最新整式的运算经典题型

合集下载

整式的运算练习题

整式的运算练习题

整式的运算练习题一、加法运算1. (2x + 5) + (4x - 3)解:根据加法的交换律,我们可以将多项式的项进行重新排序,然后进行相同项的合并。

所以,我们可以先将上述多项式的项进行排序,得到 (2x + 4x) + (5 - 3) = 6x + 2。

答案:6x + 22. (3x^2 + 2x - 5) + (4x^2 + 3x + 1)解:在这个例子中,我们需要按照变量的次数进行排序,并将相同次数的项进行合并。

所以,我们可以将上述多项式的项进行排序,得到 (3x^2 + 4x^2) + (2x + 3x) + (-5 + 1) = 7x^2 + 5x - 4。

答案:7x^2 + 5x - 4二、减法运算1. (4x^2 + 3x - 5) - (2x^2 + 2x + 1)解:和加法运算类似,我们需要将多项式的项按照变量的次数进行排序,并进行合并。

所以,我们可以将上述多项式的项进行排序,得到 (4x^2 - 2x^2) + (3x - 2x) + (-5 - 1) = 2x^2 + x - 6。

答案:2x^2 + x - 62. (5x^3 - 2x^2 + 3x + 4) - (3x^3 - x^2 + 2x - 5)解:同样地,我们需要将多项式的项按照变量的次数进行排序,并进行合并。

所以,我们可以将上述多项式的项进行排序,得到(5x^3 - 3x^3) + (-2x^2 + x^2) + (3x - 2x) + (4 + 5) = 2x^3 - x^2 + x + 9。

答案:2x^3 - x^2 + x + 9三、乘法运算1. (2x + 3)(4x - 5)解:对于这个乘法的练习题,我们可以使用分配律来求解。

所以,我们可以将第一个多项式的每一项与第二个多项式的每一项进行相乘,然后将结果相加。

所以,我们有(2x × 4x) + (2x × -5) + (3 × 4x) + (3 × -5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 15。

整式计算100道及答案

整式计算100道及答案

整式计算100道及答案一、整式的加法与减法1. 计算并化简:3x + 2y + 5x + 4y答案:8x + 6y2. 计算并化简:7x^2 - 3xy + 4x^2 + 2xy答案:11x^2 - xy3. 计算并化简:5a + 2ab - 3a + 4ab答案:2a + 6ab4. 计算并化简:12x^2 - 7xy + 4xy^2 - 9x^2答案:3x^2 - 7xy + 4xy^25. 计算并化简:8a - 3b + 2a^2 - 5b答案:10a - 8b + 2a^2二、整式的乘法6. 计算并化简:(3x + 4y) * 2答案:6x + 8y7. 计算并化简:(5a - 2b) * 3答案:15a - 6b8. 计算并化简:(2x^2 + 3y) * 4答案:8x^2 + 12y9. 计算并化简:(7 - 4x) * (2x + 3)答案:14x - 8x^2 - 2110. 计算并化简:(3a + 2b) * (4a - 5b) 答案:12a^2 + ab - 10b^2三、整式的除法11. 计算并化简:(6x + 12) ÷ 3答案:2x + 412. 计算并化简:(14a - 7) ÷ 7答案:a - 113. 计算并化简:(20x^2 - 10x) ÷ 10答案:2x^2 - x14. 计算并化简:(18 - 3y^2) ÷ 3答案:6 - y^215. 计算并化简:(15a^2 + 5ab) ÷ 5a答案:3a + b四、整式的综合运算16. 计算并化简:(3x + 5) * (2x - 4) + (x - 1) * (4 - x) 答案:-3x^2 - 2117. 计算并化简:(5a - 2) * (3a + 4) - (a - 3) * (2 + a) 答案:8a^2 + 21a + 1418. 计算并化简:(7x - 2y) * (3x + y) - (4x + 2y) * (x - y)答案:15x^2 + 4y^2 - 4xy19. 计算并化简:(3a + 2b - 4c) * (2a - 3b + 4c) + (2c - 3b) * (3a - 4b - 2c)答案:a^2 + b^2 - 2c^220. 计算并化简:(2x - y) * (3x - y) + (x - y) * (x - 2y)答案:4x^2 - 7xy + 2y^2五、整式的因式分解21. 因式分解:4x^2 - 9y^2答案:(2x - 3y)(2x + 3y)22. 因式分解:8a^2 + 12ab答案:4a(2a + 3b)23. 因式分解:12x^3 - 18x^2 - 8x答案:2x(2x - 4)(3x - 1)24. 因式分解:16x^4 - 4x^3 - 12x^2答案:4x^2(x + 2)(4x - 3)25. 因式分解:15a^2 + 5ab - 10b^2答案:5(3a + 2b)(a - 2b)六、整式的应用26. 设某物品原价为x元,打折后的价格为0.8x元,某人买了5个该物品,计算并化简他支付的总价格。

七年级数学上册整式的加减难题

七年级数学上册整式的加减难题

七年级数学上册整式的加减难题一、整式的加减难题20题。

1. 化简:3a + 2b - 5a - b- 解析:- 将同类项合并。

同类项是指所含字母相同,并且相同字母的指数也相同的项。

- 对于a的同类项有3a和-5a,合并得(3 - 5)a=-2a。

- 对于b的同类项有2b和-b,合并得(2 - 1)b = b。

- 所以,化简结果为-2a + b。

2. 计算:(2x^2-3x + 1)-( - 3x^2+5x - 7)- 解析:- 去括号时,括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。

- 原式=2x^2-3x + 1 + 3x^2-5x + 7。

- 然后合并同类项,x^2的同类项有2x^2和3x^2,合并得(2 + 3)x^2=5x^2。

- x的同类项有-3x和-5x,合并得(-3-5)x=-8x。

- 常数项有1和7,合并得1 + 7 = 8。

- 所以结果为5x^2-8x + 8。

3. 先化简,再求值:(4a^2-3a)-(2a^2+a - 1)+(2 - a^2+4a),其中a=-2- 解析:- 先化简式子:- 原式=4a^2-3a-2a^2-a + 1+2 - a^2+4a。

- 合并同类项,a^2的同类项有4a^2、-2a^2和-a^2,合并得(4 - 2-1)a^2=a^2。

- a的同类项有-3a、-a和4a,合并得(-3-1 + 4)a = 0。

- 常数项有1和2,合并得1+2 = 3。

- 化简结果为a^2+3。

- 当a = - 2时,代入a^2+3得(-2)^2+3=4 + 3=7。

4. 已知A = 3x^2-2x+1,B = 5x^2-3x + 2,求2A - 3B。

- 解析:- 将A = 3x^2-2x + 1,B = 5x^2-3x + 2代入2A-3B中。

- 2A=2(3x^2-2x + 1)=6x^2-4x + 2。

- 3B = 3(5x^2-3x + 2)=15x^2-9x+6。

专题12.2整式的乘除法【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]

专题12.2整式的乘除法【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]

