高考数学大一轮复习第八章平面解析几何课时作业61理新人教A版
2022版新教材高考数学一轮复习第八章平面解析几何8.6双曲线学案新人教A版202105192134
8.6双曲线必备知识预案自诊知识梳理1.双曲线的定义平面内与两个定点F1,F2的等于非零常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做,两焦点间的距离叫做.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数.(1)若a c,则点M的轨迹是双曲线;(2)若a c,则点M的轨迹是两条射线;(3)若a c,则点M不存在.2.标准方程(1)中心在坐标原点,焦点在x轴上的双曲线的标准方程为x2a2−y2b2=1(a>0,b>0);(2)中心在坐标原点,焦点在y轴上的双曲线的标准方程为y2a2−x2b2=1(a>0,b>0).3.双曲线的性质图形续表2 2−y2b2=1(a>0,b>0)y2a2−x2b2=1(a>0,b>1.过双曲线x2a 2−y 2b 2=1(a>0,b>0)上一点M (x 0,y 0)的切线方程为x 0xa 2−y 0y b 2=1.2.双曲线x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,点P (x 0,y 0)为双曲线上任意一点,且不与点F 1,F 2共线,∠F 1PF 2=θ,则△F 1PF 2的面积为b 2tanθ2.3.若点P (x 0,y 0)在双曲线x 2a2−y 2b 2=1(a>0,b>0)内,则被点P 所平分的中点弦的方程为x 0x a 2−y 0y b 2=x 02a 2−y 02b 2.4.双曲线中点弦的斜率公式设点M (x 0,y 0)为双曲线x 2a 2−y 2b2=1(a>0,b>0)的弦AB (不平行y 轴)的中点,则k AB ·k OM =b 2a2,即k AB =b 2x0a 2y 0.5.双曲线的焦半径公式双曲线x 2a 2−y 2b 2=1(a>0,b>0)的焦点为F 1(-c ,0),F 2(c ,0),当点M (x 0,y 0)在双曲线右支上时,|MF 1|=ex 0+a ,|MF 2|=ex 0-a ;当点M (x 0,y 0)在双曲线左支上时,|MF 1|=-ex 0-a ,|MF 2|=-ex 0+a.6.若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a+c ,|PF 2|min =c-a.7.双曲线的同支的焦点弦中最短的为通径(过焦点且垂直于实轴所在直线的弦),其长为2b 2a;异支的弦中最短的为实轴,其长为2a.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.()(2)双曲线x2m2−y2n2=λ(m>0,n>0,λ≠0)的渐近线方程是x2m2−y2n2=0,即xm±yn=0.()(3)关于x,y的方程x2m −y2n=1(mn>0)表示焦点在x轴上的双曲线.()(4)与双曲线x2m −y2n=1(其中mn>0)共渐近线的双曲线方程可设为x2m−y2n=λ(λ≠0).()(5)若双曲线x2a2−y2b2=1(a>0,b>0)与x2b2−y2a2=1(a>0,b>0)的离心率分别是e1,e2,则1e12+1e22=1.()2.“m>0”是“方程x2m −y2m+2=1表示双曲线”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知双曲线C:x2a2−y2b2=1(a>0,b>0)过点(√2,√3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C的标准方程为()A.x212-y2=1 B.x29−y23=1C.x2-y23=1 D.x223−y232=14.(2019北京,5)已知双曲线x2a2-y2=1(a>0)的离心率是√5,则a=() A.√6 B.4C.2D.125.若双曲线x2a2−y2b2=1(a>0,b>0)的一条渐近线经过点(3,-4),则此双曲线的离心率为.关键能力学案突破考点双曲线的定义【例1】(1)已知点F2为双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点,直线y=kx交双曲线C于A,B两点,若∠AF2B=2π3,S△AF2B=2√3,则双曲线C的虚轴长为.(2)已知双曲线E :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,过点F 1的直线l 与双曲线的左、右两支分别交于A ,B 两点.若△ABF 2的内切圆与边AB ,BF 2,AF 2分别相切于点M ,N ,P ,且|AP|=4,则a 的值为 .解题心得双曲线定义的应用主要有两个方面:一是判定平面内动点轨迹是否为双曲线,进而求出曲线方程;二是在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.对点训练1(1)(2020河南非凡联盟4月联考)已知双曲线C :x 2a 2−y 29=1(a>0)的左、右焦点分别为F 1,F 2,一条渐近线与直线4x+3y=0垂直,点M 在双曲线C 上,且|MF 2|=6,则|MF 1|=( )A.2或14B.2C.14D.2或10(2)(2020河北廊坊省级示范学校联考)设F 1,F 2分别为双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,过点F 1的直线交双曲线C 的左支于A ,B 两点,且|AF 2|=3,|BF 2|=5,|AB|=4,则△BF 1F 2的面积为 .考点双曲线的标准方程【例2】(1)已知动圆M 与圆C 1:(x+4)2+y 2=2外切,与圆C 2:(x-4)2+y 2=2内切,则动圆圆心M 的轨迹方程为( )A.x 22−y 214=1(x ≥√2) B.x 22−y 214=1(x ≤-√2) C.x 22+y 214=1(x ≥√2) D.x 22+y 214=1(x ≤-√2)(2)在平面直角坐标系中,经过点P (2√2,-√2),渐近线方程为y=±√2x 的双曲线的标准方程为( )A.x 24−y 22=1 B.x 27−y 214=1C.x 23−y 26=1D.y 214−x 27=1(3)已知双曲线x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,过点F 2且斜率为247的直线与双曲线在第一象限的交点为A ,若(F 2F 1⃗⃗⃗⃗⃗⃗⃗⃗ +F 2A ⃗⃗⃗⃗⃗⃗⃗ )·F 1A ⃗⃗⃗⃗⃗⃗⃗ =0,则双曲线的标准方程可能为( ) A.x 24−y 23=1B.x 23−y 24=1C.x 216−y 29=1D.x 29−y 216=1解题心得1.求双曲线标准方程的答题模板2.利用待定系数法求双曲线方程的常用方法 (1)与双曲线x 2a 2−y 2b 2=1共渐近线的方程可设为x 2a 2−y 2b 2=λ(λ≠0);(2)若双曲线的渐近线方程为y=±bax ,则双曲线的方程可设为x 2a2−y 2b 2=λ(λ≠0);(3)若双曲线过两个已知点,则双曲线的方程可设为x 2m +y 2n=1(mn<0)或mx 2+ny 2=1(mn<0).对点训练2(1)(2020河南安阳模拟)过双曲线x 2a 2−y 2b 2=1(a>0,b>0)的右焦点F (c ,0)作其渐近线y=√32x 的垂线,垂足为M ,若S △OMF =4√3(O 为坐标原点),则双曲线的标准方程为( )A.x 24−y 23=1 B.x 28−y 26=1 C.x 216−y 212=1D.x 232−y 224=1(2)过双曲线C :x 2a 2−y 2b 2=1的右顶点作x 轴的垂线,与双曲线C 的一条渐近线相交于点A.若以双曲线C 的右焦点F 为圆心,4为半径的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24−y 212=1 B.x 27−y 29=1 C.x 28−y 28=1 D.x 212−y 24=1(3)经过点P (3,2√7),Q (-6√2,7)的双曲线的标准方程为 .考点双曲线的几何性质(多考向探究)考向1 求双曲线的渐近线方程【例3】(2020福建厦门一模)已知双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的一个焦点为F ,点A ,B 是双曲线C 的一条渐近线上关于原点对称的两点,以AB 为直径的圆过点F 且交双曲线C 的左支于M ,N 两点,若|MN|=2,△ABF 的面积为8,则双曲线C 的渐近线方程为( )A.y=±√3xB.y=±√33x C.y=±2xD.y=±12x解题心得求双曲线的渐近线方程的方法依据题设条件,求出双曲线方程x 2a 2−y 2b 2=1(a>0,b>0)中a ,b 的值或a 与b 的比值,进而得出双曲线的渐近线方程.对点训练3(2020山东德州高三第二次模拟)已知椭圆x 2a 2+y 2b 2=1(a>b>0)与双曲线x 2a 2−y 2b 2=12的焦点相同,则双曲线渐近线方程为( )A.y=±√33x B.y=±√3x C.y=±√22xD.y=±√2x考向2 求双曲线的离心率【例4】(2020广东汕尾一模)已知双曲线C :x 2a 2−y 2b 2=1(a>0,b>0),F 为双曲线C 的右焦点,A 为双曲线C 的右顶点,过点F 作x 轴的垂线,交双曲线C 于M ,N 两点.若tan ∠MAN=-34,则双曲线C 的离心率为( )A.3B.2C.43D.√2解题心得求双曲线离心率的值或取值范围的方法 (1)求a ,b ,c 的值,由e=ca =√1+b 2a 2直接求出e.(2)列出含有a ,b ,c 的齐次方程(或不等式),借助b 2=c 2-a 2消去b ,然后转化为关于e 的方程(或不等式)求解.对点训练4(2019全国2,理11)设F 为双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ|=|OF|,则C 的离心率为( )A.√2B.√3C.2D.√5考向3 与双曲线有关的取值范围问题【例5】已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是双曲线C 的两个焦点,若MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ <0,则y 0的取值范围是( )A.(-√33,√33) B.(-√36,√36) C.(-2√23,2√23) D.(-2√33,2√33)解题心得与双曲线有关的取值范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接转化为不等式求解.(2)若条件中没有明显的不等关系,则要善于发现隐含的不等关系来解决. 对点训练5已知焦点在x 轴上的双曲线x 28-m+y 24-m=1,它的焦点到渐近线的距离的取值范围是 .考点双曲线与圆的综合问题【例6】已知点P 为双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)上一点,F 1,F 2为双曲线C 的左、右焦点,若|PF 1|=|F 1F 2|,且直线PF 2与以双曲线C 的实轴为直径的圆相切,则双曲线C 的渐近线方程为( )A.y=±43x B.y=±34xC.y=±35xD.y=±53x对点训练6过双曲线x 2a 2−y 2b 2=1(a>0,b>0)的左焦点F 作圆O :x 2+y 2=a 2的两条切线,切点为A ,B ,双曲线的左顶点为C ,若∠ACB=120°,则双曲线的渐近线方程为( )A.y=±√3xB.y=±√33x C.y=±√2x D.y=±√22x8.6 双曲线 必备知识·预案自诊知识梳理1.距离的差的绝对值 双曲线的焦点 双曲线的焦距 (1)< (2)= (3)> 3.坐标轴 原点 (-a ,0) (a ,0) (0,-a )(0,a)a2+b22a2b考点自诊1.(1)×(2)√(3)×(4)√(5)√2.A由“方程x2m −y2m+2=1表示双曲线”得m(m+2)>0,即m>0或m<-2,又“m>0”是“m>0或m<-2”的充分不必要条件,故“m>0”是“方程x 2m −y2m+2=1表示双曲线”的充分不必要条件.故选A.3.C由双曲线C:x2a2−y2b2=1(a>0,b>0)过点(√2,√3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,可得{2a2-3b2=1,b a =√3,解得{a=1,b=√3.故双曲线C的标准方程为x2-y23=1.4.D∵双曲线的离心率e=ca =√5,c=√a2+b2,∴√a2+1a=√5,解得a=12.故选D.5.5 3由题意知直线y=-bax过点(3,-4),所以3ba=4,即ba=43,所以e=ca=√1+b2a2=√1+169=53.关键能力·学案突破例1(1)2√2(2)2(1)设双曲线C的左焦点为F1,连接AF1,BF1,由对称性可知四边形AF1BF2为平行四边形,因为∠AF2B=2π3,S△AF2B=2√3,所以S△AF1F2=2√3,∠F1AF2=π3.设|AF1|=r1,|AF2|=r2,则4c2=r12+r22-2r1r2cosπ3,又|r1-r2|=2a,故r1r2=4b2.又S△AF1F2=12r1r2sinπ3=2√3,所以b2=2,所以该双曲线的虚轴长为2√2.(2)由题意知|BM|=|BN|,|PF2|=|NF2|,|AM|=|AP|=4.根据双曲线的定义,知|BF1|-|BF2|=|MF1|-|NF2|=2a,|AF2|-|AF1|=2a,则|AF1|=|AF2|-2a,所以|BF1|-|BF2|=|AM|+|AF1|-|NF2|=|AM|+|AP|+|PF2|-2a-|NF2|=8-2a=2a,所以a=2.对点训练1(1)C(2)92(1)由题意知3a=34,故a=4,则c=5.由|MF2|=6<a+c=9,知点M在双曲线C的右支上.由双曲线的定义知|MF1|-|MF2|=2a=8,所以|MF1|=14.(2)因为|AF2|=3,|BF2|=5,|AF2|-|AF1|=2a,|BF2|-|BF1|=2a,所以|AF2|+|BF2|-|AB|=3+5-4=4=4a,所以a=1,所以|BF1|=3.又|AF2|2+|AB|2=|BF2|2,所以∠F2AB=90°,所以S△BF1F2=12|BF1||AF2|=12×3×3=92.例2(1)A(2)B(3)D(1)设动圆M的半径为r,由题意可得|MC1|=r+√2,|MC2|=r-√2,|C1C2|=8,所以|MC1|-|MC2|=2√2<|C1C2|,所以由双曲线的定义可知动点M在以C1(-4,0),C2(4,0)为焦点,实轴长为2√2的双曲线的右支上,所以a=√2,c=4,所以b2=16-2=14,故动圆圆心M的轨迹方程为x22−y214=1(x≥√2).(2)因为双曲线的渐近线方程为y=±√2x ,所以可设所求双曲线的方程为2x 2-y 2=k (k ≠0).又点P (2√2,-√2)在双曲线上,所以k=16-2=14,所以双曲线的方程为2x 2-y 2=14,所以双曲线的标准方程为x 27−y 214=1.故选B .(3)由(F 2F 1⃗⃗⃗⃗⃗⃗⃗⃗ +F 2A ⃗⃗⃗⃗⃗⃗⃗ )·F 1A ⃗⃗⃗⃗⃗⃗⃗ =0,可知(F 2F 1⃗⃗⃗⃗⃗⃗⃗⃗ +F 2A ⃗⃗⃗⃗⃗⃗⃗ )·(F 2A ⃗⃗⃗⃗⃗⃗⃗ −F 2F 1⃗⃗⃗⃗⃗⃗⃗⃗ )=0,即|F 2A ⃗⃗⃗⃗⃗⃗⃗ |2-|F 2F 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |2=0,所以|F 2A|=|F 1F 2|=2c.又AF 2的斜率为247,所以cos ∠AF 2F 1=-725.在△AF 1F 2中,由余弦定理得|AF 1|=165c.由双曲线的定义得165c-2c=2a ,即c a=53,所以a ∶b=3∶4.所以此双曲线的标准方程可能为x 29−y 216=1.故选D .对点训练2(1)C (2)A (3)y 225−x 275=1(1)由题意易得|FM|=b ,又|OF|=c ,FM ⊥OM ,所以|OM|=√|OF |2-|FM |2=a.联立{ba =√32,12ab =4√3,解得{a =4,b =2√3, 所以双曲线的标准方程为x 216−y 212=1.故选C .(2)不妨设渐近线y=ba x 与直线x=a 交于点A ,则点A (a ,b ).依题意,c=4,√(4-a )2+b 2=4,a 2+b 2=c 2=16,解得a 2=4,b 2=12,故双曲线的标准方程为F 24−y 212=1.(3)设双曲线的方程为mx 2+ny 2=1(mn<0).因为所求双曲线经过点P (3,2√7),Q (-6√2,7), 所以{9m +28n =1,72m +49n =1,解得{m =-175,n =125.故所求双曲线的方程为y 225−x 275=1.例3B 不妨设点A ,B 在直线y=b a x 上,点F (c ,0),则设点A (x 0,b a x 0),B -x 0,-bax 0.因为以AB 为直径的圆过点F ,所以AF ⃗⃗⃗⃗⃗ ⊥BF ⃗⃗⃗⃗⃗ ,所以AF ⃗⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗⃗ =c 2-x 02−b 2a2x 02=c 2-c 2a2x 02=0,所以x 0=±a.所以S △ABF =12·c·|2bax 0|=bc=8.由{x 2+y 2=c 2,x 2a 2-y 2b 2=1,得y=±b 2c ,则|MN|=2b 2F=2,即b 2=c.所以b=2,c=4,所以a=√c 2-b 2=2√3.所以双曲线C 的渐近线方程为y=±√33x.故选B .对点训练3A 由椭圆x 2a 2+y 2b 2=1(a>b>0)与双曲线x 2a 2−y 2b 2=12,即x 2a 22−y 2b 22=1的焦点相同,可得a 2-b 2=a 22+b 22,即a 2=3b 2,所以ba =√33.所以双曲线的渐近线方程为y=±√33x.故选A .例4B 由题意可知tan ∠MAN=2tan∠MAF1-tan 2∠MAF =-34,解得tan ∠MAF=3.令x=c ,则y=±b 2a , 可得tan ∠MAF=b 2ac -a =c 2-a 2ac -a=c+a a=3,则e=ca =2.故选B .对点训练4A 如图,设PQ 与x 轴交于点A ,由对称性可知PQ ⊥x 轴.∵|PQ|=|OF|=c ,∴|PA|=c2.∴PA 为以OF 为直径的圆的半径,A 为圆心,∴|OA|=c2. ∴Pc 2,c 2.又点P 在圆x 2+y 2=a 2上,∴c24+c 24=a 2,即c22=a 2,∴e 2=c2a 2=2,∴e=√2.故选A .例5A 因为点F 1(-√3,0),F 2(√3,0),x 022−y 02=1,所以MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =(-√3-x 0,-y 0)·(√3-x 0,-y 0)=x 02+y 02-3<0,即3y 02-1<0,解得-√33<y 0<√33.对点训练5(0,2) 因为双曲线x 28-m+y 24-m =1的焦点在x 轴上,所以{8-m >0,4-m <0,解得4<m<8.所以焦点到渐近线的距离d=√m -4∈(0,2).例6A 如图.由已知得|PF1|=|F1F2|=2c.因为直线PF2与以双曲线C的实轴为直径的圆相切,设切点为M,所以|OM|=a,OM⊥PF2,所以|MF2|=√c2-a2=b.由双曲线的定义可得|PF2|-|PF1|=2a,所以|PF2|=2a+2c,所以cos∠OF2M=bc =(2c)2+(2a+2c)2-(2c)22×2c×(2a+2c),整理得c=2b-a.又c2=a2+b2,解得ba=43.所以双曲线C的渐近线方程为y=±43x.故选A.对点训练6A如图,连接OA,OB.设双曲线x 2a2−y2b2=1(a>0,b>0)的焦距为2c(c>0),则点C(-a,0),F(-c,0).由双曲线和圆的对称性,可知点A与点B关于x轴对称,则∠ACO=∠BCO=12∠ACB=12×120°=60°.因为|OA|=|OC|=a,所以△ACO为等边三角形,所以∠AOC=60°.因为FA与圆O相切于点A,所以OA⊥FA.在Rt△AOF中,因为∠AOC=60°,所以|OF|=2|OA|,即c=2a,所以b=√c2-a2=√(2a)2-a2=√3a.所以双曲线x 2a2−y2b2=1(a>0,b>0)的渐近线方程为y=±√3x.。
高考数学(理)一轮复习教师用书: 第八章 平面解析几何 Word版含解析
