数学教学方案:一元二次方程第六课时

合集下载

人教版初中数学九年级上册第二十一章:一元二次方程(全章教案)

人教版初中数学九年级上册第二十一章:一元二次方程(全章教案)

第二十一章一元二次方程本章的主要内容包括:一元二次方程及其有关概念,一元二次方程的解法(配方法、公式法、因式分解法),一元二次方程根与系数的关系,运用一元二次方程分析和解决实际问题.其中解一元二次方程的基本思路和具体解法是本章的重点内容.方程是科学研究中重要的数学思想方法,也是后续内容学习的基础和工具,本章是对一元一次方程知识的延续和深化,同时为二次函数的学习做好准备.联系一元二次方程和函数的基本知识,继续探索实际问题中的数量关系及其变化规律,让学生进一步体会“方程是刻画现实世界的一个有效的数学模型”.本章是中考考查的重点内容,主要考查一元二次方程的解及其解法、一元二次方程根与系数的关系、建立一元二次方程模型解决实际问题.【本章重点】一元二次方程的解法及应用.【本章难点】1.一元二次方程根与系数的关系的应用.2.利用一元二次方程解决实际问题.【本章思想方法】1.体会和掌握转化法,如:在解一元二次方程时,利用转化法将一元二次方程转化为一元一次方程.2.掌握建模思想,如:在利用一元二次方程解决实际问题时,根据题意建立适当的一元二次方程,将实际问题转化为数学模型.21.1一元二次方程1课时21.2解一元二次方程4课时21.3实际问题与一元二次方程1课时21.1一元二次方程一、基本目标【知识与技能】1.理解一元二次方程及相关概念.2.掌握一元二次方程的一般形式.3.了解一元二次方程根的概念,会检验一个数是不是一元二次方程的解.【过程与方法】从实际问题中建立方程模型,体会一元二次方程的概念.【情感态度与价值观】通过从实际问题中抽象出方程模型来认识一元二次方程,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】1.一元二次方程的概念及其一般形式.2.判断一个数是不是一元二次方程的解.【教学难点】能准确判断一元二次方程的二次项、二次项系数、一次项、一次项系数及常数项.环节1自学提纲,生成问题【5 min阅读】阅读教材P1~P4的内容,完成下面练习.【3 min反馈】1.解决下列问题:问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样大小的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?【解析】设切去的正方形的边长为x cm,则盒底的长为__(100-2x)_cm__,宽为__(50-2x)_cm__.列方程,得__(100-2x )(50-2x )=3600__, 化简,整理,得__x 2-75x +350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【解析】全部比赛的场数为__4×7=28(场)__.设应邀请x 个队参赛,每个队要与其他__(x -1)__个队各赛一场.因为甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共__12x (x -1)__场.列方程,得__12x (x -1)=28__.化简、整理,得 __x 2-x -56=0__.②归纳总结:方程①②的共同特点是:方程的两边都是__整式__,只含有__一个__未知数,并且未知数的最高次数是__2__.2.一元二次方程的定义:等号两边都是__整式__,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.3.一元二次方程的一般形式是__ax 2+bx +c =0(a ≠0)__.其中__ax 2__是二次项,__a __是二次项系数,__bx __是一次项,__b __是一次项系数,__c __是常数项.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】判断下列方程,哪些是一元二次方程? (1)x 3-2x 2+5=0; (2)x 2=1;(3)5x 2-2x -14=x 2-2x +35;(4)2(x +1)2=3(x +1); (5)x 2-2x =x 2+1; (6)ax 2+bx +c =0.【互动探索】(引发学生思考)要判断一个方程是一元二次方程,那么它应该满足哪些条件?【解答】(2)(3)(4)是一元二次方程.【互动总结】(学生总结,老师点评)判断一个方程是不是一元二次方程,首先看方程等号两边是不是整式,然后移项,使方程的右边为0,再观察左边是否只有一个未知数,且未知数的最高次数是否为2.【例2】将方程2x ⎝⎛⎭⎫12-x +2=5(x -1)化成一元二次方程的一般形式,并指出各项系数. 【互动探索】(引发学生思考)一元二次方程的一般形式是怎样的?【解答】去括号,得x-2x2+2=5x-5.移项,合并同类项,得一元二次方程的一般形式:2x2+4x-7=0.其中二次项系数是2,一次项系数是4,常数项是-7.【互动总结】(学生总结,老师点评)将一元二次方程化成一般形式时,通常要将二次项化负为正,化分为整.【例3】下面哪些数是方程2x2+10x+12=0的解?-4,-3,-2,-1,0,1,2,3,4.【互动探索】(引发学生思考)你能类比判断一个数是一元一次方程的解的方法判断一元二次方程的解吗?【解答】将上面的这些数代入后,只有-2和-3满足等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的解.【互动总结】(学生总结,老师点评)要判断一个数是否是方程的解,只要把这个数代入等式,看等式两边是否相等即可.若相等,则这个数是方程的解,若不相等,则这个数不是方程的解.【活动2】巩固练习(学生独学)1.下列方程是一元二次方程的是(D)A.ax2+bx+c=0 B.3x2-2x=3(x2-2)C.x3-2x-4=0 D.(x-1)2+1=02.已知x=2是一元二次方程x2-2mx+4=0的一个解,则m的值为(A)A.2B.0C.0或2D.0或-2【教师点拨】将x=2代入x2-2mx+4=0得,4-4m+4=0.再解关于m的一元一次方程即可得出m的值.3.把一元二次方程(x+1)(1-x)=2x化成二次项系数大于0的一般式是__x2+2x-1=0__,其中二次项系数是__1__,一次项系数是__2__,常数项是__-1__.【活动3】拓展延伸(学生对学)【例4】求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.【互动探索】(引发学生思考)已知关于x的方程,且含有字母系数,要证明该方程是一元二次方程,则该方程的二次项系数必须满足什么条件?【证明】m2-8m+17=m2-8m+42+1=(m-4)2+1.∵(m-4)2≥0,∴(m-4)2+1>0,即(m-4)2+1≠0,∴不论m取何值,该方程都是一元二次方程.【互动总结】(学生总结,老师点评)要证明不论m 取何值,该方程都是一元二次方程,只需证明二次项系数恒不为0,即m 2-8m +17≠0.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.一元二次方程⎩⎪⎨⎪⎧必须满足的三要素⎩⎪⎨⎪⎧ 是整式方程只有一个未知数未知数的最高次数是2一般形式:ax 2+bx +c =0(a ≠0)2.判断一个数是否是一元二次方程解的方法:将这个数分别代入方程的左右两边,如果“左边=右边”,则这个数是方程的解;如果“左边≠右边”,则这个数不是方程的解.请完成本课时对应练习!21.2解一元二次方程21.2.1配方法(第1课时)一、基本目标【知识与技能】1.理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题.2.理解并掌握直接开方法、配方法解一元二次方程的方法.【过程与方法】1.通过根据平方根的意义解形如x2=n(n≥0)的方程,迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.2.通过把一元二次方程转化为形如(x-a)2=b的过程解一元二次方程.【情感态度与价值观】通过对一元二次方程解法的探索,体会“降次”的基本思想,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】掌握直接开平方法和配方法解一元二次方程.【教学难点】把一元二次方程转化为形如(x-a)2=b的形式.环节1自学提纲,生成问题【5 min阅读】阅读教材P5~P9的内容,完成下面练习.【3 min反馈】1.一般地,对于方程x2=p:(1)当p>0时,根据平方根的意义,方程有两个不等的实数根,x1=__p__,x2=__-p __.(2)当p=0时,方程有两个相等的实数根x1=x2=__0__;(3)当p<0时,方程__无实数根__.2.用直接开平方法解下列方程:(1)(3x +1)2=9; x 1=23,x 2=-43.(2)y 2+2y +1=25. y 1=4,y 2=-6. 3.(1)x 2+6x +__9__=(x +__3__)2; (2)x 2-x +__14__=(x -__12__)2;(3)4x 2+4x +__1__=(2x + __1__)2.4.一般地,如果一个一元二次方程通过配方转化成(x +n )2=p 的形式,那么就有:(1)当p >0时,根据平方根的意义,方程有两个不等的实数根,x 1=,x 2=;(2)当p =0时,方程有两个相等的实数根x 1=x 2=__-n __; (3)当p <0时,方程__无实数根__. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学) 【例1】用配方法解下列关于x 的方程: (1)2x 2-4x -8=0; (2)2x 2+3x -2=0.【互动探索】(引发学生思考)用配方法解一元二次方程的实质和关键点是什么? 【解答】(1)移项,得2x 2-4x =8. 二次项系数化为1,得x 2-2x =4.配方,得x 2-2x +12=4+12,即(x -1)2=5. 由此可得x -1=±5, ∴x 1=1+5,x 2=1- 5. (2)移项,得2x 2+3x =2.二次项系数化为1,得x 2+32x =1.配方,得⎝⎛⎭⎫x +342=2516. 由此可得x +34=±54,∴x 1=12,x 2=-2.【互动总结】(学生总结,老师点评)用配方法解一元二次方程的实质就是对一元二次方程进行变形,转化为开平方所需要的形式,配方法的一般步骤可简记为:一移,二化,三配,四开.【活动2】 巩固练习(学生独学)1.若x 2-4x +p =(x +q )2,则p 、q 的值分别是( B ) A .p =4,q =2 B .p =4,q =-2 C .p =-4,q =2D .p =-4,q =-22.用直接开平方法或配方法解下列方程: (1)3(x -1)2-6=0 ; (2)x 2-4x +4=5; (3)9x 2+6x +1=4; (4)36x 2-1=0; (5)4x 2=81; (6)x 2+2x +1=4. (1)x 1=1+2,x 2=1- 2. (2)x 1=2+5,x 2=2- 5. (3)x 1=-1,x 2=13.(4)x 1=16,x 2=-16.(5)x 1=92,x 2=-92.(6)x 1=1,x 2=-3.【活动3】 拓展延伸(学生对学)【例2】如果x 2-4x +y 2+6y +z +2+13=0,求(xy )z 的值.【互动探索】(引发学生思考)一个数的平方是正数还是负数?一个数的算术平方根是正数还是负数?几个非负数相加的和是正数还是负数?【解答】由已知方程,得x 2-4x +4+y 2+6y +9+z +2=0, 即(x -2)2+(y +3)2+z +2=0, ∴x =2,y =-3,z =-2. ∴(xy )z =[2×(-3)]-2=136.【互动总结】(学生总结,老师点评)若几个非负数相加等于0,则这几个数都等于0. 环节3 课堂小结,当堂达标 (学生总结,老师点评)用配方法解一元二次方程的一般步骤: 一移项→二化简→三配方→四开方请完成本课时对应练习!21.2.2 公式法(第2课时)一、基本目标 【知识与技能】1.理解一元二次方程求根公式的推导过程,了解公式法的概念. 2.会熟练运用公式法解一元二次方程. 【过程与方法】复习具体数字的一元二次方程配方法的解题过程,引入ax 2+bx +c =0(a ≠0)的求根公式的推导,并应用公式法解一元二次方程.【情感态度与价值观】在一元二次方程求根公式的推导过程中,激发学生兴趣,了解解决问题多样性. 二、重难点目标 【教学重点】求根公式的推导及用公式法解一元二次方程. 【教学难点】一元二次方程求根公式的推导.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P9~P12的内容,完成下面练习. 【3 min 反馈】1.用配方法解下列方程: (1)x 2-5x =0; x 1=0,x 2=5. (2)2x 2-4x -1=0. x 1=1+62,x 2=1-62. 2.如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它的两根? x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a.【教师点拨】因为前面解具体数字的一元二次方程已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.3.一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a 、b 、c 而定.(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0.