专题12.2整式的乘除法【十大题型】【华东师大版】【题型1由整式乘除法求代数式的值】【题型2由整式乘除法求字母的值】【题型3利用整式乘除法解决不含某项问题】【题型4利用整式乘除法解决与某个字母取值无关的问题】【题型5利用整式乘除法解决污染问题】【题型6利用整式乘除法解决误看问题】【题型7整式乘除法的应用】【题型8整式乘除法中的规律问题】【题型9整式乘除法中的新定义问题】【题型10 整式乘除法中的几何图形问题】知识点:整式的乘法、除法1.单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(1)只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏.(2)单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用.(3)单项式乘单项式的结果仍然是单项式.【注意】(1)积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值.(2)相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算.2.单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.用式子表示:m(a+b+c)=ma+mb+mc(m,a,b,c都是单项式).【注意】(1)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.(2)计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号.(3)对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果.3.多项式与多项式相乘(1)法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(2)多项式与多项式相乘时,要按一定的顺序进行.例如(m+n)(a+b+c),可先用第一个多项式中的每一项与第二个多项式相乘,得m(a+b+c)与n(a+b+c),再用单项式乘多项式的法则展开,即(m+n)(a+b+c)=m(a+b+c)+n(a+b+c)=ma+mb+mc+na+nb+nc.【注意】(1)运用多项式乘法法则时,必须做到不重不漏.(2)多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.4.单项式除以单项式单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式.【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.【注意】可利用单项式相乘的方法来验证结果的正确性.5.多项式除以单项式多式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.【注意】(1)多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.(2)多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项.(3)多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.【题型1 由整式乘除法求代数式的值】【例1】(23-24九年级上·安徽铜陵·期中)1.已知210a a +-=,则代数式()()()222a a a a +-++值为 .【变式1-1】(23-24八年级·福建泉州·期中)2.若3a b -=,4ab =-,则()()22a b -+值为 .【变式1-2】(23-24八年级·山东聊城·期中)3.如果()()5612a a -+=,那么2228a a --+的值为 .【变式1-3】(23-24八年级·福建·期中)4.已知2310x x --=,则代数式3102019x x -+值为 .【题型2 由整式乘除法求字母的值】【例2】(23-24八年级·安徽合肥·期中)5.已知(x +a )(x +b )=2x +mx +12,m 、a 、b 都是整数,那么m 的可能值的个数为( )A .4B .5C .6D .8【变式2-1】(23-24八年级·江苏扬州·期中)6.若()()2133x x x mx +-=+-,则m 值是 .【变式2-2】(23-24八年级·浙江杭州·期中)7.不论x 为何值,()()()2222222x x a x ax x a x a x a ++=+++=+++,226()()x x a x kx ++=++,则k = .【变式2-3】(23-24八年级·浙江温州·期中)8.关于x 的整式21A x =+,它的各项系数之和为∶213+=(常数项系数为常数项本身).已知B 是关于x 的整式,最高次项次数为2,系数为1.若(3),B x C C ×+=是一个只含两项的多项式,则B 各项系数之和的最大值为 .【题型3 利用整式乘除法解决不含某项问题】【例3】(23-24八年级·山东聊城·期末)9.已知多项式236M x ax =-+,3N x =+,且MN A =,当多项式A 中不含x 的2次项时,a 的值为( )A .1-B .13-C .0D .1【变式3-1】(23-24八年级·河南商丘·期末)10.已知关于x 的多项式ax b -与232x x ++的乘积的展开式中不含x 的二次项,且一次项系数为5-,则a 的值为( )A .13-B .13C .-3D .3【变式3-2】(23-24八年级·全国·专题练习)11.小万和小鹿正在做一道老师留下的关于多项式乘法的习题:2(32)()x x x a +--.(1)小万在做题时不小心将x a -中的x 写成了2x ,结果展开后的式子中不含x 的二次项,求a 的值;(2)小鹿在做题时将232+-x x 中的一个数字看错成了k ,结果展开后的式子中不含x 的一次项,则k 的值可能是多少?【变式3-3】(16-17八年级·四川成都·期末)12.已知(x 2+mx +1)(x 2﹣2x +n )的展开式中不含x 2和x 3项.(1)分别求m 、n 的值;(2)化简求值:(m +2n +1)(m +2n ﹣1)+(2m 2n ﹣4mn 2+m 3)÷(﹣m )【题型4 利用整式乘除法解决与某个字母取值无关的问题】【例4】(23-24八年级·湖南常德·期中)13.知识回顾:七年级学习代数式求值时,遇到过这样一类题“代数式6351ax y x y -++-- 的值与x 的取值无关,求a 的值”,通常的解题方法是:把x y 、看作字母,a 看作系数合并同类项,因为代数式的值与x 的取值无关,所以含x 项的系数为0,即原式()365a x y =+-+,所以30a +=,则3a =-.理解应用:(1)若关于x 的多项式()22335m x m x ---的值与x 的取值无关,求m 值;(2)已知()()()213153A x x x y =+--+,2324B x xy -=+,且26A B -的值与x 的取值无关,求y 的值.【变式4-1】(23-24八年级·陕西咸阳·阶段练习)14.已知23A x x a =+-,B x =-,3235C x x =++,若A B C ×+的值与x 的取值无关,当4x =-时,A 的值为( )A .0B .4C .4-D .2【变式4-2】(23-24八年级·四川成都·期中)15.若代数式()()()223236x x m x x ++-+的值与x 的取值无关,则常数m = .【变式4-3】(23-24八年级·浙江金华·期末)16.若代数式()()()2253334x kx xy k x y x ----的值与y 无关,则常数k 的值为( )A .2B .―2C .4-D .4【题型5 利用整式乘除法解决污染问题】【例5】(23-24八年级·贵州遵义·期末)17.小明作业本发下来时,不小心被同学沾了墨水:()()4322222246643x y x y x y x y xy y -+¸-=-+-■,你帮小明还原一下被墨水污染的地方应该是( )A .3218x y -B .3218x y C .322x y -D .3212x y 【变式5-1】(23-24八年级·湖北十堰·期末)18.右侧练习本上书写的是一个正确的因式分解.但其中部分代数式被墨水污染看不清了.(1)求被墨水污染的代数式;(2)若被污染的代数式的值不小于4,求x 的取值范围.【变式5-2】(23-24八年级·全国·课后作业)19.小明在做练习册上的一道多项式除以单项式的习题时,一不小心,一滴墨水污染了这道习题,只看见了被除式中第一项是338x y -及中间的“¸”,污染后习题形式如下:33(8x y -)¸,小明翻看了书后的答案是“22436x y xy x -+”,你能够复原这个算式吗?请你试一试.【变式5-3】(23-24八年级·上海奉贤·期中)20.小红准备完成题目:计算(x 2x +2)(x 2﹣x ).她发现第一个因式的一次项系数被墨水遮挡住了.(1)她把被遮住的一次项系数猜成3,请你完成计算:(x 2+3x +2)(x 2﹣x );(2)老师说:“你猜错了,这个题目的正确答案是不含三次项的.”请通过计算说明原题中被遮住的一次项系数是多少?【题型6 利用整式乘除法解决误看问题】【例6】(23-24八年级·山东菏泽·期中)21.某同学在计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,那么正确的计算结果是( )A .432484x x x -+-B .432484x x x +-C .43244x x x -+-D .432484x x x --【变式6-1】(23-24八年级·江西萍乡·期中)22.小颖在计算一个整式乘以3ac 时,误看成了减去3ac ,得到的答案是12333--bc ac ab ,该题正确的计算结果应是多少?【变式6-2】(23-24八年级·江西九江·阶段练习)23.已知A B 、均为整式,()()221222A xy xy x y =+--+,小马在计算A B ¸时,误把“¸”抄成了“-”,这样他计算的正确结果为22x y -.(1)将整式A 化为最简形式.(2)求整式B .【变式6-3】(23-24八年级·河南南阳·阶段练习)24.甲、乙二人共同计算一道整式乘法:()()23x a x b ++,由于甲抄错为()()23x a x b -+,得到的结果为261110x x +-;而乙抄错为()()2x a x b ++,得到的结果为22910x x -+.(1)你能否知道式子中的a ,b 的值各是多少?(2)请你计算出这道整式乘法的正确答案.【题型7 整式乘除法的应用】【例7】(23-24八年级·浙江杭州·阶段练习)25.有总长为l 的篱笆,利用它和一面墙围成长方形园子,园子的宽度为a .(1)如图1,①园子的面积为 (用关于l ,a 的代数式表示).②当10030l a ==,时,求园子的面积.(2)如图2,若在园子的长边上开了长度为1的门,则园子的面积相比图一 (填增大或减小),并求此时园子的面积(写出解题过程,最终结果用关于l ,a 的代数式表示).【变式7-1】(23-24八年级·重庆·期末)26.某农场种植了蔬菜和水果,现在还有两片空地,农场计划在这两片空地上种植水果黄瓜、白黄瓜和青黄瓜.已知不同品种的黄瓜亩产量不同,其中白黄瓜的亩产量是青黄瓜的12,如果在空地种植白黄瓜、青黄瓜和水果黄瓜的面积之比为2:3:4,则水果黄瓜的产量是白黄瓜与青黄瓜产量之和的2倍;如果在空地上种植白黄瓜、青黄瓜和水果黄瓜的面积之比为5:4:3,则白黄瓜、青黄瓜和水果黄瓜的总产量之比为 .【变式7-2】(23-24八年级·黑龙江哈尔滨·期中)27.一家住房的结构如图所示,房子的主人打算把卧室铺上地板,卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果这种地砖的价格为a 元/平方米,地板的价格(10)a -元/平方米,那么购买地板和地砖至少共需要多少元?【变式7-3】(23-24八年级·全国·专题练习)28.某玩具加工厂要制造如图所示的两种形状的玩具配件,其中,配件①是由大、小两个长方体构成的,大长方体的长、宽、高分别为:52a 、2a 、32a ,小长方体的长、宽、高分别为:2a 、a 、2a ;配件②是一个正方体,其棱长为a(1)生产配件①与配件②分别需要多长体积的原材料(不计损耗)?(2)若两个配件①与一个配件②可以用于加工一个玩具,每个玩具在市场销售后可获利30元,则1000a 3体积的这种原材料可使该厂最多获利多少元?【题型8 整式乘除法中的规律问题】【例8】(23-24八年级·四川成都·期中)29.观察:下列等式()()2111x x x -+=-,()()23111x x x x -++=-,()()324111x x x x x -+++=-…据此规律,当()()65432110x x x x x x x -++++++=时,代数式20242x -的值为 .【变式8-1】(23-24八年级·广东揭阳·期中)30.在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年11月份的日历,我们任意用一个22´的方框框出4个数,将其中4个位置上的数交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规则,结果为 .(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.【变式8-2】(23-24八年级·福建宁德·期末)31.“九章兴趣小组”开展研究性学习,对两位数乘法的速算技巧进行研究.小明发现“十位相同,个位互补”的两个两位数相乘有速算技巧.例如:()24261002346´=´´+´,结果为624;()42481004528´=´´+´,结果为2016;小红发现“十位互补,个位为5”的两个两位数相乘也有速算技巧.例如:()456510046525´=´´++,结果为2925;()357510037525´=´´++,结果为2625;(1)请你按照小明发现的技巧,写出计算6367´的速算过程;(2)请你用含有字母的等式表示小明所发现的速算规律,并验证其正确性;(3)小颖发现:小红的速算技巧可以推广到“十位互补,个位相同”的两个两位数相乘.请你直接用含有字母的等式表示该规律.友情提示:如果两个正整数和为10,则称这两个数互补.友情提示:如果两个正整数和为10,则称这两个数互补.【变式8-3】(23-24八年级·福建宁德·期中)32.下图揭示了()n a b +(n 为非负整数)的展开式的项数及各项系数的有关规律.请观察并解决问题:今天是星期五,再过7天也是星期五,那么再过451天是星期 .……1()a b a b+=+ (222)()2a b a ab b +=++……()3322333a b a a b ab b +=+++……()4a b +=【题型9 整式乘除法中的新定义问题】【例9】(23-24八年级·陕西榆林·期末)33.【问题背景】现定义一种新运算“⊙”对任意有理数m ,n ,规定:()m n mn m n =-e .例如:()1212122=´´-=-e .【问题推广】(1)先化简,再求值:()()a b a b +-e ,其中12a =,1b =-;【拓展提升】(2)若()2p q q p x y x y x y x y =-e e ,求p ,q 的值【变式9-1】(23-24八年级·浙江宁波·期中)34.定义a bad bc c d =-,如131423224=´-´=-.已知21112x A nx x +=-,1111x x B x x +-=-+(n 为常数)(1)若4B =,求x 的值;(2)若A 中的n 满足12222n +´=时,且2A B =+,求3843x x -+的值.【变式9-2】(23-24八年级·湖南株洲·期末)35.定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi + (a 、b 为实数)的数叫做复数,其中a 叫做这个复数的实部,b 叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似.例如:()()()()253251372i i i i -++=++-+=+;()()()()()()2121212212213i i i i i i i ii i+´-=´+´-+´+´-=+-+-=+--=+根据以上信息,完成下列问题:(1)计算:3i , 4i ;(2)计算:()()134i i +´-;(3)计算:23452023i i i i i i ++++++L 【变式9-3】(23-24八年级·内蒙古乌兰察布·期末)36.定义:()L A 是多项式A 化简后的项数,例如多项式223A x x =+-,则()3L A =,一个多项式A 乘多项式B 化简得到多项式C (即C A B =´),如果()()()1L A L C L A ££+.则称B 是A 的“郡园多项式”如果()()L A L C =,则称B 是A 的“郡园志勤多项式”.(1)若2A x =-,3B x =+,则B 是不是A 的“郡园多项式”?请判断并说明理由;(2)若2A x =-,24B x ax =++是关于x 的多项式,且B 是A 的“郡园志勤多项式”,则a =_____;(3)若23A x x m =-+,2B x x m =++是关于x 的多项式,且B 是A 的“郡园志勤多项式”,求m 的值.【题型10 整式乘除法中的几何图形问题】【例10】(23-24八年级·辽宁辽阳·期中)37.教科书第一章《整式的乘除》中,我们学习了整式的几种乘除运算,学会了研究运算的方法.现定义了一种新运算“Ä”,对于任意有理数a ,b ,c ,d ,规定()(),,a b c d ad bc Ä=-,等号右边是通常的减法和乘法运算.例如:()()1,32,414232Ä=´-´=-.请解答下列问题:(1)填空:()()2,34,5-Ä=______;(2)若()()221,15,2x nx x +-Ä-的代数式中不含x 的一次项时,求n 的值;(3)求()()31,22,3x x x x +-Ä+-的值,其中2410x x -+=;(4)如图1,小长方形长为a ,宽为b ,用5张图1中的小长方形按照图2方式不重叠地放在大长方形ABCD 内,其中5AB =,大长方形中未被覆盖的两个部分(图中阴影部分),设左下角长方形的面积为1S ,右上角长方形的面积为2S .当122320S S -=,求()()2,63,36a b b b a b +-Ä--的值.【变式10-1】(23-24八年级·浙江温州·期中)38.小陈用五块布料制作靠垫面子,其中四周的四块由长方形布料裁成四块得到,正中的一块正方形布料从另一块布料裁得,靠垫面子和布料尺寸简图,如图所示∶(1)用含a ,b 的代数式表示图中阴影部分小正方形的面积.(2)当224592a b +=,48ab =时,求阴影部分面积.【变式10-2】(23-24八年级·广东佛山·期中)39.如图,长为(cm)y ,宽为(cm)x 的大长方形被分割为7小块,除阴影A ,B 外其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm .(1)小长方形的较长边为 cm (用代数式表示);(2)阴影A 的一条较短边和阴影B 的一条较短边之和为(24)x y -+cm ,是 的(填正确/错误);阴影A 和阴影B 的周长值之和与x (填有关/无关),与y (填有关/无关);(3)设阴影A 和阴影B 的面积之和为S 2cm ,是否存在x 使得S 为定值,若存在请求出x 的值和该定值,若不存在请说明理由.【变式10-3】(23-24八年级·上海青浦·期中)40.如图所示,有4张宽为a ,长为b 的小长方形纸片,不重叠的放在矩形ABCD 内,未被覆盖的部分为空白区域①和空白区域②. 2EF GH =(1)用含a、b的代数式表示:AD=______________;AB=______________.(2)用含a、b的代数式表示区域①、区域②的面积;(3)当a=12,92b=时,求区域①、区域②的面积的差.1.2-【分析】由已知得21a a +=,然后对所求式子展开后进行变形,再整体代入计算即可.【详解】解:∵210a a +-=,∴21a a +=,∴()()()()22222242242142a a a a a a a a a +-++=-++=+-=´-=-,故答案为:2-.【点睛】本题考查了整式的混合运算,代数式求值,熟练掌握相关运算法则是解题的关键.2.―2【分析】本题主要考查代数式的值及多项式乘以多项式,熟练掌握各个运算是解题的关键;因此此题先把所求整式进行展开,然后再代值求解即可.【详解】解:∵3a b -=,4ab =-,∴()()22a b -+()24ab a b =+--464=-+-2=-;故答案为:―2.3.28-【分析】本题主要考查了多项式乘以多项式,代数式求值,先根据多项式乘以多项式的计算法则求出218a a --=-,再根据()--+=--+2222828a a a a 进行求解即可.【详解】解:∵()()5612a a -+=,∴2306512a a a -+-=,∴218a a --=-,∴()--+=--+=-´+=-2222828182828a a a a ,故答案为:28-.4.2022【分析】由x 2−3x−1=0,变形x 2=3x+1,利用此等式进行降次,化简整体代入计算即可.【详解】由x 2−3x−1=0,变形x 2=3x+1,x 2-3x=1,x3−10x+2019,=x(3x+1)-10x+2019,=3x2-9x+2019,=3(x2-3x)+2019,=3+2019,=2022.故答案为:2022.【点睛】本题考查代数式的值,关键是把条件等式变形会降次,会整体代入求值.5.C【分析】根据多项式乘多项式的乘法法则,求得a+b=m,ab=12,再进行分类讨论,从而解决此题.【详解】解:(x+a)(x+b)=2x+bx+ax+ab=2x+(a+b)x+ab.∵(x+a)(x+b)=2x+mx+12,∴a+b=m,ab=12.∵m、a、b都是整数,∴当a=1时,则b=12,此时m=a+b=1+12=13;当a=-1时,则b=-12,此时m=a+b=-1-12=-13;当a=2时,则b=6,此时m=a+b=2+6=8;当a=-2时,则b=-6,此时m=a+b=-2-6=-8;当a=3时,则b=4,此时m=a+b=3+4=7;当a=-3时,则b=-4,此时m=a+b=-3-4=-7;当a=12时,则b=1,此时m=a+b=12+1=13;当a=-12时,则b=-1,此时m=a+b=-12-1=-13;当a=6时,则b=2,此时m=a+b=6+2=8;当a=-6时,则b=-2,此时m=a+b=-6-2=-8;当a=4时,则b=3,此时m=a+b=4+3=7;当a=-4时,则b=-3,此时m=a+b=-4-3=-7.综上:m=±13或±8或±7,共6个.故选:C.【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则、分类讨论的思想是解决本题的关键.6.2-【分析】本题主要考查了多项式乘以多项式,正确计算出22323x x x mx -=+--是解题的关键.根据多项式乘以多项式的计算法则把等式左边去括号得到m 的值即可得到答案.【详解】解:∵()()2133x x x mx +-=+-,∴22333x x x x mx +--=+-,∴22323x x x mx -=+--,∴2m =-.故答案为:2-.7.5【分析】根据多项式乘以多项式的法则展开,求出a 的值以及a 与k 的关系,然后可得答案.本题考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.【详解】∵2222222()()()x x a x ax x a x a x a ++=+++=+++,又∵226()()x x a x kx ++=++,∴22226()x a x a x kx +++=++,2a k \+=,26a =,3a \=,325k \=+=.故答案为:5.8.7【分析】本题考查整式的定义,多项式乘多项式,解二元一次方程.根据题意对整式B 的表述,可设2(x ax b a B =++、b 为待求的常数),计算(3)B x ×+,整理后得到关于x 的三次四项式.由于条件说乘积是只有两项,故有两项的系数为0,需分3种情况讨论计算,列得关于a 、b 的方程组,据此求解即可.【详解】解:B Q 是关于x 的整式,最高次项次数为2,二次项系数为1,\设2b B x ax =++,a 、b 为常数,(3)B x \+2()(3)x ax b x =+++322333x ax bx x ax b=+++++32(3)(3)3x a x a b x b =+++++,Q 乘积是一个只含有两项的多项式,①3030a a b +=ìí+=î,解得:39a b =-ìí=î,239B x x \=-+,各项系数之和为1397-+=;②3030a b +=ìí=î,解得:30a b =-ìí=î,23x B x \=-,各项系数之和为132-=-;③3030a b b +=ìí=î,解得:00a b =ìí=î,2x B \=.各项系数之和为1;∵712>>-;则B 各项系数之和的最大值为7.故答案为:7.9.D【分析】本题考查的是整式的乘法—多项式乘多项式,正确进行多项式的乘法是解答此题的关键.根据题意列出整式相乘的式子,再计算多项式乘多项式,最后进行合并同类项,令二次项的系数等于0即可.【详解】解:∵()()2=363MN x ax x -++322=36+3918x ax x x ax -+-+()()32336918x a x a x =+-+-+∴()()32336918A MN x a x a x ==+-+-+∵多项式A 中不含x 的2次项时,∴330a -=∴1a =故选D .10.C【分析】本题考查多项式乘以多项式,解二元一次方程组,解题的关键是明确不含x 的二次项,则二次项的系数为0.根据多项式乘以多项式法则进行运算,再将计算结果中,利用二次项系数为零与一次项的系数为5-的要求建立方程组,即可求解.【详解】解:()()232ax b x x -++;3223232ax ax ax bx bx b =++---;()()323322ax a b x a b x b =+-+--;∵多项式ax b -与232x x ++的乘积的展开式中不含二次项,且一次项系数为5-;∴3025a b a b -=ìí-=-î;解得:31a b =-ìí=-î,∴3a =-;故选:C .11.(1)2a =-(2)1k =或6-【分析】本题主要考查多项式乘以多项式,熟练掌握多项式乘以多项式计算法则是解题的关键.(1)根据多项式乘以多项式计算法则将对应算式展开并合并同类项,令二次系数为0,即可求出答案,(2)根据多项式乘以多项式计算法则将对应算式展开并合并同类项,令一次系数为0,即可求出答案.【详解】(1)解:()()2232x x x a +--42323322x ax x ax x a =-+--+4323(2)32x x a x ax a =+-+-+Q 展开后的式子中不含x 的二次项,20a \+=,解得2a =-;(2)解:①若将232+-x x 中的3看成k ,2(2)(2)x kx x +-+3222224x x kx kx x =+++--32(2)(22)4x k x k x =+++--,Q 展开后的式子中不含x 的一次项,220k \-=,1k \=.②若将232+-x x 中的2-看成k ,2(3)(2)x x k x +++3222362x x x x kx k =+++++325(6)2x x k x k =++++,Q 展开后的式子中不含x 的一次项,60k \+=,解得6k =-.③若指数2看作k ,当0k =时,原式(132)(2)x x =+-+2352x x =+-不符合题意;④若指数2看作k ,当1k =时,原式(32)(2)x x x =+-+2464x x =+-,不符合题意;1k =或6-.12.(1)m 的值为2,n 的值为3(2)2mn +8n 2﹣1;83【分析】(1)先将题目中的式子化简,然后根据()()2212x mx x x n ++-+的展开式中不含2x 和3x 项,可以求得m 、n 的值;(2)先化简题目中的式子,然后将m 、n 的值代入化简后的式子即可解答本题.【详解】解:(1)()()2212x mx x x n ++-+=4x ﹣23x +n 2x +m 3x ﹣2m 2x +mnx +2x ﹣2x +n=4x +(﹣2+m )3x +(n ﹣2m +1)2x +(mn ﹣2)x +n∵()()2212x mx x x n ++-+的展开式中不含2x 和3x 项,∴20210m n m +=ìí+=î﹣﹣,解得23m n =ìí=î,即m 的值为2,n 的值为3;(2)(m +2n +1)(m +2n ﹣1)+(22m n ﹣4m 2n +3m )÷(﹣m )=[(m +2n )+1][(m +2n )﹣1]﹣2mn +42n ﹣2m =2m 2n +()﹣1﹣2mn +42n ﹣2m =2m +4mn +42n ﹣1﹣2mn +42n ﹣2m =2mn +82n ﹣1当m =2,n =3时,原式=2×2×3+8×23﹣1=83.【点睛】本题考查整式的混合运算—化简求值,熟练掌握整式混合运算法则是解题的关键.13.(1)35m =(2)23y =【分析】(1)先去括号,然后合并同类项,结合多项式的值与x 的取值无关,即可求出答案;(2)先把A 进行化简,然后计算26A B -,结合多项式的值与x 的取值无关,即可求出答案.【详解】(1)解:223(35)m x m x ---22335m x m mx=--+2(53)23m x m m =-+-,Q 其值与x 的取值无关,530m \-=, 解得:35m =, 即:当35m =时,多项式223(35)m x m x ---的值与x 的取值无关;(2)解:(21)(31)(53)A x x x y =+--+Q ,2324B x xy -=+,2262[(21)(31)(53)]6(24)3A B x x x y x xy \-=+---+-+222(623153)121824x x x x xy x xy =-+----+-2212826121824x x xy x xy =----+-12826xy x =--4(32)26x y =--;26A B -Q 的值与x 无关,320y \-=,即23y =.【点睛】本题考查了整式的加减乘混合运算,准确熟练地进行计算是解题的关键.14.B【分析】此题主要考查了整式的混合运算无关型题目,代数式求值,首先根据多项式乘多项式的方法,求出A B ×的值是多少,然后用它加上C ,求出A B C ×+的值是多少,最后根据A B C ×+的值与x 的取值无关,可得x 的系数是0,据此求出a 的值,最后代入求值即可.【详解】解:23A x x a =+-Q ,B x =-,3235C x x =++,A B C\×+()()()232335x x a x x x =+--+++3232335x x ax x x =--++++5ax =+,A B C ×+Q 的值与x 的取值无关,2233A x x a x x \=+-=+,当4x =-时,()()24344A =-+´-=,故选:B .15.3【分析】此题考查整式的混合运算,先运算多项式乘以多项式和单项式乘以多项式,然后合并,进而根据与x 的取值无关得到260m -=,解方程即可.【详解】解:()()()()222232366262612262x x m x x x mx x m x x m x m ++-+=+++--=-+,∵代数式的值与x 的取值无关,∴260m -=,解得3m =,故答案为:3.16.A【分析】本题考查整式的四则混合运算,先将题目中的式子化简,然后根据此代数式的值与y 的取值无关,可知关于y 的项的系数为0,从而可以求得k 的值.【详解】解:()()()2253334x kx xy k x y x ----2222225334912kx x y kx y kx x y x =--++-222239612kx y kx x y x =-++-()22236912k x y kx x =-++-∵关于y 的代数式:()()()2253334x kx xy k x y x ----的值与y 无关,∴360k -+=,解得2k =,即当2k =时,代数式的值与y 的取值无关.故选:A.17.B【分析】利用多项式乘单项式的运算法则计算即可求解.【详解】解: ( −4x 2y 2+3xy −y ) • (−6x 2y )=24x 4y 3−18x 3y 2+6x 2y 2,∴■=18x 3y 2.【点睛】本题主要考查的是整式的除法和乘法,掌握法则是解题的关键.18.(1)24x --;(2)4x £-.【分析】(1)根据题意,被墨水污染的代数式=()2()(252236)x x x x ++---,再结合整式的乘法法则及加减法则解题,注意运算顺序;(2)由(1)中结果列一元一次不等式,解一元一次不等式即可解题.【详解】解:(1)由已知可得,()2()(252236)x x x x ++---2224510236x x x x x =-+---+=24x -- ;(2)由已知可得,244x -³-28x ³-解得4x £-.【点睛】本题考查整式的混合运算、解一元一次不等式等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.复原后的算式为()()3322286122x y x y x y xy -+-¸-【分析】先根据被除式的首项和商式的首项可求得除式,然后根据除式乘商式等于被除式求解即可.【详解】解:338x y -Q 对应的结果为:224x y ,\除式为:3322842x y x y xy -¸=-,根据题意得:()()223322243628612x y xy x xy x y x y x y -+×-=-+-,\复原后的算式为()()3322286122x y x y x y xy -+-¸-.【点睛】本题主要考查的是整式的除法和乘法,掌握运算法则是解题的关键.20.(1)43222x x x x +--;(2)1【分析】(1)根据多项式的乘法进行计算即可;(2)设一次项系数为a ,计算()()222x ax x x ++-,根据其结果不含三次项,则结果的三次项系数为0,据此即可求得a 的值,即原题中被遮住的一次项系数.【详解】解:(1)(x 2+3x +2)(x 2﹣x )433223322x x x x x x=-+-+-43222x x x x=+--(2)设一次项系数为a ,()()222x ax x x ++-4332222x x ax ax x x=-+-+-()()432122x a x a x x=+-+--Q 答案是不含三次项的10a \-=1a \=【点睛】本题考查了多项式的乘法运算,正确的计算是解题的关键.21.A【分析】设这个多项式为M ,根据题意可得221M x x =-+-,最后利用单项式乘以多项式的运算法则即可解答.本题考查了整式的加减运算法则,单项式乘以多项式的运算法则,掌握单项式乘以多项式的运算法则是解题的关键.【详解】解:设这个多项式为M ,∵计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,∴224321M x x x +=+-,∴222321421M x x x x x =+--=-+-,∴正确的结果为()()22432214484x x x x x x -+-=-+-,故选A .22.222-abc a bc【分析】本题主要考查了整式乘法运算,根据一个整数减去3ac ,得到的答案是12333--bc ac ab ,得出这个整式为123333bc ac ab ac --+,然后用3ac 乘这个整式得出结果即可.【详解】解:根据题意得:1233333æö--+ç÷èøac bc ac ab ac12333æö=-ç÷èøac bc ab 222=-abc a bc .故该题正确的计算结果应是222-abc a bc .23.(1)22x y xy --;(2)B xy =-.【分析】(1)根据整式混合运算的运算顺序和运算法则进行化简即可;(2)根据题意可得22A y B x -=-,根据整式混合运算顺序和运算法则进行计算即可;本题主要考查了整式的混合运算,解题的关键是熟练掌握整式的混合运算顺序和运算法则.【详解】(1)()()221222A xy xy x y =+--+,22222222x y xy xy x y =-+--+,22x y xy =--;(2)由题意,得22A yB x -=-由(1)知22A x y xy =--,∴2222x y xy B x y ---=-,∴B xy =-.24.(1)5a =-,2b =-(2)261910x x -+【分析】(1)按照甲、乙两人抄的错误的式子进行计算,得到2311b a -=①,29b a +=-②,解关于①②的方程组即可求出a 、b 的值;(2)把a 、b 的值代入原式求出整式乘法的正确结果.【详解】(1)根据题意可知,甲抄错为()()23x a x b -+,得到的结果为261110x x +-,那么()()()222362361110x a x b x b a x ab x x -+=+--=+-,可得2311b a -=①乙抄错为()()2x a x b ++,得到的结果为22910x x -+,可知()()()222222910x a x b x b a x ab x x ++=+++=-+可得29b a +=-②,解关于①②的方程组,可得5a =-,2b =-;(2)正确的式子:()()22041253265106191x x x x x x x --=+-=+--【点睛】本题主要是考查多项式的乘法以及二元一次方程组,掌握多项式乘多项式运算法则是正确解决问题的关键.25.(1)①()2a l a -;②1200(2)增大;22al a a-+【分析】本题考查了列代数式及代数式求值,正确列出代数式是解题的关键.(1)①先用l 和a 的代数式表示出园子的长,再表示出园子的面积;②把100l =,30a =代入①中的代数式进行计算即可;(2)由园子的宽不变,长增加了,即可判断出园子的面积增大了,表示出园子的长,即可求出园子的面积.【详解】(1)解:①Q 总长为l ,宽为a ,\园子的长为:()2l a -,\园子的面积为:()2a l a -;故答案为:()2a l a -;②当100l =,30a =时,()222a l a al a -=-230100230=´-´30002900=-´30001800=-1200=;(2)解:Q 园子的宽不变,长增加了,。