第1课时直线及其方程1.直线的倾斜角(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0°.(2)范围:直线l倾斜角的范围是0,π).2.直线的斜率(1)定义:若直线的倾斜角θ不是90°,则斜率k=tan_θ.(2)计算公式:若由A(x1,y1),B(x2,y2)确定的直线不垂直于x轴,则k=y2-y1 x2-x1.3.直线方程的五种形式4.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)坐标平面内的任何一条直线均有倾斜角与斜率.(×)(2)过点M(a,b),N(b,a)(a≠b)的直线的倾斜角是45°.(×)(3)倾斜角越大,斜率越大.(×)(4)经过点P(x0,y0)的直线都可以用方程y-y0=k·(x-x0)表示.(×)(5)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.(√)(6)直线的截距即是直线与坐标轴的交点到原点的距离.(×)(7)若直线在x 轴,y 轴上的截距分别为m ,n ,则方程可记为x m +yn =1.(×)(8)直线Ax +By +C =0表示斜率为-A B ,在y 轴上的截距为-CB 的直线.(×) (9)直线y =kx +3表示过定点(0,3)的所有直线.(×) (10)直线y =3x +b 表示斜率为3的所有直线.(√)考点一 直线的倾斜角与斜率例1] (1)若直线l PQ 的中点坐标为(1,-1),则直线l 的斜率为( ) A.13B .-13 C .-32D.23解析:设P (x,1),Q (7,y ),则x +72=1,y +12=-1,∴x =-5,y =-3,即P (-5,1),Q (7,-3),故直线l 的斜率k =-3-17+5=-13.答案:B(2)直线x +(a 2+1)y +1=0(a ∈R )的倾斜角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4B.⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,πD.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π 第八章 平面解析几何大一轮复习 数学(理)解析:由直线x +(a 2+1)y +1=0, 得直线的斜率k =-1a 2+1∈-1,0),设直线的倾斜角为θ,则-1≤tan θ<0. 因此3π4≤θ<π.答案:B(3)已知点A(2,-3),B(-3,-2),直线l过点P(1,1)且与线段AB有交点,则直线l的斜率k的取值范围为________.解析:如图,k P A=1+31-2=-4,k PB=1+21+3=34.要使直线l与线段AB有交点,则有k≥34或k≤-4.答案:k≤-4或k≥3 4方法引航] 1.求倾斜角α的取值范围的一般步骤(1)求出斜率k=tan α的取值范围;(2)利用正切函数的单调性,借助图象,数形结合,确定倾斜角α的取值范围.2.求斜率的常用方法(1)已知直线上两点时,由斜率公式k=y2-y1x2-x1(x1≠x2)来求斜率.(2)已知倾斜角α或α的三角函数值时,由k=tan α(α≠90°)来求斜率.(3)方程为Ax+By+C=0(B≠0)的直线的斜率为k=-A B.1.若将本例(1)改为:直线y=1,x=7与坐标轴的交点分别为P、Q,求直线PQ 的斜率.解:由题意可知P(0,1),Q(7,0),∴k PQ=1-00-7=-17.2.若将本例(2)的直线改为(a2+1)x+y+1=0,其倾斜角的范围如何?解:因直线的斜率k=-a2-1≤-1设直线的倾斜角为α,∴tan α≤-1,α∈(0,π), ∴α∈⎝ ⎛⎦⎥⎤π2,34π.3.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为( ) A.3B .- 3 C .0 D .1+ 3解析:直线PQ 的斜率为-3,则直线PQ 的倾斜角为120°,所以直线的倾斜角为60°,tan 60°= 3. 答案:A考点二 求直线方程例2] 求适合下列条件的直线方程.(1)经过点A (3,4),且在两坐标轴上截距相等的直线方程是________. 解析:设直线在x ,y 轴上的截距均为a . ①若a =0,即直线过点(0,0)及(3,4), ∴直线的方程为y =43x ,即4x -3y =0. ②若a ≠0,则设所求直线的方程为x a +ya =1, 又点(3,4)在直线上, ∴3a +4a =1,∴a =7, ∴直线的方程为x +y -7=0. 答案:4x -3y =0或x +y -7=0(2)一条直线经过点A (2,-3),并且它的倾斜角等于直线y =13x 的倾斜角的2倍,则这条直线的一般式方程是________. 解析:∵直线y =13x 的倾斜角α=30°,所以所求直线的倾斜角为60°, 斜率k =tan 60°= 3. 又该直线过点A (2,-3),故所求直线为y -(-3)=3(x -2), 即3x -y -33=0. 答案:3x -y -33=0(3)过点(-3,4),且在两坐标轴上的截距之和为12的直线方程为________. 解析:由题设知截距不为0,设直线方程为x a +y 12-a=1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. 答案:4x -y +16=0或x +3y -9=0(4)一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.解:设直线的斜率为k (k ≠0), 则直线方程为y -2=k (x +2), 由x =0知y =2k +2. 由y =0知x =-2k -2k . 由12|2k +2|⎪⎪⎪⎪⎪⎪-2k -2k =1. 解得k =-12或k =-2.故直线方程为x +2y -2=0或2x +y +2=0. 答案:x +2y -2=0或2x +y +2=0 方法引航] 求直线方程的两种方法(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应注意各种形式的方程的适用范围,必要时要分类讨论.(2)待定系数法,具体步骤为:①设所求直线方程的某种形式;②由条件建立所求参数方程(组);③解这个方程(组)求出参数;④把参数的值代入所设直线方程.1.将本例(1)改为:求经过点A(-5,2),且在x轴上的截距等于在y轴上截距的2倍的直线方程.解:当直线不过原点时,设所求直线方程为x2a+ya=1,将(-5,2)代入所设方程,解得a=-1 2,此时,直线方程为x+2y+1=0.当直线过原点时,斜率k=-2 5,直线方程为y=-25x,即2x+5y=0.故所求直线方程为x+2y+1=0或2x+5y=0.2.将本例(2)改为:经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.求该直线方程.解:由已知:设直线y=3x的倾斜角为α,则所求直线的倾斜角为2α.∵tan α=3,∴tan 2α=2tan α1-tan2α=-34.又直线经过点(-1,-3),∴直线方程为y+3=-34(x+1),即3x+4y+15=0.3.将本例(4)改为:直线l 的斜率为16,且与两坐标轴围成的三角形面积为3.求l 的方程.解:设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.考点三 直线方程的应用例3] (1)已知曲线y =x 4-3ln x 的一条切线的斜率为-12,则切点的横坐标为( ) A .3 B .2 C .1 D.12解析:设切点坐标为(x 0,y 0),且x 0>0, ∵y ′=12x -3x ,∴k =12x 0-3x 0=-12,∴x 0=2.答案:B(2)若ab >0,且A (a,0)、B (0,b )、C (-2,-2)三点共线,则ab 的最小值为________. 解析:根据A (a,0)、B (0,b )确定直线的方程为x a +yb =1,又C (-2,-2)在该直线上,故-2a +-2b =1,所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16. 答案:16(3)为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪(如图),另外△EF A 内部有一文物保护区不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解:如图所示,建立平面直角坐标系, 则E (30,0)、F (0,20),∴直线EF 的方程为x 30+y20=1(0≤x ≤30).易知当矩形草坪的一个顶点在EF 上时,可取最大值, 在线段EF 上取点P (m ,n ),作PQ ⊥BC 于点Q , PR ⊥CD 于点R ,设矩形PQCR 的面积为S , 则S =|PQ |·|PR | =(100-m )(80-n ). 又m 30+n20=1(0≤m ≤30), ∴n =20-23m .∴S =(100-m )⎝ ⎛⎭⎪⎫80-20+23m =-23(m -5)2+18 0503(0≤m ≤30). ∴当m =5时,S 有最大值,这时|EP ||PF |=5∶1.所以当草坪矩形的两边在BC、CD上,一个顶点在线段EF上,且这个顶点分有向线段EF成5∶1时,草坪面积最大.方法引航]在求直线方程的过程中,若有以直线为载体的面积、距离的最值等问题,一般要结合函数、不等式或利用对称来加以解决.1.已知函数f(x)=x-4ln x,则曲线y=f(x)在点(1,f(1))处的切线方程为________.解析:由f′(x)=1-4x,则k=f′(1)=-3,又f(1)=1,故切线方程为y-1=-3(x-1),即3x+y-4=0.答案:3x+y-4=02.直线3x-4y+k=0在两坐标轴上的截距之和为2,则实数k=________.解析:令x=0,得y=k4;令y=0,得x=-k3.则有k4-k3=2,所以k=-24.答案:-24易错警示]直线的委屈——被遗忘的特殊情况典例](2017·浙江杭州调研)已知直线l过点P(2,-1),在x轴和y轴上的截距分别为a,b,且满足a=3b.则直线l的方程为________.正解]①若a=3b=0,则直线过原点(0,0),此时直线斜率k=-12,直线方程为x+2y=0.②若a=3b≠0,设直线方程为xa+yb=1,即x3b+yb=1.由于点P(2,-1)在直线上,所以b=-1 3.从而直线方程为-x-3y=1,即x+3y+1=0.综上所述,所求直线方程为x+2y=0或x+3y+1=0.答案] x +2y =0或x +3y +1=0易误] 本题容易忽视直线过原点时的情况.警示] 求直线方程时,要注意斜率是否存在,注意截距是否为0;注意区分截距与距离.高考真题体验]1.(2012·高考湖北卷)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( ) A .x +y -2=0 B .y -1=0 C .x -y =0 D .x +3y -4=0解析:选A.两部分面积之差最大,即弦长最短,此时直线垂直于过该点的直径.因为过点P (1,1)的直径所在直线的斜率为1,所以所求直线的斜率为-1,方程为x +y -2=0.2.(2016·高考北京卷)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( ) A .-1 B .3 C .7 D .8解析:选C.依题意得k AB =5-12-4=-2,∴线段l AB :y -1=-2(x -4),x ∈2,4],即y=-2x +9,x ∈2,4],故2x -y =2x -(-2x +9)=4x -9,x ∈2,4].设h (x )=4x -9,易知h (x )=4x -9在2,4]上单调递增,故当x =4时,h (x )max =4×4-9=7.3.(2015·高考广东卷)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( )A .2x +y +5=0或2x +y -5=0B .2x +y +5=0或2x +y -5=0C .2x -y +5=0或2x -y -5=0D .2x -y +5=0或2x -y -5=0解析:选A.设所求直线的方程为2x +y +c =0(c ≠1),则|c |22+12=5,所以c =±5,故所求直线的方程为2x +y +5=0或2x +y -5=0.4.(2014·高考安徽卷)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,π6B.⎝ ⎛⎦⎥⎤0,π3 C.⎣⎢⎡⎦⎥⎤0,π6D.⎣⎢⎡⎦⎥⎤0,π3 解析:选D.法一:设直线l 的倾斜角为θ,数形结合(图略)可知: θmin =0,θmax =2×π6=π3.法二:因为直线l 与x 2+y 2=1有公共点,所以设l :y +1=k (x +3),即l :kx -y +3k -1=0,则圆心(0,0)到直线l 的距离|3k -1|1+k 2≤1,得k 2-3k ≤0,即0≤k ≤3,故直线l 的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π3.课时规范训练 A 组 基础演练1.直线x +3y +m =0(m ∈k )的倾斜角为( ) A .30° B .60° C .150° D .120°解析:选C.∵直线的斜率k =-33,∴tan α=-33. 又0≤α<180°,∴α=150°.2.如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:选D.直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.3.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1C .-2或-1D .-2或1解析:选D.由题意得a +2=a +2a ,∴a =-2或a =1.4.过点(2,1),且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( ) A .x =2 B .y =1 C .x =1 D .y =2解析:选A.∵直线y =-x -1的斜率为-1,则倾斜角为34π.依题意,所求直线的倾斜角为3π4-π4=π2,斜率不存在,∴过点(2,1)的所求直线方程为x =2.5.两条直线l 1:x a -y b =1和l 2:x b -ya =1在同一直角坐标系中的图象可以是( )解析:选A.把直线方程化为截距式l 1:x a +y -b =1,l 2:x b +y-a =1.假定l 1,判断a ,b ,确定l 2的位置,知A 项符合.6.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =________. 解析:因为k AB =7-54-3=2,k AC =x -5-1-3=-x -54.A ,B ,C 三点共线,所以k AB =k AC 即-x -54=2, 解得x =-3.答案:-37.直线l 经过A (2,1),B (1,m 2)(m ∈R )两点.则直线l 的倾斜角的取值范围为________. 解析:直线l 的斜率k =m 2-11-2=1-m 2≤1.若l 的倾斜角为α,则tan α≤1. 答案:⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π8.已知直线l 的倾斜角α满足3sin α=cos α,且它在x 轴上的截距为2,则直线l 的方程是________.解析:∵k l =tan α=sin αcos α=13,且过点(2,0), ∴直线方程为y =13(x -2) 即x -3y -2=0. 答案:x -3y -2=09.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围. 解:(1)当直线过原点时,在x 轴和y 轴上的截距为零. ∴a =2,方程即为3x +y =0.当直线不过原点时,由截距存在且均不为0, ∴a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.因此直线l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2, ∴⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0. ∴a ≤-1.综上可知a 的取值范围是a ≤-1.10.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解:由题意设直线方程为x a +y b =1(a >0,b >0),∴3a +2b =1. 由基本不等式知3a +2b ≥26ab ,即ab ≥24(当且仅当3a =2b ,即a =6,b =4时等号成立). 又S =12a ·b ≥12×24=12,此时直线方程为x 6+y4=1,即2x +3y -12=0.∴△ABO 面积的最小值为12,此时直线方程为2x +3y -12=0.B 组 能力突破1.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来位置,那么l 的斜率为( ) A .-13B .-3 C.13D .3解析:选A.设直线l :Ax +By +C =0,由题意,平移后方程为A (x -3)+B (y +1)+C =0,即Ax +By +C +B -3A =0,它与直线l 重合,∴B -3A =0,∴-A B =-13,即直线l 的斜率为-13,故选A.2.在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)解析:选D.因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB =-k OA =-3,所以直线AB 的点斜式方程为:y -3=-3(x -1).3.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0 D .ab <0,bc <0解析:选A.由于直线ax +by +c =0经过第一、二、四象限,所以直线存在斜率,将方程变形为y =-a b x -c b .易知-a b <0且-cb >0,故ab >0,bc <0.4.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 解析:当a =-1时,直线l 的倾斜角为90°,符合要求; 当a ≠-1时,直线l 的斜率为-a a +1,只要-a a +1>1或者-a a +1<0即可,解得-1<a <-12或者a <-1或者a >0. 综上可知,实数a 的取值范围是 ⎝ ⎛⎭⎪⎫-∞,-12∪(0,+∞). 答案:⎝ ⎛⎭⎪⎫-∞,-12∪(0,+∞)5.已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当|OA |+|OB |取得最小值时,直线l 的方程; (2)当|MA |2+|MB |2取得最小值时,直线l 的方程. 解:(1)设A (a,0),B (0,b )(a >0,b >0). 设直线l 的方程为x a +y b =1,则1a +1b =1,所以|OA |+|OB |=a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+a b +b a ≥2+2a b ·ba =4,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.(2)设直线l 的斜率为k ,则k <0,直线l 的方程为y -1=k (x -1),则A ⎝ ⎛⎭⎪⎫1-1k ,0,B (0,1-k ),所以|MA |2+|MB |2=⎝ ⎛⎭⎪⎫1-1+1k 2+12+12+(1-1+k )2=2+k 2+1k 2≥2+2k 2·1k 2=4,当且仅当k 2=1k2,即k =-1时,|MA |2+|MB |2取得最小值4,此时直线l 的方程为x +y -2=0.第2课时 两直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行①对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2; ②当不重合的两条直线l 1,l 2的斜率都不存在时,l 1与l 2的关系为平行. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则l 1⊥l 2⇔k 1k 2=-1;②如果l 1,l 2中有一条直线的斜率不存在,另一条直线的斜率为0时,l 1与l 2的关系为垂直. 2.两条直线的交点设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,将这两条直线的方程联立,得方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0.(1)若方程组有唯一解,则l 1与l 2相交,此解就是l 1、l 2交点的坐标; (2)若方程组无解,则l 1与l 2无交点,此时l 1∥l 2; (3)若方程组有无数组解,则l 1与l 2重合. 3.三种距离4.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.(×) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.(×)(3)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.(√)(4)l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,当k 1≠k 2时,l 1与l 2相交.(√)(5)过l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ).(×) (6)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.(×) (7)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√) (8)直线l 关于点P 对称的直线l ′,则l ∥l ′.(×) (9)A 、B 两点到直线l 的距离相等,则AB ∥l .(×) (10)直线x +(m +1)y +2=0恒过定点(-2,0).(√)考点一 两条直线的平行与垂直例1] (1)设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是( ) A .平行 B .重合 C .垂直 D .相交但不垂直解析:由正弦定理a sin A =bsin B ,得b sin A -a sin B =0. ∴两直线垂直. 答案:C(2)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0解析:设所求直线方程为x-2y+m=0,由1+m=0得m=-1,所以直线方程为x -2y-1=0.答案:A(3)已知直线l1:(a+2)x+(1-a)y-3=0与直线l2:(a-1)x+(2a+3)y+2=0,则“a =1”是“l1⊥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:l1⊥l2的充要条件是(a+2)(a-1)+(1-a)·(2a+3)=0,即a2-1=0,故有(a-1)(a+1)=0,解得a=±1.显然“a=1”是“a=±1”的充分不必要条件,故“a=1”是“l1⊥l2”的充分不必要条件.故选A.答案:A(4)已知两直线l1:x+y sin α-1=0和l2:2x·sin α+y+1=0,求α的值,使得:①l1∥l2;②l1⊥l2.解:①法一:当sin α=0时,直线l1的斜率不存在,l2的斜率为0,显然l1不平行于l2.当sin α≠0时,k1=-1sin α,k2=-2sin α.要使l1∥l2,需-1sin α=-2sin α,即sin α=±2 2.所以α=kπ±π4,k∈Z,此时两直线的斜率相等.故当α=kπ±π4,k∈Z时,l1∥l2.法二:由A1B2-A2B1=0,得2sin2α-1=0,所以sin α=±2 2.又B 1C 2-B 2C 1≠0,所以1+sin α≠0,即sin α≠-1. 所以α=k π±π4,k ∈Z . 故当α=k π±π4,k ∈Z 时,l 1∥l 2.②因为A 1A 2+B 1B 2=0是l 1⊥l 2的充要条件,所以2sin α+sin α=0,即sin α=0,所以α=k π,k ∈Z . 故当α=k π,k ∈Z 时,l 1⊥l 2.方法引航] 两直线垂直时,一般先将直线方程化成一般式,l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,然后利用A 1A 2+B 1B 2=0求解,这样避免出现漏解.