机械原理平面机构自由度计算-例题
机械原理平面机构自由度计算例题课件
的运动特性和稳定性产生影响。
02
平面机构自由度计算方法
平面机构自由度计算的公式
01
平面机构自由度计算公式:$F = 3n - 2p_{r} - p_{h}$
02
其中,$n$为活动构件数, $p_{r}$为低副数,$p_{h}$为高 副数。
平面机构自由度计算的步骤
确定活动构件数$n$。 确定低副数$p_{r}$和高副数$p_{h}$。 代入公式计算自由度数$F$。
平面凸轮机构是一种常见的控制机构,其自由度的计算对于机构的设计和控制具有指导意义。通过实例解析,介 绍如何正确计算平面凸轮机构的自由度,同时深入理解凸轮机构的工作原理和特点,包括从动件的运动规律、凸 轮的轮廓设计等。
04
平面机构自由度计算常见 问题解析
问题一
总结词
理解运动副和自由度的关系是计算平面 机构自由度的前提。
VS
详细描述
运动副是机构中用于连接各构件并确定其 相对运动的装置,分为高副和低副两类。 自由度是描述机构运动灵活性的参数,一 个构件在一个平面内具有3个自由度(2 个移动和1个转动)。正确理解运动副和 自由度的关系,有助于确定机构的运动特 性。
问题二
总结词
掌握和应用平面机构自由度计算公式是关键 。
机械原理平面机 构自由度计算例 题课件
目录
• 平面机构自由度计算概述 • 平面机构自由度计算方法 • 平面机构自由度计算例题解析 • 平面机构自由度计算常见问题解
析 • 平面机构自由度计算的实际应用
01
平面机构自由度计算概述
平面机构自由度的定义
平面机构自由度
描述平面机构运动特性的物理量,表示平面机构中各构件在 平面坐标系内独立运动的个数。
机械原理计算自由度习题及答案55215
1.
计算齿轮机构的自由度.
解:由于B. C 副中之一为虚约束,计算机构自由度时,应将 C 副去除。
即如下图所示:
该机构的自由度1213233231=⨯-⨯-⨯=--=h p p n F
2. .机构具有确定运动的条件是什么?如果不能满足这一条件,将会产生什么结果?
机构在滚子B 处有一个局部自由度,应去除。
该机构的自由度017253231=-⨯-⨯=--=h p p n F
定轴轮系
A
B C
1 2
3
4 图2-22
A B
C
D
G
E
H F
当自由度F=1时,该机构才能运动, 如果不能满足这一条件,该机构无法运动。
该机构当修改为下图机构,则机构可动:
N=4, PL=5, Ph=1;
F=⨯-⨯-=
自由度342511
3. 计算机构的自由度.
1)由于机构具有虚约束, 机构可转化为下图机构。
F=⨯-⨯-=
自由度342511
2)由于机构具有虚约束, 机构可转化为下图机构。
F=⨯-⨯=
自由度31211
3)由于机构具有虚约束, 机构可转化为下图机构。
F=⨯-⨯=
自由度33241。
1解机械原理习题册(上)自由度
第二章 机构的结构分析思考题:1. 在平面机构中,引入一个高副将引入___1___个约束,引入一个低副将引入__2___个约束。
构件总数N 、运动副提供的约束总数R 与机构自由度F 的关系是 F=3(N-1)-R 。
2. 平面运动副的最大约束数为 2 ,最小约束数为 1 ;移动副限制的两个自由度分别为 平面内的转动 和 平面内沿垂直于导路方向的平动 ;3. 计算平面机构自由度的公式为F= 3n-2P l -P h h l p p n --23 ,应用此公式时应注意判断:(A) 复合 铰链,(B) 局部 自由度,(C) 虚 约束。
4. 机构具有确定运动的条件是 机构的原动件数目等于机构的自由度数目 。
5*. 图示为一机构的初拟设计方案。
(1〕试计算其自由度,并分析其设计是否合理?如有复合铰链,局部自由度和虚约束需在图上标明; (2) 如此初拟方案不合理,请修改并用简图表示。