当b 2-4ac ≥0时,将a 、b 、c 代入式子x =-b ±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的__求根公式__. (3)利用求根公式解一元二次方程的方法叫__公式法__.(4)由求根公式可知,一元二次方程最多有__2__个实数根,也可能__没有__实数根. (5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=__b 2-4ac __.当Δ__>__0时,方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根;当Δ__=__0时,方程ax 2+bx +c =0(a ≠0)有两个相等的实数根;当Δ__<__0时,方程ax 2+bx +c =0(a ≠0)没有实数根.4.不解方程,判断方程根的情况. (1)16x 2+8x =-3; (2)9x 2+6x +1=0; (3)2x 2-9x +8=0; (4)x 2-7x -18=0.解:(1)没有实数根. (2)有两个相等的实数根. (3)有两个不相等的实数根. (4)有两个不相等的实数根.【教师点拨】将方程化为一般形式,再用判别式进行判断. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学) 【例1】用公式法解下列方程: (1)2x 2+1=3x ; (2)2x (x -1)-7x =2.【互动探索】(引发学生思考)用公式法解一元二次方程的步骤是怎样的? 【解答】(1)原方程整理,得2x 2-3x +1=0. 其中a =2,b =-3,c =1,则Δ=b 2-4ac =(-3)2-4×2×1=1>0. ∴x =-b ±b 2-4ac 2a =-(-3)±12×2,即x 1=12,x 2=1.(2)原方程整理,得2x 2-9x -2=0. 其中a =2,b =-9,c =-2,则Δ=b 2-4ac =(-9)2-4×2×(-2)=97>0. ∴x =-b ±b 2-4ac 2a =-(-9)±972×2,即x 1=9+974,x 2=9-974.【互动总结】(学生总结,老师点评)用公式法解一元二次方程的一般步骤:(1)把方程化为一般形式,确定a 、b 、c 的值;(2)求出Δ=b 2-4ac 的值;(3)当Δ>0时,方程有两个不相等的实数根,即x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a ;当Δ=0时,方程有两个相等的实数根,即x 1=x 2=-b2a;当Δ<0时,方程没有实数根.【活动2】 巩固练习(学生独学)1.方程x 2-4x +4=0的根的情况是( B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个实数根 D .没有实数根2.如果方程5x 2-4x =m 没有实数根,那么m 的取值范围是__m <-45__.3.用公式法解下列方程:(1)2x 2-6x -1=0; (2)2x 2-2x +1=0; (3)5x +2=3x 2.解:(1)x 1=3+112,x 2=3-112.(2)方程没有实数根. (3)x 1=2,x 2=-13.【活动3】 拓展延伸(学生对学)【例2】已知a 、b 、c 分别是三角形的三边,试判断方程(a +b )x 2+2cx +(a +b )=0的根的情况.【互动探索】(引发学生思考)三角形的三边满足什么关系?是怎样根据一元二次方程的系数判断根的情况?【解答】∵a 、b 、c 分别是三角形的三边,∴a +b >0,c +a +b >0,c -a -b <0,∴Δ=(2c )2-4(a +b )·(a +b )=4(c +a +b )(c -a -b )<0,故原方程没有实数根.【互动总结】(学生总结,老师点评)解答本题的关键是掌握三角形三边的关系,即两边之和大于第三边,以及运用根的判别式Δ=b 2-4ac 判断方程的根的情况.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.一元二次方程根的情况⎩⎪⎨⎪⎧Δ>0⇔方程有两个不相等的实数根Δ=0⇔方程有两个相等的实数根Δ<0⇔方程没有实数根2.当Δ≥0时,方程ax 2+bx +c =0(a ≠0)的实数根为x =-b ±b 2-4ac2a.请完成本课时对应练习!21.2.3因式分解法(第3课时)一、基本目标【知识与技能】1.掌握用因式分解法解一元二次方程.2.能根据具体一元二次方程的特征,灵活选择方程的解法.【过程与方法】通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.【情感态度与价值观】了解因式分解法是一元二次方程解法中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度,培养学生的应用意识和创新能力.二、重难点目标【教学重点】运用因式分解法解一元二次方程.【教学难点】选择适当的方法解一元二次方程.环节1自学提纲,生成问题【5 min阅读】阅读教材P12~P14的内容,完成下面练习.【3 min反馈】1.将下列各题因式分解:am+bm+cm=__m(a+b+c)__;a2-b2=__(a+b)(a-b)__;a2+2ab+b2=__(a+b)2__;x2+5x+6=__(x+2)(x+3)__;3x2-14x+8=__(x-4)(3x-2)__.2.按要求解下列方程:(1)2x2+x=0(用配方法);(2)3x2+6x-24=0(用公式法).解:(1)x 1=0,x 2=-12. (2)x 1=2,x 2=-4.3.对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做__因式分解法__.4.如果ab =0,那么a =0或b =0,这是因式分解法的根据.即:如果(x +1)(x -1)=0,那么x +1=0或 __x -1=0__,即x =-1或__x =1__.环节2 合作探究,解决问题 【活动1】 小组讨论(师生对学) 【例1】用因式分解法解下列方程: (1)x 2-3x -10=0; (2)5x 2-2x -14=x 2-2x +34;(3)3x (2x +1)=4x +2; (4)(x -4)2=(5-2x )2.【互动探索】(引发学生思考)用因式分解法解一元二次方程的一般步骤是什么? 【解答】(1)因式分解,得(x +2)(x -5)=0. ∴x +2=0或x -5=0, ∴x 1=-2,x 2=5.(2)移项、合并同类项,得4x 2-1=0. 因式分解,得(2x +1)(2x -1)=0. ∴2x +1=0或2x -1=0, ∴x 1=-12,x 2=12.(3)原方程可变形为3x (2x +1)-2(2x +1)=0. 因式分解,得(2x +1)(3x -2)=0. ∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.(4)移项,得(x -4)2-(5-2x )2=0. 因式分解,得(1-x )(3x -9)=0, ∴1-x =0或3x -9=0, ∴x 1=1,x 2=3.【互动总结】(学生总结,老师点评)用因式分解法解一元二次方程的步骤:(1)将一元二次方程化成一般形式,即方程右边为0;(2)将方程左边进行因式分解,将一元二次方程转化成两个一元一次方程;(3)对两个一元一次方程分别求解.【活动2】 巩固练习(学生独学) 1.解方程: (1)x 2-3x -10=0; (2)3x (x +2)=5(x +2); (3)(3x +1)2-5=0; (4)x 2-6x +9=(2-3x )2. 解:(1)x 1=5,x 2=-2. (2)x 1=-2,x 2=53.(3)x 1=-1+53,x 2=5-13.(4)x 1=-12,x 2=54.2.三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,求该三角形的周长.解:解x 2-12x +35=0,得x 1=5,x 2=7.∵3+4=7,∴x =5,故该三角形的周长=3+4+5=12. 【活动3】 拓展延伸(学生对学) 【例2】已知9a 2-4b 2=0,求代数式a b -b a -a 2+b 2ab的值. 【互动探索】(引发学生思考)a 、b 的值能求出来吗?a 、b 之间有怎样的关系?怎样将a 、b 的值与已知代数式联系起来.【解答】原式=a 2-b 2-a 2-b 2ab =-2ba .∵9a 2-4b 2=0, ∴(3a +2b )(3a -2b )=0, 即3a +2b =0或3a -2b =0, ∴a =-23b 或a =23b .当a =-23b 时,原式=-2b-23b =3;当a =23b 时,原式=-3.【互动总结】(学生总结,老师点评)要求a b -b a -a 2+b 2ab 的值,首先要对它进行化简,然后从已知条件入手,求出a 与b 的关系后代入,但也可以直接代入,因计算量比较大,容易发生错误.本题注意不要漏解.环节3课堂小结,当堂达标(学生总结,老师点评)用因式分解法解一元二次方程的一般步骤:先将方程一边化为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.请完成本课时对应练习!*21.2.4一元二次方程的根与系数的关系(第4课时)一、基本目标【知识与技能】掌握一元二次方程的根与系数的关系.【过程与方法】利用求根公式得到一元二次方程的根,推导出根与系数的关系,体现了数学推理的严密性与严谨性.【情感态度与价值观】通过公式的引入,培养学生寻求简便方法的探索精神及创新意识,培养学生观察思考、归纳概括的能力.二、重难点目标【教学重点】理解一元二次方程的根与系数的关系.【教学难点】利用一元二次方程根与系数的关系解决问题.环节1自学提纲,生成问题【5 min阅读】阅读教材P15~P16的内容,完成下面练习.【3 min反馈】1.解下列方程,并填写表格:方程x1x2x1+x2x1·x2x2-2x=00220x2+3x-4=0-41-3-4x2-5x+6=0235 6(1)用语言描述你发现的规律:__一元二次方程的两根之和为一次项系数的相反数;两根之积为常数项__.(2)关于x的方程x2+px+q=0的两根为x1、x2,请用式子表示x1、x2与p、q的关系:__x1+x2=-p,x1x2=q__.2.解下列方程,并填写表格:(1)用语言描述你发现的规律:__两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比__.(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,请用式子表示x 1、x 2与a 、b 、c 的关系:__x 1+x 2=-b a ,x 1x 2=ca__.3.求下列方程的两根之和与两根之积. (1)x 2-6x -15=0; (2)5x -1=4x 2; (3)x 2=4; (4)2x 2=3x .解:(1)x 1+x 2=6,x 1x 2=-15. (2)x 1+x 2=54,x 1x 2=14.(3)x 1+x 2=0,x 1x 2=-4. (4)x 1+x 2=32,x 1x 2=0.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】x 1、x 2是方程2x 2-3x -5=0的两个根,不解方程,求下列代数式的值: (1)x 1+x 2 ; (2)1x 1+1x 2;(3)x 21+x 22; (4)x 21+3x 22-3x 2.【互动探索】(引发学生思考)根据一元二次方程的根与系数的关系可考虑将所求代数式转化为两根之和与两根之积的关系.【解答】(1)x 1+x 2=32,(2)∵x 1x 2=-52,∴1x 1+1x 2=x 1+x 2x 1x 2=-35.(3)x 21+x 22=(x 1+x 2)2-2x 1x 2=294. (4)x 21+3x 22-3x 2=(x 21 +x 22 ) +(2x 22 -3x 2 )=1214. 【互动总结】(学生总结,老师点评)解答这类问题一般先将求值式进行变形,使其含有两根的和与两根的积,再求出方程的两根的和与两根的积,整体代入即可求解.【活动2】 巩固练习(学生独学)1.不解方程,求下列方程的两根和与两根积. (1)x 2-5x -3=0; (2)9x +2=x 2; (3)6x 2-3x +2=0; (4)3x 2+x +1=0. 解:(1)x 1+x 2=5,x 1x 2=-3. (2)x 1+x 2=9,x 1x 2=-2. (3)方程无解. (4)方程无解.2.已知方程x 2-3x +m =0的一个根为1,求另一根及m 的值. 解:另一根为2,m =2.【教师点拨】本题有两种解法:一种是根据根的定义,将x =1代入方程先求m ,再求另一个根;另一种是利用根与系数的关系解答.3.若一元二次方程x 2+ax +2=0的两根满足:x 21 +x 22 =12,求a 的值.解:a =±4.【教师点拨】由x 21 + x 22 =(x 1+x 2)2-2x 1x 2=12,再整体代入方程的两根之和与两根之积得到答案.【活动3】 拓展延伸(学生对学)【例2】已知关于x 的方程x 2-(k +1)x +14k 2+1=0,且方程两实根的积为5,求k 的值.【互动探索】(引发学生思考)一元二次方程有根的条件是什么?一元二次方程两实根的积与什么有关?【解答】∵方程两实根的积为5,∴ ⎩⎨⎧Δ=[-(k +1)]2-4⎝⎛⎭⎫14k 2+1≥0,x 1x 2=14k 2+1=5,∴k ≥32,k =±4.故当k =4时,方程两实根的积为5.【互动总结】(学生总结,老师点评)根据一元二次方程两实根满足的条件,求待定字母的值,务必要注意方程有两实根的条件,即所求的值应满足Δ≥0.环节3 课堂小结,当堂达标 (学生总结,老师点评)一元二次方程ax 2+bx +c =0(a ≠0)的两根x 1、x 2和系数的关系如下: x 1+x 2=-b a ,x 1x 2=ca.请完成本课时对应练习!。