如果利用斜截式方程,则需要根据其斜率是否存在分情况讨论,往往容易忽视斜率不存在的情况,导致漏解.对l 1∥l 2,用A 1A 2=B 1B 2≠C 1C 2时,有可能漏解.1.将本例(1)的两直线改为:l 1:bx +ay +c =0,l 2:x sin B +y sin A -sin C =0,其位置关系如何? 解:由b sin B =asin A ≠c-sin C ,∴l 1∥l 2.2.将本例(2)改为过点(1,0)与x -2y -2=0垂直,其直线方程怎样. 解:∵x -2y -2=0的斜率为12, ∴所求直线的斜率为-2,∴直线方程为y =-2(x -1),即2x +y -2=0.3.将本例(3)变为“a =-1”是“直线ax +y +1=0与直线x +ay +2=0平行”的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件解析:选A.由直线ax +y +1=0与直线x +ay +2=0平行,得a =-1或1,所以“a =-1”是“直线ax +y +1=0与直线x +ay +2=0平行”的充分不必要条件. 4.将本例(4)变为l 1:ax -by +4=0,l 2:(a -1)x +y +b =0,若l 1⊥l 2且l 1过点(-3,-1),求a ,b 的值.解:法一:由题意得⎩⎪⎨⎪⎧ a (a -1)-b ×1=0-3a +b +4=0,即⎩⎪⎨⎪⎧a 2-a -b =0-b =-3a +4,解得⎩⎪⎨⎪⎧a =2,b =2.法二:由已知可得l 2的斜率存在,∴k 2=1-a . 若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,直线l 1的斜率k 1必不存在,即b =0.又∵l 1过点(-3,-1),∴-3a +4=0,即a =43(矛盾). ∴此种情况不存在,∴k 2≠0.即k 1,k 2都存在,∵k 2=1-a ,k 1=ab ,l 1⊥l 2, ∴k 1k 2=-1,即ab (1-a )=-1.①又∵l 1过点(-3,-1),∴-3a +b +4=0.② 由①②联立,解得a =2,b =2.考点二 两条直线的交点和距离例2] (1)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程.解:法一:由方程组⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0,得l 1、l 2的交点坐标为(-1,2),∵l 3的斜率为35,∴l 的斜率为-53,则直线的点斜式方程l :y -2=-53(x +1), 即5x +3y -1=0.法二:设直线l 的方程为:3x +2y -1+λ(5x +2y +1)=0, 将其整理,得(3+5λ)x +(2+2λ)y +(-1+λ)=0, 其斜率-3+5λ2+2λ=-53,解得λ=15,代入直线系方程即得l 的方程为5x +3y -1=0.(2)求过点P (2,-1)且与原点距离为2的直线l 的方程. 解:若l 的斜率不存在,则直线x =2满足条件. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(3)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c +2a 的值为________.解析:由题意得,63=a -2≠c-1,∴a =-4,c ≠-2.则6x +ay +c =0可化为3x -2y +c2=0. ∴21313=⎪⎪⎪⎪⎪⎪⎪⎪c 2+113,∴解得c =2或c =-6.∴c +2a =1或c +2a =-1. 答案:±1方法引航] (1)符合特定条件的某些直线构成一个直线系,常见的直线系有: ①与Ax +By +C =0平行的直线系:Ax +By +m =0(m ≠C ); ②与Ax +By +C =0垂直的直线系:Bx -Ay +m =0;③过A 1x +B 1y +C 1=0和A 2x +B 2y +C 2=0交点的直线系:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0. (2)y =kx +b .①当b 为定值,k 变为参数时,表示过定点(0,b )的直线系(除x =0外); ②当k 为定值,b 为参数时,表示斜率为k 的平行直线系.1.已知经过点P (2,2)的直线l 与直线ax -y +1=0垂直,若点M (1,0)到直线l 的距离等于5,则a 的值是( ) A .-12B .1C .2 D.12解析:选C.依题意,设直线l 的方程为x +ay +c =0, ∵点P (2,2)在l 上,且点M (1,0)到l 的距离等于 5. ∴⎩⎪⎨⎪⎧2+2a +c =0,|1+c |1+a2= 5.消去c ,得a =2.2.过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程为________.解析:由⎩⎪⎨⎪⎧ x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.∴l 1与l 2交点为(1,2),设所求直线y -2=k (x -1),即kx -y +2-k =0, ∵P (0,4)到所求直线的距离为2, ∴2=|-2-k |1+k 2,解得k =0或k =43.∴直线方程为y =2或4x -3y +2=0. 答案:y =2或4x -3y +2=03.l 1,l 2是分别经过点A (1,1),B (0,-1)的两条平行直线,当l 1与l 2间的距离最大时,直线l 1的方程是________.解析:当AB ⊥l 1时,两直线l 1与l 2间的距离最大, 由k AB =-1-10-1=2,知l 1的斜率k =-12.∴直线l 1的方程为y -1=-12(x -1), 即x +2y -3=0. 答案:x +2y -3=0考点三 对称问题例3] (1)(2017·江西南昌二中月考)过点M (0,1)作直线,使它被两条直线l 1:x -3y +10=0,l 2:2x +y -8=0所截得的线段恰好被M 所平分,则此直线方程为________. 解析:法一:过点M 且与x 轴垂直的直线是x =0,它和直线l 1,l 2的交点分别是⎝ ⎛⎭⎪⎫0,103,(0,8),显然不符合题意,故可设所求直线方程为y =kx +1,其图象与直线l 1,l 2分别交于A ,B 两点,则有①⎩⎪⎨⎪⎧ y A =kx A +1,x A -3y A +10=0,②⎩⎪⎨⎪⎧y B =kx B +1,2x B +y B -8=0. 由①解得x A =73k -1,由②解得x B =7k +2.因为点M 平分线段AB ,所以x A +x B =2x M , 即73k -1+7k +2=0,解得k =-14.故所求的直线方程为y =-14x +1,即x +4y -4=0. 法二:设所求直线与l 1交于A (x 1,y 1)与l 2交于B (x 2,y 2) 且x 1+x 2=0,∴x 2=-x 1. y 1+y 2=2,y 2=2-y 1∴⎩⎪⎨⎪⎧ x 1-3y 1+10=0-2x 1+2-y 1-8=0,解得⎩⎪⎨⎪⎧x 1=-4y 1=2.即A (-4,2) 故过M 和A 的方程为x +4y -4=0. 答案:x +4y -4=0(2)A (-1,-2)关于直线l :2x -3y +1=0的对称点A ′的坐标为________.解析:设A ′(x ,y ),再由已知⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0解得⎩⎪⎨⎪⎧x =-3313,y =413.∴A ′⎝ ⎛⎭⎪⎫-3313,413.答案:A ′⎝ ⎛⎭⎪⎫-3313,413(3)直线l 1:y =2x +3关于直线l :y =x +1对称的直线l 2的方程为________.解析:由⎩⎪⎨⎪⎧y =2x +3,y =x +1解得直线l 1与l 的交点坐标为(-2,-1),∴可设直线l 2的方程为y +1=k (x +2),即 kx -y +2k -1=0.在直线l 上任取一点(1,2),由题设知点(1,2)到直线l 1,l 2的距离相等,由点到直线的距离公式得|k -2+2k -1|k 2+1=|2-2+3|22+1,解得k =12(k =2舍去),∴直线l 2的方程为x -2y =0. 答案:x -2y =0方法引航](1)点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .(2)解决点关于直线对称问题要把握两点,点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直., 3)若直线l 1、l 2关于直线l 对称,则有如下性质:①若直线l 1与l 2相交,则交点在直线l 上;②若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上.(4)解决中心对称问题的关键在于运用中点坐标公式,而解决轴对称问题,一般是转化为求对称点的问题,在求对称点时,关键是抓住两点:一是两对称点的连线与对称轴垂直;二是两对称点的中心在对称轴上,即抓住“垂直平分”,由“垂直”列出一个方程,由“平分”列出一个方程,联立求解.光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解:法一:由⎩⎨⎧x -2y +5=0,3x -2y +7=0,得⎩⎨⎧x =-1,y =2. ∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0),由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.而PP ′的中点Q 的坐标为⎝ ⎛⎭⎪⎫x 0-52,y 02,Q 点在l 上,∴3·x 0-52-2·y 02+7=0. 由⎩⎪⎨⎪⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎪⎨⎪⎧x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0. 法二:设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x=-23, 又PP ′的中点Q ⎝ ⎛⎭⎪⎫x +x 02,y +y 02在l 上,∴3×x +x 02-2×y +y 02+7=0, 由⎩⎪⎨⎪⎧y 0-y x 0-x =-23,3×x +x 02-(y +y 0)+7=0.可得P 点的横、纵坐标分别为x 0=-5x +12y -4213,y 0=12x +5y +2813, 代入方程x -2y +5=0中,化简得29x -2y +33=0,∴所求反射光线所在的直线方程为29x -2y +33=0.方法探究]有关点与直线的最值问题典例] (2017·福建泉州模拟)若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( )A .2B .2 2C .4D .2 3关系探究] 一、从m 2+n 2表示的几何意义分析,得出原点到直线的距离.二、从函数角度分析:题意隐含了m 与n 的约束关系,从而m 2+n 2可转化为关于m (n )的函数求最值.解析] 法一:数形结合法(1)m 2+n 2=(m -0)2+(n -0)2表示点(m ,n )与(0,0)距离的平方,∴m 2+n 2表示点(m ,n )与(0,0)的距离,其最小值为原点到直线的距离.当过原点的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离的最小值为d =|-10|42+32=2,∴m 2+n 2的最小值为4.(2)由题意知点(m ,n )为直线上到原点最近的点, 直线与两坐标轴交于A ⎝ ⎛⎭⎪⎫52,0,B ⎝ ⎛⎭⎪⎫0,103,在直角三角形OAB 中,OA =52,OB =103,斜边AB =⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫1032=256,斜边上的高h 即为所求m 2+n 2的算术平方根, ∴S △OAB =12·OA ·OB =12AB ·h , ∴h =OA ·OB AB =52×103256=2,∴m 2+n 2的最小值为h 2=4. 法二:函数法因点(m ,n )在直线4x +3y -10=0上, ∴4m +3n -10=0,∴m =10-3n4,∴m 2+n 2=⎝ ⎛⎭⎪⎫10-3n42+n 2=100-60n +25n 216=2516⎝ ⎛⎭⎪⎫n -652+4. 当n =65时,m 2+n 2的最小值为4. 答案] C回顾反思] 有关点与直线的最值问题,一般有两种方法:一是利用几何意义,采用数形结合法.如(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )间距离的平方.|Ax 0+By 0+C |A 2+B 2表示点P (x 0,y 0)到直线Ax +By +C =0的距离;再者利用函数求最值.高考真题体验]1.(2012·高考浙江卷)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +2y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.由a =1可得l 1∥l 2,反之,由l 1∥l 2可得a =1,故选C.2.(2014·高考福建卷)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A .x +y -2=0 B .x -y +2=0 C .x +y -3=0 D .x -y +3=0解析:选D.依题意,得直线l 过点(0,3),斜率为1,所以直线l 的方程为y -3=x -0,即x -y +3=0.故选D.3.(2014·高考四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,不难验证P A ⊥PB ,所以|P A |2+|PB |2=|AB |2=10,所以|P A |·|PB |≤|P A |2+|PB |22=5(当且仅当|P A |=|PB |=5时,等号成立),当P 与A 或B 重合时,|P A |·|PB |=0,故|P A |·|PB |的最大值是5. 答案:5课时规范训练 A 组 基础演练1.直线l 过点(-1,2),且与直线2x -3y +4=0垂直,则l 的方程是( ) A .3x +2y -1=0 B .3x +2y +7=0 C .2x -3y +5=0 D .2x -3y +8=0解析:选A.由题意可得直线l 的斜率k =-32, ∴l :y -2=-32(x +1),即3x +2y -1=0.2.已知直线l 1:x +ay +6=0和l 2:(a -2)x +3y +2a =0,则l 1∥l 2的充要条件是a 等于( ) A .3 B .1 C .-1 D .3或-1解析:选C.由题意知,l 1∥l 2⇔1a -2=a 3≠62a ,即a =-1.故选C.3.已知直线l 的倾斜角为34π,直线l 1经过点A (3,2)和B (a ,-1),且l 1与l 垂直,直线l 2的方程为2x +by +1=0,且直线l 2与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2解析:选B.∵直线l 的斜率为-1,∴直线l 1的斜率为1,∴k AB =2-(-1)3-a=1,解得a =0.∵l 1∥l 2,∴-2b =1,解得b =-2,∴a +b =-2.4.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( ) A .2x +3y -18=0 B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0解析:选D.设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2,∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0.5.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( )A .x +2y -4=0B .2x +y -1=0C .x +6y -16=0D .6x +y -8=0解析:选A.由直线与向量a =(8,4)平行知:过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式可得A 正确. 6.过点A (1,2)且与原点距离最大的直线方程是________. 解析:由题意知,所求直线与OA 垂直, 因k OA =2,则所求直线的斜率k =-12.所以直线的方程是y -2=-12(x -1),即x +2y -5=0. 答案:x +2y -5=07.过点(3,1),且过直线y =2x 与直线x +y =3交点的直线方程为________. 解析:法一:由⎩⎨⎧ y =2x x +y =3,得⎩⎨⎧x =1y =2,即两直线交点为(1,2),依题意,由两点式方程得y -12-1=x -31-3,即x +2y -5=0.法二:设所求直线方程为x +y -3+λ(2x -y )=0. 把点(3,1)代入得λ=-15,故所求直线方程为 x +y -3-15(2x -y )=0,即x +2y -5=0. 答案:x +2y -5=08.△ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),则边BC 的垂直平分线DE 的方程为________.解析:设BC 中点D 的坐标为(x ,y ),则x =2-22=0,y =1+32=2.BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2,由斜截式得直线DE 的方程为y =2x +2.答案:y =2x +29.光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在直线的方程.解:作出草图,如图所示.设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -66+4=x -11+2,即10x -3y +8=0.10.已知直线l 1:mx +8y +n =0与l 2:2x +my -1=0互相平行,且l 1,l 2之间的距离为5,求直线l 1的方程. 解:∵l 1∥l 2,∴m 2=8m ≠n-1,∴⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.①当m =4时,直线l 1的方程为4x +8y +n =0,把l 2的方程写成4x +8y -2=0,∴|n +2|16+64=5,解得n =-22或n =18.所以,所求直线的方程为2x +4y -11=0或2x +4y +9=0.②当m =-4时,直线l 1的方程为4x -8y -n =0,l 2的方程为4x -8y -2=0,∴|-n +2|16+64=5,解得n =-18或n =22.所以,所求直线的方程为2x -4y +9=0或2x -4y -11=0.B 组1.若三条直线l 1:4x +y =4,l 2:mx +y =0,l 3:2x -3my =4不能围成三角形,则实数m 的取值最多有( ) A .2个 B .3个 C .4个 D .6个解析:选C.三条直线不能围成三角形,则至少有两条直线平行或三条直线相交于同一点.若l 1∥l 2,则m =4;若l 1∥l 3,则m =-16;若l 2∥l 3,则m 的值不存在;若三条直线相交于同一点,则m =-1或23,故实数m 的取值最多有4个.2.若曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( )A.722B.922C.1122D.91010解析:选A.由题意得切点坐标为(-1,-1).切线斜率为k =y ′|x =-1=2-3×(-1)2=-1,故切线l 的方程为y -(-1)=-1·x -(-1)],整理得x +y +2=0.由点到直线的距离公式,得点P (3,2)到直线l 的距离为|3+2+2|12+12=722.3.已知b >0,直线(b 2+1)x +ay +2=0与直线x -b 2y -1=0互相垂直,则ab 的最小值为( ) A .1 B .2 C .22D .2 3解析:选B.由已知两直线垂直得(b 2+1)-ab 2=0,即ab 2=b 2+1.两边同除以b ,得ab =b 2+1b =b +1b .由基本不等式,得b +1b ≥2b ·1b =2当且仅当b =1时等号成立,故选B.4.直线y =2x 是△ABC 的一个内角平分线所在的直线,若点A (-4,2),B (3,1),则点C 的坐标为________.解析:把A ,B 两点的坐标分别代入y =2x ,可知A ,B 不在直线y =2x 上,因此y =2x 为∠ACB 的平分线所在的直线,设点A (-4,2)关于直线y =2x 的对称点为A ′(a ,b ),则k AA ′=b -2a +4,线段AA ′的中点坐标为⎝ ⎛⎭⎪⎫a -42,b +22, 由⎩⎪⎨⎪⎧b -2a +4·2=-1,b +22=2·a -42,解得⎩⎪⎨⎪⎧a =4,b =-2,∴A ′(4,-2).∵y =2x 是∠ACB 的平分线所在的直线, ∴点A ′在直线BC 上,∴直线BC 的方程为y +21+2=x -43-4,即3x +y -10=0,由⎩⎪⎨⎪⎧ y =2x ,3x +y -10=0解得⎩⎪⎨⎪⎧x =2,y =4,∴C (2,4). 答案:(2,4)5.若直线l 过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点,且|AB |=5,求直线l 的方程.解:过点A (1,-1)与y 轴平行的直线为x =1. 解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0.求得B 点坐标为(1,4),此时|AB |=5, 即x =1为所求.设过A (1,-1)且与y 轴不平行的直线为y +1=k (x -1), 解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k (x -1).得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2.(k ≠-2,否则与已知直线平行). 则B 点坐标为⎝ ⎛⎭⎪⎪⎫k +7k +2,4k -2k +2. 由已知⎝ ⎛⎭⎪⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎪⎫4k -2k +2+12=52, 解得k =-34,∴y +1=-34(x -1), 即3x +4y +1=0.综上可知,所求直线的方程为x =1或3x +4y +1=0.第3课时 圆的方程1.