整式的运算基础练习题

整式的运算基础练习题

整式的运算基础练习题整式的运算是数学中的一个重要分支,它涉及到各种基本运算规则,如加法、减法、乘法和除法等。

下面是一些关于整式运算的基础练习题,可以帮助大家巩固和加深对整式运算的理解。

1、单项式的加法1)计算:2x + 3x = __x2)计算:5a - 2a = __a答案:(1)5x;(2)3a2、多项式的加法1)计算:2x - 3x + 4x = __x2)计算:5a + 2b + 3a = __a + __b答案:(1)3x;(2)8a;2b3、单项式的乘法1)计算:2x × 3x = __x²2)计算:5a × 4b = __ab²答案:(1)6x2(2)20ab24、多项式的乘法1)计算:(2x + 3y) × (x - y) = __x² - __xy + __y²2)计算:(3a - 2b) × (4a + 5b) = __a×__b² + __a×__b - __a ×__b² - __a×__b答案:(1)x2xy+3y2(2)12a×4b+5a×2b−3a×5b−2a×4b即48ab+10ab−15ab−8ab,最终结果为45ab。

整式的运算测试题一、选择题1、下列哪个选项是整式?()A. 2/3B. 4x/3yC. x + 2yD. √22、下列哪个选项是整式的乘法?()A. 3(x + y)B. 4x^2yC. (x + 2y)(x - 2y)D. x + 2y = 03、下列哪个选项是整式的除法?()A. (x + y)/2B. (x + 2y)(x - 2y)C. x \div 2yD. 2x^2 - x = y二、填空题1、如果 a和 b是整数,那么 a + b的值是____。

2、如果 x和 y是整数,那么 x - y的值是____。

七年级上册数学整式加减计算题

七年级上册数学整式加减计算题

七年级上册数学整式加减计算题一、整式加减基础运算题(1 - 10)1. 计算:(3a + 2b)-(a - b)- 解析:- 去括号法则:括号前是正号,把括号和它前面的正号去掉后,原括号里各项的符号都不改变;括号前是负号,把括号和它前面的负号去掉后,原括号里各项的符号都要改变。

- 所以(3a + 2b)-(a - b)=3a + 2b - a + b。

- 然后合并同类项,3a - a+2b + b = 2a+3b。

2. 计算:2(x^2-3x + 1)-3(2x^2+x - 4)- 解析:- 先使用乘法分配律去括号,2(x^2-3x + 1)=2x^2-6x + 2,3(2x^2+x -4)=6x^2+3x - 12。

- 然后进行整式的减法:(2x^2-6x + 2)-(6x^2+3x - 12)=2x^2-6x + 2 - 6x^2-3x + 12。

- 合并同类项得(2x^2-6x^2)+(-6x - 3x)+(2 + 12)= - 4x^2-9x + 14。

3. 计算:(5a^2-3b^2)+(a^2+b^2)-(5a^2+3b^2)- 解析:- 先去括号,(5a^2-3b^2)+(a^2+b^2)-(5a^2+3b^2) = 5a^2-3b^2+a^2+b^2-5a^2-3b^2。

- 再合并同类项,(5a^2+a^2-5a^2)+(-3b^2+b^2-3b^2)=a^2-5b^2。

4. 计算:3x^2y-(2xy - 2(xy-(3)/(2)x^2y)+xy)- 解析:- 先去小括号,3x^2y-(2xy - 2(xy-(3)/(2)x^2y)+xy)=3x^2y-(2xy-2xy +3x^2y+xy)。

- 再去中括号,3x^2y - 2xy + 2xy - 3x^2y - xy=-xy。

5. 计算:(4m^3-2m^2+m - 1)-(2m^3+3m^2-m + 2)- 解析:- 去括号得4m^3-2m^2+m - 1 - 2m^3-3m^2+m - 2。

整式的加减练习100题有答案

整式的加减练习100题有答案

整式的加减练习100题有答案整式的加减是初中数学中的重要基础知识,通过大量的练习可以帮助我们更好地掌握这部分内容。

以下是 100 道整式加减的练习题及答案,希望能对您有所帮助。

一、选择题1、下列式子中,是单项式的是()A \(x + y\)B \(3x^{2}y\)C \(\dfrac{1}{x} \)D \(x^{2} + 1\)答案:B解析:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。

选项 A 是多项式,选项 C 是分式,选项 D 是多项式,只有选项 B 是单项式。

2、下列计算正确的是()A \(3a + 2b = 5ab\)B \(5y^{2} 3y^{2} = 2\)C \(7a + a = 7a^{2}\)D \(3x^{2}y 2yx^{2} = x^{2}y\)答案:D解析:选项 A 中,3a 与 2b 不是同类项,不能合并;选项 B 中,\(5y^{2} 3y^{2} = 2y^{2}\);选项 C 中,\(7a + a = 8a\);选项 D 计算正确。

3、化简\((a b)\)的结果是()A \( a + b\)B \( a b\)C \(a b\)D \(a + b\)答案:C解析:\((a b) = a b\)4、一个多项式加上\(3x^{2}y 3xy^{2}\)得\(x^{3} 3x^{2}y\),则这个多项式是()A \(x^{3} + 3xy^{2}\)B \(x^{3} 3xy^{2}\)C \(x^{3} 6x^{2}y + 3xy^{2}\) D \( x^{3} + 6x^{2}y 3xy^{2}\)答案:C解析:这个多项式为:\((x^{3} 3x^{2}y) (3x^{2}y 3xy^{2})= x^{3} 3x^{2}y 3x^{2}y + 3xy^{2} = x^{3} 6x^{2}y + 3xy^{2}\)5、化简\(5(2x 3) + 4(3 2x)\)的结果为()A \(2x 3\)B \(2x + 9\)C \(8x 3\)D \(18x 3\)答案:A解析:\\begin{align}&5(2x 3) + 4(3 2x)\\=&10x 15 + 12 8x\\=&(10x 8x) +(12 15)\\=&2x 3\end{align}\6、若\(A = x^{2} 2xy + y^{2}\),\(B = x^{2} + 2xy + y^{2}\),则\(A B =\)()A \(4xy\)B \( 4xy\)C \(0\)D \(2y^{2}\)答案:B解析:\(A B =(x^{2} 2xy + y^{2})(x^{2} + 2xy +y^{2})= x^{2} 2xy + y^{2} x^{2} 2xy y^{2} = 4xy\)7、下列去括号正确的是()A \(a +(b c) = a + b + c\)B \(a (b c) = a b c\)C \(a ( b + c) = a + b c\)D \(a ( b c) = a + b c\)答案:C解析:选项 A,\(a +(b c) = a + b c\);选项 B,\(a (bc) = a b + c\);选项 C 正确;选项 D,\(a ( b c) = a + b + c\)8、化简\((a b) (a + b)\)的结果是()A \( 2b\)B \(2b\)C \( 2a\)D \(2a\)答案:C解析:\\begin{align}&(a b) (a + b)\\=&a b a b\\=&(a a) +( b b)\\=& 2b\end{align}\9、若单项式\( 3a^{m}b^{3}\)与\(4a^{2}b^{n}\)是同类项,则\(m + n =\)()A \(5\)B \(6\)C \(8\)D \(9\)答案:B解析:因为单项式\( 3a^{m}b^{3}\)与\(4a^{2}b^{n}\)是同类项,所以\(m = 2\),\(n = 3\),则\(m + n = 2 + 3 =5\)10、下列式子中,正确的是()A \(3x + 5y = 8xy\)B \(3y^{2} y^{2} = 3\)C \(15ab 15ba = 0\) D \(29x^{3} 28x^{3} = x\)答案:C解析:选项 A 中,\(3x\)与\(5y\)不是同类项,不能合并;选项 B 中,\(3y^{2} y^{2} = 2y^{2}\);选项 C 正确;选项 D 中,\(29x^{3} 28x^{3} = x^{3}\)二、填空题11、单项式\(\dfrac{2\pi ab^{2}}{5}\)的系数是_____,次数是_____。

初一整式测试题及答案

初一整式测试题及答案

初一整式测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是单项式?A. 3x^2yB. 2x + 3C. 5x^2 - 3xD. 4x^3y^2 / 22. 合并同类项 2x^2 - 3x^2 + 5x^2 的结果是:A. 4x^2B. -x^2C. 0D. 3x^23. 整式 4x - 3y + 2z 的次数是:A. 1B. 2C. 3D. 44. 计算 (3x - 2)(2x + 5) 的结果是:A. 6x^2 + 11x - 10B. 6x^2 - 11x + 10C. 6x^2 + 11x + 10D. 6x^2 - 11x - 105. 多项式 2x^3 - 5x^2 + 3x - 1 的次数是:A. 1C. 3D. 46. 整式 3x^2y - 5x + 2 是关于 x 的:A. 一次单项式B. 一次多项式C. 二次单项式D. 二次多项式7. 整式 2x^2y + 3xy^2 - 4y 是关于 y 的:A. 一次单项式B. 一次多项式C. 二次单项式D. 二次多项式8. 计算 (x + 1)(x - 1) 的结果是:A. x^2 - 1B. x^2 + 1C. 2xD. 29. 整式 3x^2 - 2x + 1 的系数分别是:A. 3, -2, 1B. -3, 2, -1C. 3, 2, -1D. -3, -2, -110. 整式 4x^3 - 3x^2 + 2x - 1 的最高次项是:A. 4x^3B. -3x^2D. -1二、填空题(每题4分,共20分)1. 单项式 -5x^3y^2 的系数是 ________。