一元二次不等式教案5篇

一元二次不等式教案5篇

一元二次不等式教案一元二次不等式教案5篇作为一名优秀的教育工作者,总不可避免地需要编写教案,借助教案可以更好地组织教学活动。

那么教案应该怎么写才合适呢?以下是小编整理的一元二次不等式教案,仅供参考,希望能够帮助到大家。

一元二次不等式教案1教学内容3.2一元二次不等式及其解法三维目标一、知识与技能1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;3.会用列表法,进一步用数轴标根法求解分式及高次不等式;4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性教学;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观1.进一步提高学生的运算能力和思维能力;2.培养学生分析问题和解决问题的能力;3.强化学生应用转化的数学思想和分类讨论的数学思想.教学重点1.从实际问题中抽象出一元二次不等式模型.2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.教学难点1.深入理解二次函数、一元二次方程与一元二次不等式的关系.教学方法启发、探究式教学教学过程复习引入师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。

回顾下等比数列的性质。

生:略师:某同学要把自己的计算机接入因特网,现有两种ISP公司可供选择,公司A每小时收费1.5元(不足1小时按1小时计算),公司B的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司A的上网费用小于等于选择公司B所需费用。

北师版初中数学九年级上册精品教学课件 第2章一元二次方程 6第1课时应用一元二次方程解决几何问题

北师版初中数学九年级上册精品教学课件 第2章一元二次方程 6第1课时应用一元二次方程解决几何问题

A.10 cm B.13 cm
C.14 cm
D.16 cm
返回首页
2.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2 m, 另一边减少了3 m,剩余一块面积为20 m2的矩形空地,则原正方形空地的边 长是( A ).
A.7 m C.9 m
B.8 m D.10 m
返回首页
3.如图,小刚在A处的船上,距海岸BD 2 km(AD⊥BD,且AD=2 km),小刚先沿
返回首页
【方法归纳】 在直角三角形中,如果三边的长度可以只用含一个未知数的代数式来表示, 或者某条边的长度可以求出,那么可以利用勾股定理来列一元二次方程求 解.
返回首页
新知训练巩固
1.将一块正方形铁皮的四角各剪去一个边长为3 cm的小正方形,做成一个
无盖的盒子.已知盒子的容积为300 cm3,则原铁皮的边长为( D ).
第二章 一元二次方程
第1课时 应用一元二次方程 解决几何问题
核心重难探究
知识点 应用一元二次方程解决几何问题 【例题】 如图,一艘轮船以20海里/时的速度由西向东 航行,途中接到台风警报,台风中心正以40海里/时的速 度由南向北移动,距台风中心20 10 海里的圆形区域 (包括边界)都属台风区.当轮船到A处时,测得台风中心 移到位于点A正南方向的B处,且AB=100海里,若这艘 轮船自A处按原速度继续航行,在途中会不会遇到台风? 若会,试求船最初遇到台风的时间;若不会,请说明理由.
则有 AC=20t,BE=40t,EC=20 10.
∴AE=AB-BE=100-40t. 在Rt△AEC中,AC2+AE2=EC2,
∴(20t)2+(100-40t)2=(20 10)2.

2022年人教版九年级数学上册第二十二章二次函数教案 二次函数与一元二次方程

2022年人教版九年级数学上册第二十二章二次函数教案  二次函数与一元二次方程

22.2 二次函数与一元二次方程一、教学目标【知识与技能】了解二次函数与一元二次方程之间的联系,掌握二次函数图象与x轴的位置关系可由对应的一元二次方程的根的判别式进行判别,了解用图象法确定一元二次方程的近似解的方法.【过程与方法】通过对实际问题情境的思考感受二次函数与对应的一元二次方程的联系,体会用函数的观点看一元二次方程的思想方法.【情感态度与价值观】进一步增强学生的数形结合思想方法,增强学生的综合解题能力.二、课型新授课三、课时1课时四、教学重难点【教学重点】二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0之间的联系,利用二次函数的图象求一元二次方程的近似解.【教学难点】一元二次方程根的情况与二次函数图象与x轴位置关系的联系.五、课前准备课件、三角尺、铅笔等.六、教学过程(一)导入新课出示课件2:以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m )与飞行时间t(单位:s)之间具有函数关系h=20t-5t2.(1)小球的飞行高度能否达到15m?如果能,需要多少飞行时间?(2)小球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)小球的飞行高度能否达到20.5m?为什么?(4)小球从飞出到落地要用多少时间?(二)探索新知探究一二次函数与一元二次方程的关系出示课件5:⑴小球的飞行高度能否达到15m?如果能,需要多少飞行时间?学生板演:解:15=20t-5t2,t2-4t+3=0,解得t1=1,t2=3.∴当球飞行1s或3s时,它的高度为15m.教师问:你能结合图形,指出为什么在两个时间求的高度为15m吗?学生独立思考.出示课件6:(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?学生板演:解:20=20t-5t2,t2-4t+4=0,解得t1=t2=2.故当球飞行2秒时,它的高度为20米.教师问:你能结合图形,指出为什么只在一个时间球的高度为20m?学生独立思考.出示课件7:(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?学生板演:解:20.5=20t-5t2,t2-4t+4.1=0,因为(-4)2-4×4.1<0,所以方程无解.即球的飞行高度达不到20.5米.教师问:你能结合图形指出为什么球不能达到20.5m的高度?学生独立思考.出示课件8:(4)球从飞出到落地要用多少时间?学生板演:解:小球飞出时和落地时的高度均为0m,0=20t-5t2,t2-4t=0,解得t1=0,t2=4.当球飞行0秒和4秒时,它的高度为0米.即0秒时球地面飞出,4秒时球落回地面.教师问:从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?(出示课件9)学生答:一般地,当y取定值且a≠0时,二次函数为一元二次方程.教师举例说明:二次函数与一元二次方程关系.(出示课件10)例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,可以解一元二次方程-x2+4x=3(即x2-4x+3=0).反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4x+3 的值为0,求自变量x的值.出示课件12:例已知二次函数:y=2x2-3x-4的函数值为1,求自变量x的值,可以看作解一元二次方程.反之,解一元二次方程2x2-3x-5=0,又可以看作已知二次函数的函数值为0时自变量x的值.学生答:2x2-3x-4=1;y=2x2-3x-5解之得:x1=-1,x2=2.5出示课件13:练一练:1.二次函数y=x2-3x+2,当x=1时,y= ;当y=0时,x= .2.抛物线y=4x2-1与y轴的交点坐标为;与x轴的交点坐标为.学生自主思考后口答:1.0;1或22.(0,-1);(0.5,0)和(-0.5,0)探究二:利用二次函数与x轴的交点讨论一元二次方程的根的情况教师问:观察思考下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(出示课件14)(1)y=x2+x-2;(2)y=x2-6x+9;(3)y=x2-x+1.学生自主思考后,教师加以指导:先画出函数图象---图象与x轴交点横坐标是多少--对应一元二次方程的根是多少.(出示课件15)教师问:由上述问题,你可以得到什么结论呢?(出示课件16)学生思考后,师生共同总结:方程ax2+bx+c=0的解就是抛物线y=ax2+bx+c与x 轴公共点的横坐标.当抛物线与x轴没有公共点时,对应的方程无实数根.反过来,由一元二次方程的根的情况,也可以确定相应的二次函数的图象与x轴的位置关系.出示课件19:观察图象,完成下表:生观察后,独立完成表格.答案:0个;无;x2-x+1=0无解1个;3;x2-6x+9=0,x1=x2=32个;-2,1;x2+x-2=0,x1=-2,x2=1师生共同总结:二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系(出示课件20)出示课件21:例1 已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).(1)求证:此抛物线与x轴总有交点;(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值.师生共同解决如下:解:(1)证明:∵m≠0,∴Δ=[-(m+2)]2-4m×2=m2+4m+4-8m=(m-2)2.∵(m-2)2≥0,∴Δ≥0,因此抛物线与x轴总有两个交点;(2)令y=0,则(x-1)(mx-2)=0,即x-1=0或mx-2=0,解得x1=1,x2=2.当mm为正整数1或2时,x2的值为整数,因为当m为2时,Δ=0,抛物线与x轴只有一个交点,所以正整数m的值为1.出示课件22:已知抛物线y=kx2+2x-1与x轴有两个交点,则k的取值范围是.学生自主解决.221=0kx x +-函数与轴有两个交点,即有两个不相等的实数根x20024(101)00.k k k k k ∴∆>≠-⨯->≠>-≠且,即且则且,出示课件23-26:例2 如图,丁丁在扔铅球时,铅球沿抛物线268-10105x y x =++运行,其中x 是铅球离初始位置的水平距离,y 是铅球离地面的高度.(1)当铅球离地面的高度为2.1m 时,它离初始位置的水平距离是多少? (2)铅球离地面的高度能否达到2.5m,它离初始位置的水平距离是多少? (3)铅球离地面的高度能否达到3m ?为什么?学生自主思考后,师生共同解决.解:⑴由抛物线的表达式得2682.1-,10105x x =++即2650.x x -+= 解得12=1=5.x x ,即当铅球离地面的高度为2.1m 时,它离初始位置的水平距离是1m 或5m.⑵由抛物线的表达式得2682.5-,10105x x =++即2690x x -+=. 解得x 1=x 2=3.即当铅球离地面的高度为2.5m 时,它离初始位置的水平距离是3m.⑶由抛物线的表达式得2683-,10105x x =++即26140.x x -+=因为2=-6-41140∆⨯⨯<(),所以方程无实根.所以铅球离地面的高度不能达到3m.出示课件28:如图设水管AB 的高出地面2.5m,在B 处有一自动旋转的喷水头,喷出的水呈抛物线状,可用二次函数y=-0.5x 2+2x+2.5描述,在所示的直角坐标系中,求水流的落地点D 到A 的距离是多少?教师分析:根据图象可知,水流的落地点D 的纵坐标为0,横坐标即为落地点D 到A 的距离.即y=0 .学生独立解答:根据题意得 -0.5x 2+2x+2.5=0, 解得x 1=5,x 2=-1(不合题意舍去). 答:水流的落地点D 到A 的距离是5m. 探究三:利用二次函数求一元二次方程的近似解出示课件29:求一元二次方程的根的近似值(精确到0.1).教师分析:一元二次方程x ²-2x-1=0 的根就是抛物线 y=x ²-2x-1 与x 轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x 轴的交点的横坐标,这种解一元二次方程的方法叫做图象法.师生共同解答.0122=--x x出示课件30,31:解:画出函数y=x²-2x-1 的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器进行探索,见下表:观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与-0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这时取x=-0.4或x=-0.5都符合要求.但当x=-0.4时更为接近0.故x1≈-0.4.同理可得另一近似值为x2≈2.4.教师总结归纳:一元二次方程的图象解法(出示课件32)利用二次函数的图象求一元二次方程2x2+x-15=0的近似根.(1)用描点法作二次函数y=2x2+x-15的图象;(2)观察估计二次函数y=2x2+x-15的图象与x轴的交点的横坐标,由图象可知,图象与x轴有两个交点,其横坐标一个是-3,另一个在2与3之间,分别约为-3和2.5(可将单位长再十等分,借助计算器确定其近似值);(3)确定方程2x2+x-15=0的解;由此可知,方程2x2+x-15=0的近似根为:x1≈-3,x2≈2.5.出示课件33:根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.26学生口答:C(三)课堂练习(出示课件34-41)1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0 B.2a+b<0C.3a+c<0 D.ax2+bx+c﹣3=0有两个不相等的实数根2.已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c =0的近似根为( )A.x1≈-2.1,x2≈0.1 B.x1≈-2.5,x2≈0.5C.x1≈-2.9,x2≈0.9 D.x1≈-3,x2≈13.若二次函数y=-x 2+2x+k 的部分图象如图所示,且关于x 的一元二次方程-x 2+2x+k=0的一个解x 1=3,则另一个解x 2= .4.一元二次方程3x 2+x -10=0的两个根是x 1=-2,x 2=53,那么二次函数 y= 3x 2+x -10与x 轴的交点坐标是 .5.若一元二次方程20x mx n -+=无实根,则抛物线2y x mx n =-+图象位于( )A.x 轴上方B.第一、二、三象限C.x 轴下方D.第二、三、四象限6.二次函数y =kx 2-6x +3的图象与x 轴有交点,则k 的取值范围是( )A .k<3B .k<3且k ≠0C .k ≤3D .k ≤3且k ≠07.已知函数y =(k -3)x ²+2x +1的图象与x 轴有交点,求k 的取值范围.8.某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时距地面209米,与篮框中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮框距地面3米.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?参考答案:1.C2.B3.-14.(-2,0)(5,0)35.A6.D7.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0. ∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0.∴k≤4且k≠3.综上所述,k的取值范围是k≤4.8.解:(1)由条件可得到出手点、最高点和篮框的坐标分别为A(0,20),B(4,4),C(7,3),其中B是抛物线的顶点.9(x 设二次函数关系式为y=a(x﹣h)2+k,将点A、B的坐标代入,可得y=﹣19﹣4)2+4.(7﹣4)2+4=3,左边=右边,即点将点C的坐标代入上式,得左边=3,右边=﹣19C在抛物线上.所以此球一定能投中.⑵将x=1代入函数关系式,得y=3.因为3.1>3,所以盖帽能获得成功.(四)课堂小结1.抛物线y=ax2+bx+c与一元二次方程ax2+bx+c=0有何关联?你能不画出抛物线y=ax2+bx+c而了解此抛物线与x轴的交点情况吗?你是怎样做的?2.你能利用抛物线来确定相应的方程的根的近似值吗?从中你有哪些体会?(五)课前预习预习下节课(22.3第1课时)的相关内容.七、课后作业1.教材习题22.2第1、2、3、4、6题.2.配套练习册内容八、板书设计:九、教学反思:本课时教学首先通过具体情况让学生感受用方程思想方法来解决函数问题的思路,然后通过图象来探究一元二次方程的根和二次函数与x轴交点之间的关联.这样整个教学过程充分利用了学生已形成的方程、函数间的关系来类比引导挖掘、探索二次函数与一元二次方程的关系.此外,通过观察图象直观理解、解答练习以及实际观察分析都是必经的途径与方法,重在让学生自主体会.。

