第22章一元二次方程的解法
华师版九年级上册数学作业课件 第22章一元二次方程 一元二次方程的解法 一元二次方程的根与系数的关系
2x1x2 的值为 2
.
17.已知一元二次方程 x2-ax-2a=0 的两根之和为 4a-3,则两根之积为
-2 .
18.(2018·达州)已知:m2-2m-1=0,n2+2n-1=0 且 mn≠1,则
mn+nn+1的值为 3
.
19.(2018·遂宁)已知关于 x 的一元二次方程 x2-2x+a=0 的两实数根 x1, x2 满足 x1x2+x1+x2>0,求 a 的取值范围.
A.-4
B.3
C.-34
4 D.3
3.一元二次方程 x2-3x-2=0 的两根为 x1,x2,则下列结论正确的是 ( C)
A.x1=-1,x2=2 B.x1=1,x2=-2
C.x1+x2=3 D.x1x2=2
4.如果关于 x 的一元二次方程 x2+px+q=0 的两根分别为 x1=2,x2=- 1,那么 p,q 的值分别是( B )
(1)(x1+1)(x2+1); 解:x1+x2=-2,x1x2=-12,∴(x1+1)(x2+1)=x1x2+(x1+x2)+1=-32
(2)x12-3x1x2+x22. 解:x12-3x1x2+x22=(x1+x2)2-5x1x2=6.5
易错点:忽视判断 b2-4ac 的符号而出错 13.若关于 x 的一元二次方程 x2+kx+4k2-3=0 的两个实数根分别是 x1,
解:(1)∵(x1-1)(x2-1)=28,∴x1x2-(x1+x2)+1=28,∴m2+5-2(m+1) +1=28,解得 m=-4 或 6,又 b2-4ac≥0,∴m≥2,∴m=6
(2)当 7 为底边时,此时方程 x2-2(m+1)x+m2+5=0 有两个相等的实数 根,∴Δ=4(m+1)2-4(m2+5)=0,解得 m=2,∴方程变为 x2-6x+9=0,解 得 x1=x2=3,∵3+3<7,∴不能构成三角形;当 7 为腰时,设 x1=7,代入方程 得 49-14(m+1)+m2+5=0,解得 m1=10,m2=4,当 m=10 时方程变为 x2- 22x+105=0,解得 x1=7,x2=15,∵7+7<15,不能构成三角形;当 m=4 时方 程变为 x2-10x+21=0,解得 x1=3,x2=7,此时三角形的周长为 7+7+3=17
华师版九年级数学上册课件(HS)第22章 一元二次方程 一元二次方程的解法 直接开平方法和因式分解法
17.(湘潭中考)由多项式乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到 左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+ a)(x+b) 示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3) (1)尝试:分解因式:x2+6x+8=(x+________)(x+________); (2)应用:请用上述方法解方程:x2-3x-4=0.
华师版
22.2 一元二次方程的解法
第1课时 直接开平方法和因式分解法
知识点❶:用直接开平方法解一元二次方程
1.(徐州中考)方程 x2-4=0 的解是_±_2__.
2.下列方程能用直接开平方法求解的是( B )
A.2x2-x+1=5
B.x2-41 =3
C.x2-x+1=4 D.x2-3x=5
3.用直接开平方法解下列方程: (1)(教材 P21 例题 1 变式)2x2-32=0;
解:x1=4,x2=-4
(2)(教材 P23 例题 3 变式)(2020·扬州)(x+1)2=9;
解:x1=2,x2=-4
(3)16y2-40y+25=72.
解:y1=-21 ,y2=3
知识点❷:用因式分解法解一元二次方程 4.(2020·镇江)一元二次方程 x2-2x=0 的两根分别为_x_1_=__0_,__x_2_=__2__.
7.若实数 x,y 满足(x2+y2+1)(x2+y2-2)=0, 则 x2+y2 的值为( B ) A.-1 B.2 C.2 或-1 D.-2 或-1
8.(凉山州中考)若关于 x 的方程 x2+2x-3=0 与x+2 3 =x-1 a 有一个解相同,
九年级数学第二十二章降次—解一元二次方程人教实验版知识精讲
初三数学第二十二章降次—解一元二次方程人教实验版【本讲教育信息】一. 教学内容:用因式分解法解一元二次方程1. 用因式分解(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2. 根据具体一元二次方程的特征,灵活选择方程的解法.体会解决问题方法的多样性.二. 知识要点: 1. 因式分解法解方程x 2-x =0.方程左边x 2-x 可以分解因式:x 2-x =x (x -1),于是: x =0或x -1=0.所以x 1=0,x 2=1. 上述解法过程中,不是不用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法. 2. 因式分解法解一元二次方程的主要步骤: (1)将方程化成右边等于0的形式;(2)将方程左边分解因式(两个一次因式的积),方程化成(ax +m )(bx +n )=0的形式;(3)由ax +m =0或bx +n =0得出方程的根.3. 直接开方法、配方法、公式法、因式分解法的对比形如x 2=a (a ≥0)或(ax +b )2=c (c ≥0)的用直接开方法解.因为一元二次方程的求根公式是由配方法推导出来的,对一般形式的一元二次方程一般不用配方法求根,可考虑因式分解法或公式法.三. 重点难点:因式分解法把一个一元二次方程化为两个一元一次方程来解,体现了“降次”的思想,这种思想不但是本节的重点,而且在以后处理其他方程时也是非常重要的.【典型例题】例1. 用因式分解法解下列方程:(1)5x 2+3x =0;(2)7x (3-x )=4(x -3);(3)9(x -2)2=4(x +1)2. 分析:(1)左边=x (5x +3),右边=0;(2)先把右边化为0,7x (3-x )-4(x -3)=0,找出(3-x )与(x -3)的关系;(3)应用平方差公式.解:(1)因式分解,得x (5x +3)=0, 于是得x =0或5x +3=0,x 1=0,x 2=-35;(2)原方程化为7x (3-x )-4(x -3)=0, 因式分解,得(x -3)(-7x -4)=0, 于是得x -3=0或-7x -4=0,x 1=3,x 2=-47;(3)原方程化为9(x -2)2-4(x +1)2=0, 因式分解,得[3(x -2)+2(x +1)][3(x -2)-2(x +1)]=0, 即(5x -4)(x -8)=0, 于是得5x -4=0或x -8=0,x 1=45,x 2=8.评析:(1)用因式分解法解一元二次方程的关键有两个:一是要将方程右边化为0,二是熟练掌握多项式的因式分解.(2)对原方程变形时不一定要化为一般形式,要从便于分解因式的角度考虑,但各项系数有公因数时可先化简系数.例2. 选择合适的方法解下列方程.(1)2x 2-5x +2=0; (2)(1-x )(x +4)=(x -1)(1-2x );(3)3(x -2)2=x 2-2x . 分析:(1)题宜用公式法;(2)题中找到(1-x )与(x -1)的关系用因式分解法;(3)题中x 2-2x =x ·(x -2)用因式分解法.解:(1)a =2,b =-5,c =2, b 2-4ac =(-5)2-4×2×2=9>0, x =-(-5)±92×2=5±34,x 1=2,x 2=12;(2)原方程化为(1-x )(x +4)+(1-x )(1-2x )=0, 因式分解,得(1-x )(5-x )=0, 即(x -1)(x -5)=0, x -1=0或x -5=0, x 1=1,x 2=5;(3)原方程变形为3(x -2)2-x (x -2)=0, 因式分解,得(x -2)(2x -6)=0, x -2=0或2x -6=0, x 1=2,x 2=3. 评析:(1)解一元二次方程的几种方法中,如果不能直接由平方根定义解得,首先考虑的方法通常是因式分解法,对于不易分解的应考虑公式法,而配方法比较麻烦.公式法、配方法一般可以解所有一元二次方程.例3. 已知(a 2+b 2)2-(a 2+b 2)-6=0,求a 2+b 2的值.分析:若把(a 2+b 2)看作一个整体,则已知条件可以看作是以(a 2+b 2)为未知数的一元二次方程.解:设a 2+b 2=x ,则原方程化为x 2-x -6=0.a =1,b =-1,c =-6,b 2-4ac =12-4×(-6)×1=25>0, x =1±252,∴x 1=3,x 2=-2.即a 2+b 2=3或a 2+b 2=-2, ∵a 2+b 2≥0,∴a 2+b 2=-2不合题意应舍去,取a 2+b 2=3.