)中画出MN ,PT (不要求写画法)并求出MN 与PT 的交点3Q 的坐标;(3)点P 在在运动过程中,PT 与MN 形成一系列的交点,1Q 2Q ,3Q …观察,猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式.(1) (2)(3)类型三、旋转变换例5.已知,△ABC 为直角三角形,∠ACB=90°,点P 是射线CB 上一点(点P 不与点B 、C 重合),线段AP 绕点A 顺时针旋转90°得到线段AQ ,连接QB 交射线AC 于点M.(1)如图①,当AC=BC ,点P 在线段CB 上时,线段PB 、CM 的数量关系是 ;(2)如图②,当AC=BC ,点P 在线段CB 的延长线时,(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由. (3)如图③,若,点P 在线段CB 的延长线上,CM=2,AP=13,求△ABP 的面积.A BCDPEMN BC(P ) (A ) BCDE xN 1QO6 12 18 24 612 18 2Qy例6 .如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).OO和小慧还发现:三角形纸片在上述两次旋转的过程中,顶点O运动所形成的图形是两段圆弧,即1OO,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l1围成的图形面积等于12扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之和.小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片绕着顶点^按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,……,按上述方法经过若干次旋转后.她提出了如下问题:问题①:若正方形纸片OABC接上述方法经过3次旋转,求顶点O经过的路程,并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OA BC按上述方法经过5次旋转,求顶点O经过的路程;问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是_______________?请你解答上述两个问题.举一反三:【变式】 如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动.(1)请在所给的图中,用尺规画出点A 在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A 所经过的路线与梯形MNPQ 的三边MN 、NP 、PQ 所围成图形的面积S .BPA(M)QNDC【巩固练习】 一、选择题1.有下列四个说法,其中正确说法的个数是( ) ①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度; ③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化. A. 1个 B.2个 C. 3个 D.4个2.在旋转过程中,确定一个三角形旋转的位置所需的条件是( ). ①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角. A .①②④ B .①②③ C .②③④ D .①③④3.如图,折叠直角三角形ABC 纸片,使两锐角顶点A 、C 重合,设折痕为DE.若AB=4,BC=3,则BD 的值是( )A .78 B .1 C .98 D .234.如图是一个旋转对称图形,要使它旋转后与自身重合,至少应将它绕中心逆时针方向旋转的度数为( ).A 、30°B 、60°C 、120°D 、180°5.如图,把矩形纸条ABCD 沿EF GH ,同时折叠,B C ,两点恰好落在AD 边的P 点处,若90FPH =∠,8PF =,6PH =,则矩形ABCD 的边BC 长为( ).A.20B.22C.24D.30第4题 第5题6.如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼 成如下图的一座“小别墅”,则图中阴影部分的面积是( ). A .2 B .4 C .8 D .10二、填空题7.如图,在Rt △A BC 中,∠A CB =90°,AB=5,AC=3,点D 是BC 上一动点,连结AD ,将△ADC 沿AD 折叠,点C 落在点C ',连结C ’D 交AB 于点E ,连结BC ’.当△BC ’D 是直角三角形时,DE 的长为 .8.在Rt ∆ABC 中,∠A <∠B,CM 是斜边AB 上的中线,将∆ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.第7题 第8题9.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,连结AM (如图所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 .10.如图,在∆ABC 中,MN//AC ,直线MN 将∆ABC 分割成面积相等的两部分,将∆BMN 沿直线MN 翻折,点B 恰好落在点E 处,联结AE ,若AE//CN ,则AE:NC= .第9题 第10题11.如图,将一张矩形纸片ABCD 沿着过点A 的折痕翻折,使点B 落在AD 边上的点F ,折痕交BC 于点E ,将折叠后的纸片再次沿着另一条过点A 的折痕翻折,点E 恰好与点D 重合,此时折痕交DC 于点G ,则CG :GD 的值为 .12.如图,在计算机屏幕上有一个矩形画刷ABCD ,它的边AB =l ,.把ABCD 以点B 为中心按顺时针方向旋转60°,则被这个画刷着色的面积为________.三、解答题13. 如图(1)所示,一张三角形纸片ABC ,6,8,90==︒=∠BC AC ACB .沿斜边AB 的中线CD 把这线纸片剪成11D AC ∆和22D BC ∆两个三角形如图(2)所示.将纸片11D AC ∆沿直线B D 2(AB )方向平移(点B D D A ,,,21始终在同一条直线上),当点1D 与点B 重合时,停止平移,在平移的过程中,11D C 与2BC 交于点E ,1AC 与222,BC D C 分别交于点F ,P.(1)当11D AC ∆平移到如图(3)所示的位置时,猜想图中E D 1与F D 2的数量关系,并证明你的猜想.(2)设平移距离12,D D 为x ,11D AC ∆与22D BC ∆重叠部分的面积为y ,请写出y 与x 的函数关系式,以及自变量x 的取值范围;(3)对于(2)中的结论是否存在这样的x ,使得重叠部分面积等于原ABC ∆纸片面积的41?若存在,请求出x 的值;若不存在,请说明理由.14.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC 绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,= ;②当α=180°时,= .(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.15.如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.16.已知抛物线经过点 A(0,4)、B(1,4)、C(3,2),与x轴正半轴交于点D.(1)求此抛物线的解析式及点D的坐标;(2)在x轴上求一点E,使得△BCE是以BC为底边的等腰三角形;(3)在(2)的条件下,过线段ED上动点P作直线PF//BC,与BE、CE分别交于点F、G,将△EFG沿FG 翻折得到△E′FG.设P(x,0),△E′FG与四边形FGCB重叠部分的面积为S,求S与x的函数关系式及自变量x的取值范围.。
人教版九年级上册数学同步培优第二十三章旋转 素养集训 图形变换的四种常见作图
(1)将△ABC向右平移5个单位长度得到△A1B1C1,画出 △A1B1C1;
解:如图,△A1B1C1即为所求作.