一元二次方程优秀教案

一元二次方程优秀教案

一元二次方程优秀教案一元二次方程是初中数学的主要内容,在初中代数中占重要地位。

学生积极动手、动脑、动口为主线来完成。

在教学中渗透类比化归等数学思想,让学生充分观察、体验,同时营造轻松愉快的学习氛围,以此激发学生的学习兴趣并渗透环保内容。

以下是小编整理的关于一元二次方程教案,欢迎查阅!一元二次方程教案1教学目标1、知识与能力目标:要求学生会根据实际问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。

2、过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。

3.、情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识并与校园绿化相结合。

教学重点、难点教学重点:通过实际问题模型建立一元二次方程的概念,认识一元二次方程一般形式.2。

难点:通过实际问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念。

教学过程:(一)创设情景,导入新课问题一:学校有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽为多少分析:设长方形绿地的宽为x米,则列方程,整理可得。

问题二:有一块矩形绿化带,长100cm,宽50cm,在它的四角各栽种一个同样的正方形花坛,如果去掉四周矩形的底面积为3600cm2,那么四周花坛面积是多大的正方形分析:设长方形绿地的宽为x米,则列方程,整理可得。

问题三:要组织一次环保竞赛,参加的每两个班之间都要比赛一场。

根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个班参赛【设计意图】因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。

同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。

情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课,并激发学生环保意识。

《一元二次方程》单元教学设计方案

《一元二次方程》单元教学设计方案

《一元二次方程》单元教学设计方案《《一元二次方程》单元教学设计方案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!本章的总体设计思路,遵循了“问题情境一建立模型-拓展、应用”的模式。

课本从内容安排上分为3部分:1.从问题到方程:紧密联系实际,创设具有时代气息以及与学生生活经验相吻合的问题情境,通过丰富的实例,引出一元二次方程,展现一元二次方程是刻画现实世界数量关系的有效模型,让学生体会一元二次方程与现实世界的密切联系。

2.解方程:解决数学内部问题-解方程,主要让学生探索一元二次方程的解法,使学生在尝试、探索、比较等活动中,发现解一元二次方程的基本方法-直接开平方法、配方法、公式法、因式分解法,体会一元二次方程与一元一次方程的联系和转化,体会几种解法之间的相互联系。

此外,课本安排了选学内容“一元二次方程的根与系数的关系”,学习这一内容可以进一步加深对一元二次方程及其根的认识,也为以后的学习做准备。

3.用方程解决问题:设置了一些有一定挑战性和思考性的现实问题情境,通过解决这些丰富多彩的、贴近学生生活的实际问题,强化方程的模型思想,而且通过学生的自主探索研究,培养学生分析问题、解决问题的能力,获得更多解决问题的方法和经验,更好地体会数学的应用价值,同时也进一步使学生掌握解方程的技能。

单元(或主题)学习目标与重点难点单元(或主题)学习目标:1.能根据具体问题中的数量关系,測出一元二次方程,体会一元二次方程是刻面现实世界数量关系的有效模型。

2.经历估计方程(一元二次方程)的解的过程。

3.理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。

4.会用一元二次方程的根的判别式判别方程是否有实数根和两个实数根是否相等。

*5.了解一元二次方程的根与系数的关系。

6.能根据具体问题的实际意义,检验一元二次方程的解是否合理。

单元(或主题)学习重点:1.理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。

初中一元二次方程教案模板

初中一元二次方程教案模板

初中一元二次方程教案模板一、教学目标:1. 知识与能力目标:学生能够理解一元二次方程的概念,掌握一元二次方程的解法,并能够应用一元二次方程解决实际问题。

2. 过程与方法目标:通过探索一元二次方程的解法,培养学生逻辑思维能力和解决问题的能力。

3. 情感、态度与价值观目标:培养学生对数学的兴趣,感受数学在生活中的应用,培养学生的团队合作意识。

二、教学重点、难点:1. 教学重点:一元二次方程的概念,一元二次方程的解法及其应用。

2. 教学难点:一元二次方程的解法,特别是因式分解法和求根公式的运用。

三、教学过程:1. 导入新课:通过生活中的实际问题,引导学生列出方程,从而引出一元二次方程的概念。

2. 自主学习:学生自主探究一元二次方程的解法,总结解题步骤和技巧。

3. 课堂讲解:讲解一元二次方程的概念,解析一元二次方程的解法,并通过例题演示解题过程。

4. 练习巩固:学生独立完成练习题,教师进行个别辅导,巩固所学知识。

5. 拓展应用:学生分组讨论,运用一元二次方程解决实际问题,分享解题心得。

6. 总结反思:教师引导学生总结一元二次方程的特点和解题方法,反思自己在学习过程中的优点和不足。

四、教学方法:1. 情境教学法:通过设置生活情境,激发学生的学习兴趣,引导学生主动参与。

2. 启发式教学法:教师提问引导学生思考,激发学生的探究欲望。

3. 合作学习法:学生分组讨论,培养学生的团队合作意识和沟通能力。

4. 案例教学法:通过讲解典型例题,培养学生解决问题的能力。

五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答和练习完成情况。

2. 练习作业:检查学生完成练习题的情况,评估学生的掌握程度。

3. 小组讨论:评估学生在团队合作中的表现,包括沟通能力和解决问题的能力。

4. 学生自评:让学生反思自己在学习过程中的优点和不足,鼓励自我提高。

六、教学资源:1. 教材:一元二次方程相关章节的内容。

2. 课件:教师制作的课件,包括图片、文字和动画等。

九年级数学上册 第二十一章《一元二次方程(数学活动)》教学设计(新版)新人教版

九年级数学上册 第二十一章《一元二次方程(数学活动)》教学设计(新版)新人教版

一元二次方程数学活动一、内容和内容解析1.内容探究三角点阵中前n行的点数所满足的规律,并应用规律进行计算.2.内容解析本节课的数学活动对第21章“一元二次方程”所学知识的应用,进一步用一元二次方程,解决具体情境中的数量关系和变化规律.活动中的核心问题是寻求三角点阵的行数与前n 行的点数和的对应关系,根据所给的具体的点数,通过解一元二次方程求得n的值,根据所得解是否符合实际意义来判断是否存在这样的点数和.基于以上分析,可以确定本节课的教学重点:探求三角形点阵的前n行点数和的规律,并利用一元二次方程的知识解决有关问题.二、目标和目标解析1.目标(1)探索发现三角点阵中前n行的点数规律,并能用于计算.(2)掌握从特殊到一般,从个别到整体地观察、分析问题的方法,建立数学模型解决问题,培养应用意识.2.目标解析达成目标(1)的标志是:学生能用含n的式子表示每行的点数,并能找到前n行点数和的计算规律,并根据所给的具体的点数和,计算出n的值.达成目标(2)是内容所蕴含的思想方法,学生需要体会在较为复杂的图形中寻找一般规律,经常先把复杂图形分解,从其中的特殊图形入手,先就个体观察特征,再扩展到一般,最后由整体总结规律,感受由特殊到一般的探究模式.学生体会进行数学活动的基本方法:提出问题→动手实践→寻求规律→归纳总结.学生在经历发现问题、独立思考、猜想验证的过程中,提高应用意识.三、教学问题诊断分析面对一个问题情景,要将它转化为一元二次方程进行解决,对学生而言都有一定的难度.四、教学过程设计问题1 图1是一个三角点阵,从上向下有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……,他们的前n行点数和有什么规律?······师生活动:教师提出问题,学生观察思考:(1)前三行点数之和是多少?10是前几行的点数和?(2)300是前多少行的点数和?你可以通过什么方法得到?你对你的方法满意吗?可以用试验的方法,由上而下地逐行相加其点数,能发现1+2+3+…+24=300,得知300是前24行的点数的和,但是这样寻找答案需要花费较多时间.(3)你还有什么方法解决这个问题?你是怎样想到的?设计意图:引导学生从观察入手,引发寻找公式解决相关问题的需要.问题2 观察图形,你能列出前n 行点数和的表达式吗?师生活动:学生思考、交流、回答,得出表达式为1+2+3+…+(n -2)+(n -1)+n ,并进一步得到公式:1+2+3+…+n =2)(1n n ⨯+. 再求出点数和为300时的行数. 设计意图:利用公式1+2+3+…+n =2)(1n n ⨯+,把问题转化为用一元二次方程来解决,增强学生应用数学知识解决实际问题的能力.问题3 如果把图中的三角点阵中各行的点数依次换为2,4,6,…,2n ,…,你能探究出前n 行的点数和满足什么规律吗?这个三角点阵中前n 行的点数和能是600吗?如果能,求出n ;如果不能,试用一元二次方程说明道理.设计意图:让学生在课后应用本节课所学习的方法和策略解决同类问题.。