圆的定义及方程2.点与圆的位置关系(1)理论依据:点与圆心的距离与半径的大小关系. (2)三种情况圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0), ①(x 0-a )2+(y 0-b )2=r 2⇔点在圆上; ②(x 0-a )2+(y 0-b )2>r 2⇔点在圆外; ③(x 0-a )2+(y 0-b )2<r 2⇔点在圆内.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)确定圆的几何要素是圆心与半径.(√)(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.(√)(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4F >0.(×)(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.(√)(5)已知圆的方程为x 2+y 2-2y =0,过点A (1,2)作该圆的切线只有一条.(×) (6)方程(x +a )2+(y +b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的一个圆.(×) (7)方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆心为⎝ ⎛⎭⎪⎫-a 2,-a ,半径为12-3a 2-4a +4的圆.(×)(8)过不共线的三点一定有唯一的一个圆.(√)(9)方程x 2+y 2+2x -2y +2=0表示圆心为(-1,1)的圆.(×) (10)圆x 2-4x +y 2+2y +1=0上的点到(2,1)的最长距离为4.(√)考点一 求圆的方程例1] 根据下列条件,求圆的方程:(1)经过点A (5,2),B (3,-2),且圆心在直线2x -y -3=0上; (2)经过P (-2,4)、Q (3,-1)两点,并且在x 轴上截得的弦长等于6; (3)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2). 解:(1)法一:由题意知k AB =2,AB 的中点为(4,0),设圆心为C (a ,b ),则 AB 的垂直平分线为y =-12(x -4)由⎩⎨⎧ y =-12(x -4)2x -y -3=0得⎩⎪⎨⎪⎧x =2y =1即C (2,1)为圆心. ∴r =|CA |=(5-2)2+(2-1)2=10,∴所求圆的方程为(x -2)2+(y -1)2=10. 法二:设圆的方程为(x -a )2+(y -b )2=r 2, 则⎩⎪⎨⎪⎧2a -b -3=0,(5-a )2+(2-b )2=r 2,(3-a )2+(-2-b )2=r 2,解得⎩⎪⎨⎪⎧a =2,b =1,r =10,故圆的方程为(x -2)2+(y -1)2=10.法三:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则⎩⎪⎨⎪⎧25+4+5D +2E +F =0,9+4+3D -2E +F =0,2×⎝ ⎛⎭⎪⎫-D 2+E 2-3=0,解得⎩⎪⎨⎪⎧D =-4,E =-2,F =-5,∴所求圆的方程为x 2+y 2-4x -2y -5=0.(2)设圆的方程为x 2+y 2+Dx +Ey +F =0, 将P 、Q 两点的坐标分别代入得 ⎩⎪⎨⎪⎧2D -4E -F =20, ①3D -E +F =-10. ② 又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6有D 2-4F =36,④ 由①、②、④解得D =-2,E =-4, F =-8,或D =-6,E =-8,F =0.故所求圆的方程为x 2+y 2-2x -4y -8=0,或x 2+y 2-6x -8y =0.(3)法一:如图,设圆心(x 0,-4x 0),依题意得4x 0-23-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =22,故圆的方程为(x -1)2+(y +4)2=8.。
2020版高考数学大一轮复习第八章平面解析几何第1节直线的方程课件理新人教A版
Ax+By+C=0 (A2+B2≠0)
适用条件
与 x 轴不垂直的 直线
与两坐标轴均不 垂直的直线
不过原点且与两 坐标轴均不垂直 的直线
所有直线
[微点提醒] 1.直线的斜率k和倾斜角α之间的函数关系:
2.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直 线都存在斜率.
A.3x+y-6=0
B.x+3y-10=0
C.3x-y=0
D.x-3y+8=0
解析 设直线 l 的方程为ax+by=1(a>0,b>0). 由题意得1a12+ ab3b==61,,解得ab= =26, . 故直线 l 的方程为2x+6y=1,即 3x+y-6=0.
答案 A
考点一 直线的倾斜角与斜率
【迁移探究1】 若将例1(2)中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取
值范围.
解 设直线l的斜率为k,则直线l的方程为y=k(x+1),即kx-y+k=0.
∵A,B两点在直线l的两侧或其中一点在直线l上,
∴(2k-1+k)(- 3+k)≤0,
即(3k-1)(k- 3)≤0,解得13≤k≤ 3.
法二 设直线l的斜率为k,则直线l的方程为y=k(x-1),即kx-y-k=0. ∵A,B两点在直线l的两侧或其中一点在直线l上,
∴(2k-1-k)(- 3-k)≤0,即(k-1)(k+ 3)≥0,解得 k≥1 或 k≤- 3. 即直线 l 的斜率 k 的取值范围是(-∞,- 3]∪[1,+∞). 答案 (1)B (2)(-∞,- 3]∪[1,+∞)
4.(2019·济南调研)直线x-y+1=0的倾斜角为( )
高考数学大一轮复习 第八章 平面解析几何课时作业61 理 新人教A版
课时作业61 直线与圆锥曲线的位置关系一、选择题1.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.答案:A2.椭圆x 24+y 23=1的离心率为e ,点(1,e )是圆x 2+y 2-4x -4y +4=0的一条弦的中点,则此弦所在直线的方程是( )A .3x +2y -4=0B .4x +6y -7=0C .3x -2y -2=0D .4x -6y -1=0解析:依题意得e =12,圆心坐标为(2,2),圆心(2,2)与点(1,12)的连线的斜率为2-122-1=32,所求直线的斜率为-23,所以所求直线方程是y -12=-23(x -1).即4x +6y -7=0. 答案:B3.直线l 过抛物线y 2=8x 的焦点,且与抛物线交于A (x 1,y 1),B (x 2,y 2)两点,则( ) A .y 1·y 2=-64 B .y 1·y 2=-8 C .x 1·x 2=4D .x 1·x 2=16解析:由抛物线的焦点为F (2,0),设直线l 的方程为my =x -2,由⎩⎪⎨⎪⎧x =my +2,y 2=8x ⇒y2-8my -16=0,又A (x 1,y 1),B (x 2,y 2),故y 1·y 2=-16,x 1·x 2=y 21y 2264=16264=4.故选C.答案:C4.已知直线y =12x 与双曲线x 29-y24=1交于A ,B 两点,P 为双曲线上不同于A ,B 的点,当直线PA ,PB 的斜率k PA ,k PB 存在时,k PA ·k PB =( )A.49B.12C.23D .与P 点位置有关解析:设点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则由⎩⎪⎨⎪⎧y =12x x 29-y24=1得y 2=367,y 1+y 2=0,y 1y 2=-367,x 1+x 2=0,x 1x 2=-4×367.由k PA ·k PB =y 0-y 1x 0-x 1·y 0-y 2x 0-x 2=y 20+y 1y 2x 20+x 1x 2=y 20-3679y 204+1-4×367=y 20-36794y 20-367=49知k PA ·k PB 为定值49,选A.答案:A5.已知A ,B 为抛物线C :y 2=4x 上的两个不同的点,F 为抛物线C 的焦点,若FA →=-4FB →,则直线AB 的斜率为( )A .±23B .±32C .±34D .±43解析:焦点F (1,0),直线AB 的斜率必存在,且不为0.故可设直线AB 的方程为y =k (x -1)(k ≠0),代入y 2=4x 中化简得ky 2-4y -4k =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4k,①y 1y 2=-4,②又由FA →=-4FB →可得y 1=-4y 2,③ 联立①②③式解得k =±43.答案:D6.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+2相切,则此双曲线的离心率是( )A .2B .3 C. 6D .9解析:双曲线的渐近线为y =±b a x ,不妨取y =b a x ,代入抛物线得b ax =x 2+2,即x 2-b ax+2=0,则Δ=b 2a 2-8=0,即b 2=8a 2,又b 2=c 2-a 2=8a 2,所以c 2=9a 2,故e =c a=3.答案:B 二、填空题7.直线y =kx +1与椭圆x 25+y 2m=1恒有公共点,则m 的取值范围是________.解析:直线y =kx +1过定点(0,1),由题意知⎩⎨⎧m >0,m ≠5,m ≥1,∴m ≥1,且m ≠5.答案:m ≥1,且m ≠58.设抛物线x 2=4y 的焦点为F ,经过点P (1,4)的直线l 与抛物线相交于A ,B 两点,且点P 恰为AB 的中点,则|AF →|+|BF →|=________.解析:设A (x 1,y 1),B (x 2,y 2),由题意知x 1+x 2=2,且x 21=4y 1,x 22=4y 2,两式相减整理得,y 1-y 2x 1-x 2=x 1+x 24=12,所以直线AB 的方程为x -2y +7=0.将x =2y -7代入x 2=4y 整理得4y 2-32y +49=0,所以y 1+y 2=8,又由抛物线定义得|AF →|+|BF →|=y 1+y 2+2=10.答案:109.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A ,B ,M 是直线l 与椭圆C 的一个公共点,设|AM |=e |AB |,则该椭圆的离心率e =________.解析:因为点A ,B 分别是直线l :y =ex +a 与x 轴、y 轴的交点,所以点A ,B 的坐标分别是⎝ ⎛⎭⎪⎫-a e ,0,(0,a ).设点M 的坐标是(x 0,y 0),由|AM |=e |AB |,得⎩⎪⎨⎪⎧x 0=a e e -1,y 0=ea .(*)因为点M 在椭圆上,所以x 20a 2+y 20b 2=1,将(*)式代入,得e -12e 2+e 2a 2b2=1,整理得,e 2+e -1=0,解得e =5-12. 答案:5-12三、解答题10.已知椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率为32,抛物线C 2:x 2=2py (p >0)的焦点是椭圆的顶点.(1)求抛物线C 2的方程.(2)过点M (-1,0)的直线l 与抛物线C 2交于E ,F 两点,过E ,F 作抛物线C 2的切线l 1,l 2,当l 1⊥l 2时,求直线l 的方程.解:(1)∵椭圆C 1的长半轴长a =2,半焦距c =4-b 2,由e =c a =4-b 22=32得b 2=1,∴椭圆C 1的上顶点为(0,1), ∴抛物线C 2的焦点为(0,1), ∴抛物线C 2的方程为x 2=4y .(2)由已知可得直线l 的斜率必存在,设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2).由x 2=4y 得y =14x 2,∴y ′=12x .∴切线l 1,l 2的斜率分别为12x 1,12x 2.当l 1⊥l 2时,12x 1·12x 2=-1,即x 1x 2=-4.由⎩⎪⎨⎪⎧y =k x +1x 2=4y 得x 2-4kx -4k =0,∴Δ=(4k )2-4×(-4k )>0,解得k <-1或k >0.①且x 1x 2=-4k =-4,得k =1,满足①式. ∴直线l 的方程为x -y +1=0.11.已知圆C :(x +3)2+y 2=16,点A (3,0),Q 是圆上一动点,AQ 的垂直平分线交CQ 于点M ,设点M 的轨迹为E .(1)求轨迹E 的方程;(2)过点P (1,0)的直线l 交轨迹E 于两个不同的点A ,B ,△AOB (O 是坐标原点)的面积S =45,求直线AB 的方程. 解:(1)由题意|MC |+|MA |=|MC |+|MQ |=|CQ |=4>23,所以轨迹E 是以A ,C 为焦点,长轴长为4的椭圆,即轨迹E 的方程为x 24+y 2=1.(2)记A (x 1,y 1),B (x 2,y 2),由题意,直线AB 的斜率不可能为0,而直线x =1也不满足条件,故可设AB 的方程为x =my +1.由⎩⎪⎨⎪⎧x 2+4y 2=4,x =my +1,消去x 得(4+m 2)y 2+2my -3=0,所以⎩⎪⎨⎪⎧y 1+y 2=-2m4+m 2,y 1·y 2=-34+m2.S =12|OP ||y 1-y 2|=12y 1+y 22-4y 1y 2=2m 2+3m 2+4.由S =45,解得m 2=1,即m =±1.故直线AB 的方程为x =±y +1, 即x +y -1=0或x -y -1=0为所求.1.对于直线l :y =k (x +1)与抛物线C :y 2=4x ,k =±1是直线l 与抛物线C 有唯一交点的____________条件.( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要解析:联立方程组⎩⎪⎨⎪⎧y =k x +1,y 2=4x ,消去y 并整理得,k 2x 2+2(k 2-2)x +k 2=0.当k =0时,上式变为-4x =0,解得x =0,l 与C 有唯一交点, 当k ≠0时,Δ=4(k 2-2)2-4k 4=0,解得k =±1.故k =±1是直线l 与抛物线C 有唯一交点的充分不必要条件. 答案:A2.已知椭圆x 225+y 216=1的焦点是F 1,F 2,如果椭圆上一点P 满足PF 1⊥PF 2,则下面结论正确的是( )A .P 点有两个B .P 点有四个C .P 点不一定存在D .P 点一定不存在解析:设椭圆的基本量为a ,b ,c ,则a =5,b =4,c =3.以F 1F 2为直径构造圆,可知圆的半径r =c =3<4=b ,即圆与椭圆不可能有交点,所以P 点一定不存在.答案:D3.双曲线C 的方程为x 2a 2-y 2b2=1(a >0,b >0),l 1,l 2为其渐近线,F 为右焦点,过F 作l∥l 2且l 交双曲线C 于R ,交l 1于M ,若FR →=λFM →,且λ∈⎝ ⎛⎭⎪⎫12,23,则双曲线的离心率的取值范围为( )A .(1,2]B .(2,3)C .(3,5)D .(5,+∞)解析:由题意得令l 1:y =-b a x ,l 2:y =b ax ,l :y =ba(x -c ),由l 交双曲线C 于R ,令⎩⎪⎨⎪⎧y =bax -c ,x 2a 2-y2b 2=1,解此方程组得R ⎝ ⎛⎭⎪⎫a 2+c 22c,b a ×a 2-c 22c ,故有FR →=⎝ ⎛⎭⎪⎫a 2-c 22c ,b a ×a 2-c 22c ,由l 交l 1于M ,令⎩⎪⎨⎪⎧y =bax -c ,y =-ba x ,解此方程组得M ⎝ ⎛⎭⎪⎫c 2,-bc 2a ,故有FM →=⎝ ⎛⎭⎪⎫-c 2,-bc 2a ,由FR →=λFM →,得⎝ ⎛⎭⎪⎫a 2-c 22c ,b a ×a 2-c 22c =λ⎝ ⎛⎭⎪⎫-c2,-bc 2a ,所以a 2-c 22c =-λc 2,整理得a 2=(1-λ)c 2,即e 2=11-λ,又λ∈⎝ ⎛⎭⎪⎫12,23,所以e 2∈(2,3),即e ∈(2,3).答案:B4.(2014·福建卷)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.解:(1)因为双曲线E 的渐近线分别为y =2x ,y =-2x ,所以b a =2,所以c 2-a 2a=2,故c =5a ,从而双曲线E 的离心率e =ca= 5.(2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 与x 轴相交于点C .当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点, 则|OC |=a ,|AB |=4a , 又因为△OAB 的面积为8, 所以12|OC |·|AB |=8,因此12a ·4a =8,解得a =2,此时双曲线E 的方程为x 24-y 216=1.故存在满足条件的双曲线E ,则E 的方程只能为x 24-y 216=1.以下证明:当直线l 不与x 轴垂直时,双曲线E :x 24-y 216=1也满足条件.设直线l 的方程为y =kx +m ,依题意,得k >2或k <-2,则C ⎝ ⎛⎭⎪⎫-mk,0.记A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +m ,y =2x 得y 1=2m 2-k ,同理得y 2=2m 2+k, 由S △OAB =12|OC |·|y 1-y 2|得,12⎪⎪⎪⎪⎪⎪-m k ·⎪⎪⎪⎪⎪⎪2m 2-k -2m 2+k =8,即m 2=4|4-k 2|=4(k 2-4). 由⎩⎪⎨⎪⎧y =kx +m ,x 24-y216=1得,(4-k 2)x 2-2kmx -m 2-16=0.因为4-k 2<0,所以Δ=4k 2m 2+4(4-k 2)(m 2+16)=-16(4k 2-m 2-16), 又因为m 2=4(k 2-4),所以Δ=0,即l 与双曲线E 有且只有一个公共点. 因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.。
2019-2020年高考数学大一轮复习第八章平面解析几何课时作业61理新人教A版
当直线PA PB 的斜率k pA k PB 存在时,k PA ・ k PB =( )一、选择题2 21 .直线y = kx — k +1与椭圆-9 +鲁=1的位置关系是( )A .相交B •相切 C.相离D .不确定解析:由于直线y = kx — k +1 = k (x — 1) + 1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.答案:A2 2XV2 22•椭圆4 + 3=1的离心率为e ,点(1 , e )是圆X + V — 4x — 4y + 4= 0的一条弦的中点,则此弦所在直线的方程是()A . 3x + 2y — 4= 0 C. 3x — 2y — 2= 0解析:依题意得e = 1,圆心坐标为(2,2),圆心(2,2)与点(1 , 2)的连线的斜率为答案:B答案:CB. 4x + 6y — 7= 0 D. 4x — 6y — 1 = 0I ,所求直线的斜率为-2 13,所以所求直线方程是 V —2—|(x — 1).即 4x + 6y — 7= 0. 33.直线l 过抛物线V 2= 8x 的焦点,且与抛物线交于 A (X 1, y 1) , 0X 2, y 2)两点,则( A . y • y 2= — 64 B. V 1 • y 2=— 8 C. X 1 • X 2= 4D. X 1 -X 2= 16解析:由抛物线的焦点为 F (2,0) ,设直线l 的方程为my= x — 2,由 x = my+ 2,2V = 8x—8my- 16= 0,又 A (X 1,屮),B (X 2, y 2),故 y 1 • V 2=— 16,2 2 2V 1V 2 16‘ 松出 X 1 • X 2— — — 4.故选C.1 x2 4 .已知直线y = ?x与双曲线——2V= 1交于A, B两点,4P为双曲线上不同于A B的点,当直线PA PB的斜率k pA k PB存在时,k PA・k PB=( )D.与P 点位置有关/口 2 36 3636y o — y i y o — y得 y= -, yi +y2=0,yiy2= —-,xi +X2=0 xix2= — 4X-.由 kpA・ kFB = x ;—7i ・ x ;—x2y o + y i y 2 ~2x o + X i X 2答案:A4FB,则直线AB 的斜率为(A .±C.±y i y 2= — 4,②答案:D4 A .91 B.22 C .3解析: 设点 A (x i , y i ) , B (X 2, y 2), F (x o ,y ),则x 2 .9362y036一74知k pA • k pB 为定值-,选 A. 5 .已知A, B 为抛物线 C:y 2= 4x 上的两个不同的点,F 为抛物线C 的焦点,若 FA = —焦点F (i,o ),直线AB 的斜率必存在,且不为—i)(心o),代入y 2= 4x 中化简得 ky 2— 4y — 4k = o.解析:o.故可设直线 AB 的方程为 y = k (x设 A (x i , y i ), B (X 2, 4y 2),贝U y i + y 2 =,①k又由FA = — 4FB 可得y i = — 4y 2 ,③ 联立①②③式解得4 k=± 4.26•若双曲线2x-2—2書=i( a>o , b>o)的渐近线与抛物线by= x2+ 2相切,则此双曲线的离心率是()A . 2 C. 6D. 9b b b 22 b解析:双曲线的渐近线为 y =±-x ,不妨取y = x ,代入抛物线得-x = x + 2,即x - xa a aab 2c+ 2 = 0,贝y △= a - 8 = 0,即卩 b = 8a ,又 b = c — a = 8a ,所以 c = 9a ,故 e =3.答案:B 二、填空题2 27 .直线y = kx + 1与椭圆x + y = 1恒有公共点,贝U m 的取值范围是 ___________ .5 m解析:直线y = kx +1过定点(0,1),n >0,由题意知 住5,1,且5.n > 1,答案:n > 1,且m^5&设抛物线x 2 = 4y 的焦点为F ,经过点R1,4)的直线I 与抛物线相交于 A, B 两点,且 点P 恰为AB 的中点,贝U |AF + |BF = ________________________________________ .解析:设 A (X 1, y 1), B (X 2, y 2),由题意知 X 1 + X 2 = 2,且 x 1 = 4y 1, x 2= 4y 2,两式相减整 理得,y~y = xi : x?=舟,所以直线 AB 的方程为x — 2y + 7 = 0.将x = 2y — 7代入x 2= 4y 整理X 1 — X 2 4 2得 4y — 32y + 49= 0,所以 y 1 + y 2= 8,又由抛物线定乂得 | AF + | BF = y 1 + y 2+ 2 = 10.答案:102 2x y9 •已知椭圆C :孑+詁=1(a >b >0)的左、右焦点分别为 F 1, F 2,离心率为e .直线I : y =ex + a 与x 轴,y 轴分别交于点 A B, M 是直线I 与椭圆C 的一个公共点,设| AM = e | AB , 则该椭圆的离心率 e= ________________ .解析:因为点A, B 分别是直线I : y = ex + a 与x 轴、y 轴的交点,所以点 A, B 的坐标(*)2 2 2 2 2X o V oe —1 e a2因为点M 在椭圆上,所以-+ 2= 1,将(*)式代入,得-2+ - = 1,整理得,e 2B. 3 分别是aJ 0 , (0 , a ).设点M 的坐标是(X 0, y 。