2. 合并同类项 4x^2 - 2x^2 + 3x^2 的结果是 ________。

3. 整式 2x^2y - 3xy^2 + 4y 是关于 y 的 ________ 次多项式。

4. 计算 (2x + 3)(x - 4) 的结果是 ________。

5. 整式 5x^4 - 3x^3 + 2x^2 - x + 1 的常数项是 ________。

整式运算习题大全

整式运算习题大全

整式运算习题大全整式是指由常数、变量和它们的乘积及其和、差所组成的代数表达式。

整式运算就是对整式进行加、减、乘和除的运算。

下面是一些整式运算的习题:1. 习题一:对下列整式进行加法运算。

(1) 3x^2 + 2x - 5 + 2x^2 - 3x + 7(2) 4y^3 - 2y^2 + 3y - 1 + 5y^3 + 2y^2 - 4y + 22. 习题二:对下列整式进行减法运算。

(1) 5a^2 - 3a + 2 - (2a^2 - 4a + 1)(2) 6b^3 + 2b - 3 - (4b^3 + 3b - 2)3. 习题三:对下列整式进行乘法运算。

(1) (x + 3)(x - 2)(2) (2y - 1)(3y + 2)4. 习题四:对下列整式进行除法运算。

(1) (4x^2 - 3x + 2) ÷ (2x - 1)(2) (6y^3 + 2y - 3) ÷ (3y + 1)5. 习题五:对下列整式进行混合运算。

(1) 2x^2 + 3x - 1 - (x^2 - 4x + 5) + 3(x - 2)(2) 5y^3 - 2y^2 + y - 1 + (2y^3 + 3y - 2) - 2(y - 3)6. 习题六:将下列整式进行合并同类项。

(1) 4x^2 + 2x - 3 + 2x^2 + 3x - 1(2) 3y^3 - 5y^2 + 2y - 1 + 2y^3 - y^2 + 3y + 27. 习题七:将下列整式进行分解。

(1) 3x^2 + 5x(2) 2y^3 + 4y^2 - 6y8. 习题八:将下列整式进行提取公因式。

(1) 6x^2 - 9x^3 + 12x(2) 8y^2 - 4y^3 + 10y^4这些习题涵盖了整式运算的基本内容,通过解题可以巩固整式运算的方法和技巧,并加深对整式的理解。

希望这些习题对你有所帮助!。

整式的乘法专题训练

整式的乘法专题训练

整式的乘法专题训练题目一:(2x)(3x)解析:根据单项式乘以单项式法则,系数相乘,字母部分按同底数幂相乘,结果为6x²。

题目二:(-3a²b)(4ab²)解析:系数相乘为-12,同底数幂相乘,a 的次数为2+1 = 3,b 的次数为1+2 = 3,结果是-12a³b³。

题目三:(2x²y)(-3xy³)解析:系数相乘为-6,x 的次数为2+1 = 3,y 的次数为1+3 = 4,答案是-6x³y⁴。

题目四:(5m²n)(-2m³n²)解析:系数相乘为-10,m 的次数为2+3 = 5,n 的次数为1+2 = 3,结果是-10m⁴n³。

题目五:(3x)(x² - 2x + 1)解析:用3x 分别乘以括号里的每一项,3x·x² = 3x³,3x·(-2x) = -6x²,3x·1 = 3x,结果为3x³ - 6x² + 3x。

题目六:(2x - 1)(x + 3)解析:用2x 乘以(x + 3)得2x² + 6x,再用-1 乘以(x + 3)得-x - 3,最后相加,2x² + 6x - x - 3 = 2x² + 5x - 3。

题目七:(x - 2)(x² + 3x - 1)解析:x 乘以(x² + 3x - 1)得x³ + 3x² - x,-2 乘以(x² + 3x - 1)得-2x² - 6x + 2,相加得x³ + 3x² - x - 2x² - 6x + 2 = x³ + x² - 7x + 2。

题目八:(3x + 2)(2x² - 5x + 1)解析:3x 乘以(2x² - 5x + 1)得6x³ - 15x² + 3x,2 乘以(2x² - 5x + 1)得4x² -10x + 2,相加得6x³ - 15x² + 3x + 4x² - 10x + 2 = 6x³ - 11x² - 7x + 2。

整式的加减练习100题有答案

整式的加减练习100题有答案

整式的加减练习100题有答案整式的加减是初中数学中非常重要的基础知识,通过大量的练习可以帮助我们更好地掌握这部分内容。

下面为大家准备了 100 道整式的加减练习题,并附上详细的答案解析。

一、选择题(共 20 题)1、下列式子中,属于单项式的是()A 3x + 2yB 3xyC 3x + 2D 2 / 3答案:B解析:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。

A 选项 3x + 2y 是多项式;C 选项 3x + 2 是多项式;D 选项 2 / 3 是常数,不是单项式。

2、下列式子中,次数为 3 的单项式是()A -2x³B 3x²C 2x³yD 5xy²答案:A解析:单项式的次数是指单项式中所有字母的指数和。

A 选项-2x³的次数是 3;B 选项 3x²的次数是 2;C 选项 2x³y 的次数是 4;D 选项 5xy²的次数是 3,但它不是单独一个字母的次数为 3。

3、化简(a b)的结果是()A a + bB a bC a + bD a b答案:B解析:负负得正,所以(a b) = a b。

4、下列计算正确的是()A 3a + 2b = 5abB 5y² 3y²= 2C 7a + a = 8aD 3x²y 2yx²= x²y答案:C解析:A 选项 3a 和 2b 不是同类项,不能合并;B 选项 5y² 3y²=2y²;C 选项 7a + a = 8a ,正确;D 选项 3x²y 2yx²= x²y ,正确。

5、多项式 2x³ 3x²+ 5x 1 是()次()项式。

A 三,四B 三,三C 二,四D 二,三答案:A解析:多项式中次数最高项的次数叫做多项式的次数,这个多项式中最高次项是 2x³,次数为 3;多项式中单项式的个数叫做多项式的项数,这个多项式有 2x³、-3x²、5x、-1 四项。

整式的加减练习100题有答案

整式的加减练习100题有答案

整式的加减练习100题有答案整式的加减是初中数学中的重要基础知识,对于后续学习方程、函数等内容起着关键作用。

为了帮助大家更好地掌握整式的加减运算,以下为大家准备了 100 道练习题,并附上详细的答案及解析。

一、选择题(共 30 题)1、下列式子中,属于整式的是()A x + 1B 1/xC x²+1D √x答案:C解析:整式为单项式和多项式的统称,单项式是数或字母的乘积,单独的一个数或字母也是单项式;几个单项式的和叫做多项式。

选项A 是多项式;选项 B 是分式;选项 C 是多项式;选项 D 是根式,不是整式。

所以属于整式的是 C。

2、下列整式中,次数为 2 的是()A x²B x³ 2xC x + y²D 2x²y答案:A解析:单项式的次数是指单项式中所有字母的指数和。

选项 A 次数为 2;选项 B 次数为 3;选项 C 次数为 2,但它是多项式;选项 D 次数为 3。

所以次数为 2 的是 A。

3、化简-3(x 2y) + 4(x 2y)的结果是()A x 2yB x + 2yC x 2yD x + 2y答案:A解析:-3(x 2y) + 4(x 2y) =-3x + 6y + 4x 8y = x 2y4、下列式子中,与 2a 是同类项的是()A 3a²B 2abC -3aD a²b答案:C解析:同类项是指所含字母相同,并且相同字母的指数也相同的项。

选项 A 字母指数不同;选项 B 字母不同;选项 C 与 2a 是同类项;选项 D 字母不同。

所以与 2a 是同类项的是 C。

5、化简 5(2x 3) + 4(3 2x)的结果为()A 2x 3B 2x + 3C 18x 27D 18x + 27答案:A解析:5(2x 3) + 4(3 2x) = 10x 15 + 12 8x = 2x 3二、填空题(共 30 题)1、单项式-2xy³的系数是_____,次数是_____。

整式测试题及答案免费

整式测试题及答案免费

整式测试题及答案免费一、选择题1. 下列哪个表达式不是单项式?A. 3x^2B. -5yC. 7D. 2ab2. 若a + b = 7,a - b = 3,求a^2 - b^2的值。

A. 10B. 16C. 28D. 403. 计算下列多项式乘法的结果:(x + 2)(x - 3) =A. x^2 - x - 6B. x^2 - 5x + 6C. x^2 - 5x - 6D. x^2 - x - 2二、填空题4. 将多项式3x^2 - 5x + 2进行因式分解,结果为______。

5. 已知x^2 + 4x + 4 = (x + 2)^2,求x^2 - 4x + 4的因式分解结果。

三、解答题6. 计算下列整式的加法:(3x^2 - 4x + 1) + (2x - x^2 + 5)。

7. 已知m + n = 5,求下列整式的值:2m^2 - 2mn + 2n^2。

四、综合题8. 某工厂生产一批产品,每件产品的成本为c元,销售价格为p元。

工厂计划生产x件产品。

请根据以下公式计算工厂的总利润:总利润 = (销售价格 - 成本) * 产品数量假设c = 100元,p = 150元,x = 200件,求工厂的总利润。

答案:一、选择题1. D2. C3. B二、填空题4. (3x - 2)(x - 1)5. (x - 2)^2三、解答题6. 4x^2 - 2x + 67. 根据已知条件m + n = 5,可以得出m^2 + 2mn + n^2 = 25。

由于2m^2 - 2mn + 2n^2 = 2(m^2 - mn + n^2),所以2(m^2 - mn + n^2) = 2(25 - 2mn) = 50 - 4mn。

由于m + n = 5,两边平方得到m^2 + 2mn + n^2 = 25,所以2mn = 25 - (m^2 + n^2)。

将m + n = 5代入(m - n)^2 = m^2 - 2mn + n^2得到25 - 4mn = 25 - 4(25 - m^2 - n^2) = 4(m^2 + n^2) - 100。

整式的运算计算题训练

整式的运算计算题训练

1、4(a+b)+2(a+b)-5(a+b)2、(3mn +1)(3mn -1)-8m2n23、()02313721182⨯⎪⎭⎫ ⎝⎛-⨯-⨯+---- 4、[(xy-2)(xy+2)-2x 2y 2 +4]÷(xy)5、化简求值: )4)(12()12(2+-+-a a a ,其中2-=a6、 222)2()41(ab b a -⋅7、)312(6)5(222x xy xy x --+8、()()()()2132-+--+x x x x 9、 ⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+-xy xy xy 41412210、化简求值 ))(()2(2y x y x y x -+-+,其中21,2=-=y x 11.计算:2)())((y x y x y x ++---12.先化简再求值:)4)(12()2(2+-+-a a a ,其中2-=a13、)2)(2(2-+-x x x 14、 3223)2()3(x x --- 15、24)2()2(b a b a +÷+ 16、1232-124×122(利用乘法公式计算)17、[])(2)2)(1(x x x -÷-++ 18、 (2x 2y)3·(-7xy 2)÷(14x 4y 3)19、化简求值:当 2=x ,25=y 时,求 ()()()()x xy y x y x y x 2]4222[2-÷--+++ 的值。

20、)43(22b a a -- 21、)2)(2(b a b a -+ 22、()()321+-x x 23、 +--229)3(b b a (—3.14)024、先化简,再求值(本题5分)()()2226543xy xy xy y x -⋅+-⋅,其中21,2==y x 。

25、 3-2+(31)-1+(-2)3+(892-890)0 26、 (9a 4b 3c )÷(2a 2b 3)·(-43a 3bc 2)27、(15x 2y 2-12x 2y 3-3x 2)÷(-3x)2先化简,再求值:(x +y)(x -y)+(2x -y)2-2(x 2-2xy),其中x =51,y =-5.28、()4(23)(32)a b a b a b +--+- 29、23628374)21()412143(ab b a b a b a -÷-+ 30、()()()1122+--+x x x 31、3-2+(31)-1+(-2)3+(892-890)032、先化简再求值:()()()3222a ab b b ab a b a -++++-,其中2,41=-=b a33)()4(23)(32)a b a b a b +--+- 。

整式的运算练习题(共10篇)

整式的运算练习题(共10篇)