(1)F=3n-2P l -P h h l p p n --23=3×3-2×4-1=0设计不合理局部自由度虚约束2—1 列出公式计算下列运动链的自由度,并在图中指出其复合铰链、局部自由度和虚约束。
(1)F=3n-2P l-P h=3×8-2×11-0(2)轮系F=3n-2P l-P h=3×3-2×3-2=1(3)F=3n-2P l -P h=3×4-2×5-1=1(4)F=3n-2P l -P h =3×6-2×8-1 =1AB 、CD 、EF 平行且相等(5)F=3n-2P l -P h=3×8-2×11-0(6)F=3n-2P l -P h =3×8-2×11-1=1CD 、EF 、GH 平行且相等(7)F=3n-2P l -P h=3×8-2×11-1=1(8)F=3n-2P l -P h=3×6-2×8-1=1复合铰链 虚约束局部自由度局部自由度虚约束2—2 列出公式计算下列各运动链的自由度。
机械原理部分试题目及解答
第一章机构的组成和结构1-1 试画出图示平面机构的运动简图,并计算其自由度。
F=3×3-2×4=1 F=3×3-2×4=1F=3×3-2×4=1 F=3×3-2×4=11-2 计算图示平面机构的自由度。
将其中高副化为低副。
确定机构所含杆组的数目和级别,以及机构的级别。
(机构中的原动件用圆弧箭头表示。
)F=3×7-2×10=1 F=3×7-2×10=1含3个Ⅱ级杆组:6-7,4-5,2-3。
含3个Ⅱ级杆组:6-7,4-5,2-3。
该机构为Ⅱ级机构构件2、3、4连接处为复合铰链。
该机构为Ⅱ级机构F=3×4-2×5-1=1 F=3×3-2×3-2=1F=3×5-2×7=1(高副低代后) F=3×5-2×7=1(高副低代后)含1个Ⅲ级杆组:2-3-4-5。
含2个Ⅱ级杆组: 4-5,2-3。
该机构为Ⅲ级机构构件2、3、4连接处为复合铰链。
该机构为Ⅱ级机构F=3×8-2×11-1=1 F=3×6-2×8-1=1F=3×9-2×13=1(高副低代后)F=3×7-2×10=1(高副低代后)含4个Ⅱ级杆组:8-6,5-7,4-3,2-11。
含1个Ⅱ级杆组6-7。
该机构为Ⅱ级机构含1个Ⅲ级杆组2-3-4-5。
第二章 连 杆 机 构2-1 在左下图所示凸轮机构中,已知r = 50mm ,l OA =22mm ,l AC =80mm,︒=901ϕ,凸轮1的等角速度ω1=10rad/s ,逆时针方向转动。
试用瞬心法求从动件2的角速度ω2。
解:如右图,先观察得出瞬心P 13和P 23为两个铰链中心。
再求瞬心P 12:根据三心定理,P 12应在P 13与P 23的连线上,另外根据瞬心法,P 12应在过B 点垂直于构件2的直线上,过B 点和凸轮中心O 作直线并延长,与P 13、P 23连线的交点即为P 12。
平面机构的自由度_习题
u 由两个以上的构件在同一处以转动副相联而成的铰链称为复合铰链。
如图所示。
u 由K 个构件以复合铰链相联接时构成的转动副数为(K -1)个。
计算自由度时要特别注意“复合铰链”。
计算平面机构自由度时应注意的事项1.复合铰链图a 所示的机构的自由度计算为:n =5、P L =7(P L ≠6)、P H =0,则F=3n -2P L -P H =3×5-2×7-0=1。
u 不影响机构中其它构件相对运动的自由度称为局部自由度。
如右图所示。
u 在计算机构的自由度时,局部自由度不应计入。
u 图a 所示的凸轮机构中,自由度计算为:n =2、P L =2(P L ≠3)、P H =1,则F=3n -2P L -P H =3×2-2×2-1=1。