(2)将(1)中的△A1B1C1绕点C1逆时针旋转90°得到 △A2B2C1,画出△A2B2C1.
解:如图,△A1B1C1即为所作.
(2)请画出△ABC关于原点O成中心对称的△A2B2C2; 解:如图,△A2B2C2即为所作.
(3)在x轴上找一点P,使PA+PB的值最小,请直接写出 点P的坐标.
【点方法】对于本题(3)只要找出A的对称点A′, 连接BA′,与x轴的交点即为P. 解:点P的坐标为(2,0).
返回
返回
5.【教材P69习题T1变式】画出如图所示的四边形ABCD关 于点O成中心对称的图形. 解:如图,四边形A′B′C′D′即为所作.
返回
6.【中考·昆明】如图,△ABC三个顶点的坐标分别为 A(1,1),B(4,2),C(3,4).
(1)请画出将△ABC向左平移4个单位长度后得到的 △A1B1C1;
解:如图,△A1B1C1即为所作.
返回
2.【教材P62习题T3变式】【中考·厦门】如图,在△ABC 中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C 顺时针旋转90°,若点A,B的对应点分别是点D,E, 画出旋转后的三角形,并求点A与点D之间的距离(不要 求尺规作图).
【点方法】先根据勾股定理求出AC的长,再由 旋转的性质求出CD的长,进而可得出结果.
解:如图,△A2B2C1即为所求作.
返回
4.如图,平面直角坐标系中,小正方形网格的边长为1个 单位长度,△ABC的三个顶点的坐标分别为A(-3,4), B(-5,2),C(-2,1).画出△ABC关于y轴对称的 △A1B1C1,并写出A1,B1,C1的坐标. 解:如图,△A1B1C1即为所作. A1(3,4),B1(5,2),C1(2,1).
人教版九年级数学上册《图形的变换》复习PPT
G
A
D
O E
B
C
F
8.已知,如图边长为1的正方形EFOG绕与之边长相等的正方 形ABCD的中心O旋转任意角度,求图中阴影部分的面积.
G
A
D
O E
B
C
F
谢谢 大家
★~☆
23
ቤተ መጻሕፍቲ ባይዱ
24
26
得,则旋转的角度为( C )
A.30 B.45° C.90° D.135°
7.如图,在四边形ABCD中, ∠B+∠D=180,AB=AD,AC=1,∠ACD=60,求四 边形ABCD的面积。
8.已知,如图边长为1的正方形EFOG绕与之边长相 等的正方形ABCD的中心O旋转任意角度,求图中阴影 部分的面积.
∠AOC=60°,
(1)图① ,如果AC∥BD, 求证:AC+BD=AB.
(2)图②,如果AC与BD不平行,求证:AC+BD>AB.
E
②②
E
二.旋转的知识
4.下列现象中属于旋转的有( C)个
①地下水位逐年下降; ②传送带的移动;
③方向盘的转动; ④水龙头开关的转动;
⑤钟摆的运动; ⑥荡秋千运动.
点的坐标是( B ) A.(5,-2) B.(1,-2) C.(2,-1) D.(2,-2)
2.如图,将△ABC沿BC方向平移2 cm得到 △DEF,若△ABC的周长为16 cm,则四边形 ABFD的周C长为( )
A.16 cm
B.18 cm
C.20 cm
D.22 cm
3. 如图,线段AB与CD的交点为点O,且AB=CD,
平移
图 形 的 变 换
旋转
知识回顾 题组训练
中考数学 黄金知识点系列 专题31 图形的变换-人教版初中九年级全册数学试题
专题31 图形的变换聚焦考点☆温习理解一、平移1、定义把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
2、性质(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动(2)连接各组对应点的线段平行(或在同一直线上)且相等。
二、轴对称1、定义把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2、性质(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3、判定如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4、轴对称图形把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
三、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
四、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
人教版 九年级上册 23.1 图形的旋转 培优训练(含答案)
人教版九年级23.1 图形的旋转培优训练一、选择题(本大题共10道小题)1.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是( )A.平行四边形B.矩形C.菱形D.正方形2.在平面直角坐标系中,点P(-4,2)向右平移7个单位长度得到点P1,点P1绕原点逆时针旋转90°得到点P2,则点P2的坐标是( )A.(-2,3) B.(-3,2)C.(2,-3) D.(3,-2)3. 观察图,其中可以看成是由“基本图案”通过旋转形成的共有( )A.1个B.2个C.3个D.4个4.如图,将线段AB先向右平移5个单位长度,再将所得线段绕原点顺时针旋转90°,得到线段A′B′,则点B的对应点B′的坐标是( )A.(-4,1) B.(-1,2)C.(4,-1) D.(1,-2)5.如图,Rt△OCB的斜边在y轴上,OC=3,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B′,则点B的对应点B′的坐标是( )A.(3,-1) B.(1,-3)C.(2,0) D.(3,0)6.如图,在平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是( )图7-ZT-1A.(-1,2+3) B.(-3,3)C.(-3,2+3) D.(-3,3)7. 如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AO B=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是()A.(-1,2+3) B.(-3,3)C.(-3,2+3) D.(-3,3)8.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△A BF的位置,若四边形AECF的面积为20,DE=2,则AE的长为( )A.4 B.2 5C.6 D.2 69.