评析:(1)本题求的是a 2+b 2,而题中条件是关于a 2+b 2的,把a 2+b 2看成一个整体是一个朴素的数学思想,能帮助我们解决一些较“麻烦”的问题.(2)根据非负数的性质有a 2+b 2≥0,在做题时要注意隐含条件.例4. (1)当代数式x 2+7x +6的值与x +1的值相同时,x 的值为多少?(2)方程x 2+2x -8=0的正整数解为几?分析:(1)两个代数式值相等,即x 2+7x +6=x +1,解这个方程可得x 的值;(2)先解出方程的两个根再看其中的正整数根.解:(1)x 2+7x +6=x +1, x 2+6x +5=0,a =1,b =6,c =5,b 2-4ac =16>0.所以x =-6±162,x 1=-1,x 2=-5,所以x 的值为-1或-5.(2)解方程x 2+2x -8=0, a =1,b =2,c =-8,b 2-4ac =22-4×1×(-8)=36>0, x =-2±362=-1±3, x 1=2,x 2=-4.所以方程x 2+2x -8=0的正整数解为2.评析:(1)题中涉及代数式的值的问题,实质上方程就是表示含有未知数的两个代数式的值相等的式子;(2)题中方程用了公式法,用因式分解法也很方便.例5. 用一根长40cm 的铁丝围成一个面积为91cm 2的矩形,问这个矩形长是多少?若围成一个正方形,它的面积是多少?分析:设长为xcm ,则宽为(402-x )cm ,由相等关系长×宽=面积列出方程.解:设长为xcm ,则宽为(402-x )cm ,由矩形面积等于91cm 2,得x ·(402-x )=91,解这个方程,得x 1=7,x 2=13.当x =7cm 时,402-x =20-7=13(cm )(舍去);当x =13cm 时,402-x =20-13=7(cm ).当围成正方形时,它的边长为404=10(cm ),面积为102=100(cm 2).答:矩形的长为13cm ,若围成正方形,则这个正方形的面积为100cm 2.评析:有一些几何面积问题用到一元二次方程,解这类题时要注意一些条件,如习惯上矩形中较长的边称为长,而较短的边称为宽,故本题中取长为13cm ,宽为7cm 较合适.例6. 解方程2(12-x )2-(x -12)-1=0.分析:因为(12-x )2=(x -12)2,如果把(x -12)看成一个整体,并设x -12=y ,则原方程化为2y 2-y -1=0,先求出y 的值,再反过来求x 的值. 解:设x -12=y ,原方程化为2y 2-y -1=0,a =2,b =-1,c =-1,b 2-4ac =9>0,y =-(-1)±92×2=1±34.y 1=1,y 2=-12.当y =1时,x -12=1,x =32;当y =-12时,x -12=-12,x =0.所以原方程的解是x 1=32,x 2=0.评析:本题如果化成一般形式再求解可能要麻烦些,这里使用了把x -12设为y 的做法,回避了很多计算,这种方法叫做换元法.【方法总结】1. 对某些方程而言因式分解法比较快捷,一般选择方法时应先考虑因式分解法,不适合因式分解法的再考虑其它方法.2. 注意体验类比、转化、降次的数学思想方法.解一元一次方程的基本思路是整理后把未知数的系数化成1;解一元二次方程的基本思路是通过开平方或因式分解把一元二次方程降次、转化成一元一次方程.【预习导学案】(实际问题与一元二次方程) 一. 预习前知1. 两个数的差等于3,积等于18,则这两个数是__________.2. 三个连奇数的平方和等于155,则这三个数是__________.3. 矩形的长比宽大4厘米,面积等于60厘米2,则它的周长为__________.4. 经实验,某物体运动规律满足等式s =40t -5t 2,问t =__________时,s =60. 二. 预习导学1. 两个数的和为2,且积为-15,那么求其中一个数x ,列方程为( )A .x 2-2x -15=0B .x 2+2x +15=0C .x 2-2x +15=0D .x 2+2x -15=02. 某厂2008年总产值达1493万元,比2007年增长11.8%,下列说法: ①2007年总产值为1493(1-11.8%)万元; ②2007年总产值为1493÷(1-11.8%)万元; ③2007年总产值为1493÷(1+11.8%)万元;④若按11.8%的年增长率计算,2010年总产值预计为1493(1+11.8%)万元.其中正确的是( ) A .③④ B .②④ C .①④ D .①②③3. 在一块长12m ,宽10m 的长方形平地中央划出一块地,砌成面积为48m 2的长方形花台,使花台四周的空地的宽度一样,①则花台面积占长方形平地面积的__________;②空地面积与花台面积的比是__________;③如果求花台四周空地的宽度x ,则所列方程为__________. 反思:(1)列一元二次方程解实际问题的一般步骤是怎样的?(2)用一元二次方程解实际问题应该注意什么?【模拟试题】(答题时间:50分钟)一. 选择题1. 方程x (x -1)=0的根是( ) A. 0 B. 1 C. 0,-1 D. 0,12. 方程9(x +1)2-4(x -1)2=0的正确解法是( ) A. 直接开方得3(x +1)=2(x -1)B. 化为一般形式13x 2+5=0C. 分解因式得[3(x +1)+2(x -1)][3(x +1)-2(x -1)]=0D. 直接得x +1=0或x -1=03. 解方程(5x -1)2=3(5x -1)的适当方法是( ) A. 直接开方法 B. 配方法 C. 公式法 D. 因式分解法 4. 若实数x 、y 满足(x +y +2)(x +y -1)=0,则x +y 的值为( ) A. 1 B. -2 C. 2或-1 D. -2或1 5. 方程3x (x -2)=0的解是( )A. x 1=3,x 2=2B. x 1=0,x 2=2C. x 1=13,x 2=2 D. x 1=0,x 2=-2*6. 若a 使得x 2+4x +a =(x +2)2-1成立,则a 的值为( ) A. 5 B. 4 C. 3 D. 2*7. 如果x 2+x -1=0,那么代数式x 3+2x 2-7的值是( ) A. 6 B. 8 C. -6 D. -8 **8. 已知(x +y )(1-x -y )+6=0,则x +y 的值为( ) A. 2 B. -3 C. -2或3 D. 2或-3二. 填空题1. 一元二次方程x 2-2x =0的根是__________. 2. 方程(x -1)(x +2)=2(x +2)的根是__________. *3. 方程 (x -1)(x +2)(x -3)=0的根是__________. 4. 方程x (2x -1)=3(2x -1)的根是__________.*5. 使代数式x 2+x -2的值为0的x 的值是__________.6. 一个数平方的2倍等于这个数的7倍,这个数是__________.**7. 三角形两边的长分别是8和6,第三边的长是方程x 2-12x +20=0的一个实数根,则三角形的周长是__________.*8. 一元二次方程ax 2+bx +c =0,若b =a +c ,则这个方程必有一根为__________.三. 解答题1. 用因式分解法解下列方程:(1)(x -2)2-9=0;(2)3y 2+y =0;(3)2x (3x +2)=9x +6;(4)(3x -1)2=4(x +2)2.2. 用适当的方法解下列方程:(1)(5-8x )2=2;(2)x 2+8x =20;(3)3x 2+2x -3=0;(4)(x -1)(x +2)=70.3. 试求使代数式(x -7)(x +3)的值比(x +5)大10的x 的值.4. 审查下面解方程(x -1)2=2(x -1)的过程回答问题. 方程两边都除以(x -1)得x -1=2, ∴x =3.上述过程对不对,为什么?*5. 直角三角形的三边长是三个连续整数,求这个直角三角形的斜边的长.试题答案一. 选择题1. D2. C3. D4. D5. B6. C7. C8. C二. 填空题1. x 1=0,x 2=22. x 1=-2,x 2=33. x 1=1,x 2=-2,x 3=34. x 1=12,x 2=3 5. x 1=-2,x 2=1 6. 0或72 7. 24 提示:方程的解为2或10,当x =2时,与另两边8和6不能组成三角形应舍去.所以x =10,三角形周长为24. 8. x =-1三. 解答题1. (1)x 1=-1,x 2=5;(2)y 1=0,y 2=-33;(3)x 1=32,x 2=-23;(4)x 1=5,x 2=-35. 2. (1)x 1=5-28,x 2=5+28;(2)x 1=2,x 2=-10;(3)x 1=-1+103,x 2=;(4)x 1=8,x 2=-9.3. 根据题意(x -7)(x +3)-(x +5)=10,解得x 1=9,x 2=-4.4. 不对.当x -1=0时,原方程成立,此时x =1;当x -1≠0时,两边同除以x -1得x -1=2.即x =3.所以原方程的解是x 1=1,x 2=3.5. 设斜边长为x ,则两直角边分别为x -2,x -1.根据题意可得(x -2)2+(x -1)2=x 2,解得x 1=1,x 2=5.当x =1时x -2=-1,x -1=0,不符合题意舍去;当x =5时x -2=3,x -1=4,所以三角形的斜边长为5.。