局部自由度2.局部自由度u一般在高副接触处,若有滚子存在,则滚子绕自身轴线转动的自由度属于局部自由度,采用滚子结构的目的在于将高副间的滑动摩擦转换为滚动摩擦,以减轻摩擦和磨损。
3. 虚约束u对机构的运动不起独立限制作用的约束称为虚约束。
如图a所示为机车车轮联动机构,图b为其机构运动简图。
u计算机构自由度时,应将产生虚约束的构件连同它所带入的运动副一起除去不计。
u 对于上图a 所示的机构可就看成是图c 所示的机构,此时n =3(而不是n =4))、P L =4、P H =0,则F=3n -2P L -P H =3×3-2×4-0=1。
u 平面机构的虚约束常出现于下列情况中:⑴两构件间形成多个轴线重合的转动副(如下图所示)在此情况下,计算机构自由度时,只考虑一处运动副引入的约束,其余各运动副引入的约束为虚约束。
⑵两构件形成多个导路平行的移动副(如右图所示)u 在此情况下,计算机构自由度时,只考虑一处运动副引入的约束,其余各运动副引入的约束为虚约束。
⑶用一个构件及两个转动副将两个构件上距离始终不变的两个动点相联时,引入一个虚约束。
机械基础模拟题
考试题型:1)简答题;2)作图题;3)计算分析题说明:带传动不考。
机械原理部分一、平面机构自由度计算及注意事项1、试求下列机构的自由度数,并判断机构是否有确定的运动?解:(a)活动构件数目n=4,低副数目Pl=4,高副数目Ph=2,局部自由度为1。
自由度F=3*4-2*4-2-1=1,有确定的相对运动。
(b)n=10,Pl=14,Ph=0 F=2 注意在主动件与机架相连的地方存在一个复合铰链。
不存在确定的运动。
2、计算图示机构的自由度。
F=3*6-2*7-2=23、.计算自由度F,并指出何处为复合铰链、局部自由度、虚约束?存在虚约束和复合铰链。
F=3*5-2*7=14、计算自由度,并判断机构运动是否确定。
F=3*6-2*8-1=1,有确定相对运动。
5、计算下列机构的自由度F=3*3-2*4=1,存在虚约束F=3*4-2*4-2=2F=3*3-2*3-2=16、计算图示平面机构的自由度。
(机构中若含复合铰链,局部自由度或虚约束,应在图上注明出来)F=3*6-2*8-1=1F=3*6-2*8-2=07计算图示平面机构的自由度。
(机构中若含复合铰链,局部自由度或虚约束,应在图上注明出来)F=3*4-2*5-1=1F=3*6-2*7-3=1F=3*3-2*3-2=1二、四杆机构1、曲柄摇杆机构的最小传动角γmin出现于曲柄和机架共线处。
2、平面连杆机构具有急回特征在于极位夹角不为零。
3、铰链四杆机构的基本型式有曲柄摇杆机构、双曲柄机构、双摇杆机构。
4、曲柄滑块机构的尺寸如图所示,求1、若AB为原动件,作图求出该机构的行程速比系数K。
2、说明该机构在什么条件下有死点,并将此死点位置在图上画出。
1、先作图求出极位夹角,再根据公式求得行程速度比系数;2、滑块作为主动件的时候有死点,死点的位置在连杆与曲柄共线处。
5、图示曲柄滑块机构,作图求:1.滑块的极限位置曲柄与连杆拉直共线与重叠共线处2.曲柄的极位夹角及行程速比系数3.最小传动角4.若要将该机构作成偏心轮滑块机构,如何选取偏心轮半径?6、四杆机构如图,试指出其所属类型,并用图和公式来求解该机构的行程速比系数K=?三、凸轮机构习题1、在设计机构时,当凸轮的最大压力角超过许用值时,则可。
机械原理平面机构的运动简图及自由度习题答案
1. 计算齿轮机构的自由度.解:由于B. C 副中之一为虚约束,计算机构自由度时,应将 C 副去除。
即如下图所示:该机构的自由度1213233231=⨯-⨯-⨯=--=h p p n F 2..机构具有确定运动的条件是什么?如果不能满足这一条件,将会产生什么结果?机构在滚子B 处有一个局部自由度,应去除。