在平面直角坐标系中,点A的坐标为(1,3),以原点为中心,将点A顺时针旋转30°得到点A′,则点A′的坐标为( )A.(3,1) B.(3,-1) C.(2,1) D.(0,2)10. 2019·河南如图,在△OAB中,顶点O(0,0),A(-3,4),B(3,4),将△O AB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3) B.(-3,10) C.(10,-3) D.(3,-1 0)二、填空题(本大题共7道小题)11.如图,△ABC,△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE =22.将△BDE绕点B逆时针旋转后得△BD′E′,当点E′恰好落在线段AD′上时,CE′=________.12.在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A′B′C′,使各顶点仍在格点上,则其旋转角的度数是________.13.一副三角尺如图放置,将三角尺ADE绕点A逆时针旋转α(0°<α<90°),使得三角尺ADE的一边所在的直线与BC垂直,则α的度数为________.14.如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF,若AB=3,AC=2,且α+β=∠B ,则EF=________.15. 如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A逆时针旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为________ cm.16.如图,两块完全相同的含30°角的三角尺ABC和A′B′C′重合在一起,将三角尺A′B′C′绕其顶点C′逆时针旋转角α(0°<α≤90°),有以下三个结论:①当α=30°时,A′C 与AB的交点恰好为AB的中点;②当α=60°时,A′B′恰好经过点B;③在旋转过程中,始终存在AA′⊥BB′.其中正确结论的序号是__________.17.如图,AB⊥y轴,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=-3 3x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=-3 3x上,依次进行下去……若点B的坐标是(0,1),则点O12的纵坐标为________.三、解答题(本大题共5道小题)18.如图,在△ABC中,∠BAC=90°,AB=AC,D,E是BC边上的点,将△ABD绕点A逆时针旋转得到△ACD′.(1)求∠DAD′的度数;(2)当∠DAE=45°时,求证:DE=D′E.19.如图①是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长;②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外部的点D1处转到其内部的点D2处,连接D1D2,如图②,此时∠AD2C=135°,CD2=60,求BD2的长.20. 已知:如图,△ABC和△ADE均为等边三角形,连接BE,CD,F,G,H 分别为DE,BE,CD的中点.(1)当△ADE绕点A旋转时,如图①,△FGH的形状为________,并说明理由.(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图②,若AB=3,AD=2,求线段FH的长.(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值?若存在,直接写出最大值和最小值;若不存在,说明理由.21.如图,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1.求∠BPC的度数和等边三角形ABC的边长.22. 将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图①,当点E在BD上时,求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.人教版九年级23.1 图形的旋转培优训练-答案一、选择题(本大题共10道小题)1. 【答案】D [解析] 平行四边形绕其对角线的交点旋转能够与原来的图形重合的最小旋转角度数是180°,故A 错误;矩形绕其对角线的交点旋转,能够与原来的图形重合的最小旋转角度数是180°,故B 错误;菱形绕其对角线的交点旋转,能够与原来的图形重合的最小旋转角度数是180°,故C 错误;正方形绕其对角线的交点旋转,能够与原来的图形重合的最小旋转角度数是90°.故选D.2. 【答案】A [解析] 点P(-4,2)向右平移7个单位长度得到点P 1(3,2),点P 1绕原点逆时针旋转90°得到点P 2(-2,3).故选A.3. 【答案】D4. 【答案】D5. 【答案】A6. 【答案】B [解析] 如图,过点B′作B′H ⊥y 轴于点H.由题意得,OA′=A′B′=2,∠B′A′H =60°,∴∠A′B′H =30°,,3A′B′=1,B′H =12AH′=∴ ,3).3B′(-∴OH =3,∴7. 【答案】B8.【答案】D [解析].5AD =2 ∴=20,2=20,即AD 四边形AECF =S 正方形ABCD 由旋转可得,S .故选D.6=2AD2+DE2在Rt △ADE 中,AE =∴DE =2,∵9. 【答案】A [解析] 如图,过点A 作AE ⊥y 轴于点E ,过点A′作A′F ⊥x 轴于点F ,∴∠AEO =∠A′FO =90°.,3AE =1,OE =∴),3点A 的坐标为(1,∵ ∴OA =2,∠AOE =30°,由旋转可知∠AOA′=30°,OA′=OA =2,∴∠A′OF,1).3A′(∴,3OA′=1,OF =12A′F =∴=90°-30°-30°=30°, 故选A.10. 【答案】D二、填空题(本大题共7道小题)[解析] 如图,连接CE′,6+2【答案】11.∵△ABC ,△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =2,2,BD =BE =2.2AB =BC =2 ∴ ∵将△BDE 绕点B 逆时针旋转后得△BD′E′,∴D′B =BE′=BD =2,∠D′BE′=90°,∠D′BD =∠ABE′, ∴∠ABD′=∠CBE′, ∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B =45°. 