2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题2 突破点5 数列求和及其综合应用答案

合集下载

2018年高考数学二轮复习教师用书(浙江) 名师寄语 第1点 归纳常考知识构建主干体系含答案

2018年高考数学二轮复习教师用书(浙江) 名师寄语 第1点 归纳常考知识构建主干体系含答案

一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过一轮复习,同学们大都掌握了基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题,而二轮复习承上启下,是知识系统化、条理化,促进灵活运用,提高数学素养的关键时期,为进一步突出重点,攻破难点,提高二轮复习的时效性,建议专题复习时,处理好以下3点:第1点 归纳常考知识,构建主干体系由于二轮复习时间较短,复习中不可能面面俱到,这就需要我们依据《考试大纲》和《考试说明》,结合浙江近几年的高考试题进行主干网络体系的构建,并紧紧抓住高考的“热点”,有针对性地训练.例如:“三角函数”在高考中的主要考点是什么?回顾近三年的高考试题,不难发现,三角函数一般会考两类题:一类题考查解三角形(正弦定理、余弦定理、面积公式),一类题考查三角变换(和(差)角公式、倍角公式、辅助角公式、三角函数的图象与性质).【例1】 (经典高考题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 【导学号:68334000】注:本书所有主观题附规范解答及评分细则[解] (1)由已知及正弦定理得2cos C (sin A cos B +sin B cos A )=sin C ,2分即2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .4分 可得cos C =12, 因为C 为△ABC 的内角,所以C =π3. 7分 (2)由已知得12ab sin C =332. 又C =π3,所以ab =6. 9分由已知及余弦定理得a 2+b 2-2ab cos C =7,故a 2+b 2=13,从而(a +b )2=25.13分 所以△ABC 的周长为5+7. 14分【名师点评】 边角互化是利用正、余弦定理解题的有效途径,合理应用定理及其变形可化繁为简,提高运算效率,如本题也可以利用结论“a cos B +b cos A =c ”直接得出cos C =12. 【例2】 已知函数f (x )=(sin 2x +cos 2x )2-2sin 22x .(1)求f (x )的最小正周期;(2)若函数y =g (x )的图象是由y =f (x )的图象先向右平移π8个单位长度,再向上平移1个单位长度得到的,当x ∈⎣⎢⎡⎦⎥⎤0,π4时,求y =g (x )的单调递增区间和最小值.[解题指导] f (x )―――――→三角恒等变换f (x )=A sin(ωx +φ)――→平移变换y =g (x )求g (x )的单调递增区间和最小值.[解] f (x )=(sin 2x +cos 2x )2-2sin 22x=2sin 2x cos 2x +cos 22x -sin 22x=sin 4x +cos 4x=2sin ⎝ ⎛⎭⎪⎫4x +π4. 4分(1)函数f (x )的最小正周期为T =2π4=π2. 6分(2)由题意,知g (x )=2sin ⎣⎢⎡⎦⎥⎤4⎝⎛⎭⎪⎫x -π8+π4+1=2sin ⎝ ⎛⎭⎪⎫4x -π4+1. 8分 令-π2+2k π≤4x -π4≤π2+2k π(k ∈Z ), 解得-π16+k 2π≤x ≤3π16+k 2π(k ∈Z ). 10分当k =0时,得-π16≤x ≤3π16. 故当x ∈⎣⎢⎡⎦⎥⎤0,π4时,函数g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤0,3π16, 12分 显然g (x )的单调递减区间是⎝ ⎛⎦⎥⎤3π16,π4,易知g (x )min =g (0)=0. 14分 【名师点评】 利用和(差)角公式、倍角公式、辅助角公式将含有多个不同的三角函数式转化为y =A sin(ωx +φ)的形式,再利用三角函数的性质求其单调区间、最值等问题.通过上述两例,我们可以发现高考对“三角函数”考什么、如何考等问题,明确地构建出了本部分知识的主干知识体系.总之,对主干知识的确定有两种途径:第一,跟着老师去复习,一般来说,老师对主干知识的把握比较准确;第二,自己多看、多做近几年的高考题,从而感悟高考考什么,怎么考,进而能使自己把握主干知识,从而进行针对性地二轮复习.。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题5 圆锥曲线的定义、方程、几何性质

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题5  圆锥曲线的定义、方程、几何性质

突破点12圆锥曲线的定义、方程、几何性质(对应学生用书第44页)[核心知识提炼]提炼1圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|). (2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|).(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于M (l 为抛物线的准线). 提炼2 圆锥曲线的重要性质(1)椭圆、双曲线中a ,b ,c 之间的关系①在椭圆中:a 2=b 2+c 2;离心率为e =ca=1-b 2a 2; ②在双曲线中:c 2=a 2+b 2;离心率为e =ca=1+b 2a2. (2)双曲线的渐近线方程与焦点坐标①双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ;焦点坐标F 1(-c,0),F 2(c,0);②双曲线y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程为y =±abx ,焦点坐标F 1(0,-c ),F 2(0,c ).(3)抛物线的焦点坐标与准线方程①抛物线y 2=±2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫±p 2,0,准线方程为x =∓p 2;②抛物线x 2=±2py (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫0,±p 2,准线方程为y =∓p2.提炼3弦长问题(1)直线与圆锥曲线相交时的弦长斜率为k 的直线与圆锥曲线交于点A (x 1,y 1),B (x 2,y 2)时,|AB |=1+k 2|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2或|AB |=1+⎝ ⎛⎭⎪⎫1k 2|y 1-y 2|=1+⎝ ⎛⎭⎪⎫1k 2y 1+y 22-4y 1y 2.(2)抛物线焦点弦的几个常用结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则①x 1x 2=p 24,y 1y 2=-p 2;②弦长|AB |=x 1+x 2+p =2p sin 2α(α为弦AB 的倾斜角);③1|FA |+1|FB |=2p;④以弦AB为直径的圆与准线相切.[高考真题回访]回访1 椭圆及其性质1.(2017·浙江高考)椭圆x 29+y 24=1的离心率是( )A.133B.53C.23D.59B [∵椭圆方程为x 29+y 24=1,∴a =3,c =a 2-b 2=9-4= 5. ∴e =c a =53. 故选B.]2.(2016·浙江高考)已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1A [C 1的焦点为(±m 2-1,0),C 2的焦点为 (±n 2+1,0), ∵C 1与C 2的焦点重合,∴m 2-1=n 2+1,∴m 2=n 2+2,∴m 2>n 2. ∵m >1,n >0,∴m >n .∵C 1的离心率e 1=m 2-1m ,C 2的离心率e 2=n 2+1n ,∴e 1e 2=m 2-1m ·n 2+1n=m 2-n 2+mn =m 2-n 2+m 2n 2=n 2+2n 2+n 2=n 4+2n 2+1n 4+2n 2>1=1.]3.(2015·浙江高考)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c,0)关于直线y =bcx 的对称点Q 在椭圆上,则椭圆的离心率是________.22 [设椭圆的另一个焦点为F 1(-c,0),如图,连接QF 1,QF ,设QF 与直线y =bcx 交于点M .由题意知M 为线段QF 的中点,且OM ⊥FQ . 又O 为线段F 1F 的中点, ∴F 1Q ∥OM ,∴F 1Q ⊥QF ,|F 1Q |=2|OM |. 在Rt △MOF 中,tan ∠MOF =|MF ||OM |=bc,|OF |=c , 可解得|OM |=c 2a ,|MF |=bca,故|QF |=2|MF |=2bc a ,|QF 1|=2|OM |=2c2a.由椭圆的定义得|QF |+|QF 1|=2bc a +2c2a=2a ,整理得b =c ,∴a =b 2+c 2=2c , 故e =c a =22.] 4.(2014·浙江高考)如图12­1,设椭圆C :x 2a 2+y 2b2=1(a >b >0),动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.图12­1(1)已知直线l 的斜率为k ,用a ,b ,k 表示点P 的坐标;(2)若过原点O 的直线l 1与l 垂直,证明:点P 到直线l 1的距离的最大值为a -b .[解] (1)设直线l 的方程为y =kx +m (k <0),由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y2b2=1,消去y ,得(b 2+a 2k 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0.2分由于l 与椭圆C 只有一个公共点,故Δ=0,即b 2-m 2+a 2k 2=0,解得点P 的坐标为⎝ ⎛⎭⎪⎫-a 2kmb 2+a 2k 2,b 2m b 2+a 2k 2. 4分又点P 在第一象限,故点P 的坐标为⎝ ⎛⎭⎪⎫-a 2k b 2+a 2k2,b 2b 2+a 2k 2. 6分(2)证明:由于直线l 1过原点O 且与l 垂直,故直线l 1的方程为x +ky =0,所以点P 到直线l 1的距离d =⎪⎪⎪⎪⎪⎪-a 2k b 2+a 2k2+b 2k b 2+a 2k 21+k2, 8分整理,得d =a 2-b 2b 2+a 2+a 2k 2+b 2k2. 10分因为a 2k 2+b 2k2≥2ab ,所以a 2-b 2b 2+a 2+a 2k 2+b 2k2≤a 2-b 2b 2+a 2+2ab=a -b , 12分当且仅当k 2=ba时等号成立.所以,点P 到直线l 1的距离的最大值为a -b . 15分回访2 双曲线及其性质5.(2016·浙江高考)设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________.(27,8) [∵双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,∴|F 1F 2|=4,||PF 1|-|PF 2||=2.若△F 1PF 2为锐角三角形,则由余弦定理知|PF 1|2+|PF 2|2-16>0,可化为(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|>16①.由||PF 1|-|PF 2||=2,得(|PF 1|+|PF 2|)2-4|PF 1||PF 2|=4.故2|PF 1||PF 2|=PF 1|+|PF 22-42,代入不等式①可得(|PF 1|+|PF 2|)2>28,解得|PF 1|+|PF 2|>27.不妨设P 在左支上,∵|PF 1|2+16-|PF 2|2>0,即(|PF 1|+|PF 2|)·(|PF 1|-|PF 2|)>-16,又|PF 1|-|PF 2|=-2, ∴|PF 1|+|PF 2|<8.故27<|PF 1|+|PF 2|<8.]6.(2015·浙江高考)双曲线x 22-y 2=1的焦距是________,渐近线方程是________.2 3 y =±22x [由双曲线标准方程,知双曲线焦点在x 轴上,且a 2=2,b 2=1,∴c 2=a 2+b 2=3,即c =3,∴焦距2c =23,渐近线方程为y =±b a x ,即y =±22x .] 7.(2014·浙江高考)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|PA |=|PB |,则该双曲线的离心率是________.52 [双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax . 由⎩⎪⎨⎪⎧y =b ax ,x -3y +m =0,得A ⎝⎛⎭⎪⎫am 3b -a ,bm 3b -a ,由⎩⎪⎨⎪⎧y =-b a x ,x -3y +m =0,得B ⎝⎛⎭⎪⎫-am a +3b ,bm a +3b ,所以AB 的中点C 坐标为⎝ ⎛⎭⎪⎫a 2m9b 2-a 2,3b 2m 9b 2-a 2.设直线l :x -3y +m =0(m ≠0), 因为|PA |=|PB |,所以PC ⊥l , 所以k PC =-3,化简得a 2=4b 2.在双曲线中,c 2=a 2+b 2=5b 2,所以e =ca =52.] 回访3 抛物线及其性质8.(2015·浙江高考)如图12­2,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )图12­2A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1 C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1A [由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于|BC ||AC |.由抛物线方程知焦点F (1,0),作准线l ,则l 的方程为x =-1.∵点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y轴分别交于点N ,M .由抛物线定义,得|BM |=|BF |-1,|AN |=|AF |-1.在△CAN 中,BM ∥AN ,∴|BC ||AC |=|BM ||AN |=|BF |-1|AF |-1.]9.(2016·浙江高考)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 点到y 轴的距离是________.9 [设点M 的横坐标为x ,则点M 到准线x =-1的距离为x +1,由抛物线的定义知x +1=10,∴x =9,∴点M 到y 轴的距离为9.]10.(2016·浙江高考)如图12­3,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1. (1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.[解] (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离, 由抛物线的定义得p2=1,即p =2.4分(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1. 因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4x ,x =sy +1消去x 得y 2-4sy -4=0,6分故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .7分又直线AB 的斜率为2t t 2-1,故直线FN 的斜率为-t 2-12t ,从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t ,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t . 8分设M (m,0),由A ,M ,N 三点共线得2tt 2-m=2t +2tt 2-t 2+3t 2-1,于是m =2t 2t 2-1=2+2t 2-1, 11分所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).15分(对应学生用书第46页)热点题型1 圆锥曲线的定义、标准方程题型分析:圆锥曲线的定义、标准方程是高考常考内容,主要以选择、填空的形式考查,解题时分两步走:第一步,依定义定“型”,第二步,待定系数法求“值”.【例1】 (1)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) 【导学号:68334125】 A .(-1,3) B .(-1,3) C .(0,3)D .(0,3)(2)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72B .3 C.52D .2(1)A (2)B [(1)若双曲线的焦点在x 轴上,则⎩⎪⎨⎪⎧m 2+n >0,3m 2-n >0.又∵(m 2+n )+(3m 2-n )=4,∴m 2=1,∴⎩⎪⎨⎪⎧1+n >0,3-n >0,∴-1<n <3.若双曲线的焦点在y 轴上,则双曲线的标准方程为y 2n -3m 2-x 2-m 2-n =1,即⎩⎪⎨⎪⎧n -3m 2>0,-m 2-n >0,即n >3m 2且n <-m 2,此时n 不存在.故选A.(2)如图所示,因为FP →=4FQ →,所以|PQ ||PF |=34,过点Q 作QM ⊥l 垂足为M ,则MQ ∥x 轴,所以|MQ |4=|PQ ||PF |=34,所以|MQ |=3,由抛物线定义知|QF |=|QM |=3.][方法指津]求解圆锥曲线标准方程的方法是“先定型,后计算”1.定型,就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程.2.计算,即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线常设为y 2=2ax 或x 2=2ay (a ≠0),椭圆常设mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0).[变式训练1] (1)经过点(2,1),且渐近线与圆x 2+(y -2)2=1相切的双曲线的标准方程为( ) A.x 2113-y 211=1 B.x 22-y 2=1 C.y 2113-x 211=1 D.y 211-x 2113=1 (2)(2017·金华十校第一学期调研)已知抛物线C :y 2=2px (p >0),O 为坐标原点,F 为其焦点,准线与x 轴交点为E ,P 为抛物线上任意一点,则|PF ||PE |()图12­4A .有最小值22B .有最小值1C .无最小值D .最小值与p 有关(1)A (2)A [(1)设双曲线的渐近线方程为y =kx ,即kx -y =0,由题意知|-2|k 2+1=1,解得k =±3,则双曲线的焦点在x 轴上,设双曲线方程为x 2a 2-y 2b2=1,则有⎩⎪⎨⎪⎧22a 2-12b 2=1,ba =3,解得⎩⎪⎨⎪⎧a 2=113,b 2=11,故选A.(2)过点P 作PF ′垂直于准线交准线于F ′.设P ⎝ ⎛⎭⎪⎫y 22p ,y ,故|PF ′|=y 22p +p 2,|EF ′|=y ,因为|EF ′||PF ′|=1y 2p +p 2y≤1,此时|PF ||PE |有最小值22,故选A.] 热点题型2 圆锥曲线的几何性质题型分析:圆锥曲线的几何性质是高考考查的重点和热点,其中求圆锥曲线的离心率是最热门的考点之一,建立关于a ,c 的方程或不等式是求解的关键.【例2】 (1)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13B.12C.23D.34(2)(2017·杭州第二次质检)设抛物线y 2=2px (p >0)的焦点为F ,点A ,B 在抛物线上,且∠AFB =120°,弦AB 的中点M 在准线l 上的射影为M 1,则|MM 1||AB |的最大值为________. (1)A (2)33[(1)如图所示,由题意得A (-a,0),B (a,0),F (-c,0).由PF ⊥x 轴得P ⎝⎛⎭⎪⎫-c ,b 2a .设E (0,m ),又PF ∥OE ,得|MF ||OE |=|AF ||AO |, 则|MF |=m a -ca.①又由OE ∥MF ,得12|OE ||MF |=|BO ||BF |,则|MF |=m a +c2a. ②由①②得a -c =12(a +c ),即a =3c ,所以e =c a =13.故选A.(2)如图所示,由抛物线的定义以及梯形的中位线定理得|MM 1|=|AF |+|BF |2,在△ABF 中,由余弦定理得|AB |2=|AF |2+|BF |2-2|AF |·|BF |cos 2π3=|AF |2+|BF |2+|AF |·|BF |=(|AF |+|BF |)2-|AF |·|BF |≥(|AF |+|BF |)2-⎝⎛⎭⎪⎫|AF |+|BF |22=3|MM 1|2,当且仅当|AF |=|BF |时,等号成立,故|MM 1||AB |取得最大值33.][方法指津]1.求椭圆、双曲线离心率(离心率范围)的方法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求c a的值. 2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得. (2)用法:①可得b a 或a b的值.②利用渐近线方程设所求双曲线的方程.[变式训练2] (1)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3D .2(2)(名师押题)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与椭圆交于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则椭圆的离心率为( )【导学号:68334126】A.22 B .2-3 C.5-2 D.6- 3=b 2a . (1)A (2)D [(1)法一:如图,因为MF 1与x 轴垂直,所以|MF 1|又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =c a = 2.法二:如图,因为MF 1⊥x 轴,所以|MF 1|=b 2a . 在Rt △MF 1F 2中,由sin ∠MF 2F 1=13得tan ∠MF 2F 1=24.所以|MF 1|2c =24,即b 22ac =24,即c 2-a 22ac =24,整理得c 2-22ac -a 2=0,两边同除以a 2得e 2-22e -1=0.解得e =2(负值舍去).(2)设|F 1F 2|=2c ,|AF 1|=m ,若△F 1AB 是以A 为直角顶点的等腰直角三角形, ∴|AB |=|AF 1|=m ,|BF 1|=2m .由椭圆的定义可知△F 1AB 的周长为4a ,∴4a =2m +2m ,m =2(2-2)a .∴|AF 2|=2a -m =(22-2)a .∵|AF 1|2+|AF 2|2=|F 1F 2|2,∴4(2-2)2a 2+4(2-1)2a 2=4c 2,∴e 2=9-62,e =6- 3.]。

(教师用书)2018年浙江高考数学二轮复习技法强化训练及答案(4份)

(教师用书)2018年浙江高考数学二轮复习技法强化训练及答案(4份)