该机构的自由度017253231=-⨯-⨯=--=h p p n F定轴轮系ABC1234图2-22ABCDGEH F当自由度F=1时,该机构才能运动, 如果不能满足这一条件,该机构无法运动。
该机构当修改为下图机构,则机构可动:N=4, PL=5, Ph=1;F=⨯-⨯-=自由度3425113. 计算机构的自由度.1)由于机构具有虚约束, 机构可转化为下图机构。
F=⨯-⨯-=自由度3425112)由于机构具有虚约束, 机构可转化为下图机构。
F=⨯-⨯=自由度312113)由于机构具有虚约束, 机构可转化为下图机构。
F=⨯-⨯=自由度33241第一章平面机构的运动简图及自由度一、判断题(认为正确的,在括号内画√,反之画×)1.机构是由两个以上构件组成的。
()2.运动副的主要特征是两个构件以点、线、面的形式相接触。
()3.机构具有确定相对运动的条件是机构的自由度大于零。
()4.转动副限制了构件的转动自由度。
()5.固定构件(机架)是机构不可缺少的组成部分。
()6.4个构件在一处铰接,则构成4个转动副。
()7.机构的运动不确定,就是指机构不能具有相对运动。
()8.虚约束对机构的运动不起作用。
()二、选择题1.为使机构运动简图能够完全反映机构的运动特性,则运动简图相对于与实际机构的()应相同。
A.构件数、运动副的类型及数目B.构件的运动尺寸C.机架和原动件D. A 和 B 和 C2.下面对机构虚约束的描述中,不正确的是()。
A.机构中对运动不起独立限制作用的重复约束称为虚约束,在计算机构自由度时应除去虚约束。
机械原理计算自由度习题及答案
1. 计算齿轮机构的自由度.
解:由于B. C 副中之一为虚约束,计算机构自由度时,应将 C 副去除。
即如下图所示:
该机构的自由度1213233231=⨯-⨯-⨯=--=h p p n F
2. .机构具有确定运动的条件是什么?如果不能满足这一条件,将会产生什么结果?
机构在滚子B 处有一个局部自由度,应去除。
该机构的自由度017253231=-⨯-⨯=--=h p p n F
当自由度F=1时,该机构才能运动, 如果不能满足这一条件,该机构无法运动。
该机构当修改为下图机构,则机构可动:
N=4, PL=5, Ph=1;
定轴轮系 A
B C
1 2
3
4 图2-
22
F=⨯-⨯-=
自由度342511
3. 计算机构的自由度.
由于机构具有虚约束, 机构可转化为下图机构。
F=⨯-⨯-=
自由度342511
由于机构具有虚约束, 机构可转化为下图机构。
F=⨯-⨯=
自由度31211
由于机构具有虚约束, 机构可转化为下图机构。
F=⨯-⨯=
自由度33241。
试画出下列平面机构的机构简图(示意图),并计算其自由度。(1)唧筒
试画出下列平面机构的机构简图(示意图),并计算其自由度。
(1)唧筒机构(2)偏心油泵机构试画出下列平面机构的机构简图(示意图),并计算其自由度。
(1)将图示凸轮拨杆机构中的所有构件用数字1,2,3,…在图上标注出来,所有运动副用字母A,B,C,…标注出来。
(2)试分析图示机构中有无复合铰链、局部自由度和虚约束。
如有,请明确指出来。
(3)请绘制此机构在图示位置时高副低代后的机构简图。
(4)试计算图示机构高副低代前原高副机构的自由度和高副低代后低副机构的自由度。
1、当偏心圆A为原动件时,此机构能否作确定的相对运动?为什么?2、将机构中的高副用低副来代替;3、此机构为几级机构?为什么?试求出下列各机构在图示位置的全部瞬心。
图示为半自动印刷机的活字移动台机构的运动简图。
已知曲柄的等角速度ω1=3rad/s,试求移动台5的速度大小和方向。
设在图示机构中各构件的尺寸及原动件1的角速度ω1均为已知。
滚子3与机架6,及滚子4与滚子3之间均作无滑动的滚动。
试求构件1与构件5的传动比ω1/ω5。