人教版九年级上册21章一元二次方程团体备课教案

人教版九年级上册21章一元二次方程团体备课教案

(义务教育课程标准人教版)岑巩县凯本中学数学组集体备课教案九年级 数学 下册2016—2017学年度秋季学期科任教师:王照龙教学班级:九年级第二十一章一元二次方程教材内容本单元教学的主要内容:1.一元二次方程及其有关概念,一元二次方程的解法(开平方法、配方法、公式法、分解因式法),一元二次方程根与系数的关系,运用一元二次方程分析和解决实际问题.2.本单元在教材中的地位和作用:教学目标1.一分析实际问题中的等量关系并求解其中未知数为背景,认识一元二次方程及其有关概念。

2.根据化归思想,抓住“降次”这一基本策略,熟练掌握开平方法、配方法、公式法和分解因式法等一元二次方程的基本解法.3.经历分析和解决问题的过程,体会一元二次方程的教学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。

教学重点、难点重点:1.一元二次方程及其有关概念2.一元二次方程的解法(开平方法、配方法、公式法、分解因式法)3.一元二次方程根与系数的关系以及运用一元二次方程分析和解决实际问题。

难点:1.一元二次方程及其有关概念2.一元二次方程的解法(配方法、公式法、分解因式法),3.一元二次方程根与系数的关系以及灵活运用课时安排本章教学时约需课时,具体分配如下22.1 一元二次方程1课时22.2 解一元二次方程 6 课时讲解解一元二次方程的练习题 3 课时22.3 实际问题与一元二次方程 2 课时讲解实际问题与一元二次方程的练习题 2 课时复习小结 2 课时教学时间课题21.1 一元二次方程课型新授教学媒体知识技能1.理解一元二次方程概念是以未知数的个数和次数为标准的.2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根过程方法 1..通过根据实际问题列方程,向学生渗透知识来源于生活.2.通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式.3.经历观察,归纳一元二次方程的概念,一元二次方程的根的概念,教学目标情感态度通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.教学重点一元二次方程的概念,一般形式和一元二次方程的根的概念教学难点通过提出问题,建立一元二次方程的数学模型, 再由一元一次方程的概念迁移到一元二次方程的概念.教学过程设计教学时间课题21.2.1配方法(1)课型新授教学媒体知识技能1.理解一元二次方程“降次”的转化思想.2.根据平方根的意义解形如x 2=p (p≥0)的一元二次方程,然后迁移到解(mx+n )2=p (p≥0)型的一元二次方程.3.把一般形式的一元二次方程(二次项系数是1,一次项系数是偶数)与左边是含有未知数的完全平方式右边是非负常数的一元二次方程对比,引入配方法,并掌握.过程方法 1.通过根据实际问题列方程,向学生渗透知识来源于生活.2.通过观察,思考,对比获得一元二次方程的解法-----直接开平方法,配方法教学目标情感态度通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.教学重点 1.运用开平方法解形如(mx+n )2=p (p≥0)的方程;领会降次──转化的数学思想.2用配方法解二次项是1,一次项系数是偶数的一元二次方程教学难点降次思想,配方法教学过程设计教学时间课题21.2.1配方法(2)课型新授教学媒体知识技能 1.进一步理解配方法和配方的目的.2.掌握运用配方法解一元二次方程的步骤.3.会利用配方法熟练灵活地解二次项系数不是1的一元二次方程.过程方法 通过对比用配方法解二次项系数是1的一元二次方程,解二次项系数不是1的一元二次方程,经历从简单到复杂的过程,对配方法全面认识.教学目标情感态度1.通过对配方法的探究活动,培养学生勇于探索的学习精神.2.感受数学的严谨性和数学结论的确定性.3.温故知新,培养学生利用旧知解决问题的能力.教学重点用配方法解一元二次方程教学难点用配方法解二次项系数不是1的一元二次方程,首先方程两边都除以二次项系数,将方程化为二次项系数是1的类型.教学过程设计教学时间课题21.2.2公式法课型新授教学媒体知识技能 1.理解一元二次方程求根公式的推导过程.2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况.3.会利用求根公式解简单数字系数的一元二次方程.过程方法 1.经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解公式的基础.;2.通过对公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单.3.提高学生的运算能力,并养成良好的运算习惯.教学目标情感态度 1.感受数学的严谨性和数学结论的确定性.2.提高学生运算能力,使学生获得成功体验,建立学习信心.教学重点求根公式的推导,公式的正确使用教学难点求根公式的推导教学过程设计教学反思教学时间课题21.2.3因式分解法课型新授教学媒体知识技能1.了解因式分解法的概念.2.会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,根据两个因式的积等于0,必有因式为0,从而降次解方程.过程方法 1.经历探索因式分解法解一元二次方程的过程,发展学生合情合理的推理能力.2.体验解决问题方法的多样性,灵活选择解方程的方法.教学目标情感态度积极探索方程不同解法,通过交流发现最优解法,获得成功体验.教学重点会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,从而降次解方程教学难点将整理成一般形式的方程左边因式分解教学过程设计教学时间课题21.2.4一元二次方程的根与系数关系课型新授教学媒体知识技能 1.熟练掌握一元二次方程的根与系数关系.2.灵活运用一元二次方程的根与系数关系解决实际问题.3.提高学生综合运用基础知识分析解决较复杂问题的能力.过程方法学生经历探索,尝试发现韦达定理,感受不完全归纳验证以及演绎证明.教学目标情感态度培养学生观察,分析和综合,判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.教学重点一元二次方程的根与系数关系教学难点对根与系数关系的理解和推导教学过程设计的值.αββα+教 学 反 思教学时间课题21.3实际问题与一元二次方程(1)课型新授教学媒体知识技能1.使学生会列出一元二次方程解应用题,初步掌握利用一元二次方程解决生活中的实际问题.2.培养学生的阅读能力.过程方法 1.通过根据实际问题列方程,向学生渗透知识来源于生活.2.通过观察,思考,交流,进一步提高逻辑思维和分析问题解决问题能力.3.经历观察,归纳列一元二次方程的一般步骤教学目标情感态度通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.教学重点建立数学模型,找等量关系,列方程教学难点找等量关系,列方程教学过程设计教学时间课题21.3实际问题与一元二次方程(2)课型新授教学媒体知识技能1.能根据以流感为问题背景,按一定传播速度逐步传播的问题;以封面设计为问题背景,○1○2边衬的宽度问题中的数量关系列出一元二次方程,体会方程刻画现实世界的模型作用.2.培养学生的阅读能力与分析能力.3.能根据具体问题的实际意义,检验结果是否合理.过程方法通过自主探究,独立思考与合作交流,使学生弄清实际问题的背景,挖掘隐藏的数量关系,把有关数量关系分析透彻,找出可以作为列方程依据的主要相等关系,正确的建立一元二次方程.教学目标情感态度在分析解决问题的过程中逐步深入地体会一元二次方程的应用价值.法制渗透《中华人民共和国传染病防治法》教学重点建立数学模型,找等量关系,列方程教学难点找等量关系,列方程教学过程设计教学反思第二十二章《一元二次方程》小结一、本章知识结构框图二、本章知识点概括1、相关概念(1)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

2019秋北师大版九年级数学上册第二章一元二次方程6应用一元二次方程学案

2019秋北师大版九年级数学上册第二章一元二次方程6应用一元二次方程学案

2.6 应用一元二次方程第1课时利用一元二次方程解决几何问题及数字问题【课标要求】1、能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型。

2、能根据具体问题的实际意义,检验方程的解是否合理。

【学习目标】1.经历分析具体问题中的数量关系,建立方程模型并解决问题的过程,认识方程模型的重要性,并总结运用方程解决实际问题的一般步骤。

2.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力。

【重点】掌握运用方程解决实际问题的方法。

【难点】构建数学模型解决实际问题。

课前预习纲要请同学们回顾七年级列一元一次方程解决实际问题的步骤,想一想,与同桌共同完成下列各题:1.一个三位数,百位上是a,十位上是b,个位上是c,则这个三位数是().A.abc B.a+b+c C.100a+10b+c D.cba2.一个两位数,十位数字与个位数字之和是6,•把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的积是1008,求这个两位数.设原来这个两位数的个位数字为x,则十位字为:。

;则列方程得:。

3、用22cm长的铁丝,折成一个面积为32cm2的矩形。

求这个矩形的长与宽。

设这个矩形的长为xcm,则宽为。

根据题意得方程:。

4、如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m2,道路应为多宽?若设每条道路的宽度为xm,可列方课堂学习探究纲要一、创设情境导入新课(1分钟)问题导入:1、填空:56=5× + ;246=2× +4× + ;2、若一个两位数,个位数字为a,十位数字为b,则这个两位数为:。

二、明确学习目标(略30秒)三、预习检测:预习纲要四、自主探究合作释疑【自主学习】:请同学们结合课本31页,图2-2梯子下滑的问题所列的方程,选择适合你的解法求出梯子下滑的距离。

新人教版九年级数学第21章一元二次方程教案导学案(全章)

新人教版九年级数学第21章一元二次方程教案导学案(全章)

第21章一元二次方程教材内容1.本单元教学的主要内容.一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.2.本单元在教材中的地位与作用.一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法.学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程.应该说,一元二次方程是本书的重点内容.教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.(6)提出问题、分析问题,建立一元二次方程的数学模型,•并用该模型解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.教学重点1.一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3.利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点1.一元二次方程配方法解题.2.用公式法解一元二次方程时的讨论.3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.教学关键1.分析实际问题如何建立一元二次方程的数学模型.2.用配方法解一元二次方程的步骤.3.解一元二次方程公式法的推导.课时划分本单元教学时间约需18课时,具体分配如下:21.1 一元二次方程2课时21.2 降次──解一元二次方程9课时21.3 实际问题与一元二次方程3课时教学活动、习题课、小结 4课时第1课时一元二次方程(1)第2课时一元二次方程(2)第3课时解一元二次方程——配方法(1)第4课时解一元二次方程——配方法(2)第5课时解一元二次方程——配方法(3)第6课时解一元二次方程——公式法(1)第7课时解一元二次方程——公式法(2)第8课时解一元二次方程—因式分解法(1)第9课时解一元二次方程—因式分解法(2)第10课时一元二次方程的解法复习课的数学思想。

北师版初中数学九年级上册精品教学课件 第2章一元二次方程 6第2课时应用一元二次方程解决利润问题

北师版初中数学九年级上册精品教学课件 第2章一元二次方程 6第2课时应用一元二次方程解决利润问题
要求.
2.若原售价为a元时,可售出b个,定价每增加c元,销量减少d个,则当实际定
价为x元时,销量为b-
(-)

.
返回首页
新知训练巩固
1.某机械厂四月份生产零件50万个,扩大再生产后第二季度共累计生产零
件196万个,如果每月的增长率x相同,那么可列方程( C ).
A.50(1+x2)=196
B.50+50(1+x2)=196
返回首页
Байду номын сангаас
解 (1)设此批次蛋糕属第x档次产品,则10+2(x-1)=14,解得x=3.
故此批次蛋糕属第3档次产品.