技法强化训练(一) 函数与方程思想(对应学生用书第159页)题组1 运用函数与方程思想解决数列、不等式等问题1.已知{a n }是等差数列,a 1=1,公差d ≠0,S n 是其前n 项和,若a 1,a 2,a 5成等比数列,则S 8的值为( ) A .16 B .32 C .64D .62C [由题意可知a 22=a 1a 5,即(1+d )2=1³(1+4d ),解得d =2, ∴a n =1+(n -1)³2=2n -1.∴S 8= a 1+a 8 ³82=4³(1+15)=64.]2.若2x +5y ≤2-y +5-x,则有( ) A .x +y ≥0 B .x +y ≤0 C .x -y ≤0D .x -y ≥0B [原不等式可化为2x-5-x≤2-y-5y,构造函数y =2x-5-x,其为R 上的增函数,所以有x ≤-y ,即x +y ≤0.]3.若关于x 的方程x 2+2kx -1=0的两根x 1,x 2满足-1≤x 1<0<x 2<2,则k 的取值范围是( ) 【导学号:68334007】A.⎝ ⎛⎭⎪⎫-34,0B.⎝ ⎛⎦⎥⎤-34,0C.⎝ ⎛⎭⎪⎫0,34 D.⎣⎢⎡⎭⎪⎫0,34 B [构造函数f (x )=x 2+2kx -1,因为关于x 的方程x 2+2kx -1=0的两根x 1,x 2满足-1≤x 1<0<x 2<2,所以⎩⎪⎨⎪⎧f -1 ≥0,f 0 <0,f 2 >0,即⎩⎪⎨⎪⎧-2k ≥0,-1<0,4k +3>0,所以-34<k ≤0,所以k 的取值范围是⎝ ⎛⎦⎥⎤-34,0.]4.已知数列{a n }满足a 1=60,a n +1-a n =2n (n ∈N *),则a n n的最小值为________.292[由a n +1-a n =2n ,得 a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2(n -1)+2(n -2)+…+2+60 =n 2-n +60.∴a n n =n 2-n +60n =n +60n-1.令f (x )=x +60x-1,易知f (x )在(0,215)上单调递减,在(215,+∞)上单调递增.又n ∈N *,当n =7时,a 77=7+607-1=1027,当n =8时,a 88=8+608-1=292.又292<1027,故a n n 的最小值为292.] 5.已知函数f (x )=x ln x +a ,g (x )=12x 2+ax ,其中a ≥0.(1)若曲线y =f (x )在点(1,f (1))处的切线与曲线y =g (x )也相切,求a 的值; (2)证明:x >1时,f (x )+12<g (x )恒成立.【导学号:68334008】[解] (1)由f (x )=x ln x +a ,得f (1)=a ,f ′(x )=ln x +1,所以f ′(1)=1. 1分所以曲线y =f (x )在点(1,f (1))处的切线为y =x +a -1.因为直线y =x +a -1与曲线y =g (x )也相切,所以两方程联立消元得12x 2+ax =a +x -1,即12x 2+(a -1)x +1-a =0,3分所以Δ=(a -1)2-4³12³(1-a )=0,得a 2=1.因为a ≥0,所以a =1.4分(2)证明:x >1时,f (x )+12<g (x )恒成立,等价于12x 2+ax -x ln x -a -12>0恒成立.令h (x )=12x 2+ax -x ln x -a -12,则h (1)=0且h ′(x )=x +a -ln x -1.6分令φ(x )=x -ln x -1,则φ(1)=0且φ′(x )=1-1x =x -1x,8分所以x >1时,φ′(x )>0,φ(x )单调递增, 所以φ(x )>φ(1)=0.又因为a ≥0,所以h ′(x )>0,h (x )单调递增,所以h (x )>h (1)=0,所以x >1时,12x 2+ax -x ln x -a -12>0恒成立,11分 即x >1时,f (x )+12<g (x )恒成立.12分题组2 利用函数与方程思想解决几何问题6.设抛物线C :y 2=3px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8x B .y 2=2x 或y 2=8x C .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16xC [由抛物线的定义可知MF =x M +3p 4=5,∴x M =5-3p 4,y 2M =15p -9p24,故以MF 为直径的圆的方程为(x -x M )(x -x F )+(y -y M )(y -y F )=0, 即⎝ ⎛⎭⎪⎫0-5+3p 4⎝ ⎛⎭⎪⎫0-3p 4+(2-y M )(2-0)=0.∴y M =2+15p 8-9p 232=2+y 2M 8⇒y M =4,p =43或163.∴C 的方程为y 2=4x 或y 2=16x .]7.(2017²宁波市镇海中学高三模拟考试)在直三棱柱A 1B 1C 1­ABC 中,∠BAC =π2,AB =AC =AA 1=1,已知G 和E 分别为A 1B 1和CC 1的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD ⊥EF ,则线段DF 的长度的取值范围为( )【导学号:68334009】A.⎣⎢⎡⎭⎪⎫55,1 B.⎣⎢⎡⎦⎥⎤55,1 C.⎝⎛⎭⎪⎫255,1 D.⎣⎢⎡⎭⎪⎫255,1 A [建立如图所示的空间直角坐标系,则A (0,0,0),E ⎝ ⎛⎭⎪⎫0,1,12,G ⎝ ⎛⎭⎪⎫12,0,1,设F (x,0,0),D (0,y,0),则GD →=⎝ ⎛⎭⎪⎫-12,y ,-1,EF →=⎝ ⎛⎭⎪⎫x ,-1,-12,x ,y ∈(0,1).由于GD ⊥EF ,所以x +2y -1=0,x =1-2y ∈(0,1),解得0<y <12.DF =x 2+y 2=5y 2-4y +1=5⎝ ⎛⎭⎪⎫y -252+15,当且仅当y =25时,线段DF 长度的最小值是55,当y =0时,线段DF 的最大值是1,由于不包括端点,故y =0不能取,所以线段DF 的长度的取值范围是⎣⎢⎡⎭⎪⎫55,1,故选A.] 8.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,并且经过定点P ⎝ ⎛⎭⎪⎫3,12.(1)求椭圆E 的方程;(2)问:是否存在直线y =-x +m ,使直线与椭圆交于A ,B 两点,且满足OA →²OB →=125?若存在,求出m 的值;若不存在,请说明理由. 【导学号:68334010】[解] (1)由e =c a =32且3a 2+14b2=1,c 2=a 2-b 2, 解得a 2=4,b 2=1,即椭圆E 的方程为x 24+y 2=1.4分(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 2=1,y =-x +m⇒x 2+4(m -x )2-4=0⇒5x 2-8mx +4m 2-4=0.(*) 所以x 1+x 2=8m 5,x 1x 2=4m 2-45,8分y 1y 2=(m -x 1)(m -x 2)=m 2-m (x 1+x 2)+x 1x 2=m 2-85m 2+4m 2-45=m 2-45,由OA →²OB →=125得(x 1,y 1)²(x 2,y 2)=125,即x 1x 2+y 1y 2=125,4m 2-45+m 2-45=125,m =±2.又方程(*)要有两个不等实根,所以Δ=(-8m )2-4³5(4m 2-4)>0,解得-5<m <5,所以m =±2.12分9.如图1,直三棱柱ABC ­A ′B ′C ′中,AC =BC =5,AA ′=AB =6,D ,E 分别为AB 和BB ′上的点,且AD DB =BE EB ′=λ.图1(1)求证:当λ=1时,A ′B ⊥CE ;(2)当λ为何值时,三棱锥A ′­CDE 的体积最小,并求出最小体积. [解] (1)证明:∵λ=1,∴D ,E 分别为AB 和BB ′的中点. 1分又AA ′=AB ,且三棱柱ABC ­A ′B ′C ′为直三棱柱, ∴平行四边形ABB ′A ′为正方形,∴DE ⊥A ′B . 2分 ∵AC =BC ,D 为AB 的中点,∴CD ⊥AB . 3分 ∵三棱柱ABC ­A ′B ′C ′为直三棱柱, ∴CD ⊥平面ABB ′A ′,∴CD ⊥A ′B , 4分 又CD ∩DE =D ,∴A ′B ⊥平面CDE . ∵CE ⊂平面CDE ,∴A ′B ⊥CE .6分(2)设BE =x ,则AD =x ,DB =6-x ,B ′E =6-x .由已知可得C 到平面A ′DE 的距离即为△ABC 的边AB 所对应的高h =AC 2-⎝ ⎛⎭⎪⎫AB 22=4, 8分 ∴V A ′­CDE =V C ­A ′DE =13(S 四边形ABB ′A -S △AA ′D -S △DBE -S △A ′B ′E )²h=13⎣⎢⎡⎦⎥⎤36-3x -12 6-x x -3 6-x ²h =23(x 2-6x +36)=23[(x -3)2+27](0<x <6),14分 ∴当x =3,即λ=1时,V A ′­CDE 有最小值18. 15分技法强化训练(二) 数形结合思想(对应学生用书第160页)题组1 利用数形结合思想解决方程的根或函数零点问题 1.方程|x 2-2x |=a 2+1(a >0)的解的个数是( )【导学号:68334011】A .1B .2C .3D .4B [∵a >0,∴a 2+1>1. 而y =|x 2-2x |的图象如图,∴y =|x 2-2x |的图象与y =a 2+1的图象总有2个交点.]2.已知函数f (x )=|log 2|x ||-⎝ ⎛⎭⎪⎫12x,则下列结论正确的是( )A .f (x )有三个零点,且所有零点之积大于-1B .f (x )有三个零点,且所有零点之积小于-1C .f (x )有四个零点,且所有零点之积大于1D .f (x )有四个零点,且所有零点之积小于1=⎝ ⎛⎭⎪⎫12x的图象, A [在同一坐标系中分别作出f 1(x )=|log 2|x ||与f 2(x )如图所示,由图象知f 1(x )与f 2(x )有三个交点,设三个交点的横坐标从左到右分别是x 1,x 2,x 3,因为f ⎝ ⎛⎭⎪⎫-12<0,f ⎝ ⎛⎭⎪⎫-14>0,所以-12<x 1<-14,同理12<x 2<1,1<x 3<2,即-1<x 1x 2x 3<-18,即所有零点之积大于-1.]3.设函数f (x )的定义域为R ,f (-x )=f (x ),f (x )=f (2-x ),当x ∈[0,1]时,f (x )=x 3,则函数g (x )=|cos(πx )|-f (x )在⎣⎢⎡⎦⎥⎤-12,52上的所有零点的和为( )A .7B .6C .3D .2A [函数g (x )=|cos(πx )|-f (x )在⎣⎢⎡⎦⎥⎤-12,52上的零点为函数h (x )=|cos(πx )|与函数f (x )的交点的横坐标.因为f (-x )=f (x ),f (x )=f (2-x ),所以函数f (x )为关于x =1对称的偶函数,又因为当x ∈[0,1]时,f (x )=x 3,则在平面直角坐标系内画出函数h (x )=|cos(πx )|与函数f (x )在⎣⎢⎡⎦⎥⎤-12,52内的图象,如图所示,由图易得两函数图象共有7个交点,不妨设从左到右依次为x 1,x 2,x 3,x 4,x 5,x 6,x 7,则由图易得x 1+x 2=0,x 3+x 5=2,x 4=1,x 6+x 7=4,所以x 1+x 2+x 3+x 4+x 5+x 6+x 7=7,即函数g (x )=|cos(πx )|-f (x )在⎣⎢⎡⎦⎥⎤-12,52上的零点的和为7,故选A.]4.若函数f (x )=a +sin x 在[π,2π]上有且只有一个零点,则实数a =________.【导学号:68334012】1 [函数f (x )=a +sin x 在[π,2π]上有且只有一个零点,即方程a +sin x =0在[π,2π]上只有一解,即函数y =-a 与y =sin x ,x∈[π,2π]的图象只有一个交点,由图象可得a =1.]5.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________.(-∞,0)∪(1,+∞) [函数g (x )有两个零点,即方程f (x )-b =0有两个不等实根,则函数y =f (x )和y =b 的图象有两个公共点.①若a <0,则当x ≤a 时,f (x )=x 3,函数单调递增;当x >a 时,f (x )=x 2,函数先单调递减后单调递增,f (x )的图象如图(1)实线部分所示,其与直线y =b 可能有两个公共点.②若0≤a ≤1,则a 3≤a 2,函数f (x )在R 上单调递增,f (x )的图象如图(2)实线部分所示,其与直线y =b 至多有一个公共点.③若a >1,则a 3>a 2,函数f (x )在R 上不单调,f (x )的图象如图(3)实线部分所示,其与直线y =b 可能有两个公共点. 综上,a <0或a >1.]题组2 利用数形结合思想求解不等式或参数范围6.若不等式log a x >sin 2x (a >0,a ≠1)对任意x ∈⎝ ⎛⎭⎪⎫0,π4都成立,则a 的取值范围为( )A.⎝⎛⎭⎪⎫0,π4B.⎝⎛⎭⎪⎫π4,1C.⎝⎛⎭⎪⎫π4,π2D .(0,1)A [记y1=log a x (a >0,a ≠1),y 2=sin 2x ,原不等式即为y 1>y 2,由题意作出两个函数的图象,如图所示,知当y 1=log a x 的图象过点A ⎝ ⎛⎭⎪⎫π4,1时,a =π4,所以当π4<a <1时,对任意x ∈⎝⎛⎭⎪⎫0,π4都有y 1>y 2.]7.函数f (x )是定义域为{x |x ≠0}的奇函数,且f (1)=1,f ′(x )为f (x )的导函数,当x >0时,f (x )+xf ′(x )>1x,则不等式xf (x )>1+ln|x |的解集是( )【导学号:68334013】A .(-∞,-1)∪(1,+∞)B .(-∞,-1)C .(1,+∞)D .(-1,1)A [令g (x )=xf (x )-ln|x |,则g (x )是偶函数, 且当x >0时,g ′(x )=f (x )+xf ′(x )-1x>0,∴g (x )在(0,+∞)上单调递增.故不等式xf (x )>1+ln|x |⇔g (|x |)>g (1), ∴|x |>1,解得x >1或x <-1.故选A.]8.若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.⎝ ⎛⎦⎥⎤-∞,12 [作出y =|x -2a |和y =12x +a -1的简图,依题意知应有2a ≤2-2a ,故a ≤12.]9.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是________.(10,12) [作出f (x )的大致图象.由图象知,要使f (a )=f (b )=f (c ),不妨设a <b <c , 则-lg a =lg b =-12c +6.∴lg a +lg b =0,∴ab =1, ∴abc =c .由图知10<c <12,∴abc ∈(10,12).]10.(2017²杭州市高三年级第二学期教学质量检测)设函数f (x )=⎩⎪⎨⎪⎧2cos π2x ,|x |≤1,x 2-1,|x |>1,若|f (x )+f (x +l )-2|+|f (x )-f (x +l )|≥2(l >0)对任意实数x 都成立,则l 的最小值为________. 【导学号:68334014】23 [作出函数f (x )的图象如图,要使原不等式对任意实数x 都成立,由不等式|a |+|b |≥|a ±b |得|f (x )+f (x +l )-2|+|f (x )-f (x +l )|≥|[f (x )+f (x +l )-2]±[f (x )-f (x +l )]|≥2,化简得⎩⎪⎨⎪⎧|2f x -2|≥2,|2f x +l -2|≥2,即⎩⎪⎨⎪⎧f x ≥2,f x +l ≥2对任意实数恒成立,当x =-3时,f (-3+l )≥2,l >0,则l -3≥3,l ≥23,故l 的最小值是2 3.]题组3 利用数形结合解决解析几何问题11.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( ) A .7 B .6 C .5D .4B [根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m ,因为∠APB =90°,连接OP ,易知|OP |=12|AB |=m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为|OC |=32+42=5,所以|OP |max =|OC |+r =6,即m 的最大值为6.]12.(2017²杭州高级中学高三最后一模)已知双曲线C :x 2a 2-y 2b2=1的右顶点为A ,O 为坐标原点,以A为圆心的圆与双曲线C 的某一条渐近线交于两点P ,Q ,若∠PAQ =π3且OQ →=5OP →,则双曲线C 的离心率为( )【导学号:68334015】A.213 B .2C.72D .3A [由图知△APQ 是等边三角形,设PQ 的中点为H ,圆的半径为r ,则AH ⊥PQ ,AH =32r ,PQ =r ,由题易知,点P ,Q 在原点O 的同侧,因为OQ →=5OP →,所以OP =14r ,PH =12r ,即OH =14r +12r =34r ,所以tan ∠HOA =AH OH =233,即b a =233,b 2a 2=c 2-a 2a 2=43,从而得e =c a =213,故选A.]13.已知P 是直线l :3x +4y +8=0上的动点,PA ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,C 是圆心,则四边形PACB 面积的最小值为________. 22 [从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形PAC 的面积S Rt △PAC =12|PA |²|AC |=12|PA |越来越大,从而S 四边形PACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S 四边形PACB变小,显然,当点P 到达一个最特殊的位置,即CP 垂直于直线l 时,S 四边形PACB 应有唯一的最小值, 此时|PC |=|3³1+4³1+8|32+42=3, 从而|PA |=|PC |2-|AC |2=2 2.所以(S 四边形PACB )min =2³12³|PA |³|AC |=2 2.]14.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由. 【导学号:68334016】[解] (1)圆C 1的方程x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,所以圆心坐标为(3,0). (2)设A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),M (x 0,y 0),则x 0=x 1+x 22,y 0=y 1+y 22.由题意可知直线l 的斜率必存在,设直线l 的方程为y =tx . 将上述方程代入圆C 1的方程,化简得(1+t 2)x 2-6x +5=0.5分由题意,可得Δ=36-20(1+t 2)>0(*),x 1+x 2=61+t 2,所以x 0=31+t 2,代入直线l 的方程,得y 0=3t1+t2. 6分因为x 20+y 20=9 1+t 2 2+9t 2 1+t 2 2=9 1+t 21+t 2 2=91+t 2=3x 0,所以⎝⎛⎭⎪⎫x 0-322+y 20=94. 由(*)解得t 2<45,又t 2≥0,所以53<x 0≤3.所以线段AB 的中点M 的轨迹C 的方程为⎝ ⎛⎭⎪⎫x -322+y 2=94⎝ ⎛⎭⎪⎫53<x ≤3. 8分图,D ⎝ ⎛⎭⎪⎫53,253,(3)由(2)知,曲线C 是在区间⎝ ⎛⎦⎥⎤53,3上的一段圆弧.如E 53,-253,F (3,0),直线L 过定点G (4,0).11分 联立直线L 的方程与曲线C 的方程,消去y 整理得(1+k 2)x 2-(3+8k 2)x +16k 2=0.令判别式Δ=0,解得k =±34,由求根公式解得交点的横坐标为x H ,I =125∈⎝ ⎛⎦⎥⎤53,3.由图可知:要使直线L 与曲线C 只有一个交点,则k ∈[k DG ,k EG ]∪{k GH ,k GI },即k ∈⎣⎢⎡⎦⎥⎤-257,257∪⎩⎨⎧⎭⎬⎫-34,34. 15分技法强化训练(三) 分类讨论思想(对应学生用书第161页)题组1 由概念、法则、公式引起的分类讨论1.已知数列{a n }的前n 项和S n =P n-1(P 是常数),则数列{a n }是( )【导学号:68334017】A .等差数列B .等比数列C .等差数列或等比数列D .以上都不对D [∵S n =P n-1,∴a 1=P -1,a n =S n -S n -1=(P -1)Pn -1(n ≥2).当P ≠1且P ≠0时,{a n }是等比数列; 当P =1时,{a n }是等差数列;当P =0时,a 1=-1,a n =0(n ≥2),此时{a n }既不是等差数列也不是等比数列.]2.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+ax ,x ≤1,2ax -5,x >1.若存在x 1,x 2∈R ,且x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是( ) 【导学号:68334018】A .(-∞,2)B .(-∞,4)C .[2,4]D .(2,+∞)B [当-a-2<1,即a <2时,显然满足条件;当a ≥2时,由-1+a >2a -5得2≤a <4, 综上可知a <4.]3.已知函数f (x )的定义域为(-∞,+∞),f ′(x )为f (x )的导函数,函数y =f ′(x )的图象如图1所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )图1A .(-3,-2)∪(2,3)B .(-2,2)C .(2,3)D .(-∞,-2)∪(2,+∞)A [由导函数图象知,当x <0时,f ′(x )>0, 即f (x )在(-∞,0)上为增函数,当x >0时,f ′(x )<0,即f (x )在(0,+∞)上为减函数,又不等式f (x 2-6)>1等价于f (x 2-6)>f (-2)或f (x 2-6)>f (3),故-2<x 2-6≤0或0≤x 2-6<3,解得x ∈(-3,-2)∪(2,3).]4.已知实数m 是2,8的等比中项,则曲线x 2-y 2m=1的离心率为( )A. 2B.32C. 5D.5或32D [由题意可知,m 2=2³8=16,∴m =±4. (1)当m =4时,曲线为双曲线x 2-y 24=1.此时离心率e = 5.(2)当m =-4时,曲线为椭圆x 2+y 24=1.此时离心率e =32.] 5.设等比数列{a n }的公比为q ,前n 项和S n >0(n =1,2,3,…),则q 的取值范围是________. (-1,0)∪(0,+∞) [因为{a n }是等比数列,S n >0,可得a 1=S 1>0,q ≠0. 当q =1时,S n =na 1>0;当q ≠1时,S n =a 1 1-q n1-q>0,即1-q n1-q >0(n ∈N *),则有⎩⎪⎨⎪⎧1-q >0,1-q n>0 ①或⎩⎪⎨⎪⎧1-q <0,1-q n<0,②由①得-1<q <1,由②得q >1.故q 的取值范围是(-1,0)∪(0,+∞).]6.若x >0且x ≠1,则函数y =lg x +log x 10的值域为________. (-∞,-2]∪[2,+∞) [当x >1时,y =lg x +1lg x ≥2lg x ²1lg x=2,当且仅当lg x =1,即x =10时等号成立;当0<x <1时,y =lg x +1lg x =-⎣⎢⎡⎦⎥⎤ -lg x +⎝ ⎛⎭⎪⎫-1lg x ≤-2-lg x ²1 -lg x =-2,当且仅当lg x =1lg x ,即x =110时等号成立.∴y ∈(-∞,-2]∪[2,+∞).]题组2 由参数变化引起的分类讨论7.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3}.若C ∩A =C ,则a 的取值范围为( )A.⎝ ⎛⎦⎥⎤-32,-1B.⎝⎛⎦⎥⎤-∞,-32C .(-∞,-1]D.⎝ ⎛⎭⎪⎫-32,+∞C [因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3,得a ≤-32;②当C ≠∅时,要使C ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.由①②得a ≤-1.]8.已知不等式组⎩⎪⎨⎪⎧x +y ≤1,x -y ≥-1y ≥0,所表示的平面区域为D ,若直线y =kx -3与平面区域D 有公共点,则k 的取值范围为( ) 【导学号:68334020】 A .[-3,3]B.⎝ ⎛⎦⎥⎤-∞,-13∪⎣⎢⎡⎭⎪⎫13,+∞C .(-∞,-3]∪[3,+∞)D.⎣⎢⎡⎦⎥⎤-13,13 C [满足不等式组的平面区域如图中阴影部分所示.∵y =kx -3过定点(0,-3),∴当y =kx -3过点C (1,0)时,k =3;当y =kx -3过点B (-1,0)时,k =-3.∴k ≤-3或k ≥3时,直线y =kx -3与平面区域D 有公共点,故选C.] 9.已知函数f (x )=(a +1)ln x +ax 2+1,试讨论函数f (x )的单调性. [解] 由题意知f (x )的定义域为(0,+∞),1分 f ′(x )=a +1x +2ax =2ax 2+a +1x.2分 ①当a ≥0时,f ′(x )>0,故f (x )在(0,+∞)上单调递增. 4分 ②当a ≤-1时,f ′(x )<0,故f (x )在(0,+∞)上单调递减. 6分 ③当-1<a <0时,令f ′(x )=0,解得x =-a +12a, 7分则当x ∈⎝⎛⎭⎪⎫0,-a +12a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎪⎫-a +12a ,+∞时,f ′(x )<0. 故f (x )在⎝⎛⎭⎪⎫0,-a +12a 上单调递增, 在⎝⎛⎭⎪⎫-a +12a ,+∞上单调递减.10分综上,当a ≥0时,f (x )在(0,+∞)上单调递增; 当a ≤-1时,f (x )在(0,+∞)上单调递减; 当-1<a <0时,f (x )在⎝⎛⎭⎪⎫0,-a +12a 上单调递增,在⎝⎛⎭⎪⎫-a +12a ,+∞上单调递减.题组3 根据图形位置或形状分类讨论10.已知中心在坐标原点,焦点在坐标轴上的双曲线的渐近线方程为y =±34x ,则双曲线的离心率为( ) A.54B.53C.54或53D.35或45C [若双曲线的焦点在x 轴上,则b a =34,e =ca=1+⎝ ⎛⎭⎪⎫b a 2=54;若双曲线的焦点在y 轴上,则b a =43,e =c a=1+⎝ ⎛⎭⎪⎫b a 2=53,故选C.] 11.正三棱柱的侧面展开图是边长分别为6和4的矩形,则它的体积为________.【导学号:68334021】43或833[若侧面矩形的长为6,宽为4,则V =S 底³h =12³2³2³sin 60°³4=4 3.若侧面矩形的长为4,宽为6,则V =S 底³h =12³43³43³sin 60°³6=833.] 12.已知中心在原点O ,左焦点为F 1(-1,0)的椭圆C 的左顶点为A ,上顶点为B ,F 1到直线AB 的距离为77|OB |.图2(1)求椭圆C 的方程;(2)若椭圆C 1的方程为:x 2m 2+y 2n 2=1(m >n >0),椭圆C 2的方程为:x 2m 2+y 2n2=λ(λ>0,且λ≠1),则称椭圆C 2是椭圆C 1的λ倍相似椭圆.如图2,已知C 2是椭圆C 的3倍相似椭圆,若椭圆C 的任意一条切线l 交椭圆C 2于两点M ,N ,试求弦长|MN |的取值范围. 【导学号:68334022】[解] (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),∴直线AB 的方程为x -a +yb=1,∴F 1(-1,0)到直线AB 的距离d =|b -ab |a 2+b 2=77b ,2分a 2+b 2=7(a -1)2,又b 2=a 2-1,解得a =2,b =3, 3分 故椭圆C 的方程为x 24+y 23=1.4分(2)椭圆C 的3倍相似椭圆C 2的方程为x 212+y 29=1,5分①若切线l 垂直于x 轴,则其方程为x =±2,易求得|MN |=2 6. 6分②若切线l 不垂直于x 轴,可设其方程y =kx +b , 将y =kx +b 代入椭圆C 的方程, 得(3+4k 2)x 2+8kbx +4b 2-12=0,7分∴Δ=(8kb )2-4(3+4k 2)(4b 2-12)=48(4k 2-3-b 2)=0,即b 2=4k 2+3,(*)8分记M ,N 两点的坐标分别为(x 1,y 1),(x 2,y 2).将y =kx +b 代入椭圆C 2的方程,得(3+4k 2)x 2+8kbx +4b 2-36=0, 9分 此时x 1+x 2=-8kb 3+4k ,x 1x 2=4b 2-363+4k ,|x 1-x 2|=43 12k 2+9-b 23+4k , 10分∴|MN |=1+k 2³43 12k 2+9-b 23+4k2=461+k23+4k2=261+13+4k2. ∵3+4k 2≥3,∴1<1+13+4k 2≤43, 即26<261+13+4k2≤4 2. 综合①②得:弦长|MN |的取值范围为[26,42]. 15分技法强化训练(四) 转化与化归思想(对应学生用书第162页)题组1 正与反的相互转化1.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A.15B.35 C.710D.910D [甲或乙被录用的对立面是甲、乙均不被录用,故所求事件的概率为1-110=910.]2.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,则实数p 的取值范围为________. 【导学号:68334023】⎝ ⎛⎭⎪⎫-3,32 [如果在[-1,1]内没有值满足f (c )>0,则⎩⎪⎨⎪⎧f -1 ≤0,f 1 ≤0⇒⎩⎪⎨⎪⎧p ≤-12或p ≥1,p ≤-3或p ≥32⇒p ≤-3或p ≥32,取补集为-3<p <32,即为满足条件的p 的取值范围.故实数p 的取值范围为⎝⎛⎭⎪⎫-3,32.]3.若椭圆x 22+y 2=a 2(a >0)与连接两点A (1,2),B (3,4)的线段没有公共点,则实数a 的取值范围为________.⎝ ⎛⎭⎪⎫0,322∪⎝ ⎛⎭⎪⎫822,+∞ [易知线段AB 的方程为y =x +1,x ∈[1,3],由⎩⎪⎨⎪⎧y =x +1,x 22+y 2=a 2,得a 2=32x 2+2x +1,x ∈[1,3],∴92≤a 2≤412.又a >0, ∴322≤a ≤822. 故当椭圆与线段AB 没有公共点时,实数a 的取值范围为⎝ ⎛⎭⎪⎫0,322∪⎝ ⎛⎭⎪⎫822,+∞.]4.已知点A (1,1)是椭圆x 2a 2+y 2b2=1(a >b >0)上一点,F 1,F 2是椭圆的两焦点,且满足|AF 1|+|AF 2|=4.(1)求椭圆的两焦点坐标;(2)设点B 是椭圆上任意一点,当|AB |最大时,求证:A ,B 两点关于原点O 不对称.[解] (1)由椭圆定义,知2a =4,所以a =2.所以x 24+y 2b=1.2分 把A (1,1)代入,得14+1b 2=1,得b 2=43,所以椭圆方程为x 24+y 243=1.4分所以c 2=a 2-b 2=4-43=83,即c =263.故两焦点坐标为⎝ ⎛⎭⎪⎫-263,0,⎝ ⎛⎭⎪⎫263,0.6分(2)反证法:假设A ,B 两点关于原点O 对称,则B 点坐标为(-1,-1),7分此时|AB |=22,而当点B 取椭圆上一点M (-2,0)时,则|AM |=10,所以|AM |>|AB |. 从而知|AB |不是最大,这与|AB |最大矛盾,所以命题成立. 15分题组2 主与次的相互转化5.设f (x )是定义在R 上的单调递增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,则x 的取值范围为________. 【导学号:68334024】 (-∞,-1]∪[0,+∞) [∵f (x )是R 上的增函数, ∴1-ax -x 2≤2-a ,a ∈[-1,1].①①式可化为(x -1)a +x 2+1≥0,对a ∈[-1,1]恒成立. 令g (a )=(x -1)a +x 2+1,则⎩⎪⎨⎪⎧g -1 =x 2-x +2≥0,g 1 =x 2+x ≥0,解得x ≥0或x ≤-1.即实数x 的取值范围是(-∞,-1]∪[0,+∞).]6.已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________.⎝ ⎛⎭⎪⎫-23,1 [由题意,知g (x )=3x 2-ax +3a -5, 令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1. 对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧φ 1 <0,φ -1 <0,即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0,解得-23<x <1.故当x ∈⎝ ⎛⎭⎪⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0.] 7.对于满足0≤p ≤4的所有实数p ,使不等式x 2+px >4x +p -3成立的x 的取值范围是________. (-∞,-1)∪(3,+∞) [设f (p )=(x -1)p +x 2-4x +3, 则当x =1时,f (p )=0,所以x ≠1.f (p )在0≤p ≤4上恒正,等价于⎩⎪⎨⎪⎧f 0 >0,f 4 >0,即⎩⎪⎨⎪⎧x -3 x -1 >0,x 2-1>0,解得x >3或x <-1.]8.已知函数f (x )=13x 3+⎝ ⎛⎭⎪⎫a 2-43x 2+⎝ ⎛⎭⎪⎫43-23a x (0<a <1,x ∈R ).若对于任意的三个实数x 1,x 2,x 3∈[1,2],都有f (x 1)+f (x 2)>f (x 3)恒成立,求实数a 的取值范围.【导学号:68334025】[解] 因为f ′(x )=x 2+⎝ ⎛⎭⎪⎫a -83x +⎝ ⎛⎭⎪⎫43-23a =⎝ ⎛⎭⎪⎫x -23(x +a -2),2分 所以令f ′(x )=0,解得x 1=23,x 2=2-a .3分由0<a <1,知1<2-a <2.所以令f ′(x )>0,得x <23或x >2-a ;4分令f ′(x )<0,得23<x <2-a ,所以函数f (x )在(1,2-a )上单调递减,在(2-a,2)上单调递增.5分所以函数f (x )在[1,2]上的最小值为f (2-a )=a6(2-a )2,最大值为max{f (1),f (2)}=max ⎩⎨⎧⎭⎬⎫13-a 6,23a .6分 因为当0<a ≤25时,13-a 6≥23a ;7分 当25<a <1时,23a >13-a6,8分由对任意x 1,x 2,x 3∈[1,2],都有f (x 1)+f (x 2)>f (x 3)恒成立,得2f (x )min >f (x )max (x ∈[1,2]). 所以当0<a ≤25时,必有2³a 6(2-a )2>13-a 6,12分结合0<a ≤25可解得1-22<a ≤25;当25<a <1时,必有2³a 6(2-a )2>23a ,结合25<a <1可解得25<a <2- 2.综上,知所求实数a 的取值范围是1-22<a <2- 2. 15分。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题6 突破点14 函数的图象和性质 Word版含答

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题6 突破点14 函数的图象和性质 Word版含答

专题六函数与导数建知识网络明内在联系[高考点拨]函数与导数专题是历年浙江高考的“常青树”,在浙江新高考中常以“两小一大”的形式呈现,其中两小题中的一小题难度偏低,另一小题与一大题常在选择题与解答题的压轴题的位置呈现,命题角度多样,形式多变,能充分体现学以致用的考查目的,深受命题人的喜爱.结合典型考题的研究,本专题将从“函数的图象和性质”“函数与方程”“导数的应用”三大方面着手分析,引领考生高效备考.突破点14 函数的图象和性质(对应学生用书第52页)[核心知识提炼]提炼1函数的奇偶性(1)若函数y=f(x)为奇(偶)函数,则f(-x)=-f(x)(f(-x)=f(x)).(2)奇函数y=f(x)若在x=0处有意义,则必有f(0)=0.(3)判断函数的奇偶性需注意:一是判断定义域是否关于原点对称;二是若所给函数的解析式较为复杂,应先化简;三是判断f(-x)=-f(x),还是f(-x)=f(x),有时需用其等价形式f(-x)±f(x)=0来判断.(4)奇函数的图象关于原点成中心对称,偶函数的图象关于y轴对称.(5)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.提炼2 函数的周期性(1)若函数y =f (x )满足f (a +x )=f (x -a )(a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(2)若奇函数y =f (x )满足f (a +x )=f (a -x )(a ≠0),则函数y =f (x )是以4|a |为周期的周期性函数.(3)若偶函数y =f (x )满足f (a +x )=f (a -x )(a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(4)若f (a +x )=-f (x )⎝⎛⎭⎪⎫或f a +x =1f x (a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(5)若y =f (x )的图象关于直线x =a ,x =b (a ≠b )对称,则函数y =f (x )是以2|b -a |为周期的周期性函数. 提炼3 函数的图象(1)由解析式确定函数图象.此类问题往往需要化简函数解析式,利用函数的性质(单调性、奇偶性、过定点等)判断,常用排除法.(2)已知函数图象确定相关函数的图象.此类问题主要考查函数图象的变换(如平移变换、对称变换等),要注意函数y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|等的相互关系.(3)借助动点探究函数图象.解决此类问题可以根据已知条件求出函数解析式后再判断函数的图象;也可采用“以静观动”,即将动点处于某些特殊的位置处考察图象的变化特征,从而作出选择.[高考真题回访]回访1 函数的性质1.(2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关B [法一:设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B.法二:由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关.故选B.]2.(2015·浙江高考)存在函数f (x )满足:对于任意x ∈R 都有( ) A .f (sin 2x )=sin x B .f (sin 2x )=x 2+x C .f (x 2+1)=|x +1|D .f (x 2+2x )=|x +1|D [取x =0,π2,可得f (0)=0,1,这与函数的定义矛盾,所以选项A 错误;取x =0,π,可得f (0)=0,π2+π,这与函数的定义矛盾,所以选项B 错误; 取x =1,-1,可得f (2)=2,0,这与函数的定义矛盾,所以选项C 错误;取f (x )=x +1,则对任意x ∈R 都有f (x 2+2x )=x 2+2x +1=|x +1|,故选项D 正确. 综上可知,本题选D.]3.(2014·浙江高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =________.2 [若a >0,则f (a )=-a 2<0,f (f (a ))=a 4-2a 2+2=2,得a = 2.若a ≤0,则f (a )=a 2+2a +2=(a +1)2+1>0,f (f (a ))=-(a 2+2a +2)2=2,此方程无解.] 4.(2015·浙江高考)已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.0 22-3 [∵f (-3)=lg[(-3)2+1]=lg 10=1, ∴f (f (-3))=f (1)=1+2-3=0. 当x ≥1时,x +2x-3≥2x ·2x -3=22-3,当且仅当x =2x,即x =2时等号成立,此时f (x )min =22-3<0;当x <1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0. ∴f (x )的最小值为22-3.] 回访2 函数的图象5.(2017·浙江高考)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )图14­1D [观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,∴对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察选项可知,排除A 、C.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 正确.故选D.]6.(2015·浙江高考)函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )D [函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A ,B ;当x =π时,f (x )=⎝⎛⎭⎪⎫π-1πcos π=1π-π<0,排除选项C ,故选D.]7.(2014·浙江高考)在同一直角坐标系中,函数f (x )=x a(x ≥0),g (x )=log a x 的图象可能是( )D [法一:分a >1,0<a <1两种情形讨论.当a >1时,y =x a与y =log a x 均为增函数,但y =x a递增较快,排除C ;当0<a <1时,y =x a为增函数,y =log a x 为减函数,排除A ,由于y =x a递增较慢,所以选D. 法二:幂函数f (x )=x a的图象不过(0,1)点,排除A ;B 项中由对数函数f (x )=log a x 的图象知0<a <1,而此时幂函数f (x )=x a的图象应是增长越来越慢的变化趋势,故B 错,D 对;C 项中由对数函数f (x )=log a x 的图象知a >1,而此时幂函数f (x )=x a的图象应是增长越来越快的变化趋势,故C 错.](对应学生用书第54页)热点题型1 函数图象的判断与应用题型分析:函数的图象是近几年高考的热点内容,主要有函数图象的判断和函数图象的应用两种题型.【例1】 (1)函数y =2x 2-e |x |在[-2,2]的图象大致为()(2)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 i =1mx i =( )A .0B .mC .2mD .4m(1)D (2)B [(1)∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数, 又f (2)=8-e 2∈(0,1),故排除A ,B. 设g (x )=2x 2-e x ,则g ′(x )=4x -e x. 又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D. (2)∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1mx i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m -12+1=m .故选B.] [方法指津]函数图象的判断方法1.根据函数的定义域判断图象的左右位置,根据函数的值域判断图象的上下位置. 2.根据函数的单调性,判断图象的变化趋势. 3.根据函数的奇偶性,判断图象的对称性. 4.根据函数的周期性,判断图象的循环往复. 5.取特殊值代入,进行检验.[变式训练1] (1)函数f (x )=|x |+ax(其中a ∈R )的图象不可能是()图14­2(2)如图14­1,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}(1)C (2)C [(1)当a =0时,f (x )=|x |,故A 可能;由题意得f (x )=⎩⎪⎨⎪⎧x +ax,x >0,-x +ax ,x <0,则当x >0时,f ′(x )=1-a x 2=x 2-a x 2,当x <0时,f ′(x )=-1-a x 2=-x 2-ax 2,若a >0,易知当x >0,0<x <a 时,f (x )为减函数,x >a 时,f (x )为增函数,x <0时,f (x )为减函数,故B 可能;若a <0,易知x <0,--a <x <0时,f (x )为增函数,x <--a 时,f (x )为减函数,x >0时,f (x )为增函数,故D 可能,故选C.(2)令g (x )=y =log 2(x +1),作出函数g (x )图象如图.由⎩⎪⎨⎪⎧x +y =2,y =log 2x +,得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.]热点题型2 函数性质的综合应用题型分析:函数性质的综合应用是高考的热点内容,解决此类问题时,性质的判断是关键,应用是难点.【例2】 (1)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1B.⎝⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13 D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ (2)设奇函数y =f (x )(x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________. 【导学号:68334135】(1)A (2)-14 [(1)法一:∵f (-x )=ln(1+|-x |)-11+-x 2=f (x ),∴函数f (x )为偶函数.∵当x ≥0时,f (x )=ln(1+x )-11+x2,在(0,+∞)上y =ln(1+x )递增,y =-11+x 2也递增,根据单调性的性质知,f (x )在(0,+∞)上单调递增.综上可知:f (x )>f (2x -1)⇔f (|x |)>f (|2x -1|)⇔|x |>|2x -1|⇔x 2>(2x -1)2⇔3x 2-4x +1<0⇔13<x <1.故选A. 法二:令x =0,此时f (x )=f (0)=-1<0,f (2x -1) =f (-1)=ln 2-12=ln 2-ln e>0,∴x =0不满足f (x )>f (2x -1),故C 错误.令x =2,此时f (x )=f (2)=ln 3-15,f (2x -1)=f (3)=ln 4-110.∵f (2)-f (3)=ln 3-ln4-110,其中ln 3<ln 4,∴ln 3-ln 4-110<0,∴f (2)-f (3)<0,即f (2)<f (3),∴x =2不满足f (x )>f (2x -1), 故B ,D 错误.故选A.(2)根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t )=f (1+t ),即f (t +1)=-f (t ),进而得到f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫12=-14.所以f (3)+f ⎝ ⎛⎭⎪⎫-32=0+⎝ ⎛⎭⎪⎫-14=-14. [方法指津]函数性质的综合应用类型1.函数单调性与奇偶性的综合.注意奇、偶函数图象的对称性,以及奇、偶函数在关于原点对称的区间上单调性的关系.2.周期性与奇偶性的综合.此类问题多为求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.3.单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.[变式训练2] (1)(2017·浙江五校联考)已知函数f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数,则不等式⎪⎪⎪⎪⎪⎪f x -f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1)的解集为( )【导学号:68334136】A.⎝ ⎛⎭⎪⎫0,1e B .(0,e) C.⎝ ⎛⎭⎪⎫1e ,e D .(e ,+∞)(2)已知函数y =f (x )是定义在R 上的奇函数,∀x ∈R ,f (x -1)=f (x +1)成立,当x ∈(0,1)且x 1≠x 2时,有f x 2-f x 1x 2-x 1<0.给出下列命题:①f (1)=0;②f (x )在[-2,2]上有5个零点;③点(2 014,0)是函数y =f (x )图象的一个对称中心; ④直线x =2 014是函数y =f (x )图象的一条对称轴. 则正确命题的序号是________.(1)C (2)①②③ [(1)∵f (x )为R 上的奇函数,则f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=-f (ln x ),∴⎪⎪⎪⎪⎪⎪fx -f ⎝ ⎛⎭⎪⎫ln 1x 2=|fx +fx2=|f (ln x )|,即原不等式可化为|f (ln x )|<f (1),∴-f (1)<f (ln x )<f (1),即f (-1)<f (ln x )<f (1).又由已知可得f (x )在R 上单调递增,∴-1<ln x <1, 解得1e<x <e ,故选C.(2)令f (x -1)=f (x +1)中x =0, 得f (-1)=f (1). ∵f (-1)=-f (1), ∴2f (1)=0,∴f (1)=0,故①正确;由f (x -1)=f (x +1)得f (x )=f (x +2), ∴f (x )是周期为2的周期函数, ∴f (2)=f (0)=0,又当x ∈(0,1)且x 1≠x 2时,有f x 2-f x 1x 2-x 1<0,∴函数在区间(0,1)上单调递减,可作函数的简图如图:由图知②③正确,④不正确,∴正确命题的序号为①②③.]。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题1 突破点2 解三角形