过点B 作BH ⊥CE′于点H ,,2BE′=22BHE′中,BH =E′H =在Rt △ ,6=BC2-BH2在Rt △BCH 中,CH = .6+2.故答案为6+2CE′=∴12.【答案】90° [解析]找到一组对应点A ,A′,并将其与旋转中心连接起来,确定旋转角,进而得到旋转角的度数为90°.13. 【答案】15°或60° [解析] 分情况讨论:①若DE ⊥BC ,设此时直线AD 与BC 交于点F ,则∠BFA =90°-45°=45°,∴∠BAD =180°-60°-45°=75°,∴α=90°-∠BAD =15°;②若AD ⊥BC ,则∠BAD =30°,∴α=90°-∠BAD =60°.故答案为15°或60°.[解析]13【答案】14.∵α+β=∠B ,∴∠EAF =∠BAC +∠B =90°,∴△AEF 是直角三角形,且AE.13=AE2+AF2EF =∴=AB =3,AF =AC =2,[解析])6(10-2 【答案】15.如图,过点A 作AG ⊥DE 于点G .由旋转知,AD =AE ,∠DAE =90°,∠CAE =∠BAD =15°,∴∠AED =∠ADG =45°,∴∠AFD =∠AED +∠CAE =60°.(cm).2=3 AD2在Rt △ADG 中,AG =DG =(cm),6(cm),AF =2FG =2 6=AG3在Rt △AFG 中,GF =)cm.6CF =AC -AF =(10-2 ∴16. 【答案】①②③.3x ,解得x =-33[解析] 将y =1代入y =- 39+3 【答案】17. x 与x 轴所夹的锐角是30°.33,OA =2,且直线y =-3AB =∴ 10O 8=O 8O 6=O 6O 4=O 4O 2=O 2由图可知,在旋转过程中每3次一循环,其中OO .3+1=3+3=2+12O 10=O .3)=18+6 3=6×(3+12OO ∴ .3=9+3 12OO 12的纵坐标=12点O ∴三、解答题(本大题共5道小题)18. 【答案】解:(1)∵将△ABD 绕点A 逆时针旋转,得到△ACD′,∴∠DAD′=∠BAC.∵∠BAC =90°,∴∠DAD′=90°.(2)证明:∵△ABD 绕点A 逆时针旋转得到△ACD′,∴AD =AD′,∠DAD′=∠BAC =90°.∵∠DAE =45°,∴∠D′AE =∠DAD′-∠DAE =90°-45°=45°,∴∠D′AE =∠DAE.⎩⎪⎨⎪⎧AE =AE ,∠DAE =∠D′AE ,AD =AD′,在△AED 与△AED′中, ∴△AED ≌△AED′(SAS),∴DE =D′E.19. 【答案】解:(1)①当A ,D ,M 三点在同一直线上时,AM =AD +DM =40或AM =AD -DM =20.②当A ,D ,M 三点为同一直角三角形的顶点时,显然∠MAD 不能为直角.AM>0,∵=800,2-102=302-DM 2=AD 2AMD 为直角时,AM ∠当 .2AM =20 ∴ AM>0,∵=1000,2+102=302+DM 2=AD 2ADM =90°时,AM ∠当 .10AM =10 ∴ .10或10 2综上所述,满足条件的AM 的长为20 ,1(2)如图,连接CD=30,2=AD 1=90°,AD 2AD 1D ∠由题意得, .2=30 2D 1=45°,D 1D 2AD ∴∠ C =135°,2AD ∵∠ =90°,1D 2AD ∠C -2AD ∠=1D 2CD ∴∠ .6=30 (30 2)2+602=1CD ∴ =90°,2AD 1D ∠BAC =∵∠,2CAD ∠-2AD 1D ∠=2CAD ∠BAC -∴∠ .1CAD ∠=2BAD ∴∠ ,1=AD 2AB =AC ,AD ∵又 (SAS),1CAD ≌△2BAD ∴△ .6=30 1=CD 2BD ∴20. 【答案】解:(1)△FGH 是等边三角形.理由如下:如图①,连接BD ,CE ,延长BD 交CE 于点M ,设BM 交FH 于点O .∵△ABC 和△ADE 均为等边三角形, ∴AB =AC ,AD =AE ,∠BAC =∠DAE , ∴∠BAD =∠CAE , ∴△BAD ≌△CAE , ∴BD =CE ,∠ADB =∠AEC . ∵EG =GB ,EF =FD , ∴FG =12BD ,FG ∥BD . ∵DF =EF ,DH =HC , ∴FH =12CE ,FH ∥CE , ∴FG =FH .∵∠ADB +∠ADM =180°, ∴∠AEC +∠ADM =180°, ∴∠DME +∠DAE =180°. ∵∠DAE =60°.∴∠DME =120°,∴∠BMC =60°, ∴∠GFH =∠BOH =∠BMC =60°, ∴△FGH 是等边三角形.(2)如图②,连接AF ,EC .易知AF ⊥DE ,在Rt △AEF 中,AE =2,EF =DF =1, ∴AF =22-12= 3.在Rt △ABF 中,BF =AB2-AF2= 6. 同(1)可得FH =12CE ,BD =CE , ∴CE =BD =BF -DF =6-1, ∴FH =12CE =6-12. (3)存在.由(1)可知,△FGH 是等边三角形,GF =12BD ,∴△FGH 的周长=3GF =32BD . ∵AB =a ,AD =b ,AB -AD ≤BD ≤AB +AD , ∴BD 的最小值为a -b ,最大值为a +b ,∴△FGH 的周长的最大值为32(a +b ),最小值为32(a -b ).21. 【答案】解:将△BPC 绕点B 逆时针旋转60°得到△BP′A(如图).连接PP′,由旋转的性质知△BPP′为等边三角形,AP′=PC =1,BP′P =60°.∠BPP′=∠,3PP′=PB =∴ ,2=PA 2=22)3+(2=12+PP′2AP′∵在△APP′中, ∴△APP′是直角三角形,且∠AP′P =90°, ∴∠BP′A =∠BP′P +∠AP′P =60°+90°=150°,∴∠BPC =∠BP′A =150°.在Rt △APP′中,∵PA =2,AP′=1,∴∠APP′=30°.又∵∠BPP′=60°,∴∠APB=90°,在Rt△ABP中,AB=∴=PA2+PB222+(3)2,7=即等边三角形ABC的边长为. 722. 【答案】解:(1)证明:连接EG,AF,则EG=AF.由旋转的性质可得EG=BD,∴AF=BD.又∵AD=BC,∴Rt△ADF≌Rt△BCD.∴FD=CD.(2)分两种情况:①若点G位于BC的垂直平分线上,且在BC的右边,如图(a).∵GC=GB,∴∠GCB=∠GBC,∴∠GCD=∠GBA.又CD=BA,∴△GCD≌△GBA,∴DG=AG.又∵AG=AD,∴△ADG是等边三角形,∴∠DAG=60°,∴α=60°.②若点G位于BC的垂直平分线上,且在BC的左边,如图(b).同理,△ADG是等边三角形,∴∠DAG=60°.此时α=300°.综上所述,当α为60°或300°时,GC=GB.。
