圆与正多边形教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正多边形与圆教案一

田小华

第一课时

一.学习目标:

1、了解正多边形的概念、正多边形和圆的关系;

2、会通过等分圆心角的方法等分圆周,画出所需的正多边形;

3、能够用直尺和圆规作图,作出一些特殊的正多边形;

二.教学重难点

学习重点:正多边形的概念及正多边形与圆的关系。

学习难点:利用直尺与圆规作特殊的正多边形。

三.自学提纲

了解正多边形的概念,掌握如何利用尺规做正多边形的画法,理解正多边形与圆的的定理。

四.教学过程:

1.情境创设:

我们国旗上的五角星怎么画的?能不能利用尺规作出正五边形

及所有边相等的正多边形

提问:1.等边三角形的边、角各有什么性质?

2.正方形的边、角各有什么性质?

拓展:如果圆内接正三角形,正方形有什么性质

二、探索活动:活动一观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念

正多边形的概念:(学生读出,并及时理解)

(注:各边相等与各角相等必须同时成立)

提问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?

如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形等.

定理:

此定理讲述了元与正多边形的关系,和包含了做圆内接正多边形的方法,

我们拿正五边形来做事例

分析书上的例题

P33

拓展1:已知:如图,五边形ABCDE内接于⊙O,弧AB=弧BC=弧CD=弧DE=弧EA.

(图形师生共同作图)

(1)求证:五边形ABCDE是正五边形.

探讨:以圆心到弦AB的弦心距为半径,还以O为圆心画圆。这个圆与正五边形什么关系?

活动二用量角器作正多边形,探索正多边形与圆的内在联系

1、用量角器将一个圆n(n≥3)等分,依次连接各等分点所得的n边形是这个圆的内接正n边形;圆的内接正n边形将圆n等分;

2、正多边形的外接圆的圆心叫正多边形的中心。

活动四利用直尺与圆规作特殊的正多边形

问题:用直尺和圆规作出正方形,正六多边形。

思考:如何作正八边形正三角形、正十二边形?

拓展2:各内角都相等的圆内接多边形是否为正多边形?

五、课堂练习课本P34练习1,2和P35习题3,4

六.小结:本节课主要讲的是圆与正多边形联系,及如何作正(四,五,六,八)多边形,及进一步探讨正多边形的对称性。

正多边性质正多边形与圆

田小华

第一课时

一.学习目标:

1、了解正多边形的概念、正多边形和圆的关系;

2、会通过等分圆心角的方法等分圆周,画出所需的正多边形;

3、能够用直尺和圆规作图,作出一些特殊的正多边形;

二.教学重难点

学习重点:正多边形的概念及正多边形与圆的关系。

学习难点:利用直尺与圆规作特殊的正多边形。

三.自学提纲

了解正多边形的概念,掌握如何利用尺规做正多边形的画法,理解正多边形与圆的的定理。

四.教学过程:

1.情境创设:

我们国旗上的五角星怎么画的?能不能利用尺规作出正五边形

及所有边相等的正多边形

提问:1.等边三角形的边、角各有什么性质?

2.正方形的边、角各有什么性质?

拓展:如果圆内接正三角形,正方形有什么性质

二、探索活动:活动一观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念

正多边形的概念:(学生读出,并及时理解)

(注:各边相等与各角相等必须同时成立)

提问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?

如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形等.

定理:

此定理讲述了元与正多边形的关系,和包含了做圆内接正多边形的方法,

我们拿正五边形来做事例

分析书上的例题

P33

拓展1:已知:如图,五边形ABCDE内接于⊙O,弧AB=弧BC=弧CD=弧DE=弧EA.

(图形师生共同作图)

(2)求证:五边形ABCDE是正五边形.

探讨:以圆心到弦AB的弦心距为半径,还以O为圆心画圆。这个圆与正五边形什么关系?

活动二用量角器作正多边形,探索正多边形与圆的内在联系

1、用量角器将一个圆n(n≥3)等分,依次连接各等分点所得的n边形是这个圆的内接正n边形;圆的内接正n边形将圆n等分;

2、正多边形的外接圆的圆心叫正多边形的中心。

活动四利用直尺与圆规作特殊的正多边形

问题:用直尺和圆规作出正方形,正六多边形。

思考:如何作正八边形正三角形、正十二边形?

拓展2:各内角都相等的圆内接多边形是否为正多边形?

五、课堂练习课本P34练习1,2和P35习题3,4

六.小结:本节课主要讲的是圆与正多边形联系,及如何作正(四,五,六,八)多边形,及进一步探讨正多边形的对称性。

正多边形与圆

田小华

第一课时

一.学习目标:

1、了解正多边形的概念、正多边形和圆的关系;

2、会通过等分圆心角的方法等分圆周,画出所需的正多边形;

3、能够用直尺和圆规作图,作出一些特殊的正多边形;

二.教学重难点

学习重点:正多边形的概念及正多边形与圆的关系。

学习难点:利用直尺与圆规作特殊的正多边形。

三.自学提纲

了解正多边形的概念,掌握如何利用尺规做正多边形的画法,理解正多边形与圆的的定理。

四.教学过程:

1.情境创设:

我们国旗上的五角星怎么画的?能不能利用尺规作出正五边形

及所有边相等的正多边形

提问:1.等边三角形的边、角各有什么性质?

2.正方形的边、角各有什么性质?

拓展:如果圆内接正三角形,正方形有什么性质

相关文档
最新文档