电子科技大学图论 研究生考试

合集下载

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1.4个顶点的不同构的简单图共有__11___个;2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。

则G 中顶点数至少有__9___个;3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____;4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_.5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。

图G二.单项选择(每题3分,共21分)1.下面给出的序列中,是某简单图的度序列的是( A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2.已知图G 如图所示,则它的同构图是( D )3. 下列图中,是欧拉图的是( D )4. 下列图中,不是哈密尔顿图的是(B )5. 下列图中,是可平面图的图的是(B )AC DA B CD6.下列图中,不是偶图的是( B )7.下列图中,存在完美匹配的图是(B )三.作图(6分)1.画出一个有欧拉闭迹和哈密尔顿圈的图;2.画出一个有欧拉闭迹但没有哈密尔顿圈的图;3.画出一个没有欧拉闭迹但有哈密尔顿圈的图;解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。

解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五.(8分)求下图G 的色多项式P k (G).解:用公式(G P k -G 的色多项式:)3)(3)()(45-++=k k k G P k 。

六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。

解:设该树有n 1个1度顶点,树的边数为m.一方面:2m=n 1+2n 2+…+kn k另一方面:m= n 1+n 2+…+n k -1 v v 13图G由上面两式可得:n 1=n 2+2n 3+…+(k -1)n k七.证明:(8分) 设G 是具有二分类(X,Y)的偶图,证明(1)G 不含奇圈;(2)若|X |≠|Y |,则G 是非哈密尔顿图。

电子科技大学-图论第二次作业

电子科技大学-图论第二次作业

复杂性分析:在第 k 次循环里,找到点 u0 与 v0,要做如下运算: (a) 找出所 有不邻接点对----需要 n(n-1)/2 次比较运算;(b) 计算不邻接点对度和----需要做 n(n-1)/2-m(G)次加法运算;(c ),选出度和最大的不邻接点对----需要 n(n-1)/2-m(G)次
2) 若 ek 不在 Ck 中,令 Gk-1=Gk-ek, Ck-1=Ck; 否则转 3); 3) 设 ek=u0v0 ∈Ck, 令 Gk-1=Gk-ek; 求 Ck 中两个相邻点 u 与 v 使得 u0,v0,u,v 依序 排列在 Ck 上,且有:uu0,vv0 ∈E(Gk-1),令:
Ck1 Ck u0v0,uvuu0,vv0
如果在
中有 H 圈
如下: Ck1 (u0 , v0 , v1,..., vn2 , u0 )
我们有如下断言: 在Ck1上,vi , vi1, 使得u0vi , v0vi1 E(Gk )
若不然,设
那么在 Gk 中,至少有 r 个顶点与 v0 不邻接,则
≦(n-1)-r < n-r, 这样与 u0,v0 在 Gk 中度和大于等于 n 矛盾!
图的闭包算法:
1) 令 =G ,k=0;
2) 在 中求顶点 与 ,使得:
dGk (u0 ) dGk (v0 ) max dGk (u) dGk (v) uv E(Gk )
3) 如果 此时得到 G 的闭包;
dGk (u0 ) dGk (v0 ) n
则转 4);否则,停止,
4) 令
,
,转 2).
则 是非 Hamilton 图
(2)因为 是具有二分类 的偶图,又因为
,在这里假设
,则有
,也就是说:对于

西安电子科技大学考研复试科目-离散数学08图论b

西安电子科技大学考研复试科目-离散数学08图论b

西安电子科技大学计算机学院 毛立强
14
lqmao@
路径和回路
在图G=<V,E>中,从结点vi到vj最短路径的长度称为从vi到vj 的距离,记为d(vi,vj)。若从vi到vj不存在路径,则d(vi,vj)= ∞。 在有向图中,d(vi,vj)不一定等于d(vj,vi)。 d(vi,vj)≥0。 d(vi,vi)=0。 d(vi,vj) + d(vj,vk)≥d(vi,vk)。 -三角不等式
西安电子科技大学计算机学院
数 学 离 散
毛立强 主讲
西安电子科技大学计算机学院 毛立强
1
lqmao@
图论
图的基本概念 路径与回路 图的矩阵表示 二部图 平面图 树和有向树
西安电子科技大学计算机学院 毛立强
2
lqmao@
图的基本概念
H = G ,显然G = G。
西安电子科技大学计算机学院 毛立强
11
lqmao@
路径和回路
在有向图中,从顶点v0到顶点vn的一条路径(walk)是图的一 个点边交替序列(v0e1v1e2v2...envn),其中vi-1和vi分别是边ei 的始点和终点,i=1,2,...,n。在序列中,如果同一条边不出现 两次,则称此路径是简单路径(迹,trail),如果同一顶点不出 现两次,则称此路径是基本路径(或称为通路,path)。如 果路径的始点v0和终点vn相重合,即v0=vn,则此路径称为 回路(curcuit),没有相同边的回路称为简单回路(闭迹, closed trail),通过各顶点不超过一次的回路称为基本回路 (圈,cycle)。
3 e2 2 e1 e4 e3 1 4 e5 5 6 e6 e8 e7 8 7
弱分图

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1. 4个顶点的不同构的简单图共有__11—;2. 设无向图G中有12条边,已知G中3度顶点有6个,其余顶点的度数均小于3。

则G中顶点数至少有__9―;3. 设n阶无向图是由k(k 2)棵树构成的森林,则图G的边数m=_n-k _______4. 下图G是否是平面图?答—是___;是否可1-因子分解?答—是_.5. 下图G的点色数(G) __________ ,边色数(G) __5 ________ 。