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题1 突破点2 解三角形

突破点2 解三角形(对应学生用书第11页)[核心知识提炼]提炼1常见解三角形的题型及解法 (1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一.(3)已知两边及其夹角,利用余弦定理求解.(4)已知三边,利用余弦定理求解.提炼2三角形形状的判断 (1)从边出发,全部转化为边之间的关系进行判断.(2)从角出发,全部转化为角之间的关系,然后进行恒等变形,再判断.注意:要灵活选用正弦定理或余弦定理,且在变形的时候要注意方程的同解性,如方程两边同除以一个数时要注意该数是否为零,避免漏解.提炼3三角形的常用面积公式 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,其面积为S .(1)S =ah a =bh b =ch c (h a ,h b ,h c 分别表示a ,b ,c 边上的高).121212(2)S =ab sin C =bc sin A =ca sin B .121212(3)S =r (a +b +c )(r 为三角形ABC 内切圆的半径).12[高考真题回访]回访1 正、余弦定理的应用1.(2017·浙江高考)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos∠BDC =________. [依题意作出图形,如图所示,152104则sin∠DBC =sin∠ABC .由题意知AB =AC =4,BC =BD =2,则sin∠ABC =,cos∠ABC =.15414所以S △BDC =BC ·BD ·sin∠DBC 12=×2×2×=.12154152因为cos∠DBC =-cos∠ABC =-=14BD 2+BC 2-CD 22BD ·BC =,所以CD =.8-CD 2810由余弦定理,得cos∠BDC ==.]4+10-42×2×101042.(2013·浙江高考)在△ABC 中,∠C =90°,M 是BC 的中点.若sin∠BAM =,则13sin∠BAC =________. [因为sin∠BAM =,6313所以cos∠BAM =.如图,在△ABM 中,利用正弦定理,得=223BMsin ∠BAM AMsin B,所以===.BM AM sin ∠BAM sin B 13sin B 13cos ∠BAC 在Rt△ACM 中,有=sin∠CAM =sin(∠BAC -∠BAM ).由题意知BM =CM ,所以CMAM =sin(∠BAC -∠BAM ).13cos ∠BAC 化简,得2sin∠BAC cos∠BAC -cos 2∠BAC =1.2所以=1,解得tan∠BAC =.22tan ∠BAC -1tan2∠BAC +12再结合sin 2∠BAC +cos 2∠BAC =1,∠BAC 为锐角可解得sin∠BAC =.]633.(2016·浙江高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a cos B .(1)证明:A =2B ;(2)若△ABC 的面积S =,求角A 的大小.a 24 【导学号:68334039】[解] (1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).3分又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以A =2B .6分(2)由S =得ab sin C =,a 2412a 24故有sin B sin C =sin A =sin 2B =sin B cos B .1212因为sin B ≠0,所以sin C =cos B .8分又B ,C ∈(0,π),所以C =±B .11分π2当B +C =时,A =;π2π2当C -B =时,A =.π2π4综上,A =或A =.14分π2π4回访2 三角形的面积问题4.(2015·浙江高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan =2.(π4+A)(1)求的值;sin 2Asin 2A +cos2A (2)若B =,a =3,求△ABC 的面积.π4[解] (1)由tan =2,得tan A =,2分(π4+A)13所以==.5分sin 2A sin 2A +cos2A 2tan A 2tan A +125(2)由tan A =,A ∈(0,π),得13sin A =,cos A =.8分101031010由a =3,B =及正弦定理=,得b =3.10分π4a sin A bsin B 5由sin C =sin(A +B )=sin,(A +π4)得sin C =.12分255设△ABC 的面积为S ,则S =ab sin C =9.14分125.(2015·浙江高考)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知A =,b 2-a 2=c 2.π412(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值.[解] (1)由b 2-a 2=c 2及正弦定理得12sin 2B -=sin 2C ,1212所以-cos 2B =sin 2C .2分又由A =,即B +C =π,得π434-cos 2B =sin 2C =2sin C cos C ,解得tan C =2.5分(2)由tan C =2,C ∈(0,π),得sin C =,cos C =.8分25555因为sin B =sin(A +C )=sin ,(π4+C)所以sin B =.10分31010由正弦定理得c =,12分22b3又因为A =,bc sin A =3,π412所以bc =6,故b =3.14分26.(2014·浙江高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =,cos 2A -cos 2B =sin A cos A -sin B cos B .333(1)求角C 的大小;(2)若sin A =,求△ABC 的面积. 【导学号:68334040】45[解] (1)由题意得-=sin 2A -sin 2B ,1+cos 2A 21+cos 2B23232即sin 2A -cos 2A =sin 2B -cos 2B ,2分32123212sin=sin .由a ≠b ,得A ≠B .又A +B ∈(0,π),得2A -+2B -=π,(2A -π6)(2B -π6)π6π6即A +B =,所以C =.5分2π3π3(2)由c =,sin A =,=,得a =.8分345a sin A c sin C 85由a <c 得,A <C ,从而cos A =,35故sin B =sin(A +C )=sin A cos C +cos A sin C =,11分4+3310所以,△ABC 的面积为S =ac sin B =.14分1283+1825(对应学生用书第12页)热点题型1 正、余弦定理的应用题型分析:利用正、余弦定理解题是历年高考的热点,也是必考点,求解的关键是合理应用正、余弦定理实现边角的互化.【例1】 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且+=.cos Aa cos Bb sin Cc (1)证明:sin A sin B =sin C ;(2)若b 2+c 2-a 2=bc ,求tan B .65[解] (1)证明:根据正弦定理,可设===k (k >0).asin A b sin B csin C 则a =k sin A ,b =k sin B ,c =k sin C ,代入+=中,有cos A a cos Bb sin Cc +=,2分cos A k sin A cos B k sin B sin C k sin C 即sin A sin B =sin A cos B +cos A sin B =sin(A +B ).4分在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C ,所以sin A sin B =sin C .6分(2)由已知,b 2+c 2-a 2=bc ,根据余弦定理,有65cos A ==,8分b 2+c 2-a 22bc 35所以sin A ==.9分1-cos2A 45由(1)知sin A sin B =sin A cos B +cos A sin B ,所以sin B =cos B + sin B ,12分454535故tan B ==4.14分sin Bcos B [方法指津]关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.[变式训练1] (1)(2017·温州市普通高中高考模拟考试)在△ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c ,记S 为△ABC 的面积.若A =60°,b =1,S =,则334c =________,cos B =________. 【导学号:68334041】3 [因为S =bc sin A =×1×c ×=,所以c =3;由余弦定理,得5714121232334a 2=b 2+c 2-2bc cos A =1+9-6×=7,所以cos B ===.12a 2+c 2-b 22ac 7+9-12×7×35714(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a cos B +b cos(B +C )=0.①证明:△ABC 为等腰三角形;②若2(b 2+c 2-a 2)=bc ,求cos B +cos C 的值.[解] ①证明:∵a cos B +b cos (B +C )=0,∴由正弦定理得sin A cos B +sin B cos(π-A )=0,即sin A cos B -sin B cos A =0,3分∴sin(A -B )=0,∴A -B =k π,k ∈Z .4分∵A ,B 是△ABC 的两内角,∴A -B =0,即A =B ,5分∴△ABC 是等腰三角形.6分②由2(b 2+c 2-a 2)=bc ,得=,7分b 2+c 2-a 22bc 14由余弦定理得cos A =,8分14cos C =cos(π-2A )=-cos 2A =1-2cos 2 A =.10分78∵A =B ,∴cos B =cos A =,12分14∴cos B +cos C =+=.14分147898热点题型2 三角形面积的求解问题题型分析:三角形面积的计算及与三角形面积有关的最值问题是解三角形的重要命题点之一,本质上还是考查利用正、余弦定理解三角形,难度中等.【例2】 设f (x )=sin x cos x -cos 2.(x +π4)(1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f =0,a =1,求△ABC 面积的(A2)最大值.【解题指导】 (1)f x ――――→恒等变换化归思想―→f x =A sin ωx +φ +k 求f x 的单调区间(2)f(A2)=0――→锐角三角形 求A ――→余弦定理 建立b ,c 的等量关系――→基本不等式 求bc 的最大值――→正弦定理 求△ABC 的面积[解] (1)由题意知f (x )=-sin 2x 21+cos (2x +π2)2=-=sin 2x -.2分sin 2x 21-sin 2x 212由-+2k π≤2x ≤+2k π,k ∈Z ,可得-+k π≤x ≤+k π,k ∈Z .由π2π2π4π4+2k π≤2x ≤+2k π,k ∈Z ,可得+k π≤x ≤+k π,k ∈Z .4分π23π2π43π4所以f (x )的单调递增区间是-+k π,+k π(k ∈Z );单调递减区间是π4π4(k ∈Z ).6分[π4+k π,3π4+k π](2)由f =sin A -=0,得sin A =,7分(A2)1212由题意知A 为锐角,所以cos A =.8分32由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+bc =b 2+c 2≥2bc ,12分3即bc ≤2+,当且仅当b =c 时等号成立.3因此bc sin A ≤,122+34所以△ABC 面积的最大值为.14分2+34[方法指津]1.在研究三角函数的图象与性质时常先将函数的解析式利用三角恒等变换转化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B ,y =A tan(ωx +φ)+B )的形式,进而利用函数y =sin x (或y =cos x ,y =tan x )的图象与性质解决问题.2.在三角形中,正、余弦定理可以实现边角互化,尤其在余弦定理a 2=b 2+c 2-2bc cos A 中,有a 2+c 2和ac 两项,二者的关系a 2+c 2=(a +c )2-2ac 经常用到,有时还可利用基本不等式求最值.[变式训练2] (名师押题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a +=4cos C ,b =1.1a (1)若sin C =,求a ,c ;217(2)若△ABC 是直角三角形,求△ABC 的面积.[解] (1)∵sin C =,∴cos 2C =1-sin 2C =,cos C =.1分2174727∵4cos C =a +,1a ∴=a +,解得a =或a =.3分871a 777又+a =4cos C =4×=4×,1a a 2+b 2-c 22ab a 2+1-c 22a ∴a 2+1=2(a 2+1-c 2),即2c 2=a 2+1.5分∴当a =时,c =2;7当a =时,c =.6分1727(2)由(1)可知2c 2=a 2+1.又△ABC 为直角三角形,C 不可能为直角.①若角A 为直角,则a 2=b 2+c 2=c 2+1,∴2c 2-1=c 2+1,∴c =,a =,8分23∴S =bc =×1×=.9分1212222②若角B 为直角,则b 2=a 2+c 2,a 2+c 2=1.∴2c 2=a 2+1=(1-c 2)+1,∴c 2=,a 2=,即c =,a =,12分23136333∴S =ac =××=.14分1212633326。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题3 突破点6 古典概型

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题3 突破点6 古典概型

专题三概率及期望与方差建知识网络明内在联系[高考点拨]本专题涉及面广,往往以生活中的热点问题为依托,在浙江新高考中的考查方式十分灵活,背景容易创新.基于上述分析,本专题按照“古典概型”“随机变量及其分布”两个方面分类进行引导,强化突破.突破点6 古典概型(对应学生用书第24页)[核心知识提炼]提炼1古典概型问题的求解技巧(1)直接列举:涉及一些常见的古典概型问题时,往往把事件发生的所有结果逐一列举出来,然后进行求解.(2)画树状图:涉及一些特殊古典概型问题时,直接列举容易出错,通过画树状图,列举过程更具有直观性、条理性,使列举结果不重、不漏.(3)逆向思维:对于较复杂的古典概型问题,若直接求解比较困难,可利用逆向思维,先求其对立事件的概率,进而可得所求事件的概率.(4)活用对称:对于一些具有一定对称性的古典概型问题,通过列举基本事件个数结合古典概型的概率公式来处理反而比较复杂,利用对称思维,可以快速解决. 提炼2求概率的两种常用方法(1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率. (2)若一个较复杂的事件的对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.[高考真题回访]回访 古典概型1.(2011·浙江高考)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( ) A.110B.310 C.35D.910D [“所取的3个球中至少有1个白球”的对立事件是“所取的3个球都不是白球”,因而所求的概率P =1-C 33C 35=1-110=910.]2.(2014·浙江高考)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.13[记“两人都中奖”为事件A , 设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种.其中甲、乙都中奖有(1,2),(2,1),2种,所以P (A )=26=13.]3.(2013·浙江高考)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于__________.15[用A ,B ,C 表示三名男同学,用a ,b ,c 表示三名女同学,则从6名同学中选出2人的所有选法为:AB ,AC ,Aa ,Ab ,Ac ,BC ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,ab ,ac ,bc ,共15种选法,其中都是女同学的选法有3种,即ab ,ac ,bc ,故所求概率为315=15.](对应学生用书第25页) 热点题型1 古典概型题型分析:古典概型是高考考查概率的核心,问题背景大多是取球、选人、组数等,求解的关键是准确列举基本事件,难度较小.【例1】 (1)(2017·浙东北教学联盟高三一模考试7)袋子里有大小、形状相同的红球m 个,黑球n 个(m >n >2).从中任取1个球是红球的概率记为p 1.若将红球、黑球个数各增加1个,此时从中任取1个球是红球的概率记为p 2;若将红球、黑球个数各减少1个,此时从中任取1个球是红球的概率记为p 3,则( ) A .p 1>p 2>p 3 B .p 1>p 3>p 2 C .p 3>p 2>p 1D .p 3>p 1>p 2(2)已知M ={1,2,3,4},若a ∈M ,b ∈M ,则函数f (x )=ax 3+bx 2+x -3在R 上为增函数的概率是( )【导学号:68334080】A.916B.716 C.416D.316(1)B (2)A [(1)由题意得p 1=mm +n,p 2=m +1m +n +2,p 3=m -1m +n -2,则1p 1=m +n m =1+n m ,1p 2=m +n +2m +1=1+n +1m +1,1p 3=m +n -2m -1=1+n -1m -1,则1p 1-1p 2=n m -n +1m +1=n -mm m +<0,1p 1-1p 3=nm-n -1m -1=m -n m m ->0,所以1p 2>1p 1>1p 3,所以p 3>p 1>p 2,故选D.(2)记事件A 为“函数f (x )=ax 3+bx 2+x -3在R 上为增函数”.因为f (x )=ax 3+bx 2+x -3,所以f ′(x )=3ax 2+2bx +1. 因为函数f (x )在R 上为增函数,所以f ′(x )≥0在R 上恒成立.又a >0,所以Δ=(2b )2-4×3a =4b 2-12a ≤0在R 上恒成立,即a ≥b 23.所以当b =1时,有a ≥13,故a 可取1,2,3,4,共4个数;当b =2时,有a ≥43,故a 可取2,3,4,共3个数;当b =3时,有a ≥3,故a 可取3,4,共2个数; 当b =4时,有a ≥163,故a 无可取值.综上,事件A 包含的基本事件有4+3+2=9(种). 又a ,b ∈{1,2,3,4},所以(a ,b )共有4×4=16(种). 故所求事件A 的概率为P (A )=916.故选A.][方法指津]利用古典概型求事件概率的关键及注意点1.关键:正确列举出基本事件的总数和待求事件包括的基本事件数.2.注意点:(1)对于较复杂的题目,列出事件数时要正确分类,分类时应不重不漏. (2)当直接求解有困难时,可考虑求其对立事件的概率.[变式训练1] (2016·温州调研)若将甲、乙两个球随机放入编号为1,2,3的三个盒子中,每个盒子的放球数量不限,则在1,2号盒子中各有一个球的概率是________.29[将甲、乙两个球随机放入编号为1,2,3的三个盒子中,每个盒子的放球数量不限,则有3×3=9种不同放法,其中在1,2号盒子中各有一个球的结果有2种,故所求概率是29.]热点题型2 互斥事件与对立事件的概率题型分析:互斥事件与对立事件的概率常与古典概型等交汇命题,主要考查学生的分析转化能力,难度中等.【例2】现有甲、乙、丙、丁4个学生课余参加学校社团文学社与街舞社的活动,每人参加且只能参加一个社团的活动,且参加每个社团是等可能的.(1)求文学社和街舞社都至少有1人参加的概率;(2)求甲、乙同在一个社团,且丙、丁不同在一个社团的概率.[解]甲、乙、丙、丁4个学生课余参加学校社团文学社与街舞社的情况如下:共有 (1)文学社或街舞社没有人参加的基本事件有2个, 故所求概率为1416=78.9分(2)甲、乙同在一个社团,且丙、丁不同在一个社团的基本事件有4个,故所求概率为416=14.12分[方法指津]1.直接求法:将所求事件分解为一些彼此互斥事件的和,运用互斥事件概率的加法公式计算. 2.间接求法:先求此事件的对立事件,再用公式P (A )=1-P (A )求解,即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法会较简便. 提醒:应用互斥事件概率的加法公式的前提是确定各个事件是否彼此互斥.[变式训练2] (名师押题)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率; (2)求该地1位车主甲、乙两种保险都不购买的概率.【导学号:68334081】[解] 记事件A 为“该车主购买甲种保险”,事件B 为“该车主购买乙种保险但不购买甲种保险”,事件C 为“该车主至少购买甲、乙两种保险中的1种”,事件D 为“该车主甲、乙两种保险都不购买”.4分(1)由题意得P (A )=0.5,P (B )=0.3,6分 又C =A ∪B ,所以P (C )=P (A ∪B )=P (A )+P (B )=0.5+0.3=0.8. 12分 (2)因为D 与C 是对立事件,所以P (D )=1-P (C )=1-0.8=0.2. 15分。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题2 突破点5 数列求和及其综合应用

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题2 突破点5 数列求和及其综合应用

突破点5 数列求和及其综合应用(对应学生用书第19页)[核心知识提炼]提炼1 a n 和S n 的关系若a n 为数列{a n }的通项,S n 为其前n 项和,则有a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.在使用这个关系式时,一定要注意区分n =1,n ≥2两种情况,求出结果后,判断这两种情况能否整合在一起. 提炼2求数列通项常用的方法(1)定义法:①形如a n +1=a n +c (c 为常数),直接利用定义判断其为等差数列.②形如a n +1=ka n (k 为非零常数)且首项不为零,直接利用定义判断其为等比数列.(2)叠加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式. (3)叠乘法:形如a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a na n -1,求其通项公式. (4)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q1-p,再转化为等比数列求解.(5)构造法:形如a n +1=pa n +q n(其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以qn +1,得a n +1q n +1=p q ·a n q n +1q ,构造新数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解.(6)取对数法:形如a n +1=pa mn (p >0,a n >0),先在原递推公式两边同时取对数,再利用待定系数法求解. 提炼3数列求和数列求和的关键是分析其通项,数列的基本求和方法有公式法、裂(拆)项相消法、错位相减法、分组法、倒序相加法和并项法等,而裂项相消法,错位相减法是常用的两种方法. 提炼4数列的综合问题数列综合问题的考查方式主要有三种:(1)判断数列问题中的一些不等关系,可以利用数列的单调性比较大小,或者是借助数列对应函数的单调性比较大小.(2)以数列为载体,考查不等式的恒成立问题,此类问题可转化为函数的最值问题. (3)考查与数列有关的不等式的证明问题,此类问题大多还要借助构造函数去证明,或者是直接利用放缩法证明或直接利用数学归纳法.[高考真题回访]回访1 数列求和1.(2014·浙江高考)已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n ;(2)设c n =1a n -1b n(n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *,均有S k ≥S n . [解] (1)由题意知a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去), 2分 所以数列{a n }的通项为a n =2n(n ∈N *), 所以,a 1a 2a 3…a n =2n n +2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). 5分 (2)①由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *), 所以S n =1n +1-12n (n ∈N *).7分②因为c 1=0,c 2>0,c 3>0,c 4>0, 当n ≥5时,c n =1nn +⎣⎢⎡⎦⎥⎤n n +2n -1,9分而n n +2n-n +n +2n +1=n +n -2n +1>0,得n n +2n≤+25<1,11分所以,当n ≥5时,c n <0.综上,对任意n ∈N *恒有S 4≥S n ,故k =4. 14分 回访2 数列的综合问题2.(2017·浙江高考)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n ∈N *). 证明:当n ∈N *时, (1)0<x n +1<x n ; (2)2x n +1-x n ≤x n x n +12;(3)12n -1≤x n ≤12n -2.[解] (1)证明:用数学归纳法证明:x n >0. 当n =1时,x 1=1>0. 假设n =k 时,x k >0, 那么n =k +1时,若x k +1≤0,则0<x k =x k +1+ln(1+x k +1)≤0,矛盾, 故x k +1>0. 3分因此x n >0(n ∈N *).所以x n =x n +1+ln(1+x n +1)>x n +1. 因此0<x n +1<x n (n ∈N *).5分(2)证明:由x n =x n +1+ln(1+x n +1)得x n x n +1-4x n +1+2x n=x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1).7分记函数f (x )=x 2-2x +(x +2)ln(1+x )(x ≥0), f ′(x )=2x 2+xx +1+ln(1+x )>0(x >0),函数f (x )在[0,+∞)上单调递增, 所以f (x )≥f (0)=0,因此x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1)=f (x n +1)≥0, 故2x n +1-x n ≤x n x n +12(n ∈N *).10分(3)证明:因为x n =x n +1+ln(1+x n +1)≤x n +1+x n +1=2x n +1, 所以x n ≥12n -1.由x n x n +12≥2x n +1-x n得1x n +1-12≥2⎝ ⎛⎭⎪⎫1x n -12>0,13分所以1x n -12≥2⎝ ⎛⎭⎪⎫1x n -1-12≥…≥2n -1⎝ ⎛⎭⎪⎫1x 1-12=2n -2, 故x n ≤12n -2.综上,12n -1≤x n ≤12n -2(n ∈N *).15分3.(2016·浙江高考)设数列{a n }满足⎪⎪⎪⎪⎪⎪a n -a n +12≤1,n ∈N *.(1)证明:|a n |≥2n -1(|a 1|-2),n ∈N *;(2)若|a n |≤⎝ ⎛⎭⎪⎫32n ,n ∈N *,证明:|a n |≤2,n ∈N *.[证明] (1)由⎪⎪⎪⎪⎪⎪a n -a n +12≤1, 得|a n |-12|a n +1|≤1,故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *,2分所以|a 1|21-|a n |2n =⎝ ⎛⎭⎪⎫|a 1|21-|a 2|22+⎝ ⎛⎭⎪⎫|a 2|22-|a 3|23+…+⎝ ⎛⎭⎪⎫|a n -1|2n -1-|a n |2n ≤121+122+…+12n -1<1,因此|a n |≥2n -1(|a 1|-2). 5分(2)任取n ∈N *,由(1)知,对于任意m >n ,|a n |2n -|a m |2m=⎝ ⎛⎭⎪⎫|a n |2n -|a n +1|2n +1+⎝ ⎛⎭⎪⎫|a n +1|2n +1-|a n +2|2n +2+…+⎝ ⎛⎭⎪⎫|a m-1|2m -1-|a m |2m ≤12n +12n +1+…+12m -1<12n -1, 故|a n |<⎝ ⎛⎭⎪⎫12n -1+|a m |2m ·2n≤⎣⎢⎡⎭⎪⎫12n -1+12m·⎝ ⎛⎭⎪⎫32m ·2n =2+⎝ ⎛⎭⎪⎫34m ·2n.8分从而对于任意m >n ,均有|a n |<2+⎝ ⎛⎭⎪⎫34m ·2n.①由m 的任意性得|a n |≤2. 否则,存在n 0∈N *,有|an 0|>2, 取正整数m 0>log 34|an 0|-22n 0且m 0>n 0,11分则2n 0·⎝ ⎛⎭⎪⎫34m 0<2n 0·⎝ ⎛⎭⎪⎫34log 34|an 0|-22n 0=|an 0|-2,与①式矛盾.综上,对于任意n ∈N *,均有|a n |≤2.15分(对应学生用书第21页) 热点题型1 数列中的a n 与S n 的关系数列中的a n 与S n 的关系题型分析:以数列中a n 与S n 间的递推关系为载体,考查数列通项公式的求法,以及推理论证的能力.【例1】 数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且满足2a na n S n -S 2n=1(n ≥2).求数列{a n }的通项公式.【导学号:68334070】[解] 由已知,当n ≥2时,2a na n S n -S 2n=1,所以S n -S n -1S n -S n -1S n -S 2n =1,2分即S n -S n -1-S n -1S n=1,所以1S n -1S n -1=12.4分又S 1=a 1=1,所以数列⎩⎨⎧⎭⎬⎫1S n 是首项为1,公差为12的等差数列,6分所以1S n =1+12(n -1)=n +12,即S n =2n +1.8分 所以当n ≥2时,a n =S n -S n -1=2n +1-2n =-2nn +.12分因此a n =⎩⎪⎨⎪⎧1,n =1,-2n n +,n ≥2. 15分[方法指津]给出S n 与a n 的递推关系,求a n ,常用思路:一是利用S n -S n -1=a n n 转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n . 提醒:在利用a n =S n -S n -1n求通项公式时,务必验证n =1时的情形[变式训练1] (1)已知数列{a n }前n 项和为S n ,若S n =2a n -2n,则S n =__________. 【导学号:68334071】(2)已知数列{a n }的各项均为正数,其前n 项和为S n ,且2S n +2=3a n (n ∈N *),则a n =__________. (1)n ·2n(n ∈N *) (2)2×3n -1(n ∈N *) [(1)由S n =2a n -2n得当n =1时,S 1=a 1=2;当n ≥2时,S n =2(S n -S n -1)-2n,即S n 2n -S n -12n -1=1,所以数列⎩⎨⎧⎭⎬⎫S n 2n 是首项为1,公差为1的等差数列,则S n2n=n ,S n =n ·2n (n ≥2),当n =1时,也符合上式,所以S n =n ·2n (n ∈N *).(2)因为2S n +2=3a n ,①所以2S n +1+2=3a n +1, ②由②-①,得2S n +1-2S n =3a n +1-3a n ,所以2a n +1=3a n +1-3a n ,即a n +1a n=3. 当n =1时,2+2S 1=3a 1,所以a 1=2,所以数列{a n }是首项为2,公比为3的等比数列, 所以a n =2×3n -1(n ∈N *).]热点题型2 裂项相消法求和题型分析:裂项相消法是指把数列与式中的各项分别裂开后,某些项可以相互抵消从而求和的方法,主要适用于⎩⎨⎧⎭⎬⎫1a n a n +1或⎩⎨⎧⎭⎬⎫1a n a n +2其中{a n }为等差数列等形式的数列求和.【例2】 已知等差数列{a n }的公差d ≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 22成等比数列,(1)求数列{a n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:16≤T n <38.[解] (1)由已知及等差数列的性质得S 5=5a 3,∴a 3=14, 1分 又a 2,a 7,a 22成等比数列,即a 27=a 2·a 22. 2分由(a 1+6d )2=(a 1+d )(a 1+21d )且d ≠0, 解得a 1=32d ,∴a 1=6,d =4.4分 故数列{a n }的通项公式为a n =4n +2,n ∈N *. 6分(2)证明:由(1)得S n =n a 1+a n2=2n 2+4n ,1S n=12n 2+4n =14⎝ ⎛⎭⎪⎫1n -1n +2,8分∴T n =141-13+12-14+…+1n -1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2.11分又T n ≥T 1=38-14⎝ ⎛⎭⎪⎫12+13=16,所以16≤T n <38.15分[方法指津]裂项相消法的基本思想就是把通项a n 分拆成a n =b n +k -b n k ≥1,k ∈N *的形式,常见的裂项方式有: (1nn +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ; 1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(1n +n +k =1kn +k -n提醒:在裂项变形时,务必注意裂项前后系数的变化.[变式训练2] (名师押题)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . [解] (1)由题设知a 1·a 4=a 2·a 3=8, 2分又a 1+a 4=9,可得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1.(舍去)4分 由a 4=a 1q 3得公比q =2,故a n =a 1q n -1=2n -1.6分 (2)S n =a 1-qn1-q=2n-1.8分 又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,12分所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.热点题型3 错位相减法求和题型分析:限于数列解答题的位置较为靠前,加上错位相减法的运算量相对较大,故该命题点出现的频率不高,但其仍是命题的热点之一,务必加强训练.【例3】 已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+ (1)b n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n . [解] (1)由a 1=2,a n +1=2a n ,得a n =2n(n ∈N *). 2分由题意知:当n =1时,b 1=b 2-1,故b 2=2. 3分 当n ≥2时,1nb n =b n +1-b n .4分整理得b n +1n +1=b n n,所以b n =n (n ∈N *). 6分(2)由(1)知a n b n =n ·2n,因此T n =2+2·22+3·23+…+n ·2n, 2T n =22+2·23+3·24+…+n ·2n +1,10分 所以T n -2T n =2+22+23+ (2)-n ·2n +1.12分故T n =(n -1)2n +1+2(n ∈N *).15分[方法指津]运用错位相减法求和应注意:一是判断模型,即判断数列{a n },{b n }中一个为等差数列,一个为等比数列;二是错开位置,一般先乘以公比,再把前n 项和退后一个位置来书写,这样避免两式相减时看错列;三是相减,相减时一定要注意式中最后一项的符号,考生常在此步出错,一定要细心.提醒:为保证结果正确,可对得到的和取n =1,2进行验证.[变式训练3] 已知在公比大于1的等比数列{a n }中,a 2,a 4是函数f (x )=(x -2)(x -8)的两个零点.(1)求数列{a n }的通项公式; (2)求数列{2na n }的前n 项和S n .[解] (1)因为a 2,a 4是函数f (x )=(x -2)(x -8)的两个零点,且等比数列{a n }的公比q 大于1,所以a 2=2,a 4=8,2分所以q =2,所以数列{a n }的通项公式为a n =2n -1(n ∈N *).6分(2)由(1)知2na n =n ×2n,所以S n =1×2+2×22+…+n ×2n,① 7分 2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1,②11分由①-②,得-S n =2+22+23+…+2n -n ×2n +1=2-2n×21-2-n ×2n +1,13分所以S n =2+(n -1)×2n +1(n ∈N *).15分热点题型4 数列的综合问题题型分析:数列与函数、不等式的综合问题多为解答题.难度偏大,属中高档题,常有以下两个命题角度:以数列为载体,考查不等式的恒成立问题; 考查与数列有关的不等式的证明问题.【例4】 (2017·绍兴市方向性仿真考试)已知数列{a n }满足,a 1=1,a n =1a n +1-12. (1)求证:23≤a n ≤1;(2)求证:|a n +1-a n |≤13;(3)求证:|a 2n -a n |≤1027.【导学号:68334072】[证明] (1)由已知得a n +1=1a n +12,又a 1=1,所以a 2=23,a 3=67,a 4=1419,猜想23≤a n ≤1.2分下面用数学归纳法证明. ①当n =1时,命题显然成立;②假设n =k 时,有23≤a n ≤1成立,则当n =k +1时,a k +1=1a k +12≤123+12<1,a k +1=1a k +12≥11+12=23,即当n =k +1时也成立, 所以对任意n ∈N *,都有23≤a n ≤1.5分(2)当n =1时,|a 2-a 1|=13,当n ≥2时,∵⎝⎛⎭⎪⎫a n +12⎝ ⎛⎭⎪⎫a n -1+12=⎝ ⎛⎭⎪⎫a n +12·1a n =1+12a n ≥1+12=32, 7分∴|a n +1-a n |=⎪⎪⎪⎪⎪⎪⎪⎪1a n +12-1a n -1+12 =|a n -a n -1|⎝ ⎛⎭⎪⎫a n +12⎝ ⎛⎭⎪⎫a n -1+12≤23|a n -a n -1|≤…≤⎝ ⎛⎭⎪⎫23n -1|a 2-a 1|=13·⎝ ⎛⎭⎪⎫23n -1<13.综上所述,|a n +1-a n |≤13.10分(3)当n =1时,|a 2-a 1|=13=927<1027; 11分当n ≥2时,|a 2n -a n |≤|a 2n -a 2n -1|+|a 2n -1-a 2n -2|+…+|a n +1-a n | ≤13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232n -2+⎝ ⎛⎭⎪⎫232n -3+…+⎝ ⎛⎭⎪⎫23n -1 =⎝ ⎛⎭⎪⎫23n -1-⎝ ⎛⎭⎪⎫232n -1≤23-⎝ ⎛⎭⎪⎫233=1027.15分[方法指津]解决数列与不等式的综合问题时,如果是证明题,要灵活的选择不等式的证明方法,如比较法、综合法、分析法、放缩法、反证法及数学归纳法等;如果是解不等式问题,要使用解不等式的各种解法,如列表法、因式分解法、穿根法等,总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.[变式训练4] (2017·台州市高三年级调考)已知数列{a n }满足:a n >0,a n +1+1a n<2(n ∈N *).(1)求证:a n +2<a n +1<2(n ∈N *); (2)求证:a n >1(n ∈N *).[证明] (1)由a n >0,a n +1+1a n<2,得a n +1<2-1a n<2.2分因为2>a n +2+1a n +1>2a n +2a n +1(由题知a n +1≠a n +2), 所以a n +2<a n +1<2.4分(2)法一:假设存在a N ≤1(N ≥1,N ∈N *), 由(1)可得当n >N 时,a n ≤a N +1<1.6分根据a n +1-1<1-1a n =a n -1a n<0,而a n <1,所以1a n +1-1>a n a n -1=1+1a n -1,于是1a N +2-1>1+1a N +1-1,……1a N +n -1>1+1a N +n -1-1.10分累加可得1a N +n -1>n -1+1a N +1-1.(*)由假设可得a N +n -1<0,12分而当n >-1a N +1-1+1时,显然有n -1+1a N +1-1>0,因此有1a N +n -1<n -1+1a N +1-1,这显然与(*)矛盾. 所以a n >1(n ∈N *).15分法二:假设存在a N ≤1(N ≥1,N ∈N *),由(1)可得当n >N 时,0<a n ≤a N +1<1. 6分 根据a n +1-1<1-1a n =a n -1a n<0,而a n <1,所以11-a n +1<an 1-a n,所以1-a n +11-a n >1a n ≥1a N +1>1.于是1-a n >(1-a n -1)⎝ ⎛⎭⎪⎫1a N +1,1-a n -1>(1-a n -2)⎝ ⎛⎭⎪⎫1a N +1,……1-a N +2>(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1.10分 累乘可得1-a n >(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1n -N -1,(*)由(1)可得1-a n <1, 12分 而当n > ⎝ ⎛⎭⎪⎫11-a N +1+N +1时,则有(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1n -N -1>1,这显然与(*)矛盾.所以a n >1(n ∈N *). 15分。

2018年浙江高考数学二轮复习教师用书第1部分 重点强化专题 专题2 突破点4 等差数列、等比数列 Word版含答案

2018年浙江高考数学二轮复习教师用书第1部分 重点强化专题 专题2 突破点4 等差数列、等比数列 Word版含答案

专题二 数 列 建知识网络 明内在联系[高考点拨] 数列专题是浙江新高考的必考专题之一,主要考查等差、等比数列的基本量运算及数列求和的能力,该部分即可单独命题,又可与其他专题综合命题,考查方式灵活多样,结合浙江新高考的命题研究,本专题我们按照“等差、等比数列”和“数列求和及综合应用”两条主线展开分析和预测.突破点 等差数列、等比数列(对应学生用书第页)[核心知识提炼]提炼等差数列、等比数列的运算()通项公式;)-(+等差数列:=.-·等比数列:= ()求和公式;=+等差数列:= .(≠)=等比数列:=()性质若+=+,;+在等差数列中+= .·=·在等比数列中提炼等差数列、等比数列的判定与证明数列{}是等差数列或等比数列的证明方法:()证明数列{}是等差数列的两种基本方法 为同一常数;)*∈(-+利用定义,证明① .(≥)++-=利用中项性质,即证明②()证明{}是等比数列的两种基本方法 ①利用定义,证明(∈*)为同一常数; ②利用等比中项,即证明=-+(≥).提炼数列中项的最值的求法()根据数列与函数之间的对应关系,构造相应的函数()=,利用求解函数最值的方法(多利用函数的单调性)进行求解,但要注意自变量的取值必须是正整数的限制.()利用数列的单调性求解,利用不等式+≥(或+≤)求解出的取值范围,从而确定数列单调性的变化,进而确定相应的最值.()转化为关于的不等式组求解,若求数列{}的最大项,则可解不等式组(\\(≥-,≥+;))若求数列{}的最小项,则可解不等式组(\\(≤-,≤+,))求出的取值范围之后,再确定取得最值的项.[高考真题回访]回访 等差数列及其运算.(·浙江高考)已知等差数列{}的公差为,前项和为,则“>”是“+>”的( )【导学号:】.充分不必要条件 .必要不充分条件 .充分必要条件 .既不充分也不必要条件[法一:∵数列{}是公差为的等差数列, ∴=+,=+,=+, ∴+=+=+. 若>,则>+>+, 即+>.若+>,则+>+,即>,∴>.∴“>”是“+>”的充分必要条件. 故选.法二:∵+>⇔+++>(+)⇔>⇔+>⇔>,∴“>”是“+>”的充分必要条件. 故选.].(·浙江高考)已知{}是等差数列,公差不为零,前项和是,若,,成等比数列,则( ) .>,>。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题1 突破点3 平面向量 Word版含答案