2024届高考一轮复习数学课件(新教材人教A版):解析几何
当m=-k时,直线PQ的方程为y=kx-k=k(x-1). 此时直线PQ过定点(1,0). 当直线PQ的斜率不存在时, 若直线PQ过定点(1,0), P,Q 的坐标分别为1,32,1,-32. 满足 kAP·kAQ=-14. 综上,直线PQ过定点(1,0).
1234
②求△APQ面积的最大值.
1234
则 x1·x2 + 2(x1 + x2) + 4 + 4(kx1 + m)(kx2 + m) = (1 + 4k2)x1x2 + (2 + 4km)(x1+x2)+4m2+4=1+4k32+44mk22-12+(2+4km)·3-+84kmk2+4m2+ 4=0, 则m2-km-2k2=0, ∴(m-2k)(m+k)=0,∴m=2k或m=-k. 当m=2k时,直线PQ的方程为y=kx+2k=k(x+2), 此时直线PQ过定点(-2,0),显然不符合题意;
1234
设l1的方程为x=my+1,M(x1,y1),N(x2,y2), x=my+1,
联立x42+y32=1, 消去 x 得(3m2+4)y2+6my-9=0, 易知 Δ>0 恒成立,由根与系数的关系得 y1+y2=3-m26+m4,y1y2=3m-2+9 4,
由直线 A1M 的斜率为kA1M=x1y+1 2,得直线 A1M 的方程为 y=x1y+1 2(x+2),
第八章 直线和圆、圆锥曲线
必刷大题17 解析几何
1.(2022·南通模拟)已知P为抛物线C:y2=4x上位于第一象限的点,F为C 的焦点,PF与C交于点Q(异于点P).直线l与C相切于点P,与x轴交于点M. 过点P作l的垂线交C于另一点N. (1)证明:线段MP的中点在定直线上;
1234
设 P(x0,y0),则 y20=4x0,
高考数学大一轮复习 第八章 平面解析几何课时作业58
课时作业58 双曲线一、选择题1.已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 解析:因为双曲线的焦距为10,所以c =5. 又因为P (2,1)在渐近线上,且渐近线方程为y =b ax , 所以1=2ba,即a =2b .又因为c 2=a 2+b 2=5b 2=25,所以b 2=5,a 2=20. 即双曲线方程为x 220-y 25=1.答案:A2.(2014·新课标全国卷Ⅰ)已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( )A .2 B.62C.52D .1解析:由题知a 2+3a 2=2,解得a =1. 答案:D3.(2014·天津卷)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x+10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y2100=1 D.3x 2100-3y225=1 解析:渐近线平行于l ,则b a=2,又焦点为(-5,0),则c =5,可得c 2=a 2+b 2=5a 2=25,得a 2=5,b 2=4a 2=20,选A.答案:A4.已知双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),双曲线的一个焦点到一条渐近线的距离为53c (其中c 为双曲线的半焦距长),则该双曲线的离心率为( ) A.32 B.52C.352D.52解析:不妨取双曲线的右焦点(c,0),双曲线的渐近线为y =±b ax ,即bx ±ay =0.则焦点到渐近线的距离为|bc |b 2+a2=53c ,即b =53c ,从而b 2=59c 2=c 2-a 2,所以49c 2=a 2,即e 2=94,所以离心率e =32.答案:A5.(2014·新课标全国卷Ⅰ)已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( )A. 3 B .3 C.3m D .3m解析:由题意,可得双曲线C 为x 23m -y 23=1,则双曲线的半焦距c =3m +3.不妨取右焦点(3m +3,0),其渐近线方程为y =±1mx ,即x ±my =0.所以由点到直线的距离公式得d =3m +31+m= 3.故选A.答案:A6.已知双曲线x 2a 2-y 2b2=1与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1,5)B .(1,5]C .(5,+∞)D .[5,+∞)解析:∵双曲线的一条渐近线方程为y =b ax , 则由题意得b a>2. ∴e =c a=1+⎝ ⎛⎭⎪⎫b a2>1+4= 5.答案:C二、填空题7.(2014·北京卷)设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为________;渐近线方程为________.解析:双曲线y 24-x 2=1的渐近线为y =±2x ,故C 的渐近线为y =±2x ,设C :y 24-x 2=m ,并将点(2,2)代入C 的方程,解得m =-3,故C 的方程为y 24-x 2=-3,即x 23-y 212=1.答案:x 23-y 212=1 y =±2x 8.已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________.解析:不妨设点P 在双曲线的右支上且F 1,F 2分别为左、右焦点,因为PF 1⊥PF 2,所以(22)2=|PF 1|2+|PF 2|2,又因为|PF 1|-|PF 2|=2,所以(|PF 1|-|PF 2|)2=4,可得2|PF 1|·|PF 2|=4,则(|PF 1|+|PF 2|)2=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=12,所以|PF 1|+|PF 2|=2 3. 答案:2 39.(2014·浙江卷)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|PA |=|PB |,则该双曲线的离心率是________.解析:由双曲线的方程可知,它的渐近线方程为y =b a x 和y =-b ax ,分别与x -3y +m =0联立,解得A ⎝⎛⎭⎪⎫-am a -3b ,-bm a -3b ,B ⎝ ⎛⎭⎪⎫-am a +3b ,bm a +3b ,由|PA |=|PB |得,AB 中点Q 的坐标为Q ⎝ ⎛⎭⎪⎪⎫-am a -3b +-am a +3b 2,-bm a -3b +bm a +3b 2,由PQ 与已知直线垂直,解得2a 2=8b 2=8(c 2-a 2),即c 2a 2=54,故e =c a =52. 答案:52三、解答题10.双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为l 1,l 2,经过右焦点F 垂直于l 1的直线分别交l 1,l 2于A ,B 两点.已知|OA →|,|AB →|,|OB →|成等差数列,且BF →与FA →同向.(1)求双曲线的离心率.(2)设直线AB 被双曲线所截得的线段的长为4,求双曲线的方程. 解:(1)设|OA |=m -d ,|AB |=m ,|OB |=m +d , 由勾股定理可得(m -d )2+m 2=(m +d )2, 得d =14m ,tan ∠AOF =b a,tan ∠AOB =tan2∠AOF =AB OA =43,由倍角公式,得2×b a 1-⎝ ⎛⎭⎪⎫b a 2=43,解得b a =12,则离心率e =52. (2)不妨设过F 与l 1垂直的直线方程为y =-a b (x -c ),与双曲线方程x 2a 2-y 2b 2=1联立,将a =2b ,c =5b 代入,化简有154b 2x 2-85bx +21=0, 4=1+⎝ ⎛⎭⎪⎫a b2|x 1-x 2|=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫a b 2[x 1+x 22-4x 1x 2],将数值代入,有4=5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫325b 152-4·28b 25, 解得b =3,故所求的双曲线方程为x 236-y 29=1.11.设A ,B 分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程; (2)已知直线y =33x -2与双曲线的右支交于M 、N 两点,且在双曲线的右支上存在点D ,使OM →+ON →=tOD →,求t 的值及点D 的坐标.解:(1)由题意知a =23,∴一条渐近线为y =b23x .即bx -23y =0.∴|bc |b 2+12= 3.∴b 2=3,∴双曲线的方程为x 212-y 23=1. (2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0), 则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线方程代入双曲线方程得x 2-163x +84=0, 是x 1+x 2=163,y 1+y 2=12.∴⎩⎪⎨⎪⎧x 0y 0=433,x 212-y 203=1.∴⎩⎨⎧x 0=43,y 0=3.∴t =4,点D 的坐标为(43,3).1.已知双曲线x 22-y 2b2=1(b >0)的左,右焦点分别是F 1,F 2,其一条渐近线方程为y =x ,点P (3,y 0)在双曲线上.则PF 1→·PF 2→=( )A .-12B .-2C .0D .4解析:由渐近线方程为y =x 知双曲线是等轴双曲线,不妨设双曲线方程是x 2-y 2=2,于是F 1,F 2坐标分别是(-2,0)和(2,0),且P (3,1)或P (3,-1).由双曲线的对称性,不妨取P (3,1),则PF 1→=(-2-3,-1),PF 2→=(2-3,-1).所以PF 1→·PF 2→=(-2-3,-1)·(2-3,-1)=-(2+3)·(2-3)+1=0.答案:C2.已知点F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过点F且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,2)B .(2,2)C .(3,2)D .(2,3)解析:由题意知,△ABE 为等腰三角形.若△ABE 是锐角三角形,则只需要∠AEB 为锐角.根据对称性,只要∠AEF <π4即可.直线AB 的方程为x =-c ,代入双曲线方程得y 2=b 4a2,取点A ⎝⎛⎭⎪⎫-c ,b 2a ,则|AF |=b 2a ,|EF |=a +c ,只要|AF |<|EF |就能使∠AEF <π4,即b 2a <a +c ,即b 2<a 2+ac ,即c 2-ac -2a 2<0,即e 2-e -2<0,即-1<e <2.又e >1,故1<e <2.答案:A3.设F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,若双曲线右支上存在一点P ,使(OP →+OF 2→)·F 2P →=0(O 为坐标原点),且|PF 1→|=3|PF 2→|,则该双曲线的离心率为________.解析:∵(OP →+OF 2→)·F 2P →=0,∴OB ⊥PF 2,且B 为PF 2的中点.又O 是F 1F 2的中点,∴OB ∥PF 1,∴PF 1⊥PF 2,∴|PF 1|-|PF 2|=2a ,又∵|PF 1→|=3|PF 2→|,∴|PF 2|=(3+1)a ,|PF 1|=(3+3)a ,∴由|PF 1|2+|PF 2|2=|F 1F 2|2,得(12+63)a 2+(4+23)a 2=4c 2,∴e 2=4+23,∴e =3+1.答案:3+14.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6.(1)求a 、b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A 、B 两点,且|AF 1|=|BF 1|,证明:|AF 2|、|AB |、|BF 2|成等比数列.解:(1)由题设知c a =3,即a 2+b 2a2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2. 将y =2代入上式,并求得x =± a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8. ①由题意可设l 的方程为y =k (x -3),|k |<22,代入①并化简得(k 2-8)x 2-6k 2x +9k 2+8=0.设A (x 1,y 1),B (x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1·x 2=9k 2+8k 2-8.于是|AF 1|=x 1+32+y 21=x 1+32+8x 21-8=-(3x 1+1), |BF 1|=x 2+32+y 22=x 2+32+8x 22-8=3x 2+1.由|AF 1|=|BF 1|得-(3x 1+1)=3x 2+1, 即x 1+x 2=-23.故6k 2k 2-8=-23,解得k 2=45,从而x 1·x 2=-199. 由于|AF 2|=x 1-32+y 21=x 1-32+8x 21-8=1-3x 1,|BF 2|=x 2-32+y 22=x 2-32+8x 22-8=3x 2-1.故|AB |=|AF 2|-|BF 2|=2-3(x 1+x 2)=4, |AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16.因而|AF 2|·|BF 2|=|AB |2,所以|AF 2|、|AB |、|BF 2|成等比数列.。
【三维设计】(新课标)高考数学大一轮复习精品讲义 第八章 解析几何(含解析)
第八章 解析几何第一节直线的倾斜角与斜率、直线的方程对应学生用书P115基础盘查一 直线的倾斜角与斜率 (一)循纲忆知1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素(定点、斜率、倾斜角).2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式. (二)小题查验 1.判断正误(1)坐标平面内的任何一条直线均有倾斜角与斜率( ) (2)过点M (a ,b ),N (b ,a )(a ≠b )的直线的倾斜角是45°( ) (3)倾斜角越大,斜率越大( ) 答案:(1)× (2)× (3)×2.(人教A 版教材习题改编)若过两点A (-m,6),B (1,3m )的直线的斜率为12,则m =________.答案:-23.直线x cos α+3y +2=0的倾斜角的范围是________. 解析:设直线的倾斜角为θ,依题意知,k =-33cos α; ∵cos α∈[-1,1],∴k ∈⎣⎢⎡⎦⎥⎤-33,33, 即tan θ∈⎣⎢⎡⎦⎥⎤-33,33. 又θ∈[0,π),∴θ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π.答案:⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π 基础盘查二 直线的方程 (一)循纲忆知掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(二)小题查验 1.判断正误(1)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示( )(2)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示( )(3)直线的截距即是直线与坐标轴的交点到原点的距离( )(4)若直线在x 轴,y 轴上的截距分别为m ,n ,则方程可记为x m +y n=1( ) 答案:(1)× (2)√ (3)× (4)×2.(人教A 版教材习题改编)已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为____________.答案:x +13y +5=03.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为__________________. 解析:①若直线过原点,则k =-43,所以y =-43x ,即4x +3y =0.②若直线不过原点,设直线方程为x a +y a=1,即x +y =a . 则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案:4x +3y =0或x +y +1=0对应学生用书P115考点一 直线的倾斜角与斜率(基础送分型考点——自主练透)[必备知识]1.直线的倾斜角(1)定义:x 轴正向与直线向上的方向所成的角叫做直线的倾斜角. (2)范围:[0,π). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan α.(2)范围:全体实数R .(3)斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为kP 1P 2=y 2-y 1x 2-x 1. [提醒] (1)任意一条直线都有倾斜角,但只有与x 轴不垂直的直线才有斜率. (2)α=0时k =0;α是锐角时k >0;α是钝角时k <0.(3)已知倾斜角θ的范围,求斜率k 的范围时注意下列图象的应用:当k =tan α,α∈⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π时的图象如图:[题组练透]1.若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 等于( )A .-1B .-3C .0D .2解析:选B 由k =-3-2y -12-4=tan 3π4=-1.得-4-2y =2,∴y =-3.2.(2015·常州模拟)若ab <0,则过点P ⎝ ⎛⎭⎪⎫0,-1b 与Q ⎝ ⎛⎭⎪⎫1a ,0的直线PQ 的倾斜角的取值范围是________.解析:k PQ =-1b -00-1a=ab <0,又倾斜角的取值范围为[0,π),故直线PQ 的倾斜角的取值范围为⎝⎛⎭⎪⎫π2,π.答案:⎝⎛⎭⎪⎫π2,π3.(2015·沈阳联考)已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.解析:如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k PA =-2,k l =-1m.∴-1m ≤-2或-1m ≥32.解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为-23≤m ≤12.答案:⎣⎢⎡⎦⎥⎤-23,12[类题通法]1.求倾斜角的取值范围的一般步骤: (1)求出斜率k =tan α的取值范围;(2)利用三角函数的单调性,借助图象或单位圆数形结合,确定倾斜角α的取值范围. 2.求倾斜角时要注意斜率是否存在.考点二 直线的方程(重点保分型考点——师生共研)[必备知识]1.点斜式过点(x 0,y 0),斜率为k 的直线方程为y -y 0=k (x -x 0). 局限性:不含垂直于x 轴的直线. 2.斜截式斜率为k ,纵截距为b 的直线方程为y =kx +b . 局限性:不含垂直于x 轴的直线. 3.两点式过两点(x 1,y 1),(x 2,y 2)(x 1≠x 2,y 1≠y 2)的直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1. 局限性:不含垂直于坐标轴的直线. 4.截距式在x 轴、y 轴上的截距分别为a ,b (a ≠0,b ≠0)的直线方程为x a +y b=1. 局限性:不含垂直于坐标轴和过原点的直线. 5.一般式Ax +By +C =0(A 2+B 2≠0).[提醒] 当直线与x 轴不垂直时,设直线的斜率为k ,则方程为y =kx +b ;当不确定直线的斜率是否存在时,可设直线的方程为ky +x +b =0.[典题例析]已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求:(1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2. 由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0), 即2x -y +2=0.[类题通法]1.在求直线方程时,应选择适当的形式,并注意各种形式的适用条件. 2.对于点斜式、截距式方程使用时要注意分类讨论思想的运用.[演练冲关]求直线过点(5,10)且到原点的距离为5的直线方程. 解:当斜率不存在时,所求直线方程为x -5=0,适合题意; 当斜率存在时,设斜率为k , 则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0. 由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.考点三 直线方程的综合应用(常考常新型考点——多角探明)[多角探明]1.已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当|OA |+|OB |取得最小值时,直线l 的方程; (2)当|MA |2+|MB |2取得最小值时,直线l 的方程. 解:(1)设A (a,0),B (0,b )(a >0,b >0).