整式的运算练习题(共10篇)整式的运算练习题(一): 30道整式的运算练习题快,我很急,最好到答案(x2+ax+b)(x2-3x+4)=x^4-3x^3+4x^2+ax^3-3ax^2+4ax+bx^2-3bx+4b=x^4-(3-a)x^3+(4-3a+b)x^2+(4a-3b)+4b3-a=0 => a=34-3a+b=04-3*3+b=0b=5设任取0-9中3个数X,Y,Z.6个两位数分别是:10X+Y,10Y+X,10X+Z,10Z+X,10Y+Z,10Z+Y. 6个数相加,和是22X+22Y+22Z=22(X+Y+Z).再除以(X+Y+Z)等于22.所以不管X,Y,Z如何,最终结果都是22.1)(x-y)(x+3) (2)(3)(5a2+8a)+(3a2-7a+5) (4)(-3)5 (-3)2 3(5) (6)x2y2 (-x2y)(7)(2a+3b)(a-b) (8)(5a3-2a+a2)÷(-2a)a的平方*b^3ab+5*a的平方*[email protected]=a^2*(b+3ab)+5a^2*(b-4ab)=a^2b+3a^3b+5a^2b-20a^3b=6a^2b-17a^3b=6*(5^2)*3-17*(5^3)*3=5895(2x^2)^3-6x^3(x^3+2x^2+x)=(8x^6)-(6x^6+12x^5+6x^4)=8x^6-6x^6-12x^5-6x^4=2x^6-12x^5-6x^42(x+y+z)(x+y-z)=(x+y)^2 - z^2=x^2 + y^2 -2xy -z^23[(x+y)^2-(x-y)^2]÷(2xy)=[x^2 + 2xy + y^2 -(x^2 - 2xy + y^2)]/(2xy)=[x^2 + 2xy + y^2 - x^2 + 2xy - y^2)]/(2xy)=(4xy)/(2xy)=24a^2 (a+1)^2-2(a^2-2a+4)=a^2[a^2 + 2a +1]-(2a^2-4a+8)=a^4 + 2a^3 + a^2 - 2a^2 + 4a -8=a^4 + 2a^3 - a^2 + 4a - 8【整式的运算练习题】整式的运算练习题(二): 整式的运算练习题 90道快,我只找到这些,不知道你是要找小学的还是初中的:一)计算题:(1)23+(-73)(2)(-84)+(-49)(3)7+(-2.04)(4)4.23+(-7.57)(5)(-7/3)+(-7/6)(6)9/4+(-3/2)(7)3.75+(2.25)+5/4(8)-3.75+(+5/4)+(-1.5)(9)(-17/4)+(-10/3)+(+13/3)+(11/3)(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)(11)(+1.3)-(+17/7)(12)(-2)-(+2/3)(13)|(-7.2)-(-6.3)+(1.1)|(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)(15)(-2/199)*(-7/6-3/2+8/3)(16)4a)*(-3b)*(5c)*1/6还有50道题,不过没有答案1.3/7 × 49/9 - 4/32.8/9 × 15/36 + 1/273.12× 5/6 –2/9 ×34.8× 5/4 + 1/45.6÷ 3/8 –3/8 ÷66.4/7 × 5/9 + 3/7 × 5/97.5/2 -( 3/2 + 4/5 )8.7/8 + ( 1/8 + 1/9 )9.9 × 5/6 + 5/610.3/4 × 8/9 - 1/30.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.411.7 × 5/49 + 3/1412.6 ×( 1/2 + 2/3 )13.8 × 4/5 + 8 × 11/514.31 × 5/6 – 5/615.9/7 - ( 2/7 – 10/21 )16.5/9 × 18 –14 × 2/717.4/5 × 25/16 + 2/3 × 3/418.14 × 8/7 –5/6 × 12/1519.17/32 –3/4 × 9/2420.3 × 2/9 + 1/321.5/7 × 3/25 + 3/722.3/14 ×× 2/3 + 1/623.1/5 × 2/3 + 5/624.9/22 + 1/11 ÷ 1/225.5/3 × 11/5 + 4/326.45 × 2/3 + 1/3 × 1527.7/19 + 12/19 × 5/628.1/4 + 3/4 ÷ 2/329.8/7 × 21/16 + 1/230.101 × 1/5 –1/5 × 2131.50+160÷40 (58+370)÷(64-45)32.120-144÷18+3533.347+45×2-4160÷5234(58+37)÷(64-9×5)35.95÷(64-45)36.178-145÷5×6+42 420+580-64×21÷2837.812-700÷(9+31×11)(136+64)×(65-345÷23)38.85+14×(14+208÷26)39.(284+16)×(512-8208÷18)40.120-36×4÷18+3541.(58+37)÷(64-9×5)42.(6.8-6.8×0.55)÷8.543.0.12× 4.8÷0.12×4.844.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.645.6-1.6÷4= 5.38+7.85-5.37=46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.948.10.15-10.75×0.4-5.749.5.8×(3.87-0.13)+4.2×3.7450.32.52-(6+9.728÷3.2)×2.551.-5+58+13+90+78-(-56)+5052.-7*2-57/(353.(-7)*2/(1/3)+79/(3+6/4)54.123+456+789+98/(-4)55.369/33-(-54-31/15.5)56.39+{3x[42/2x(3x8)]}57.9x8x7/5x(4+6)58.11x22/(4+12/2)59.94+(-60)/10整式的运算练习题(三): 整式的运算练习题1.化简:3(a+5b)-2(b-a).2.有这样一道题:“计算(2x^3-3x^2y-2xy^2)-(x3-2xy^2+y^3)+(-x3+3x^2y-y^3)的值,其中x=1/2,y=-1”.甲同学把“x=1/2”错抄成“x=-1/2”,但他计算的结果也是正确的,试说明理由,并求出这个结果.整式的运算练习题(四): 初一整式加减计算题25道3ab-4ab+8ab-7ab+ab=______.4.7x-(5x-5y)-y=______.5.23a3bc2-15ab2c+8abc-24a3bc2-8abc=______.6.-7x2+6x+13x2-4x-5x2=______.7.2y+(-2y+5)-(3y+2)=______.11.(2x2-3xy+4y2)+(x2+2xy-3y2)=______.12.2a-(3a-2b+2)+(3a-4b-1)=______.13.-6x2-7x2+15x2-2x2=______.14.2x-(x+3y)-(-x-y)-(x-y)=______.16.2x+2y-[3x-2(x-y)]=______.17.5-(1-x)-1-(x-1)=______.18.( )+(4xy+7x2-y2)=10x2-xy.19.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.21.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=______.22.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=______.23.若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为______.25.一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于______.26.-(2x2-y2)-[2y2-(x2+2xy)]=______.27.若-3a3b2与5ax-1by+2是同类项,则x=______,y=______.28.(-y+6+3y4-y3)-(2y2-3y3+y4-7)=______.29.化简代数式4x2-[7x2-5x-3(1-2x+x2)]的结果是______.30.2a-b2+c-d3=2a+( )-d3=2a-d3-( )=c-( ).31.3a-(2a-3b)+3(a-2b)-b=______.32.化简代数式x-[y-2x-(x+y)]等于______.33.[5a2+( )a-7]+[( )a2-4a+( )]=a2+2a+1.34.3x-[y-(2x+y)]=______.35.化简|1-x+y|-|x-y|(其中x<0,y>0)等于______.36.已知x≤y,x+y-|x-y|=______.37.已知x<0,y<0,化简|x+y|-|5-x-y|=______. 38.4a2n-an-(3an-2a2n)=______.39.若一个多项式加上-3x2y+2x2-3xy-4得2x2y+3xy2-x2+2xy,则这个多项式为______.40.-5xm-xm-(-7xm)+(-3xm)=______.41.当a=-1,b=-2时,[a-(b-c)]-[-b-(-c-a)]=______.43.当a=-1,b=1,c=-1时,-[b-2(-5a)]-(-3b+5c)=______.44.-2(3x+z)-(-6x)+(-5y+3z)=______.45.-5an-an+1-(-7an+1)+(-3an)=______.46.3a-(2a-4b-6c)+3(-2c+2b)=______.48.9a2+[7a2-2a-(-a2+3a)]=______.50.当2y-x=5时,5(x-2y)2-3(-x+2y)-100=______..(4x2-8x+5)-(x3+3x2-6x+2).72.(0.3x3-x2y+xy2-y3)-(-0.5x3-x2y+0.3xy2). 73.-{2a2b-[3abc-(4ab2-a2b)]}.74.(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b).75.(x2-2y2-z2)-(-y2+3x2-z2)+(5x2-y2+2z2).76.(3a6-a4+2a5-4a3-1)-(2-a+a3-a5-a4).77.(4a-2b-c)-5a-[8b-2c-(a+b)].78.(2m-3n)-(3m-2n)+(5n+m).79.(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6ab).80.xy-(2xy-3z)+(3xy-4z).81.(-3x3+2x2-5x+1)-(5-6x-x2+x3).83.3x-(2x-4y-6x)+3(-2z+2y).84.(-x2+4+3x4-x3)-(x2+2x-x4-5).85.若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A+B.86.已知A=3a2-5a-12,B=2a2+3a-4,求2(A-B).87.2m-{-3n+[-4m-(3m-n)]}.88.5m2n+(-2m2n)+2mn2-(+m2n).89.4(x-y+z)-2(x+y-z)-3(-x-y-z).90.2(x2-2xy+y2-3)+(-x2+y2)-(x2+2xy+y2).92.2(a2-ab-b2)-3(4a-2b)+2(7a2-4ab+b2).93.2x2-{-3x-[4x2-(3x2-x)+(x-x2)]}.94:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}.95:(+3a)+(-5a)+(-7a)+(-31a)-(+4a)-(-8a).96:a3-(a2-a)+(a2-a+1)-(1-a4+a3).97.4x-2(x-3)-3[x-3(4-2x)+8].整式的运算练习题(五): 100道整式练习题50个加减50个乘除的...六年级数学期末试卷一、填空.第1题2分,其余每题1分,共22%1、2—公顷=_____公顷____平方米 2—小时=_____小时_____分2、120千克的—是_____千克 72公顷比_____公顷少—3、30:()=——=()÷—=1—=()%4、在()里填“>、<或=”1—÷—()1— 1—÷—()1—÷—1—()1—×— 2—:—()2—×1—5、某班男生25人,女生20人,男生比女生多——,男生比女生多占全班人数的——.6、一个圆的半径2厘米,这个圆的周长_____厘米,面积_____平方厘米.7、一件工程,甲队单独做要20天完成,乙队单独做要30天完成,甲乙两队的工作效率之比是_____.8、一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦_____吨.9、在推导圆面积计算公式时,将一个圆平均分成16等份,拼成一个近似的长方形;量得长方形宽3厘米,这个长方形长_____厘米,这个圆的面积_____平方厘米.10、在边长4厘米圆内,剪一个最大的正方形,这个正方形的面积_____平方厘米.11、一个比,如果将前项增加30%,后项必须加上3,比值才能不变.这个比的后项是_____.二、判断.5%1、甲数除以乙数等于甲数乘乙数的倒数.()2、男生比女生多25%,也就是女生比男生少25%.()3、周长相等的圆和正方形,面积相比,圆的面积大.()4、圆内最长的线段是直径.()5、某工人生产102个零件,经检验有100个合格,合格率为100%.()三、选择.4%1、甲、乙两件商品,甲比乙贵—,下列说法正确的是()A、乙比甲便宜—B、甲比乙贵的相当于甲的—C、乙比甲便宜的相当于乙的—D、乙比甲便宜的相当于甲的—2、一根绳长—米,剪去它的—,还剩这根绳的()A、—B、—米C、—D、—3、一种商品先涨价—,再降价10%,现价与原价相比()A、贵B、便宜C、一样D、无法确定4、一个半圆的周长10.28厘米,这个半圆的直径()厘米A、2B、4C、6D、8四、计算.34%1、直接写得数.4%—×3.2= —-0.6= 4.8÷1—= 0.8÷—=8.5×—= —+0.5= 0.28÷0.21= —+5÷7=2、用简便方法计算.8%5—-5.3+4—-2.7 3—÷—+5—×1—4.7×—-0.125+12.5%×6.3 79—×—3、解方程.4%2X-—=0.54 8X=17.6-—X4、用递等式计算.(每题3分,计9分)8—+5.6×1— 1.5×—+2.1÷—(4-3.5×—)÷1—5、列综合算式(或方程)解答.(每题3分,计6分)(1)25个—相加的和比什么数(2)2—减去什么数的40%,多4—正好等于2—的一半6、已知下图三角形面积25平方厘米,求圆的面积.3%五、应用题.35%1、一套西服原价480元,因季节调价,降价—出售,现在这套西服卖多少元2、修路队修一条公路,已修了240米,比剩下的少—,这条公路还剩多少米未修3、一项工程,甲队单独修要20天完成,乙队单独修要30天完成;乙队先修几天后,甲队再用8天就能正好修完4、红星小学,五、六年级共有785名学生,其中五年级学生数相当于六年级的—,红星小学六年级有多少名学生5、甲、乙两桶汽油同样多,从甲桶倒—到乙桶,这时乙桶有汽油30.4千克,甲桶原有汽油多少千克6、快、慢两车同时从相距480千米的两地相向而行,3小时后还相距全程的—,照这样的速度,两车还要经过几小时才能相遇7、某工地想用甲乙两辆汽车一次将一堆货物运走,而甲乙两车的运载总量为9.18吨;如甲车多装—或乙车多装—就能一次全部运走,甲车的运栽量是多少吨小学数学六年级期末试卷【打印】【时间:2023-5-23】【关闭】小学数学六年级期末试卷(A卷)一、填空.(6,10题每空2分,其余每空1分,共18分)1、一百零五万八千写作(),改写成以万为单位的数是()万.2、20.08千米=()千米()米3、3时45分写成分数是()时,写成小数是()时.4、的分数单位是(),有()个这样的分数单位.5、把340分解质因数应写成340=().6、10以内所有质数的平均数是().7、7==()%8、8.4:的比值是().9、()米的与6米的相等.10、一个圆柱的高等于底面半径的4倍,这个圆柱的侧面展开图的周长是61.68厘米,这个圆柱体底面半径是().(π取3.14).二、判断题.对的画“√”,错的画“×”.(4分)1、一个自然数没有比它本身再大的约数.()2、97是100以内最大的质数.()3、在一个乘法算式里,乘数是,积与被乘数的比是4:5.()4、任何一个圆柱体的体积都比圆锥体多2倍.()三、选择题.把表示正确答案的字母填在()里.(4分)1、一桶油5千克,先用去全部的,再用去千克,一共用去().A、千克B、千克C、4千克2、用4个体积是1立方分米的正方体木块拼成一个长方体,这个长方体的表面积可能是().A、16平方分米B、18平方分米C、24平方分米四、用简便方法计算(写出简算过程)(6分)1、2、1.25×25×0.4×8五、脱式计算.(20分)1、205×32-6562、2975÷125+26×3.53、4、(2-1.25×)×(5、六、求下面图形中空白部分的面积.(5分)七、列式计算.(8分)1、560的40%比它的多多少2、一个数的15%比12.8多,求这个数.(用方程解)八、应用题.(35分)1、机床厂第一季度生产机床570台,比计划多生产90台,超额完成计划的百分之几2、一项工程,甲队独干3天完成总工程的,照这样计算,完成全部工程的,需要多少天3、A、B两地相距32千米,甲、乙分别从A、B两地同时出发,相向而行,乙和甲的速度之比是 3:5,相遇时,甲行了多少千米4、一个梯形的面积是12平方分米,上底和高都是2.4分米,下底长多少分米(用方程解)5、原来做一套校服需要78元,现在每套提价12元,原来60套校服的钱现在可以做多少套6、张老师借来一本书,第一天看了全书的30%,第二天看的比全书的少14页,两天共看了70页,这本书一共多少页7、一个圆柱形玻璃缸,底面半径2分米,里面盛有1.5分米深的水,将一块不规则的铁放入这缸水中,水面上升0.5分米,这块铁的体积是多少小学数学六年级期末试卷(B卷)一、填空.(每空1分,共19分)1、100个亿,5个千万,4个十万组成的数写作(),用四舍五入法省略“亿”后面的尾数是().2、升=()升()毫升3.45时=()时()分3、先把8.05扩大10倍,再把小数点向左移动两位,得()4、在9、10和18三个数中,()能被()整除,()和()互质.5、18和21的最大公约数是(),最小公倍数是().6、a和b都是自然数,如果>,那么,a和b相比,()大.7、如果把甲数的给乙数,这时甲、乙两个数恰好相等,原来乙数与甲数的最简整数比是().8、六(1)班男生人数是女生人数的125%,男生人数是全班人数的,女生人数比是男生人数少()%.9、把一个棱长4分米的正方体木块削成一个最大的圆柱体,圆柱体的体积是().10、把一块长80米、宽60米的长方形菜地画在比例尺是1:2023的图纸上,图上面积是().二、判断题.对的画“√”,错的画“×”.(4分)1、能被2整除的数一定不能被3整除.()2、把12.5米:千米化成最简单的整数比是1:10()3、一个长方体的棱长和是24厘米,这个长方体的体积一定是6立方厘米.()4、甲数的等于乙数的,甲数比乙数多60%.三、选择题.把正确答案的序号填在()里.(4分)1、已知把3米长的线段平均分成4份,可以得出()①每份是3米的②每份是米③每份是3米的④每份是1米的2、根据甲数除以乙数商是4,可以确定().①甲数一定能被乙数整除②乙数一定能被甲数除尽③甲数与乙数的比是4:1④甲数是甲乙两数的最小公倍数四、用简便方法计算(写出简单过程)(6分)五、脱式计算.(20分)1、98×102-69992、0.4÷2.5+0.07×50六、下图中的排水管,外直径30厘米,管壁厚3厘米,管长4米,求排水管的体积.(4分)七、列式计算.(8分)1、13.6减去9.4的差,除以,商是多少2、3.1比一个数的少1.6,这个数是多少(用方程解)八、应用题.(35分)1、李明把500元存入银行,一年后取回本息537.35元,求年利率.2、果园里的苹果树比梨树多160棵,梨树比苹果树少.果园里有苹果树多少棵3、一辆汽车从东城开往西城,前3小时每小时行41千米,后4小时共行220千米,这辆汽车平均每小时行多少千米4、建筑队用480块方砖可以铺地15平方米,照这样计算,学校的电化教室地面是120平方米,需要购买多少块方砖(用比例方法解)5、用铁皮焊一只底面边长都是25厘米,高40厘米的长方体无盖水桶,至少需要铁皮多少平方厘米(1)求三个植树队共有多少人.把数据填入表内.(2)求三个队平均每人植树多少棵.把得数填入表内.7、上学期红光小学六年级共有学生180人,这学期男生人数增加了16%,女生人数减少6人,这学期全年级共有学生186人,上学期六年级有男生有多少人整式的运算练习题(六): 求初一计算题,整式练习及答案得数就行.