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题1 突破点3 平面向量 Word版含答案

突破点3 平面向量(对应学生用书第14页)[核心知识提炼]提炼1 平面向量共线、垂直的两个充要条件 若a =(x 1,y 1),b =(x 2,y 2),则: (1)a∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. 提炼2 数量积常见的三种应用已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),则 (1)证明向量垂直:a⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. (2)求向量的长度:|a |=a·a =x 21+y 21. (3)求向量的夹角:cos 〈a ,b 〉=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提炼3平面向量解题中应熟知的常用结论(1)A ,B ,C 三点共线的充要条件是存在实数λ,μ,有OA →=λOB →+μOC →,且λ+μ=1. (2)C 是线段AB 中点的充要条件是OC →=12(OA →+OB →).(3)G 是△ABC 的重心的充要条件为GA →+GB →+GC →=0,若△ABC 的三个顶点坐标分别为A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心坐标为x 1+x 2+x 33,y 1+y 2+y 33.(4)PA →·PB →=PB →·PC →=PA →·PC →⇔P 为△ABC 的垂心.(5)非零向量a ,b 垂直的充要条件:a⊥b ⇔a·b =0⇔|a +b|=|a -b|⇔x 1x 2+y 1y 2=0. (6)向量b 在a 的方向上的投影为|b |cos θ=a·b|a |, 向量a 在b 的方向上的投影为|a |cos θ=a·b|b|. [高考真题回访]回访1 平面向量的线性运算1.(2018·浙江高考)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.4 25 [设a ,b 的夹角为θ. ∵|a |=1,|b |=2,∴|a +b |+|a -b |=a +b2+a -b2=5+4cos θ+5-4cos θ. 令y =5+4cos θ+5-4cos θ, 则y 2=10+225-16cos 2θ.∵θ∈[0,π],∴cos 2θ∈[0,1],∴y 2∈[16,20], ∴y ∈[4,25],即|a +b |+|a -b |∈[4,25].] 2.(2018·浙江高考)记max{x ,y }=⎩⎪⎨⎪⎧x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A .min{|a +b |,|a -b |}≤min{|a |,|b |}B .min{|a +b |,|a -b |}≥min{|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |2D [由于|a +b |,|a -b |与|a |,|b |的大小关系与夹角大小有关,故A ,B 错.当a ,b 夹角为锐角时,|a +b |>|a -b |,此时,|a +b |2>|a |2+|b |2;当a ,b 夹角为钝角时,|a +b |<|a -b |,此时,|a -b |2>|a |2+|b |2;当a ⊥b 时,|a +b |2=|a-b |2=|a |2+|b |2,故选D.]3.(2018·浙江高考)设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,|b +t a |的最小值为1.( )【导学号:68334048】A .若θ确定,则|a |唯一确定B .若θ确定,则|b |唯一确定C .若|a |确定,则θ唯一确定D .若|b |确定,则θ唯一确定B [|b +t a |2=b 2+2a ·b ·t +t 2a 2=|a |2t 2+2|a |·|b |cos θ·t +|b |2. 因为|b +t a |min =1,所以4|a |2·|b |2-4|a |2·|b |2cos 2θ4|a |2=|b |2(1-cos 2θ)=1. 所以|b |2sin 2θ=1,所以|b |sin θ=1,即|b |=1sin θ. 即θ确定,|b |唯一确定.] 回访2 平面向量的数量积及其应用4.(2018·浙江高考)设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P, 恒有PB →·PC →≥P 0B →·P 0C →,则( ) A .∠ABC =90° B .∠BAC =90° C .AB =ACD .AC =BCD [A 项,若∠ABC =90°,如图,则PB →·PC →=|PB →|·|PC →|cos ∠BPC =|PB →|2,P 0B →·P 0C →=|P 0B →|2.当点P 落在点P 0的右侧时,|PB →|2<|P 0B →|2,即PB →·PC →<P 0B →·P 0C →,不符合;B 项,若∠BAC =90°,如图,则PB →·PC →=|PB →|·|PC →|cos ∠BPC =-|PB →|·|PA →|,P 0B →·P 0A →=-|P 0B →||P 0A →|=-3.当P 为AB 的中点时,PB →·PC →=-4, PB →·PC →<P 0B →·P 0C →,不符合;C 项,若AB =AC ,假设∠BAC =120°,如图,则AC ′=2,PB →·PC →=|PB →|·|PC →|cos ∠BPC =-|PB →||PC ′→|,P 0B →·P 0C →=|P 0B →||P 0C →|cos ∠BP 0C =-|P 0B →||P 0C ′→|=-5.当P 落在A 点时,-|PB →||PC ′→|=-8,所以PB →·PC →<P 0B →·P 0C →,不符合.故选D.]5.(2018·浙江高考)已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1,若e 为平面单位向量,则|a ·e |+|b ·e |的最大值是________. 【导学号:68334049】7 [∵a ·b =|a |·|b |cos 〈a ,b 〉=1×2×cos〈a ,b 〉=1,∴cos 〈a ,b 〉=12,∴〈a ,b 〉=60°.以a 的起点为原点,所在直线为x 轴建立直角坐标系, 则a =(1,0),b =(1,3). 设e =(cos θ,sin θ),则|a ·e |+|b ·e |=|cos θ|+|cos θ+3sin θ|≤|cos θ|+|cos θ|+|3sin θ| =2|cos θ|+3|sin θ| ≤θ|2+|sin θ|22+=7.]6.(2018·浙江高考)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________.233 [∵e 1·e 2=12, ∴|e 1||e 2|cos 〈e 1,e 2〉=12,∴〈e 1,e 2〉=60°.又∵b ·e 1=b ·e 2=1>0,∴〈b ,e 1〉=〈b ,e 2〉=30°. 由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.]7.(2018·浙江高考)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于________. 2 [根据题意,得⎝ ⎛⎭⎪⎫|x ||b |2=x 2x e 1+y e 22=x 2x e 12+y e 22+2xy e 1·e 2=x 2x 2+y 2+2xy cosπ6=x 2x 2+y 2+3xy=11+⎝ ⎛⎭⎪⎫y x 2+3y x =1⎝ ⎛⎭⎪⎫y x +322+14.因为⎝ ⎛⎭⎪⎫yx +322+14≥14,所以0<⎝ ⎛⎭⎪⎫|x ||b|2≤4,所以0<|x ||b |≤2.故|x ||b |的最大值为2.](对应学生用书第15页) 热点题型1 平面向量的运算题型分析:该热点是高考的必考点之一,考查方式主要体现在以下两个方面:一是以平面图形为载体考查向量的线性运算;二是以向量的共线与垂直为切入点,考查向量的夹角、模等. 【例1】 (1)(2018·杭州第二次调研)在梯形ABCD 中,AB ∥DC ,AB ⊥AD ,AD =DC =1,AB =2.若AP →=16AD →+56AB →,则|BC →+tPB →|(t ∈R )的取值范围是( )【导学号:68334050】A.⎣⎢⎡⎭⎪⎫55,+∞ B .[2,+∞)C.⎣⎢⎡⎦⎥⎤55,1 D .[1,+∞)(2)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58B.18C.14D.118(1)A (2)B [(1)以A 为坐标原点,AB ,AD 分别为x 轴,y 轴建立直角坐标系(图略),则D (0,1),B (2,0),C (1,1),设P (x ,y ),由AP →=16AD →+56AB →得(x ,y )=16(0,1)+56(2,0),x =53,y =16,所以P ⎝ ⎛⎭⎪⎫53,16, ∴PB →=⎝ ⎛⎭⎪⎫13,-16,BC →=(-1,1),即|BC →+tPB →|=⎝ ⎛⎭⎪⎫t 3-12+⎝ ⎛⎭⎪⎫1-t 62=536t 2-t +2≥55,当且仅当t =185时等号成立,故选A.(2)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →,所以AF →=12AB →+34AC →.又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →.又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B.][方法指津]1.平面向量的线性运算要抓住两条主线:一是基于“形”,通过作出向量,结合图形分析;二是基于“数”,借助坐标运算来实现.2.正确理解并掌握向量的概念及运算,强化“坐标化”的解题意识,注重数形结合思想、方程思想与转化思想的应用.提醒:运算两平面向量的数量积时,务必要注意两向量的方向.[变式训练1] (1)已知向量a =(-1,2),b =(3,1),c =(x,4),若(a -b )⊥c ,则c·(a +b )=( )A .(2,12)B .(-2,12)C .14D .10(2)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则mn=__________. 【导学号:68334051】(1)C (2)-2 [(1)易知a -b =(-4,1),由(a -b )⊥c ,可得(-4)×x +1×4=0,即-4x +4=0,解得x =1, ∴c =(1,4).而a +b =(2,3),∴c·(a +b )=1×2+4×3=14.故选C.(2)∵a ∥b ,∴a =λb ,即m e 1+2e 2=λ(n e 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,解得m n=-2.]热点题型2 三角与向量的综合问题题型分析:平面向量作为解决问题的工具,具有代数形式和几何形式的“双重型”,高考常在平面向量与三角函数的交汇处命题,通过向量运算作为题目条件. 【例2】 (名师押题)已知向量a =⎝ ⎛⎭⎪⎫sin x ,34,b =(cos x ,-1). (1)当a ∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =3,b =2,sin B =63,求y =f (x )+4cos ⎝⎛⎭⎪⎫2A +π6⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π3的取值范围.[解] (1)∵a ∥b ,∴34cos x +sin x =0,2分 ∴tan x =-34,4分 ∴cos 2x -sin 2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85. 6分 (2)f (x )=2(a +b )·b =2sin ⎝ ⎛⎭⎪⎫2x +π4+32,8分由正弦定理得a sin A =bsin B,可得sin A =22. 9分 ∵b >a ,∴A =π4,10分 y =f (x )+4cos ⎝⎛⎭⎪⎫2A +π6=2sin ⎝⎛⎭⎪⎫2x +π4-12.13分∵x ∈⎣⎢⎡⎦⎥⎤0,π3,∴2x +π4∈⎣⎢⎡⎦⎥⎤π4,11π12,∴32-1≤y ≤2-12, 即y 的取值范围是⎣⎢⎡⎦⎥⎤32-1,2-12.15分[方法指津]平面向量与三角函数问题的综合主要利用向量数量积运算的坐标形式,多与同角三角函数关系、诱导公式以及和角与倍角等公式求值等问题相结合,计算的准确性和三角变换的灵活性是解决此类问题的关键点.[变式训练2] 在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.[解] (1)若m ⊥n ,则m ·n =0. 由向量数量积的坐标公式得22sin x -22cos x =0, 4分 ∴tan x =1.6分(2)∵m 与n 的夹角为π3,∴m ·n =|m |·|n |cos π3,即22sin x -22cos x =12,8分∴sin ⎝⎛⎭⎪⎫x -π4=12.12分又∵x ∈⎝ ⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4, ∴x -π4=π6,即x =5π12.15分。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题4 突破点10 立体几何中的向量方法 Word版

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题4 突破点10 立体几何中的向量方法 Word版

突破点10 立体几何中的向量方法(对应学生用书第37页)[核心知识提炼]提炼1 两条异面直线的夹角(1)两异面直线的夹角θ∈⎝⎛⎦⎥⎤0,π2.(2)设直线l 1,l 2的方向向量为s 1,s 2,则cos θ=|cos 〈s 1,s 2〉|=|s 1·s 2||s 1|·|s 2|.提炼2 直线与平面的夹角(1)直线与平面的夹角θ∈⎣⎢⎡⎦⎥⎤0,π2.(2)设直线l 的方向向量为a ,平面α的法向量为n ,则sin θ=|cos 〈a ,n 〉|=|a·n||a|·|n|.提炼3 两个平面的夹角(1)如图10­1①,AB ,CD 是二面角α­l ­β的两个半平面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.① ② ③图10­1(2)如图10­1②③,n 1,n 2分别是二面角α­l ­β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=-cos 〈n 1,n 2〉或cos 〈n 1,n 2〉.[高考真题回访]回访1 空间向量及其运算1.(2015·浙江高考)已知e 1,e 2是空间单位向量,e 1·e 2=12,若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),说明当x =x 0,y =y 0时,|b -(x e 1+y e 2)|取得最小值1.|b -(x e 1+y e 2)|2=|b |2+(x e 1+y e 2)2-2b ·(x e 1+y e 2)=|b |2+x 2+y 2+xy -4x -5y ,要使|b |2+x 2+y 2+xy -4x -5y 取得最小值,需要把x 2+y 2+xy -4x -5y 看成关于x 的二次函数,即f (x )=x 2+(y -4)x +y 2-5y ,其图象是开口向上的抛物线,对称轴方程为x =2-y2,所以当x=2-y 2时,f (x )取得最小值,代入化简得f (x )=34(y -2)2-7,显然当y =2时,f (x )min =-7,此时x =2-y2=1,所以x 0=1,y 0=2.此时|b |2-7=1,可得|b |=2 2.]回访2 立体几何中的向量方法2.(2016·浙江高考)如图10­2,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°,沿直线AC 将△ACD 翻折成△ACD ′,直线AC 与BD ′所成角的余弦的最大值是________.图10­266[如图,作D ′F ⊥AC 于点F ,作BE ⊥AC 于点E ,作FM 垂直于过点B 平行于AC 的直线,垂足为M ,则∠D ′BM 是AC 与BD ′所成的角(或其补角).在△AD ′C 中,D ′C =1,AD ′=5,∠AD ′C =90°,∴AC =6,D ′F =56,CF =66.在△BAC 中,BC =BA =3,BE =32-⎝⎛⎭⎪⎫622=152.而AE =62,∴EF =6-66-62=63. ∵MF =BE =152, ∴D ′M =D ′F 2+FM 2-2D ′F ·FM ·cos∠D ′FM =56+152-256×152cos ∠D ′FM =253-5cos ∠D ′FM . ∵BM =EF =63,∴BD ′=D ′M 2+BM 2=9-5cos ∠D ′FM .∴cos ∠D ′BM =BM BD ′=639-5cos ∠D ′FM ≤639-5=66. ∴直线AC 与BD ′所成角的余弦的最大值是66.] 3.(2016·浙江高考节选)如图10­3,在三棱台ABC ­DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.求二面角B ­AD ­F 的平面角的余弦值.图10­3[解] 法一:如图(1)所示,延长AD ,BE ,CF 相交于一点K ,过点F 作FQ ⊥AK 于Q ,连接BQ .2分(1)因为BF ⊥平面ACFD ,所以BF ⊥AK ,则AK ⊥平面BQF ,所以BQ ⊥AK . 4分所以∠BQF 是二面角B ­AD ­F 的平面角. 6分在Rt △ACK 中,AC =3,CK =2,得FQ =31313.12分 在Rt △BQF 中,FQ =31313,BF =3,得cos ∠BQF =34.所以二面角B ­AD ­F 的平面角的余弦值为34. 15分 法二:如图(2)所示,延长AD,BE ,CF 相交于一点K ,取BC 的中点O ,连接KO ,(2)则KO ⊥BC .2分又平面BCFE ⊥平面ABC ,所以KO ⊥平面ABC .以点O 为原点,分别以射线OB ,OK 的方向为x 轴,z 轴的正方向,建立空间直角坐标系Oxyz . 由题意得B (1,0,0),C (-1,0,0),K (0,0,3),A (-1,-3,0),E ⎝ ⎛⎭⎪⎫12,0,32,F ⎝ ⎛⎭⎪⎫-12,0,32. 4分因此AC →=(0,3,0),AK →=(1,3,3),AB →=(2,3,0). 设平面ACFD 的法向量为m =(x 1,y 1,z 1), 平面ABED 的法向量为n =(x 2,y 2,z 2). 5分 由⎩⎪⎨⎪⎧ AC →·m =0,AK →·m =0得⎩⎨⎧3y 1=0,x 1+3y 1+3z 1=0,6分取m =(3,0,-1); 由⎩⎪⎨⎪⎧AB →·n =0,AK →·n =09分得⎩⎨⎧2x 2+3y 2=0,x 2+3y 2+3z 2=0,取n =(3,-2,3).12分于是cos 〈m ,n 〉=m ·n |m |·|n |=34.所以二面角B ­AD ­F 的平面角的余弦值为34. 15分4.(2015·浙江高考)如图10­4,在三棱柱ABC ­A 1B 1C 1中,∠BAC =90°,AB =AC =2,A 1A =4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.图10­4(1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1­BD ­B 1的平面角的余弦值.[解] (1)证明:设E 为BC 的中点,由题意得A 1E ⊥平面ABC , 所以A 1E ⊥AE .2分因为AB =AC ,所以AE ⊥BC . 故AE ⊥平面A 1BC .由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE =B 1B ,从而DE ∥A 1A ,DE =A 1A , 所以四边形A 1AED 为平行四边形.4分故A 1D ∥AE .又因为AE ⊥平面A 1BC , 所以A 1D ⊥平面A 1BC .5分(2)法一:如图(1),作A 1F ⊥BD 且A 1F ∩BD =F ,连接B 1F .(1)由AE =EB =2,∠A 1EA =∠A 1EB =90°, 得A 1B =A 1A =4.8分由A 1D =B 1D ,A 1B =B 1B ,得△A 1DB 与△B 1DB 全等. 由A 1F ⊥BD ,得B 1F ⊥BD ,因此∠A 1FB 1为二面角A 1­BD ­B 1的平面角. 12分 由A 1D =2,A 1B =4,∠DA 1B =90°,得BD =32,A 1F =B 1F =43,由余弦定理得cos ∠A 1FB 1=-18.15分法二:以CB 的中点E 为原点,分别以射线EA ,EB 为x ,y 轴的正半轴,建立空间直角坐标系E ­xyz ,如图(2)所示.(2)由题意知各点坐标如下:A 1(0,0,14),B (0,2,0),D (-2,0,14),B 1(-2,2,14).6分因此A 1B →=(0,2,-14),BD →=(-2,-2,14), DB 1→=(0,2,0).设平面A 1BD 的法向量为m =(x 1,y 1,z 1), 平面B 1BD 的法向量为n =(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧ m ·A 1B →=0,m ·BD →=0,即⎩⎨⎧ 2y 1-14z 1=0,-2x 1-2y 1+14z 1=0,8分可取m =(0,7,1). 由⎩⎪⎨⎪⎧n ·DB 1→=0,n ·BD →=0,即⎩⎨⎧2y 2=0,-2x 2-2y 2+14z 2=0,可取n =(7,0,1).12分于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=18.由题意可知,所求二面角的平面角是钝角, 故二面角A 1­BD ­B 1的平面角的余弦值为-18.15分(对应学生用书第38页) 热点题型1 向量法求线面角题型分析:向量法求线面角是高考中的常考题型,求解过程中,建系是突破口,求直线的方向向量与平面的法向量是关键.【例1】 如图10­5,四棱锥P ­ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.图10­5(1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.[解] (1)证明:由已知得AM =23AD =2.TN =12取BP 的中点T ,连接AT ,TN ,由N 为PC 的中点知TN ∥BC ,BC =2.又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB , 所以MN ∥平面PAB . 4分(2)取BC 的中点E ,连接AE . 由AB =AC 得AE ⊥BC ,从而AE ⊥AD , 且AE =AB 2-BE 2=AB 2-⎝ ⎛⎭⎪⎫BC 22= 5. 6分 以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系A ­xyz . 由题意知P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎫52,1,2, 8分PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎫52,1,2.设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).12分于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525.所以直线AN 与平面PMN 所成角的正弦值为8525.15分[方法指津]向量法求线面角的一般步骤1.建立恰当的空间直角坐标系,求出相关点的坐标. 2.写出相关向量的坐标. 3.求平面的法向量. 4.求线面角的正弦值. 5.转化为几何结论.提醒:直线和平面所成角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.[变式训练1] (2017·杭州质量检测)如图10­6,在四棱锥P ­ABCD 中,底面ABCD 是菱形,∠DAB =60°,PD ⊥平面ABCD ,PD =AD =1,点E ,F 分别为AB 和PD 的中点.图10­6(1)求证:直线AF ∥平面PEC ; (2)求PE 与平面PBC 所成角的正弦值.【导学号:68334115】[解] (1)证明:作FM ∥CD 交PC 于点M ,连接EM .∵点F 为PD 的中点,∴FM =12CD .∵AE =12AB ,AB =CD ,∴AE =FM .又AE ∥FM ,∴四边形AEMF 为平行四边形,∴AF ∥EM .∵AF ⊄平面PEC ,EM ⊂平面PEC , ∴直线AF ∥平面PEC .6分(2)连接DE ,∵∠DAB =60°,ABCD 是菱形,∴DE ⊥DC .以D 为坐标原点,以DE ,DC ,DP 所在直线为坐标轴建立如图所示的空间直角坐标系,则P (0,0,1),C (0,1,0),E ⎝⎛⎭⎪⎫32,0,0,A ⎝ ⎛⎭⎪⎫32,-12,0,B ⎝ ⎛⎭⎪⎫32,12,0,∴PB →=⎝ ⎛⎭⎪⎫32,12,-1,PC →=(0,1,-1),PE →=⎝ ⎛⎭⎪⎫32,0,-1.8分设平面PBC 的法向量为n =(x ,y ,z ). ∵n ·PB →=0,n ·PC →=0,∴⎩⎪⎨⎪⎧32x +12y -z =0,y =z ,取n =(3,3,3),∴平面PBC 的一个法向量为n =(3,3,3). 12分设向量n 与PE →所成的角为θ, ∴cos θ=n ·PE→|n ||PE →|=-37.∴PE 与平面PBC 所成角的正弦值为37. 15分 热点题型2 向量法求二面角题型分析:向量法求二面角是高考重点考查题型,此类问题求解的突破口是建立恰当的坐标系,求解的关键是求两个平面的法向量.【例2】 如图10­7,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D ­AF ­E 与二面角C ­BE ­F 都是60°.图10­7(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E ­BC ­A 的余弦值.[解] (1)证明:由已知可得AF ⊥DF ,AF ⊥FE , 所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .4分 (2)过D 作DG ⊥EF ,垂足为G . 由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G ­xyz . 6分由(1)知∠DFE 为二面角D ­AF ­E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).7分由已知得AB ∥EF ,所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF . 由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C ­BE ­F 的平面角,∠CEF =60°. 从而可得C (-2,0,3).8分所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量, 则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0,所以可取n =(3,0,-3). 9分设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).12分则cos 〈n ,m 〉=n·m |n||m |=-21919.故二面角E ­BC ­A 的余弦值为-21919.15分[方法指津]利用空间向量求二面角的思路二面角的大小可以利用分别在两个半平面内与棱垂直的直线的方向向量的夹角(或其补角)或通过二面角的两个面的法向量的夹角求得,它等于两个法向量的夹角或其补角.[变式训练2] (名师押题)如图10­8,在四棱锥P ­ABCD 中,侧面PAB ⊥底面ABCD ,底面ABCD 为矩形,PA =PB ,O 为AB 的中点,OD ⊥PC .图10­8(1)求证:OC ⊥PD ;(2)若PD 与平面PAB 所成的角为30°,求二面角D ­PC ­B 的余弦值.【导学号:68334116】[解] (1)证明:连接OP ,∵PA =PB ,O 为AB 的中点,∴OP ⊥AB . ∵侧面PAB ⊥底面ABCD ,∴OP ⊥平面ABCD , ∴OP ⊥OD ,OP ⊥OC .∵OD ⊥PC ,OP ∩PC =P ,∴OD ⊥平面OPC , ∴OD ⊥OC .4分 又∵OP ∩OD =O ,∴OC ⊥平面OPD ,∴OC ⊥PD .6分(2)取CD 的中点E ,以O 为原点,OE ,OB ,OP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系O ­xyz .由(1)知OD ⊥OC ,则AB =2AD ,又侧面PAB ⊥底面ABCD ,底面ABCD 是矩形, ∴DA ⊥平面PAB .∴∠DPA 为直线PD 与平面PAB 所成的角, ∴∠DPA =30°.不妨设AD =1,则AB =2,PA =3,PO = 2.∴B (0,1,0),C (1,1,0),D (1,-1,0),P (0,0,2), 从而PC →=(1,1,-2),CD →=(0,-2,0). 9分设平面PCD 的法向量为n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧PC →·n 1=0,CD →·n 1=0,得⎩⎨⎧x 1+y 1-2z 1=0,-2y 1=0,可取n 1=(2,0,1).同理,可取平面PCB 的一个法向量为n 2=(0,-2,-1). 12分于是cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-13.∴二面角D ­PC ­B 的余弦值为-13.15分热点题型3 利用空间向量求解探索性问题题型分析:立体几何中的探索性题目主要有两类:一是利用空间线面关系的判定与性质定理进行推理探究,二是对几何体的空间角、距离和体积等的研究其解决方法多通过求角、距离、体积等把这些问题转化为关于某个参数的方程问题,根据方程解的存在性来解决. 【例3】 如图10­9,空间几何体ABCDE 中,平面ABC ⊥平面BCD ,AE ⊥平面ABC .图10­9(1)证明:AE ∥平面BCD ;(2)若△ABC 是边长为2的正三角形,DE ∥平面ABC ,且AD 与BD ,CD 所成角的余弦值均为24,试问在CA 上是否存在一点P ,使得二面角P ­BE ­A 的余弦值为104.若存在,请确定点P 的位置;若不存在,请说明理由.[解题指导] (1)作DO ⊥BC →DO ⊥平面ABC →DO ∥AE →AE ∥平面BCD(2)DE ⊥平面BCD ,AO ⊥BC →DO =a →→求a →以点O 为坐标原点建系→设AP →=λAC →→求平面ABE 与平面PBE 的法向量→建立方程求λ[解] (1)证明:过点D 作直线DO ⊥BC 交BC 于点O ,连接DO . 因为平面ABC ⊥平面BCD ,DO ⊂平面BCD ,DO ⊥BC ,且平面ABC ∩平面BCD =BC ,所以DO ⊥平面ABC .1分因为直线AE ⊥平面ABC , 所以AE ∥DO .2分因为DO ⊂平面BCD ,AE ⊄平面BCD , 所以直线AE ∥平面BCD .4分(2)连接AO ,因为DE ∥平面ABC , 所以AODE 是矩形,所以DE ⊥平面BCD . 因为直线AD 与直线BD ,CD 所成角的余弦值均为24, 所以BD =CD ,所以O 为BC 的中点,所以AO ⊥BC , 且cos ∠ADC =24. 设DO =a ,因为BC =2,所以OB =OC =1,AO = 3. 所以CD =1+a 2,AD =3+a 2. 在△ACD 中,AC =2,所以AC 2=AD 2+CD 2-2AD ·CD ·cos∠ADC , 即4=3+a 2+1+a 2-2×3+a 2×1+a 2×24, 即1+a 2·3+a 2=22a 2, 解得a 2=1,a =1.6分以O 为坐标原点,OA ,OB ,OD 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.则C (0,-1,0),B (0,1,0),A (3,0,0),E (3,0,1). 假设存在点P ,连接EP ,BP ,设AP →=λAC →, 则P (3-3λ,-λ,0).设平面ABE 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·AE →=z =0,m ·BA →=3x -y =0,取x =1,则平面ABE 的一个法向量为m =(1,3,0).设平面PBE 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PB →=3λ-3x ++λy =0,n ·BE →=3x -y +z =0,取x =1+λ,则平面PBE 的一个法向量为n =(1+λ,3-3λ,-23λ).11分设二面角P ­BE ­A 的平面角的大小为θ,由图知θ为锐角. 则cos θ=|m·n ||m|·|n |=|1+λ+3-3λ|2×+λ2+-λ2+12λ2=104, 化简得6λ2+λ-1=0,解得λ=13或λ=-12(舍去).14分所以在CA 上存在一点P ,使得二面角P ­BE ­A 的余弦值为104,其为线段AC 的三等分点(靠近点A ).15分[方法指津]利用空间向量解点或参数存在性问题的优势及思路1.优势:空间向量最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.2.思路:把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标(或参数)是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.[变式训练3] 如图10­10所示,在多面体ABCDE 中,CD ⊥平面ABC ,BE ∥CD ,AB =25,AC =4,BC =2,CD =4,BE =1.图10­10(1)求证:平面ADC ⊥平面BCDE ;(2)试问在线段DE 上是否存在点S ,使得AS 与平面ADC 所成的角的余弦值为357?若存在,确定S 的位置;若不存在,请说明理由. 【导学号:68334117】 [解] (1)证明:因为AB =25,AC =4,BC =2, 所以AB 2=AC 2+BC 2,故AC ⊥BC .2分因为CD ⊥平面ABC ,所以CD ⊥BC .因为AC ∩CD =C ,故BC ⊥平面ADC . 因为BC ⊂平面BCDE ,所以平面ADC ⊥平面BCDE . 5分(2)由(1)知AC ⊥BC .又CD ⊥平面ABC ,所以CD ⊥AC ,CD ⊥BC .以C 为坐标原点,CA ,CB ,CD 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则C (0,0,0),A (4,0,0),B (0,2,0),D (0,0,4),E (0,2,1).8分 假设线段DE 上存在点S (x ,y ,z ),使得AS 与平面ACD 所成的角θ的余弦值为357. 设DS →=λDE →(0≤λ≤1),又DS →=(x ,y ,z -4),DE →=(0,2,-3),所以(x ,y ,z -4)=λ(0,2,-3),得S (0,2λ,4-3λ),则AS →=(-4,2λ,4-3λ). 由(1)知平面ADC 的一个法向量是CB →=(0,2,0),因为cos θ=357,12分所以sin θ=27=| cos 〈AS →,CB →〉|=4λ2×13λ2-24λ+32, 化简得9λ2+6λ-8=0, 解得λ=23或λ=-43(舍去).故存在满足条件的点S ,且DS =23DE .15分。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题2 突破点5 数列求和及其综合应用 Word版含