图G二.单项选择(每题3分,共21分)1. 下面给出的序列中,是某简单图的度序列的是(A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2. 已知图G如图所示,贝卩它的同构图是(D )3. 下列图中,是欧拉图的是(D)4. 下列图中,不是哈密尔顿图的是(B )ABC5.下列图中,是可平面图的图的是(B )6. 下列图中,不是偶图的是(B )7. 下列图中,存在完美匹配的图是(B )三. 作图(6分)1. 画出一个有欧拉闭迹和哈密尔顿圈的图;2. 画出一个有欧拉闭迹但没有哈密尔顿圈的图;3. 画出一个没有欧拉闭迹但有哈密尔顿圈的图;四. (10分)求下图的最小生成树,并求其最小生成树的权值之和。

解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五. (8分)求下图G 的色多项式P k (G).解:用公式P k (G e) P k (G) P 「(G?eh 可得G 的色多项式:P k (G) (k )5 3(k )4 侏)3、k(k 1)2(k 2)(k 3)。

六. (10分)一棵树有n 图个顶点的度数为2, n a 个顶点的度数为3,…,m 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。

解:设该树有n 1个1度顶点,树的边数为 m.一方面:2m=n+2n 2+…+kn k另一方面: m= m+n 2+…+n k -1 解:由上面两式可得:n 1=门2+2皿+…+(k-1)n k七证明:(8分)设G是具有二分类(X,Y)的偶图,证明(1)G不含奇圈;(2) 若|X |工| Y |,则G是非哈密尔顿图。

电子科技大学2017年图论期末试卷

电子科技大学2017年图论期末试卷

12017年图论课程练习题一.填空题1.图1中顶点a 到顶点b 的距离d (a ,b )= 。

ab9 图112.已知图G 的邻接矩阵0110110100110100010110010A=,则G 中长度为2的途径总条数为 。

3.图2中最小生成树T 的权值W (T )= 。

4.图3的最优欧拉环游的权值为 。

12 图 22图35.树叶带权分别为1,2,4,5,6,8的最优二元树权值为 。

二.单项选择1.关于图的度序列,下列说法正确的是( )(A) 对任意一个非负整数序列来说,它都是某图的度序列;(B) 若非负整数序列12(,,,)n d d d π= 满足1ni i d =∑为偶数,则它一定是图序列;(C) 若图G 度弱于图H ,则图G 的边数小于等于图H 的边数;(D) 如果图G 的顶点总度数大于或等于图H 的顶点总度数,则图G 度优 于图H 。

2.关于图的割点与割边,下列说法正确的是( ) (A) 有割边的图一定有割点; (B) 有割点的图一定有割边; (C) 有割边的简单图一定有割点; (D) 割边不在图的任一圈中。

3.设()k G ,()G λ,()G δ分别表示图G 的点连通度,边连通度和最小度。

下面说法错误的是( )3(A) 存在图G ,使得()k G =()G δ=()G λ; (B) 存在图G ,使得()()()k G G G λδ<<;(C) 设G 是n 阶简单图,若()2n G δ≥,则G 连通,且()()G G λδ=;(D) 图G 是k 连通的,则G 的连通度为k 。

4.关于哈密尔顿图,下列命题错误的是( ) (A) 彼得森图是非哈密尔顿图;(B) 若图G 的闭包是哈密尔顿图,则其闭包一定是完全图; (C) 若图G 的阶数至少为3且闭包是完全图,则图G 是哈密尔顿图; (D) 设G 是三阶以上简单图,若G 中任意两个不邻接点u 与v ,满足()()d u d v n +≥,则G 是哈密尔顿图。

电子科技大学-图论第二次作业

电子科技大学-图论第二次作业

习题四:3. (1)画一个有Euler闭迹和Hamilton圈的图;(2) 画一个有Euler闭迹但没有Hamilton圈的图;(3) 画一个有Hamilton圈但没有Euler闭迹的图;(4) 画一个即没有Hamilton圈也没有Euler闭迹的图;解:找到的图如下:(1)一个有Euler闭迹和Hamilton圈的图;(2)—个有Euler闭迹但没有Hamilton圈的图;⑶一个有Hamilton圈但没有Euler闭迹的图;(4)一个即没有Hamilton圈也没有Euler闭迹的图.4. 设n阶无向简单图G有m条边,证明:若2 ) * ',则G是血加此"图。

证明:G是H图。

若不然,因为G是无向简单图,则n芝3,由定理%若G是n芝3的非单图,则G、一 ...C …度弱丁某个阵".于是有:- - 1 2 E(G)| E(C m,n ) - m (n 2m)(n m 1) m(m 1)1.这与条件矛盾!所以G 是H 图若G 有个奇点,则存在k 条边不重的迹Q1・Q 矿心,使得 E(G) = E(Q 】)U E(Q J U E(Q 3) U …U E(Q k ) 证明:不失一般性,只就 G 是连通图进行证明。

设 G=(n, m)是连通图。

令 虬 V 2,…,v,V k+1,…,v 是G 的所有奇度点。

在V i与v i+k 问连新边e i 得图G* (1三隹k). 则G*是欧拉图,因此,由Fleury 算法得欧拉环游C 在C 中删去e i (1m M k).得 k 条边不重的迹Qi (1 MiMk):E(G) E(Q1^E(Q2^^E(Qk)10. 证明:若:(1) G 不是二连通图,或者(2) G 是具有二分类|(X,Y)的偶图,这里|X” |Y|则G 是非Hamilton 图。

证明:(1) G|不是二连通图,则G 不连通或者存在割点v ,俨任-v) >2 ,由丁课本 上的相关定理:若G 是Hamilton 图,则对丁*勇)的任意非空顶点集S,有: w(G- S) <|S|,则该定理的逆否命题也成立,所以可以得出:若不是二连通图, 则G 是非Hamilton 图(2)因为是具有二分类(XI)的偶图,乂因为|X|丰1丫1,在这里假设|X| < |Y|,则有 w(G-X) = |Y|>|X|,也就是说:对北(G)|的非空顶点集S,有:w(G-S)>||S|成 立,则可以得出则G 是非Hamilton 图。