设直线l 的方程为x a +y b=1,则1a +1b=1,所以|OA |+|OB |=a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+a b +b a≥2+2a b ·ba=4, 当且仅当“a =b =2”时取等号,此时直线l 的方程为x +y -2=0. (2)设直线l 的斜率为k ,则k <0, 直线l 的方程为y -1=k (x -1),则A ⎝⎛⎭⎪⎫1-1k,0,B (0,1-k ),所以|MA |2+|MB |2=⎝ ⎛⎭⎪⎫1-1+1k 2+12+12+(1-1+k )2=2+k 2+1k2≥2+2k 2·1k2=4,当且仅当k 2=1k2,即k =-1时,|MA |2+|MB |2取得最小值4,此时直线l 的方程为x +y-2=0.角度二:与导数几何意义相结合的问题2.已知曲线y =1e x +1,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为________.解析:y ′=-e xx +2=-1e x+1ex +2,因为e x >0,所以e x+1e x ≥2e x·1ex =2(当且仅当e x =1e x ,即x =0时取等号),所以e x+1e x +2≥4,故y ′=-1e x+1ex +2≥-14(当且仅当x =0时取等号).所以当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝ ⎛⎭⎪⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.该切线在x 轴上的截距为2,在y 轴上的截距为12,所以该切线与两坐标轴所围成的三角形的面积S =12×2×12=12.答案:12[类题通法]1.含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.2.求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.对应A 本课时跟踪检测四十五一、选择题1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3C .- 3D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.2.在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)解析:选D 因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB=-k OA =-3,所以直线AB 的点斜式方程为:y -3=-3(x -1).3.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:选D 由题意可知a ≠0.当x =0时,y =a +2. 当y =0时,x =a +2a.∴a +2a=a +2, 解得a =-2或a =1.4.两条直线l 1:x a -y b =1和l 2:x b -y a=1在同一直角坐标系中的图象可以是( )解析:选A 取特殊值法或排除法,可知A 正确.5.(2015·哈尔滨模拟)函数y =a sin x -b cos x 的一条对称轴为x =π4,则直线l :ax-by +c =0的倾斜角为( )A .45°B .60°C .120°D .135°解析:选D 由函数y =f (x )=a sin x -b cos x 的一条对称轴为x =π4知,f (0)=f ⎝ ⎛⎭⎪⎫π2,即-b =a ,∴直线l 的斜率为-1,∴倾斜角为135°.6.(2014·安徽高考)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝ ⎛⎦⎥⎤0,π6B.⎝ ⎛⎦⎥⎤0,π3C.⎣⎢⎡⎦⎥⎤0,π6 D.⎣⎢⎡⎦⎥⎤0,π3 解析:选D 法一:如图,过点P 作圆的切线PA ,PB ,切点为A ,B .由题意知OP =2,OA =1,则sin α=12,所以α=30°,∠BPA =60°.故直线l 的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π3.选D.法二:设过点P 的直线方程为y =k (x +3)-1,则由直线和圆有公共点知|3k -1|1+k 2≤1,解得0≤k ≤ 3.故直线l 的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π3.二、填空题7.若ab >0,且A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________. 解析:根据A (a,0),B (0,b )确定直线的方程为x a +y b=1,又C (-2,-2)在该直线上,故-2a +-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16.答案:168.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x+b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2]. 答案:[-2,2]9.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎦⎥⎤π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值范围是________________.解析:∵k =tan α,α∈⎣⎢⎡⎦⎥⎤π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π∴-3≤k <0或33≤k ≤1. 答案:[-3,0)∪⎣⎢⎡⎦⎥⎤33,1 10.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为______________________________________.解:设直线的斜率为k (k ≠0), 则直线方程为y -2=k (x +2), 由x =0知y =2k +2. 由y =0知x =-2k -2k.由12|2k +2|⎪⎪⎪⎪⎪⎪-2k -2k =1. 得k =-12或k =-2.故直线方程为x +2y -2=0或2x +y +2=0.答案:x +2y -2=0或2x +y +2=0 三、解答题11.已知直线l 过点M (2,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA |·|MB |取得最小值时,直线l 的方程.解:设A (a,0),B (0,b ),则a >0,b >0,直线l 的方程为x a +y b=1,所以2a +1b=1.故|MA |·|MB |=-MA ·MB =-(a -2,-1)·(-2,b -1)=2(a -2)+b -1=2a +b -5=(2a +b )⎝ ⎛⎭⎪⎫2a +1b -5=2b a +2a b≥4,当且仅当a =b =3时取等号, 此时直线l 的方程为x +y -3=0.12.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解:由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1),即直线AB的方程为(3+3)x-2y-3-3=0.第二节两直线的位置关系对应学生用书P117基础盘查一两直线平行与垂直(一)循纲忆知能根据两条直线的斜率判定这两条直线平行或垂直.(二)小题查验1.判断正误(1)当直线l1和l2的斜率都存在时,一定有k1=k2⇒l1∥l2( )(2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1( )(3)已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2为常数),若直线l1⊥l2,则A1A2+B1B2=0( )答案:(1)×(2)×(3)√2.(人教B版教材习题改编)过点(1,2)与直线2x+y-10=0垂直的直线方程为____________.答案:x-2y+3=0基础盘查二两直线的交点(一)循纲忆知能用解方程组的方法求两条相交直线的交点坐标.(二)小题查验1.判断正误(1)l1:y=k1x+b1,l2:y=k2x+b2,当k1≠k2时,l1与l2相交( )(2)过l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0的交点的直线方程为A1x+B1y+C1+λ(A2x +B2y+C2)=0(λ∈R)( )答案:(1)√(2)×2.(人教A版教材习题改编)经过两直线2x+y-8=0与x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线方程为____________.答案:4x-3y-6=0基础盘查三距离公式(一)循纲忆知掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离. (二)小题查验 1.判断正误(1)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2( ) (2)直线外一点与直线上一点的距离的最小值就是点到直线的距离( )(3)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k,且线段AB的中点在直线l 上( )答案:(1)× (2)√ (3)√2.(北师大版教材习题改编)两平行直线l 1,l 2分别过A (1,0),B (0,5),若l 1与l 2的距离为5,则l 1与l 2的方程分别为l 1:________________,l 2:________________.答案:y =0或5x -12y -5=0y =5或5x -12y +60=0对应学生用书P117考点一 两直线的位置关系(基础送分型考点——自主练透)[必备知识]1.判定两直线平行的方法(1)判定两直线的斜率是否存在,若存在,可先化成斜截式,若k 1=k 2,且b 1≠b 2,则两直线平行;若斜率都不存在,还要判定是否重合.(2)直接用以下方法,可避免对斜率是否存在进行讨论: 设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0.2.判定两直线垂直的方法(1)判定两直线的斜率是否存在,若存在,可先化成斜截式,若k 1·k 2=-1,则两直线垂直;若一条直线的斜率不存在,另一条直线的斜率为0,则两直线也垂直.(2)直接用以下方法,可避免对斜率是否存在进行讨论:设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.3.求两条直线的交点对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,它们的交点可由⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0求解.[题组练透]1.(2015·北京海淀区期末)已知直线l 1:x +2y -1=0与直线l 2:mx -y =0平行,则实数m 的取值为( )A .-12B.12 C .2D .-2解析:选A 因为直线l 1:x +2y -1=0与直线l 2:mx -y =0平行,所以m 1=-12≠0,解得m =-12,故选A.2.(2015·浙江名校联考)已知直线l 1:x +(a -2)y -2=0,l 2:(a -2)x +ay -1=0,则“a =-1”是“l 1⊥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若a =-1,则l 1:x -3y -2=0,l 2:-3x -y -1=0,显然两条直线垂直;若l 1⊥l 2,则(a -2)+a (a -2)=0,∴a =-1或a =2,因此,“a =-1”是“l 1⊥l 2”的充分不必要条件,故选A.3.(2015·浙江温州十校联考)过两直线2x -y -5=0和x +y +2=0的交点且与直线3x +y -1=0平行的直线方程为________________.解析: 联立⎩⎪⎨⎪⎧2x -y -5=0,x +y +2=0,得交点P (1,-3).设过点P 且与直线3x +y -1=0平行的直线方程为3x +y +m =0,则3×1-3+m =0,解得m =0.答案:3x +y =0[类题通法]1.充分掌握两直线平行与垂直的条件是解决本类题的关键,对于斜率都存在且不重合的两条直线l 1和l 2,l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.2.两直线交点的求法求两直线交点坐标,就是解由两直线方程组成的方程组,以方程组的解为坐标的点即为交点.3.常见的三大直线系方程(1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ). (2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R ).(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.考点二 距离问题(重点保分型考点——师生共研)[必备知识]1.两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=x 2-x 12+y 2-y 12.2.点到直线的距离公式点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.3.两平行直线间的距离公式两条平行直线Ax +By +C 1=0与Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2.[提醒] 在解题过程中,易忽略点到直线与两平行直线间的距离公式中要求直线方程必须是一般式,导致出现错解.特别是两平行直线间的距离公式中,两直线方程的一般式中的x ,y 的系数要对应相等.[典题例析]已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程.(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34. 此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图.由l ⊥OP ,得k l k OP =-1,所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.[类题通法]解决与点到直线的距离有关的问题应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在.[演练冲关]已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是__________________________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.答案:x +2y -3=0考点三 对称问题(常考常新型考点——多角探明)[必备知识]1.中心对称(1)点关于点对称:若点M (x 1,y 1)与N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点对称问题的主要解法:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用l 1∥l 2,由点斜式得到所求的直线方程.2.轴对称(1)点关于直线的对称若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,则线段P 1P 2的中点在对称轴l 上,且连接P 1P 2的直线垂直于对称轴l ,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,A y 1-y 2=B x 1-x 2,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中A ≠0,x 1≠x 2).特别地,若直线l :Ax +By +C =0满足|A |=|B |,则P 1(x 1,y 1)与P 2(x 2,y 2)坐标关系为⎩⎪⎨⎪⎧Ax 1+By 2+C =0,Ax 2+By 1+C =0.(2)直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[多角探明]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型.归纳起来常见的命题角度有:(1)点关于点对称; (2)点关于线对称; (3)线关于线对称; (4)对称问题的应用. 角度一:点关于点的对称1.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.解:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0, 解得a =4,即点A (4,0)在直线l 上, 所以由两点式得直线l 的方程为x +4y -4=0. 角度二:点关于线对称2.已知直线l :2x -3y +1=0,点A (-1,-2),求点A 关于直线l 的对称点A ′的坐标.解:设A ′(x ,y ),再由已知得⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,故A ′⎝ ⎛⎭⎪⎫-3313,413.角度三:线关于线对称3.在[角度二]的条件下,求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程. 解:在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,得M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. 角度四:对称问题的应用4.已知光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上的C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.解:作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -6-4-6=x -1-2-1,即10x -3y +8=0.[类题通法]对称问题的解题策略解决中心对称问题的关键在于运用中点坐标公式,而解决轴对称问题,一般是转化为求对称点的问题,在求对称点时,关键是抓住两点:一是两对称点的连线与对称轴垂直;二是两对称点的中心在对称轴上,即抓住“垂直平分”,由“垂直”列出一个方程,由“平分”列出一个方程,联立求解.对应B 本课时跟踪检测四十六一、选择题1.与直线3x -4y +5=0关于x 轴对称的直线方程为( ) A .3x +4y +5=0 B .3x +4y -5=0 C .-3x +4y -5=0D .-3x +4y +5=0解析:选A 与直线3x -4y +5=0关于x 轴对称的直线方程是3x -4(-y )+5=0,即3x +4y +5=0.2.已知平面内两点A (1,2),B (3,1)到直线l 的距离分别是2,5-2,则满足条件的直线l 的条数为( )A .1B .2C .3D .4解析:选C 由题知满足题意的直线l 在线段AB 两侧各有1条,又因为|AB |= 5,所以还有1条为过线段AB 上的一点且与AB 垂直的直线,故共3条.3.(2015·广元模拟)若直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离是5,则m +n =( )A .0B .1C .-1D .2解析:选A ∵直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离为5,∴⎩⎪⎨⎪⎧n =-2,|m +3|5=5,∴n =-2,m =2(负值舍去).∴m +n =0.4.(2015·济南模拟)“m =3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( )A. 充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A 由l 1⊥l 2,得2(m +1)(m -3)+2(m -3)=0, ∴m =3或m =-2.∴m =3是l 1⊥l 2的充分不必要条件.5.(2015·云南统考)已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎪⎫0,10a ,则线段AB 的长为( )A .11B .10C .9D .8解析:选B 依题意,a =2,P (0,5),设A (x,2x ),B (-2y ,y ),故⎩⎪⎨⎪⎧x -2y =0,2x +y =10,则A (4,8),B (-4,2),∴|AB |=+2+-2=10.6.已知曲线|x |2-|y |3=1与直线y =2x +m 有两个交点,则m 的取值范围是( )A .(-∞,-4)∪(4,+∞)B .(-4,4)C .(-∞,-3)∪(3,+∞)D .(-3,3)解析:选A 曲线|x |2-|y |3=1的草图如图所示.由该曲线与直线y =2x +m 有两个交点,可得m >4或m <-4.二、填空题7.(2015·重庆检测)已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的距离为________.解析:直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,即3x +4y +12=0,∴直线l 1与l 2的距离为⎪⎪⎪⎪⎪⎪12+732+42=32. 答案:328.(2015·河北秦皇岛检测)直线l 1:y =2x +3关于直线l :y =x +1对称的直线l 2的方程为________________.解析:由⎩⎪⎨⎪⎧y =2x +3,y =x +1,解得直线l 1与l 的交点坐标为(-2,-1), ∴可设直线l 2的方程为y +1=k (x +2), 即kx -y +2k -1=0.在直线l 上任取一点(1,2),由题设知点(1,2)到直线l 1,l 2的距离相等, 由点到直线的距离公式得|k -2+2k -1|k 2+1=|2-2+3|22+1, 解得k =12(k =2舍去), ∴直线l 2的方程为x -2y =0.答案:x -2y =09.若在平面直角坐标系内过点P (1,3),且与原点的距离为d 的直线有两条,则d 的取值范围为________.解析:因为原点到点P 的距离为2,所以过点P 与原点的距离都不大于2,故d ∈(0,2). 答案:(0,2)10.