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题2 突破点5 数列求和及其综合应用 Word版含

突破点5 数列求和及其综合应用(对应学生用书第19页)[核心知识提炼]提炼1 a n 和S n 的关系若a n 为数列{a n }的通项,S n 为其前n 项和,则有a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.在使用这个关系式时,一定要注意区分n =1,n ≥2两种情况,求出结果后,判断这两种情况能否整合在一起. 提炼2求数列通项常用的方法(1)定义法:①形如a n +1=a n +c (c 为常数),直接利用定义判断其为等差数列.②形如a n +1=ka n (k 为非零常数)且首项不为零,直接利用定义判断其为等比数列.(2)叠加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式. (3)叠乘法:形如a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a na n -1,求其通项公式. (4)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q1-p,再转化为等比数列求解.(5)构造法:形如a n +1=pa n +q n(其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以qn +1,得a n +1q n +1=p q ·a n q n +1q ,构造新数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解.(6)取对数法:形如a n +1=pa mn (p >0,a n >0),先在原递推公式两边同时取对数,再利用待定系数法求解. 提炼3数列求和数列求和的关键是分析其通项,数列的基本求和方法有公式法、裂(拆)项相消法、错位相减法、分组法、倒序相加法和并项法等,而裂项相消法,错位相减法是常用的两种方法. 提炼4数列的综合问题数列综合问题的考查方式主要有三种:(1)判断数列问题中的一些不等关系,可以利用数列的单调性比较大小,或者是借助数列对应函数的单调性比较大小.(2)以数列为载体,考查不等式的恒成立问题,此类问题可转化为函数的最值问题. (3)考查与数列有关的不等式的证明问题,此类问题大多还要借助构造函数去证明,或者是直接利用放缩法证明或直接利用数学归纳法.[高考真题回访]回访1 数列求和1.(2014·浙江高考)已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n ;(2)设c n =1a n -1b n(n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *,均有S k ≥S n . [解] (1)由题意知a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去), 2分 所以数列{a n }的通项为a n =2n(n ∈N *), 所以,a 1a 2a 3…a n =2n n +2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). 5分 (2)①由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *), 所以S n =1n +1-12n (n ∈N *).7分②因为c 1=0,c 2>0,c 3>0,c 4>0, 当n ≥5时,c n =1nn +⎣⎢⎡⎦⎥⎤n n +2n -1,9分而n n +2n-n +n +2n +1=n +n -2n +1>0,得n n +2n≤+25<1,11分所以,当n ≥5时,c n <0.综上,对任意n ∈N *恒有S 4≥S n ,故k =4. 14分 回访2 数列的综合问题2.(2017·浙江高考)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n ∈N *). 证明:当n ∈N *时, (1)0<x n +1<x n ; (2)2x n +1-x n ≤x n x n +12;(3)12n -1≤x n ≤12n -2.[解] (1)证明:用数学归纳法证明:x n >0. 当n =1时,x 1=1>0. 假设n =k 时,x k >0, 那么n =k +1时,若x k +1≤0,则0<x k =x k +1+ln(1+x k +1)≤0,矛盾, 故x k +1>0. 3分因此x n >0(n ∈N *).所以x n =x n +1+ln(1+x n +1)>x n +1. 因此0<x n +1<x n (n ∈N *).5分(2)证明:由x n =x n +1+ln(1+x n +1)得x n x n +1-4x n +1+2x n=x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1).7分记函数f (x )=x 2-2x +(x +2)ln(1+x )(x ≥0), f ′(x )=2x 2+xx +1+ln(1+x )>0(x >0),函数f (x )在[0,+∞)上单调递增, 所以f (x )≥f (0)=0,因此x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1)=f (x n +1)≥0, 故2x n +1-x n ≤x n x n +12(n ∈N *).10分(3)证明:因为x n =x n +1+ln(1+x n +1)≤x n +1+x n +1=2x n +1, 所以x n ≥12n -1.由x n x n +12≥2x n +1-x n得1x n +1-12≥2⎝ ⎛⎭⎪⎫1x n -12>0,13分所以1x n -12≥2⎝ ⎛⎭⎪⎫1x n -1-12≥…≥2n -1⎝ ⎛⎭⎪⎫1x 1-12=2n -2, 故x n ≤12n -2.综上,12n -1≤x n ≤12n -2(n ∈N *).15分3.(2016·浙江高考)设数列{a n }满足⎪⎪⎪⎪⎪⎪a n -a n +12≤1,n ∈N *.(1)证明:|a n |≥2n -1(|a 1|-2),n ∈N *;(2)若|a n |≤⎝ ⎛⎭⎪⎫32n ,n ∈N *,证明:|a n |≤2,n ∈N *.[证明] (1)由⎪⎪⎪⎪⎪⎪a n -a n +12≤1, 得|a n |-12|a n +1|≤1,故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *,2分所以|a 1|21-|a n |2n =⎝ ⎛⎭⎪⎫|a 1|21-|a 2|22+⎝ ⎛⎭⎪⎫|a 2|22-|a 3|23+…+⎝ ⎛⎭⎪⎫|a n -1|2n -1-|a n |2n ≤121+122+…+12n -1<1,因此|a n |≥2n -1(|a 1|-2). 5分(2)任取n ∈N *,由(1)知,对于任意m >n ,|a n |2n -|a m |2m=⎝ ⎛⎭⎪⎫|a n |2n -|a n +1|2n +1+⎝ ⎛⎭⎪⎫|a n +1|2n +1-|a n +2|2n +2+…+⎝ ⎛⎭⎪⎫|a m-1|2m -1-|a m |2m ≤12n +12n +1+…+12m -1<12n -1, 故|a n |<⎝ ⎛⎭⎪⎫12n -1+|a m |2m ·2n≤⎣⎢⎡⎭⎪⎫12n -1+12m·⎝ ⎛⎭⎪⎫32m ·2n =2+⎝ ⎛⎭⎪⎫34m ·2n.8分从而对于任意m >n ,均有|a n |<2+⎝ ⎛⎭⎪⎫34m ·2n.①由m 的任意性得|a n |≤2. 否则,存在n 0∈N *,有|an 0|>2, 取正整数m 0>log 34|an 0|-22n 0且m 0>n 0,11分则2n 0·⎝ ⎛⎭⎪⎫34m 0<2n 0·⎝ ⎛⎭⎪⎫34log 34|an 0|-22n 0=|an 0|-2,与①式矛盾.综上,对于任意n ∈N *,均有|a n |≤2.15分(对应学生用书第21页) 热点题型1 数列中的a n 与S n 的关系数列中的a n 与S n 的关系题型分析:以数列中a n 与S n 间的递推关系为载体,考查数列通项公式的求法,以及推理论证的能力.【例1】 数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且满足2a na n S n -S 2n=1(n ≥2).求数列{a n }的通项公式.【导学号:68334070】[解] 由已知,当n ≥2时,2a na n S n -S 2n=1,所以S n -S n -1S n -S n -1S n -S 2n =1,2分即S n -S n -1-S n -1S n=1,所以1S n -1S n -1=12.4分又S 1=a 1=1,所以数列⎩⎨⎧⎭⎬⎫1S n 是首项为1,公差为12的等差数列,6分所以1S n =1+12(n -1)=n +12,即S n =2n +1.8分 所以当n ≥2时,a n =S n -S n -1=2n +1-2n =-2nn +.12分因此a n =⎩⎪⎨⎪⎧1,n =1,-2n n +,n ≥2. 15分[方法指津]给出S n 与a n 的递推关系,求a n ,常用思路:一是利用S n -S n -1=a n n 转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n . 提醒:在利用a n =S n -S n -1n求通项公式时,务必验证n =1时的情形[变式训练1] (1)已知数列{a n }前n 项和为S n ,若S n =2a n -2n,则S n =__________. 【导学号:68334071】(2)已知数列{a n }的各项均为正数,其前n 项和为S n ,且2S n +2=3a n (n ∈N *),则a n =__________. (1)n ·2n(n ∈N *) (2)2×3n -1(n ∈N *) [(1)由S n =2a n -2n得当n =1时,S 1=a 1=2;当n ≥2时,S n =2(S n -S n -1)-2n,即S n 2n -S n -12n -1=1,所以数列⎩⎨⎧⎭⎬⎫S n 2n 是首项为1,公差为1的等差数列,则S n2n=n ,S n =n ·2n (n ≥2),当n =1时,也符合上式,所以S n =n ·2n (n ∈N *).(2)因为2S n +2=3a n ,①所以2S n +1+2=3a n +1, ②由②-①,得2S n +1-2S n =3a n +1-3a n ,所以2a n +1=3a n +1-3a n ,即a n +1a n=3. 当n =1时,2+2S 1=3a 1,所以a 1=2,所以数列{a n }是首项为2,公比为3的等比数列, 所以a n =2×3n -1(n ∈N *).]热点题型2 裂项相消法求和题型分析:裂项相消法是指把数列与式中的各项分别裂开后,某些项可以相互抵消从而求和的方法,主要适用于⎩⎨⎧⎭⎬⎫1a n a n +1或⎩⎨⎧⎭⎬⎫1a n a n +2其中{a n }为等差数列等形式的数列求和.【例2】 已知等差数列{a n }的公差d ≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 22成等比数列,(1)求数列{a n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:16≤T n <38.[解] (1)由已知及等差数列的性质得S 5=5a 3,∴a 3=14, 1分 又a 2,a 7,a 22成等比数列,即a 27=a 2·a 22. 2分由(a 1+6d )2=(a 1+d )(a 1+21d )且d ≠0, 解得a 1=32d ,∴a 1=6,d =4.4分 故数列{a n }的通项公式为a n =4n +2,n ∈N *. 6分(2)证明:由(1)得S n =n a 1+a n2=2n 2+4n ,1S n=12n 2+4n =14⎝ ⎛⎭⎪⎫1n -1n +2,8分∴T n =141-13+12-14+…+1n -1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2.11分又T n ≥T 1=38-14⎝ ⎛⎭⎪⎫12+13=16,所以16≤T n <38.15分[方法指津]裂项相消法的基本思想就是把通项a n 分拆成a n =b n +k -b n k ≥1,k ∈N *的形式,常见的裂项方式有: (1nn +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ; 1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(1n +n +k =1kn +k -n提醒:在裂项变形时,务必注意裂项前后系数的变化.[变式训练2] (名师押题)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . [解] (1)由题设知a 1·a 4=a 2·a 3=8, 2分又a 1+a 4=9,可得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1.(舍去)4分 由a 4=a 1q 3得公比q =2,故a n =a 1q n -1=2n -1.6分 (2)S n =a 1-qn1-q=2n-1.8分 又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,12分所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.热点题型3 错位相减法求和题型分析:限于数列解答题的位置较为靠前,加上错位相减法的运算量相对较大,故该命题点出现的频率不高,但其仍是命题的热点之一,务必加强训练.【例3】 已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+ (1)b n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n . [解] (1)由a 1=2,a n +1=2a n ,得a n =2n(n ∈N *). 2分由题意知:当n =1时,b 1=b 2-1,故b 2=2. 3分 当n ≥2时,1nb n =b n +1-b n .4分整理得b n +1n +1=b n n,所以b n =n (n ∈N *). 6分(2)由(1)知a n b n =n ·2n,因此T n =2+2·22+3·23+…+n ·2n, 2T n =22+2·23+3·24+…+n ·2n +1,10分 所以T n -2T n =2+22+23+ (2)-n ·2n +1.12分故T n =(n -1)2n +1+2(n ∈N *).15分[方法指津]运用错位相减法求和应注意:一是判断模型,即判断数列{a n },{b n }中一个为等差数列,一个为等比数列;二是错开位置,一般先乘以公比,再把前n 项和退后一个位置来书写,这样避免两式相减时看错列;三是相减,相减时一定要注意式中最后一项的符号,考生常在此步出错,一定要细心.提醒:为保证结果正确,可对得到的和取n =1,2进行验证.[变式训练3] 已知在公比大于1的等比数列{a n }中,a 2,a 4是函数f (x )=(x -2)(x -8)的两个零点.(1)求数列{a n }的通项公式; (2)求数列{2na n }的前n 项和S n .[解] (1)因为a 2,a 4是函数f (x )=(x -2)(x -8)的两个零点,且等比数列{a n }的公比q 大于1,所以a 2=2,a 4=8,2分所以q =2,所以数列{a n }的通项公式为a n =2n -1(n ∈N *).6分(2)由(1)知2na n =n ×2n,所以S n =1×2+2×22+…+n ×2n,① 7分 2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1,②11分由①-②,得-S n =2+22+23+…+2n -n ×2n +1=2-2n×21-2-n ×2n +1,13分所以S n =2+(n -1)×2n +1(n ∈N *).15分热点题型4 数列的综合问题题型分析:数列与函数、不等式的综合问题多为解答题.难度偏大,属中高档题,常有以下两个命题角度:以数列为载体,考查不等式的恒成立问题; 考查与数列有关的不等式的证明问题.【例4】 (2017·绍兴市方向性仿真考试)已知数列{a n }满足,a 1=1,a n =1a n +1-12. (1)求证:23≤a n ≤1;(2)求证:|a n +1-a n |≤13;(3)求证:|a 2n -a n |≤1027.【导学号:68334072】[证明] (1)由已知得a n +1=1a n +12,又a 1=1,所以a 2=23,a 3=67,a 4=1419,猜想23≤a n ≤1.2分下面用数学归纳法证明. ①当n =1时,命题显然成立;②假设n =k 时,有23≤a n ≤1成立,则当n =k +1时,a k +1=1a k +12≤123+12<1,a k +1=1a k +12≥11+12=23,即当n =k +1时也成立, 所以对任意n ∈N *,都有23≤a n ≤1.5分(2)当n =1时,|a 2-a 1|=13,当n ≥2时,∵⎝⎛⎭⎪⎫a n +12⎝ ⎛⎭⎪⎫a n -1+12=⎝ ⎛⎭⎪⎫a n +12·1a n =1+12a n ≥1+12=32, 7分∴|a n +1-a n |=⎪⎪⎪⎪⎪⎪⎪⎪1a n +12-1a n -1+12 =|a n -a n -1|⎝ ⎛⎭⎪⎫a n +12⎝ ⎛⎭⎪⎫a n -1+12≤23|a n -a n -1|≤…≤⎝ ⎛⎭⎪⎫23n -1|a 2-a 1|=13·⎝ ⎛⎭⎪⎫23n -1<13.综上所述,|a n +1-a n |≤13.10分(3)当n =1时,|a 2-a 1|=13=927<1027; 11分当n ≥2时,|a 2n -a n |≤|a 2n -a 2n -1|+|a 2n -1-a 2n -2|+…+|a n +1-a n | ≤13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232n -2+⎝ ⎛⎭⎪⎫232n -3+…+⎝ ⎛⎭⎪⎫23n -1 =⎝ ⎛⎭⎪⎫23n -1-⎝ ⎛⎭⎪⎫232n -1≤23-⎝ ⎛⎭⎪⎫233=1027.15分[方法指津]解决数列与不等式的综合问题时,如果是证明题,要灵活的选择不等式的证明方法,如比较法、综合法、分析法、放缩法、反证法及数学归纳法等;如果是解不等式问题,要使用解不等式的各种解法,如列表法、因式分解法、穿根法等,总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.[变式训练4] (2017·台州市高三年级调考)已知数列{a n }满足:a n >0,a n +1+1a n<2(n ∈N *).(1)求证:a n +2<a n +1<2(n ∈N *); (2)求证:a n >1(n ∈N *).[证明] (1)由a n >0,a n +1+1a n<2,得a n +1<2-1a n<2.2分因为2>a n +2+1a n +1>2a n +2a n +1(由题知a n +1≠a n +2), 所以a n +2<a n +1<2.4分(2)法一:假设存在a N ≤1(N ≥1,N ∈N *), 由(1)可得当n >N 时,a n ≤a N +1<1.6分根据a n +1-1<1-1a n =a n -1a n<0,而a n <1,所以1a n +1-1>a n a n -1=1+1a n -1,于是1a N +2-1>1+1a N +1-1,……1a N +n -1>1+1a N +n -1-1.10分累加可得1a N +n -1>n -1+1a N +1-1.(*)由假设可得a N +n -1<0,12分而当n >-1a N +1-1+1时,显然有n -1+1a N +1-1>0,因此有1a N +n -1<n -1+1a N +1-1,这显然与(*)矛盾. 所以a n >1(n ∈N *).15分法二:假设存在a N ≤1(N ≥1,N ∈N *),由(1)可得当n >N 时,0<a n ≤a N +1<1. 6分 根据a n +1-1<1-1a n =a n -1a n<0,而a n <1,所以11-a n +1<an 1-a n,所以1-a n +11-a n >1a n ≥1a N +1>1.于是1-a n >(1-a n -1)⎝ ⎛⎭⎪⎫1a N +1,1-a n -1>(1-a n -2)⎝ ⎛⎭⎪⎫1a N +1,……1-a N +2>(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1.10分 累乘可得1-a n >(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1n -N -1,(*)由(1)可得1-a n <1, 12分 而当n > ⎝ ⎛⎭⎪⎫11-a N +1+N +1时,则有(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1n -N -1>1,这显然与(*)矛盾.所以a n >1(n ∈N *). 15分。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题6 突破点14 函数的图象和性质

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题6 突破点14 函数的图象和性质

专题六 函数与导数建知识网络 明内在联系[高考点拨] 函数与导数专题是历年浙江高考的“常青树”,在浙江新高考中常以“两小一大”的形式呈现,其中两小题中的一小题难度偏低,另一小题与一大题常在选择题与解答题的压轴题的位置呈现,命题角度多样,形式多变,能充分体现学以致用的考查目的,深受命题人的喜爱.结合典型考题的研究,本专题将从“函数的图象和性质”“函数与方程”“导数的应用”三大方面着手分析,引领考生高效备考.突破点14 函数的图象和性质(对应学生用书第52页)[核心知识提炼]提炼1函数的奇偶性(1)若函数y=f(x)为奇(偶)函数,则f(-x)=-f(x)(f(-x)=f(x)).(2)奇函数y=f(x)若在x=0处有意义,则必有f(0)=0.(3)判断函数的奇偶性需注意:一是判断定义域是否关于原点对称;二是若所给函数的解析式较为复杂,应先化简;三是判断f(-x)=-f(x),还是f(-x)=f(x),有时需用其等价形式f(-x)±f(x)=0来判断.(4)奇函数的图象关于原点成中心对称,偶函数的图象关于y轴对称.(5)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.提炼2 函数的周期性 (1)若函数y =f (x )满足f (a +x )=f (x -a )(a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(2)若奇函数y =f (x )满足f (a +x )=f (a -x )(a ≠0),则函数y =f (x )是以4|a |为周期的周期性函数.(3)若偶函数y =f (x )满足f (a +x )=f (a -x )(a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(4)若f (a +x )=-f (x )(a ≠0),则函数y =f (x )是以2|a |为周期的周(或f a +x =1f x )期性函数.(5)若y =f (x )的图象关于直线x =a ,x =b (a ≠b )对称,则函数y =f (x )是以2|b -a |为周期的周期性函数. 提炼3 函数的图象 (1)由解析式确定函数图象.此类问题往往需要化简函数解析式,利用函数的性质(单调性、奇偶性、过定点等)判断,常用排除法.(2)已知函数图象确定相关函数的图象.此类问题主要考查函数图象的变换(如平移变换、对称变换等),要注意函数y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|等的相互关系.(3)借助动点探究函数图象.解决此类问题可以根据已知条件求出函数解析式后再判断函数的图象;也可采用“以静观动”,即将动点处于某些特殊的位置处考察图象的变化特征,从而作出选择.[高考真题回访]回访1 函数的性质1.(2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关B [法一:设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x +ax 1+b ,M =x +ax 2+b .212∴M -m =x -x +a (x 2-x 1),显然此值与a 有关,与b 无关.故选B.221法二:由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关.故选B.]2.(2015·浙江高考)存在函数f (x )满足:对于任意x ∈R 都有( )A .f (sin 2x )=sin x B .f (sin 2x )=x 2+x C .f (x 2+1)=|x +1|D .f (x 2+2x )=|x +1|D [取x =0,,可得f (0)=0,1,这与函数的定义矛盾,所以选项A 错误;π2取x =0,π,可得f (0)=0,π2+π,这与函数的定义矛盾,所以选项B 错误;取x =1,-1,可得f (2)=2,0,这与函数的定义矛盾,所以选项C 错误;取f (x )=,则对任意x ∈R 都有f (x 2+2x )==|x +1|,故选项D 正确.x +1x 2+2x +1综上可知,本题选D.]3.(2014·浙江高考)设函数f (x )=Error!若f (f (a ))=2,则a =________. [若a >0,则f (a )=-a 2<0,f (f (a ))=a 4-2a 2+2=2,得a =.22若a ≤0,则f (a )=a 2+2a +2=(a +1)2+1>0,f (f (a ))=-(a 2+2a +2)2=2,此方程无解.]4.(2015·浙江高考)已知函数f (x )=Error!则f (f (-3))=________,f (x )的最小值是________.0 2-3 [∵f (-3)=lg[(-3)2+1]=lg 10=1,2∴f (f (-3))=f (1)=1+2-3=0.当x ≥1时,x +-3≥2-3=2-3,当且仅当x =,即x =时等号成立,此时f (x )2x x ·2x 22x 2min =2-3<0;2当x <1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0.∴f (x )的最小值为2-3.]2回访2 函数的图象5.(2017·浙江高考)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )图14­1D [观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,∴对应函数f (x )的增减性从左到右依次为减、增、减、增.观察选项可知,排除A 、C.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 正确.故选D.]6.(2015·浙江高考)函数f (x )=cos x (-π≤x ≤π且x ≠0)的图象可能为( )(x -1x )D [函数f (x )=cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A ,B ;当x =π时,(x -1x )f (x )=cos π=-π<0,排除选项C ,故选D.](π-1π)1π7.(2014·浙江高考)在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是( )D [法一:分a >1,0<a <1两种情形讨论.当a >1时,y =x a 与y =log a x 均为增函数,但y =x a 递增较快,排除C ;当0<a <1时,y =x a 为增函数,y =log a x 为减函数,排除A ,由于y =x a 递增较慢,所以选D.法二:幂函数f (x )=x a 的图象不过(0,1)点,排除A ;B 项中由对数函数f (x )=log a x 的图象知0<a <1,而此时幂函数f (x )=x a 的图象应是增长越来越慢的变化趋势,故B 错,D 对;C 项中由对数函数f (x )=log a x 的图象知a >1,而此时幂函数f (x )=x a 的图象应是增长越来越快的变化趋势,故C 错.](对应学生用书第54页)热点题型1 函数图象的判断与应用题型分析:函数的图象是近几年高考的热点内容,主要有函数图象的判断和函数图象的应用两种题型.【例1】 (1)函数y =2x 2-e |x |在[-2,2]的图象大致为( )(2)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则i =( )m∑i =1xA .0 B .m C .2mD .4m(1)D (2)B [(1)∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数,又f (2)=8-e 2∈(0,1),故排除A ,B.设g (x )=2x 2-e x ,则g ′(x )=4x -e x .又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D.(2)∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,i =2×=m ;m∑i =1x m2当m 为奇数时,i =2×+1=m .m∑i =1xm -12故选B.][方法指津]函数图象的判断方法1.根据函数的定义域判断图象的左右位置,根据函数的值域判断图象的上下位置.2.根据函数的单调性,判断图象的变化趋势.3.根据函数的奇偶性,判断图象的对称性.4.根据函数的周期性,判断图象的循环往复.5.取特殊值代入,进行检验.[变式训练1] (1)函数f (x )=|x |+(其中a ∈R )的图象不可能是( )ax 图14­2(2)如图14­1,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}(1)C (2)C [(1)当a =0时,f (x )=|x |,故A 可能;由题意得f (x )=Error!则当x >0时,f ′(x )=1-=,当x <0时,f ′(x )=-1-=,若a >0,易知当x >0,0<x <a x 2x 2-a x 2a x 2-x 2-ax 2时,f (x )为减函数,x >时,f (x )为增函数,x <0时,f (x )为减函数,故B 可能;若a a a <0,易知x <0,-<x <0时,f (x )为增函数,x <-时,f (x )为减函数,x >0时,f (x )-a -a 为增函数,故D 可能,故选C.(2)令g (x )=y =log 2(x +1),作出函数g (x )图象如图.由Error!得Error!∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.]热点题型2 函数性质的综合应用题型分析:函数性质的综合应用是高考的热点内容,解决此类问题时,性质的判断是关键,应用是难点.【例2】 (1)设函数f (x )=ln(1+|x |)-,则使得f (x )>f (2x -1)成立的x 的取值范围是11+x 2( )A. B.∪(1,+∞)(13,1)(-∞,13)C. D.∪(-13,13)(-∞,-13)(13,+∞)(2)设奇函数y =f (x )(x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈时,f (x )[0,12]=-x 2,则f (3)+f的值等于________. 【导学号:68334135】(-32)(1)A (2)- [(1)法一:∵f (-x )=ln(1+|-x |)-=f (x ),1411+ -x 2∴函数f (x )为偶函数.∵当x ≥0时,f (x )=ln(1+x )-,11+x 2在(0,+∞)上y =ln(1+x )递增,y =-也递增,11+x 2根据单调性的性质知,f (x )在(0,+∞)上单调递增.综上可知:f (x )>f (2x -1)⇔f (|x |)>f (|2x -1|)⇔|x |>|2x -1|⇔x 2>(2x -1)2⇔3x 2-4x +1<0⇔<x <1.故选A.13法二:令x =0,此时f (x )=f (0)=-1<0,f (2x -1)=f (-1)=ln 2-=ln 2-ln >0,12e ∴x =0不满足f (x )>f (2x -1),故C 错误.令x =2,此时f (x )=f (2)=ln 3-,f (2x -1)=f (3)=ln4-.∵f (2)-f (3)=ln151103-ln 4-,110其中ln 3<ln 4,∴ln 3-ln 4-<0,∴f (2)-f (3)<0,110即f (2)<f (3),∴x =2不满足f (x )>f (2x -1),故B ,D 错误.故选A.(2)根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t )=f (1+t ),即f (t +1)=-f (t ),进而得到f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f =f =-.所以f (3)+f =0+=-.(-32)(12)14(-32)(-14)14[方法指津]函数性质的综合应用类型1.函数单调性与奇偶性的综合.注意奇、偶函数图象的对称性,以及奇、偶函数在关于原点对称的区间上单调性的关系.2.周期性与奇偶性的综合.此类问题多为求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.3.单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.[变式训练2] (1)(2017·浙江五校联考)已知函数f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数,则不等式<f (1)的解集为( )|f ln x -f (ln1x )|2【导学号:68334136】A.B .(0,e)(0,1e)C.D .(e ,+∞)(1e,e )(2)已知函数y =f (x )是定义在R 上的奇函数,∀x ∈R ,f (x -1)=f (x +1)成立,当x ∈(0,1)且x 1≠x 2时,有<0.给出下列命题:f x 2 -f x 1x 2-x 1①f (1)=0;②f (x )在[-2,2]上有5个零点;③点(2 014,0)是函数y =f (x )图象的一个对称中心;④直线x =2 014是函数y =f (x )图象的一条对称轴.则正确命题的序号是________.(1)C (2)①②③ [(1)∵f (x )为R 上的奇函数,则f=f (-ln x )=-f (ln x ),(ln 1x )∴=|f ln x -f (ln1x )|2|f ln x +f ln x |2=|f (ln x )|,即原不等式可化为|f (ln x )|<f (1),∴-f (1)<f (ln x )<f (1),即f (-1)<f (ln x )<f (1).又由已知可得f (x )在R 上单调递增,∴-1<ln x <1,解得<x <e ,故选C.1e (2)令f (x -1)=f (x +1)中x =0,得f (-1)=f (1).∵f (-1)=-f (1),∴2f (1)=0,∴f (1)=0,故①正确;由f (x -1)=f (x +1)得f (x )=f (x +2),∴f (x )是周期为2的周期函数,∴f (2)=f (0)=0,又当x ∈(0,1)且x 1≠x 2时,有<0,f x 2 -f x 1x 2-x 1∴函数在区间(0,1)上单调递减,可作函数的简图如图:由图知②③正确,④不正确,∴正确命题的序号为①②③.]。

2018年高考数学浙江专用总复习教师用书:第2章 第1讲 函数及其表示 含解析 精品

2018年高考数学浙江专用总复习教师用书:第2章 第1讲 函数及其表示 含解析 精品

第1讲 函数及其表示最新考纲 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;3.了解简单的分段函数,并能简单地应用(函数分段不超过三段).知 识 梳 理1.函数与映射的概念(1)在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域. (2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)函数y =1与y =x 0是同一个函数.( )(2)与x 轴垂直的直线和一个函数的图象至多有一个交点.( ) (3)函数y =x 2+1-1的值域是{y |y ≥1}.( )(4)若两个函数的定义域与值域相同,则这两个函数相等.( )解析 (1)函数y =1的定义域为R ,而y =x 0的定义域为{x |x ≠0},其定义域不同,故不是同一函数.(3)由于x 2+1≥1,故y =x 2+1-1≥0,故函数y =x 2+1-1的值域是{y |y ≥0}. (4)若两个函数的定义域、对应法则均对应相同时,才是相等函数. 答案 (1)× (2)√ (3)× (4)×2.(必修1P25B2改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析 A 中函数定义域不是[-2,2],C 中图象不表示函数,D 中函数值域不是[0,2]. 答案 B3.(2017·舟山一模)函数y =1-x 22x 2-3x -2的定义域为( )A.(-∞,1]B.[-1,1]C.[1,2)∪(2,+∞)D.⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1 解析 由题意,得⎩⎨⎧1-x 2≥0,2x 2-3x -2≠0.解之得-1≤x ≤1且x ≠-12. 答案 D4.(2015·陕西卷)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))等于( )A.-1B.14C.12D.32解析 因为-2<0,所以f (-2)=2-2=14>0,所以f (f (-2))=f ⎝ ⎛⎭⎪⎫14=1-14=1-12=12,故选C. 答案 C5.(2015·全国Ⅱ卷)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 解析 由题意知点(-1,4)在函数f (x )=ax 3-2x 的图象上,所以4=-a +2,则a =-2. 答案 -26.(2017·丽水调研)设函数f (x )=⎩⎨⎧-2x 2+1 (x ≥1),log 2(1-x ) (x <1),设函数f (f (4))=________.若f (a )=-1,则a =________.解析 ∵f (x )=⎩⎨⎧-2x 2+1 (x ≥1),log 2(1-x ) (x <1),∴f (4)=-2×42+1=-31,f (f (4))=f (-31)=log 232=5;当a ≥1时,由f (a )=-2a 2+1=-1,得a =1(a =-1舍去);当a <1时,由f (a )=log 2(1-a )=-1,得1-a =12,即a =12. 答案 5 1或12考点一 求函数的定义域【例1】 (1)(2017·杭州调研)函数f (x )=ln xx -1+x 12的定义域为( )A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,1)∪(1,+∞)(2)若函数y =f (x )的定义域是[1,2 017],则函数g (x )=f (x +1)x -1的定义域是____________.解析 (1)要使函数f (x )有意义,应满足⎩⎪⎨⎪⎧x x -1>0,x ≥0,解得x >1,故函数f (x )=ln x x -1+x 12的定义域为(1,+∞).(2)∵y =f (x )的定义域为[1,2 017], ∴g (x )有意义,应满足⎩⎨⎧1≤x +1≤2 017,x -1≠0.∴0≤x ≤2 016,且x ≠1.因此g (x )的定义域为{x |0≤x ≤2 016,且x ≠1}. 答案 (1)B (2){x |0≤x ≤2 016,且x ≠1} 规律方法 求函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出;若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 【训练1】 (1)(2015·湖北卷)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6](2)若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 解析(1)要使函数f (x )有意义,应满足⎩⎨⎧4-|x |≥0,x 2-5x +6x -3>0,∴⎩⎨⎧|x |≤4,x -2>0且x ≠3,则2<x ≤4,且x ≠3. 所以f (x )的定义域为(2,3)∪(3,4].(2)因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,则x 2+2ax -a ≥0恒成立.因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案 (1)C (2)[-1,0] 考点二 求函数的解析式【例2】 (1)已知f⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )=________;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________; (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f⎝ ⎛⎭⎪⎫1x ·x -1,则f (x )=________.解析 (1)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).(2)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=x -1, 则2ax +a +b =x -1, ∴⎩⎨⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.∴f (x )=12x 2-32x +2. (3)在f (x )=2f⎝ ⎛⎭⎪⎫1x ·x -1中,将x 换成1x ,则1x 换成x , 得f⎝ ⎛⎭⎪⎫1x =2f (x )·1x -1,由⎩⎪⎨⎪⎧f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x -1,解得f (x )=23x +13. 答案 (1)lg2x -1(x >1) (2)12x 2-32x +2 (3)23x +13 规律方法 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围.(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x ).(4)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.【训练2】 (1)已知f (x +1)=x +2x ,则f (x )=________.(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )=__________. 解析 (1)令x +1=t ,则x =(t -1)2(t ≥1),代入原式得 f (t )=(t -1)2+2(t -1)=t 2-1, 所以f (x )=x 2-1(x ≥1).(2)当-1≤x ≤0时,0≤x +1≤1, 由已知f (x )=12f (x +1)=-12x (x +1). (3)当x ∈(-1,1)时, 有2f (x )-f (-x )=lg(x +1).① 将x 换成-x ,则-x 换成x , 得2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1). 答案 (1)x 2-1(x ≥1) (2)-12x (x +1) (3)23lg(x +1)+13lg(1-x )(-1<x <1) 考点三 分段函数(多维探究) 命题角度一 求分段函数的函数值【例3-1】 (2015·全国Ⅱ卷)设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( ) A.3B.6C.9D.12解析 根据分段函数的意义,f (-2)=1+log 2(2+2)=1+2=3.又log 212>1 ∴f (log 212)=2(log 212-1)=2log 26=6, 因此f (-2)+f (log 212)=3+6=9. 答案 C命题角度二 求参数的值或取值范围【例3-2】 (1)(2015·山东卷)设函数f (x )=⎩⎨⎧3x -b ,x <1,2x ,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =( ) A.1B.78C.34D.12(2)(2014·全国Ⅰ卷)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.解析 (1)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32时,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=f ⎝ ⎛⎭⎪⎫52-b =3⎝ ⎛⎭⎪⎫52-b -b =4,解之得b =78,不合题意舍去.若52-b ≥1,即b ≤32,则252-b =4,解得b =12. (2)当x <1时,e x -1≤2,解得x ≤1+ln 2, 所以x <1.当x ≥1时,x 13≤2,解得x ≤8,所以1≤x ≤8. 综上可知x 的取值范围是(-∞,8]. 答案 (1)D (2)(-∞,8]规律方法 (1)根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.提醒 当分段函数的自变量范围不确定时,应分类讨论.【训练3】 (1)(2015·全国Ⅰ卷)已知函数f (x )=⎩⎨⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( ) A.-74B.-54C.-34D.-14(2)(2017南京、盐城模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤0,-(x -1)2,x >0,则不等式f (x )≥-1的解集是________. 解析 (1)当a ≤1时,f (a )=2a -1-2=-3, 即2a -1=-1,不成立,舍去; 当a >1时,f (a )=-log 2(a +1)=-3, 即log 2(a +1)=3, 解得a =7,此时f (6-a )=f (-1)=2-2-2=-74.故选A. (2)当x ≤0时,由题意得x2+1≥-1, 解之得-4≤x ≤0.当x >0时,由题意得-(x -1)2≥-1,解之得0<x ≤2, 综上f (x )≥-1的解集为{x |-4≤x ≤2}. 答案 (1)A (2){x |-4≤x ≤2}[思想方法]1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、构造解方程组法.4.分段函数问题要用分类讨论思想分段求解.[易错防范]1.复合函数f[g(x)]的定义域也是解析式中x的范围,不要和f(x)的定义域相混.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A,B若不是数集,则这个映射便不是函数.3.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论.基础巩固题组(建议用时:30分钟)一、选择题1.(2017·绍兴质检)函数f(x)=log2(x2+2x-3)的定义域是()A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)解析使函数f(x)有意义需满足x2+2x-3>0,解得x>1或x<-3,所以f(x)的定义域为(-∞,-3)∪(1,+∞).答案 D2.(2017·衡水中学月考)设f,g都是由A到A的映射,其对应法则如下:映射f的对应法则则f[g(1)]的值为()A.1B.2C.3D.4解析 由映射g 的对应法则,可知g (1)=4, 由映射f 的对应法则,知f (4)=1,故f [g (1)]=1. 答案 A3.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=( ) A.x +1 B.2x -1 C.-x +1D.x +1或-x -1解析 设f (x )=kx +b (k ≠0),又f [f (x )]=x +2, 得k (kx +b )+b =x +2,即k 2x +kb +b =x +2. ∴k 2=1,且kb +b =2,解得k =b =1. 答案 A4.(2017·湖州一模)f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫13x (x ≤0),log 3x (x >0),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=() A.-2B.-3C.9D.-9解析 ∵f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9. 答案 C5.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( ) A.y =⎣⎢⎡⎦⎥⎤x 10B.y =⎣⎢⎡⎦⎥⎤x +310 C.y =⎣⎢⎡⎦⎥⎤x +410D.y =⎣⎢⎡⎦⎥⎤x +510 解析 取特殊值法,若x =56,则y =5,排除C ,D ;若x =57,则y =6,排除A ,选B. 答案 B6.(2016·全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A.y =xB.y =lg xC.y =2xD.y =1x解析 函数y =10lg x 的定义域、值域均为(0,+∞),而y =x ,y =2x 的定义域均为R ,排除A ,C ;y =lg x 的值域为R ,排除B ,故选D. 答案 D7.(2016·江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是( )A.12 B.14 C.-25D.18解析 由题意f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-12+a ,f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110, ∴-12+a =110,则a =35,故f (5a )=f (3)=f (-1)=-1+35=-25. 答案 C8.(2017·铜陵一模)设P (x 0,y 0)是函数f (x )图象上任意一点,且y 20≥x 20,则f (x )的解析式可以是( ) A.f (x )=x -1x B.f (x )=e x -1 C.f (x )=x +4xD.f (x )=tan x解析 对于A 项,当x =1,f (1)=0,此时02≥12不成立.对于B 项,取x =-1,f (-1)=1e -1,此时⎝ ⎛⎭⎪⎫1e -12≥(-1)2不成立.在D 项中,f ⎝ ⎛⎭⎪⎫54π=tan 54π=1,此时12≥⎝ ⎛⎭⎪⎫54π2不成立.∴A ,B ,D 均不正确.选C.事实上,在C 项中,对∀x 0∈R ,y 20=⎝ ⎛⎭⎪⎫x 0+4x 02有y 20-x 20=16x20+8>0,有y 20≥x 20成立. 答案 C二、填空题9.(2016·江苏卷)函数y =3-2x -x 2的定义域是________. 解析 要使函数有意义,则3-2x -x 2≥0, ∴x 2+2x -3≤0,解之得-3≤x ≤1. 答案 [-3,1]10.(2017·湖州调研)已知f (x )=⎩⎨⎧x -3,x ≥9,f (f (x +4)),x <9,则f (10)=________;f (7)=________.解析 f (10)=10-3=7;f (7)=f (f (7+4))=f (f (11))=f (11-3)=f (8)=f (f (8+4))=f (f (12))=f (12-3)=f (9)=9-3=6. 答案 7 611.已知函数f (x )满足f ⎝ ⎛⎭⎪⎫2x +|x |=log 2x |x |,则f (x )的解析式是________.解析 根据题意知x >0,所以f ⎝ ⎛⎭⎪⎫1x =log 2x ,则f (x )=log 21x =-log 2x .答案 f (x )=-log 2x12.(2017·温州调研)已知函数f (x )=⎩⎨⎧log 2x (x >0),x 2+x (x ≤0),则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=________,方程f (x )=2的解为________.解析 ∵f (x )=⎩⎨⎧log 2x (x >0),x 2+x (x ≤0),f ⎝ ⎛⎭⎪⎫12=log 212=-1,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (-1)=(-1)2+(-1)=0.当x >0时,由log 2x =2得x =4,当x ≤0时,由x 2+x =2得x =-2(x =+1舍去).答案 0 -2或413.已知函数f (x )=⎩⎨⎧x 2+2x ,x <0,x 2-2x ,x ≥0.若f (-a )+f (a )≤0,则实数a 的取值范围是________.解析 依题意可知⎩⎨⎧a ≥0,(-a )2+2(-a )+a 2-2a ≤0或⎩⎨⎧a <0,(-a )2-2(-a )+a 2+2a ≤0,解得a ∈[-2,2]. 答案 [-2,2]能力提升题组 (建议用时:15分钟)14.(2015·湖北卷)设x ∈R ,定义符号函数sgn x =⎩⎨⎧1,x >0,0,x =0,-1,x <0.则()A.|x |=x |sgn x |B.|x |=x sgn|x |C.|x |=|x |sgn xD.|x |=x sgn x解析 当x >0时,|x |=x ,sgn x =1,则|x |=x sgn x ; 当x <0时,|x |=-x ,sgn x =-1,则|x |=x sgn x ; 当x =0时,|x |=x =0,sgn x =0,则|x |=x sgn x . 答案 D15.设函数f (x )=⎩⎨⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B.[0,1]C.⎣⎢⎡⎭⎪⎫23,+∞D.[1,+∞)解析 由f (f (a ))=2f (a )得,f (a )≥1. 当a <1时,有3a -1≥1, ∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23. 答案 C16.函数f (x )=ln ⎝ ⎛⎭⎪⎫1+1x +1-x 2的定义域为________.解析要使函数f (x )有意义,则⎩⎪⎨⎪⎧1+1x >0,x ≠0,1-x 2≥0⇒⎩⎨⎧x <-1或x >0,x ≠0,-1≤x ≤1⇒0<x ≤1.∴f (x )的定义域为(0,1]. 答案 (0,1]17.(2015·浙江卷)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.解析 ∵f (-3)=lg[(-3)2+1]=lg 10=1, ∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3. 答案 0 22-318.(2017·台州模拟)已知函数f (x )=⎩⎨⎧x 2-1,x ≤0,x -1,x >0,g (x )=2x -1,则f (g (2))=________,f [g (x )]的值域为________.解析 g (2)=22-1=3,∴f (g (2))=f (3)=2,g (x )的值域为(-1,+∞),∴若-1<g (x )≤0;f [g (x )]=[g (x )]2-1∈[-1,0);若g (x )>0;f [g (x )]=g (x )-1∈(-1,+∞),∴f [g (x )]的值域是[-1,+∞). 答案 2 [-1,+∞)。