2019电子科技大学研究生试卷答案

2019电子科技大学研究生试卷答案

2019电⼦科技⼤学研究⽣试卷答案电⼦科技⼤学研究⽣试卷(考试时间:⾄,共 2 ⼩时)课程名称图论及应⽤教师学时 60 学分 3 教学⽅式堂上授课考核⽇期 2019 年 5 ⽉⽇成绩考核⽅式:(学⽣填写)⼀.填空题(每空3分,共15分) 1. 图G 的邻接矩阵为0111101111001100?? ? ? ? ? ???, 则G 的⽣成树的棵数为 8 . 2. 设1G 是11(,)n m 简单图,2G 是22(,)n m 简单图,则1G 和2G 的(Cartesian)积图12G G ?的边数()m G =1221n m n m +. 3. 图1中最⼩⽣成树T 的权值()W T = 23 .4. 图2中S 到T 的最短路的长度为 8 .5. 设G 是n 阶简单图,且不包含三⾓形,则其边数⼀定不超过24n . ⼆.单项选择题(每题3分,共15分) 学号姓名学院……………………密……………封……………线……………以……………内……………答……………题……………⽆……………效……………………座位号图1 图21. 关于彼得森(Petersen)图, 下⾯说法正确的是 ( B )A. 彼得森图是哈密尔顿图;B. 彼得森图是超哈密尔顿图;C. 彼得森图可1-因⼦分解;D. 彼得森图是可平⾯图.2. 下⾯说法正确的是 ( C )A. 有割点的三正则图⼀定没有完美匹配;B. 有割边的三正则图⼀定没有完美匹配;C. 存在哈密尔顿圈的三正则图必能1因⼦分解;D. 正则的哈密尔顿图必能2因⼦分解.3. 关于图的度序列, 下⾯说法正确的是 ( B )A. 任意两个有相同度序列的图都同构;B. 若图G 度弱于图H ,则图G 的边数⼩于等于图H 的边数;C. 若⾮负整数序列12(,,,)n d d d π=满⾜1ni i d =∑为偶数,则它⼀定是图序列;D. 如果图G 所有顶点的度和⼤于或等于图H 所有顶点的度和,则图G 度优于图H.4. 关于图的补图, 下⾯说法错误的是 ( A )A. 若图G 连通,则其补图必连通;B. 若图G 不连通,则其补图必连通;C. 图G 中的⼀个点独⽴集,在其补图中的点导出⼦图必为⼀个团;D. 存在5阶的⾃补图.5. 关于欧拉图, 下⾯说法正确的是 ( D )A. 每个欧拉图有唯⼀的欧拉环游;B. 每个顶点的度均为偶数的图是欧拉图;C. 欧拉图中⼀定没有割点;D. 欧拉图中⼀定没有割边.(三).(10分)若阶为25且边数为62的图G 的每个顶点的度只可能为3,4,5或6,且有两个度为4的顶点,11个度为6的顶点,求G 中5度顶点的个数。

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1.4个顶点的不同构的简单图共有__11___个;2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。

则G 中顶点数至少有__9___个;3.设n 阶无向图是由k(k ≥2)棵树构成的森林,则图G 的边数m= _n-k____;4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_.5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。

图G图G二.单项选择(每题3分,共21分)1.下面给出的序列中,是某简单图的度序列的是( A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2.已知图G 如图所示,则它的同构图是( D )3. 下列图中,是欧拉图的是( D )4. 下列图中,不是哈密尔顿图的是(B )5. 下列图中,是可平面图的图的是(B )A Bb c123A B 3CDAD6.下列图中,不是偶图的是( B )7.下列图中,存在完美匹配的图是(B )三.作图(6分)1.画出一个有欧拉闭迹和哈密尔顿圈的图;2.画出一个有欧拉闭迹但没有哈密尔顿圈的图;3.画出一个没有欧拉闭迹但有哈密尔顿圈的图;解:四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。

A B DC123A B DC解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五.(8分)求下图G 的色多项式P k(G).解:用公式)()()(e G P G P e G P k k k •+=-,可得G 的色多项式:)3)(2()1()()(3)()(2345---=++=k k k k k k k G P k 。

六.(10分) 一棵树有n 2个顶点的度数为2,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。

电子科技大学-图论第二次作业-杨春

电子科技大学-图论第二次作业-杨春

习题四:3.(1)画一个有Euler 闭迹和Hamilton圈的图;(2)画一个有Euler闭迹但没有Hamilton圈的图;(3)画一个有Hamilton圈但没有Euler闭迹的图;(4)画一个即没有Hamilton圈也没有Euler闭迹的图;解:找到的图如下:(1)一个有Euler 闭迹和Hamilton圈的图;(2)一个有Euler闭迹但没有Hamilton圈的图;(3) 一个有Hamilton圈但没有Euler闭迹的图;(4)一个即没有Hamilton圈也没有Euler闭迹的图.)+2,则G是Hamilton图。

4.设n阶无向简单图G有m条边,证明:若m≥(n−12证明: G是H图。

若不然,因为G是无向简单图,则n≥3,由定理1:若G是n≥3的非单图,则G 度弱于某个C m,n.于是有:2,1()()(2)(1)(1)2111(1)(2)(1)(21)221 1.2m n E G E C m n m n m m m n m m m n m n ⎡⎤≤=+---+-⎣⎦-⎛⎫=+------- ⎪⎝⎭-⎛⎫≤+ ⎪⎝⎭这与条件矛盾!所以G 是H 图。

8.证明:若G 有2k ≥0个奇点,则存在k 条边不重的迹Q 1,Q 2…Q k ,使得E (G )=E (Q 1)∪E (Q 2)∪E (Q 3)∪⋯∪E(Q k ).证明:不失一般性,只就G 是连通图进行证明。