如图,已知A (-2,0),B (2,0),C (0,2),E (-1,0),F (1,0),一束光线从F 点出发射到BC 上的D 点,经BC 反射后,再经AC 反射,落到线段AE 上(不含端点),则直线FD 的斜率的取值范围为________.解析:从特殊位置考虑.如图,∵点A (-2,0)关于直线BC :x +y =2的对称点为A 1(2,4),∴kA 1F =4.又点E (-1,0)关于直线AC :y =x +2的对称点为E 1(-2,1),点E 1(-2,1)关于直线BC :x +y =2的对称点为E 2(1,4),此时直线E 2F 的斜率不存在,∴k FD >k A 1F ,即k FD ∈(4,+∞).答案:(4,+∞)三、解答题11.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值:(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等.解:(1)由已知可得l 2的斜率存在,且k 2=1-a .若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,直线l 1的斜率k 1必不存在,即b =0.又∵l 1过点(-3,-1),∴-3a +4=0,即a =43(矛盾). ∴此种情况不存在,∴k 2≠0.即k 1,k 2都存在,∵k 2=1-a ,k 1=ab,l 1⊥l 2,∴k 1k 2=-1,即a b(1-a )=-1.①又∵l 1过点(-3,-1),∴-3a +b +4=0.②由①②联立,解得a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在, k 1=k 2,即a b=1-a .③ 又∵坐标原点到这两条直线的距离相等,且l 1∥l 2,∴l 1,l 2在y 轴上的截距互为相反数,即4b=b ,④ 联立③④,解得⎩⎪⎨⎪⎧ a =2,b =-2或⎩⎪⎨⎪⎧ a =23,b =2.∴a =2,b =-2或a =23,b =2. 12.(2015·东营模拟)设直线l 的方程为(a +1)x +y -2-a =0(a ∈R ).(1)若直线l 在两坐标轴上的截距相等,求直线l 的方程;(2)若a >-1,直线l 与x 、y 轴分别交于M 、N 两点,O 为坐标原点,求△OMN 面积取最小值时,直线l 的方程.解:(1)当直线l 经过坐标原点时,该直线在两坐标轴上的截距都为0,此时a +2=0,解得a =-2,此时直线l 的方程为-x +y =0,即x -y =0;当直线l 不经过坐标原点,即a ≠-2且a ≠-1时,由直线在两坐标轴上的截距相等可得2+a a +1=2+a , 解得a =0,此时直线l 的方程为x +y -2=0.所以直线l 的方程为x -y =0或x +y -2=0.(2)由直线方程可得M ⎝⎛⎭⎪⎫2+a a +1,0,N (0,2+a ), 因为a >-1,所以S △OMN =12×2+a a +1×(2+a )=12×a ++1]2a +1 =12⎣⎢⎡⎦⎥⎤a ++1a +1+2≥12×⎣⎢⎡⎦⎥⎤2a +1a +1+2=2, 当且仅当a +1=1a +1,即a =0时等号成立. 此时直线l 的方程为x +y -2=0.第三节圆的方程对应学生用书P120基础盘查一 圆的定义及标准方程(一)循纲忆知1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.初步了解用代数方法处理几何问题.(二)小题查验1.判断正误(1)确定圆的几何要素是圆心与半径( )(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0( )(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0( )答案:(1)√ (2)√ (3)√2.(人教A 版教材例题改编)已知圆心为C 的圆过点A (1,1),B (2,-2)且圆心C 在直线l :x -y +1=0上,则圆的标准方程为________________.答案:(x +3)2+(y +2)2=253. (2015·金华十校联考)已知圆C 的半径为1,圆心在第一象限,与y 轴相切,与x 轴相交于点A 、B ,且AB =3,则该圆的标准方程是____________________.解析:依题可设圆C :(x -1)2+(y -b )2=1(b >0),且⎝ ⎛⎭⎪⎫322+b 2=1,可解得b =12, 所以圆C 的标准方程为(x -1)2+⎝ ⎛⎭⎪⎫y -122=1. 答案:(x -1)2+⎝ ⎛⎭⎪⎫y -122=1 基础盘查二 点与圆的位置关系(一)循纲忆知了解点与圆的位置关系(点在圆上、点在圆内、点在圆外).(二)小题查验1.判断正误(1)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0( )(2)已知圆的方程为x 2+y 2-2y =0,过点A (1,2)作该圆的切线只有一条( )答案:(1)√ (2)×2.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是________. 解析:因为点(1,1)在圆(x -a )2+(y +a )2=4的内部,所以(1-a )2+(1+a )2<4.即a 2<1,故-1<a <1.答案:(-1,1)对应学生用书P120考点一 圆的方程(基础送分型考点——自主练透)[必备知识]1.圆的标准方程(x -a )2+(y -b )2=r 2,其中(a ,b )为圆心,r 为半径.2.圆的一般方程 x 2+y 2+Dx +Ey +F =0.当D 2+E 2-4F >0时表示圆,其中⎝ ⎛⎭⎪⎫-D 2,-E 2为圆心,12D 2+E 2-4F 为半径. [提醒] 方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件:⎩⎪⎨⎪⎧ B =0,A =C ≠0,D 2+E 2-4AF >0.[题组练透]1.(2015·潍坊一模)若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为( )A .(x -2)2+(y ±2)2=3B .(x -2)2+(y ±3)2=3 C .(x -2)2+(y ±2)2=4 D .(x -2)2+(y ±3)2=4 解析:选D 因为圆C 经过(1,0),(3,0)两点,所以圆心在直线x =2上,又圆与y 轴相切,所以半径r =2,设圆心坐标为(2,b ),则(1-2)2+b 2=4,b 2=3,b =±3,选D.2.(2015·温州十校联考)已知抛物线C 1:x 2=2y 的焦点为F ,以F 为圆心的圆C 2交C 1于A ,B 两点,交C 1的准线于C ,D 两点,若四边形ABCD 是矩形,则圆C 2的方程为( ) A .x 2+⎝ ⎛⎭⎪⎫y -122=3 B .x 2+⎝ ⎛⎭⎪⎫y -122=4 C .x 2+(y -1)2=12 D .x 2+(y -1)2=16解析:选B 如图,连接AC ,BD ,由抛物线的定义与性质可知圆心坐标为F ⎝ ⎛⎭⎪⎫0,12,而|FA |=|AD |=|FB |为圆的半径r ,于是A ⎝ ⎛⎭⎪⎫32r ,12+12r ,而A 在抛物线上,故⎝ ⎛⎭⎪⎫32r 2=2⎝ ⎛⎭⎪⎫12+12r ,∴r =2,故选B. 3.圆C 通过不同的三点P (k,0),Q (2,0),R (0,1),已知圆C 在点P 处的切线斜率为1,则圆C 的方程为______________.解析:设圆C 的方程为x 2+y 2+Dx +Ey +F =0,则k,2为x 2+Dx +F =0的两根,∴k +2=-D,2k =F ,即D =-(k +2),F =2k ,又圆过R (0,1),故1+E +F =0.∴E =-2k -1.故所求圆的方程为x 2+y 2-(k +2)x -(2k +1)y +2k =0,圆心坐标为⎝ ⎛⎭⎪⎫k +22,2k +12. ∵圆C 在点P 处的切线斜率为1,∴k CP =-1=2k +12-k,∴k =-3. ∴D =1,E =5,F =-6.∴所求圆C 的方程为x 2+y 2+x +5y -6=0.答案:x 2+y 2+x +5y -6=0[类题通法]解题时选择设标准方程还是一般方程的一般原则是:如果由已知条件易得圆心坐标、半径或可用圆心坐标、半径列方程,则通常选择设圆的标准方程,否则选择设圆的一般方程.考点二 与圆有关的最值、范围问题(常考常新型考点——多角探明)[必备知识]1.与圆的几何性质有关的最值(1)记O 为圆心,圆外一点A 到圆上距离最小为|AO |-r ,最大为|AO |+r ;(2)过圆内一点的弦最长为圆的直径,最短为以该点为中点的弦;(3)记圆心到直线的距离为d ,直线与圆相离,则圆上点到直线的最大距离为d +r ,最小距离为d -r ;(4)过两定点的所有圆中,面积最小的是以这两个定点为直径端点的圆.2.与圆上点(x ,y )有关的最值 (1)形如μ=y -b x -a形式的最值问题,可转化为动直线斜率的最值问题; (2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题;(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.[多角探明] 与圆有关的最值问题也是命题的热点内容,它着重考查数形结合与转化思想.归纳起来常见的命题角度有:(1)斜率型最值问题;(2)截距型最值问题;(3)距离型最值问题;(4)利用对称性求最值、范围等;(5)建立目标函数求最值问题.角度一:斜率型最值问题1.已知实数x ,y 满足方程x 2+y 2-4x +1=0.求y x的最大值和最小值. 解:原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. y x的几何意义是圆上一点与原点连线的斜率, 所以设y x =k ,即y =kx .如图所示,当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1= 3,解得k =± 3. 所以y x的最大值为3,最小值为- 3.角度二:截距型最值问题2.在[角度一]条件下求y -x 的最大值和最小值.解:y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2= 3,解得b =-2± 6.所以y -x 的最大值为-2+6,最小值为-2- 6.角度三:距离型最值问题3.在[角度一]条件下求x 2+y 2的最大值和最小值.解:如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最。
新人教版2020版高考数学大一轮复习第八章平面解析几何第3节圆与方程课件理新人教A版
(2)∵圆M的圆心在y=-x+2上,
∴设圆心为(a,2-a),
∵圆M与直线x-y=0Байду номын сангаасx-y+4=0都相切,
∴圆心到直线x-y=0的距离等于圆心到直线x-y+4=0的距离,
即|2a-2|=|2a+2|,解得
2
2
a=0,
∴圆心坐标为(0,2),圆
M
的半径为|2a-2|= 2
2,
∴圆M的标准方程为x2+(y-2)2=2.
解析 (1)法一 设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F
则F1+=10+,D+E+F=0,解得 D=-2,E=0,F=0, 4+2D+F=0,
故圆的方程为x2+y2-2x=0. 法二 设 O(0,0),A(1,1),B(2,0),则 kOA=1,kAB=-1,所以 即 OA⊥AB,所以△OAB 是以角 A 为直角的直角三角形,则线段 B
4.(2019·日照调研)若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实
() A.(-1,1) C.(-∞,-1)∪(1,+∞) 解析 因为点(1,1)在圆的内部,
B.(0,1) D.a=±1
所以(1-a)2+(1+a)2<4,所以-1<a<1. 答案 A
5.(2019·荆州模拟)若圆(x-1)2+(y-1)2=2关于直线y=kx+3对称,
径,则圆心为 C(1,0),半径 r=12|OB|=1,圆的方程为(x-1)2+y2 2x=0.
(2)法一 ∵所求圆的圆心在直线x+y=0上, ∴设所求圆的圆心为(a,-a). 又∵所求圆与直线x-y=0相切, ∴半径 r=2|a2|= 2|a|.
又所求圆在直线 x-y-3=0 上截得的弦长为 6,圆心(a,-a)到
高考数学一轮复习第八章解析几何第二讲两条直线的位置关系学案含解析新人教版
第二讲 两条直线的位置关系知识梳理·双基自测知识梳理知识点一 两条直线的位置关系平面内两条直线的位置关系包括__平行、相交、重合__三种情况. (1)两条直线平行对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 1∥l 2⇔k 1=k 2,且b 1≠b 2. 对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0, l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). (2)两条直线垂直对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 1⊥l 2⇔k 1·k 2=-1.对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2⇔__A 1A 2+B 1B 2=0__. 知识点二 两条直线的交点直线l 1和l 2的交点坐标即为两直线方程组成的方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.相交⇔方程组有__唯一解__; 平行⇔方程组__无解__; 重合⇔方程组有__无数个解__. 知识点三 三种距离公式(1)平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2. 特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2. (2)点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2. 归纳拓展1.求解距离问题的规律运用点到直线的距离公式时,需把直线方程化为一般式;运用两平行线间的距离公式时,需先把两平行线方程中x ,y 的系数化为相同的形式.2.对称问题的求解规律(1)中心对称:转化为中点问题处理.(2)轴对称:转化为垂直平分线问题处理.特殊地:点P (a ,b )关于直线x +y +m =0对称的点坐标为(-b -m ,-a -m ),点P (a ,b )关于直线x -y +m =0对称的点坐标为(b -m ,a +m ).双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若两直线的斜率相等,则两直线平行,反之,亦然.( × )(2)如果两条直线l 1与l 2垂直,那么它们的斜率之积一定等于-1.( × )(3)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( √ )(4)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k 2.( × )(5)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k ,且线段AB 的中点在直线l 上.( √ )题组二 走进教材2.(课本习题改编)过点(1,0)且与直线x -2y -2=0平行的直线方程是( A ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=03.(必修2P 110B 组T2)已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( C ) A . 2 B .2- 2 C .2-1D .2+1[解析] 由题意得|a -2+3|1+1=1.解得a =-1+2或a =-1-2. ∵a >0,∴a =-1+2. 题组三 走向高考4.(2020·高考全国Ⅲ)点(0,-1)到直线y =k (x +1)距离的最大值为( B ) A .1 B . 2 C . 3D .2 [解析] 解法一:由y =k (x +1)可知直线过定点P (-1,0),设A (0,-1),当直线y =k (x +1)与AP 垂直时,点A 到直线y =k (x +1)距离最大,即为|AP |=2,故选B .解法二:因为点(0,-1)到直线y =k (x +1)距离d =|1+k |k 2+1=k 2+2k +1k 2+1=1+2k k 2+1;∵要求距离的最大值,故需k >0;可得d =1+2k +1k≤2,当且仅当k =1时取等号,故选B .5.(2018·全国)坐标原点关于直线x -y -6=0的对称点的坐标为__(6,-6)__.[解析] 设坐标原点关于直线x -y -6=0的对称点的坐标为(a ,b ),则⎩⎨⎧ba ×1=-1a 2-b2-6=0,解得a =6,b =-6,∴坐标原点关于直线x -y -6=0的对称点的坐标为(6,-6).考点突破·互动探究考点一 两条直线平行、垂直的关系——自主练透例1 (1)(2021·高安期中)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( A )A .6x -4y -3=0B .3x -2y -3=0C .2x +3y -2=0D .2x +3y -1=0(2)“m =3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(3)(2021·青岛调研)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m =( C ) A .2 B .-3 C .2或-3D .-2或-3(4)等腰直角三角形斜边的中点是M (4,2),一条直角边所在直线的方程为y =2x ,则另外两边所在直线的方程为__x -3y +2=0、x +2y -14=0__.[解析] (1)因为抛物线y 2=2x 的焦点坐标为⎝⎛⎭⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l 的方程为y =32⎝⎛⎭⎫x -12,化为一般式,得6x -4y -3=0. (2)由l 1⊥l 2,得2(m +1)(m -3)+2(m -3)=0,∴m =3或m =-2,∴m =3是l 1⊥l 2的充分不必要条件.(3)由题意知⎩⎪⎨⎪⎧m (m +1)=6,4m ≠-4,解得m =2或-3.故选C .(4)设斜边所在直线的斜率为k ,由题意知tan π4=2-k 1+2k =1,∴k =13,∴斜边所在直线方程为y -2=13(x -4),即x -3y +2=0,由⎩⎪⎨⎪⎧y =2x x -3y +2=0可知A ⎝⎛⎭⎫25,45, ∴A 关于M 的对称点B ⎝⎛⎭⎫385,165,∴另一条直角边的方程为y -165=-12⎝⎛⎭⎫x -385, 即x +2y -14=0,故填x -3y +2=0、x +2y -14=0.名师点拨(1)当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 〔变式训练1〕(1)(2021·吉林长春模拟)曲线f (x )=2sin x 在x =π3处的切线与直线ax +y -1=0垂直,则a=__1__.(2)(2012·浙江)设a ∈R ,则“a =1”是“直线l 1:ax +2y =0与直线l 2:x +(a +1)y +4=0”平行的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析] (1)由题得f ′(x )=2cos x ,∴k =f ′⎝⎛⎭⎫π3=1.所以1×(-a )=-1,∴a =1. (2)l 1∥l 2⇔a 2+a -2=0⇔a =1或-2,∴a =1是l 1∥l 2的充分不必要条件.故选A . 考点二 两直线的交点、距离问题——师生共研例2 (1)两条垂直直线l 1:2x +y +1=0与l 2:ax +4y -6=0的交点到原点的距离为__2__.(2)已知点P (2,-1).①求过点P 且与原点的距离为2的直线l 的方程;②求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?③是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.(3)(2020·上海)已知直线l 1:x +ay =1,l 2:ax +y =1,若l 1∥l 2,则l 1与l 2的距离为__2__. [解析] (1)kl 1=-2,kl 2=-a 4,由l 1⊥l 2知-2×⎝ ⎛⎭⎪⎫-a 4=-1,∴a =-2,∴l 2:x -2y +3=0,由⎩⎪⎨⎪⎧2x +y +1=0x -2y +3=0得交点A (-1,1),∴|AO |=2. (2)①过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过点P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.②作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图.由l ⊥OP ,得k l k OP =-1, 所以k l =-1k OP=2.由直线方程的点斜式,得y +1=2(x -2),即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5=5.③由②可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.(3)直线l 1:x +ay =1,l 2:ax +y =1, 当l 1∥l 2时,a 2-1=0,解得a =±1; 当a =1时l 1与l 2重合,不满足题意; 当a =-1时l 1∥l 2,此时l 1:x -y -1=0,l 2:x -y +1=0; 则l 1与l 2的距离为d =|-1-1|12+(-1)2=2.名师点拨距离的求法(1)点到直线的距离:可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. (2)两平行直线间的距离:①利用“化归”法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离;②利用两平行线间的距离公式.提醒:在应用两条平行线间的距离公式时,应把直线方程化为一般形式,且使x 、y 的系数分别相等.