14-10
2
+ 1 = 3,故此批次蛋糕属第 3 档次产品.
(2)设该烘焙店生产的是第x档次的产品,
根据题意,得[10+2(x-1)][76-4(x-1)]=1 080,
解之,得x1=5,x2=11(舍去).
根据题意,得(60-x-40)(300+20x)=6 080.
解得x1=1,x2=4.
因为在顾客得实惠的前提下进行降价,
所以取x=4.
所以定价为60-x=56(元).
故应将销售单价定为56元.
返回首页
【方法归纳】
1.求解实际问题注意关注某些限制条件,舍去不合题意的解.如本例,容易误
认为方程的两个解都是正数则均符合题意,而忽略了“顾客得实惠”的限制
故该烘焙店生产的是第5档次的产品.
返回首页
返回首页




天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该
产品每件利润就增加2元.

一元二次方程教案 一元二次方程数学教学教案8篇

一元二次方程教案 一元二次方程数学教学教案8篇

一元二次方程教案一元二次方程数学教学教案8篇元二次方程教案篇一一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点:正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?九年级数学《一元二次方程》教案篇二教学目标知识与技能目标1、构建本章的部分知识框图。

蓟县第三中学九年级数学上册 第二章 一元二次方程6 应用一元二次方程第1课时 利用一元二次方程解决几

蓟县第三中学九年级数学上册 第二章 一元二次方程6 应用一元二次方程第1课时 利用一元二次方程解决几

6 应用一元二次方程第1课时利用一元二次方程解决几何问题【知识与技能】使学生会用一元二次方程解应用题.【过程与方法】进一步培养学生将实际问题转化为数学问题的能力和分析问题、解决问题的能力,培养学生运用数学的意识.【情感态度】通过列方程解应用题,进一步体会运用代数中方程的思想方法解应用题的优越性.【教学重点】实际问题中的等量关系如何找.【教学难点】根据等量关系设未知数列方程.一、情境导入,初步认识列方程解应用题的步骤是什么?①审题,②设未知数,③列方程,④解方程,⑤答.【教学说明】初一学过一元一次方程的应用,实际上是据实际题意,设未知数,列出一元一次方程求解,从而得到问题的解决.但有的实际问题,列出的方程不是一元一次方程,是一元二次方程,这就是我们本节课所研究的问题,一元二次方程的应用.二、思考探究,获取新知问题:有一张长6尺,宽3尺的长方形桌子,现用一块长方形台布铺在桌面上,如果台布的面积是桌面面积的2倍,且四周垂下的长度相同,试求这块台布的长和宽各是多少?(精确到0.1尺)分析:设四周垂下的宽度为x尺时,可知台布的长为(2x+6)尺,宽为(2x+3)尺,利用台布的面积是桌面面积的2倍构建方程可获得结论.解:设四周垂下的宽度为x尺时,依题意可列方程为(6+2x)(3+2x)=2×6×3.整理方程,得2x2+9x-9=0.解得x1≈0.84,x2≈-5.3(不合题意,舍去).即这块台布的长约为7.7尺,宽约为4.7尺.【教学说明】注意引导学生分析、理清题目中的数量关系,挖掘已知条件与要解决问题,激发学生解决问题的欲望,体会数形结合思想的应用.三、运用新知,深化理解1.见教材P52例1.2.直角三角形的两条直角边的和为7,面积是6,则斜边长为( B )A.37B.5C.38D.73.从正方形铁皮的一边切去一个2cm宽的长方形,若余下的长方形的面积为48cm2,则原来正方形的铁皮的面积为64cm2.4.如图,在一幅矩形地毯的四周镶有宽度相同的花边,地毯中间的矩形图案的长为6m,宽为3m,若整个地毯的面积为40m2,求花边的宽.解:设花边的宽为x m,依题意有(6+2x)(3+2x)=40,解得x1=1,x2=112-(不合题意应舍去).即花边的宽度为1m.5.如右图是长方形鸡场的平面示意图,一边靠墙,另外三边用竹篱笆围成,且竹篱笆总长为35m.(1)若所围的面积为150m2,试求此长方形鸡场的长和宽;(2)如果墙长为18m,则(1)中长方形鸡场的长和宽分别是多少?(3)能围成面积为160m2的长方形鸡场吗?说说你的理由.分析:如图,若设BC = x m,则AB的长为352x-m,若设AB = x m,则BC=(35-2x)m,再利用题设中的等量关系,可求出(1)的解;在(2)中墙长a = 18m意味着BC边长应小于或等于18m,从而对(1)的结论进行甄别即可;(3)中可借助(1)的解题思路构建方程,依据方程的根的情况可得到结论.解:(1)设BC=xm,则AB=CD=352x-m,依题意可列方程为x·352x-=150,解这个方程,得x1=20,x2=15.(2)当墙长为18m时,显然BC=20m时,所围成的鸡场会在靠墙处留下一个缺口,不合题意,应舍去,此时所围成的长方形鸡场的长与宽只能是15m和10m;(3)不能围成面积为160m2的长方形鸡场,理由如下:设BC = x m,由(1)知AB=352x-m,从而有x·352x-=160,方程整理为x2-35x+320=0.此时Δ=352-4×1×320=1225-1280<0,原方程没有实数根,从而知用35m的篱笆按图示方式不可能围成面积为160m2的鸡场.6.如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从点C出发沿CB边向点B以2cm/s的速度移动.当其中一点到达终点时,另一点也随之停止运动.(1)如果P,Q同时出发,几秒钟后,可使△PCQ的面积为8cm2?(2)点P,Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半?分析:(1)如果P,Q同时出发,x s后,AP=xcm,PC=(6-x)cm,CQ=2xcm,此时△PCQ的面积为12×2x(6-x),令该式=8,由此等量关系列出方程求出符合题意值;(2)△ABC的面积的一半等于12×12AC·BC=12(cm2),令12×2x(6-x)=12,判断该方程是否有解,若有解则存在,否则不存在.解:(1)设xs后,可使△PCQ的面积为8cm2.由题意得AP=xcm,PC=(6-x)cm,CQ=2xcm,则12·(6-x)·2x=8.整理,得x2-6x+8=0,解得x1=2,x2=4.所以P,Q同时出发2s或4s后可使△PCQ的面积为8cm2.(2)由题意,得S△AB C=12AC·BC=12×6×8=24(cm2),令12×2x×(6-x)=12×24,x2-6x+12=0,b2-4ac=62-4×12=-12<0,该方程无实数解,所以不存在使得△PCQ的面积等于△ABC的面积的一半的时刻.四、师生互动、课堂小结1.回顾、整理并总结,让学生在活动中积累实践经验,理解建立数学模型的重要性.2.独立完成以上例题.1.布置作业:教材“习题2.9”中第2、3、4题.2.完成练习册中相应练习.本课时无论是例题的分析还是练习的分析,尽可能地鼓励学生动脑、动手、动口,为学生提供展示自己的机会,在此过程中发现并总结学生存在的思维误区,便于今后的教学.课堂上注意激发学生的学习热情,帮助学生形成积极主动的求知态度.较复杂几何体的三视图1.如图(1)所示的是由6个大小相同的正方形组成的几何体,它的俯视图是如图(2)所示的( )2.在水平的讲台上放置圆柱形水杯和长方形粉笔盒,如图(1)所示,则它的主视图是图(2)所示的( )3.从上面观察这个立体图形,能得到的平面图形是( )A B C D4.图中几何体的俯视图是( )图(2)DCBA图(1)图(2)DCBAA B C D5.由6个大小相同的正方体搭成的几何体如图所示,关于它的视图,说法正确的是( )A .主视图的面积最大B .左视图的面积最大C .俯视图的面积最大D .三个视图的面积一样大6.某三棱锥的三视图如图所示,该三棱锥的体积是( )A .38B .4C .2D .347.已知一个几何体的三视图如图所示,则该几何体的体积为多少?检测内容:第二十六章 反比例函数得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分) 1.(海南中考)如果反比例函数y =a -2x(a 是常数)的图象在第一、三象限,那么a 的取值范围是(D )A .a <0B .a >0C .a <2D .a >22.已知反比例函数y =k x的图象经过点P (-3,2),则k 的值为(C ) A .3 B .6 C .-6 D .-33.若点A (x 1,-6),B (x 2,-2),C (x 3,2)在反比例函数y =12x的图象上,则x 1,x 2,x 3的大小关系是(B )A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 2<x 3<x 1D .x 3<x 2<x 14.某汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如图所示.当它所受牵引力为1 200牛时,汽车的速度为(C )A .180千米/时B .144千米/时C .50千米/时D .40千米/时第4题图第5题图第6题图第8题图5.(泸州中考)如图,一次函数y 1=ax +b 和反比例函数y 2=k x的图象相交于A ,B 两点,则使y 1>y 2成立的x 取值范围是(B )A .-2<x <0或0<x <4B .x <-2或0<x <4C .x <-2或x >4D .-2<x <0或x >46.(凉山州中考)如图,正比例函数y =kx 与反比例函数y =4x的图象相交于A ,C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于(C )A .8B .6C .4D .27.在同一直角坐标系中,函数y =k x和y =kx -3的图象大致是(B )8.(淄博中考)如图,在直角坐标系中,以坐标原点O (0,0),A (0,4),B (3,0)为顶点的Rt △AOB ,其两个锐角对应的外角角平分线相交于点P ,且点P 恰好在反比例函数y =kx的图象上,则k 的值为(A ) A .36 B .48 C .49 D .649.