在图示摆动导杆机构中,∠BAC=135°,l AB=120mm,l AC=240mm,曲柄AB以等角速度ω1=15rad/s转动(方向如图),试用相对运动图解法求构件3的角速度和角加速度。
在图示铰链四杆机构中,已知:l BC=50mm,l CD=35mm,l AD=30mm,AD为机架,(1)若此机构为曲柄摇杆机构,且AB杆为曲柄,求l AB的最大值;(2)若此机构为双曲柄机构,求l AB的取值范围;(3)若此机构为双摇杆机构,求l AB的取值范围。
设计一曲柄摇杆机构,已知其摇杆长度l CD=75mm,机架长度l AD=100mm,摇杆的一极限位置与机架间的夹角ψ=45°,行程速比系数K=1.5。
试确定曲柄长度l AB和连杆长度l BC,只求一解即可,并标出最小传动角γmin。
用图解法设计一偏置曲柄滑块机构。
5第5讲-机构自由度和基本链型例题
4
W fi
4
i 1
fi 1 2 2 2 6
i 1
2 21 5
W 651
7
2
W fi j fa
i 1
j 1
7
fi 1 3 2 1 3 3 14 i 1
1 3 0 3 6 2 3 1 2 6
缝纫机弯针机构
7
2
W fi j fa 14 6 6 1 1
C 1 A 2
B
3 D
E 5 F
6
4G
洗衣机搅拌器
C
2 B1
A
E
3
4
D 5
F 6
G
扼铆钉器
3 F
C
2
5
4D E
B
1
G
6
A
汽车天窗
C 2 B 1
A
3
D
4
6G H
E 5
7
F
能用手动齿轮调整旳可倾承载台
摆式飞剪机
练习1 计算图示机械手旳自由度。
练习2 计算图示可绕过障碍物到达工作区旳 RPBCRRR机械手旳自由度。
例3 计算图示SC2R机构旳自由度。 S:代表球面副(Spheric Pair)
4
W fi 6 i 1 (1 2 2 1 31) 6 1
例4 计算图示2RH2R机构旳自由度。
H:代表螺旋副(Helical Pair)
5
W fi i 1 5
fi 15 5
i 1
r tt tr 2 11 4
fi 1 5 31 8 i 1
空间六杆机构
3036
6
W fi fa 8 6 1 1 i 1
m6 0
自由度计算例题
自由度计算例题在机械设计、力学分析以及其他相关领域中,自由度的计算是一个重要的概念和基础技能。
理解和掌握自由度的计算方法,对于解决各种实际问题具有关键意义。
接下来,我们通过几个具体的例题来深入探讨自由度的计算。
例 1:考虑一个平面机构,由三个杆件通过铰链连接而成,形成一个三角形。
其中杆件 1 和杆件 2 的长度分别为 L1 和 L2,杆件 3 的长度为 L3。
在这个平面机构中,每个杆件都可以绕其铰链在平面内自由转动。
我们来计算这个机构的自由度。
首先,确定活动构件的数量 n。
这里有三个杆件,所以 n = 3。
然后,计算低副的数量 P L 。
由于每个铰链都是一个低副,一共有三个铰链,所以 P L = 3。
接下来,根据平面机构自由度的计算公式 F = 3n 2P L ,将 n = 3和 P L = 3 代入公式,得到:F = 3×3 2×3= 9 6= 3这意味着这个平面机构在平面内有 3 个自由度,即可以在平面内沿x 轴、y 轴方向移动以及绕平面内的某个点转动。
例 2:假设有一个空间机构,由四个杆件通过球铰连接而成,形成一个四面体。
杆件 1、2、3 和 4 的长度分别为 L1、L2、L3 和 L4。
对于这个空间机构,每个杆件都可以在空间中自由转动和移动。
活动构件的数量 n 为 4。
低副的数量 P L ,由于每个球铰都是一个低副,一共有四个球铰,所以 P L = 4。
根据空间机构自由度的计算公式 F = 6n 5P L ,将 n = 4 和 P L =4 代入公式,可得:F = 6×4 5×4= 24 20= 4这表明该空间机构在空间中有 4 个自由度,即可以在 x、y、z 三个方向上移动以及绕这三个轴转动。