第22章 一元二次方程及其解法
第22章 一元二次方程及其解法:1、定义:形如:ax 2+bx+c=0(a≠0)的方程叫一元二次方程。
① 是整式方程,②未知数的最高次数是二次,③只含有一个未知数,④二次项系数不为零。
2、化为一元二次方程的一般形式:按降幂排列,二次项系数通常为正,右端为零。
3、一元二次方程的根:一元二次方程的解也叫一元二次方程的根。
代入使方程成立。
解一元二次方程,实际上是把一元二次方程“降次”转化为两个一元一次方程。
4、一元二次方程的解法:①配方法:移项→二次项系数化为一→两边同时加上一次项系数的一半→配方→开方→写出方程的解。
②公式法:x=(-b±√b 2-4ac)/2a.一元二次方程的根的判别式:①当△>0时,方程有两个不相等的实数根,②当△=0时,方程有两个相等的实数根,③当△<0时,方程没有实数根。
注意:应用的前提条件是:a≠0.③直接开平方法④因式分解法:右端为零,左端分解为两个因式的乘积。
(提取公因式;完全平方公式;平方差公式)22.1 一元二次方程一、回顾:1.判断题(下列方程中,是一元二次方程的在括号内划“√”,不是一元二次方程的,在括号内划“×”)1.5x 2+1=0 ( )2.3x 2+x 1+1=0 ( ) 3.4x 2=ax (其中a 为常数) ( )4.2x 2+3x =0 ( ) 5.5132+x =2x ( ) 6.22)(x x + =2x ( )7.|x 2+2x |=4 ( )2.关于x 的方程(k -2)x ∣k ∣-3=0是一元二次方程,则k 的值为( )A.±2B.2C.-2D.-13.绿苑小区住宅设计,准备在每两栋楼房之间开辟面积为900 m 2的一块长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?如果设其长为x 米,那么所列的方程是( )A.x(10+x)=900B.x(10-x)=900C.x 2-10x+900=0D.x 2-10x -900=04.一元二次方程x 2-4=0的根为( )A.x=2B.x=-2C.x 1=2,x 2=-2D.x=45.关于x 2=-2的说法,正确的是( )A .由于x 2≥0,故x 2不可能等于-2,因此这不是一个方程B .x 2=-2是一个方程,但它没有一次项,因此不是一元二次方程C .x 2=-2是一个一元二次方程D .x 2=-2是一个一元二次方程,但不能解6.方程(x+4)2=2x -3化为一般式是____________,二次项系数是____________,一次项系数是____________,常数项是____________.二、强化训练:1.下列关于x 的方程中,一元二次方程的个数有( ) 2x 2-32x=0 x x 1 =2x -1 x 2-3y=0 x 2-x 2(x 2+1)-3=0 A.0个 B.1个 C.2个 D.3个2.已知关于x 的方程(k+3)x 2-3kx+2k -1=0,它一定是( )A.一元二次方程B.一元一次方程C.一元二次方程或一元一次方程D.无法确定3.方程(x -1)(x+3)=12化为ax 2+bx+c=0形式后,a,b,c 的值为( )A.1,-2,-15B.1,-2,-15C.1,2,-15D.-1,2,-154.如果a 的值使x 2+4x+a=(x+2)2-1成立,那么,a 的值为( )A.5B.4C.3D.25.关于x 的方程(m 2-4)x 2-(m -2)x -1=0,当m__________时,是一元二次方程;当m=_________时是一元一次方程.6.关于x 的方程ax 2-2m -3=x (2-x )是一元二次方程,则a 的取值范围是____________.7.列方程解应用题:两连续偶数的积是120,求这两个数.设其中一个较大的偶数为x ,可列方程为____________,化为一般式为____________三、巩固与加强1.方程3x 2-4=-2x 化为一般形式后,二次项系数、一次项系数、常数项分别为( )A.3,-4,-2B.3,2,-4C.3,-2,-4D.2,-2,0 2.若方程(m -1)x 2+m x=1是关于x 的一元二次方程,则m 的取值范围是( )A.m≠1B.m≥0C.m≥0且m≠1D.m 为任意实数3.若x=1-m1是方程mx -2m+2=0的根,则x -m 的值为( ) A.0 B.1 C.-1 D.24.关于x 的一元二次方程(a -1)x 2+x+a 2-1=0的一个根是0,则a 的值为( )A.1B.-1C.1或-1D.21 5.px 2-3x+p 2-p=0是关于x 的一元二次方程,则( )A.p=1B.p >0C.p≠0D.p 为任意实数6.关于x 的方程mx 2-3x=x 2-mx+2是一元二次方程的条件是____________.7.以下各方程:①2x 2-x -3=0 ②4y -y 2=0 ③x 3-x 2=1 ④t 2=0 ⑤x 2-y -1=0 ⑥21x -3=0,其中不是一元二次方程的是___________(只需填序号即可).8.若x=1是一元二次方程ax 2=bx+2的一个根,则a -b 的值为____________.9.使分式242+-x x 的值等于零的x 是____________. 10.依据下列条件,分别编写两个关于x 的一元二次方程:(1)方程有一个根是-1,一次项系数是-5;(2)有一个根是2,二次项系数为1.22.2 降次——解一元二次方程 达标训练一、基础训练:1.将下列方程各根分别填在后面的横线上:(1)x 2=169, x 1= ,x 2= ;(2)45-5x 2=0, x 1= ,x 2= .2.填空:(1)x 2+6x +( )=(x + )2;(2)x 2-8x +( )=(x -)2;(3)x 2+23x +( )=(x + )2. 3.方程x 2+6x -5=0的左边配成完全平方后所得方程为( )A.(x +3)2=14B.(x -3)2=14C.(x +6)2=12D.以上答案都不对4.用配方法解下列方程,配方错误的是()A.x 2+2x -99=0,化为(x +1)2=100B.t 2-7t -4=0,化为 (t -27)2=465 C.x 2+8x +9=0,化为(x +4)2=25 D.3x 2-4x -2=0,化为(x -32)2=910 5.方程2x 2-8x -1=0 应用配方法时,配方所得方程为 .6.如果x 2-2(m +1)x +m 2+5=0是一个完全平方公式,则m .7.当m 为 时,关于x 的方程(x -p )2+m =0有实数解.8.解下列方程:(1)9x 2=8; (2)9(x +31)2=4; (3)4x 2+4x +1=25.二、巩固加强:9.解下列方程:(选择合适的方法)x 2+x -1=0 2x 2-5x +2=0 2x 2-4x +1=0.(x -1)2=4. x 2-4x +1=0.10.(1)用配方法证明2x 2-4x +7恒大于零;(2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式.。
九年级数学上册第22章一元二次方程的解法2配方法pptx课件新版华东师大版
16 . 将 代 数 式 x2 - 10x + 5 配 方 后 , 发 现 它 的 最 小 值 为 __-__2_0___.
第22章 一元二次方程
2.配方法
提示:点击 进入习题
新知笔记
1 见习题
2 完全平方式; 非负常数
1D 2B 3A
4C
5 见习题
答案显示
6 见习题 7A 8C 9D 10 见习题
11 见习题 12 D 13 A 14 A 15 181
答案显示
16 -20 17 1或-3
18 见习题
19 见习题
1.一元二次方程配方的方法:(1)当二次项系数为1时,方 程两边都加上___一__次__项__系__数__一__半_______的平方;(2)当二 次项系数不为1时,方程两边同时除以 ____二__次__项__系__数____,将二次项系数化为1后再配方.
4.用配方法解下列方程,其中应在左右两边同时加上4的 是( C ) A.x2-2x=5 B.x2-8x=4 C.x2-4x=3 D.x2+2x=5
5.【教材改编题】将下列各式配方:
(1)x2-4x+___4___=(x-__2____)2;
(2)x2+12x+__3_6___=(x+___6___)2;
(3)x2-
3 2
9
3
x+___16___=(x-___4___)2;
(4)x2+2 2 x+___2___=(x+____2__)2.