(扬州中考)若反比例函数y =-2x的图象上有两个不同的点,这两点关于y 轴的对称点都在一次函数y =-x +m 的图象上,则m 的取值范围是(C )A .m >22B .m <-22C .m >22 或m <-22D .-22 <m <2210.(临沂中考)如图,在平面直角坐标系中,反比例函数y =k x(x >0)的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,△OMN 的面积为10.若动点P 在x 轴上,则PM +PN 的最小值是(C )A .62B .10C .226D .229第10题图第13题图第14题图第16题图第17题图二、填空题(每小题3分,共24分)11.下列函数是反比例函数的有__①②③__.(只填序号) ①y =-2x ;②y =5x -1;③y =k x (k 为常数且k ≠0);④y =4x2 .12.已知一个正比例函数的图象与一个反比例函数图象的一个交点坐标为(1,3),则另一个交点坐标是__(-1,-3)__.13.(邵阳中考)如图,在平面直角坐标系中,点A 的坐标为(-4,2),反比例函数y =k x(x <0)的图象经过线段OA 的中点B ,则k =__-2__.14.如图是某蔬菜大棚恒温系统从开启到关闭后,大棚内温度y (℃)随时间x (时)变化的函数图象, 其中BC 段是反比例函数图象的一部分,则当x =20时,大棚内的温度约为__10.8__℃.15.(北京中考)在平面直角坐标系xOy 中,点A ()a ,b ()a >0,b >0 在双曲线y =k 1x上,点A 关于x 轴的对称点点B 在双曲线y =k 2x上,则k 1+k 2的值为__0__.16.(桂林中考)如图,在平面直角坐标系中,反比例函数y =k x(k >0)的图象和△ABC 都在第一象限内,AB =AC =52 ,BC ∥x 轴,且BC =4,点A 的坐标为(3,5).若将△ABC 向下平移m 个单位长度,A ,C 两点同时落在反比例函数图象上,则m 的值为__54__.17.(毕节中考)如图,已知一次函数y =kx -3(k ≠0)的图象与x 轴、y 轴分别交于A ,B 两点,与反比例函数y =12x (x >0)交于点C ,且AB =AC ,则k 的值为__32__.18.(鄂州中考改编)如图,点A 1,A 2,A 3…在反比例函数y =1x(x >0)的图象上,点B 1,B 2,B 3,…B n 在y 轴上,且∠B 1OA 1=∠B 2B 1A 2=∠B 3B 2A 3=…,直线y =x 与双曲线y =1x交于点A 1,B 1A 1⊥OA 1,B 2A 2⊥B 1A 2,B 3A 3⊥B 2A 3…,则B n (n 为正整数)的坐标是__(0,2n )__.三、解答题(共66分)19.(7分)已知反比例函数y =5m +8x的图象经过点A (m ,m +3),且在每个象限内,y随x 的增大而增大.(1)求这个函数的解析式;(2)判断点B (-52 ,45),C (2,-5)是否在这个函数的图象上?解:(1)将点A (m ,m +3)代入y =5m +8x,得m (m +3)=5m +8,解得m 1=4,m 2=-2,当m =4时,5m +8=28,当m =-2时,5m +8=-2,又∵y 随x 的增大而增大,∴5m +8<0,∴这个函数的解析式为y =-2x(2)点B (-52 ,45 )在这个函数的图象上,点C (2,-5)不在这个函数的图象上20.(7分)超超家利用银行贷款购买了某山庄的一套100万元的住房,在交了首付款后,每年需向银行付款y 万元,预计x 年后结清余款,y 与x 之间的函数关系如图,试根据图象所提供的信息回答下列问题:(1)确定y 与x 之间的函数解析式,并说明超超家交了多少万元首付款; (2)超超家若计划用10年时间结清余款,每年应向银行交付多少万元?解:(1)12×5=60(万元),100-60=40(万元),∴y =60x,超超家交了40万元的首付款(2)把x =10代入y =60x,得y =6,∴每年应向银行交付6万元21.(8分)如图,四边形ABCD 为正方形,点A (0,2),点B (0,-3),反比例函数的图象经过点C .(1)求反比例函数解析式;(2)若点P 是反比例函数图象上的点,△OAP 的面积等于正方形ABCD 面积的2倍,求点P 的坐标.解:(1)由题意知C (5,-3),则该反比例函数解析式为y =-15x(2)设点P 的横坐标为x ,则S △AOP =12 OA ·|x |=50,即12×2×|x |=50.解得x =50或x =-50.故P (50,-310 )或(-50,310)22.(10分)在平面直角坐标系中,一次函数y =-x +b 的图象与反比例函数y =k x(k ≠0)的图象交于A ,B 两点,与y 轴交于点C ,其中点A 的坐标为(-2,3).(1)求一次函数和反比例函数的解析式;(2)如图,若将点C 沿y 轴向上平移4个单位长度至点F ,连接AF ,BF ,求△ABF 的面积.解:(1)把(-2,3)分别代入y =-x +b 与y =k x中,有3=2+b ,k-2=3,解得b =1,k =-6,∴一次函数的解析式为y =-x +1,反比例函数的解析式为y =-6x(2)∵将点C 向上平移4个单位长度得到点F ,∴CF =4.∵一次函数y =-x +b 的图象与反比例函数y =kx (k ≠0)的图象交于A ,B 两点,联立⎩⎪⎨⎪⎧y =-x +1,y =-6x, 解得⎩⎪⎨⎪⎧x =3y =-2 或⎩⎪⎨⎪⎧x =-2,y =3,∴B (3,-2),A (-2,3),∴S △ABF =12 ×4×(2+3)=1023.(10分)(连云港中考)如图,在平面直角坐标系xOy 中,反比例函数y =m x(x >0)的图象经过点A (4,32 ),点B 在y 轴的负半轴上,AB 交x 轴于点C ,C 为线段AB 的中点.(1)m =__6__,点C 的坐标为__(2,0)__;(2)若点D 为线段AB 上的一个动点,过点D 作DE ∥y 轴,交反比例函数图象于点E ,求△ODE 面积的最大值.解:(1)∵反比例函数y =m x (x >0)的图象经过点A (4,32 ),∴m =4×32 =6,∵AB 交x 轴于点C ,C 为线段AB 的中点,∴C (2,0).故答案为6,(2,0)(2)设直线AB 的解析式为y =kx +b ,把A (4,32),C (2,0)代入得⎩⎪⎨⎪⎧4k +b =32,2k +b =0, 解得⎩⎪⎨⎪⎧k =34,b =-32,∴直线AB 的解析式为y =34 x -32 .∵点D 为线段AB 上的一个动点,∴设D (x ,34 x -32 )(0<x ≤4).∵DE ∥y 轴,∴E (x ,6x ),∴S △ODE =12 x ·(6x -34 x +32 )=-38x 2+34x +3=-38(x -1)2+278,∴当x =1时,△ODE 的面积最大,最大值为27824.(12分)某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种新型商品成本为20元/件,第x 天销售量为p 件,销售单价为q 元,经跟踪调查发现,这40天中p 与x 的关系保持不变,前20天(包含第20天),p 与x 之间满足关系式p =50-x ,q 与x 之间满足关系式q =30+ax ;从第21天到第40天中,q 是基础价与浮动价的和,其中基础价保持不变,浮动价与x 成反比.且得到了表中的数据.x (天) 10 21 35 q (元/件)354535(1)请直接写出a __0.5__(2)从第21天到第40天中,求q 与x 满足的关系式;(3)求这40天里该网店第几天获得的利润最大?最大利润是多少?解:(2)设从第21天到第40天中,q 与x 满足的关系式为q =b +k x,把(21,45)和(35,35)代入得⎩⎪⎨⎪⎧b +k21=45,b +k 35=35,解得⎩⎪⎨⎪⎧k =525,b =20, ∴q =20+525x(3)当1≤x ≤20时,y =p (q -20)=(50-x )(30+0.5x -20)=-12 (x -15)2+612.5,当x =15时,y最大=612.5;当21≤x ≤40时,y =(50-x )(20+525x-20)=26 250x-525,∵y 随x 的增大而减小,∴当x =21时,y 最大=725.综上所述,这40天里该网店第21天获得的利润最大25.(12分)如图,已知正方形OABC 的面积为9,点O 为坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数y =k x (k >0,x >0)的图象上,点P (m ,n )是函数y =kx(k >0,x>0)的图象上任一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E ,F ,并设矩形OEPF和正方形OABC 不重合部分的面积为S .(1)求点B 的坐标和k 的值; (2)当S =92时,求点P 的坐标;(3)写出S 关于m 的函数解析式.解:(1)依题意可设点B 的坐标为(x B ,y B ),且x B =y B ,∴S 正方形OABC =x B ·y B =9,∴x B =y B =3,即点B 的坐标为(3,3).又∵x B y B =k ,∴k =9(2)①当点P 位于点B 下方时,如图①,则S 矩形OEPF =mn =9,S 矩形OAGF =3n .由已知得S =9-3n =92 ,∴n =32 ,m =6,即此时点P 的坐标为P 1(6,32);②当点P 位于点B 上方时,如图②,同理可求得P 2(32 ,6).综上,当S =92 时,P (6,32 )或(32,6)(3)①如图①,当m ≥3时,S =S 矩形OEP 1F -S 矩形OAGF=9-3n =9-27m;②如图②,当0<m <3时,S 矩形OEGC=3m ,则S =S 矩形OEP 2F -S矩形OEGC=9-3m .综上,S =⎩⎪⎨⎪⎧9-27m (m ≥3),9-3m (0<m <3)。