设G=(n, m)是连通图。

令v l ,v 2,…,v k ,v k+1,…,v 2k 是G 的所有奇度点。

在v i 与v i+k 间连新边e i 得图G*(1≦i ≦k).则G*是欧拉图,因此,由Fleury 算法得欧拉环游C.在C 中删去e i (1≦i ≦k).得k 条边不重的迹Q i (1≦i ≦k):12()()()()k E G E Q E Q E Q =U UL U10.证明:若:(1)G 不是二连通图,或者(2)G 是具有二分类(X,Y )的偶图,这里|X |≠|Y |,则G 是非Hamilton 图。

电子科技大学硕士考试大纲

电子科技大学硕士考试大纲

电子科技大学硕士考试大纲
电子科技大学硕士研究生入学考试初试考试大纲
电子科技大学硕士研究生入学考试初试考试大纲
电子科技大学硕士研究生入学考试初试考试大纲
电子科技大学硕士研究生入学考试初试考试大纲
电子科技大学硕士研究生入学考试初试考试大纲
电子科技大学硕士研究生入学考试初试考试大纲
电子科技大学硕士研究生入学考试初试考试大纲
电子科技大学硕士研究生入学考试初试考试大纲
电子科技大学硕士研究生入学考试初试考试大纲
电子科技大学硕士研究生入学考试初试考试大纲。

2015电子科技大学研究生试卷

2015电子科技大学研究生试卷

效无题院学答内名姓以线封号学密电子科技大学研究生试卷(考试时间:至,共__2_小时)课程名称图论及其应用教师学时60学分教学方式讲授考核日期_2015__年_6__月__26__日成绩考核方式:(学生填写)一.填空题 (每空 3 分,共 15 分)1.不同构的 3 阶简单图的个数为 _____。

2.图 1 中的最小生成树的权值为________。

3.基于图 2 的最优欧拉环游的总权值为__________ 。

4.图 3 中块的个数为_______。

61546321262227433833216图 1图 3图 25.图 4 中强连通分支的个数为________。

图41二.单项选择 (每题 3 分,共 15 分)1.关于图的度序列,下列命题错误的是( ) (A)同构的两个图的度序列相同;(B) 非负整数序列( d1, d2,n, d n ) 是图的度序列当且仅当d i是偶数;i1(C)如果非负整数序列 (d1 , d2 , , d n ) (n 2)是一棵树的度序列,那么序列中至少有两个整数的值为 1;(D). 如果非负整数序列(d1, d2,,d n ) 是简单图的度序列,那么在同构意义下只能确定一个图。

2.关于n阶简单图的邻接矩阵 A (a ij )n n,下列说法错误的是()(A)矩阵 A 的行和等于该行对应顶点的度数;(B)矩阵所有元素之和等于该图边数的 2 倍;(C)不同构的两个图,它们的邻接矩阵特征谱一定不同;(D)非连通图的邻接矩阵一定可以表示为准对角矩阵形式。

3.关于欧拉图,下面说法正确的是()(A)欧拉图存在唯一的欧拉环游;(B)非平凡欧拉图中一定有圈;(C)欧拉图中一定没有割点;(D)度数为偶数的图一定是欧拉图。

4.关于哈密尔顿图,下列命题错误的是()(A)设G是n3的简单图,若其闭包是完全图,则G 是哈密尔顿图;(B)若 n 阶单图的闭包不是完全图,则它一定是非哈密尔顿图;2(C) 若G 是哈密尔顿图,则对于V 的每个非空顶点子集S ,均有(G S) S ;(D)若 G 是n 3的非 H 单图,则 G 度弱于某个C m,n图。

电子科技大学研究生入学考试试题计算机复试_专业课面试问题锦集_--答案仅供参案

电子科技大学研究生入学考试试题计算机复试_专业课面试问题锦集_--答案仅供参案

计算机复试问题锦集计算机复试问题锦集 --答案仅供参案,没答案的问题请自己准备.不当之处敬请指出不当之处敬请指出1. 什么是程序局部性,为什么会有程序的空间局部性? 程序局部性是指程序在运行时呈现出局部性规律,在一段时间间隔内,程序的执行是局限在某个部份,所访问的存储空间也只局限在某个区域。

所访问的存储空间也只局限在某个区域。

空间局部性是指若一个存储单元被访问,那么它附近的单元也可能被访问,这是由于程序的顺序执行引起的。

序执行引起的。

2. 比较TCP 与UDP TCP 与UDP 都是传输层的协议,且都用端口号标识数据所达的进程。

且都用端口号标识数据所达的进程。

TCP 提供的是面向连接服务,提供可靠交付。

且具有流量控制和拥塞控制。

可用于可靠要求高的场合如:SMTP ,FTP ,HTTP 等UDP 提供的是无连接服务,提供不可靠交付,且无确认机制。

主要用于即时强的场合如:视频聊天,语音电话等。

语音电话等。

3. 网络协议的三个核心要素,及概念及概念 .各起什么作用? 语法,定义了数据与控制信息的格式; 语义,定义了需要发出何种控制信息,完成何种响应动作以及作出何种响应; 同步,定义了事件实现顺序的详细说明; 4. 关系数据库都有那些操作,特点是什么? ◇查询:选择、投影、连接、除、并、交、差选择、投影、连接、除、并、交、差◇数据更新:插入、删除、修改插入、删除、修改关系操作的特点:集合操作方式,即操作的对象和结果都是集合。

即操作的对象和结果都是集合。

5. 解释一下网络体系结构,它得实现和理论有什么区别? 是指通信系统的整体设计,它为网络硬件、软件、协议、存取控制和拓扑提供标准。

网络体系统结构采用分层结构,各层之间相互独立、较易维护、灵活性好。

国际标准化组织制定了OSI/RM 标准,该标准采用了七层结构该标准采用了七层结构应用层、表示层、会话层、应用层、表示层、会话层、传输层、网络层、数据链路层、物理层。