6.用配方法解方程: (1)【2021·厦门期末】x2-2x-5=0;
2023九年级数学上册第22章一元二次方程22.2一元二次方程的解法3公式法教案(新版)华东师大版
作用与目的:
-巩固学生在课堂上学到的“一元二次方程的解法--公式法”知识点和技能。
-通过拓展学习,拓宽学生的知识视野和思维方式。
-通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
学生学习效果
1.知识与技能:
-学生能够理解一元二次方程的解法--公式法的基本概念和原理。
重点难点及解决办法
重点:一元二次方程的公式法及其应用。
难点:理解并运用公式法求解实际问题,掌握公式法与判别式之间的关系。
解决办法:
1.通过具体实例,引导学生理解一元二次方程的公式法,让学生在实际问题中体会公式的运用。
2.利用数形结合,让学生直观地理解公式法与判别式之间的关系,突破难点。
3.设计梯度性练习题,让学生在练习中逐步掌握公式法的运用,巩固知识点。
-学生能够运用公式法求解一元二次方程,并正确运用判别式判断方程的解的情况。
-学生能够在实际问题中运用公式法,求解实际问题,并能够解释结果的实际意义。
2.过程与方法:
-学生能够通过自主探索和小组合作的方式,积极主动地参与课堂学习和实践活动。
-学生能够通过听讲、思考和讨论,深入理解一元二次方程解法--公式法的内涵和应用。
3.在线学习平台:利用在线学习平台,提供丰富的学习资源和练习题,方便学生自主学习和巩固知识。
4.实物教具:使用实物教具,如数学模型、图形展示等,帮助学生更好地理解和掌握一元二次方程的解法。
5.练习册与评价工具:提供练习册和评价工具,及时检测学生的学习效果,为学生提供反馈和指导。
教学实施过程
1.课前自主探索
-提问与讨论:针对不懂的问题或新的想法,勇敢提问并参与讨论。
人教版九年级上册数学第22章 二次函数 用二次函数的图象解一元二次方程 (不等式)
(2)解法二:利用二次函数的图象与坐标轴的交点求解.如图①,方程x2-x-1= 0的根是二次函数y=______________的图象与x轴交点的横坐标,即x1,x2 就是方程的解.
x2-x-1
(3)解法三:利用两个函数图象的交点求解.
①方程x2-x-1=0的根是二次函数y=________的图象与直线y=________的交
12.(2019·温州)如图,在平面直角坐标系中,二次函数 y=-12x2 +2x+6 的图象交 x 轴于点 A,B.
(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值 范围.
解:令 y=0,则-12x2+2x+6=0,解得 x1=-2,x2=6. ∴A(-2,0),B(6,0). 由函数图象得,当 y≥0 时,-2≤x≤6.
人教版九年级上
第22章 二次函数
22.2 二次函数与一元二次方程 第2课时 用二次函数的图象解一元二
次方程 (不等式)
提示:点击 进入习题
1 见习题 2D 3C 4B 5D
答案显示
6 x1<x<x2;x<x1或x>x2 7D 8B 9 x<-3或x>1 10 见习题
11 见习题 12 见习题
答案显示
【答案】x<-3ቤተ መጻሕፍቲ ባይዱx>1
10.小明在复习数学知识时,针对“求一元二次方程的解”总结了以下几种方法,请 你将有关内容补充完整.
例题:求一元二次方程x2-x-1=0的两个根. (1)解法一:选择一种合适的方法(公式法、配方法、因式分解法)求解.
解:公式法:∵a=1,b=-1,c=-1, ∴Δ=b2-4ac=(-1)2-4×1×(-1)=5>0. ∴x=1±2 5,即 x1=1+2 5,x2=1-2 5.(所选方法不唯一)
华东师大版九年级数学上册《22章 一元二次方程 22.2 一元二次方程的解法 公式法》公开课课件_24
2a
2 1
2
即 x1 2, x2 3.
四、巩固练习
用公式法解下列方程:(课本第12页练习1)
(1)x2 x 6 0; (4)4x2 6x 0;
解(:4)a 4, b 6, c 0.
b2 4ac (6)2 4 4 0 36 0.
解:(1)a 1, b 4, c 7.
b2 4ac (4)2 4 1 (7) 44 0.
方程有两个不等的实数根
x b b2 4ac (4) 44 4 2 11 ,
2a
2 1
2
即 x1 2 11, x2 2 11.
(2)求出 b2-4ac 的值(若b2-4ac<0 ,方程无实数根);
一般步骤:
(3)在b2-4ac≥0的前提下,把 a,b,c 的值代入求根公式进行计算;
(4)写出方程的根: x1=?, x2=?
八、课堂反思
1、这节课你获得了哪些知识与方法? 2、这节课你在解决问题的过程中,有哪些 易错点? 3、这节课你还有哪些疑惑未解决?
有两个不等的实数根,则m的取值范围 是 m<1 .
解: b2 4ac (2)2 4 1 m 4 4m 0,
m 1.
2、已知关于x的一元二次方程kx2-2x-1=0有
两个不等的实数根,则k的取值范围是( B )
A.k>-1
B. k>-1 且k≠0
C.k<1
4.如果分式 x2 x 2 的值为零, 那么x= -2 . x 1
七、总结提高
根的判别式:∆=b2-4ac
∆>0 有两个不等的实数根 ∆=0 有两个相等的实数根 ∆<0 无实数根
第22章 一元二次方程复习
第22章一元二次方程复习(1)一元二次方程及其解法樊城区太平店中学刘玉萍一、内容与内容解析1、内容复习一元二次方程及其有关的概念,一元二次方程的基本解————配方法、公式法、因式分解法,一元二次方程根与系数的关系等知识,建立知识体系,综合运用一元二次方程的知识解决有关的问题。
2、内容解析本章学习了一元二次方程。
在学习中通过具体实例认识了一元二次方程,探索了一元二次方程的解法,研究了实际问题与一元二次方程,分别讨论了传播问题、增长率问题和几何图形面积问题。
本章的重点是一元二次方程的解法及应用一元二次方程解决实际问题。
这些知识都是方程领域的基础知识,在以后学习“二次函数”中“用函数的观点看一元二次方程”也要用到,这部分内容掌握不好,将会影响后续内容的学习。
学好这部分内容的关键是要使学生理解一元二次方程的一般形式;一元二次方程根的情况;一元二次方程根与系数的关系等知识。
并将一元二次方程与一元一次方程作类比,因为一元二次方程是一元一次方程的拓展和延伸,一元一次方程是学习一元二次方程的基础。
在本章的学习过程中需要学生通过观察、对比、归纳、类比等来发现一元二次方程的解法,同时还要注意引导学生分析方程的特点,引导学生进行转化,是学生学会把未知化为已知,把复杂问题化为简单问题的思考方法。
作为本章复习课的第一节课,本节主要复习一元二次方程的有关概念;一元二次方程的解法;一元二次方程的根与系数的关系。
本节内容是对本章重点知识的巩固和提高,通过复习使学生能够熟练地选用适当的方法解一元二次方程,进一步体会一元二次方程化归降次的思想。
由以上的分析,确定本节课的教学重点是:灵活应用一元二次方程的解法解决有关的问题。
二、教材解析本节课主要内容是复习巩固一元二次方程有关概念和一元二次方程的解法及根与系数的关系等知识,重点是一元二次方程的解法。
在知识回顾的过程中,结合问题让学生通过独立思考,回顾所学的内容,建立相应的知识结构图。
华师版九年级数学上册教案:第22章 一元二次方程2 一元二次方程的解法(5课时)
22.2 一元二次方程的解法1 直接开平方法和因式分解法(第1课时)一、基本目标1.理解直接开平方法和因式分解法,掌握用两种方法解一元二次方程的一般步骤,并会根据方程的特点灵活选用方法解一元二次方程.2.通过利用已学知识求解一元二次方程,获得成功的体验,体会转化思想的应用. 二、重难点目标 【教学重点】用直接开平方法和因式分解法解一元二次方程. 【教学难点】根据方程特点选择合适的方法解一元二次方程.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P20~P25的内容,完成下面练习. 【3 min 反馈】1.直接开平方法:利用__平方根的定义__解一元二次方程的方法. 2.因式分解法:利用__因式分解__求出方程的解的方法.3.因式分解法的依据:如果两个因式的积等于0,那么两个因式中__至少__有一个等于0.反过来,如果两个因式中有一个等于0,那么__它们的积__就等于0.4.方程(x -1)2=1的解为__x 1=2,x 2=0__.5.用因式分解法解一元二次方程(4x -1)(x +3)=0时,可将原方程转化为两个一元一次方程,其中一个方程是4x -1=0,则另一个方程是__x +3=0__.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】用直接开平方法或因式分解法解下列方程: (1)(x +1)2=2; (2)(2x +1)2=2x +1; (3)-x 2=4x ; (4)12(x +5)2=9.【互动探索】(引发学生思考)观察方程的特点,确定解方程的方法及一般步骤. 