2018年浙江高考数学二轮复习教师用书第1部分 重点强化专题 专题4 突破点8 空间几何体表面积或体积的求解 Wo

2018年浙江高考数学二轮复习教师用书第1部分 重点强化专题 专题4 突破点8 空间几何体表面积或体积的求解 Wo

专题四立体几何建知识网络明内在联系[高考点拨]立体几何专题是浙江新高考中当仁不让的热点之一,常以“两小一大”呈现,小题主要考查三视图与空间几何体的体积(特别是与球有关的体积)和空间位置关系及空间角,一大题常考空间位置关系的证明与空间角、距离的探求.本专题主要从“空间几何体表面积或体积的求解”“空间中的平行与垂直关系”“立体几何中的向量方法”三大角度进行典例剖析,引领考生明确考情并提升解题技能.突破点空间几何体表面积或体积的求解(对应学生用书第页)[核心知识提炼]提炼求解几何体的表面积或体积()对于规则几何体,可直接利用公式计算.()对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.()求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用.提炼球与几何体的外接与内切()正四面体与球:设正四面体的棱长为,由正四面体本身的对称性,可知其内切球和外接球的球心相同,则内切球的半径=,外接球的半径=.()正方体与球:设正方体­的棱长为,为其对称中心,,,,分别为,,,的中点,为的中点,如图­所示.图­①正方体的内切球:截面图为正方形的内切圆,故其;内切球的半径为=②正方体的棱切球:截面图为正方形的外接圆,故其棱切球的半径为=;③正方体的外接球:截面图为矩形的外接圆,故其.外接球的半径为=[高考真题回访]回访空间几何体的结构及三视图.(·浙江高考)如图­,斜线段与平面α所成的角为°,为斜足,平面α上的动点满足∠=°,则点的轨迹是( )图­.直线.抛物线.椭圆.双曲线的一支[因为∠=°,所以点的轨迹为以为轴线,为母线的圆锥面与平面α的交线,且平面α与圆锥的轴线斜交,故点的轨迹为椭圆.].(·浙江高考)某几何体的三视图(单位:)如图­所示,则该几何体的体积是( )图­。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题3 突破点7 随机变量及其分布

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题3 突破点7 随机变量及其分布

突破点7 随机变量及其分布(对应学生用书第26页)[核心知识提炼]提炼1离散型随机变量的分布列离散型随机变量X的分布列如下:则(1)p i(2)p1+p2+…+p i+…+p n=1(i=1,2,3,…,n).(3)E(X)=x1p1+x2p2+…+x i p i+…+x n p n为X的均值或数学期望(简称期望).D(X)=(x1-E(X))2·p1+(x2-E(X))2·p2+…+(x i-E(X))2·p i+…+(x n-E(X))2·p n叫做随机变量X的方差.(4)均值与方差的性质①E(aX+b)=aE(X)+b;②D(aX+b)=a2D(X)(a,b为实数).(5) 两点分布与二项分布的均值、方差①若X服从两点分布,则E(X)=p,D(X)=p(1-p);②若X~B(n,p),则E(X)=np,D(X)=np(1-p).提炼2几种常见概率的计算(1)相互独立事件同时发生的概率P(AB)=P(A)P(B).(2)独立重复试验的概率如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k·(1-p )n -k,k =0,1,2,…,n .[高考真题回访]回访1 离散型随机变量及其分布列1.(2013·浙江高考)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E η=53,D η=59,求a ∶b ∶c . 【导学号:68334087】 [解] (1)由题意得ξ=2,3,4,5,6. 故P (ξ=2)=3×36×6=14,1分P (ξ=3)=2×3×26×6=13, 2分P (ξ=4)=2×3×1+2×26×6=518,3分P (ξ=5)=2×2×16×6=19, 4分P (ξ=6)=1×16×6=136. 5分所以ξ的分布列为6分(2)由题意知η的分布列为所以E (η)=a +b +c +a +b +c +a +b +c =3,10分D (η)=⎝⎛⎭⎪⎫1-532·a a +b +c +⎝ ⎛⎭⎪⎫2-532·b a +b +c +⎝ ⎛⎭⎪⎫3-532·c a +b +c =59,化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0. 13分解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1. 15分回 访2 离散型随机变量的均值与方差2.(2017·浙江高考)已知随机变量ξi 满足P (ξi =1)=p i ,P (ξi =0)=1-p i ,i =1,2.若0<p 1<p 2<12,则( )A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2)B .E (ξ1)<E (ξ2),D (ξ1)>D (ξ2)C .E (ξ1)>E (ξ2),D (ξ1)<D (ξ2) D .E (ξ1)>E (ξ2),D (ξ1)>D (ξ2)A [由题意可知ξi (i =1,2)服从两点分布,∴E (ξ1)=p 1,E (ξ2)=p 2,D (ξ1)=p 1(1-p 1),D (ξ2)=p 2(1-p 2). 又∵0<p 1<p 2<12,∴E (ξ1)<E (ξ2).把方差看作函数y =x (1-x ), 根据0<ξ1<ξ2<12知,D (ξ1)<D (ξ2).故选A.]3.(2014·浙江高考)已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(m ≥3,n ≥3),从乙盒中随机抽取i (i =1,2)个球放入甲盒中.(1)放入i 个球后,甲盒中含有红球的个数记为ξi (i =1,2);(2)放入i 个球后,从甲盒中取1个球是红球的概率记为p i (i =1,2).则( )【导学号:68334088】A .p 1>p 2,E (ξ1)<E (ξ2)B .p 1<p 2,E (ξ1)>E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2)A [随机变量ξ1,ξ2的分布列如下:所以E (ξ1)=m +n+m +n =m +n, E (ξ2)=C 2n C 2m +n +2C 1m C 1n C 2m +n +3C 2m C 2m +n =3m +nm +n ,所以E (ξ1)<E (ξ2).因为p 1=m m +n +nm +n ·12=2m +n m +n,p 2=C 2m C 2m +n +C 1m C 1n C 2m +n ·23+C 2n C 2m +n ·13=3m +nm +n,p 1-p 2=nm +n>0,所以p 1>p 2.] 4.(2014·浙江高考)随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.25[设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎪⎨⎪⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.](对应学生用书第27页) 热点题型1 相互独立事件的概率题型分析:高考主要考查相互独立事件概率的求解及实际应用,对事件相互独立性的考查相对较频繁,难度中等.【例1】 (1)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36D .0.312(2)如图7­1,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是p ,电流能通过T 4的概率是0.9.电流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为0.999.图7­1①求p ;②求电流能在M 与N 之间通过的概率.(1)A [3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6),投中3次的概率为P (k =3)=0.63,所以通过测试的概率为P (k =2)+P (k =3)=C 23×0.62×(1-0.6)+0.63=0.648.故选A.](2)记A i 表示事件:电流能通过T i ,i =1,2,3,4,A 表示事件:T 1,T 2,T 3中至少有一个能通过电流,B 表示事件:电流能在M 与N 之间通过.①A -=A -1A -2A -3,A -1,A -2,A -3相互独立,2分P (A -)=P (A -1A -2A -3)=P (A -1)P (A -2)P (A -3)=(1-p )3.3分又P (A -)=1-P (A )=1-0.999=0.001, 4分 故(1-p )3=0.001,p =0.9. 6分②B =A 4∪A -4A 1A 3∪A -4A -1A 2A 3,10分P (B )=P (A 4∪A -4A 1A 3∪A -4A -1A 2A 3)=P (A 4)+P (A -4A 1A 3)+P (A -4A -1A 2A 3)=P (A 4)+P (A -4)P (A 1)P (A 3)+P (A -4)P (A -1)P (A 2)·P (A 3) =0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9 =0.989 1.15分[方法指津]求相互独立事件和独立重复试验的概率的方法(1)直接法:正确分析复杂事件的构成,将复杂事件转化为几个彼此互斥的事件的和事件或几个相互独立事件同时发生的积事件或独立重复试验问题,然后用相应概率公式求解. (2)间接法:当复杂事件正面情况比较多,反面情况较少,则可利用其对立事件进行求解.对于“至少”“至多”等问题往往也用这种方法求解.[变式训练1] (2017·杭州学军中学高三模拟)商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖,则顾客抽奖1次能获奖的概率是________;若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,则E (X )=________.【导学号:68334089】710 35 [由题得,在甲箱中抽中红球、白球的概率分别为25,35,在乙箱中抽中红球、白球的概率分别为12,12.抽奖一次不获奖的概率为35×12=310,所以其(对立事件)获奖的概率为1-310=710.因为每次获得一等奖的概率为25×12=15,3次抽奖相互独立,故E (X )=np =3×15=35.] 热点题型2 离散型随机变量的分布列、期望和方差题型分析:离散型随机变量的分布列问题是高考的热点,常以实际生活为背景,涉及事件的相互独立性、互斥事件的概率等,综合性强,难度中等.【例2】 (1)(2017·萧山中学高三仿真考试)随机变量X 的分布列如下表,且E (X )=2,则D (2X -3)=( )A.1 C [由题可得16+p 1+13=1,解得p 1=12.所以E (X )=0×16+2×12+a ·13=2,解得a =3.所以D (X )=(0-2)2×16+(2-2)2×12+(3-2)2×13=1,所以D (2X -3)=4D (X )=4,故选C.](2)(2017·绍兴市方向性仿真考试)设X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,若E (X )=43,D (X )=29,则x 1+x 2=( )A.53B.73C.113D .3D [由已知得⎩⎪⎨⎪⎧23x 1+13x 2=43,23⎝ ⎛⎭⎪⎫x 1-432+13⎝ ⎛⎭⎪⎫x 2-432=29,解得⎩⎪⎨⎪⎧x 1=1,x 2=2或⎩⎪⎨⎪⎧x 1=53,x 2=23,因为x 1<x 2,所以⎩⎪⎨⎪⎧x 1=1,x 2=2,所以x 1+x 2=1+2=3,故选D.] [方法指津]解答离散型随机变量的分布列及相关问题的一般思路: 1明确随机变量可能取哪些值.2结合事件特点选取恰当的计算方法,计算这些可能取值的概率值. 3根据分布列和期望、方差公式求解.提醒:明确离散型随机变量的取值及事件间的相互关系是求解此类问题的关键.[变式训练2] (1)(2017·温州九校协作体高三期末联考)将四位同学等可能地分到甲、乙、丙三个班级,则甲班级至少有一位同学的概率是________,用随机变量ξ表示分到丙班级的人数,则E ξ=________. 【导学号:68334090】6581 43 [甲班级没有分到同学的概率为1+1+C 14+C 24+C 3434=1681,所以甲班级至少有一位同学的概率为1-1681=6581.随机变量ξ的可能取值为0,1,2,3,4,则P (ξ=0)=1681,P (ξ=1)=C 14+1+C 23+C 1334=3281,P (ξ=2)=C 24+1+34=2481,P (ξ=3)=C 34×234=881,P (ξ=4)=134=181,于是E ξ=0×1681+1×3281+2×2481+3×881+4×181=43.](2)(2017·金华十校高考模拟考试)设随机变量X的分布列为则a=3 1095[由分布列的概念易得12+15+a=1,解得a=310,则E(X)=1×12+2×15+3×310=95.]。