西安电子科技大学考研复试科目-离散数学05无限集合b-08图论a

西安电子科技大学考研复试科目-离散数学05无限集合b-08图论a
14
西安电子科技大学计算机学院 毛立强
lqmao@
小结
明确有限集、可数无限集、不可数无限集及其基 数的概念 基数的比较
西安电子科技大学计算机学院 毛立强
15
lqmao@
作业
• 5-1 (3) • 5-2 (2) (10)
西安电子科技大学计算机学院 毛立强
基数的比较
如果A是无限集,那么s\s0 ≤|A|( s\s0是最小的无限集基数) 证明:如果A是无限集合, 那么A包含一可数无限子集B。因 为映射f: B→A, f(x)=x, x∈B是从B到A的单射函数, 这得出 |B|≤|A|, 而|B|= s\s0 ,所以s\s0 ≤|A|。 虽然有上述两个结论,但目前为止,还没有人能够证明是否 有一无限集,其基数严格介于s\s0和c之间。于是,假定c是大 于s\s0的最小基数,即不存在任何基数|S|,使s\s0 <|S|< c成立。 (连续统假设) Cantor定理:设M是一个集合,T为M的幂集,则 |M|<|T|。 说明没有最大的基数,没有最大的集合
西安电子科技大学计算机学院 毛立强
11
lqmao@
基数的比较
例:证明 [ 0 ,1]和 ( 0 ,1)具有相同的基数。 证明:作单射函数: x 1 f : [ 0 ,1] → ( 0 ,1), f ( x ) = + 2 4 g : ( 0 ,1) → [ 0 ,1], g ( x ) = x
说明没有最大的基数没有最大的集合15西安电子科技大学计算机学院毛立强lqmaomailxidianeducn小结?明确有限集可数无限集不可数无限集及其基数的概念?基数的比较16西安电子科技大学计算机学院毛立强lqmaomailxidianeducn作业?513?5221017西安电子科技大学计算机学院毛立强lqmaomailxidianeducn图论?图的基本概念?路径与回路?图的矩阵表示?二部图?平面图?树和有向树18西安电子科技大学计算机学院毛立强lqmaomailxidianeducn图的基本概念?一个图graphg是一个三重组vgegg其中vg是一个非空的结点顶点vertices集合eg是边edge的集合g是从边集e到结点偶对集合上的函数

电子科大研究生图论考试 附答案

电子科大研究生图论考试 附答案

1电子科技大学研究生试卷(考试时间: 至 ,共__2_小时)课程名称 图论及其应用 教师 学时 60 学分 教学方式 讲授 考核日期_2013__年_6__月__20__日 成绩 考核方式: (学生填写)一.填空题(每空2分,共20分)1. n 阶k 正则图G 的边数m =_____。

2.4个顶点的不同构单图的个数为________。

3.完全偶图,r s K (,2r s ≥且为偶数),则在其欧拉环游中共含____条边。

4.高为h 的完全2元树至少有_______片树叶。

5. G 由3个连通分支124,,K K K 组成的平面图,则其共有_______个面。

6. 设图G 与5K 同胚,则至少从G 中删掉_______条边,才可能使其成为可平面图。

7. 设G 为偶图,其最小点覆盖数为α,则其最大匹配包含的边数为________。

8. 完全图6K 能分解为________个边不重合的一因子之并。

9. 奇圈的边色数为______。

10. 彼得森图的点色数为_______。

二.单项选择(每题3分,共15分) 1.下面说法错误的是( )学 号 姓 名 学 院…………………… 密……………封……………线……………以……………内……………答…… ………题……………无……………效……………………2(A) 图G 中的一个点独立集,在其补图中的点导出子图必为一个完全子图;(B) 若图G 连通,则其补图必连通; (C) 存在5阶的自补图; (D) 4阶图的补图全是可平面图. 2.下列说法错误的是( ) (A) 非平凡树是偶图;(B) 超立方体图(n 方体,1n ≥)是偶图; (C) 存在完美匹配的圈是偶图; (D) 偶图至少包含一条边。

3.下面说法正确的是( )(A) 2连通图一定没有割点(假定可以有自环); (B) 没有割点的图一定没有割边;(C) 如果3阶及其以上的图G 是块,则G 中无环,且任意两点均位于同一圈上;(D) 有环的图一定不是块。

【免费阅读】2016电子科技大学_图论期末考试复习题

【免费阅读】2016电子科技大学_图论期末考试复习题

2015电子科技大学 图论考试复习题关于图论中的图,以下叙述不正确的是A .图中点表示研究对象,边或有向边表示研究对象之间的特定关系。

B .图论中的图,画边时长短曲直无所谓。

C .图中的边表示研究对象,点表示研究对象之间的特定关系。

D .图论中的图,可以改变点与点的相互位置,只要不改变点与点的连接关系。

一个图中最长的边一定不包含在最优生成树内。

下面哪个图形不与完全二分图K 3,3同构? A .B .C .D .有10条边的5顶单图必与K 5同构。

完全二分图K m ,n 的边数是 A .m B .n C .m +n D .mn无向完全图K n 的边数为 A .n B .n 2C .n (n -1)D .n (n -1)/2若一个无向图有5个顶点,如果它的补图是连通图,那么这个无向图最多有 条边。

对于两个图,如果顶点数目相等,边数相等,次数相等的顶点数目也相等,则这两个图同构。

有15个顶的单图的边数最多是 A .105B .210C .21D .45图G 如右,则dacbeb A .是G 中的一条道路B .是G 中的一条道路但不是行迹C .是G 中的一条行迹但不是轨道D .不是G 的一条道路图G 如右,则befcdefA .是G 的一个圈B .是G 的一条道路但不是行迹C .是G 的一条行迹但不是轨道D .是G 的一条轨道但不是圈v367图G如右图所示,则ω (G)=A.1 B.2C.7 D.8下列图形中与其补图同构的是A.B.C.D.求下图中顶u0到其余各顶点的最短轨长度。

u0v1=8,u0v2=1,u0v3=4,u0v4=2,u0v5=7,v1v2=7,v1v3=2,v1v6=4,v2v4=2,v2v7=3,v3v5=3,v3v6=6,v4v5=5,v4v7=1,v5v6=4,v5v7=3,v6v7=6,请画出6阶3正则图。