2021年九年级 中考数学 培优专题 图形的变化
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯2021 中考数学培优专题图形的变化一、选择题(本大题共12道小题)1. 下图是五个相同的小正方体搭成的几何体,其左视图是()2. 如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移,得到四边形A1B1C1D1,已知A(-3,5),B(-4,3),A1(3,3),则B1的坐标为()A.(1,2)B.(2,1)C.(1,4)D.(4,1)3. 在汉字“生活中的日常用品”中,是轴对称图形的有()A.2个B.3个C.4个D.5个4. 如图,△ABC中,点D在BC上,∠B=62°,∠C=53°,将点D分别以AB,AC所在直线为对称轴,画出对称点E,F,并连接AE,AF,则∠EAF的度数为()A.124°B.115°C.130°D.106°5. 如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是A.B.C.D.6. 如图,两个半圆分别以P,O为圆心,它们成中心对称,点A1,P,B1,B2,O,A2在同一条直线上,则对称中心为()A.A2P的中点B.A1B2的中点C.A1O的中点D.PO的中点7. 在数学课上,老师提出如下问题:如图,已知△ABC中,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PB=BC.下面是四名同学的作法,其中正确的是()8. 如图,分别以线段AB的两端点A,B为圆心,大于12AB的长为半径画弧,在线段AB的两侧分别交于点E,F,作直线EF交AB于点O.在直线EF上任取一点P(不与点O重合),连接PA,PB,则下列结论不一定成立的是()A.PA=PB B.OA=OBC.OP=OF D.PO⊥AB9. 如图是一个由5个相同正方体组成的立体图形,它的主视图是A.B.C.D.10. 图中序号(1)(2)(3)(4)对应的四个三角形都是由△ABC进行了一次变换之后得到的,其中是通过轴对称变换得到的是()A.(1)B.(2)C.(3)D.(4)11. 如图是由4个相同的小正方体搭成的几何体,则该几何体的主视图是A.B.C.D.12. 如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°-αB.αC.180°-αD.2α二、填空题(本大题共12道小题)13. 如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF,若AB=3,AC=2,且α+β=∠B,则EF=.14. 如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为.15. 如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=________°.16. 如图,有一张矩形纸片ABCD,AB=8,AD=6,先将矩形纸片ABCD折叠,使边AD落在边AB上,点D落在点E处,折痕为AF;再将△AEF沿EF翻折,AF与BC相交于点G,则△GCF的周长为.17. 画图:试画出下列正多边形的所有对称轴,并完成表格.根据上表,猜想正n边形有条对称轴.18. 如图所示,在Rt△ABC中,∠B=90°,AB=2 5,BC= 5.将△ABC绕点A 逆时针旋转90°得到△AB′C′,连接B′C,则B′C=________.19. 数学活动课上,两名同学围绕作图问题:“如图①,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥直线l于点Q.”分别作出了如图②③所示的两个图形,其中作法正确的为图(填“②”或“③”).20. 如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为____________.21. 如图,两块完全相同的含30°角的三角尺ABC和A′B′C′重合在一起,将三角尺A′B′C′绕其顶点C′逆时针旋转角α(0°<α≤90°),有以下三个结论:①当α=30°时,A′C与AB的交点恰好为AB的中点;②当α=60°时,A′B′恰好经过点B;③在旋转过程中,始终存在AA′⊥BB′.其中正确结论的序号是__________.22. 如果将点P绕定点M旋转180°后与点Q重合,那么点P与点Q关于点M对称,定点M叫做对称中心,此时,M是线段PQ的中点.如图3,在平面直角坐标系中,△ABO的顶点A,B,O的坐标分别为(1,0),(0,1),(0,0),点P1,P2,P3,…中的相邻两点都关于△ABO的一个顶点对称,点P1与点P2关于点A 对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称……且这些对称中心依次循环.已知点P1的坐标是(1,1),则点P2020的坐标为________.23. 如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B 在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为______________(用含t的代数式表示).24. 如图,AB⊥y轴,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=-33x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=-33x上,依次进行下去……若点B的坐标是(0,1),则点O12的纵坐标为________.三、作图题(本大题共2道小题)25. 如图,已知等腰ABC △顶角30A ∠=︒.(1)在AC 上作一点D ,使AD BD =(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨); (2)求证:BCD △是等腰三角形.26. 如图,已知△ABC.(1)用直尺和圆规分别作出AB ,AC 边的垂直平分线l 1,l 2; (2)若直线l 1,l 2的交点为O ,连接OB ,OC.求证:OB=OC.四、解答题(本大题共6道小题)27. 如图①,等腰直角三角形OEF 的直角顶点O 为正方形ABCD 的中心,点C ,D 分别在OE 和OF 上,现将△OEF 绕点O 逆时针旋转角α(0°<α<90°),连接AF ,DE (如图K32-②).