例 3:再看一个较为复杂的平面机构,由多个杆件和滑块组成。
其中有 5 个杆件通过铰链连接,同时还有 2 个滑块在水平导轨上移动。
活动构件的数量 n = 7(5 个杆件和 2 个滑块)。
机械原理平面机构自由度计算-例题
大致分六大步:
①找出原动件、从动件和机架; ②从原动件开始依次搞清机构的运动顺序; ③选择恰当的投影面,一般选择机构多数构件的运动平面作为投影面;
④选择合适的比例尺; l
真实长度(mm) 图上所画长度(mm)
⑤选择合适的位置,定出各运动副间的相对位置,并画出各运动副和构 件; ⑥标出运动副代号、构件编号、原动件运动方向和机架。
• A处为复合铰链; • 2′、2″为虚约束。
计算实例 计算图示机构的自由度
解: F =3×6-2×7-3=1
F
• D处为复合铰链;
D I
• 滚子3、6为局部自由度;
• FI 两点在运动过程中距离
始终不变,为虚约束。
包装机送纸机构
计算实例 计算图示机构的自由度
计算实例 计算图示机构的自由度
对齿轮副提供的约束情况分两种:
• 如一对齿轮副(包括内、外啮合副和齿轮与齿条啮合副)的两轮中心 相对位置被约束,则这对齿轮副仅提供一个约束即为一个高副。(因此 时两齿轮轮齿为单侧接触) • 如一对齿轮副(包括内、外啮合副和齿轮与齿条啮合副)的两轮中心 相对位置未被约束,则这对齿轮副将提供两个约束即两个高副或相当于 一个转动副。
实例(a) AB、CD、EF Nhomakorabea行且相 等
(b)平行导路多处移动副
(c)同轴多处转动副 (d) AB=BC=BD且A在D、C 轨迹交点 (e)两构件上两点始终等距 (f)轨迹重合 (g)全同的多个行星轮
(h)等径凸轮的两处高副
(i)等宽凸轮的两处高副
补充:
• 如果两构件在多处接触而构成平面高副,且在各接触点处的公法线彼 此重合,则在计算机构的自由度时,只能算一个平面高副。· • 如果两构件在多处接触而构成平面高副,且在各接触点处的公法线方 向并不彼此重合,则在计算机构的自由度时,只能算一个平面低副。
平面机构自由度计算及结构分析
平面机构自由度计算及结构分析
一、平面机构结构分析(15分)
1. 计算图1所示机构的自由度,明确指出其中的复合铰链、局部自由度或虚约束;(7分)
2. 画出该机构图示瞬时除去虚约束后的低副替代机构示意图;(3分)
3. 取与机构自由度数相同且做定轴转动的连架杆为原动件,对低副替代机构进行结构分析。
要求画出机构拆分后的驱动杆组(原动件和机架)和基本杆组,并确定机构的级别。
(5分)
1. 计算图1所示机构的自由度,明确指出其中的复合铰链、局部自由度或虚约束;
解:n=8,P L=11,P H=1,F= 3n-2P L-P H=3⨯8-2⨯11-1=1(4分)
2.(3分)
3. 答案一:凸轮为原动件,每个组1分,三级机构(1分)
答案二:以右边的两个联架杆之一为原动件:原动件不计分,每个基本组1分,二级机构(1分)
答案三:以左边的联架杆为原动件:每个基本组1分,三级机构(1分)
二、平面机构结构分析(15分)
1. 计算图1所示机构的自由度,明确指出其中的复合铰链、局部自由度或虚约束;(7分)
2. 画出该机构图示瞬时除去虚约束后的低副替代机构示意图;(3分)
3. 取与机构自由度数相同且做定轴转动的连架杆为原动件,对低副替代机构进行结构分析。
要求画出机构拆分后的驱动杆组(原动件和机架)和基本杆组,并确定机构的级别。
(5分)
Ⅲ级杆组(4个构件6个低副组成)Ⅱ级杆组(2个构件3个低副)
. Word 资料。
机械原理计算自由度习题及答案最新版本
1. 计算齿轮机构的自由度.