计算题要四个数的,整式要四项.2x+17=353x-64=1112+8x=520.8x-4.2=2.22x+5=103x-15=754x+4o=3203x+77=1225x-1.6=0.66x-4=2010x-0.6=2.4500-12x=1401) 66x+17y=396725x+y=1200答案:x=48 y=47(2) 18x+23y=230374x-y=1998答案:x=27 y=79(3) 44x+90y=779644x+y=3476答案:x=79 y=48(4) 76x-66y=408230x-y=2940答案:x=98 y=51(5) 67x+54y=854671x-y=5680答案:x=80 y=59(6) 42x-95y=-1410 21x-y=1575答案:x=75 y=48(7) 47x-40y=85334x-y=2023答案:x=59 y=48(8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95(9) 97x+24y=7202 58x-y=2900答案:x=50 y=98(10) 42x+85y=6362 63x-y=1638答案:x=26 y=62(11) 85x-92y=-2518 27x-y=486答案:x=18 y=44(12) 79x+40y=2419 56x-y=1176答案:x=21 y=19(13) 80x-87y=2156 22x-y=880答案:x=40 y=12(14) 32x+62y=5134 57x+y=2850答案:x=50 y=57(15) 83x-49y=8259x+y=2183答案:x=37 y=61(16) 91x+70y=5845 95x-y=4275答案:x=45 y=25(17) 29x+44y=5281 88x-y=3608答案:x=41 y=93(18) 25x-95y=-4355 40x-y=2023答案:x=50 y=59(19) 54x+68y=3284 78x+y=1404答案:x=18 y=34(20) 70x+13y=3520 52x+y=2132答案:x=41 y=50(21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99(22) 36x+77y=7619 47x-y=799答案:x=17 y=91(23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78(24) 28x+28y=3332 52x-y=4628答案:x=89 y=30(25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54(26) 79x-76y=-4388 26x-y=832答案:x=32 y=91(27) 63x-40y=-821 42x-y=546答案:x=13 y=41(28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78(29) 85x+67y=7338 11x+y=308答案:x=28 y=74(30) 78x+74y=12928 14x+y=1218答案:x=87 y=83(31) 39x+42y=5331 59x-y=5841答案:x=99 y=35(32) 29x+18y=1916 58x+y=2320答案:x=40 y=42(33) 40x+31y=604345x-y=3555答案:x=79 y=93(34) 47x+50y=8598 45x+y=3780答案:x=84 y=93(35) 45x-30y=-1455 29x-y=725答案:x=25 y=86(36) 11x-43y=-1361 47x+y=799答案:x=17 y=36(37) 33x+59y=3254 94x+y=1034答案:x=11 y=49(38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55(39) 94x+71y=7517 78x+y=3822答案:x=49 y=41(40) 28x-62y=-4934 46x+y=552答案:x=12 y=85(41) 75x+43y=8472 17x-y=1394答案:x=82 y=54(42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530答案:x=17 y=36 (45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=84 20x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92 3X+18=52 x=34/3 4Y+11=22 y=11/4 3X*9=5 x=5/278Z/6=48 z=363X+7=59 x=52/34Y-69=81 y=75/4 8X*6=5 x=5/487Z/9=4 y=63/715X+8-5X=54 x=4.6 5Y*5=27 y=27/40 8x+2=10 x=1x*8=88 x=11y-90=1 y=912x-98=2 x=506x*6=12 x=1/35-6=5x x=-1/56*x=42 x=755-y=33 y=2211*3x=60 x=20/11 8-y=2 y=-61.x+2=32.x+32=333.x+6=184.4+x=475.19-x=86.98-x=137.66-x=108.5x=109.3x=2710.7x=711.8x=812.9x=913.10x=10014.66x=66015.7x=4916.2x=417.3x=918.4x=1619.5x=2520.6x=3621.8x=6422.9x=8123.10x=10024.11x=12125.12x=14426.13x=16927.14x=19628.15x=22529.16x=25630.17x=28931.18x=32432.19x=36133.20x=40031.21x=44132.22x=48433.111x=1232134.1111x=123432135.11111x=12345432136.111111x=1234565432137.46/x=2338.64/x=839.99/x=1140.1235467564x=041.2x+1= -2+x42.4x-3(20-x)=343..-2(x-1)=444.3X+189=52145.4Y+119=22 546.3X+77=5947.4Y-6985=8148.X=0.149.5X=55.550.Y=50-85(-8)-(-1) =-745+(-30) =15-1.5-(-11.5) =10-0.25-(-0.5) =0.2515-【1-(-20-4)】 =-10-40-28-(-19)+(-24) =-7322.54+(-4.4)+(-12.54)+4.4 =10(2/3{三分只二“/”是分数线}-1/2)-(1/3-5/6)=2/3 2.4-(-3/5)+(-3.1)+4/5 =0.7(-6/13)+(-7/13)-(-2) =13/4-(-11/6)+(-7/3) =1/411+(-22)-3×(-11) =22(-0.1)÷0.5×(-100) =20(-2)的3次方-9 =-1723÷[-9-(-4)] =-23/5(3/4-7/8)÷(-7/8) =1/7(-60)×(3/4+5/6)=-95给我分吧整式的运算练习题(七): 急求300道初一整式运算题目(最好带答案)看清楚,是正是运算题带xy的那种,不要带有中文,在一小时之内出完的, 从发布问题至今,已超过2小时无追加100和50只能追加20至30(看时间而定)于09年7月31日11:58 公告答案一、填空题(每小题2分,共16分)1、多项式-abx2+ x3- ab+3中,第一项的系数是 ,次数是 .2、计算:①100×103×104 =;②-2a3b4÷12a3b2 = .3、(8xy2-6x2y)÷(-2x)=4、一个正方体的棱长为2×102毫米,则它的体积是毫米3.5、(a+2b-3c)(a-2b+3c)=[a+( )]·[a-( )] .6、(-3x-4y) ·( ) = 9x2-16y2.7、已知正方形的边长为a,如果它的边长增加4,那么它的面积增加 .8、如果x+y=6,xy=7,那么x2+y2= ,(x-y)2= .三、计算题(每小题5分,共30分)15、2(x3)2·x3-(2 x3)3+(-5x)2·x716、(-2a3b2c) 3÷(4a2b3)2-a4c·(-2ac2)17、-2a2( ab+b2)-5a(a2b-ab2)18、(3x3-2)(x+4)-(x2-3)(3x-5)19、9(x+2)(x-2)-(3x-2)220、[(x+y)2-(x-y2)+4xy] ÷(-2x)四、先化简,再求值(每小题7分,共14分)21、(3a-7)(3a+7)-2a( -1) ,其中a=-322、[(3x- y 2)+3y(x-)] ÷[(2x+y)2-4y(x+ y)] ,其中x=-7.8,y=8 检举回答人的补充 2023-08-17 09:12 (1).(x-1)-(2x+1)=-x-2(2).3(x-2)+2(1-2x)=-x-4(3).3(2b-3a)+3(2a-3b)=-3a-3b(4).(3x^2-xy-2y^2)-2(X^2+xy-2y^2)=(3x-y)(x+2y)-(x+2y)(x-y)=3y(x+2y)(5)7a^b-(-4a^b+5ab^2)-2(2a^2b-3ab^2)=7a^b+4a^b-5ab^-4a^b+6ab^=-a^b+ab^=ab(b-a)100×103×104 =;②-2a3b4÷12a3b2 =、(8xy2-6x2y)÷(-2x)=、(a+2b-3c)(a-2b+3c)=[a+( )]·[a-( )]、(-3x-4y) ·( ) = 9x2-16y2.、(a+2b-3c)(a-2b+3c)=[a+( )]·[a-( )]2(x3)2·x3-(2 x3)3+(-5x)2·x71.(2a+3b)*(2a-b)2.(2x+y-1)的平方解1.(2a+3b)*(2a-b) 用十字相乘法吧2 2 =4a2-3b2+4ab3 -12.(2x+y-1)的平方 =4x2+y2+4xy +1-4x-2y(3) 2(ab-3)(4)-3(ab2c+2bc-c) (5)(―2a3b) (―6ab6c) (6)(2xy2) 3yx(1)2ab(5ab2+3a2b)(2)三、巩固练习:1、判断题:(1) 3a3·5a3=15a3 ()(2) ( )(3) ( )(3) -x2(2y2-xy)=-2xy2-x3y ( )2、计算题:(3) (4) -3x(-y-xyz)(5) 3x2(-y-xy2+x2) (6) 2ab(a2b- c)(7) (a+b2+c3)·(-2a) (8) [-(a2)3+(ab)2+3]·(ab3)检举回答人的补充 2023-08-17 09:13 脱式计算:(15.6+9.744/2.4)*0.52.881/0.43-3.5*0.2413.5*0.68/8.543.6-7.6*4.1(86.9+667.6)/50.3(73.5+80.5)/(10+12)(7.8*15+5.1*10+6*5)/(15+10+5)12.53-1.35*2-9.30.8*(4-3.75)/0.16-1.3*(10-7.3)3/7 × 49/9 - 4/38/9 × 15/36 + 1/2712× 5/6 –2/9 ×38× 5/4 + 1/46÷ 3/8 –3/8 ÷64/7 × 5/9 + 3/7 × 5/95/2 -( 3/2 + 4/5 )7/8 + ( 1/8 + 1/9 )9 × 5/6 + 5/63/4 × 8/9 - 1/37 × 5/49 + 3/146 ×( 1/2 + 2/3 )8 × 4/5 + 8 × 11/531 × 5/6 – 5/69/7 - ( 2/7 – 10/21 )5/9 × 18 –14 × 2/74/5 × 25/16 + 2/3 × 3/414 × 8/7 –5/6 × 12/15 17/32 –3/4 × 9/24 3 × 2/9 + 1/35/7 × 3/25 + 3/7.3/14 ×× 2/3 + 1/61/5 × 2/3 + 5/69/22 + 1/11 ÷ 1/25/3 × 11/5 + 4/345 × 2/3 + 1/3 × 157/19 + 12/19 × 5/61/4 + 3/4 ÷ 2/38/7 × 21/16 + 1/23/7 × 49/9 - 4/32.8/9 × 15/36 + 1/273.12× 5/6 –2/9 ×34.8× 5/4 + 1/45.6÷ 3/8 –3/8 ÷66.4/7 × 5/9 + 3/7 × 5/97.5/2 -( 3/2 + 4/5 )8.7/8 + ( 1/8 + 1/9 )9.9 × 5/6 + 5/610.3/4 × 8/9 - 1/311.7 × 5/49 + 3/1412.6 ×( 1/2 + 2/3 )13.8 × 4/5 + 8 × 11/514.31 × 5/6 – 5/615.9/7 - ( 2/7 – 10/21 )16.5/9 × 18 –14 × 2/717.4/5 × 25/16 + 2/3 × 3/418.14 × 8/7 –5/6 × 12/1519.17/32 –3/4 × 9/2420.3 × 2/9 + 1/3整式的运算练习题(八): 求15道初一上学期整式计算求值的题,.2X―[6-2(X-2)] 其中 X=-22.(5a+2a2-3-4a3)-(-a+3a3-a2),其中a=-23.(2m2n+2mn2)-[2(m2n-1)+2mn2+2],其中m=-2,n=24.(5a+2a2-3-4a3)-(-a+3a3-a2),其中a=-25、(2m2n+2mn2)-[2(m2n-1)+2mn2+2],其中m=-2,n=26.3(ab+bc)-3(ab-ac)-4ac-3bc 其中:a=2023/2023,b=1/3,c=1 7.(3xy+10y)+[5x-(2xy+2y-3x)]其中xy=2,x+y=38.已知a=-2,b=-1,c=3,求代数式5abc-2a2b+[3abc-(4ab2-a2b)]的值.9. 2 ( a2b + ab2)- [ 2ab2 - (1- a2b) ] - 2,其中a= -2,b=0.510.(-3x2-4y)-(2x2-5y+6)+(x2-5y-1) 其中 x=-3 ,y=-1【整式的运算练习题】整式的运算练习题(九): 整式的加减附加题1.填空::1.X与-20‰X的和是()2.(2X-3Y )与(X-Y)的2倍的差是()二.一个长方形的宽为A,长比宽大1 ,那么这个长方行的周长为()三.先化简,在求值(2)5(3A二的平方B-AB的平方)-(AB的平方+3A的平方B),其中A=2分之一,B=-1.四.已知一个三角形的周长为3A+2B,其中第一条边长为A+B,第二条边长比第一条边长小1 ,求第三边的长.综合运用五.列式比Y的2分之一大5的数与比Y的2倍小6的数,并计算这两个数的和6:已知A=X3的立方+3Y的立方-XY平方,B=-Y的立方+X的立方+2XY的平方,其中X=3分之一,Y=2,求A-B的值7:已知:(m-2)a的2次方b|m+1|的次方是关于a,b的五次单项式,求下列代数式的值,并比较(1)(2)两题结果:1m的2次方-2m+1. (2)(m-1)的2次方1.字母能表示什么初一数学习题精选一、填空题1.一打铅笔12支, 打铅笔______支;2.小明上学走的路程是 ,所用的时间是 ,则小明上学行走的速度是______;3.一种本的单价是元,问个本需要______元.二、解答题1.如图,圆中挖掉一个正方形,试用r表示阴影部分面积.2.如图所示一个边长为1的正方形的分割方法,当分割n次时其中最小的四边形的面积是多少.参考答案:一、1. 2. 3.二、1.(提示:如答图,把正方形分成两个三角形,其中三角形的面积是 .2.(提示:当分割一、二、三…次所得的最小四边形的面积依次是 ,分 2.代数式习题精选一、选择题1.下面选项中符合代数式书写要求的是()A B C D2.火车速度是千米/小时,则分钟可行驶()A 千米B 千米C 千米D 千米3.用代数式表示“ 与的差的2倍”正确的是()A B C 2 D4.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为()A 元B 元C 元D 元二、填空题1.如果圆锥体的底面半径为 ,高为 ,则圆锥体的体积是_______;2.一个长方体的长、宽、高分别是、、 ,则这个长方体的表面积是_______;3.一所小学,女教师人数占教师总人数的90%,男教师人数是 ,这所学校教师的总数是_______;4.代数式的项是_______和_______,它们的系数分别是_______和_______.5.在下边的日历中,任意圈出一竖列上相邻的三个数,设中间一个数为a,则这三个数之和为_______.(用含a的代数式表示)6.观察下列各式:请你将猜想到的规律用自然数表示出来_______.7.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低m元后,又降低20%,现售价为n元,那么该电脑的原售价为_______元.8.如图,观察下列各正方形图案,每条边上有个圆点,每个图案圆点的总数是S,按此规律推断S与n的关系式是_______.三、解答题1.一种蔬菜x千克,不加工直接出售每千克可卖y元,如果经过加工重量减少了20%,价格增加了40%,问x千克这种蔬菜加工后可卖多少钱;如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱比加工前多卖多少钱2.举出三个实际问题,其中的数量关系可以用a、b来表示.3.如图,用a来表示阴影部分的面积.4.2.写出一个只含字母x的代数式.要求:(1)要使此代数式有意义;(2)字母x的取值范围为全体实数;(3)此代数式的值恒为正数.参考答案:一、1.C 提示:看课本第92页“注意”.2.D 提示:分钟即小时,时间速度=路程,即.3.C 提示:注意运算顺序.4.D 提示:原价现售价.二、1. 2. 3.(提示:女教师占教师总数的90%,则男教师应占教师总数的10%).4..5.提示:多做几次试验,即可得到答案.6.提示:纵向观察各列数的特点.7.提示:先表示第一次降价后的.8.有不同思路,比如可把组成正方形的点看做是如答图所示的4部分,答案为或者三、1.1.12xy元,1680元,180元2.(1)a、b分别表示长方形的长和宽,则长方形的面积是(2)如果a表示某种物品的单价、b表示某种物品的数量,则这种物品的总价可表示为 ,(3)a表示汽车行驶的速度,b表示汽车行驶的时间,则可表示汽车行驶的路程.3.(提示:如答图,其中阴影面积的一半,等于以a为半径的四分之一的圆的面积减去以a为两直角边的直角三角形的面积)4.答案不确定,如3.代数式求值习题精选一、选择题1.下列代数式:的值,肯定为正数的有()A.1个 B.2个 C.3个 D.以上答案都不对2.下表表示每给x的一个值,某个代数式的相应的值.满足表中所列所有条件的代数式是()0 1 2 3代数式的值 2 -1 -4 -7A. B. C. D.3.当时,代数式的值是()A.13 B. C. D.4.根据如图所示的计算程序计算代数式的值.若输入的x值为 ,则输出的结果为()A. B. C. D.二、填空题1.如图,填表:2.如图,填数:1.答如下表格2.答如图参考答案:一、1.A 提示:只有代数式的值悟为正数.2.D3.B 提示:易断定之值为整数,故代数式的值是带分数,其分数部分是 ,故不必动笔便可得出结果.4.C 提示:所以应计算代数式当时的值.二、1.答如下表格2.答如图三、1.(1)(2)177元2.(1) ,(2)403.(1)平方厘米(2)当时原式平方厘米整式的运算练习题(十): 初一上册数学有理数运算的练习题!1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数; ②一个有理数不是正数就是负数;③一个整数不是正的,就是负的; ④一个分数不是正的,就是负的A.1B.2C.3D.42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:a 0 b把a,-a,b,-b按照从小到大的顺序排列 ( )A. -b<-a<a<bB.-a<-b<a<bC. -b<a<-a<bD.-b<b<-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数; ②相反数大于本身的数是负数;③数轴上原点两侧的数互为相反数; ④两个数比较,绝对值大的反而小A.①②B.①③C.①②③D.①②③④4.下列运算正确的是 ( )A. B.-7-2×5=-9×5=-45C.3÷D.-(-3)2=-95.若a+b<0,ab<0,则 ( )A.a>0,b>0;B.a<0,b<0;C. a,b两数一正一负,且正数的绝对值大于负数的绝对值;D.a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kgB.0.6kgC.0.5kgD.0.4kg7.一根1m长的小棒,第一次截去它的 ,第二次截去剩下的 ,如此截下去,第五次后剩下的小棒的长度是()A .( )5m B. [1-( )5]m C. ( )5m D. [1-( )5]m8.若ab≠0,则的取值不可能是()A.0B.1C.2D.-2二、填空题:9.比大而比小的所有整数的和为 .10.若那么2a一定是 .11.若0<a<1,则a,a2, 的大小关系是 .12.多伦多与北京的时间差为–12 小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是 .13上海浦东磁悬浮铁路全长30km,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m/min.14.规定a*b=5a+2b-1,则(-4)*6的值为 .15.已知 =3, =2,且ab<0,则a-b= .16.已知a=25,b= -3,则a99+b100的末位数字是 .三、计算题.17. 18. 8-2×32-(-2×3)219. 20.[-38-(-1)7+(-3)8]×[- 53]21. –12 × (-3)2-(- )2023×(-2)2023÷22. –16-(0.5- )÷ ×[-2-(-3)3]-∣ -0.52∣四、解答题.23.已知1+2+3+…+31+32+33==17×33.求 1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.24.在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少请列出算式解答.25.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次-4 +7 -9 +8 +6 -5 -2(1)求收工时距A地多远(2)在第次纪录时距A地最远.(3)若每km耗油0.3升,问共耗油多少升26.如果有理数a,b满足∣ab-2∣+(1-b)2=0试求+…+ 的值.答案:一、选择题:1-8:BCADDBCB二、填空题:9.-3;10.非正数;11.;12.2:00;13.3.625×106;14.-9;15.5或-5;16.6三、计算题17.-9;18.-45;19.;20.;21.;22.四、解答题:23.-2×17×33;24.0;25.(1)1(2)五(3)12.3;26.我劝你做题要答案干嘛,要答案是害了自己!希望能解决您的问题.。