【解答】(1)直接开平方,得x +1=±2. 故x 1=2-1,x 2=-2-1.(2)移项,得(2x +1)2-(2x +1)=0.方程左边分解因式,得(2x +1)(2x +1-1)=0,所以2x +1=0或2x +1-1=0,得x 1=-12,x 2=0.(3)方程可变形为x 2+4x =0.方程左边分解因式,得x (x +4)=0,所以x =0或x +4=0,得x 1=0,x 2=-4.(4)方程两边同时乘2,得(x +5)2=18.直接开平方,得x +5=±32,所以x 1=32-5,x 2=-32-5.【互动总结】(学生总结,老师点评)(1)用直接开平方法解一元二次方程的一般步骤:①观察方程两边是否符合x 2=b (b ≥0)或(mx +a )2=b (m ≠0,b ≥0)的形式;②直接开平方,得到两个一元一次方程;③解这两个一元一次方程,得到原方程的两个根.(2)用因式分解法解一元二次方程的一般步骤:①移项,将方程的右边化为0;②将方程的左边分解成两个一次因式的积的形式;③令每个因式分别为0,得到两个一元一次方程;④解这两个一元一次方程,得到原方程的两个根.活动2 巩固练习(学生独学)1.一元二次方程x 2-16=0的根是( D ) A .x =2 B .x =4 C .x 1=2,x 2=-2D .x 1=4,x 2=-42.在实数范围内定义一种运算“﹡”,其规则为a ﹡b =a 2-b 2,根据这个规则,方程(x +1)﹡3=0的解为__x 1=2,x 2=-4__.【教师点拨】根据新定义,由(x +1)﹡3=0,得(x +1)2-32=0. 3.解下列方程: (1)4x 2=25; (2)x (x +2)=x +2.解:(1)方程可化为x 2=254.直接开平方,得x =±52,所以x 1=52,x 2=-52.(2)移项,得x (x +2)-(x +2)=0.方程左边分解因式,得(x +2)(x -1)=0,所以x +2=0或x -1=0,得x 1=-2或x 2=1.活动3 拓展延伸(学生对学)【例2】由多项式乘法:(x +a )(x +b )=x 2+(a +b )x +ab ,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x 2+(a +b )x +ab =(x +a )(x +b ).示例:分解因式:x 2+5x +6=x 2+(2+3)x +2×3=(x +2)(x +3). (1)尝试:分解因式:x 2+6x +8=(x +__2__)(x +__4__); (2)应用:请用上述方法解方程:x 2-3x -4=0.【互动探索】理解“十字相乘法”的含义→对方程左边因式分解(十字相乘法)→解方程.【解答】∵x 2-3x -4=0,即x 2+(-4+1)x +(-4)×1=0,∴(x -4)(x +1)=0,则x +1=0或x -4=0,解得x 1=-1,x 2=4.【互动总结】(学生总结,老师点评)解此类题时,要把握新定义的内涵,抓住关键词语,合理套用求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)直接开平方法⎩⎪⎨⎪⎧定义依据:平方根的定义形式:方程x 2=a (a ≥0)的根为x 1=a ,x 2=-a因式分解法⎩⎪⎨⎪⎧定义依据:若ab =0,则a =0或b =0方法:提公因式、完全平方公式、平方差公式请完成本课时对应练习!2 配方法(第2课时)一、基本目标1.理解配方法解一元二次方程的含义,并掌握用配方法解一元二次方程的一般步骤. 2.经历利用完全平方公式推导配方法的过程,掌握新的解一元二次方程的方法——配方法.二、重难点目标 【教学重点】用配方法解一元二次方程. 【教学难点】把一元二次方程通过配方转化为(x ±h )2=k (k ≥0)的形式.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P25~P27的内容,完成下面练习. 【3 min 反馈】1. (1)x 2+6x +__9__=(x +__3__)2;(2)x 2-x +__14__=⎝⎛⎭⎫x -!!!!__12__####2; (3)4x 2+4x +__1__=(2x + __1__)2.2.配方法:通过方程的简单变形,将左边配成一个含有未知数的__完全平方式__,右边是一个__非负常数__,从而可以直接开平方求解,这种解一元二次方程的方法叫做配方法.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】用配方法解下列方程: (1)x 2-4x -12=0; (2)22x 2+4x -6=0.【互动探索】(引发学生思考)用配方法解一元二次方程的一般步骤是什么? 【解答】(1)原方程可化为x 2-4x =12. 配方,得x 2-4x +4=16,即(x -2)2=16. 直接开平方,得x -2=±4, 所以x 1=-2,x 2=6. (2)移项,得22x 2+4x =6. 两边同除以22,得x 2+211x =311.配方,得x 2+211x +⎝⎛⎭⎫1112=311+⎝⎛⎭⎫1112,即⎝⎛⎭⎫x +1112=34121. 直接开平方,得x +111=±3411,所以x 1=-1+3411,x 2=-1-3411.【互动总结】(学生总结,老师点评)用配方法解一元二次方程的一般步骤:(1)变形:将方程化为一般形式ax 2+bx +c =0(a ≠0);(2)移项:将常数项移到方程的右边;(3)系数化为1:方程的两边同除以二次项的系数,将二次项系数化为1;(4)配方:在方程的两边各加上一次项系数绝对值的一半的平方,把原方程化为(x ±h )2=k 的形式;(5)求解:若k ≥0,则利用直接开平方法求解;若k <0,则原方程无实数根.活动2 巩固练习(学生独学)1.用配方法解下列方程,配方正确的是( D ) A .2y 2-4y -4=0可化为(y -1)2=4 B .x 2-2x -9=0可化为(x -1)2=8 C .x 2+8x -9=0可化为(x +4)2=16 D .x 2-4x =0可化为(x -2)2=42.用配方法解下列方程,其中应在方程左右两边同时加上4的是( C ) A .x 2-2x =5 B .2x 2-4x =5 C .x 2+4x =3D .x 2+2x =53.用配方法解方程2x 2-x =4,配方后方程可化为⎝⎛⎭⎫x -142=__3316__. 4.用配方法解下列方程:(1)x 2+6x +1=0; (2)2x 2-3x +12=0.解:(1)x 1=22-3,x 2=-22-3. (2)x 1=5+34,x 2=-5+34. 活动3 拓展延伸(学生对学)【例2】试用配方法说明:无论x 取何值,代数式x 2-4x +5的值总是正数,并指出当x 取何值时,这个代数式的值最小,最小值是多少?【互动探索】这是一个二次三项式的最值问题→对x 2-4x +5进行配方→确定代数式的最小值.【解答】x 2-4x +5=(x -2)2+1. ∵(x -2)2≥0, ∴(x -2)2+1≥1,∴不论x 为何值,代数式x 2-4x +5的值总是正数,且当(x -2)2=0,即x =2时,代数式x 2-4x +5有最小值,最小值为1.【互动总结】(学生总结,老师点评)已知代数式是一个关于x 的二次三项式且含有一次项,在求它的最值时,通常用配方法将原代数式变形为一个完全平方式加一个常数的形式,再根据一个数的平方是非负数求出原代数式的最值.环节3 课堂小结,当堂达标 (学生总结,老师点评)配方法⎩⎪⎨⎪⎧定义依据:完全平方公式:a 2±2ab +b 2=(a ±b )2形式:方程(x ±h )2=k (k ≥0)的根为x 1=k ±h ,x 2=-k ±h请完成本课时对应练习!3 公式法(第3课时)一、基本目标1.理解求根公式的推导过程,能正确推导出一元二次方程的求根公式.2.理解b 2-4ac ≥0是求根公式使用的前提条件和重要的组成部分,当b 2-4ac <0时,方程无解.3.理解和掌握用公式法解一元二次方程的一般步骤,并能正确运用公式法解一元二次方程.二、重难点目标 【教学重点】用公式法解一元二次方程. 【教学难点】 求根公式的推导过程.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P28~P31的内容,完成下面练习. 【3 min 反馈】 1.一元二次方程ax 2+bx +c =0(a ≠0)的求根公式是x =__-b ±b 2-4ac 2a(b 2-4ac ≥0)__.将一元二次方程中系数a 、b 、c 的值,直接代入这个公式,就可以求得方程的根.这种解一元二次方程的方法叫做__公式法__.2.用公式法解方程2x 2-3x -1=0时,a =__2__,b =__-3__,c =__-1__,则b 2-4ac =__17__,代入求根公式,得x =__3±174__.