解:由于B. C 副中之一为虚约束,计算机构自由度时,应将 C 副去除。
即如下图所示:
该机构的自由度1213233231=⨯-⨯-⨯=--=h p p n F
2.
.机构具有确定运动的条件是什么?如果不能满足这一条件,将会产生什么结果?
机构在滚子B 处有一个局部自由度,应去除。
该机构的自由度017253231=-⨯-⨯=--=h p p n F
当自由度F=1时,该机构才能运动, 如果不能满足这一条件,该机构无法运动。
该机构当修改为下图机构,则机构可动:
定轴轮系 A
B C
1 2
3
4 图2-22
A B
C
D
G E
H F
N=4, PL=5, Ph=1;
F=⨯-⨯-=
自由度342511
3. 计算机构的自由度.
由于机构具有虚约束, 机构可转化为下图机构。
F=⨯-⨯-=
自由度342511
由于机构具有虚约束, 机构可转化为下图机构。
F=⨯-⨯=
自由度31211
由于机构具有虚约束, 机构可转化为下图机构。
F=⨯-⨯=
自由度33241
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参
考,感谢您的配合和支持)。
自由度计算机械原理
F=3n-2PL-PH=36-28-1=1
例3-5 试计算图3-18a)所示的大筛机 构的自由度,并判断它是否有确定的 运动。
图3-18 大筛机构
解: 机构中的滚子有一个局部自由度。
顶杆与机架在E和E’组成两个导路平 行的移动副,其中之一为虚约束。
判断破碎机是否有确定运动。
F= 3n- (2 pl + ph )
F
A 主动件1
5
4
2 DE
CB
3
n=5;
pl =7; ph =0;
矿石
F=35-(2 7+0)=1. F=主动件数,故有确定运动。
试计算图中,发动机配气机构的自由 度。
发电机配气机构
解:
此机构中,G,F为导路重合的两移 动副,其中一个是虚约束;P处的滚子 为局部自由度。
求大筛机构的自由度F=?
C
B 1
2
3
6
F7 O
4 G5
E D E' H A
8
9
求大筛机构的自由度F=?
复合铰链
C 主动件1,8
B 1
2 3
6
F7 O
4 G5
E D E' H A
8 9
局部自由度
两者之一为虚约束
B
2
C
3
4
1
6
F7 O
G5
E D E' H A
8
9
B 1
2
3
6
F7 O
4 G5
E D E' H A
C处是复合铰链。
专升本机械类机构自由度计算辅导及习题
专升本机械类-机构自由度计算辅导及习题答案(张庆章)运动副:两个构件直接接触并产生某些相对运动的可动联接两个构件上参加接触的运动副表面称运动副元素,运动副的元素是点、线、面。
运动链是指若干个构件通过运动副连接而成的系统。
运动链自由度计算主要解决的问题是:1、运动链的可动性;2、运动链运动的确定性,即运动链成为机构的条件。
一、平面机构(运动链)自由度:㈠、计算公式:F=3n-2P L-P H⑴式中:F—机构(运动链)自由度;n—机构(运动链)中的运动构件数;—机构(运动链)中低副数,包括移动副和转动副;PLP—机构(运动链)中的高副数。
H㈡、公式用途:运动链类型:⑴、固定运动链:组成运动链的构件之间没有相对运动。
如桥梁、钢结构支架等。
⑵、可动运动链:①、运动不确定的可动运动链:运动链可动,但运动链中构件的运动不能确定。
②、具有确定运动的运动链及机构。
运动链中构件的具有确定性。
1、判别运动链能否运动(运动链可动性分析):⑴、当F﹥0 运动链能运动,即运动链是可动的。