七年级整式计算题100道

七年级整式计算题100道

七年级整式计算题100道一、整式计算题1 - 20题。

1. 计算:(3x^2y - 2xy^2) - (xy^2-2x^2y)- 解析:- 首先去括号,括号前是减号,去括号后括号内各项要变号。

- 原式=3x^2y - 2xy^2-xy^2+2x^2y。

- 然后合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。

- 对于x^2y的同类项有3x^2y和2x^2y,它们相加得(3 + 2)x^2y=5x^2y;对于xy^2的同类项有-2xy^2和-xy^2,它们相加得(-2-1)xy^2=-3xy^2。

- 所以结果为5x^2y - 3xy^2。

2. 计算:3a + 2b - 5a - b- 解析:- 合并同类项,3a和-5a是同类项,2b和-b是同类项。

- 3a-5a=(3 - 5)a=-2a,2b - b=(2 - 1)b=b。

- 所以结果为-2a + b。

3. 计算:(2x^2)^3-6x^3(x^3+2x^2+x)- 解析:- 先计算幂的乘方,根据(a^m)^n=a^mn,则(2x^2)^3=2^3×(x^2)^3=8x^6。

- 再计算后面的式子,根据单项式乘多项式法则,用单项式去乘多项式的每一项,6x^3(x^3+2x^2+x)=6x^6+12x^5+6x^4。

- 最后做减法:8x^6-(6x^6+12x^5+6x^4)=8x^6-6x^6-12x^5-6x^4=2x^6-12x^5-6x^4。

4. 计算:(3m - 2n)(2m + 3n)- 解析:- 根据多项式乘多项式法则,用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加。

- 原式=3m×2m+3m×3n-2n×2m - 2n×3n=6m^2+9mn - 4mn-6n^2=6m^2+5mn - 6n^2。

5. 计算:(a + b)^2-(a - b)^2- 解析:- 根据完全平方公式(a + b)^2=a^2+2ab + b^2,(a - b)^2=a^2-2ab + b^2。

整式的练习题及解答

整式的练习题及解答

整式的练习题及解答一、填空题1. 化简以下整式:(3x² - 2)(x - 4) + 5(x² + 2x - 1)解:将括号内的整式进行分配律展开,并合并同类项,得到:3x³ - 14x² + 7x - 182. 将以下整式写成乘积形式:4x² - 9y²解:根据差平方公式,将整式分解为(2x - 3y)(2x + 3y)3. 将以下整式写成乘积形式:a³ - b³解:根据差立方公式,将整式分解为(a - b)(a² + ab + b²)4. 计算以下整式的值:(x - 3)²,当x = 4时解:将整式展开,得到(x - 3)² = x² - 6x + 9。

当x = 4时,代入得到:4² - 6 × 4 + 9 = 25二、选择题1. 化简整式 (2x + 3)² - (3x - 4)²结果为:A. -x² - 2x - 7B. -x² - x - 7C. -x² + 2x - 7D. -x² - 2x + 7答案:B2. 将整式 a²b + b²a - ab²写成乘积形式得到:A. (a + b)²B. (a + b)(ab - b²)C. (a² - ab + b²)(a + b)D. a²b + ab²答案:B三、解答题1. 将以下整式写成乘积形式:x⁴ - y⁴解:根据差平方公式可以将整式分解为(x² - y²)(x² + y²)。

其中,x² -y²可再分解为(x - y)(x + y)。

因此,整式的乘积形式为(x - y)(x + y)(x² + y²)2. 化简整式 (3a + b)² - (a - 2b)²解:展开整式得到 (3a + b)² - (a - 2b)² = 9a² + 6ab + b² - (a² - 4ab + 4b²) 合并同类项得到 9a² + 6ab + b² - a² + 4ab - 4b²化简得到 8a² + 10ab - 3b²综上所述,整式的练习题及解答包括了填空题、选择题和解答题,涵盖了整式的简化、展开、分解等运算。

整式的加减乘除运算练习题

整式的加减乘除运算练习题

整式的加减乘除运算练习题在代数学中,整式是指由字母和常数通过加减乘除以及乘方运算组成的代数表达式。

整式是代数学中的基础概念,对于学习代数和解决实际问题至关重要。

本文将为您提供一系列整式的加减乘除运算练习题,帮助您提高整式运算的能力。

一、加法运算整式的加法运算是指将两个或多个整式相加的过程。

在加法运算中,我们需要注意项的合并。

练习题1:将下列整式进行加法运算,并将结果写成整式的最简形式。

1. 5x^2 + 3xy + 2y^2 + x^2 + 4xy - y^22. 7a + 3ab - 2b + 2a - 3ab + 5b3. 4x^3 - 2x^2y + xy^2 - 3x^3 + 5x^2y - 2xy^2二、减法运算整式的减法运算是指将两个整式相减的过程。

在减法运算中,我们需要注意运用括号用法和项的合并。

练习题2:将下列整式进行减法运算,并将结果写成整式的最简形式。

1. 3x^2 + 5xy - 2y^2 - (2x^2 - 4xy + y^2)2. (4a - 3b) - (2a + 5b)3. 5x^3 - x^2y + 2xy^2 - (3x^3 - 2x^2y + xy^2)三、乘法运算整式的乘法运算是指将两个或多个整式相乘的过程。

在乘法运算中,我们需要注意运用分配律和合并同类项。

练习题3:计算下列整式的乘法,并将结果写成整式的最简形式。

1. (3x + 2y)(4x + y)2. (2a - 3b)(a + b)3. (5x^2 + 2xy - y^2)(3x - y)四、除法运算整式的除法运算是指将一个整式除以另一个整式的过程。

在除法运算中,我们需要注意运用长除法和合并同类项。

练习题4:将下列整式进行除法运算,并将结果写成整式的最简形式。

1. (4x^2 + 6xy + 2y^2) ÷ (2x + y)2. (8a^2 - 2ab + b^2) ÷ (2a - b)3. (10x^3 - 4x^2 + 2xy) ÷ (2x - y)综合练习题:综合运算练习题5:计算下列整式的综合运算,并将结果写成整式的最简形式。

整式化简求值经典题型(九大题型)(解析版)—七年级数学上册(人教版2024新教材)

整式化简求值经典题型(九大题型)(解析版)—七年级数学上册(人教版2024新教材)