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】用公式法解下列方程:(1)5x 2-4x -1=0; (2)3x 2+5(2x +1)=0.【互动探索】(引发学生思考)用公式法解一元二次方程的一般步骤是什么? 【解答】(1)∵a =5,b =-4,c =-1,∴b 2-4ac =(-4)2-4×5×(-1)=16+20=36, ∴x =-b ±b 2-4ac 2a =4±362×5=4±610,∴x 1=1,x 2=-15.(2)将方程化为一般形式,得3x 2+10x +5=0. ∵a =3,b =10,c =5,∴b 2-4ac =102-4×3×5=100-60=40, ∴x =-b ±b 2-4ac 2a =-10±402×3=-5±103,∴x 1=-5+103,x 2=-5-103.【互动总结】(学生总结,老师点评)用公式法解一元二次方程的一般步骤:(1)把一元二次方程化为一般形式ax 2+bx +c =0(a ≠0);(2)确定a 、b 、c 的值;(3)求出b 2-4ac 的值;(4)判断b 2-4ac 的符号.当b 2-4ac ≥0时,把a 、b 及b 2-4ac 的值代入求根公式,求出x 1、x 2;当b 2-4ac <0时,b 2-4ac 无意义,此时方程无解.活动2 巩固练习(学生独学)1.以x =b ±b 2+4c2为根的一元二次方程可能是( D )A .x 2+bx +c =0B .x 2+bx -c =0C .x 2-bx +c =0D .x 2-bx -c =02.方程3x 2-5x +1=0的解,正确的是( B ) A .x =-5±136B .x =5±136C .x =-5±133D .x =5±1333.用公式法解下列方程: (1)3x 2-6x -1=0; (2)(x -1)(x +3)=12; (3)x 2-x +3=0.解:(1)x 1=3+233,x 2=3-233.(2)x 1=-5,x 2=3. (3)方程没有实数解. 活动3 拓展延伸(学生对学)【例2】我们规定一种运算:⎪⎪⎪⎪a b c d =ad -bc ,例如:⎪⎪⎪⎪24 35=2×5-3×4=10-12=-2.按照这种运算的规定,当x 取何值时,⎪⎪⎪⎪x 1 0.5-x 2x =0?【互动探索】理解新定义的规则→转化所求式子形式→得一元二次方程→利用公式法解方程.【解答】由⎪⎪⎪⎪x 1 0.5-x 2x =0,得2x 2-1×(0.5-x )=0. 整理,得4x 2+2x -1=0,则a =4,b =2,c =-1,∴b 2-4ac =22-4×4×(-1)=20, ∴x =-2±202×4=-1±54,∴当x =-1+54或-1-54时,⎪⎪⎪⎪x 1 0.5-x 2x =0.【互动总结】(学生总结,老师点评)这是一个关于二元一次方程的新定义问题,解这类题的关键是根据新定义得到方程,再解方程即可.环节3 课堂小结,当堂达标 (学生总结,老师点评)公式法⎩⎪⎨⎪⎧定义—求根式公:-b ±b 2-4ac 2a(b 2-4ac ≥0)推导过程—配方法一般形式—方程ax 2+bx +c =0(a ≠0)的根为x =-b ±b 2-4ac 2a(b 2-4ac ≥0)请完成本课时对应练习!4 一元二次方程根的判别式(第4课时)一、基本目标1.了解根的判别式,掌握由根的判别式符号判断一元二次方程ax 2+bx +c =0(a ≠0)的实数根的情况.2.经历思考、探究一元二次方程ax 2+bx +c =0(a ≠0)的根的过程,学会合作交流,并掌握代数学习的常用方法——分类讨论法.二、重难点目标 【教学重点】由根的判别式符号判断一元二次方程ax 2+bx +c =0(a ≠0)的实数根的情况. 【教学难点】推导一元二次方程ax 2+bx +c =0(a ≠0)的b 2-4ac 的符号与其根的关系.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P31~P32的内容,完成下面练习.【3 min反馈】1.根的判别式:一元二次方程ax2+bx+c=0(a≠0)的__b2-4ac__叫做一元二次方程根的判别式,通常用符号“__Δ__”来表示.2.一元二次方程ax2+bx+c=0(a≠0)根的情况:当Δ__>0__时,方程有两个不相等的实数根;当Δ__=0__时,方程有两个相等的实数根;当Δ<0时,方程__没有__实数根.3.一元二次方程x2-5x-78=0根的情况是__有两个不相等的实数根__.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】不解方程,判定下列方程的根的情况:(1)16x2+8x=-3;(2)9x2+6x+1=0;(3)2x2-9x+8=0;(4)x2-7x-18=0.【互动探索】(引发学生思考)不解方程,要判断方程的根的情况,结合一元二次方程ax2+bx+c=0(a≠0)中Δ的符号与根的关系,各个方程的Δ与0的大小关系是什么?相应的方程根的情况是什么?【解答】(1)原方程可变形为16x2+8x+3=0,则a=16,b=8,c=3.∵Δ=b2-4ac=82-4×16×3=64-192=-128<0,∴方程没有实数根.(2)a=9,b=6,c=1.∵Δ=b2-4ac=62-4×9×1=36-36=0,∴方程有两个相等的实数根.(3)a=2,b=-9,c=8.∵Δ=b2-4ac=(-9)2-4×2×8=81-64=17>0,∴方程有两个不相等的实数根.(4)a=1,b=-7,c=-18.∵Δ=b2-4ac=(-7)2-4×1×(-18)=49+72=121>0,∴方程有两个不相等的实数根.【互动总结】(学生总结,老师点评)不解一元二次方程,由Δ确定方程根的情况的一般步骤:(1)将原方程化为一般形式;(2)确定a、b、c的值;(3)计算b2-4ac的值;(4)判断b2-4ac与0的大小;(5)得出结论.活动2巩固练习(学生独学)1.一元二次方程x2+3x+5=0的根的情况是(C)A.有两个不相等的实数根B.有两个相等的实数根C .没有实数根D .无法判断2.若关于x 的一元二次方程x 2+x -m =0有实数根,则m 的取值范围是( B ) A .m ≥14B .m ≥-14C .m ≤14D .m ≤-14【教师点拨】若一元二次方程ax 2+bx +c =0(a ≠0)有实数根,则b 2-4ac ≥0. 3.已知方程x 2+px +q =0有两个相等的实数根,则p 与q 的关系是__p 2=4q __. 4.不解方程,试判断下列方程的根的情况: (1)2+5x =3x 2;(2)x 2-(1+23)x +3+4=0. 解:(1)方程有两个不相等的实数根. (2)方程没有实数根.5.已知关于x 的方程kx 2-6x +9=0,问k 为何值时,这个方程: (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?解:(1)当k <1且k ≠0时,方程有两个不相等的实数根. (2)当k =1时,方程有两个相等的实数根. (3)当k >1时,方程没有实数根. 活动3 拓展延伸(学生对学)【例2】已知关于x 的一元二次方程(a +c )x 2+2bx +(a -c )=0,其中a 、b 、c 分别为△ABC 三边的长.若方程有两个相等的实数根,试判断△ABC 的形状,并说明理由.【互动探索】方程有两个相等的实数根→得出a 、b 、c 的数量关系→确定三角形的形状. 【解答】△ABC 是直角三角形.理由如下:∵关于x 的一元二次方程(a +c )x 2+2bx +(a -c )=0有两个相等的实数根, ∴Δ=0,即(2b )2-4(a +c )(a -c )=0, ∴a 2=b 2+c 2,∴△ABC 是直角三角形.【互动总结】(学生总结,老师点评)解此类题时,先根据根的情况得到判别式的符号,再推出系数之间的关系,进而解决问题.【例3】如果关于x 的方程mx 2-2(m +2)x +m +5=0没有实数根,试判断关于x 的方程(m -5)x 2-2(m -1)x +m =0的根的情况.【互动探索】方程mx 2-2(m +2)x +m +5=0没有实数根→确定m 的取值范围→分类讨论确定方程(m -5)x 2-2(m -1)x +m =0的根的情况.【解答】∵方程mx 2-2(m +2)x +m +5=0没有实数根,∴Δ=[-2(m +2)]2-4m (m +5)=4(m 2+4m +4-m 2-5m )=4(4-m )<0,∴m >4.对于方程(m -5)x 2-2(m -1)x +m =0,当m =5时,方程有一个实数根;当m ≠5时,Δ1=[-2(m -1)]2-4m (m -5)=12m +4.∵m >4,∴Δ1=12m +4>0,∴此时方程有两个不相等的实数根.综上,当m =5时,方程(m -5)x 2-2(m -1)x +m =0有一个实数根;当m >4且m ≠5时,方程(m -5)x 2-2(m -1)x +m =0有两个不相等的实数根.