⑵、当F≦0 运动链不动,即运动链为固定运动链。
例:判别下面运动链的可动性:图示:n=3,P L=4,P H=1 。
F=3n-2P L-P H =3×3-2×4-1=0运动链不可动。
图示:n=4,P L=5,P H=1 。
F=3n-2P L-P H =3×4-2×5-1=1﹥0运动链可动。
2、判别运动链是否成为机构:运动链的运动确定性分析。
⑴、当F≦0 运动链不可动,此种运动链不能成为机构;⑵、当F﹥0 运动链可动:①、若F﹥原动件数,运动链不能成为机构;②、若F=原动件数,运动链运动确定,运动链成为机构;③、若F﹤原动件数,运动链不能成为机构。
结论:运动链成为机构的条件:F﹥0,且F等于机构原动件数。
㈢、机构自由度计算时应注意的问题:1、复合铰链及其处理方法:⑴、概念:复合铰链:多个构件(含固定件)在同一处形成两个或两个以上转动副,该处成为复合铰链。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计 算 实 例 ( 不 讲 )
计算如图所示机构的自由度
双 曲 线 画 规 机 构
解: F 3n 2PL PH 3 5 2 7 0 1
计算实例 计算图示机构的自由度
解: (a) F =3×ቤተ መጻሕፍቲ ባይዱ-2×9-2=1
(b) F =3×4-2×4-2=2
• 滚子2′为局部自由度; • I处为虚约束。
n=5 PL=6 PH=2 F=3×5-(2×6+2)=1
n=5 PL=5 PH=4 (或相当于两个转动副) F=3×5-(2×5+4)=1 或F=3×5-(2×7)=1
计 算 实 例
计算如图所示机构的自由度
牛 头 刨 床 机 构
解: F 3n 2P P 3 6 2 8 1 1 L H
• A处为复合铰链; • 2′、2″为虚约束。
计算实例 计算图示机构的自由度
解: F =3×6-2×7-3=1
F
• D处为复合铰链;
D I
• 滚子3、6为局部自由度;
• FI 两点在运动过程中距离
始终不变,为虚约束。
包装机送纸机构
计算实例 计算图示机构的自由度
计算实例 计算图示机构的自由度
对齿轮副提供的约束情况分两种:
• 如一对齿轮副(包括内、外啮合副和齿轮与齿条啮合副)的两轮中心 相对位置被约束,则这对齿轮副仅提供一个约束即为一个高副。(因此 时两齿轮轮齿为单侧接触) • 如一对齿轮副(包括内、外啮合副和齿轮与齿条啮合副)的两轮中心 相对位置未被约束,则这对齿轮副将提供两个约束即两个高副或相当于 一个转动副。
实例
(a) AB、CD、EF平行且相 等
(b)平行导路多处移动副
(c)同轴多处转动副 (d) AB=BC=BD且A在D、C 轨迹交点 (e)两构件上两点始终等距 (f)轨迹重合 (g)全同的多个行星轮
(h)等径凸轮的两处高副
(i)等宽凸轮的两处高副
补充:
• 如果两构件在多处接触而构成平面高副,且在各接触点处的公法线彼 此重合,则在计算机构的自由度时,只能算一个平面高副。· • 如果两构件在多处接触而构成平面高副,且在各接触点处的公法线方 向并不彼此重合,则在计算机构的自由度时,只能算一个平面低副。
绘制平面机构运动简图的主要步骤
大致分六大步:
①找出原动件、从动件和机架; ②从原动件开始依次搞清机构的运动顺序; ③选择恰当的投影面,一般选择机构多数构件的运动平面作为投影面;
④选择合适的比例尺; l
真实长度(mm) 图上所画长度(mm)
⑤选择合适的位置,定出各运动副间的相对位置,并画出各运动副和构 件; ⑥标出运动副代号、构件编号、原动件运动方向和机架。