(1)在图②中,∠AOF= ;(用含α的式子表示) (2)在图②中,猜想AF 与DE 的数量关系,并证明你的结论.①②28. [材料阅读]在平面直角坐标系中,以任意两点P (x 1,y 1),Q (x 2,y 2)为端点的线段的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.[运用](1)已知点A (-2,1)和点B (4,-3),则线段AB 的中点坐标是________;已知点M (2,3),线段MN 的中点坐标是(-2,-1),则点N 的坐标是________. (2)已知平面上四点A (0,0),B (10,0),C (10,6),D (0,6).直线y =mx -3m +2将四边形ABCD 分成面积相等的两部分,则m 的值为________.(3)在平面直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D ,可使以点A ,B ,C ,D 为顶点的四边形为平行四边形,求点D 的坐标.29. 如图1,△ABC 中,∠ACB=90°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E.(1)若∠BAC=50°,求∠EDA 的度数; (2)求证:直线AD 是线段CE 的垂直平分线.30. 如图,等腰直角三角形OEF 的直角顶点O 为正方形ABCD 的中心,点C ,D分别在OE 和OF 上,现将△OEF 绕点O 逆时针旋转角α(0°<α<90°),连接AF ,DE(如图②).(1)在图②中,∠AOF=________;(用含α的式子表示)(2)猜想图②中AF与DE的数量关系,并证明你的结论.31. 如图,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1).点D是线段BC上的动点(与端点B、C不重合),过点D作直线12y x b=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.32. 已知:如图,在四边形ABCD中,∠ADC=60°,∠ABC=30°,AD=CD. 求证:BD2=AB2+BC2.2021 中考数学培优专题图形的变化-答案一、选择题(本大题共12道小题)1. 【答案】A【解析】物体的左视图是光线从左往右而得到的正投影.此几何体的左视图的正方形是两排,左边一排是两层,右边一排是一层.故选A.2. 【答案】B[解析]由A(-3,5),A1(3,3)可知四边形ABCD先向下平移2个单位,再向右平移6个单位得到四边形A1B1C1D1,∵B(-4,3),∴B1的坐标为(2,1).3. 【答案】B[解析] 根据轴对称图形的定义,在汉字“生活中的日常用品”中,是轴对称图形的有“中”“日”“品”3个.故选B.4. 【答案】C[解析] 连接AD,如图.∵点D分别以AB,AC所在直线为对称轴,画出对称点E,F,∴∠EAB=∠BAD,∠F AC=∠CAD.∵∠B=62°,∠C=53°,∴∠BAC=∠BAD+∠DAC=180°-62°-53°=65°.∴∠EAF=2∠BAC=130°.故选C.5. 【答案】B【解析】三视图的左视图,应从左面看,故选B6. 【答案】D[解析] 因为P,O是对称点,所以PO的中点是对称中心.7. 【答案】C[解析] ∵P A+PB=BC,而PC+PB=BC,∴P A=PC.∴点P为线段AC的垂直平分线与BC的交点.显然只有选项C符合题意.8. 【答案】C[解析] 由作图可知,EF垂直平分AB,因此可得OA=OB,PO⊥AB,由线段垂直平分线的性质可得PA=PB,但不能得到OP=OF.9. 【答案】D【解析】从正面看易得第一层有4个正方形,第二层有一个正方形,如图所示:故选D.10. 【答案】A11. 【答案】C【解析】从正面看,下面一行是横放3个正方体,上面一行是一个正方体.如图所示:故选C.12. 【答案】C[解析] 由题意可得∠CBD=α,∠C=∠EDB.∵∠EDB+∠ADB=180°,∴∠C+∠ADB=180°.由四边形的内角和定理,得∠CAD+∠CBD=180°.∴∠CAD=180°-∠CBD=180°-α.故选C.二、填空题(本大题共12道小题)13. 【答案】[解析]∵α+β=∠B,∴∠EAF=∠BAC+∠B=90°,∴△AEF是直角三角形,∵AE=AB=3,AF=AC=2,∴EF==.14. 【答案】3[解析]∵DE=EF=AD=3,∠D=90°,∴AE2=AD2+DE2=18,∴AB=AE==3.15. 【答案】20[解析] ∵AB=AB′,∠BAB′=40°,∴∠ABB′=70°.∵B′C′⊥AB,∴∠BB′C′=20°.16. 【答案】4+2[解析]在题图③中,由折叠的性质可知∠A=45°,AD=DF,∴FC=2,∠AFC=45°,∴CG=2,∴FG=2,∴△GCF的周长为4+2.17. 【答案】解:如图.故填3,4,5,6,n.18. 【答案】5[解析] 由勾股定理,得AC=AB2+BC2=5.过点C作CE⊥AB′于点E,则四边形ABCE是矩形,∴AE=BC= 5.又AB′=AB=2 5,∴AE =EB′=5,∴CE垂直平分AB′,∴B′C=AC=5.19. 【答案】③20. 【答案】(-a,-b+2)[解析] 如图,过点A作AD⊥y轴于点D,过点A′作A′D′⊥y轴于点D′,则△ACD≌△A′CD′,∴A′D′=AD=a,CD′=CD=-b +1,∴OD′=-b+2,∴点A′的坐标为(-a,-b+2).21. 【答案】①②③22. 【答案】(1,-3)[解析] 由题意可得点P2(1,-1),P3(-1,3),P4(1,-3),P5(1,3),P6(-1,-1),P7(1,1),可知6个点一个循环,2020÷6=336……4,故点P2020的坐标与点P4的坐标相同,为(1,-3).23. 【答案】23t.思路如下:如图,等边三角形EFG的高=AB=t,计算得边长23.24. 【答案】9+33 [解析] 将y =1代入y =-33x ,解得x =- 3.∴AB =3,OA =2,且直线y =-33x 与x 轴所夹的锐角是30°.由图可知,在旋转过程中每3次一循环,其中OO 2=O 2O 4=O 4O 6=O 6O 8=O 8O 10=O 10O 12=2+3+1=3+ 3. ∴OO 12=6×(3+3)=18+6 3. ∴点O 12的纵坐标=12OO 12=9+3 3.三、作图题(本大题共2道小题)25. 【答案】(1)如图,点D 为所作.