请画出4个顶,3条边的所有非同构的无向简单图。

设图G={V(G),E(G)}其中V={a1, a2, a3, a4, a5},E(G)={(a1, a2),(a2, a4),(a3, a1),(a4, a5),(a5, a2)},试给出G的图形表示并画出其补图的图形。

电子科技大学《图论及其应用》-08年研究生试卷

电子科技大学《图论及其应用》-08年研究生试卷

电子科技大学研究生试卷一.填空题(每题2分,共20分)1.若n 阶单图G 的最大度是∆,则其补图的最小度()G δ=_n −1−∆_; 2.若图111(,)G n m =,222(,)G n m =,则它们的联图12G G G =∨的顶点数=_nn 1+nn 2;边数=mm 1+mm 2+nn 1nn 2;3.G 是一个完全l 部图,i n 是第i 部的的顶点数i=1,2,3,…,l 。

则它的边数为∑nn ii nn jj 1≤ii≤j≤l ;4.下边赋权图中,最小生成树的权值之和为5. 若n G K =,则G 的谱()spec G =�−1n −1n −116. 5个顶点的不同构的树的棵数为__4___;7. 5阶度极大非哈密尔顿图族是CC 1,5,CC 2,5;8. G 为具有二分类(X,Y)的偶图,则G 包含饱和X 的每个顶点的匹配的充分必要条件是|N (S )|≥|S |,对所有S ⊆X 成立9.3阶以上的极大平面图每个面的次数为 3 ;3阶以上的极大外平面图的每 个内部面的次数为__3__;10. n 方体的点色数为___2___;边色数为___n ___。

二.单项选择(每题3分,共12分)1.下面给出的序列中,不是某图的度序列的是( B ) (A) (33323); (B) (12222); (C) (5533); (D) (1333).2.设V(G)={}1,2,3,4,5,{}()(1,2),(2,3),(3,4),(4,5),(5,1)E G =则图(,)G V E =的补图是( B3.下列图中,既是欧拉图又是哈密尔顿图的是( B )4.下列说法中不正确的是( C ) (A)每个连通图至少包含一棵生成;(B) 2 3 5 (A) 2 35(B)23 5 (C) 234(D)(C)(D) (A)1(B)k 正则偶图(k>0)一定存在完美匹配; (C)平面图(*)*G G ≅,其中*G 表示G 的对偶图; (D)完全图2n K 可一因子分解。

电子科大研究生图论——第1,2章基本概念,树

电子科大研究生图论——第1,2章基本概念,树
完全偶图:是指具有二分类(X, Y)的简单偶 图,其中 X的每个顶点与 Y 的每个顶点相连, 若 |X|=m,|Y|=n,则这样的偶图记为 Km,n
精品课件

G1
G2
K1,3
四个图均为偶图;
K 3,3
K1,3 , K3,3为完全偶图
精品课件

偶图
不是偶图
简单图G 的补图: 设 G =(V, E),则图 H =(V,E1\E) 称为G 的补图,记为 H G , 其中集合
例1 设 V ={v1, v2, v3, v4},E ={v1v2 , v1v2, v2v3 },则 G = (V, E) 是一个4阶图。
v1
v4
若用小圆点代
表点,连线代表边
,则可将一个图用
“图形”来表示,
如例精品课件
v3
注: 也可记边 uv 为e ,即 e = uv。
例2 设V = {v1,v2,v3,v4},E = {e1,e2,e3,e4,e5},其中 e1= v1v2, e2 = v2v3, e3 = v2v3, e4 = v3v4, e5
2. Hamilton 周游世界问题
1859年 Hamilton 提出这样一个 问题:一个正十二面体有20个顶点,它 们代表世界上20个重要城市。正十二面 体的每个面均为五边形,若两个顶点之 间有边相连,则表示相应的城市之间有 航线相通。 Hamilton 提出 “能否从某 城市出发经过每个城市一次且仅一次然 后返回出发点?”
精品课件
定理5 设有非负整数组Π = (d1, d2,…, dn),且
n
di 2m
i 1
是一个偶数,n-1≥d1≥d2≥…≥dn, Π是可图的充要条件为
( d 2 1 , d 3 1 , , d d 1 1 1 , d d 1 2 , , d n )

电子科大研究生图论05-14年图论期末试题

电子科大研究生图论05-14年图论期末试题
亚特兰大:波士顿,芝加哥,迈阿密,纳什维尔
波士顿:亚特兰大,芝加哥,纳什维尔
芝加哥:亚特兰大,波士顿,丹佛,路易维尔
丹佛:芝加哥,路易维尔,迈阿密,纳什维尔
路易维尔:芝加哥,丹佛,迈阿密
迈阿密:亚特兰大,丹佛,路易维尔,纳什维尔
纳什维尔:亚特兰大,波士顿,丹佛,迈阿密
(要求用图论方法求解)
九.(8分)求下图G的色多项式Pk(G).
由T8导出的树中a到b路 就是最短路。
2006研究生图论期末试题(120分钟)
一、填空题(15分,每空1分)
1、若两个图的顶点与顶点之间,边与边之间都存在 对应,而且它们的关联关系也保持其 关系,则这两个图同构。
2、完全图 的生成树的数目为 ;阶为6的不同构的树有 棵。
3、设无向图 有12条边,已知 中度为3的结点有6个,其余结点的度数均小于3,则
六.(10分)设 是赋权完全偶图G=(V,E)的可行顶点标号,若标号对应的相等子图 含完美匹配 ,则 是G的最优匹配。
七.(10分)求证:在n阶简单平面图G中有 ,这里 是G的面数。
八、(10分)来自亚特兰大,波士顿,芝加哥,丹佛,路易维尔,迈阿密,以及纳什维尔的7支垒球队受邀请参加比赛,其中每支队都被安排与一些其它队比赛(安排如下所示)。每支队同一天最多进行一场比赛。建立一个具有最少天数的比赛时间表。
2.设V(G)= , 则图 的补图是()
3.下列图中,既是欧拉图又是哈密尔顿图的是( )
4.下列说法中不正确的是( )
(A)每个连通图至少包含一棵生成树;
(B)k正则偶图(k>0)一定存在完美匹配;
(C)平面图 ,其中 表示G的对偶图;
(D)完全图 可一因子分解。
三、(10分)设图G的阶为14,边数为27,G中每个顶点的度只可能为3,4或5,且G有6个度为4的顶点。问G中有多少度为3的顶点?多少度为5的顶点?