2018届高考数学(理)二轮复习教师用书:第一部分 层级二 75分的重点保分题精析精研 重点攻关

2018届高考数学(理)二轮复习教师用书:第一部分 层级二 75分的重点保分题精析精研 重点攻关

[全国卷3年考情分析][师生共研·悟通]指数与对数式的8个运算公式(1)a m·a n=a m+n;(2)(a m)n=a mn;(3)(ab)m=a m b m;(4)log a(MN)=log a M+log a N;(5)log a MN=log a M-log a N;(6)log a M n=n log a M;(7)a log a N=N;(8)log a N=log b Nlog b a.[注意] (1)(2)(3)中,a>0,b>0;(4)(5)(6)(7)(8)中,a>0且a≠1,b>0且b≠1,M>0,N>0.[典例] (1)(2017·全国卷Ⅰ)设x,y,z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3yC.3y<5z<2x D.3y<2x<5z[解析] 选D 由2x=3y=5z,可设(2)2x=(33)3y=(55)5z=t,因为x,y,z为正数,所以t>1,因为2=623=68,33=632=69,所以2<33;因为2=1025=1032,55=1025,所以2>55,所以55<2<33.分别作出y=(2)x,y=(33)x,y=(55)x的图象,如图.则3y<2x<5z,故选D.(2)已知f(x)=a x-2,g(x)=log a|x|(a>0且a≠1),若f(4)g(-4)<0,则y=f(x),y =g(x)在同一坐标系内的大致图象是( )[解析] 选B ∵f(x)=a x-2>0恒成立,又f(4)·g(-4)<0,∴g(-4)=log a|-4|=log a4<0=log a1,∴0<a<1.故函数y=f(x)在R上单调递减,且过点(2,1),函数y=g(x)在(0,+∞)上单调递减,在(-∞,0)上单调递增,故B正确.[即学即用·练通]1.已知函数f(x)=3x-b(2≤x≤4,b为常数)的图象经过点(2,1),则f(x)的值域为( )A.[1,81] B.[1,3]C.[1,9] D.[1,+∞)解析:选C 由f(x)的图象过点(2,1)可知b=2,∴f(x)=3x-2,其在区间[2,4]上是增函数,∴f(x)min=f(2)=30=1,f(x)max=f(4)=32=9.故f(x)的值域为[1,9].2.若函数f (x )=x a满足f (2)=4,那么函数g (x )=|log a (x +1)|的图象大致为( )解析:选C 法一:由函数f (x )=x a满足f (2)=4,得2a=4,∴a =2,则g (x )=|log a (x +1)|=|log 2(x +1)|,将函数y =log 2x 的图象向左平移1个单位长度(纵坐标不变),然后将x 轴下方的图象翻折上去,即可得g (x )的图象,故选C.法二:由函数f (x )=x a满足f (2)=4,得2a=4,∴a =2,即g (x )=|log 2(x +1)|,由g (x )的定义域为{x |x >-1},排除B 、D ;由x =0时,g (x )=0,排除A.故选C.3.(2016·浙江高考)已知a >b >1,若log a b +log b a =52,a b =b a,则a =________,b=________.解析:∵log a b +log b a =log a b +1log a b =52,∴log a b =2或12.∵a >b >1,∴log a b <log a a =1,∴log a b =12,∴a =b 2.∵a b =b a ,∴(b 2)b =bb 2,即b 2b =bb 2,∴2b =b 2, ∴b =2,a =4. 答案:4 2[师生共研·悟通]1.函数的零点及其与方程根的关系对于函数f (x ),使f (x )=0的实数x 叫做函数f (x )的零点.函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.2.零点存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.[典例] (1)已知f (x )是定义在R 上的奇函数,且当x ∈(0,+∞)时,f (x )=2 018x+log 2 018x ,则函数f (x )的零点个数是( )A .1B .2C .3D .4[解析] 选C 在同一直角坐标系中作出函数y =2 018x和y =-log 2 018x 的图象如图所示,可知函数f (x )=2 018x+log 2 018x 在x ∈(0,+∞)上存在一个零点,又f (x )是定义在R 上的奇函数,∴f (x )在x ∈(-∞,0)上只有一个零点,又f (0)=0,∴函数f (x )的零点个数是3.(2)(2017·山东高考)已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞)C .(0, 2 ]∪[23,+∞)D .(0, 2 ]∪[3,+∞)[解析] 选B 在同一直角坐标系中,分别作出函数f (x )=(mx -1)2=m 2⎝ ⎛⎭⎪⎫x -1m 2与g (x )=x +m 的大致图象.分两种情形:①当0<m ≤1时,1m≥1,如图①,当x ∈[0,1]时,f (x )与g (x )的图象有一个交点,符合题意;②当m >1时,0<1m<1,如图②,要使f (x )与g (x )的图象在[0,1]上只有一个交点,只需g (1)≤f (1),即1+m ≤(m -1)2,解得m ≥3或m ≤0(舍去).综上所述,m ∈(0,1]∪[3,+∞).[类题通法]1.判断函数零点个数的3种方法2.利用函数零点的情况求参数值(或范围)的3种方法[即学即用·练通]1.函数f (x )=log 3x -x +2必有一个零点的区间是( )A.⎝ ⎛⎭⎪⎫19,13B.⎝ ⎛⎭⎪⎫13,59C.⎝ ⎛⎭⎪⎫59,79D.⎝ ⎛⎭⎪⎫79,1 解析:选A 因为f (x )=log 3x -x +2,所以f ⎝ ⎛⎭⎪⎫19=log 319-19+2=-2-19+2=-19<0,f ⎝ ⎛⎭⎪⎫13=log 313-13+2=-1-13+2=23>0,即f ⎝ ⎛⎭⎪⎫19·f ⎝ ⎛⎭⎪⎫13<0,所以函数f (x )=log 3x -x +2在⎝ ⎛⎭⎪⎫19,13上必有一个零点. 2.函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:选C 因为f (x )在(1,2)内单调递增,依题意有f (1)·f (2)<0,所以(-a )·(3-a )<0,所以0<a <3.3.设f 1(x )=|x -1|,f 2(x )=-x 2+6x -5,函数g (x )是这样定义的:当f 1(x )≥f 2(x )时,g (x )=f 1(x ),当f 1(x )<f 2(x )时,g (x )=f 2(x ),若方程g (x )=a 有四个不同的实数解,则实数a 的取值范围是( )A .(-∞,4)B .(0,4)C .(0,3)D .(3,4)解析:选D 作出f 1(x )=|x -1|,f 2(x )=-x 2+6x -5的图象如图,函数g (x )的图象为两函数中位置在上的部分(即图中实线部分),即g (x )=⎩⎪⎨⎪⎧-x +1,x ≤1,-x 2+6x -5,1<x ≤4,x -1,x >4,由⎩⎪⎨⎪⎧y =x -1,y =-x 2+6x -5,得A (4,3),f 2(x )=-x 2+6x -5的顶点坐标为B (3,4),要使方程g (x )=a 有四个不同的实数解,即函数g (x )的图象与函数y =a 的图象有四个不同交点,数形结合可得3<a <4,故选D.[师生共研·悟通][典例] (2017·湖北七市(州)联考)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P (毫克/升)与时间t (小时)的关系为P =P 0e-kt.如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为________小时.[解析] 前5小时污染物消除了10%,此时污染物剩下90%,即t =5时,P =0.9P 0,代入,得(e -k )5=0.9,∴e -k =0.915,∴P =P 0e -kt=P 0⎝ ⎛⎭⎪⎫0.915t .当污染物减少19%时,污染物剩下81%,此时P=0.81P 0,代入得0.81=⎝ ⎛⎭⎪⎫0.915t,解得t =10,即需要花费10小时.[答案] 10 [类题通法]应用函数模型解决实际问题的一般程序和解题关键(1)一般程序:读题文字语言⇨建模数学语言⇨求解数学应用⇨反馈检验作答(2)解题关键:解答这类问题的关键是确切地建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.[即学即用·练通]1.某电脑公司在甲、乙两地各有一个分公司,甲分公司现有某型号电脑6台,乙分公司现有同一型号的电脑12台.现A 地某单位向该公司购买该型号的电脑10台,B 地某单位向该公司购买该型号的电脑8台.已知从甲地运往A ,B 两地每台电脑的运费分别是40元和30元,从乙地运往A,B两地每台电脑的运费分别是80元和50元.若总运费不超过1 000元,则调运方案的种数为( )A.1 B.2C.3 D.4解析:选C 设甲地调运x台电脑至B地,则剩下(6-x)台电脑调运至A地;乙地应调运(8-x)台电脑至B地,运往A地12-(8-x)=(x+4)台电脑(0≤x≤6,x∈N).则总运费y=30x+40(6-x)+50(8-x)+80(x+4)=20x+960,∴y=20x+960(x∈N,0≤x≤6).若y≤1 000,则20x+960≤1 000,得x≤2.又0≤x≤6,x∈N,∴x=0,1,2,即有3种调运方案.2.某商场为了解商品的销售情况,对某种电器今年一至五月份的月销售量Q(x)(百台)进行统计,得数据如下:x(月份)变化关系的模拟函数是( )A.Q(x)=ax+b(a≠0)B.Q(x)=a|x-4|+b(a≠0)C.Q(x)=a(x-3)2+b(a≠0)D.Q(x)=a·b x(a≠0,b>0且b≠1)解析:选C 观察数据可知,当x增大时,Q(x)的值先增大后减小,且大约是关于Q(3)对称,故月销售量Q(x)(百台)与时间x(月份)变化关系的模拟函数的图象是关于x=3对称的,显然只有选项C满足题意,故选C.[专题过关检测]A级——常考点落实练1.幂函数y=f(x)的图象经过点(3,3),则f(x)是( )A.偶函数,且在(0,+∞)上是增函数B.偶函数,且在(0,+∞)上是减函数C.奇函数,且在(0,+∞)上是减函数D.非奇非偶函数,且在(0,+∞)上是增函数解析:选D 设幂函数f(x)=x a,则f(3)=3a=3,解得a=12,则f(x)=x12=x,是非奇非偶函数,且在(0,+∞)上是增函数.2.(2017·全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:选D 由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).3.已知函数f(x)=a x,其中a>0且a≠1,如果以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,那么f(x1)·f(x2)=( )A.1 B.aC.2 D.a2解析:选A ∵以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,∴x1+x2=0,又f(x)=a x,∴f(x1)·f(x2)=ax1·ax2=ax1+x2=a0=1.4.某商场销售A型商品,已知该商品的进价是每件3元,且销售单价与日均销售量的关系如表所示:请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为( )A.4 B.5.5C .8.5D .10解析:选C 由题意可设定价为x 元/件,利润为y 元,则y =(x -3)[400-40(x -4)]=40(-x 2+17x -42),故当x =8.5时,y 有最大值.5.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解析:选C 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).6.若函数f (x )与g (x )的图象关于直线y =x 对称,函数f (x )=⎝ ⎛⎭⎪⎫12-x,则f (2)+g (4)=( )A .3B .4C .5D .6解析:选D 法一:∵函数f (x )与g (x )的图象关于直线y =x 对称,又f (x )=⎝ ⎛⎭⎪⎫12-x=2x,∴g (x )=log 2x ,∴f (2)+g (4)=22+log 24=6.法二:∵f (x )=⎝ ⎛⎭⎪⎫12-x,∴f (2)=4,即函数f (x )的图象经过点(2,4),∵函数f (x )与g (x )的图象关于直线y =x 对称,∴函数g (x )的图象经过点(4,2),∴f (2)+g (4)=4+2=6.7.(2017·云南第一次统一检测)设a =60.7,b =log 70.6,c =log 0.60.7,则a ,b ,c 的大小关系为( )A .c >b >aB .b >c >aC .c >a >bD .a >c >b解析:选D 因为a =60.7>1,b =log 70.6<0,0<c =log 0.60.7<1,所以a >c >b .8.若函数y =a |x |(a >0,且a ≠1)的值域为{y |0<y ≤1},则函数y =log a |x |的图象大致是( )解析:选A 若函数y =a |x |(a >0,且a ≠1)的值域为{y |0<y ≤1},则0<a <1,故log a |x |是偶函数且在(0,+∞)上单调递减,由此可知y =log a |x |的图象大致为A.9.函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3x 2-,x ≥2,则不等式f (x )>2的解集为( )A .(-2,4)B .(-4,-2)∪(-1,2)C .(1,2)∪(10,+∞)D .(10,+∞)解析:选C 令2ex -1>2(x <2),解得1<x <2;令log 3(x 2-1)>2(x ≥2),解得x >10.故不等式f (x )>2的解集为(1,2)∪(10,+∞).10.已知直线x =m (m >1)与函数f (x )=log a x (a >0且a ≠1),g (x )=log b x (b >0且b ≠1)的图象及x 轴分别交于A ,B ,C 三点,若AB ―→=2BC ―→,则( )A .b =a 2B .a =b 2C .b =a 3D .a =b 3解析:选C 由于AB ―→=2BC ―→,则AC ―→=3BC ―→,则点A 的坐标为(m,3g (m )),又点A 在函数f (x )=log a x 的图象上,故log a m =3log b m ,即log a m =log b m 3,由对数运算可知b =a 3.B 级——易错点清零练1.已知函数f (x )=1log 12x +,则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎭⎪⎫-12,+∞C.⎝ ⎛⎭⎪⎫-12,0∪(0,+∞)D.⎝ ⎛⎭⎪⎫-12,2 解析:选C 由题意,得⎩⎪⎨⎪⎧2x +1≠1,2x +1>0,解得x >-12且x ≠0.2.已知a >1,f (x )=a x 2+2x ,则使f (x )<1成立的一个充分不必要条件是( ) A .-1<x <0 B .-2<x <1 C .-2<x <0D .0<x <1解析:选A ∵a >1,∴y =a x在R 上为增函数,故f (x )<1⇔a x 2+2x <1⇔a x 2+2x <a 0⇔x 2+2x <0⇔-2<x <0,结合选项可知,使f (x )<1成立的一个充分不必要条件是-1<x <0.3.两个函数的图象经过平移后能够重合,称这两个函数为“同根函数”,给出四个函数:f 1(x )=2log 2(x +1),f 2(x )=log 2(x +2),f 3(x )=log 2x 2,f 4(x )=log 2(2x ),则“同根函数”是( )A .f 2(x )与f 4(x )B .f 1(x )与f 3(x )C .f 1(x )与f 4(x )D .f 3(x )与f 4(x )解析:选A f 4(x )=log 2(2x )=1+log 2x ,f 2(x )=log 2(x +2),将f 2(x )的图象沿着x 轴先向右平移2个单位得到y =log 2x 的图象,然后再沿着y 轴向上平移1个单位可得到f 4(x )的图象,根据“同根函数”的定义可知选A.4.已知幂函数f (x )=(m -1)2x m 2-4m +2在(0,+∞)上单调递增,函数g (x )=2x-k ,当x ∈[1,2)时,记f (x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,则实数k 的取值范围是________.解析:∵f (x )是幂函数,∴(m -1)2=1,解得m =2或m =0.若m =2,则f (x )=x -2,f (x )在(0,+∞)上单调递减,不满足条件;若m =0,则f (x )=x 2,f (x )在(0,+∞)上单调递增,满足条件, 故f (x )=x 2.当x ∈[1,2)时,f (x )∈[1,4),g (x )∈[2-k,4-k ), 即A =[1,4),B =[2-k,4-k ), ∵A ∪B =A ,∴B ⊆A ,则⎩⎪⎨⎪⎧2-k ≥1,4-k ≤4,解得0≤k ≤1.答案:[0,1]C 级——“12+4”高考练1.函数y =ax +2-1(a >0且a ≠1)的图象恒过的点是( )A .(0,0)B .(0,-1)C .(-2,0)D .(-2,-1)解析:选C 令x +2=0,得x =-2,所以当x =-2时,y =a 0-1=0,所以y =a x +2-1(a >0且a ≠1)的图象恒过点(-2,0).2.“1a>1”是“函数f (x )=(3-2a )x单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由1a>1得0<a <1,若函数f (x )=(3-2a )x单调递增,则3-2a >1,解得a <1.故“1a>1”是“函数f (x )=(3-2a )x单调递增”的充分不必要条件.3.(2017·北京高考)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是( )(参考数据:lg 3≈0.48) A .1033B .1053C .1073D .1093解析:选D 因为lg 3361=361×lg 3≈361×0.48≈173,所以M ≈10173,则M N ≈101731080=1093.4.函数f (x )=|log 2x |+x -2的零点个数为( ) A .1 B .2 C .3D .4解析:选B 函数f (x )=|log2x |+x -2的零点个数,就是方程|log 2x |+x -2=0的根的个数.令h (x )=|log 2x |,g (x )=2-x ,画出函数的图象,如图.由图象得h (x )与g (x )有2个交点,∴方程|log 2x |+x -2=0的解的个数为2.5.函数f (x )=x 2lg x -2x +2的图象( ) A .关于x 轴对称B .关于原点对称C .关于直线y =x 对称D .关于y 轴对称解析:选 B 因为f (x )=x 2lgx -2x +2,所以其定义域为(-∞,-2)∪(2,+∞),所以f (-x )=x 2lgx +2x -2=-x 2lg x -2x +2=-f (x ),所以函数为奇函数,所以函数的图象关于原点对称.6.(2018届高三·济南质检)已知a =2-13,b =(2log 23)-12,c =14⎠⎛0πsin x d x ,则实数a ,b ,c 的大小关系是( )A .a>c>bB .b>a>cC .a>b>cD .c>b>a解析:选C 依题意得,a =2-13,b =3-12,c =-14cos x π0=12,所以a 6=2-2=14,b6=3-3=127,c 6=⎝ ⎛⎭⎪⎫126=164,则a>b>c.7.(2017·沈阳模拟)若函数y =log a x(a>0,且a≠1)的图象如图所示,则下列函数与其图象相符的是( )A B C D解析:选B 由函数y =log a x(a>0,且a≠1)的图象可知,a =3,所以y =3-x,y =(-x)3=-x 3及y =log 3(-x)均为减函数,只有y =x 3是增函数,选B .8.(2017·保定二模)李华经营了甲、乙两家电动轿车销售连锁店,其月利润(单位:元)分别为L 甲=-5x 2+900x -16 000,L 乙=300x -2 000(其中x 为销售辆数),若某月两连锁店共销售了110辆,则能获得的最大利润为( )A .11 000元B .22 000元C .33 000元D .40 000元解析:选C 设甲连锁店销售x 辆,则乙连锁店销售(110-x)辆,故利润L =-5x 2+900x -16 000+300(110-x)-2 000=-5x 2+600x +15 000=-5(x -60)2+33 000,∴当x =60时,有最大利润33 000元.9.(2018届高三·西安八校联考)已知在(0,+∞)上函数f(x)=⎩⎪⎨⎪⎧-2,0<x <1,1,x≥1,则不等式log 2x -(log 144x -1)·f(log 3x +1)≤5的解集为( )A .⎝ ⎛⎭⎪⎫13,1B .[1,4]C .⎝⎛⎦⎥⎤13,4 D .[1,+∞)解析:选C 原不等式等价于⎩⎪⎨⎪⎧log 3x +1≥1,log 2x -⎝ ⎛⎭⎪⎫log 144x -1≤5或⎩⎪⎨⎪⎧0<log 3x +1<1,log 2x +2⎝ ⎛⎭⎪⎫log 144x -1≤5,解得1≤x≤4或13<x <1,所以原不等式的解集为⎝ ⎛⎦⎥⎤13,4. 10.已知函数f(x)是定义在R 上的奇函数,且在区间[0,+∞)上单调递增,若⎪⎪⎪⎪⎪⎪f ln x -f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1),则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,1eB .(0,e)C.⎝ ⎛⎭⎪⎫1e ,e D .(e ,+∞)解析:选C ∵函数f (x )是定义在R 上的奇函数,∴f (ln x )-f ⎝ ⎛⎭⎪⎫ln 1x =f (ln x )-f (-ln x )=f (ln x )+f (ln x )=2f (ln x ),∴⎪⎪⎪⎪⎪⎪f ln x -f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1)等价于|f (ln x )|<f (1),又f (x )在区间[0,+∞)上单调递增, ∴-1<ln x <1,解得1e<x <e.11.(2017·南昌一模)已知f (x )是定义在R 上的奇函数,且x >0时,f (x )=ln x -x +1,则函数g (x )=f (x )-e x(e 为自然对数的底数)的零点个数是( )A .0B .1C .2D .3解析:选C 当x >0时,f (x )=ln x -x +1,f ′(x )=1x-1=1-xx,所以x ∈(0,1)时f ′(x )>0,此时f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,此时f (x )单调递减.因此,当x >0时,f (x )max=f (1)=ln 1-1+1=0.根据函数f (x )是定义在R 上的奇函数作出函数y =f (x )与y =ex的大致图象如图所示,观察到函数y =f (x )与y =e x的图象有两个交点,所以函数g (x )=f (x )-e x(e 为自然对数的底数)有2个零点.12.已知定义域为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2x 2+12x -18.若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则实数a 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,33 B.⎝ ⎛⎭⎪⎫0,22 C.⎝⎛⎭⎪⎫0,55 D.⎝⎛⎭⎪⎫0,66解析:选 A ∵f (x +2)=f (x )-f (1),f (x )是偶函数,∴f (1)=0,∴f (x +2)=f (x ),即f (x )是周期为2的周期函数,且y =f (x )的图象关于直线x =2对称,作出函数y =f (x )与g (x )=log a (x +1)的图象如图所示,∵两个函数图象在(0,+∞)上至少有三个交点,∴g (2)=log a 3>f (2)=-2,且0<a <1,解得0<a <33. 13.计算:2log 410-12log 225+823-(π-3)0=________.解析:2log 410-12log 225+823-(π-3)0=2×12log 210-log 25+(23)23-1=log 2105+22-1=1+4-1=4.答案:414.有四个函数:①y =x 12;②y =21-x;③y =ln(x +1);④y =|1-x |.其中在区间(0,1)内单调递减的函数的序号是________.解析:分析题意可知①③显然不满足题意,画出②④中的函数图象(图略),易知②④中的函数满足在(0,1)内单调递减.答案:②④15.(2017·宝鸡质检)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,且关于x 的方程f (x )+x -a=0有且只有一个实数根,则实数a 的取值范围是________.解析:依题意,由f (x )+x -a =0有且只有一个实数根得,函数y =f (x )的图象与直线y =-x +a 有唯一公共点.在同一平面直角坐标系中画出直线y =-x 与函数y =f (x )的大致图象如图所示,平移直线y =-x ,当平移到该直线在y 轴上的截距大于1时,相应直线与函数y =f (x )的图象有唯一公共点,即此时关于x 的方程有且只有一个实数根,因此a >1,即实数a 的取值范围是(1,+∞).答案:(1,+∞)16.某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系式t =⎩⎪⎨⎪⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃ 时的保鲜时间是16小时.已知甲在某日10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示.给出以下四个结论:①该食品在6 ℃的保鲜时间是8小时;②当x ∈[-6,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少; ③到了此日13时,甲所购买的食品还在保鲜时间内; ④到了此日14时,甲所购买的食品已过了保鲜时间. 其中,所有正确结论的序号是________.解析:∵某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系式t=⎩⎪⎨⎪⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃时的保鲜时间是16小时,∴24k +6=16,即4k +6=4,解得k =-12,∴t =⎩⎪⎨⎪⎧64,x ≤0,2-12x +6,x >0.①当x =6时,t =8,故①正确;②当x ∈[-6,0]时,保鲜时间恒为64小时,当x ∈(0,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少,故②错误;③此日10时,温度为8 ℃,此时保鲜时间为4小时,而随着时间的推移,到11时,温度为11 ℃,此时的保鲜时间t =2-12×11+6=2≈1.414(小时),到13时,甲所购买的食品不在保鲜时间内,故③错误;④由③可知,到了此日14时,甲所购买的食品已过了保鲜时间,故④正确. 所以正确结论的序号为①④. 答案:①④保分专题(二) 导数的简单应用[全国卷3年考情分析][师生共研·悟通]1.导数的几何意义函数f (x )在x 0处的导数是曲线f (x )在点P (x 0,f (x 0))处的切线的斜率,曲线f (x )在点P 处的切线的斜率k =f ′(x 0),相应的切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).2.四个易误导数公式 (1)(sin x )′=cos x ; (2)(cos x )′=-sin x ; (3)(a x )′=a xln a (a >0);(4)(log a x )′=1x ln a(a >0,且a ≠1). [典例] (1)已知M 为不等式组⎩⎪⎨⎪⎧y ≤x 2,1≤x ≤2,y ≥0表示的平面区域,直线l :y=2x +a ,当a 从-2连续变化到0时,区域M 被直线l 扫过的面积为( )A.73 B .2C.32D .43[解析] 选D 作出图形可得区域M 被直线l 扫过的面积为S 2=⎠⎛12x 2d x -S 1=13x 321-12×1×2 =13×(8-1)-1 =43. (2)(2017·昆明质检)若函数f(x)=2cos ⎝⎛⎭⎪⎫ωx +π4的图象在x =0处的切线方程为y =-3x +1,则ω=___________________________________________________________.[解析] 由题意,得f ′(x )=-2ωsin ⎝⎛⎭⎪⎫ωx +π4,所以f′(0)=-2ωsin π4=-ω=-3,所以ω=3.[答案] 3(3)(2016·全国卷Ⅲ)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.[解析] 设x >0,则-x <0,f (-x )=e x -1+x .∵f (x )为偶函数,∴f (-x )=f (x ), ∴f (x )=ex -1+x .∵当x >0时,f ′(x )=e x -1+1,∴f ′(1)=e1-1+1=1+1=2.∴曲线y =f (x )在点(1,2)处的切线方程为y -2=2(x -1),即2x -y =0. [答案] 2x -y =0[即学即用·练通]1.已知函数f (x )=x sin x +ax ,且f ′⎝ ⎛⎭⎪⎫π2=1,则a =( ) A .0 B .1 C .2D .4解析:选A ∵f ′(x )=sin x +x cos x +a ,且f ′⎝ ⎛⎭⎪⎫π2=1,∴sin π2+π2cos π2+a =1,即a =0.2.(2017·沈阳质检)设函数f (x )=g ⎝ ⎛⎭⎪⎫x 2+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为9x +y -1=0,则曲线y =f (x )在点(2,f (2))处的切线方程为________.解析:由已知得g ′(1)=-9,g (1)=-8, 又f ′(x )=12g ′⎝ ⎛⎭⎪⎫x 2+2x ,∴f ′(2)=12g ′(1)+4=-92+4=-12,f (2)=g (1)+4=-4,∴所求切线方程为y +4=-12(x -2),即x +2y +6=0. 答案:x +2y +6=03.⎠⎛1-1(x 2+1-x 2)d x =________.解析:⎠⎛1-1x 2d x =13x 31-1=23,而根据定积分的定义可知⎠⎛1-11-x 2d x 表示圆心在原点的单位圆的上半部分的面积,即半圆的面积,∴⎠⎛1-1(x 2+1-x 2)d x =23+π2.答案:23+π2[师生共研·悟通] 导数与函数单调性的关系(1)f ′(x )>0是f (x )为增函数的充分不必要条件,如函数f (x )=x 3在(-∞,+∞)上单调递增,但f ′(x )≥0.(2)f ′(x )≥0是f (x )为增函数的必要不充分条件,当函数在某个区间内恒有f ′(x )=0时,则f (x )为常数,函数不具有单调性.[典例] (2017·全国卷Ⅰ)已知函数f (x )=e xe x-a-a 2x ❶.(1)讨论f (x )的单调性; (2)若fx ≥0❷,求a 的取值范围.[解答示范](一)搭桥——找突破口第(1)问:欲讨论f (x )的单调性,应先求f (x )的定义域及导数f ′(x ),再讨论f ′(x )的符号;第(2)问:欲求a 的取值范围,应想到找出有关a 的不等关系.由f (x )≥0,则应求f (x )的最小值,借助(1)的结论可得.(二)建桥——寻关键点[解] (1)函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0,得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.③若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减, 在⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a2,+∞上单调递增.(2)①若a =0,则f (x )=e 2x,所以f (x )≥0.②若a >0,则由(1)得,当x =ln a 时,f (x )取得最小值,最小值为f (ln a )=-a 2ln a . 从而当且仅当-a 2ln a ≥0,即0<a ≤1时,f (x )≥0.③若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2.从而当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2≥0, 即-2e 34≤a <0时,f (x )≥0.综上,a 的取值范围是⎣⎢⎡⎦⎥⎤-2e 34,1.[即学即用·练通]1.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( )A .(-∞,-2 6 ]B .⎝ ⎛⎦⎥⎤-∞,62 C .[-26,+∞) D .[-5,+∞)解析:选C 由题意得f ′(x )=2x +a +3x =2x 2+ax +3x≥0在(1,+∞)上恒成立⇔g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立⇔Δ=a 2-24≤0或⎩⎪⎨⎪⎧-a 4≤1,g 1≥0⇔-26≤a ≤26或a ≥-4⇔a ≥-2 6.2.已知函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为( )A .⎣⎢⎡⎭⎪⎫12,+∞ B .[3,+∞)C .[-2,3]D .(-∞,-2)解析:选D 因为f (x )=x 3+bx 2+cx +d , 所以f ′(x )=3x 2+2bx +c , 由图可知f ′(-2)=f ′(3)=0,所以⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1, 由g (x )=x 2-x -6>0,解得x <-2或x >3.当x <-2时,g ′(x )<0,所以g (x )=x 2-x -6在(-∞,-2)上为减函数,所以函数y=log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为(-∞,-2).3.已知函数f (x )=ax 3+x 2(a ∈R)在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,讨论g (x )的单调性. 解:(1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ×169+2×⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x =12x (x +1)(x +4)e x.令g ′(x )=0,解得x =0或x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)上为减函数,在(-4,-1)和(0,+∞)上为增函数.[师生共研·悟通]函数f (x )在点x 0附近有定义,若在x 0附近左侧f ′(x )>0,右侧f ′(x )<0,则f (x 0)为函数f (x )的极大值;若在x 0附近左侧f ′(x )<0,右侧f ′(x )>0,则f (x 0)为函数f (x )的极小值.[典例] (2017·北京高考)已知函数f x=e x cos x-x❶.(1)求曲线y=f x 在点0,f0处的切线方程❷;(2)错误!.[解答示范](一)搭桥——找突破口第(1)问:欲求函数在某点处的切线方程,应知切线的斜率,即求f(x)在此点处的导函数值;第(2)问:欲求函数在某区间上的最值,应知f(x)在此区间的单调性,即判断f′(x)在此区间上的正负.(二)建桥——寻关键点[解] (1)因为f(x)=e x cos x-x,所以f′(x)=e x(cos x-sin x)-1,f′(0)=0.又因为f(0)=1,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=1.(2)设h(x)=e x(cos x-sin x)-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e xsin x .当x ∈⎝⎛⎭⎪⎫0,π2时,h ′(x )<0,所以h (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减. 所以对任意x ∈⎝⎛⎦⎥⎤0,π2,有h (x )<h (0)=0, 即f ′(x )<0.所以函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减. 因此f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为f (0)=1, 最小值为f ⎝ ⎛⎭⎪⎫π2=-π2.[即学即用·练通]1.(2017·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3C .5e -3D .1解析:选A 因为f (x )=(x 2+ax -1)e x -1,所以f ′(x )=(2x +a )ex -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]ex -1.因为x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,所以-2是x 2+(a +2)x +a -1=0的根,所以a =-1,f ′(x )=(x 2+x -2)e x -1=(x +2)(x -1)ex -1.令f ′(x )>0,解得x <-2或x >1, 令f ′(x )<0,解得-2<x <1,所以f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增, 所以当x =1时,f (x )取得极小值,且f (x )极小值=f (1)=-1.2.已知函数f (x )=x x 2+a(a >0)在[1,+∞)上的最大值为33,则a 的值为( ) A.3-1B.34C.43D.3+1解析:选A 由f (x )=xx 2+a 得f ′(x )=a -x 2x 2+a2,当a >1时,若x >a ,则f ′(x )<0,f (x )单调递减, 若1<x <a ,则f ′(x )>0,f (x )单调递增,故当x =a 时,函数f (x )有最大值12a =33,得a =34<1,不合题意;当a =1时,函数f (x )在[1,+∞)上单调递减,最大值为f (1)=12,不合题意;当0<a <1时,函数f (x )在 [1,+∞)上单调递减,此时最大值为f (1)=1a +1=33,得a =3-1,符合题意.故a 的值为3-1.3.已知常数a ≠0,f (x )=a ln x +2x . (1)当a =-4时,求f (x )的极值;(2)当f (x )的最小值不小于-a 时,求实数a 的取值范围. 解:(1)由已知得f (x )的定义域为(0,+∞),f ′(x )=a x +2=a +2xx.当a =-4时,f ′(x )=2x -4x.所以当0<x <2时,f ′(x )<0,即f (x )单调递减; 当x >2时,f ′(x )>0,即f (x )单调递增.所以f (x )只有极小值,且在x =2时,f (x )取得极小值f (2)=4-4ln 2. 所以当a =-4时,f (x )只有极小值4-4ln 2.(2)因为f ′(x )=a +2xx, 所以当a >0,x ∈(0,+∞)时,f ′(x )>0, 即f (x )在x ∈(0,+∞)上单调递增,没有最小值;当a <0时,由f ′(x )>0得,x >-a2,所以f (x )在⎝ ⎛⎭⎪⎫-a2,+∞上单调递增; 由f ′(x )<0得,x <-a2,所以f (x )在⎝⎛⎭⎪⎫0,-a 2上单调递减.所以当a <0时,f (x )的最小值为f ⎝ ⎛⎭⎪⎫-a 2=a ln ⎝ ⎛⎭⎪⎫-a 2-a . 根据题意得f ⎝ ⎛⎭⎪⎫-a 2=a ln ⎝ ⎛⎭⎪⎫-a 2-a ≥-a ,即a [ln(-a )-ln 2]≥0.因为a <0,所以ln(-a )-ln 2≤0,解得a ≥-2, 所以实数a 的取值范围是[-2,0).[专题过关检测] 一、选择题1.函数f (x )=12x 2-ln x 的最小值为( )A.12 B .1C .0D .不存在解析:选A ∵f ′(x )=x -1x =x 2-1x,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1.∴f (x )在x =1处取得极小值也是最小值,且f (1)=12-ln 1=12.2.函数f (x )=x +1x的极值情况是( )A .当x =1时,取极小值2,但无极大值B .当x =-1时,取极大值-2,但无极小值C .当x =-1时,取极小值-2;当x =1时,取极大值2D .当x =-1时,取极大值-2;当x =1时,取极小值2 解析:选D f ′(x )=1-1x2,令f ′(x )=0,得x =±1,函数f (x )在区间(-∞,-1)和(1,+∞)上单调递增,在(-1,0)和(0,1)上单调递减, 所以当x =-1时,取极大值-2,当x =1时,取极小值2.3.若直线y =ax 是曲线y =2ln x +1的一条切线,则实数a 的值为( ) A .e -12B .2e -12C .e 12D .2e 12解析:选B 依题意,设直线y =ax 与曲线y =2ln x +1的切点的横坐标为x 0,则有y ′|x =x 0=2x 0,于是有⎩⎪⎨⎪⎧a =2x 0,ax 0=2ln x 0+1,解得⎩⎪⎨⎪⎧x 0=e ,a =2e -12.4.已知函数f (x )=x 2-ax +3在(0,1)上为减函数,函数g (x )=x 2-a ln x 在(1,2)上为增函数,则a 的值为( )A .1B .2C .0D . 2解析:选B ∵函数f (x )=x 2-ax +3在(0,1)上为减函数,∴a2≥1,得a ≥2.又∵g ′(x )=2x -a x,依题意g ′(x )≥0在x ∈(1,2)上恒成立,得2x 2≥a 在x ∈(1,2)上恒成立,有a ≤2,∴a =2.5.若函数f (x )=x +b x(b ∈R)的导函数在区间(1,2)上有零点,则f (x )在下列区间上单调递增的是( )A .(-2,0)B .(0,1)C .(1,+∞)D .(-∞,-2)解析:选D 由题意知,f ′(x )=1-b x2,∵函数f (x )=x +b x(b ∈R)的导函数在区间(1,2)上有零点,令当1-b x2=0,得b =x 2, 又x ∈(1,2),∴b ∈(1,4).令f ′(x )>0,解得x <-b 或x >b ,即f (x )的单调递增区间为(-∞,-b ),(b ,+∞). ∵b ∈(1,4),∴(-∞,-2)符合题意.6.已知f (x )=ln x -x 4+34x,g (x )=-x 2-2ax +4,若对任意的x 1∈(0,2],存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫54,+∞B.⎣⎢⎡⎭⎪⎫-18,+∞ C.⎣⎢⎡⎦⎥⎤-18,54 D.⎝⎛⎦⎥⎤-∞,-54解析:选A 因为f ′(x )=1x -14-34x 2=-x 2+4x -34x 2=-x -x -4x 2,易知,当x ∈(0,1)时,f ′(x )<0,当x ∈(1,2]时,f ′(x )>0, 所以f (x )在(0,1)上单调递减,在(1,2]上单调递增, 故f (x )min =f (1)=12.对于二次函数g (x )=-x 2-2ax +4,易知该函数开口向下, 所以其在区间[1,2]上的最小值在端点处取得, 即g (x )min =min{g (1),g (2)}.要使对任意的x 1∈(0,2],存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立,只需f (x 1)min ≥g (x 2)min , 即12≥g (1)且12≥g (2), 所以12≥-1-2a +4且12≥-4-4a +4,解得a ≥54.二、填空题7.(2017·长春质检)⎠⎛1e ⎝ ⎛⎭⎪⎫x +1x d x =________. 解析:⎠⎛1e⎝ ⎛⎭⎪⎫x +1x d x =⎝ ⎛⎭⎪⎫x 22+ln x e 1=e22+1-12=e 2+12.答案:e 2+128.已知函数f(x)=12x 2+2ax -ln x ,若f(x)在区间⎣⎢⎡⎦⎥⎤13,2上是增函数,则实数a 的取值范围为________.解析:由题意知f′(x)=x +2a -1x ≥0在区间⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a≥-x +1x 在区间⎣⎢⎡⎦⎥⎤13,2上恒成立.又∵y=-x +1x 在区间⎣⎢⎡⎦⎥⎤13,2上单调递减,∴⎝⎛⎭⎪⎫-x +1x max =83, ∴2a≥83,即a≥43.答案:⎣⎢⎡⎭⎪⎫43,+∞ 9.已知函数f(x)=e x,g(x)=ln x 2+12的图象分别与直线y =m 交于A ,B 两点,则|AB|的最小值为________.解析:显然m >0,由e x=m 得x =ln m ,由ln x 2+12=m 得x =2e m -12,则|AB|=2e m -12-ln m .令h(m)=2e m -12-ln m ,由h′(m)=2e m -12-1m =0,求得m =12.当0<m <12时,h′(m)<0,函数h(m)在⎝ ⎛⎭⎪⎫0,12上单调递减;当m >12时,h′(m)>0,函数h(m)在⎝ ⎛⎭⎪⎫12,+∞上单调递增.所以h(m)min =h ⎝ ⎛⎭⎪⎫12=2+ln 2,因此|AB|的最小值为2+ln 2.答案:2+ln 2 三、解答题10.已知函数f(x)=xln x+ax ,x>1. (1)若f(x)在(1,+∞)上单调递减,求实数a 的取值范围; (2)若a =2,求函数f(x)的极小值.解:(1)f′(x)=ln x -1ln 2x+a , 由题意可得f′(x)≤0在(1,+∞)上恒成立,∴a≤1ln 2x -1ln x =⎝ ⎛⎭⎪⎫1ln x -122-14. ∵x∈(1,+∞), ∴ln x∈(0,+∞),∴当1ln x -12=0时,函数t =⎝ ⎛⎭⎪⎫1ln x -122-14的最小值为-14, ∴a≤-14,即实数a 的取值范围为⎝⎛⎦⎥⎤-∞,-14.(2)当a =2时,f(x)=xln x+2x(x>1), f′(x)=ln x -1+2ln 2xln 2x,令f′(x)=0得2ln 2x +ln x -1=0, 解得ln x =12或ln x =-1(舍去),即x =e 12.当1<x<e 12时,f′(x)<0,当x>e 12时,f′(x)>0,∴f(x)的极小值为f(e 12)=e1212+2e 12=4e 12.11.(2017·全国卷Ⅲ)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a-2. 解:(1)f(x)的定义域为(0,+∞), f′(x )=1x+2ax +2a +1=x +ax +x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈⎝⎛⎭⎪⎫0,-12a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫-12a ,+∞时,f ′(x )<0.故f (x )在⎝⎛⎭⎪⎫0,-12a 上单调递增,在⎝ ⎛⎭⎪⎫-12a ,+∞上单调递减. (2)证明:由(1)知,当a <0时,f (x )在x =-12a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫-12a =ln ⎝ ⎛⎭⎪⎫-12a -1-14a .所以f (x )≤-34a -2等价于ln ⎝ ⎛⎭⎪⎫-12a -1-14a ≤-34a -2,即ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0. 设g (x )=ln x -x +1,则g ′(x )=1x-1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大值,最大值为g(1)=0. 所以当x >0时,g (x )≤0.从而当a <0时,ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0,即f (x )≤-34a-2.12.(2017·福州质检)已知函数f (x )=aln x +x 2-ax (a ∈R). (1)若x =3是f (x )的极值点,求f (x )的单调区间; (2)求g (x )=f (x )-2x 在区间[1,e]上的最小值h (a ). 解:(1)f (x )的定义域为(0,+∞),f ′(x )=a x +2x -a =2x 2-ax +ax,因为x =3是f (x )的极值点,所以f ′(3)=18-3a +a3=0,解得a =9, 所以f ′(x )=2x 2-9x +9x=x -x -x,所以当0<x <32或x >3时,f ′(x )>0;当32<x <3时,f ′(x )<0. 所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,32,(3,+∞),单调递减区间为⎝ ⎛⎭⎪⎫32,3. (2)g (x )=a ln x +x 2-ax -2x , 则g ′(x )=2x 2-ax +ax-2=x -ax -x.令g ′(x )=0,得x =a2或x =1.①当a2≤1,即a ≤2时,g (x )在[1,e]上为增函数,h (a )=g (1)=-a -1;②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎢⎡⎭⎪⎫1,a 2上为减函数,在⎝ ⎛⎦⎥⎤a2,e 上为增函数,h (a )=g ⎝ ⎛⎭⎪⎫a 2=a ln a 2-14a 2-a ;③当a2≥e,即a ≥2e 时,g (x )在[1,e]上为减函数, h (a )=g (e)=(1-e)a +e 2-2e.综上,h (a )=⎩⎪⎨⎪⎧-a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,-a +e 2-2e ,a ≥2e.保分专题(三) 三角函数的图象与性质[全国卷3年考情分析][师生共研·悟通]1.三角函数的定义若角α的终边过点P (x ,y ),则sin α=yr ,cos α=x r ,tan α=y x(其中r =x 2+y 2).2.利用诱导公式进行化简求值的步骤利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.(注意“奇变偶不变,符号看象限”)3.基本关系sin 2x +cos 2x =1,tan x =sin xcos x. [典例] (1)若sin ⎝ ⎛⎭⎪⎫π2+α=-35,且α∈⎝ ⎛⎭⎪⎫π2,π,则tan(π-α)=( ) A.43 B .23 C .-23D .-43[解析] 选A 由sin ⎝ ⎛⎭⎪⎫π2+α=cos α=-35,且α∈⎝ ⎛⎭⎪⎫π2,π,得sin α=1-cos 2α=45, 所以tan(π-α)=-tan α=-sin αcos α=-45-35=43.。

2018年高考数学(浙江专用)总复习教师用书:第1章 第1讲 集合 含解析

2018年高考数学(浙江专用)总复习教师用书:第1章 第1讲 集合 含解析

第1讲集合最新考纲 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言【列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩【Venn)图表达集合间的基本关系及集合的基本运算.知识梳理1.元素与集合【1)集合中元素的三个特性:确定性、互异性、无序性.【2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.【3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系【1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.【2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A. 【3)相等:若A⊆B,且B⊆A,则A=B.【4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算4.集合关系与运算的常用结论【1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.【2)子集的传递性:A⊆B,B⊆C⇒A⊆C.【3)A⊆B⇔A∩B=A⇔A∪B=B.【4)∁U【A∩B)=【∁U A)∪【∁U B),∁U【A∪B)=【∁U A)∩【∁U B).诊断自测1.判断正误【在括号内打“√”或“×”)【1)任何集合都有两个子集.【)【2)已知集合A={x|y=x2},B={y|y=x2},C={【x,y)|y=x2},则A=B=C.【) 【3)若{x2,1}={0,1},则x=0,1.【)【4)若A∩B=A∩C,则B=C.【)解析【1)错误.空集只有一个子集,就是它本身,故该说法是错误的.【2)错误.集合A是函数y=x2的定义域,即A=【-∞,+∞);集合B是函数y =x2的值域,即B=[0,+∞);集合C是抛物线y=x2上的点集.因此A,B,C 不相等.【3)错误.当x=1,不满足互异性.【4)错误.当A=∅时,B,C可为任意集合.答案【1)×【2)×【3)×【4)×2.【必修1P7练习2改编)若集合A={x∈N|x≤10},a=22,则下列结论正确的是【)A.{a}⊆AB.a⊆AC.{a}∈AD.a∉A解析由题意知A={0,1,2,3},由a=22,知a∉A.答案 D3.【2016·全国Ⅰ卷)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=【)A.{1,3}B.{3,5}C.{5,7}D.{1,7}解析因为A={1,3,5,7},而3,5∈A且3,5∈B,所以A∩B={3,5}.答案 B4.【2017·杭州模拟)设全集U={x|x∈N*,x<6},集合A={1,3},B={3,5},则∁U 【A ∪B )等于【 )A.{1,4}B.{1,5}C.{2,5}D.{2,4}解析 由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U 【A ∪B )={2,4}.答案 D5.【2017·绍兴调研)已知全集U =R ,集合A ={x |x ≥2},B ={x |0≤x <5},则A ∪B =________,【∁U A )∩B =________.解析 ∵A ={x |x ≥2},B ={x |0≤x <5},∴A ∪B ={x |x ≥0},【∁U A )∩B ={x |0≤x <2}. 答案 {x |x ≥0} {x |0≤x <2}6.已知集合A ={【x ,y )|x ,y ∈R ,且x 2+y 2=1},B ={【x ,y )|x ,y ∈R ,且y =x },则A ∩B 的元素个数为________.解析 集合A 表示圆心在原点的单位圆,集合B 表示直线y =x ,易知直线y =x 和圆x 2+y 2=1相交,且有2个交点,故A ∩B 中有2个元素.答案 2考点一 集合的基本概念【例1】 【1)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是【 )A.1B.3C.5D.9【2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =【 ) A.92 B.98 C.0 D.0或98解析 【1)当x =0,y =0,1,2时,x -y =0,-1,-2;当x =1,y =0,1,2时,x -y =1,0,-1;当x =2,y =0,1,2时,x -y =2,1,0.根据集合中元素的互异性可知,B 的元素为-2,-1,0,1,2,共5个.【2)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=【-3)2-8a =0,得a =98, 所以a 的取值为0或98.答案 【1)C 【2)D规律方法 【1)第【1)题易忽视集合中元素的互异性误选D.第【2)题集合A 中只有一个元素,要分a =0与a ≠0两种情况进行讨论,此题易忽视a =0的情形.【2)用描述法表示集合,先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.【训练1】 【1)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.【2)已知集合A ={x ∈R |ax 2+3x -2=0},若A =∅,则实数a 的取值范围为________.解析 【1)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0, 所以a +b =0,且b =1,所以a =-1,b =1,所以b -a =2.【2)由A =∅知方程ax 2+3x -2=0无实根,当a =0时,x =23不合题意,舍去;当a ≠0时,Δ=9+8a <0,∴a <-98.答案 【1)2 【2)⎝ ⎛⎭⎪⎫-∞,-98 考点二 集合间的基本关系【例2】 【1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则【 )A.A BB.B AC.A ⊆BD.B =A【2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.解析 【1)易知A ={x |-1≤x ≤1},所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}.因此B A .【2)当B =∅时,有m +1≥2m -1,则m ≤2.当B ≠∅时,若B ⊆A ,如图.则⎩⎨⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为【-∞,4].答案 【1)B 【2)【-∞,4]规律方法 【1)若B ⊆A ,应分B =∅和B ≠∅两种情况讨论.【2)已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn 图,化抽象为直观进行求解.【训练2】 【1)【2017·镇海中学质检)若集合A ={x |x >0},且B ⊆A ,则集合B 可能是【 )A.{1,2}B.{x |x ≤1}C.{-1,0,1}D.R【2)【2016·郑州调研)已知集合A ={x |x =x 2-2,x ∈R },B ={1,m },若A ⊆B ,则m 的值为【 )A.2B.-1C.-1或2D.2或2解析 【1)因为A ={x |x >0},且B ⊆A ,再根据选项A ,B ,C ,D 可知选项A 正确.【2)由x =x 2-2,得x =2,则A ={2}.因为B ={1,m }且A ⊆B ,所以m =2.答案 【1)A 【2)A考点三 集合的基本运算【例3】 【1)【2015·全国Ⅰ卷)已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为【 )A.5B.4C.3D.2【2)【2016·浙江卷)设集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪【∁R Q)=【)A.[2,3]B.【-2,3]C.[1,2)D.【-∞,-2)∪[1,+∞)解析【1)集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.共2个元素.【2)易知Q={x|x≥2或x≤-2}.∴∁R Q={x|-2<x<2},又P={x|1≤x≤3},故P∪【∁R Q)={x|-2<x≤3}.答案【1)D【2)B规律方法【1)在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.【2)一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.【训练3】【1)【2017·石家庄模拟)设集合M={-1,1},N={x|x2-x<6},则下列结论正确的是【)A.N⊆MB.N∩M=∅C.M⊆ND.M∩N=R【2)【2016·山东卷)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U【A∪B)=【)A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}解析【1)易知N=【-2,3),且M={-1,1},∴M⊆N.【2)∵A={1,3,5},B={3,4,5},∴A∪B={1,3,4,5},又全集U={1,2,3,4,5,6},因此∁U【A∪B)={2,6}.答案【1)C【2)A[思想方法]1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.[易错防范]1.集合问题解题中要认清集合中元素的属性【是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.基础巩固题组【建议用时:25分钟)一、选择题1.【2015·全国Ⅱ卷)已知集合A={1,2,3},B={2,3},则【)A.A=BB.A∩B=∅C.A BD.B A解析∵A={1,2,3},B={2,3},∴2,3∈A且2,3∈B,1∈A但1∉B,∴B A.答案 D2.【2016·全国Ⅱ卷)已知集合A={1,2,3},B={x|x2<9},则A∩B=【)A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}解析由于B={x|x2<9}={x|-3<x<3},又A={1,2,3},因此A∩B={1,2}. 答案 D3.【2017·肇庆模拟)已知集合A={x|lg x>0},B={x|x≤1},则【)A.A ∩B ≠∅B.A ∪B =RC.B ⊆AD.A ⊆B解析 由B ={x |x ≤1},且A ={x |lg x >0}=【1,+∞),∴A ∪B =R .答案 B4.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是【 )A.【-∞,-1]B.[1,+∞)C.[-1,1]D.【-∞,-1]∪[1,+∞)解析 因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1].答案 C5.【2016·山东卷)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B =【 )A.【-1,1)B.【0,1)C.【-1,+∞)D.【0,+∞) 解析 由y =2x ,x ∈R ,知y >0,则A =【0,+∞).又B ={x |x 2-1<0}=【-1,1).因此A ∪B =【-1,+∞).答案 C6.【2016·浙江卷)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则【∁U P )∪Q =【 )A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}解析 ∵U ={1,2,3,4,5,6},P ={1,3,5},∴∁U P ={2,4,6},∵Q ={1,2,4},∴【∁U P )∪Q ={1,2,4,6}.答案 C7.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是【 )A.1B.3C.7D.31解析 具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.答案 B8.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U【A∪B)=【)A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}解析∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0或x≥1},在数轴上表示如图.∴∁U【A∪B)={x|0<x<1}.答案 D二、填空题9.已知集合A={x|x2-2x+a>0},且1∉A,则实数a的取值范围是________.解析∵1∉{x|x2-2x+a>0},∴1∈{x|x2-2x+a≤0},即1-2+a≤0,∴a≤1.答案【-∞,1]10.【2017·宁波调研)集合A={0,|x|},B={1,0,-1},若A∪B=B,则A∩B =________;A∪B=________;∁B A=________.解析A={0,|x|},B={1,0,-1},若A∪B=B,则A⊆B,∴|x|=1,∴A∩B ={0,1},A∪B={-1,0,1},∁B A={-1}.答案{0,1}{-1,0,1}{-1}11.集合A={x|x<0},B={x|y=lg[x【x+1)]},若A-B={x|x∈A,且x∉B},则A -B=________.解析由x【x+1)>0,得x<-1或x>0,∴B=【-∞,-1)∪【0,+∞),∴A-B=[-1,0).答案[-1,0)12.【2017·湖州质检)已知集合A={x|x2-2 016x-2 017≤0},B={x|x<m+1},若A⊆B,则实数m的取值范围是________.解析由x2-2 016x-2 017≤0,得A=[-1,2 017],又B={x|x<m+1},且A⊆B,所以m+1>2 017,则m>2 016.答案【2 016,+∞)13.【2017·金华模拟)设集合A ={x ∈N |6x +1∈N },B ={x |y =ln 【x -1)},则A =________,B =________,A ∩【∁R B )=________.解析 当x =0,1,2,5时,6x +1的值分别为6,3,2,1,当x ∈N 且x ≠0,1,2,5时,6x +1∉N ,∴A ={0,1,2,5},由x -1>0,得x >1,∴B ={x |x >1},∁R B ={x |x ≤1},∴A ∩【∁R B )={0,1}.答案 {0,1,2,5} {x |x >1} {0,1}能力提升题组【建议用时:10分钟)14.【2016·全国Ⅲ卷改编)设集合S ={x |【x -2)【x -3)≥0},T ={x |x >0},则【∁R S )∩T =【 )A.[2,3]B.【-∞,-2)∪[3,+∞)C.【2,3)D.【0,+∞)解析 易知S =【-∞,2]∪[3,+∞),∴∁R S =【2,3),因此【∁R S )∩T =【2,3).答案 C15.【2016·黄山模拟)集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln 【1-x )},则图中阴影部分所表示的集合是【 )A.{x |x ≥1}B.{x |1≤x <2}C.{x |0<x ≤1}D.{x |x ≤1}解析 易知A =【-1,2),B =【-∞,1),∴∁U B =[1,+∞),A ∩【∁U B )=[1,2).因此阴影部分表示的集合为A ∩【∁U B )={x |1≤x <2}.答案 B16.【2017·南昌十所省重点中学模拟)设集合A =⎩⎨⎧⎭⎬⎫x ∈N |14≤2x ≤16,B ={x |y =ln 【x 2-3x )},则A ∩B 中元素的个数是________.解析 由14≤2x ≤16,x ∈N ,∴x =0,1,2,3,4,即A ={0,1,2,3,4}.又x 2-3x >0,知B ={x |x >3或x <0},∴A ∩B ={4},即A ∩B 中只有一个元素.答案 117.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |【x -m )【x -2)<0},且A ∩B =【-1,n ),则m +n =________.解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =【-1,n )可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.所以m +n =0.答案 018.【2017·丽水质检)若三个非零且互不相等的实数a ,b ,c 满足1a +1b =2c ,则称a ,b ,c 是调和的;若满足a +c =2b ,则称a ,b ,c 是等差的,若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”,若集合M ={x ||x |≤2 014,x ∈Z },集合P ={a ,b ,c }⊆M ,则【1)“好集”P 中的元素最大值为________;【2)“好集”P 的个数为________.解析 【1)由题意得,⎩⎪⎨⎪⎧1a +1b =2c ,a +c =2b⇒1a +2a +c =2c ⇒c 【a +c )+2ac =2a 【a +c )⇒c 2+ac -2a 2=0⇒【c +2a )【c -a )=0,∵c ≠a ,∴c =-2a ,b =a +c 2=-a 2,∴c =4b ,令-2 014≤4b ≤2 014,得-503≤b ≤503,∴P 中最大元素为4b =4×503=2 012.【2)由【1)知P ={-2b ,b ,4b }且-503≤b ≤503,所以“好集”P 的个数为2×503=1 006.答案 【1)2 012 【2)1 006。