(2)∵AB AC =,∴1(18036)722ABC C ︒=-︒∠∠==︒,∵DA DB =, ∴36ABD A ∠=∠=︒,∴363672BDC A ABD ∠=∠+∠=︒+=︒︒, ∴BDC C ∠=∠, ∴BCD △是等腰三角形.26. 【答案】解:(1)如图所示.(2)证明:如图,连接OA.∵l1是AB的垂直平分线,∴OA=OB.同理,OA=OC.∴OB=OC.四、解答题(本大题共6道小题)27. 【答案】解:(1)90°-α[解析]∵△OEF绕点O逆时针旋转角α,∴∠DOF=∠COE=α,∵四边形ABCD为正方形,∴∠AOD=90°,∴∠AOF=90°-α.故答案为90°-α.(2)AF=DE.证明:∵四边形ABCD为正方形,∴∠AOD=∠COD=90°,OA=OD,∵∠DOF=∠COE=α,∴∠AOF=∠DOE.∵△OEF为等腰直角三角形,∴OF=OE.在△AOF和△DOE中,∴△AOF≌△DOE(SAS),∴AF=DE.28. 【答案】解:(1)(1,-1)(-6,-5)(2)1 2(3)设点D的坐标为(x,y).若以AB为对角线,AC,BC为邻边的四边形为平行四边形,则AB,CD的中点重合,∴⎩⎪⎨⎪⎧1+x 2=-1+32,4+y 2=2+12,解得⎩⎨⎧x =1,y =-1;若以BC 为对角线,AB ,AC 为邻边的四边形为平行四边形,则AD ,BC 的中点重合,∴⎩⎪⎨⎪⎧-1+x 2=3+12,2+y 2=1+42,解得⎩⎨⎧x =5,y =3;若以AC 为对角线,AB ,BC 为邻边的四边形为平行四边形,则BD ,AC 的中点重合,∴⎩⎪⎨⎪⎧3+x 2=-1+12,1+y 2=2+42,解得⎩⎨⎧x =-3,y =5.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5).29. 【答案】解:(1)∵∠BAC=50°,AD 平分∠BAC ,∴∠EAD=∠BAC=25°. ∵DE ⊥AB , ∴∠AED=90°. ∴∠EDA=90°-25°=65°. (2)证明:∵DE ⊥AB ,∴∠AED=90°=∠ACB. ∵AD 平分∠BAC , ∴∠DAE=∠DAC. 又∵AD=AD ,∴△AED ≌△ACD.∴AE=AC ,DE=DC.∴点A ,D 都在线段CE 的垂直平分线上. ∴直线AD 是线段CE 的垂直平分线.30. 【答案】解:(1)∵△OEF 绕点O 逆时针旋转角α, ∴∠DOF =∠COE =α. ∵四边形ABCD 为正方形, ∴∠AOD =90°, ∴∠AOF =90°-α. 故答案为90°-α. (2)猜想:AF =DE.证明:∵四边形ABCD 为正方形, ∴∠AOD =∠COD =90°,OA =OD. ∵∠DOF =∠COE =α, ∴∠AOF =∠DOE.∵△OEF 为等腰直角三角形, ∴OF =OE.在△AOF 和△DOE 中,⎩⎨⎧OA =OD ,∠AOF =∠DOE ,OF =OE ,∴△AOF ≌△DOE(SAS), ∴AF =DE.31. 【答案】(1)①如图2,当E 在OA 上时,由12y x b =-+可知,点E 的坐标为(2b ,0),OE=2b .此时S =S △ODE =112122OE OC b b ⋅=⨯⨯=.②如图3,当E 在AB 上时,把y =1代入12y x b =-+可知,点D 的坐标为(2b -2,1),CD =2b -2,BD =5-2b .把x =3代入12y x b =-+可知,点E 的坐标为3(3,)2b -,AE =32b -,BE =52b -.此时S =S 矩形OABC -S △OAE - S △BDE -S △OCD=1315133()()(52)1(22)22222b b b b -⨯-----⨯⨯-252b b =-+.(2)如图4,因为四边形O 1A 1B 1C 1与矩形OABC 关于直线DE 对称,因此DM =DN ,那么重叠部分是邻边相等的平行四边形,即四边形DMEN 是菱形. 作DH ⊥OA ,垂足为H .由于CD =2b -2,OE =2b ,所以EH =2.设菱形DMEN 的边长为m .在Rt △DEH 中,DH =1,NH =2-m ,DN =m ,所以12+(2-m )2=m 2.解得54m =.所以重叠部分菱形DMEN 的面积为54.图2 图3 图4考点伸展把本题中的矩形OABC 绕着它的对称中心旋转,如果重叠部分的形状是菱形(如图5),那么这个菱形的最小面积为1,如图6所示;最大面积为53,如图7所示.图5 图6 图732. 【答案】证明:如图,将△ADB 绕点D 顺时针旋转60°,得到△CDE ,连接BE ,则∠ADB=∠CDE,∠A=∠DCE,AB=CE,BD=DE.又∵∠ADC=60°,∴∠BDE=60°,∴△DBE是等边三角形,∴BD=BE.又∵∠ECB=360°-∠BCD-∠DCE=360°-∠BCD-∠A=360°-(360°-∠ADC-∠ABC)=90°,∴△ECB是直角三角形,∴BE2=CE2+BC2,即BD2=AB2+BC2.一天,毕达哥拉斯应邀到朋友家做客。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学培优测试题(七)图形的变换 出题人:訾秦英
培优班级: 姓名 考场: 座号: 一、选择题(每小题3分,满分30分 )
1、如下是一种电子计分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2在平面直角坐标系中,点(3,-2)关于原点对称的点是( ) A .(-3,2) B .(-3,-2) C .(3,-2) D .(3,2)
3.如图所示,三架飞机P,Q,R 保持编队飞行,某时刻在坐标系中的坐标分别为
(−1,1),(−3,1),(−1,−1),30秒后,飞机P 飞到P′(4,3)位置,则飞机Q,R 的位置Q′,R′分别为( )
A. Q′(2,3),R′(4,1)
B. Q′(2,3),R′(2,1)
C. Q′(2,2),R′(4,1)
D. Q′(3,3),R′(3,1)
第3题 第4题 第5题
4.如图,已知在△ABC 中,∠BAC>90°,点D 为BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得点C 恰好落在BA 的延长线上的
点F 处,连结AD,则下列结论不一定正确的是( )
A.AE=EF
B.AB=2DE
C.△ADF 和△ADE 的面积相等
D.△ADE 和△FDE 的面积相等 5.数学兴趣小组开展以下折纸活动:
①对折矩形ABCD ,使AD 和BC 重合,得到折痕EF ,把纸片展平;
②再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN.