九年级数学: 第21章一元二次方程教学设计

九年级数学: 第21章一元二次方程教学设计

《一元二次方程》教学设计教学课时建议:本小节新授课可分为两学时,其中第一学时主要学习一元二次方程概念及一元二次方程一般式及有关概念;第二课时着重学习一元二次方程根的概念;根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.具体的教学设计如下:一、教学目标知识技能:理解一元二次方程的概念,了解一元二次方程的一般形式ax2+bx+c=0(a≠0),能分清二次项、一次项与常数项等概念.探索一元二次方程的解,培养估算意识和能力.数学思考:通过认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.经历由具体问题抽象出一元二次方程的概念的过程,体会方程的模型思想,培养学生的归纳、分析能力.在探索和交流的活动中,体验与他人合作的重要性,激发学生对数学的热情及用数学的意识.问题解决:经历由具体问题抽象出一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效的数学模型.理解一元二次方程的概念.经历方程解得探索过程,增进对方程解得认识,发展估算意识和能力.情感态度:从生活实际中抽象出数学问题,让学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.通过师生的共同活动,激发学生探求知识的欲望,从而加强学生估算意识和能力的培养.二、重难点分析教学重点:一元二次方程的概念及一般形式.注意a≠0.探索一元二次方程的解,判断方程的解是否为实际问题的解.一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位.通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础.此外,学习一元二次方程对其它学科有重要意义.本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念. 由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.在突出重点时,主要让学生感受方程是刻画现实世界的有效数学模型.让学生真正经历模型化的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.由学生探索交流,分析它们与一元一次方程的差异,从而概括它们的共同特点,归纳出一元二次方程概念.这既给学生提供了一个充分从事数学活动的机会,又体现了学生是数学学习的主人的理念.学生亲身经历了知识的形成过程,不但改变了以往学生死记硬背的学习方式,而且在教学活动中培养了学生自主探索、合作交流等良好的学习习惯.教学难点:一元二次方程的概念及一般形式.注意a≠0.实际问题转化成数学方程.一元二次方程的一般形式ax2+bx+c=0(a≠0)介绍了一元二次方程的项和系数,主要为后面公式法解一元二次方程打下基础.因此应要求学生逐渐熟悉各项的系数,在此会有一部分学生把项和项的系数的关系混淆,应加以强调.另外,应该特别注意一元二次方程中a≠0的条件,引导学生找出a≠0的理由,a≠0是一元二次方程一般形式的重要组成部分.对于任何一个一元二次方程,经过整理,都可以化成一般形式,二次项系数,一次项系数和常数项都是方程在一般形式下定义的,所以求一元二次方程的各项系数时,必须先将方程化为一般形式.第二个难点是找关系列方程,列方程符合学生的认知水平,但一元二次方程却高于学生以往的认知要求,对学生而言,这样的问题具有一定的挑战性,有利于激发学生列方程、建立数学模型的热情,为能积极投入到本堂课的学习中提供了保证.鉴于教材内容是在一元一次方程的基础上学习的,故选用类比方法突破难点,类比一元一次方程的有关知识来学习.通过实际问题所列出的方程,首先引导学生进行观察与思考,并用自己的语言进行描述,然后再组织学生进行交流.抽象出一元二次方程的概念,而不是让学生单纯记忆前人的研究成果,重要的是激发学生创造思维,引导学生去探究、发现结论的方法.这样方能培养出创造性人材,这正是实施创新教育的关键,在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情.有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展.同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标.三、学习者学习特征分析方程是刻画现实世界中数量关系的一个有效的数学模型,随着数学应用日趋广泛,方程的工具作用显得愈发重要.七、八年级学生已经学习了一元一次方程、二元一次方程组、可化为一元一次方程的分式方程等,初步感受了方程的模型作用,并积累了一些利用方程解决实际问题的经验,解决了一些实际问题,但生活中的有关方程的模型并不都是线性的,另一种方程——一元二次方程在现实生活中具有同样广泛的应用.所以本节课应注意力求贴近学生的生活实际,又要关注数学本身的要求,让学生体会到一元二次方程是数学内部发展和实际问题解决的必然结果.因此在整个教学过程中教师应将一些具体问题及其解决贯穿其中,以给学生一个整体的感觉.四、教学过程(一)创设情境,引入新课(多媒体动画引入)用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.(二)合作交流,探索新知1.观察图形,引入概念:引入1.现有一块长100cm,宽50cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为3600cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-75x+350=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.引入2.(视频)要组织一次排球比赛,参赛的每两个对之间都要比赛一场,根据场地和时间等条件.赛程计划安排7天.每天安排4场比赛.比赛组织者应邀请多少个队参赛?教师启发学生设未知数、列方程,经整理得到方程x2-x=56(设计意图:本环节通过两个现实生活问题,既让学生体会到了一元二次方程是数学内部发展和实际问题解决的必然结果,也让学生意识到了已有的方程知识已经不能满足学习的需要,必须进一步学习新知,使学生自然产生学习新知的心向.上述两个方程有什么共同特点?一元二次方程的概念让学生根据上面所找出的特点,描述什么样的方程是一元二次方程.(学生可以在讨论、交流的基础上自由发言;绝大部分学生能够比较准确的描述出一元二次方程的定义,部分学生没有说准确,在其他学生带动下也能够说出)在学生充分交流的基础上得到一元二次方程的定义:像这样的等号两边都是整式,只含有一个未知数(一元).并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式.一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式ax 2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.一般式中的“a ≠0”为什么?如果a =0,则ax 2+bx+c =0就不是一元二次方程,由此加深对一元二次方程的概念的理解.把方程3x (x-1)=2(x +1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式3. 一元二次方程根的概念学生活动:请同学独立完成下列问题.问题1.如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m ,那么梯子的底端距墙多少米?设梯子底端距墙为xm ,那么,根据题意,可得方程为___________.整理,得_________.列表:问题2.一个面积为设苗圃的宽为xm ,则长为_______m .根据题意,得________.整理,得________.列表:提问:(1)问题1中一元二次方程的解是多少?问题2•中一元二次方程的解是多少?(2)如果抛开实际问题,问题1中还有其它解吗?问题2呢?老师点评:(1)问题1中x=6是x 2-36=0的解,问题2中,x=10是x 2+2x-120=0的解.(2)如果抛开实际问题,问题(1)中还有x=-6的解;问题2中还有x=-12的解. 我们称:一元二次方程的解叫做一元二次方程的根.回过头来看:x 2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.1084.归纳学习结果:选择利用以下文本资源:一元二次方程的概念一元二次方程的一般形式一元二次方程的根对学生感兴趣的问题进行适当扩展.(三)应用新知,体验成功利用资源库中的“典型例题”进行教学.(四)课堂小结,体验收获(PPT 显示)这堂课你学会了哪些知识?有何体会?(学生小结)1.一元二次方程的概念;2.一元二次方程的一般形式;3.一元二次方程的根.(五)拓展延伸,布置作业(1):下列方程是一元二次方程的是?①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-5x=0(2)a 满足什么条件时,关于x 的方程a (x 2+x )x-(x+1)是一元二次方程?(3) 如果x=1是方程ax 2+bx+3=0的一个根,求(a-b )2+4ab 的值.五、学习评价(一)选择题1.下列方程不是整式方程的是( ) (A)121222=-x x . (B)0.2x 2-0.4x 3 =0. (C)3512=+x . (D )212=+x x . 2.在下列方程中,一元二次方程的个数是( )①3x 2+7=0,②ax 2+bx+c=0,③(x+2)(x-3)=x 2-1,④x 2-x 5+4=0,⑤x 2-(2+1)x+2=0,⑥3x 2-x4+6=0 (A)1个. (B)2个. (C)3个. (D )4个.3.关于x 的一元二次方程3x 2=5x-2的二次项系数,一次项和常数项,下列说法完全正确的是( )(A)3,-5,-2 . (B)3,-5x,2 .(C)3,5x,-2 . (D )3,-5,2.4.一元二次方程-5x 2+x-3=0,把二次项系数变为正数,且使方程的根不变的是( )(A)5x 2-x+3=0 . (B)5x 2-x-3=0.(C)5x 2+x-3=0 . (D )5x 2+x+3=0.5.已知关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0的一个根为0,则m 的值为( )(A)1. (B)-3. (C)1和-3. (D )不等于1的任何数.6.已知2y 2+y-2的值为3,则4y 2+2y+1值为( )(A)10. (B)11 . (C)10或11 . (D )3或1.7.若一元二次方程ax 2+bx+c=0中,二次项系数,一次项系数,常数项之和为0,则方程必有一根是( )(A)0 . (B)1. (C)-1 . (D )±1.8.若b(b ≠0)是方程x 2+cx+b=0的根,则b+c 的值为( )(A)1. (B)-1. (C)2. (D )-2.9.如图所示,在正方形的铁片上,截去2cm 宽的一个长方形,余下的面积是48cm 2,则原来的正方形铁片的面积是( )(A)81cm 2 . (B)64cm 2 . (C)16cm 2 . (D )8cm 2. 10.方程(m+2)m x +3mx+1=0是关于x 的一元二次方程,则( ) (A)m=±2 . (B)m=2. (C)m=-2. (D )m ≠±2.(二)填空题11.一元二次方程的一般形式是 ,其中 是二次项,是一次项, 是常数项.12.若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是 .13.方程4x 2=3x-2+1的二次项是 ,一次项是 ,常数项是 . 14.已知关于x 的方程3)12(2=++-x m mx m 是一元二次方程,则m= .15.已知关于x 的方程x 2-(2m-1)x-(2m-1)=0有一根为0,则m= .16.关于x 的一元二次方程(a-1)x 2+a 2-1=0有一根为0,则a= .17.已知关于x 的方程ax 2+bx+c=0有一根为1,一根为-1,则a+b+c= ,a-b+c= .18.小王在超市用24元买了某种品牌的牛奶若干盆,过一段时间再去超市,发现这种牛奶进行让利销售,每盒让利0.4元,他用24元钱比上次多买2盒,若设这种牛奶原价为每盒x元,则可列方程为 ,若设后来买了y 盒,则依题意可列方程为19.某农场的粮食产量在两年内从3000吨增加到3630吨,若设平均每年的增长率为x,则所列方程为 .20.已知方程(x+a)(x-3)=0和方程x 2-2x-3=0的解完全相同,则a= .(三)解答题21.关于x 的方程(a-b)x 2+ax+b=0在什么条件下是一元一次方程?在什么条件下是一元二次方程?22.关于x 的方程(2m 2+m-3)x m+1+5x=13能是一元二次方程吗?为什么?23.当m 为何值时,关于x 的方程 (m 2-9)x 2+(m-3)x+2m=0,(1)是一元一次方程,(2)是一元二次方程.24.已知关于x 的方程(n-2)43-n x +3nx+3=0是一元二次方程,试求n 的值并写出这个一元二次方程.答案与提示(一)、选择题:1.D 2.C 3.B 4.A 5.B 6.B 7.B 8.B 9.B 10.B(二)、填空题:11.ax 2+bx+c=0(a ≠0) ax 2 bx c 12.k ≠3 13.4x 2,-3x,12- 14.m=4 15.21 16.a=-1 17.0,0 18.2244.024=--xx 4.024224=--y y 19.3000(1+x)2=3630 20.1(三)、解答题:21.要使此方程为一元一次方程,则:a-b=0,a ≠0 ∴a=b ≠0 要使此方程为一元二次方程,则必须a-b ≠0,即a ≠b.22.原方程化为:(2m 2-m-3)1+m x +5x-13=0 要使此方程为一元二次方程,则必须m+1=2,解得m=1,但当m=1时,二次项系数2m 2+m-3=2+1-3=0故此方程不可能为一元二次方程.23. (1)当m 2-9=0且m-3≠0时,此方程为一元二次方程,即m=-3时,此方程为一元一次方程.(2)当m 2-9≠0时,即m ≠±3时,此方程为一元二次方程.24.要使这个方程是一元二次方程,则必须∣3n-4∣=2,且n-2≠0,由∣3n-4∣=2得3n-4=2或-2 ∴n=2或32 由n-2≠0得n ≠2 ∴n=32 当n=32时,此方程是一元二次方程,此时方程为:032342=++-x x .。

人教版初中数学《第21章一元二次方程》单元教材教学分析

人教版初中数学《第21章一元二次方程》单元教材教学分析
学生思想教育和行为习惯的培养及学习方法
1.为学生构建研究一元二次方程解法的连贯过程
学生已经具备解一元二次方程的基本思想—化归,即把方程转化为一次方程,但在面对解一元二次方程的任务时,不知该用什么解法,因此,在教学中应加强类比、从特殊到一般等思想方法的引导。
2.加强数学抽象能力和数学建模能力的建构
许多现实问题的数量关系都可以抽象为一元二次方程,与一元一次方程相比,一元二次方程有更广泛的应用,这可以通过建立和求解一元二次方程模型的完整过程,即从具体情境中抽象出数学问题建立方程表示数量关系,从而把模型思想、应用意识的培养落在实处。
人教版初中数学《第21章一元二次方程》单元教材教学分析
学段及学科
初中数学
教材版本
人教版
单元名称
《第21章一元二次方程是刻画数量关系的重要数学模型,一元二次方程的解法和实际应用是初中阶段的核心内容。并学习利用一元二次方程模型解决简单的实际问题,为后续的二次函数等打下学习基础。
单元目标
会用直接开平方法、配方法、公式法、分解因式法解一元二次方程,掌握根的判别式的应用,以及能够用一元二次方程解决有关实际问题。
重点、难点与关键
1.重点:解一元二次方程的基本思路和具体解法
2.难点:建立一元二次方程模型解决实际问题
教学方法和手段的设计
第一节课采用问题和情景引入,如“什么是一元二次方程,你能举个例子吗?”,对于解法“基本思路:通过恒等变形,把方程逐步转化为x=a的形式”
课时安排
第一课时:一元二次方程
第二课时:解一元二次方程—直接开平方法
第三课时:解一元二次方程—配方法(一)
第四课时:解一元二次方程—配方法(二)
第五课时:解一元二次方程—公式法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)解方程
三、小结:
(1)说说你对解一元一次方程、二元一次方程组、
一元二次方程的认识
(消元、降次、化归的思想)
(2)三种方法(配方法、公式法、因式分解法)的联系与区别:
联系①降次,即它的解题的基本思想是:将二次方程化为一次方程,即降次.
②公式法是由配方法推导而得到.
③配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程.
学科:________备课教师:___________授课时间:_____年_____月____日
教学内容
一元二次方程的解法复习课





6


教学目标
知识目标
能掌握解一元二次方程的四种方法以及各种解法的要点
能力目标
会根据不同的方程特点选用恰当的方法,使解题过程简单合理
情感态度与价值观
通过揭示各种解法的本质联系,渗透降次化归的思想方法,体现数学的本真特点。
区别:①配方法要先配方,再开方求根.
②公式法直接利用公式求根.
③因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
四、作业:
用适当的方法解下列方程:
(1) (2)
(3) (4)
修改、调整
效果
反思
补救
二、典例讲解:
例题1:用适当的方法解方程:
(1) (2)
(3)
视 为一个整体,然后设 ,原方程可化为 .解得 。当 时, 即 , .当 时, 即 。原方程的解为
解答问题:(1)填空:在由原方程得到 的过程中利用_______法,达到了降次的目的,体现_______的数学思想。
如何突破教学重点难点
会根据不同的方程特点选用恰当的方法,揭示各种解法的本质联
系,从中渗透降次化归的思想。
独立新备
修改
材料出处
教学过程
一.引入:
1.用不同的方法解一元二次方程:
(配方法,公式法,因式分解法)
2.师生小结:解一元二次方程优选方法的要领:
(1)若方程通过适当变形可化为 ( ≥0)时,用____________法解方程较为简便;
(2)若方程通过好、适当变形可化为 时,用__________法解方程较简便;
(3)对于一次项系数较小而常数项较大的一元二次方程一般选用____________________;
(4)对于任意一个一元二次方程如果有解,都可以用___________和_______________.
(一元二次方程解法的选择顺序一般为因式分解法、公式法,若没有特殊说明一般不采用配方法。其中,公式法是一般方法,适用于解所有的一元二次方程,因式分解法是特殊方法,在解符合方程左边易因式分解,右边为0的特点的一元二次方程时,非常简便。)
相关文档
最新文档