【精品】浙江专用2018年高考数学总复习教师用书:第1章 第2讲命题及其关系、充分条件与必要条件含解析

【精品】浙江专用2018年高考数学总复习教师用书:第1章 第2讲命题及其关系、充分条件与必要条件含解析

第2讲命题及其关系、充分条件与必要条件最新考纲 1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;2.理解必要条件、充分条件与充要条件的意义,能判断并证明命题成立的充分条件、必要条件、充要条件.知识梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念诊断自测1.判断正误(在括号内打“√”或“×”)(1)“x2+2x-3<0”是命题.( )(2)命题“若p,则q”的否命题是“若p,则綈q”.()(3)当q是p的必要条件时,p是q的充分条件.( )(4)“若p不成立,则q不成立”等价于“若q成立,则p成立”.() 解析(1)错误.该语句不能判断真假,故该说法是错误的.(2)错误.否命题既否定条件,又否定结论.答案(1)×(2)×(3)√(4)√2.(选修2-1P6练习改编)命题“若α=π4,则tan α=1”的逆否命题是( )A.若α≠π4,则tan α≠1 B.若α=π4,则tan α≠1C.若tan α≠1,则α≠π4D.若tan α≠1,则α=π4解析命题“若p,则q”的逆否命题是“若綈q,则綈p”,显然綈q:tanα≠1,綈p:α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.答案 C3.(2016·天津卷)设x>0,y∈R,则“x>y”是“x>|y|”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析x>y x>|y|(如x=1,y=-2).但x>|y|时,能有x>y.∴“x>y”是“x>|y|”的必要不充分条件.答案 C4.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中假命题的个数为( )A.1B.2C.3D.4解析原命题正确,从而其逆否命题也正确;其逆命题为“若a>-6,则a>-3”是假命题,从而其否命题也是假命题.因此四个命题中有2个假命题.答案 B5.(2017·舟山双基检测)已知函数f(x)的定义域为R,则命题p:“函数f(x)为偶函数”是命题q:“∃x0∈R,f(x0)=f(-x0)”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若f(x)为偶函数,则有f(x)=f(-x),所以p⇒q;若f(x)=x,当x =0时,f(0)=f(-0),而f(x)=x为奇函数,所以q p.∴“命题p”是“命题q”的充分不必要条件.答案 A6.(2017·温州调研)已知命题p:“若a2=b2,则a=b”,则命题p的否命题为________,该否命题是一个________命题(填“真”,“假”).解析由否命题的定义可知命题p的否命题为“若a2≠b2,则a≠b”.由于命题p的逆命题“若a=b,则a2=b2”是一个真命题,∴否命题是一个真命题. 答案“若a2≠b2,则a≠b”真考点一四种命题的关系及其真假判断【例1】 (1)命题“若x2-3x-4=0,则x=4”的逆否命题及其真假性为( )A.“若x=4,则x2-3x-4=0”为真命题B.“若x≠4,则x2-3x-4≠0”为真命题C.“若x≠4,则x2-3x-4≠0”为假命题D.“若x=4,则x2-3x-4=0”为假命题(2)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( )A.真、假、真B.假、假、真C.真、真、假D.假、假、假解析(1)根据逆否命题的定义可以排除A,D;由x2-3x-4=0,得x=4或-1,所以原命题为假命题,所以其逆否命题也是假命题.(2)由共轭复数的性质,|z1|=|z2|,∴原命题为真,因此其逆否命题为真;取z=1,z2=i,满足|z1|=|z2|,但是z1,z2不互为共轭复数,∴其逆命题为假,1故其否命题也为假.答案(1)C (2)B规律方法(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,如果命题不是“若p,则q”的形式,应先改写成“若p,则q”的形式;如果命题有大前提,写其他三种命题时需保留大前提不变.(2)判断一个命题为真命题,要给出推理证明;判断一个命题为假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.【训练1】已知:命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题是“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”,是真命题B.逆命题是“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”,是假命题C.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”,是真命题D.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”,是真命题解析由f(x)=e x-mx在(0,+∞)上是增函数,则f′(x)=e x-m≥0恒成立,∴m≤1.因此原命题是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.答案 D考点二充分条件与必要条件的判定【例2】 (1)函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则( )A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分要件,也不是q的必要条件(2)(2017·衡阳一模)“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析(1)由极值的定义,q⇒p,但p⇒/q.例如f(x)=x3,在x=0处f′(0)=0,f(x)=x3是增函数,x=0不是函数f(x)=x3的极值点.因此p是q的必要不充分条件.(2)直线ax+y+1=0与直线(a+2)x-3y-2=0垂直的充要条件为a(a+2)+1×(-3)=0,解得a=1或-3,故“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的充分不必要条件.答案(1)C (2)B规律方法充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的何种条件,即可转化为判断“x=1且y=1”是“xy=1”的何种条件.【训练2】(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件. 答案 A考点三充分条件、必要条件的应用(典例迁移)【例3】 (经典母题)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10,∴P ={x |-2≤x ≤10}.∵x ∈P 是x ∈S 的必要条件,则S ⊆P .∴⎩⎨⎧1-m ≥-2,1+m ≤10,解得m ≤3. 又∵S 为非空集合,∴1-m ≤1+m ,解得m ≥0,综上,可知0≤m ≤3时,x ∈P 是x ∈S 的必要条件.【迁移探究1】 本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?解 由例题知P ={x |-2≤x ≤10}.若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎨⎧1-m =-2,1+m =10,∴⎩⎨⎧m =3,m =9, 这样的m 不存在.【迁移探究2】 本例条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围.解 由例题知P ={x |-2≤x ≤10}.∵綈P 是綈S 的必要不充分条件,∴P 是S 的充分不必要条件,∴P ⇒S 且SP .∴[-2,-m ,1+m ].∴⎩⎨⎧1-m ≤-2,1+m >10或⎩⎨⎧1-m <-2,1+m ≥10,∴m ≥9,则m 的取值范围是[9,+∞).规律方法 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解;(2)要注意区间端点值的检验.【训练3】 ax 2+2x +1=0只有负实根的充要条件是________.解析 当a =0时,原方程为一元一次方程2x +1=0,有一个负实根x =-12. 当a ≠0时,原方程为一元二次方程,又ax 2+2x +1=0只有负实根,所以有⎩⎪⎨⎪⎧Δ=4-4a ≥0,-2a<0,1a >0,即0<a ≤1. 综上,方程只有负根的充要条件是0≤a ≤1.答案 0≤a ≤1[思想方法]1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充要条件的几种判断方法(1)定义法:直接判断若p 则q 、若q 则p 的真假.(2)等价法:即利用A ⇒B 与綈B ⇒綈A ;B ⇒A 与綈A ⇒綈B ;A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3)利用集合间的包含关系判断:设A ={x |p (x )},B ={x |q (x )};若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,若A =B ,则p 是q 的充要条件.[易错防范]1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提.2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p ,则q ”的形式.3.判断条件之间的关系要注意条件之间关系的方向,正确理解“p 的一个充分而不必要条件是q”等语言.基础巩固题组(建议用时:25分钟)一、选择题1.(2015·山东卷)设m∈R, 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( )A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.答案 D2.“x=1”是“x2-2x+1=0”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析因为x2-2x+1=0有两个相等的实数根为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.答案 A3.设α,β是两个不同的平面,m是直线且m⊂α,则“m∥β”是“α∥β”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析m⊂α,m∥β⇒/α∥β,但m⊂α,α∥β⇒m∥β,∴“m∥β”是“α∥β”的必要不充分条件.答案 B4.(2017·安徽江南十校联考)“a=0”是“函数f(x)=sin x-1x+a为奇函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析显然a=0时,f(x)=sin x-1x为奇函数;当f(x)为奇函数时,f(-x)+f(x)=0.又f(-x)+f(x)=sin(-x)-1-x+a+sin x-1x+a=0.因此2a=0,故a=0.所以“a=0”是“函数f(x)为奇函数”的充要条件.答案 C5.下列结论错误的是( )A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x=4”是“x2-3x-4=0”的充分条件C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”解析C项命题的逆命题为“若方程x2+x-m=0有实根,则m>0”.若方程有实根,则Δ=1+4m≥0,即m≥-14,不能推出m>0.所以不是真命题.答案 C6.设x∈R,则“1<x<2”是“|x-2|<1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由|x-2|<1,得1<x<3,所以1<x<2⇒1<x<3;但1<x<3 ⇒1<x<2. 所以“1<x<2”是“|x-2|<1”的充分不必要条件.答案 A7.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是( )A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]解析由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1.答案 A8.(2017·台州模拟)已知a,b都是实数,那么“a>b”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由ln a>ln b⇒a>b>0⇒a>b,故必要性成立.当a=1,b=0时,满足a>b,但ln b无意义,所以ln a>ln b不成立,故充分性不成立.答案 B二、填空题9.(2017·杭州调研)已知λ是实数,a是向量,若λa=0,则λ=________或a=________(使命题为真命题).解析∵λa=0,∴λ=0或a=0.答案0 010.(2017·丽水月考)命题“若x2-3x+2=0,则x=1”的逆命题为________,否命题为________,逆否命题为________.解析“若x2-3x+2=0,则x=1”的逆命题为“若x=1,则x2-3x+2=0”;否命题为“若x2-3x+2≠0,则x≠1”;逆否命题为“若x≠1,则x2-3x+2≠0”.答案若x=1,则x2-3x+2=0 若x2-3x+2≠0,则x≠1若x≠1,则x2-3x+2≠011.“sin α=cos α”是“cos 2α=0”的________条件.解析 cos 2α=0等价于cos 2α-sin 2α=0, 即cos α=±sin α.由cos α=sin α得到cos 2α=0;反之不成立.∴“sin α=cos α”是“cos 2α=0”的充分不必要条件. 答案 充分不必要12.已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________.解析 令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}. ∵p 是q 的充分不必要条件,∴M N ,∴⎩⎨⎧a >0,a +1<4,解得0<a <3. 答案 (0,3) 13.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.解析 ①原命题的否命题为“若a ≤b ,则a 2≤b 2”错误.②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”正确.③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”正确. 答案 ②③能力提升题组 (建议用时:15分钟)14.(2016·四川卷)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 若x >1且y >1,则x +y >2.所以p ⇒q ;反之x +y >2 x >1且y =1,例如x =3,y =0,所以qp .因此p 是q 的充分不必要条件. 答案 A15.(2017·南昌十所省重点中学联考)已知m ∈R ,“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 由y =2x +m -1=0,得m =1-2x ,则m <1. 由于函数y =log m x 在(0,+∞)上是减函数, 所以0<m <1.因此“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的必要不充分条件. 答案 B 16.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________. 解析A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴AB ,∴m +1>3,即m >2.答案 (2,+∞)17.(2017·绍兴调研)把下面不完整的命题补充完整,并使之成为真命题. 若函数f (x )=3+log 2x 的图象与g (x )的图象关于________对称,则函数g (x )=________(注:填上你认为可以成为真命题的一种情形即可,不必考虑所有可能的情形).解析 ①∵点P (x 0,y 0)关于x 轴对称的点P ′(x 0,-y 0),∴f (x )=3+log 2x 关于x 轴对称的函数解析式为g (x )=-3-log 2x ;②点M (x 0,y 0)关于y 轴对称的点是M ′(-x 0,y 0),故f (x )=3+log 2x 关于y 轴对称的函数解析式为g (x )=3+log 2(-x ).其他情形,类似可得.答案 (不唯一)如①x 轴 -3-log 2x ;②y 轴 3+log 2(-x );③原点 -3-log 2(-x );④直线y =x 2x -3等18.已知a +b ≠0,证明a 2+b 2-a -b +2ab =0成立的充要条件是a +b =1. 证明 先证充分性:若a +b =1,则b=1-a,所以a2+b2-a-b+2ab=a2+(1-a)2-a-(1-a)+2a(1-a)=a2+1-2a+a2-a-1+a+2a-2a2=0.即a2+b2-a-b+2ab=0,充分性得证,再证必要性:若a2+b2-a-b+2ab=0,即(a+b)2-(a+b)=0,(a+b-1)(a+b)=0,因为a+b≠0,所以a+b-1=0,即a+b=1,必要性得证,综上可得,a2+b2-a-b+2ab=0成立的充要条件是a+b=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

突破点5 数列求和及其综合应用(对应学生用书第19页)[核心知识提炼]提炼1 a n 和S n 的关系若a n 为数列{a n }的通项,S n 为其前n 项和,则有a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.在使用这个关系式时,一定要注意区分n =1,n ≥2两种情况,求出结果后,判断这两种情况能否整合在一起. 提炼2求数列通项常用的方法(1)定义法:①形如a n +1=a n +c (c 为常数),直接利用定义判断其为等差数列.②形如a n +1=ka n (k 为非零常数)且首项不为零,直接利用定义判断其为等比数列.(2)叠加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式. (3)叠乘法:形如a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a na n -1,求其通项公式. (4)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q1-p,再转化为等比数列求解.(5)构造法:形如a n +1=pa n +q n(其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以qn +1,得a n +1q n +1=p q ·a n q n +1q ,构造新数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解.(6)取对数法:形如a n +1=pa mn (p >0,a n >0),先在原递推公式两边同时取对数,再利用待定系数法求解. 提炼3数列求和数列求和的关键是分析其通项,数列的基本求和方法有公式法、裂(拆)项相消法、错位相减法、分组法、倒序相加法和并项法等,而裂项相消法,错位相减法是常用的两种方法. 提炼4数列的综合问题数列综合问题的考查方式主要有三种:(1)判断数列问题中的一些不等关系,可以利用数列的单调性比较大小,或者是借助数列对应函数的单调性比较大小.(2)以数列为载体,考查不等式的恒成立问题,此类问题可转化为函数的最值问题. (3)考查与数列有关的不等式的证明问题,此类问题大多还要借助构造函数去证明,或者是直接利用放缩法证明或直接利用数学归纳法.[高考真题回访]回访1 数列求和1.(2014·浙江高考)已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n ;(2)设c n =1a n -1b n(n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *,均有S k ≥S n . [解] (1)由题意知a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去), 2分 所以数列{a n }的通项为a n =2n(n ∈N *), 所以,a 1a 2a 3…a n =2n n +12=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). 5分 (2)①由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *), 所以S n =1n +1-12n (n ∈N *).7分②因为c 1=0,c 2>0,c 3>0,c 4>0, 当n ≥5时,c n =1n n +1 ⎣⎢⎡⎦⎥⎤n n +1 2n -1, 9分而n n +1 2n- n +1 n +2 2n +1=n +1 n -22n +1>0,得n n +1 2n≤5× 5+125<1,11分所以,当n ≥5时,c n <0.综上,对任意n ∈N *恒有S 4≥S n ,故k =4. 14分 回访2 数列的综合问题2.(2017·浙江高考)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n ∈N *). 证明:当n ∈N *时, (1)0<x n +1<x n ; (2)2x n +1-x n ≤x n x n +12;(3)12n -1≤x n ≤12n -2.[解] (1)证明:用数学归纳法证明:x n >0. 当n =1时,x 1=1>0. 假设n =k 时,x k >0, 那么n =k +1时,若x k +1≤0,则0<x k =x k +1+ln(1+x k +1)≤0,矛盾, 故x k +1>0. 3分因此x n >0(n ∈N *).所以x n =x n +1+ln(1+x n +1)>x n +1. 因此0<x n +1<x n (n ∈N *).5分(2)证明:由x n =x n +1+ln(1+x n +1)得x n x n +1-4x n +1+2x n=x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1).7分记函数f (x )=x 2-2x +(x +2)ln(1+x )(x ≥0), f ′(x )=2x 2+xx +1+ln(1+x )>0(x >0),函数f (x )在[0,+∞)上单调递增, 所以f (x )≥f (0)=0,因此x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1)=f (x n +1)≥0, 故2x n +1-x n ≤x n x n +12(n ∈N *).10分(3)证明:因为x n =x n +1+ln(1+x n +1)≤x n +1+x n +1=2x n +1, 所以x n ≥12n -1.由x n x n +12≥2x n +1-x n得1x n +1-12≥2⎝ ⎛⎭⎪⎫1x n -12>0,13分所以1x n -12≥2⎝ ⎛⎭⎪⎫1x n -1-12≥…≥2n -1⎝ ⎛⎭⎪⎫1x 1-12=2n -2, 故x n ≤12n -2.综上,12n -1≤x n ≤12n -2(n ∈N *).15分3.(2016·浙江高考)设数列{a n }满足⎪⎪⎪⎪⎪⎪a n -a n +12≤1,n ∈N *.(1)证明:|a n |≥2n -1(|a 1|-2),n ∈N *;(2)若|a n |≤⎝ ⎛⎭⎪⎫32n ,n ∈N *,证明:|a n |≤2,n ∈N *.[证明] (1)由⎪⎪⎪⎪⎪⎪a n -a n +12≤1, 得|a n |-12|a n +1|≤1,故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *,2分所以|a 1|21-|a n |2n =⎝ ⎛⎭⎪⎫|a 1|21-|a 2|22+⎝ ⎛⎭⎪⎫|a 2|22-|a 3|23+…+⎝ ⎛⎭⎪⎫|a n -1|2n -1-|a n |2n ≤121+122+…+12n -1<1,因此|a n |≥2n -1(|a 1|-2). 5分(2)任取n ∈N *,由(1)知,对于任意m >n ,|a n |2n -|a m |2m=⎝ ⎛⎭⎪⎫|a n |2n -|a n +1|2n +1+⎝ ⎛⎭⎪⎫|a n +1|2n +1-|a n +2|2n +2+…+⎝ ⎛⎭⎪⎫|a m-1|2m -1-|a m |2m ≤12n +12n +1+…+12m -1<12n -1, 故|a n |<⎝ ⎛⎭⎪⎫12n -1+|a m |2m ·2n≤⎣⎢⎡⎭⎪⎫12n -1+12m·⎝ ⎛⎭⎪⎫32m ·2n =2+⎝ ⎛⎭⎪⎫34m ·2n.8分从而对于任意m >n ,均有|a n |<2+⎝ ⎛⎭⎪⎫34m ·2n.①由m 的任意性得|a n |≤2. 否则,存在n 0∈N *,有|an 0|>2, 取正整数m 0>log 34|an 0|-22n 0且m 0>n 0,11分则2n 0·⎝ ⎛⎭⎪⎫34m 0<2n 0·⎝ ⎛⎭⎪⎫34log 34|an 0|-22n 0=|an 0|-2,与①式矛盾.综上,对于任意n ∈N *,均有|a n |≤2.15分(对应学生用书第21页) 热点题型1 数列中的a n 与S n 的关系数列中的a n 与S n 的关系题型分析:以数列中a n 与S n 间的递推关系为载体,考查数列通项公式的求法,以及推理论证的能力.【例1】 数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且满足2a na n S n -S 2n=1(n ≥2).求数列{a n }的通项公式.【导学号:68334070】[解] 由已知,当n ≥2时,2a na n S n -S 2n=1,所以2 S n -S n -1S n -S n -1 S n -S 2n =1,2分即2 S n -S n -1-S n -1S n=1,所以1S n -1S n -1=12.4分又S 1=a 1=1,所以数列⎩⎨⎧⎭⎬⎫1S n 是首项为1,公差为12的等差数列,6分所以1S n =1+12(n -1)=n +12,即S n =2n +1.8分 所以当n ≥2时,a n =S n -S n -1=2n +1-2n =-2n n +1. 12分因此a n =⎩⎪⎨⎪⎧1,n =1,-2n n +1 ,n ≥2. 15分[方法指津]给出S n 与a n 的递推关系,求a n ,常用思路:一是利用S n -S n -1=a n n ≥2 转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n . 提醒:在利用a n =S n -S n -1 n ≥2 求通项公式时,务必验证n =1时的情形[变式训练1] (1)已知数列{a n }前n 项和为S n ,若S n =2a n -2n,则S n =__________. 【导学号:68334071】(2)已知数列{a n }的各项均为正数,其前n 项和为S n ,且2S n +2=3a n (n ∈N *),则a n =__________. (1)n ·2n(n ∈N *) (2)2×3n -1(n ∈N *) [(1)由S n =2a n -2n得当n =1时,S 1=a 1=2;当n ≥2时,S n =2(S n -S n -1)-2n,即S n 2n -S n -12n -1=1,所以数列⎩⎨⎧⎭⎬⎫S n 2n 是首项为1,公差为1的等差数列,则S n2n=n ,S n =n ·2n (n ≥2),当n =1时,也符合上式,所以S n =n ·2n (n ∈N *).(2)因为2S n +2=3a n ,①所以2S n +1+2=3a n +1, ②由②-①,得2S n +1-2S n =3a n +1-3a n ,所以2a n +1=3a n +1-3a n ,即a n +1a n=3. 当n =1时,2+2S 1=3a 1,所以a 1=2,所以数列{a n }是首项为2,公比为3的等比数列, 所以a n =2×3n -1(n ∈N *).]热点题型2 裂项相消法求和题型分析:裂项相消法是指把数列与式中的各项分别裂开后,某些项可以相互抵消从而求和的方法,主要适用于⎩⎨⎧⎭⎬⎫1a n a n +1或⎩⎨⎧⎭⎬⎫1a n a n +2 其中{a n }为等差数列 等形式的数列求和.【例2】 已知等差数列{a n }的公差d ≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 22成等比数列,(1)求数列{a n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:16≤T n <38.[解] (1)由已知及等差数列的性质得S 5=5a 3,∴a 3=14, 1分 又a 2,a 7,a 22成等比数列,即a 27=a 2·a 22. 2分由(a 1+6d )2=(a 1+d )(a 1+21d )且d ≠0, 解得a 1=32d ,∴a 1=6,d =4.4分 故数列{a n }的通项公式为a n =4n +2,n ∈N *. 6分(2)证明:由(1)得S n =n a 1+a n2=2n 2+4n ,1S n=12n 2+4n =14⎝ ⎛⎭⎪⎫1n -1n +2,8分∴T n =141-13+12-14+…+1n -1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2.11分又T n ≥T 1=38-14⎝ ⎛⎭⎪⎫12+13=16,所以16≤T n <38.15分[方法指津]裂项相消法的基本思想就是把通项a n 分拆成a n =b n +k -b n k ≥1,k ∈N *的形式,常见的裂项方式有: (11n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ;2 1 2n -1 2n +1 =12⎝ ⎛⎭⎪⎫12n -1-12n +1;(31n +n +k =1kn +k -n .提醒:在裂项变形时,务必注意裂项前后系数的变化.[变式训练2] (名师押题)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . [解] (1)由题设知a 1·a 4=a 2·a 3=8, 2分又a 1+a 4=9,可得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1.(舍去)4分 由a 4=a 1q 3得公比q =2,故a n =a 1q n -1=2n -1.6分 (2)S n =a 1 1-q n 1-q=2n-1.8分 又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,12分所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12-1.热点题型3 错位相减法求和题型分析:限于数列解答题的位置较为靠前,加上错位相减法的运算量相对较大,故该命题点出现的频率不高,但其仍是命题的热点之一,务必加强训练.【例3】 已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+ (1)b n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n . [解] (1)由a 1=2,a n +1=2a n ,得a n =2n(n ∈N *). 2分由题意知:当n =1时,b 1=b 2-1,故b 2=2. 3分 当n ≥2时,1nb n =b n +1-b n .4分整理得b n +1n +1=b n n,所以b n =n (n ∈N *). 6分(2)由(1)知a n b n =n ·2n,因此T n =2+2·22+3·23+…+n ·2n, 2T n =22+2·23+3·24+…+n ·2n +1,10分 所以T n -2T n =2+22+23+ (2)-n ·2n +1.12分故T n =(n -1)2n +1+2(n ∈N *).15分[方法指津]运用错位相减法求和应注意:一是判断模型,即判断数列{a n },{b n }中一个为等差数列,一个为等比数列;二是错开位置,一般先乘以公比,再把前n 项和退后一个位置来书写,这样避免两式相减时看错列;三是相减,相减时一定要注意式中最后一项的符号,考生常在此步出错,一定要细心.提醒:为保证结果正确,可对得到的和取n =1,2进行验证.[变式训练3] 已知在公比大于1的等比数列{a n }中,a 2,a 4是函数f (x )=(x -2)(x -8)的两个零点.(1)求数列{a n }的通项公式; (2)求数列{2na n }的前n 项和S n .[解] (1)因为a 2,a 4是函数f (x )=(x -2)(x -8)的两个零点,且等比数列{a n }的公比q 大于1,所以a 2=2,a 4=8,2分所以q =2,所以数列{a n }的通项公式为a n =2n -1(n ∈N *).6分(2)由(1)知2na n =n ×2n,所以S n =1×2+2×22+…+n ×2n,① 7分 2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1,②11分由①-②,得-S n =2+22+23+…+2n -n ×2n +1=2-2n×21-2-n ×2n +1,13分所以S n =2+(n -1)×2n +1(n ∈N *).15分热点题型4 数列的综合问题题型分析:数列与函数、不等式的综合问题多为解答题.难度偏大,属中高档题,常有以下两个命题角度:1 以数列为载体,考查不等式的恒成立问题;2 考查与数列有关的不等式的证明问题.【例4】 (2017·绍兴市方向性仿真考试)已知数列{a n }满足,a 1=1,a n =1a n +1-12. (1)求证:23≤a n ≤1;(2)求证:|a n +1-a n |≤13;(3)求证:|a 2n -a n |≤1027.【导学号:68334072】[证明] (1)由已知得a n +1=1a n +12,又a 1=1,所以a 2=23,a 3=67,a 4=1419,猜想23≤a n ≤1.2分下面用数学归纳法证明. ①当n =1时,命题显然成立;②假设n =k 时,有23≤a n ≤1成立,则当n =k +1时,a k +1=1a k +12≤123+12<1,a k +1=1a k +12≥11+12=23,即当n =k +1时也成立, 所以对任意n ∈N *,都有23≤a n ≤1.5分(2)当n =1时,|a 2-a 1|=13,当n ≥2时,∵⎝⎛⎭⎪⎫a n +12⎝ ⎛⎭⎪⎫a n -1+12=⎝ ⎛⎭⎪⎫a n +12·1a n =1+12a n ≥1+12=32, 7分∴|a n +1-a n |=⎪⎪⎪⎪⎪⎪⎪⎪1a n +12-1a n -1+12 =|a n -a n -1|⎝ ⎛⎭⎪⎫a n +12⎝ ⎛⎭⎪⎫a n -1+12≤23|a n -a n -1|≤…≤⎝ ⎛⎭⎪⎫23n -1|a 2-a 1|=13·⎝ ⎛⎭⎪⎫23n -1<13.综上所述,|a n +1-a n |≤13.10分(3)当n =1时,|a 2-a 1|=13=927<1027; 11分当n ≥2时,|a 2n -a n |≤|a 2n -a 2n -1|+|a 2n -1-a 2n -2|+…+|a n +1-a n | ≤13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232n -2+⎝ ⎛⎭⎪⎫232n -3+…+⎝ ⎛⎭⎪⎫23n -1 =⎝ ⎛⎭⎪⎫23n -1-⎝ ⎛⎭⎪⎫232n -1≤23-⎝ ⎛⎭⎪⎫233=1027.15分[方法指津]解决数列与不等式的综合问题时,如果是证明题,要灵活的选择不等式的证明方法,如比较法、综合法、分析法、放缩法、反证法及数学归纳法等;如果是解不等式问题,要使用解不等式的各种解法,如列表法、因式分解法、穿根法等,总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.[变式训练4] (2017·台州市高三年级调考)已知数列{a n }满足:a n >0,a n +1+1a n<2(n ∈N *).(1)求证:a n +2<a n +1<2(n ∈N *); (2)求证:a n >1(n ∈N *).[证明] (1)由a n >0,a n +1+1a n<2,得a n +1<2-1a n<2.2分因为2>a n +2+1a n +1>2a n +2a n +1(由题知a n +1≠a n +2), 所以a n +2<a n +1<2.4分(2)法一:假设存在a N ≤1(N ≥1,N ∈N *), 由(1)可得当n >N 时,a n ≤a N +1<1.6分根据a n +1-1<1-1a n =a n -1a n<0,而a n <1,所以1a n +1-1>a n a n -1=1+1a n -1,于是1a N +2-1>1+1a N +1-1,……1a N +n -1>1+1a N +n -1-1.10分累加可得1a N +n -1>n -1+1a N +1-1.(*)由假设可得a N +n -1<0,12分而当n >-1a N +1-1+1时,显然有n -1+1a N +1-1>0,因此有1a N +n -1<n -1+1a N +1-1,这显然与(*)矛盾. 所以a n >1(n ∈N *).15分法二:假设存在a N ≤1(N ≥1,N ∈N *),由(1)可得当n >N 时,0<a n ≤a N +1<1. 6分 根据a n +1-1<1-1a n =a n -1a n<0,而a n <1,所以11-a n +1<a n 1-a n,所以1-a n +11-a n >1a n ≥1a N +1>1.于是1-a n >(1-a n -1)⎝ ⎛⎭⎪⎫1a N +1,1-a n -1>(1-a n -2)⎝ ⎛⎭⎪⎫1a N +1,……1-a N +2>(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1.10分 累乘可得1-a n >(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1n -N -1,(*)由(1)可得1-a n <1, 12分 而当n > ⎝ ⎛⎭⎪⎫11-a N +1+N +1时,则有(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1n -N -1>1,这显然与(*)矛盾.所以a n >1(n ∈N *). 15分。

相关文档
最新文档