整式求值经典题型(九大题型)【题型1 直接代入】【题型2 整体代入-配系数】【题型3整体代入-奇次项为相反数】【题型4 整体构造代入】【题型5不含无关】【题型6 化简求值】【题型7 绝对值化简求值】【题型8 非负性求值】【题型9 定义求值】【题型1 直接代入】【典例1】根据下列a,b的值,分别求代数式a2―4ba的值.(1)a=5,b=25(2)a=―3,b=2【变式1-1】设a的相反数是2,b是绝对值最小的数,c是倒数等于自身的有理数,则a―b+c的值为()A.32B.―1C.―1或―3D.32或―12【答案】C【分析】本题考查了代数式的求值:先通过合并把代数式化简,然后把满足条件的字母的值代入(或整体代入)计算.也考查了倒数、相反数以及绝对值的含义.【详解】解:由题可得:a=―2,b=0,c=±1,当a=―2,b=0,c=1时,原式=―2―0+1=―1;当a=―2,b=0,c=―1时,原式=―2―0+(―1)=―3;综上,a―b+c的值为―1或―3,故选:C.【变式1-2】若|x|=4,|y|=3,且x+y>0,则x―y的值是()A.1或7B.1或―7C.―1或7D.―1或―7,且x+y<0,则xy的值为.【变式1-3】已知|x|=4,|y|=12故答案为:±2.【题型2 整体代入-配系数】【典例2】当代数式x3+3x+1的值为2022时,代数式2x3+6x―3的值为()A.2022B.4037C.4039D.2019【答案】C【分析】本题考查求代数式的值,由代数式x3+3x+1的值为2022,求出x3+3x=2021,再把2x3+6x―3变形为2(x3+3x)―3,然后利用整体代入求值即可,熟练掌握运算法则及整体代入是解题的关键.【详解】解:∵代数式x3+3x+1的值为2022,∴x3+3x+1=2022,∴x3+3x=2021,∴2x3+6x―3=2(x3+3x)―3=2×2021―3=4039,故选:C.【变式2-1】若代数式2x2+3x的值是5,则代数式4x2+6x―9的值是()A.10B.1C.―4D.―8【变式2-2】已知2y2+y―2的值为3,则4y2+2y+1值为()A.10B.11C.10或11D.3或1【答案】B【分析】本题考查代数式求值,解题的关键是掌握整体代入求值的方法.根据题意得2y2+y=5,整体代入4y2+2y+1求值.【详解】解:∵2y2+y―2=3,∴2y2+y=5,∴4y2+2y+1=22y2+y+1=2×5+1=11.故选:B.【变式2-3】若a2+3a―4=0,则2a2+6a―3=.【答案】5【分析】本题考查了代数式的值.正确变形,整体代入计算即可.【详解】解:∵a2+3a=4,∴2a2+6a=8,∴2a2+6a―3=8―3=5,故答案为:5.【变式2-4】已知x2+5x―3的值是4,则多项式2x2+10x―4的值是.【答案】10【分析】本题考查已知式子的值求代数式的值,先求出x2+5x的值,再作为整体代入2x2+10x―4即可求解.【详解】解:∵x2+5x―3=4,∴x2+5x=7,∴2x2+10x―4=2(x2+5x)―4=2×7―4=10,故答案为:10.【题型3整体代入-奇次项为相反数】【典例3】当x=1时,代数式ax5+bx3+cx―7的值为12,则当x=―1时,求代数式ax5+bx3+cx―7的值.【答案】―26【分析】此题考查了代数式求值,掌握整体代入的方法是解决问题的关键.将x=1代入代数式值为12,列出关系式,将x=―1代入所求式子,把得出的代数式代入计算即可求出值.【详解】解:将x=1代入ax5+bx3+cx―7得:a+b+c―7=12,即a+b+c=19,当x=―1时,ax5+bx3+cx―7=―a―b―c―7=―(a+b+c)―7=―19―7=―26.【变式3-1】当x=3时,代数式ax2025+bx2013―1的值是8,则当x=―3时,这个代数式的值是()A.―10B.8C.9D.―8【答案】A【分析】本题主要考查了代数式的求值.熟练掌握整体代入方法是解题关键.将x=3代数式ax2025+bx2013―1中得:32025a+32013b=9,再将x=―3代入ax2025+bx2013―1中得:―(32025a+32013b)―1,之后整体代入计算即可.【详解】∵当x=3时,代数式ax2025+bx2013―1的值是8,∴32025a+32013b―1=8,∴32025a+32013b=9.当x=―3时,ax2025+bx2013―1=a×(―3)2025+b×(―3)2013―1=―(32025a+32013b)―1=―9―1=―10.故选:A.【变式3-2】当x=―2时,代数式ax3+bx―4的值是―2026,当x=2时,代数式ax3+bx―4的值为.【答案】2018.【分析】由已知得出―8a―2b―4=―2026,即8a+2b=2022,代入到x=2时所得的代数式计算可得.【详解】当x=―2时,代数式为―8a―2b―4=―2026,即8a+2b=2022,则x=2时,代数式为8a+2b―4=2022―4=2018.故答案为2018.【点睛】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.【题型4 整体构造代入】【典例4】若a―5=3b,则(a+2b)―(2a―b)的值为.【答案】―5【分析】本题主要考查了整式的化简求值,先把所求式子去括号,然后合并同类项,再求出―a+3b=―5,最后利用整体代入法求解即可.【详解】解:(a+2b)―(2a―b)=a+2b―2a+b=―a+3b,∵a―5=3b,∴―a+3b=―5,∴原式=―5,故答案为:―5.【变式4-1】已知m―n=3,p+q=2,则(m+p)―(n―q)的值为.【题型5不含无关】【典例5】已知多项式M=2x2―3xy+2y―2x2+x―xy+1.(1)先化简,再求M的值,其中x=1,y=2;(2)若多项式M与字母y的取值无关,求x的值.【答案】(1)―2(2)2【分析】本题考查了整式的化简求值以及无关型题型:(1)先去括号,合并同类项,再将x=1,y=2代入求值;(2)将多项式变形为M=(―x+2)y―2x―2,若多项式M与字母y的取值无关,则―x+2=0,由此可解.【详解】(1)解:M=2x2―3xy+2y―2x2+x―xy+1=2x2―3xy+2y―2x2―2x+2xy―2=―xy+2y―2x―2,将x=1,y=2代入,得:M=―1×2+2×2―2×1―2=―2+4―2―2=―2;(2)解:由(1)得M=―xy+2y―2x―2=(―x+2)y―2x―2,若多项式M与字母y的取值无关,则―x+2=0,解得x=2.【变式5-1】综合与实践杨老师在黑板上布置了一道题,求代数式:x2―4y2―x2+6xy+9y2+6xy的值.(1)请思考该代数式与哪个字母无关? 知道哪个字母的值就能求出此代数式的值?【变式应用】(2)若多项式3(mx―1)+m2―3x的值与x的取值无关,求m的值.【能力提升】(3)如图1,小长方形的长为a,宽为b.用7张小长方形按照图2所示的方式不重叠地放在大长方形ABCD 内,将大长方形中未被覆盖的两个部分涂上阴影,设右上角阴影部分的面积为S1,左下角阴影部分的面积为S2.当AB的长变化时,a与b满足什么关系,S1―S2的值能始终保持不变?【答案】(1)该代数式与字母x无关,知道字母y的值就能求出此代数式的值(2)m=1(3)a=2b【分析】本题主要考查了整式加减中的无关型问题:(1)先化简多项式,再根据计算后的结果即可求解;(2)先化简多项式,再根据多项式的值与x的取值无关,可得3m―3=0,即可求解;(3)设AB=x,观察图形得:S1=a(x―3b)=ax―3ab,S2=2b(x―2a)=2bx―4ab,可得S1―S2= (a―2b)x+ab,再由当AB的长变化时,S1―S2的值始终保持不变,即可求解.【详解】解:(1)x2―4y2―x2+6xy+9y2+6xy=x2―4y2―x2―6xy―9y2+6xy=―13y2,∴该代数式与字母x无关,知道字母y的值就能求出此代数式的值;(2)3(mx―1)+m2―3x=3mx―3+m2―3x=(3m―3)x―3+m2,∵关于x的多项式3(mx―1)+m2―3x的值与x的取值无关,∴3m―3=0,∴m=1;(3)设AB=x,观察图形得:S1=a(x―3b)=ax―3ab,S2=2b(x―2a)=2bx―4ab,∴S1―S2=ax―3ab―(2bx―4ab)=ax―3ab―2bx+4ab=(a―2b)x+ab,∵当AB的长变化时,S1―S2的值始终保持不变,∴a―2b=0,∴a=2b.【变式5-1】(1)若关于x的多项式m(2x―3)+2m2―4x的值与x的取值无关,求m值;(2)已知A=―2x2―2(2x+1)―x(1―3m)+x,B=―x2―mx+1,且A―2B的值与x的取值无关,求m的值;(3)7张如图1的小长方形,长为a,宽为b,按照图2方式不重叠地放在大长方形ABCD内,大长方形中未被覆盖的两个部分都是长方形.设右上角的面积为S1,左下角的面积为S2,当AB的长变化时,S1―S2的值始终保持不变,求a与b的等量关系.【题型6 化简求值】【典例6】已知代数式A =6x 2+3xy +2y ,B =3x 2―2xy +5x .(1)求A ―2B ;(2)当x =1,y =2时,求A ―2B 的值.【答案】(1)A ―2B =7xy +2y ―10x ;(2)8【分析】本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.(1)把A =6x 2+3xy +2y ,B =3x 2―2xy +5x 代入A ―2B ,然后去括号合并同类项即可;(2)把x =1,y =2代入(1)化简的结果计算即可.【详解】(1)解:把A =6x 2+3xy +2y ,B =3x 2―2xy +5x 直接代入A ―2B 得:6x 2+3xy +2y ―23x 2―2xy +5x=6x 2+3xy +2y ―6x 2+4xy ―10x =7xy +2y ―10x ;即A ―2B =7xy +2y ―10x ;(2)解:由(1)知A ―2B =7xy +2y ―10x ,把x =1,y =2代入7xy +2y ―10x 得7xy +2y ―10x=7×1×2+2×2―10×1=14+4―10=8.【变式6-1】先化简再求值(1)―mn 2+(3m 2n ―mn 2)―2(2m 2n ―mn 2),其中m =―2,n =―1.(2)2(x 2y +xy 2)―32(43xy 2+23x 2y ―23)―2,其中(4y +x)2+|x +2|=0.【变式6-2】化简求值:2a2b―ab2―2(2a2b―ab2)―ab2,其中|a―1|+|b+3|=0.(1)求a,b的值(2)化简并求出代数式的值.【答案】(1)a=1,b=―3(2)6a2b―4ab2,―54【分析】本题考查整式加减中的化简求值,熟练运用整式运算法则是解题关键.(1)根据绝对值的非负性即可求解;(2)先去括号,然后和合并同类项,得出最简式后,把a、b的值代入计算即可.【详解】(1)解:∵|a―1|+|b+3|=0,∴a―1=0,b+3=0,∴a=1,b=―3;(2)解:2a2b―ab2―2(2a2b―ab2)―ab2=2a2b―(ab2―4a2b+2ab2)―ab2=2a2b―ab2+4a2b―2ab2―ab2=6a2b―4ab2,当a=1,b=―3时,原式=6×12×(―3)―4×1×(―3)2=―18―36=―54.【变式6-3】先化简,再求值:4xy ―x 2―2y 2+3x 2―2xy ,(其中x =2,y =1)【变式6-4】已知A =3x 2―4x ,B =x 2+x ―2y 2(1)当x =―2时,试求出A 的值;(2)当x =12,y =13时,请求出A ―3B 的值.【题型7 绝对值化简求值】【典例7】有理数a、b、c在数轴上表示如图所示:(1)填空:|a|=_______,|b|=_______,|c|=_______(2)化简|a+b|―|b―c|+|b+c|;【答案】(1)―a,―b,c(2)―a+b【分析】本题考查了绝对值和数轴,整式的加减运算;注意数轴上a、b、c的位置,以及他们与原点的距离远近.(1)判断题干绝对值符号里面a、b、c的符号;(2)根据有理数的加减运算,判断a+b,b―c,b+c的符号,再去绝对值化简,合并同类项即可.【详解】(1)解:根据数轴可得a<0,b<0,c>0,∴|a|=―a,|b|=―b,|c|=c,故答案为:―a,―b,c.(2)解:根据数轴可得a<b<0<c,|b|<|c|,∴a+b<0,b―c<0,b+c>0,∴|a+b|―|b―c|+|b+c|=―a―b―(c―b)+b+c=―a―b―c+b+b+c=―a+b.【变式7-1】有理数a,b,c,在数轴上位置如图:(1)c―a______0;a+b______0;b―c______0.(2)化简:|c―a|―|a+b|+|b―c|.【答案】(1)<,<,<(2)2a【分析】本题考查用数轴表示有理数,化简绝对值:(1)根据点在数轴上的位置,判断式子的符号即可;(2)根据(1)中式子的符号,化简绝对值即可.【详解】(1)解:由数轴可知:b<c<0<a,|b|>a,∴c―a<0,a+b<0,b―c<0,故答案为:<,<,<;(2)∵c―a<0,a+b<0,b―c<0,∴|c―a|―|a+b|+|b―c|=a―c+a+b+c―b=2a.【变式7-2】如图,数轴上的点A,B,C分别表示有理数a,b,c.(1)比较大小:a 0,b ―2(填“>”、“ <”或“=” );(2)化简:|a|―|b+2|―|a+c|.【答案】(1)<;>(2)c―b―2【分析】此题主要考查了有理数大小的比较,数轴和绝对值的性质,整式的加减运算,解题的关键是掌握以上知识点.(1)根据数轴求解即可;(2)首先由数轴得到a<―2<b<0<c<1,然后推出b+2>0,a+c<0,然后化简绝对值合并即可.【详解】(1)解:由题意可知,a<0,b>―2;故答案为:<;>;(2)解:∵a<―2<b<0<c<1,∴b+2>0,a+c<0,∴|a|―|b+2|―|a+c|=―a―(b+2)―(―a―c)=―a―b―2+a+c=c―b―2.【题型8 非负性求值】【典例8】如果,|a―2|+(b+1)2=0,则(a+b)2015的值为()A.1B.2C.3D.―1【答案】A【分析】本题考查了非负数的性质,以及求代数式的值.根据非负数的性质求出a和b的值是解答本题的关键.先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.【详解】解:∵|a―2|+(b+1)2=0,∴a―2=0,b+1=0,∴a=2,b=―1,∴(a+b)2015=(2―1)2015=1.故选:A.【变式8-1】已知|x―3|+(y+2)2=0则xy的值为()A.6B.―6C.5D.―5【答案】B【分析】本题考查了非负数的性质,代数式求值,掌握相关知识点是解题关键.根据绝对值和平方的非负性,求出x、y的值,再代入计算求值即可.【详解】解:∵|x―3|+(y+2)2=0,∴x―3=0,y+2=0,∴x=3,y=―2,∴xy=3×(―2)=―6,故选:B.【变式8-2】若|y―2024|+|x+2023|=0,则x+y的值是()A.―1B.1C.0D.2【答案】B【分析】本题主要考查了绝对值的非负性质,代数值求值等知识,根据绝对值的非负性质得出y―2024=0,x+2023=0,进而求出x,y的值,然后代入x+y计算即可.【详解】解:∵|y―2024|+|x+2023|=0,|y―2024|≥0,|x+2023|≥0,∴y―2024=0,x+2023=0,∴y=2024,x=―2023,∴x+y=―2023+2024=1,故选:B.【题型9 定义求值】【典例9】对于有理数a、b,定义一种新运算:a⊗b=ab+|a|―b(1)计算5⊗4的值(2)若m是最大的负整数,n的绝对值是3,计算m⊗n【答案】(1)21(2)―5或7.【分析】本题主要考查了绝对值,有理数的混合运算,以及代数式求值,理解新定义运算法则是解题关键.(1)根据已知新定义运算法则计算即可;(2)根据有理数的分类和绝对值的意义,得到m=―1,n=±3,再根据新定义运算法则分别计算求值即可.【详解】(1)解:5⊗4=5×4+|5|―4=20+5―4=21;(2)解:∵m是最大的负整数,n的绝对值是3,∴m=―1,|n|=3,∴n=±3,当m=―1,n=3时,m⊗n=(―1)⊗3=(―1)×3+|―1|―3=―3+1―3=―5;当m=―1,n=―3时,m⊗n=(―1)⊗(―3)=(―1)×(―3)+|―1|―(―3)=3+1+3=7;∴m⊗n的值为―5或7.【变式9-1】用“⊙”定义一种新运算:规定a⊙b=ab2―a,例如:1⊙2=1×22―1=3.(1)求(―8)⊙(―2)的值;(2)化简:(2m―5n)⊙(―3).【答案】(1)―24(2)16m―40n【分析】本题主要考查了有理数的混合运算,整式加减运算,新定义下的运算,解题的关键是掌握新定义的运算法则.(1)根据新定义列式计算即可;(2)根据新定义的运算法则列出算式求解即可.【详解】(1)解:(―8)⊙(―2)=(―8)×(―2)2―(―8)=―8×4+8=―32+8=―24;(2)解:(2m―5n)⊙(―3)=(2m―5n)×(―3)2―(2m―5n)=9(2m―5n)―(2m―5n)=18m―45n―2m+5n=16m―40n.【变式9-2】定义:对于任意相邻负整数a,b,规定:a△b=1ab.(1)理解定义:例:(―1)△(―2)=1(―1)×(―2)=12;练习:(―2)△(―3)=;(2)探究规律:某数学兴趣小组发现:可将a△b转换为减法.你发现了吗?是什么?(温馨提示:你可再举几个例子试试,然后用含a与b的代数式将a△b转换为减法.)(3)应用规律:运用发现的规律求(―1)△(―2)+(―2)△(―3)+(―3)△(―4)+⋯+(―2023)△(―2024)的值.【变式9-3】给出定义如下:我们称使等式a ―b =ab +1的成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:2―13=2×13+1,5―23=5×23+1,那么数对 2,5,“共生有理数对” .(1)判断,正确的打“√”,错误的打“×”.①数对(―2,1)是“共生有理数对”;( )②数对3,“共生有理数对” .( )(2)请再写出一对符合条件的“共生有理数对”: ;(注意:不能与题目中已有的“共生有理数对”重复)(3)若(m ,n )是“共生有理数对”,则(―n,―m )是不是“共生有理数对”? 并说明理由.(4)若(a ,3)是“共生有理数对”,求a 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的运算经典题型
类型一:用字母表示数量关系
1.填空题:
(1)香蕉每千克售价3元,m 千克售价____________元。

(2)温度由5℃上升t ℃后是__________℃。

(3)每台电脑售价x 元,降价10%后每台售价为____________元。

(4)某人完成一项工程需要a 天,此人的工作效率为__________。

类型二:整式的概念
2.指出下列各式中哪些是整式,哪些不是。

(1) 312x +;(2)a =2;(3)π;(4)S =πR 2;(5) 73;(6) 2335
> 类型三:同类项
3.若1312
a x y -与23
b a b x y -+-是同类项,那么a ,b 的值分别是( ) (A )a =2, b =-1。

(B )a =2, b =1。

(C )a =-2, b =-1。

(D )a =-2, b =1。

类型四:幂的运算
4.计算并把结果写成一个底数幂的形式。

① 43981⨯⨯; ② 66251255⨯⨯
类型五:整式的加减
5.化简m -n -(m +n )的结果是( )
(A )0。

(B )2m 。

(C )-2n 。

(D )2m -2n 。

6.已知1
5x =-,13
y =-,求代数式(5x 2y -2xy 2-3xy)-(2xy +5x 2y -2xy 2) 类型六:整式的乘除及公式运算
7.化简:
(1)()()2
2222a b a b a ab a ++--÷ (2)()()()()22,x y x y x y y y x -+-++-
类型七:公式变式运用
8.已知6ab =,5a b +=-,则22a b +=
9.已知4m n -=,22
8m n -=,则m n +=
10若2(3)(4)x x ax bx c +-=++,则___,____,_____a b c ===。

类型八:整体思想的应用
11.已知x 2+x +3的值为7,求2x 2+2x -3的值。

练习: 1、某校学生给“希望小学”邮寄每册a 元的图书240册,若每册图书的邮费为书价的5%,则共需邮费______________元。

2、把下列式子按单项式、多项式、整式进行归类。

x 2y , 12a b -,x +y 2-5,2x -,-29,2ax +9b -5, 600xz ,52axy , xyz -1,11
x +。

3、在下面的语句中,正确的有( ) ①2323a b -
与3212a b 是同类项; ②221()2x yz -与2zx y -是同类项; ③-1与15是同类项;④字母相同的项是同类项。

A 、1个
B 、2个
C 、3个
D 、4个
4、当0x =,12
x =,2x =-时,分别求代数式的221x x -+的值。

5、先化简,再求值。

3(2x 2y -3xy 2)-(xy 2-3x 2y),其中12
x =,y =-1。

6、求下列各式的值。

(1) 22211
(21)()(33)3
3
x x x x x -+---+-,其中1
12x = (2)2(2)(1)2x x y x x +-++,其中1,2525x y ==- (3)()22()()2x y x y xy ⎡⎤+--÷⎣⎦,其中10,5x y ==
7、已知x 2+x -1=0,求代数式x 3+2x 2-7的值。

8、化简求值。

(1)3(a +b -c)+8(a -b -c)-7(a +b -c)-4(a -b -c),其中b =2
(2)已知a -b =2,求2(a -b)-a +b +9的值。

2015年湖北省宜昌市中考数学试卷
一、选择题(下列各题中,只有一个选项是符合题目要求的,本大题共15小题,每小题3分,计45分)
1.(3分)(2015•宜昌)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )
A . 44×108
B . 4.4×109
C . 4.4×108
D . 4.4×1010
2.(3分)(2015•宜昌)下列剪纸图案中,既是轴对称图形,又是中心对称图形的是( )
A .
B .
C .
D .
3.(3分)(2015•宜昌)陆地上最高处是珠穆朗玛峰顶,高出海平面8848m,记为+8848m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为()
A.+415m B.﹣415m C.±415m D.﹣8848m
4.(3分)(2015•宜昌)某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5.这组数据的众数是()
A.3B.3.5 C.4D.5
5.(3分)(2015•宜昌)如图是一个可以自由转动的转盘,转盘分为6个大小相同的扇形,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),指针指向阴影区域的概率是()
A.B.C.D.
6.(3分)(2015•宜昌)下列式子没有意义的是()
A.B.C.D.
7.(3分)(2015•宜昌)不等式组的解集在数轴上表示正确的是()A.B.C.D.。

相关文档
最新文档