【互动总结】(学生总结,老师点评)解此题时,不要忽略对方程(m -5)x 2-2(m -1)x +m =0是否为一元二次方程进行讨论,此方程可能是一元一次方程.环节3 课堂小结,当堂达标(学生总结,老师点评)一元二次方程根的判别式⎩⎪⎨⎪⎧ 定义——Δ=b 2-4ac 与ax 2+bx +c =0(a ≠0)实数根的关系⎩⎪⎨⎪⎧ Δ>0↔有两个不相等的实数根Δ=0↔有两个相等的实数根Δ<0↔没有实数根请完成本课时对应练习!5 一元二次方程的根与系数的关系(第5课时)一、基本目标1.理解并掌握一元二次方程的根与系数的关系.2.能利用一元二次方程根与系数的关系解决相关问题.二、重难点目标【教学重点】一元二次方程两根之和及两根之积与方程系数之间的关系.【教学难点】一元二次方程的根与系数的关系的推导及其应用.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P33~P35的内容,完成下面练习.【3 min 反馈】1.一元二次方程根与系数的关系:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,则有x 1+x 2=__-b a __,x 1x 2=__c a __. 特殊形式:若x 2+px +q =0的两根为x 1、x 2,则x 1+x 2=__-p __,x 1x 2=__q __.2.已知x 1、x 2是一元二次方程x 2-6x -15=0的两根,则x 1+x 2=__6__,x 1x 2=__-15__.3.已知实数x 1、x 2满足x 1+x 2=11,x 1x 2=30,则以x 1、x 2为根的一元二次方程是__x 2-11x +30=0__.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】已知x 1、x 2是方程x 2+6x +3=0的两实数根,不解方程,求下列代数式的值.(1)(x 1-x 2)2; (2)x 2x 1+x 1x 2. 【互动探索】(引发学生思考)方程x 2+6x +3=0的根与系数的关系怎样?所求代数式与它们的关系有什么联系?【解答】∵x 1、x 2是方程x 2+6x +3=0的两实数根,∴x 1+x 2=-6,x 1x 2=3.(1)(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(-6)2-4×3=24.(2)x 2x 1 + x 1x 2=x 22 + x 21x 1x 2=(x 1 + x 2)2-2x 1x 2x 1x 2=(-6)2-2×33=10. 【互动总结】(学生总结,老师点评)(1)解此类题时,先根据根与系数的关系得到两根和与两根积,再把所求代数式变形,最后利用整体代入法计算即可.(2)常见的与一元二次方程根的和、积有关系的代数式变形:①x 21 + x 22=(x 1 + x 2)2-2x 1x 2; ②(x 1-x 2)2=(x 1+x 2)2-4x 1x 2;③1x 1+1x 2=x 1+x 2x 1x 2; ④x 2x 1+x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2; ⑤(x 1+k )(x 2+k )=x 1x 2+k (x 1+x 2)+k 2;⑥|x 1-x 2|=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2.活动2巩固练习(学生独学)1.方程x2-6x+10=0的根的情况是(C)A.两个实根和为6B.两个实根之积为10C.没有实数根D.有两个相等的实数根2.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程可能是(C) A.x2+3x-2=0 B.x2+3x+2=0C.x2-3x+2=0 D.x2-2x+3=03.已知关于x的方程5x2+kx-6=0的一个根2,则k=__-7__,另一个根为__-35__.4.设a、b是方程x2+2x-2019=0的两个不相等的实数根.(1)a+b=__-2__,ab=__-2019__,2a2+4a=__4038__;(2)求代数式a2+3a+b的值.解:a2+3a+b=a2+2a+a+b=2019-2=2017.5.请利用一元二次方程的根与系数关系解决下列问题:(1)若x2+bx+c=0的两根为-2和3,求b和c的值;(2)设方程2x2-3x+1=0的两根为x1、x2,不解方程,求1x1+1x2的值.解:(1)b=-1,c=-6.(2)1x1+1x2=3.活动3拓展延伸(学生对学)【例2】设一元二次方程x2-6x+k=0的两根分别为x1、x2.(1)若x1=2,求x2的值;(2)若k=4,且x1、x2分别是Rt△ABC的两条直角边的长,试求Rt△ABC的面积.【互动探索】(1)已知方程一根→利用根与系数的关系得方程的另一个根.(2)分析法:Rt△的面积→与两直角边的乘积相关,即x1x2的乘积关系→根与系数的关系,确定x1x2的值.【解答】(1)∵x1、x2是一元二次方程x2-6x+k=0的两根,且x1=2,∴x1+x2=-(-6),即2+x2=6,∴x2=4.(2)∵x1、x2是一元二次方程x2-6x+k=0的两根,k=4,∴x1·x2=k=4.又∵x1、x2分别是Rt△ABC的两条直角边的长,∴S Rt△ABC=12x1·x2=12×4=2.【互动总结】(学生总结,老师点评)求(2)问时,弄清直角三角形的面积与方程两实根的关系是解决问题的关键.环节3 课堂小结,当堂达标 (学生总结,老师点评)一元二次方程的根与系数的关系:ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,则x 1+x 2=-b a ,x 1x 2=c a. 特殊地,x 2+px +q =0的两根为x 1、x 2,则x 1+x 2=-p ,x 1x 2=q .请完成本课时对应练习!。
华东师大版九年级数学上册习题课件:微专题2 一元二次方程的解法技巧与运用
解:(1)∵Δ=(2k+1)2-4(k2+k)=1>0,∴方程有两
个不相等的实数根.
(2)一元二次方程 x2-(2k+1)x+k2+k=0 的解为 x=
2k+1± 2
1,即
x1=k,x2=k+1.∵k<k+1,∴AB≠AC.当
AB=k,AC=k+1,且 AB=BC 时,△ ABC 是等腰三角
形,则 k=5;当 AB=k,AC=k+1,且 AC=BC 时,△ ABC
3
专题训练
类型 1 巧用一元二次方程及根的定义
1. 若方程 x2-4x-3k=0 与 x2-x-6=0 有一根相
同,则 k=( C )
A.0 和 1
B.4
C.4 和-1
D.0
4
2. m 是方程 x2+x-1=0 的根,则式子 m3+2m2+
2017 的值为( B )
A.2017
B.2018
C.2019
24
请用阅读材料提供的“换根法”求新方程(要求:把 所求方程化为一般形式):
(1)已知方程 x2+x-2=0,求一个一元二次方程,使 它的根分别为已知方程根的相反数,则所求方程为 ___y2_-__y_-__2_=__0______;
(2)已知关于 x 的一元二次方程 ax2+bx+c=0 有两 个不等于 0 的实数根,求一个一元二次方程,使它的根 分别是已知方程根的倒数.
D.2020
5
3. 若 a2+3a+1=0,b2+3b+1=0,a≠b,则 x2+3x +2=__1__.
6
4. 关于 x 的方程 a(x+m)2+b=0 的解是 x1=-2, x2=1(a,m,b 均为常数,a≠0),则方程 a(x+m+2)2+b =0 的解是__x_1=___-__4_,__x2_=__-__1____.
九年级数学上册第22章一元二次方程222一元二次方程的解法6一元二次方程的根与系数的关系课件(新版)
3.【中考·贵港】已知α,β是一元二次方程x2+x-2
=0的两个实数根,则α+β-αβ的值是( B )
A.3
B.1
C.-1
D.-3
【点拨】∵α,β是方程x2+x-2=0的两个实数根,
∴α+β=-1,αβ=-2.
∴α+β-αβ=-1+2=1.
4. 【 中 考 ·淄 博 】 若 x1+ x2= 3, x12 + x22 =5,则 以x1,x2为根的一元二次方程是( A )
第22章 一元二次方程
22.2 一元二次方程的解法 第6课时 一元二次方程的根与系数
的关系
提示:点击 进入习题
1A 2D 3B 4A 5C
6C 7B 8A 9D 10 B
答案显示
提示:点击 进入习题
11 A 12 D 13 B 14 见习题 15 (1)k≤94.(2)1.
答案显示
13 16 (1)m≤ 4 .(2)1. 17 (1)k>141.(2)存在,k=4.
B.0
C.1
D.2或0
易错总结:在利用一元二次方程的根与系数的关系时,
要注意它成立的前提,即方程有实数根的前提Δ≥0.本题
如果取a=2,则Δ<0,方程无实数根,不符合题意.