【免费阅读】2016电子科技大学_图论期末考试复习题

【免费阅读】2016电子科技大学_图论期末考试复习题

2015电子科技大学 图论考试复习题关于图论中的图,以下叙述不正确的是A .图中点表示研究对象,边或有向边表示研究对象之间的特定关系。

B .图论中的图,画边时长短曲直无所谓。

C .图中的边表示研究对象,点表示研究对象之间的特定关系。

D .图论中的图,可以改变点与点的相互位置,只要不改变点与点的连接关系。

一个图中最长的边一定不包含在最优生成树内。

下面哪个图形不与完全二分图K 3,3同构?A .B .C .D .有10条边的5顶单图必与K 5同构。

完全二分图K m ,n 的边数是A .m B .nC .m +nD .mn无向完全图K n 的边数为A .n B .n 2C .n (n -1)D .n (n -1)/2若一个无向图有5个顶点,如果它的补图是连通图,那么这个无向图最多有条边。

对于两个图,如果顶点数目相等,边数相等,次数相等的顶点数目也相等,则这两个图同构。

有15个顶的单图的边数最多是A .105B .210C .21D .45图G 如右,则dacbeb A .是G 中的一条道路B .是G 中的一条道路但不是行迹C .是G 中的一条行迹但不是轨道D .不是G 的一条道路图G 如右,则befcdef A .是G 的一个圈B .是G 的一条道路但不是行迹C .是G 的一条行迹但不是轨道D .是G 的一条轨道但不是圈,候能v1367图G如右图所示,则ω (G)=A.1B.2C.7D.8下列图形中与其补图同构的是A.B.C.D.求下图中顶u0到其余各顶点的最短轨长度。

u0v1=8,u0v2=1,u0v3=4,u0v4=2,u0v5=7,v1v2=7,v1v3=2,v1v6=4,v2v4=2,v2v7=3,v3v5=3,v3v6=6,v4v5=5,v4v7=1,v5v6=4,v5v7=3,v6v7=6,请画出6阶3正则图。

请画出4个顶,3条边的所有非同构的无向简单图。

设图G={V(G),E(G)}其中V={a1, a2, a3, a4, a5},E(G)={(a1, a2),(a2, a4),(a3, a1),(a4, a5),(a5, a2)},试给出G的图形表示并画出其补图的图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
2
5
2
1
1
5
1
5
2
3
3
4
4
4
3
A
B
C D
2、在下列图中,既是欧拉图又是哈密尔顿图的是( ).
A
B
C
D
3、下列图中的(
)图,V2 到V4 是可达的。
V1
V4
V1
V4 V1
V4 V1
V4
V2
V3 V2
V2
V2
V3
V3
V3
A
B
C
D
4、下列图中,可 1—因子分解的是( ).
(A)
(C)
(B)
(D)
5、下列优化问题中,存在好算法的是(
七、求图 G 的色多项式 Pk (G) (15 分).
图G
H1
H2
G
解:图 G 的补图如图 G ,则
h(H1, x) r1x r2x 2 r3x3 r4x 4 ,其中, r1 N1(H1) 0 , r2 N2 (H1) 2 r3 N3 (H1 ) 4 , r4 N4 (H1) 1 ; h(H2, x) r1x r2x 2 ,其中, r1 N1(H2 ) 1, r2 N2 (H2 ) 1
Pk
(G)

(x

x 2)(2x 2

4x3

x
4)