观察,探究可以得到∠ABM 的度数是( )
A .25°
B .30°
C .36°
D .45° 6. 如图,在平面直角坐标系中,点 A ,C 在 x 轴上,点 C 的坐标为 (﹣1,0),AC=2.将 Rt △ABC 先绕点 C 顺时针旋转 90°,再向右平移 3 个单位长度, 则变换后点 A 的
对应点坐标是 ( )
A .(2,2)
B .(1,2)
C .(﹣1,2)
D .(2,﹣1)
第6题 第7题 第8题
为圆心,适当长度为半径作弧,分别交边为圆心,大于DE .(
﹣.(
,﹣
,.(
﹣
12.如图,在平面直角坐标系中,△ABC 的顶点A 在第一象限,点B 、C 的坐标分别为(2,1)、(6,1),∠BAC=90°,AB=AC ,直线AB 交x 轴于点P.若△ABC 与△A′B′C′关于点P 成中心对称,则点A′的坐标为_________ .
第12题 第13题
13. 如图,在直角三角形ABC 中,∠C=90°,BC=6,AC=8,点D 是AC 边上一点,将△BCD
沿BD 折叠,使点C 落在AB 边的E 点,那么AE 的长度是__________
14. 如图,在矩形纸片ABCD 中,AB=2,AD=3,点E 是AB 的中点,点F 是AD 边上的一
个动点,将△AEF 沿EF 所在直线翻折,得到△A ′EF ,则A ′C 的长的最小值是_____
第14题 第15题
15.(2019河南中考).如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E .当△A′EF 为直角三角形时,AB 的长为________. 三.解答题(共六大题,共75分)
16.(12分)如图,在Rt △ABC 中,∠A =90°,∠C=30°.将△ABC 绕点B 顺时针
旋转60°得到△A BC '', 其中点A ', C '分别是点A ,C 的对应点.
(1)作出△A BC ''(要求尺规作图,不写作法,保留作图痕迹); (2)连接AA ',求∠C A A ''的度数.
17.(12分)如图,矩形ABCD 中,AB >AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE . (1)求证:△ADE ≌△CED ;
(2)求证:△DEF 是等腰三角形.
18.(12分)如图,在平面直角坐标系中,已知△ABC 的三个顶
点坐标分别是A (1,1),B (4,1),C (3,3) (1)将△ABC 向下平移5个单位后得到△111C B A ,请画出△111C B A ;
(2)将△ABC 绕原点O 逆时针旋转90°后得到△
222C B A ,
请画出△222C B A ;
(3)判断以O ,1A ,B 为顶点的三角形的形状(无须说明理由)
19(12分).将一个直角三角形纸片ABO 放置在平面直角坐标系中,点A (3,0),点B (0,1),点O (0,0).P 是边AB 上的一点(点P 不与点A ,B 重合),沿着OP 折叠该纸片,得点A 的对应点A'.
(1)如图①,当点A′在第一象限,且满足A′B ⊥OB 时,求点A′的坐标; (2)如图②,当P 为AB 中点时,求A′B 的长;
20. (13分)如图,已知︒=∠60AOB ,在A
O B ∠的平分线OM 上有一点C ,将一个︒120角的顶点与点C 重合,它的两条边分别与直线OA 、OB 相交于点D 、E .
(1)当DCE ∠ 绕点C 旋转到CD 与OA 垂直时如图),请猜想OD OE +与OC 的数量关系,并说明理由;
(2)当DCE ∠绕点C 旋转到CD 与OA 不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;
21(14分).(1)问题发现如图1,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE. 填空:
①∠AEB 的度数为___;
②线段AD ,BE 之间的数量关系为___. (2)拓展探究
如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90∘,点A ,D ,E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由。
(3)解决问题
如图3,在正方形ABCD 中,CD=2,若点P 满足PD=1,且∠BPD=90∘,请直接写出点
A 到BP 的距离。
原班级: 姓名: 考场: 座号:
初三数学培优测试题(七)
一选择题(每题3分,共30分)
二填空题(每题3分,共30分)
11. ; 12. ; 13 ;14. ;
15. 。
三解答题(共75分)
16、(12分)
17、(12分).
18、(12分)
19、(12分)
20、(13分)
21、(14分)。