14.【中考·随州】已知关于x的一元二次方程x2-(2k +1)x+k2+1=0有两个不相等的实数根x1,x2.
(1)求k的取值范围;
1.【中考·黄冈】若x1,x2是一元二次方程x2-4x-5
=0的两根,则x1·x2的值为( A )
A.-5 B.5 C.-4
D.4
2.【中考·广东】已知x1,x2是一元二次方程x2-2x=0 的两个实数根,下列结论错误的是( D )
A.x1≠x2 C.x1+x2=2
九年级数学上第22章一元二次方程22.2一元二次方程的解法4一元二次方程根的判别式课华东师大
(3)4x-x2=x2+2; 方程整理为x2-2x+1=0,∵Δ=(-2)2-4×1×1=0, ∴方程有两个相等的实数根.
(4)3x-1=2x2.
方程整理为2x2-3x+1=0,∵Δ=(-3)2-4×2×1=1>0, ∴方程有两个不相等的实数根.
9.【中考·陇南】关于x的一元二次方程x2+4x+k=0有两 个实数根,则k的取值范围是( C )
A.k≤-4 B.k<-4 C.k≤4 D.k<4
10.【2020·攀枝花】若关于x的方程x2-x-m=0没有实数
1.已知关于x的方程x2+mx-1=0的根的判别式的值为5, 则m的值为( D )
A.±3 B.3 C.1 D.±1
2.【2021·长春师大附中新城校区期末】一元二次方程x2 -x-3=0根的判别式的值是___1_3____.
3.已知关于x的一元二次方程mx2-(3m-1)x=1-2m,其 根的判别式的值为4,求m的值.
第22章 一元二次方程
22.2 一元二次方程的解法
4.一元二次方程根的判别式
提示:点击 进入习题
新知笔记 1 b2-4ac;一般形式 2 (1)> (2)= (3)<
1D 2 13 3 见习题
4C
5A
答案显示
6B 7C 8 见习题 9C 10 A
11 1
16 B
答案显示
12 见习题 17 4
13 D
(2)若a、b、c为△ABC的三边长,方程有两个相等的实数根 ,求证:△ABC为等边三角形. ∵方程有两个相等的实数根, ∴Δ=8[(a-b)2+(b-c)2+(a-c)2]=0, ∴a-b=0,b-c=0,a-c=0. ∵a、b、c为三角形的三边长, ∴a=b≠0,b=c≠0,a=c≠0, ∴a=b=c.∴△ABC为等边三角形.
21.2_降次—解一元二次方程_因式分解法
学习是件很愉快的事
淘金者
2.(x+1)2-25=0. 2.[(x+1)+5][(x+1)-5]=0,
• 你能用因式分解法解下列方程吗?
1 .x2-4=0; 解:1.(x+2)(x-2)=0,
∴x+2=0,或x-2=0.
∴x1=-2, x2=2.
∴x+6=0,或x-4=0.
因式分解,得
r 5
2r r 5 2r 0.
于是得 r 2r 5 0或r 2r 5 0.
5 5 r1 , r2 (舍去). 2 1 1 2 5 m. 答:小圆形场地的半径是 2 1
小结
拓展
回味无穷
当一元二次方程的一边是0,而另一边易于分解成两个一次因式的 乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一 元二次方程的方法称为因式分解法. • 因式分解法的条件是方程左边易于分解,而右边等于零,关键是熟 练掌握因式分解的知识,理论依旧是“如果两个因式的积等于零, 那么至少有一个因式等于零.” • 因式分解法解一元二次方程的步骤是: • (1)化方程为一般形式; • (2)将方程左边因式分解; • • (3)根据“至少有一个因式为零”,得到两个一元一次方程. (4)两个一元一次方程的根就是原方程的根.
10 4.9 x 0 以上解方程 x 是如何使二次方程降为一次的?
的方法
x 10 4.9 x 0
①
x 0 或 10 4.9 x 0,
②
可以发现,上述解法中,由①到②的过程,不是用开方降 次,而是先因式分解使方程化为两个一次式的乘积等于0 的形式,再使这两个一次式分别等于0,从而实现降次, 这种解法叫做因式分解法.
第22章 22.2.4.一元二次方程根的判别式
9.已知关于 x 的方程14x2+(m-3)x+m2=0 有两个不相等的实数根,那么 m
可取的最大整数为( D )
A.2
B.-1
C.0
D.1
10.等腰△ABC 中,BC=8cm,AB、AC 的长是关于 x 的方程 x2-10x+m =0 两根,则 m 的值为 16或25 .
11.如果关于 x 的一元二次方程 kx2-3x-1=0 有两个不相等的实根,那么 k
4.关于 x 的一元二次方程 x2+4x+k=0 有两个相等的实数根,则 k 的值为( B )
A.k=-4
B.k=4
C.k≥-4
D.k≥4
5.已知关于 x 的方程 kx2+(1-k)x-1 k=0 时,方程无解
B.当 k=1 时,方程有一个实数解
C.当 k=-1 时,方程有两个相等的实数解
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/32021/9/32021/9/32021/9/39/3/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月3日星期五2021/9/32021/9/32021/9/3 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/32021/9/32021/9/39/3/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/32021/9/3September 3, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/32021/9/32021/9/32021/9/3
华东师大版九年级数学上册《22章 一元二次方程 22.2 一元二次方程的解法 配方法》公开课课件_25
1、直接开平方法:
一般地,对于形如x2=p 或(x+n)2=p(p≥0) 的方程, 这种解一元二次方程的方法叫 做直接开平方法.
二元、三元一次 方程组
一元二次方程
消元
降次
一元一次方程
(1)方程 x2 0.25 的根是 X1=0.5, x2=-0.5
(2)方程 2x2 18 的根是 X1=3, x2=—3 (3) 方程 (2x 1)2 9的根是 X1=2, x2=-1
2
=(x
1 3 )²
常二数次项(5项等)4系于x²数+一4为x次+11项的²=系完(2数全x+一平1半方)²的式平:方
例1、 解下列方程:
(1)x 2 4x 4 5 (2)x 2 6x 4 0
(1)x2 4x 4 5 解:(x 2)2 5 x 2 5或x 2 5 x1 2 5,x2 2 5.
例2、用配方法解下列方程:
2x²+1=3x
巩固练习2:
(1)-x²+10x-16=0 (2)2x²-2x- =0 (3)x²-10=-2x (4)4x²+8x-3=0
(5)3x²-6x+4=0
一般地,如果一个一元二次方程通过配方转化成 (x n)2 p 的形式,那么就有: (1)当p 0时,方程有两个不等的实数根 x1 n p,x2 n p; (2)当p 0时,方程有两个相等的实数根 x1 x2 ( n p ) n; (3)当p 0时,方程无实数根。
像上面那样,通过配成完全平方形式来 解一元二次方程的方法,叫做配方法。
巩固练习1:
一元二次方程的概念和解法
解:设道路的宽为xm,根据题意,得
1 3 5 4 3 2 x 2 0 x x 2 3 2 2 0
五、一元二次方程的有关概念:
1、一元二次方程
只含有一个未知数,并且未知数的最高次数是2, 这样的整式方程叫做一元二次方程 (quadric equation with one unknown)。
台,就是 500·(1x)2 ,数量关系
见下表:
解:设五月份、六月份平均每月电扇销 售量的增长率为x。根据题意,得
500+500(1+x)+ 500·(1x)2 = 1820
变化:党的十六大提出全面建设小康社会,加快推
进社会主义现代化,力争国民生产总值到2020年比
2000年翻两番。本世纪的头二十年(2001年~2020
x16, x22
注意:
第(1)题容易解得x=0这一个解; 第(2)题若方程两边都除以x-6,得: x=-2,则原方程少了一个解,原因是 在除以 x6时,应x保 6。证 故0此 种做法不可取,应避免在方程两边都除 以一个代数式。
练习二:
4x2=x
甲同学是这样做的,你看对吗?
方程两边同除以4,得x2=
x112, x212
解法三:(因式分解法)
x2 2x 12 0 (x 1)2 2 0
x 4
x
直接开平方得x=± 2
所以原方程的解是x1=
x 2
,x2=
x 2
乙同学是这样做的,也请你“诊断”一下
将方法两边同除以x,得4x=1
1
即得方程的解为x= 4
甲、乙两人均错误
正确答案 x1=
0, x2=
1 4
例7、用指定的方法解下列方程:
(1) (x10)2 3 ——直接开平方法