k
6

5
k

5

6[k ]
4
2[k ] 3

八、求图 G 中 a 到 b 的最短路(15 分).
v1
1 v4
2
64 3
9
a
8 v2
2
v5 6
b
72 1
9 v3
4 2
v6
图G
解 1. A1= {a},t(a) = 0,T1 = Φ
2. b11 v3
( B) 4
(C ) 8
(3) 图 G 如(a)所示,与 G 同构的图是( C )
(a)
(A)
(B)
(C)
(4) 下列图中为欧拉图的是( B ),为 H 图的是( AB ),为偶图的是( BC ).
(A)
(B)
(C)
5.下列图中可 1-因子分解的是( B )
(A)
(C)
(B)
三、设 和 分别是 (n, m) 图 G 的最大度与最小度,求证: 2m (10 分). n
__ 2m ____ .
3、 4 个顶点的非同构的简单图有 __11___ 个.
4、 图 G1 的最小生成树各边权值之和为 __ 28 ___ .
4
7
6
4
1
6
5
3
9
2
1
5
10
图 G1
5、若 W 是图 G 中一条包含所有边的闭通道,则 W 在这样的闭通道中具有最短长
度的充要条件是:
(1) 每一条边最多重复经过 _1__ 次;
T7 ={av3, av1, v1v4, v4v5, v4v2, v2v6} 2. A7 = {a, v3, v1, v4, v5, v2, v6}, b4(7) = b,b5(7) =b,b7(7) =b 3. m7 = 7, a8 = b , t(b) = t(v6) + l(v6b) = 11 (最小),
)
(A) 最短路问题;(B) 最小生成树问题;(C) TSP 问题;(D) 最优匹配问题.
三、作图题(10 分)
1、分别作出满足下列条件的图
(1)、E 图但非 H 图;(2) H 图但非 E 图;(3) 既非 H 图又非 E 图;(4) 既是 H 图又是 E 图
2、画出度序列为(3,2,2,1,1,1)的两个非同构的简单图。
设 G 是这个度序列的图族中连通分支最少的一个图,知 m= E(G) n 1 .
假设 G 不连通,则 (G) 2 ,且至少有一个分支 G1 含有圈 C,否则,G 是森林,
有 m= E(G) n n 1 矛盾!从 C 中任意取出一条边 e1 u1v1 。并在另一分支
T6 ={av3, av1, v1v4, v4v5, v4v2} 2. A6 = {a, v3, v1, v4, v5, v2}, b2(6) = v6, b4(6) = b,b5(6) = v6,b6(6) = v6 3. m6 = 6, a7 = v6 , t(v6) = t(v2) + l(v2v6) = 9 (最小),
1、若两个图的顶点与顶点之间,边与边之间都存在 _________ 对应,而且它们的关联关 系也保持其 _________ 关系,则这两个图同构。
2、完全图 K4 的生成树的数目为 _________ ;阶为 6 的不同构的树有 _________ 棵。 3、设无向图 G 有 12 条边,已知 G 中度为 3 的结点有 6 个,其余结点的度数均小于 3,则
2. A3 ={a, v3, v1}, b1(3) v2 , b2(3) v2 , b3(3) v4
3. m3 = 3, a4 = v4 , t(v4) = t(v1) + l(v1v4) = 3 (最小), T4 ={av3, av1, v1v4}
2. A4 = {a, v3, v1, v4},b1(4) = v2,b2(4) = v2,b3(4) = v2, b4(4) = v5 3. m4 = 4, a5 = v5 , t(v5) = t(v4) + l(v4v5) = 6 (最小),
G2 中任意取出一条边 e2 u2v2 ,作图
G G u1v1,u2v2 u1v2 ,u2v1
则 G 的度序列仍然为 (d1, d2,, dn) 且 (G) (G) 1 ,这与 G 的选取矛盾!所 以 G 是连通的,G 是树。即 (d1, d2,, dn) 一棵树的度序列。
则由 v2 到 v5 的途径长度为 2 的条数为 _________ 。
6、若 K n 为欧拉图,则 n= _________ ;若 K n 仅存在欧拉迹而不存在欧拉回路,则 n= _________ 。 7、无向完全图 Kn (n 为奇数),共有 _________ 条没有公共边的哈密尔顿圈。
8、设 G 是具有二分类 (X,Y) 的偶图,则 G 包含饱和 X 的每个顶点的匹配当且仅当
T8 ={av3, av1, v1v4, v4v5, v4v2, v2v6, v6b} 于是知 a 与 b 的距离
d(a, b) = t(b) = 11
由 T8 导出的树中 a 到 b 路 av1v4v2v6b 就是最短路。
2006 研究生图论期末试题(120 分钟)
一、填空题(15 分,每空 1 分)
五、求证:在简单连通平面图 G 中,至少存在一个度数小于或等于 5 的顶点 (10 分).
证明:若不然, 2m d (v) 6n 6n 12 m 3n 6, 这与 G 是简单连通平 vV (G )
面图矛盾。 六、证明:(1) 若 G 恰有两个奇度点 u 与 v,则 u 与 v 必连通;
证明: n 2m d (v) n 2m .
vV (G )
n
n
四、正整数序列 (d1, d2,, dn) 是一棵树的度序列的充分必要条件是 di 2(n 1) i 1
(10 分). 证明:" " 结论显然
n
" " 设正整数序列 (d1, d2,, dn) 满足 di 2(n 1) ,易知它是度序列。 i 1
(2) 在 G 的每一个圈上,重复经过的边的数目不超过圈的长度的 _ 一半 ___ .
6、5 阶度极大非哈密尔顿图族有 __ C25, __ C15 ___ .
7、在图 G2 中,图的度序列为(44443322),频序列为(422),独立数为 3, 团数为 4,点色数为 4,边色数为 4,直径为 3.
T5 ={av3, av1, v1v4, v4v5} 2. A5 = {a, v3, v1, v4, v5},b1(5) = v2,b2(5) = v2,b3(5) = v2 , b4(5) = v2, b5(5) = v2 3. m5 = 4, t(v2) = t(v4) + l(v4v2) = 7 (最小),
1
5
2
4
3 G
…………………… 密……………封……………线……………以……………内……………答…… ………题……………无……………效……………………
电子科技大学研究生试卷
(考试时间: 至 ,共_____小时)
课程名称 图论及其应用 教师
学时 60 学分
教学方式 讲授 考核日期_2007__年___月____日 成绩
2005 年研究生期末试题(120 分钟) 《图论及其应用》
一、填空(15 分,每空 1 分) 1、 已知图 G 有 10 条边,4 个度数为 3 的顶点,其余顶点的度数均小于 2,则
G 中至少有 ___ 8 ___ 个顶点 . 2、 m 条 边 的 简 单 图 G 中 所 有 不 同 的 生 成 子 图 ( 包 括 G 和 空 图 ) 的 个 数 为
4.下边赋权图中,最小生成树的权值之和为_______;
_________ ,对所有 S X 。
9、在有 6 个点。12 条边的简单连通平面图中,每个面均由 _________ 条边组成。 10、彼德森图的点色数为 _________ ;边色数为 _________ ;点独立数为 _________ 。
二、单选或多选题(15 分,每题 3 分)
1、设V 1,2,3,4,5, E (1,2), (2,3), (3,4), (4,5), (5,1), 则图 G V , E 的补图是( ).
相关文档
最新文档