〔变式训练2〕(1)(2021·西南名校联盟联考)设直线l 1:3x -y -1=0与直线l 2:x +2y -5=0的交点为A ,则A 到直线l :x +by +2+b =0的距离的最大值为( C )A .4B .10C .3 2D .11(2)已知两点A (3,2)和B (-1,4)到直线mx +y +3=0距离相等,则m 的值可以为( C ) A .-6或12B .-12或1C .12或-6D .1或-6(3)(2021·绵阳模拟)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( C )A .95B .185C .2910D .295[解析] (1)解法一:显然l 1与l 2的交点A (1,2),又直线l 过点B (-2,-1),∴所求最大距离为|AB |=32,故选C .解法二:显然l 1与l 2的交点为A (1,2),则A 到直线l 的距离d =|1+2b +2+b |1+b 2=31+b 2+2b1+b 2=31+2b 1+b 2≤32(当且仅当b =1时取等号),故选C . (2)直线mx +y +3=0与直线AB 平行或过AB 中点,∴-m =4-2-1-3=-12,即m =12;AB中点(1,3),∴m +3+3=0即m =-6,故选C .(3)因为36=48≠-125,所以两直线平行,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.考点三,对称问题——多维探究 角度1 线关于点的对称例3 (2021·河北五校联考)直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为( D )A .2x +3y -12=0B .2x -3y -12=0C .2x -3y +12=0D .2x +3y +12=0[解析] 由ax +y +3a -1=0,可得y -1=-a (x +3),所以M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),所以所求方程为2x +3y +12=0,故选D .另解:在直线2x +3y -6=0上取点A (0,2)、B (3,0),则A 、B 关于M 的对称点分别为A ′(-6,0),B ′(-9,2),又k A ′B ′=2-0-9-(-6)=-23,故所求直线方程为y =-23(x +6),即2x +3y+12=0.故选D .角度2 点关于线的对称例4 (2021·长沙一模)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为__6x -y -6=0__.[解析] 设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎨⎧b -4a -(-3)=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. (代入法)当x =-3时,由x -y +3=0得y =0, 当y =4时,由x -y +3=0得x =1. ∴M (-3,4)关于直线l 的对称点为M ′(1,0).又k NM ′=6-02-1=6,∴所求直线方程为y =6(x -1),即6x -y -6=0.[引申]本例中入射光线所在直线的方程为__x -6y +27=0__.[解析] N (2,6)关于直线l 的对称点N ′(3,5),又k MN ′=5-43-(-3)=16,∴所求直线方程为y-4=16(x +3),即x -6y +27=0.角度3 线关于线的对称例5 (2021·合肥模拟)已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( B )A .x -2y +1=0B .x -2y -1=0C .x +y -1=0D .x +2y -1=0[解析] 解法一:因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设它关于l 的对称点为(x ,y ),则⎩⎪⎨⎪⎧x +02-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1,即(1,0),(-1,-1)为l 2上两点,可得l 2的方程为x -2y -1=0.解法二:在l 1上取两点A (0,-2),B (1,0),则A 、B 关于l 的对称点分别为A ′(-1,-1),B ′(1,0),∴k A ′B ′=0-(-1)1-(-1)=12.∴l 2的方程为y -0=12(x -1),即x -2y -1=0.故选B .解法三:设P (x ,y )是直线l 2上任一点,则P 关于直线l 的对称点为P ′(y +1,x -1),又P ′∈l 1,∴2(y +1)-(x -1)-2=0,即直线l 2的方程为x -2y -1=0.故选B .名师点拨对称问题的解法以光线反射为代表的很多实际问题,都可以转化为对称问题,关于对称问题,一般常见的有:(1)中心对称①点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有⎩⎨⎧n -bm -a×(-AB )=-1,A ·a +m 2+B ·b +n2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.特别地,当对称轴的斜率为±1时,可类比关于y =x 的对称问题采用代入法,如(1,3)关于y =x +1的对称点为(3-1,1+1),即(2,2).〔变式训练3〕已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)(角度2)点A 关于直线l 的对称点A ′的坐标;(2)(角度3)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)(角度1)直线l 关于点A (-1,-2)对称的直线l ′的方程. [解析] (1)设A ′(x ,y ),由已知条件得⎩⎨⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413.∴A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则⎩⎨⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,得M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3). 又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.(3)设P (x ,y )在l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ), ∵点P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.名师讲坛·素养提升巧用直线系求直线方程例6 (1)求证:动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0(其中m ∈R )恒过定点,并求出定点坐标;(2)求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.[解析] (1)证明:解法一:令m =0,则直线方程为3x +y +1=0.再令m =1时,直线方程为6x +y +4=0. ①和②联立方程组⎩⎪⎨⎪⎧ 3x +y +1=0,6x +y +4=0,得⎩⎪⎨⎪⎧x =-1,y =2.将点A (-1,2)的坐标代入动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0中,(m 2+2m +3)×(-1)+(1+m -m 2)×2+3m 2+1=(3-1-2)m 2+(-2+2)m +2+1-3=0,故动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0恒过定点A .解法二:将动直线方程按m 降幂排列整理,得m 2(x -y +3)+m (2x +y )+3x +y +1=0,① 不论m 为何实数,①式恒为零,∴有⎩⎪⎨⎪⎧ x -y +3=0,2x +y =0,3x +y +1=0,解得⎩⎪⎨⎪⎧x =-1,y =2. 故动直线恒过点A (-1,2).(2)解法一:解方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得P (0,2). 因为l 3的斜率为34,且l ⊥l 3,所以直线l 的斜率为-43, 由斜截式可知l 的方程为y =-43x +2, 即4x +3y -6=0.解法二:设所求直线方程为4x +3y +m =0,将解法一中求得的交点P (0,2)代入上式可得m =-6,故所求直线方程为4x +3y -6=0.解法三:设直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0.又∵l ⊥l 3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l 的方程为4x +3y -6=0.[引申]若将本例(2)中的“垂直”改为“平行”,则直线l 的方程为__3x -4y +8=0__.名师点拨]1.确定方程含参数的直线所过定点的方法:(1)将直线方程写成点斜式y -y 0=f (λ)(x -x 0),从而确定定点(x 0,y 0).(2)将直线方程整理成关于参数的方程,由方程中各项系数及常数项为0确定定点.(3)给参数取两个不同值,再解直线方程构成的方程组,从而确定定点坐标.2.直线系的主要应用(1)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中A 1B 2-A 2B 1≠0,待定系数λ∈R .在这个方程中,无论λ取什么实数,都得不到A 2x +B 2y +C 2=0,因此它不能表示直线l 2.(2)过定点(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(k 为参数)及x =x 0.(3)平行直线系方程:与直线y =kx +b 平行的直线系方程为y =kx +m (m 为参数且m ≠b );与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠C ,λ是参数).(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0(λ为参数).如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,那么可选用直线系方程来求解.〔变式训练4〕(1)(2021·启东模拟)不论m 为何值时,直线(m -1)x +(2m -1)y =m -5恒过定点( D )A .⎝⎛⎭⎫1,-12 B .(-2,0) C .(2,3) D .(9,-4)(2)与直线l :5x -12y +6=0平行且到l 的距离为2的直线的方程是__5x -12y +32=0或5x -12y -20=0__.[解析] (1)解法一:由(m -1)x +(2m -1)y =m -5,得(x +2y -1)m -(x +y -5)=0,由⎩⎪⎨⎪⎧x +2y -1=0,x +y -5=0,得定点坐标为(9,-4),故选D . 解法二:令m =1,则y =-4;令m =12,则-12x =-92,即x =9,∴直线过定点(9,-4),故选D . 解法三:将直线方程化为(2m -1)(y +a )=(1-m )(x +b ),则⎩⎪⎨⎪⎧ a +b =-52a +b =-1,即⎩⎪⎨⎪⎧a =4b =-9,∴y +4=1-m 2m -1(x -9),故直线过点(9,-4),故选D .(2)设所求直线的方程为5x-12y+c=0,则|c-6|52+122=2,解得c=32或-20,故所求直线的方程为5x-12y+32=0或5x-12y-20=0.。
高考数学一轮复习 第八章 平面解析几何 第二节 两条直线的交点与距离公式学案 文(含解析)新人教A版
第二节 两条直线的交点与距离公式2019考纲考题考情1.两条直线平行与垂直的判定(1)两条直线平行:对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2。
特别地,当直线l 1、l 2的斜率都不存在时,l 1与l 2平行。
与Ax +By +C =0平行的直线,可设为Ax +By +m =0(m ≠C )。
(2)两条直线垂直:如果两条直线l 1、l 2斜率存在,设为k 1、k 2,则l 1⊥l 2⇔k 1·k 2=-1。
特别地,当一条直线斜率为零,另一条直线斜率不存在时,两直线垂直。
与Ax +By +C =0垂直的直线可设为Bx -Ay +n =0。
2.两直线相交(1)交点:直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应。
(2)相交⇔方程组有唯一解,交点坐标就是方程组的解。
(3)平行⇔方程组无解。
(4)重合⇔方程组有无数个解。
3.三种距离公式(1)点A (x 1,y 1)、B (x 2,y 2)间的距离为 |AB |=(x 2-x 1)2+(y 2-y 1)2。
(2)点P (x 0,y 0)到直线l :Ax +By +C =0的距离为d =|Ax 0+By 0+C |A 2+B 2。
(3)两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0(C 1≠C 2)间的距离为d =|C 2-C 1|A 2+B 2。
4.对称问题(1)点P (x 0,y 0)关于点A (a ,b )的对称点为P ′(2a -x 0,2b -y 0)。
(2)设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有⎩⎪⎨⎪⎧y ′-y 0x ′-x 0·k =-1,y ′+y2=k ·x ′+x 02+b ,可求出x ′,y ′。
2016高考数学大一轮复习第八章平面解析几何课时作业62理新人教A版
课时作业62 圆锥曲线中的最值、范围与定值、定点问题1.已知椭圆C 过点M ⎝ ⎛⎭⎪⎫1,62,点F (-2,0)是椭圆的左焦点,点P ,Q 是椭圆C 上的两个动点,且|PF |,|MF |,|QF |成等差数列.(1)求椭圆C 的标准方程;(2)求证:线段PQ 的垂直平分线经过一个定点A .解:(1)设椭圆C的方程为x 2a 2+y2b2=1(a >b >0),由已知,得⎩⎪⎨⎪⎧1a 2+64b2=1,a 2-b 2=2,解得⎩⎪⎨⎪⎧a 2=4,b 2=2,∴椭圆的标准方程为x 24+y 22=1.(2)证明:设P (x 1,y 1),Q (x 2,y 2),由椭圆的标准方程为x 24+y 22=1,可知|PF |=x 1+22+y 21=x 1+22+2-x 212=2+22x 1,同理|QF |=2+22x 2, |MF |=+22+⎝⎛⎭⎪⎫622=2+22, ∵2|MF |=|PF |+|QF |, ∴2⎝ ⎛⎭⎪⎫2+22=4+22(x 1+x 2),∴x 1+x 2=2. (ⅰ)当x 1≠x 2时,由⎩⎪⎨⎪⎧x 21+2y 21=4,x 22+2y 22=4.得x 21-x 22+2(y 21-y 22)=0, ∴y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2. 设线段PQ 的中点为N (1,n ),由k PQ =y 1-y 2x 1-x 2=-12n, 得线段PQ 的中垂线方程为y -n =2n (x -1),∴(2x -1)n -y =0,该直线恒过一定点A ⎝ ⎛⎭⎪⎫12,0. (ⅱ)当x 1=x 2时,P ⎝ ⎛⎭⎪⎫1,-62,Q ⎝ ⎛⎭⎪⎫1,62或P ⎝⎛⎭⎪⎫1,62,Q ⎝ ⎛⎭⎪⎫1,-62, 线段PQ 的中垂线是x 轴,也过点A ⎝ ⎛⎭⎪⎫12,0.综上,线段PQ 的中垂线过定点A ⎝ ⎛⎭⎪⎫12,0.2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点(2,2).(1)求椭圆的标准方程;(2)四边形ABCD 的顶点在椭圆上,且对角线AC ,BD 过原点O ,若k AC ·k BD =-b 2a2.求证:四边形ABCD 的面积为定值. 解:(1)由题意e =ca =22,4a 2+2b2=1,又a 2=b 2+c 2,解得a 2=8,b 2=4,故椭圆的标准方程为x 28+y 24=1.(2)证明:设直线AB 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 2+2y 2=8.得(1+2k 2)x 2+4kmx +2m 2-8=0,Δ=(4km )2-4(1+2k 2)(2m 2-8)=8(8k 2-m 2+4)>0,① 由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=-4km1+2k2,x 1x 2=2m 2-81+2k 2.∵k AC ·k BD =-b 2a 2=-12,∴y 1y 2x 1x 2=-12,∴y 1y 2=-12x 1x 2=-12·2m 2-81+2k 2=-m 2-41+2k 2.又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 22m 2-81+2k +km -4km 1+2k +m 2=m 2-8k 21+2k,∴-m 2-41+2k 2=m 2-8k 21+2k2,∴-(m 2-4)=m 2-8k 2,∴4k 2+2=m 2.设原点到直线AB 的距离为d ,则S △AOB =12|AB |·d =121+k 2·|x 2-x 1|·|m |1+k2 =|m |2x 1+x 22-4x 1x 2=|m |2⎝ ⎛⎭⎪⎫-4km 1+2k 22-4×2m 2-81+2k 2=|m |28m2+2k22=22,∴S 四边形ABCD =4S △AOB =82, 即四边形ABCD 的面积为定值.3.在平面直角坐标系xOy 中,动点P 到两点(-3,0),(3,0)的距离之和等于4,设点P 的轨迹为曲线C ,直线l 过点E (-1,0)且与曲线C 交于A ,B 两点.(1)求曲线C 的轨迹方程;(2)△AOB 的面积是否存在最大值,若存在,求出△AOB 的面积的最大值;若不存在,说明理由.解:(1)由椭圆定义可知,点P 的轨迹C 是以(-3,0),(3,0)为焦点,长半轴长为2的椭圆.故曲线C 的轨迹方程为x 24+y 2=1.(2)△AOB 的面积存在最大值.因为直线l 过点E (-1,0),所以可设直线l 的方程为x =my -1或y =0(舍).由⎩⎪⎨⎪⎧x 24+y 2=1,x =my -1.整理得(m 2+4)y 2-2my -3=0,Δ=(2m )2+12(m 2+4)>0. 设点A (x 1,y 1),B (x 2,y 2),其中y 1>y 2.解得y 1=m +2m 2+3m 2+4,y 2=m -2m 2+3m 2+4.则|y 2-y 1|=4m 2+3m 2+4.因为S △AOB =12|OE |·|y 1-y 2|=2m 2+3m 2+4=2m 2+3+1m 2+3.设t =m 2+3,t ≥3,g (t )=t +1t,则g ′(t )=1-1t2,故当t ≥3时,g ′(t )>0恒成立,则g (t )在区间[3,+∞)上为增函数,所以g (t )≥g (3)=433.所以S △AOB ≤32,当且仅当m =0时取等号. 所以S △AOB 的最大值为32.1.(2014·新课标全国卷Ⅰ)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 解:(1)设F (c,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1. 从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1. 又点O 到直线PQ 的距离d =2k 2+1.所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1. 设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t. 因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0.所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点M (6,1),离心率为22.(1)求椭圆的标准方程.(2)已知点P (6,0),若A ,B 为已知椭圆上两动点,且满足PA →·PB →=-2,试问直线AB 是否恒过定点?若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.解:(1)由题意得c a =22,① 因为椭圆经过点M (6,1),所以6a 2+1b2=1.②又a 2=b 2+c 2,③由①②③,解得a 2=8,b 2=c 2=4. 所以椭圆方程为x 28+y 24=1.(2)①当直线AB 与x 轴不垂直时,设直线的方程为y =kx +m ,代入x 28+y 24=1,消去y 整理得(2k 2+1)x 2+4kmx +2m 2-8=0.由Δ>0,得8k 2+4-m 2>0,(*)设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-82k 2+1.所以PA →·PB →=(x 1-6)(x 2-6)+y 1y 2 =(x 1-6)(x 2-6)+(kx 1+m )(kx 2+m ) =(k 2+1)x 1x 2+(km -6)(x 1+x 2)+6+m 2=-2, 得(k 2+1)x 1x 2+(km -6)(x 1+x 2)+8+m 2=0, (k 2+1)·2m 2-82k 2+1+(km -6)·-4km 2k 2+1+8+m 2=0,整理得(3m +22k )2=0,从而m =-263k ,且满足(*),所以直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -263,故直线AB 经过定点⎝ ⎛⎭⎪⎫263,0.②当直线AB 与x 轴垂直时,若直线为x =263,此时点A ,B 的坐标分别为⎝ ⎛⎭⎪⎫263,263,⎝ ⎛⎭⎪⎫263,-263,亦有PA →·PB →=-2.综上,直线AB 经过定点⎝ ⎛⎭⎪⎫263,0.。
高三人教版数学(理)一轮复习课时作业 第八章 平面解析几何 第一节
课时作业一、选择题1.若k,-1,b三个数成等差数列,则直线y=kx+b必经过定点() A.(1,-2)B.(1,2)C.(-1,2) D.(-1,-2)A[因为k,-1,b三个数成等差数列,所以k+b=-2,即b=-2-k,于是直线方程化为y=kx-k-2,即y+2=k(x-1),故直线必过定点(1,-2).]2.直线2x+11y+16=0关于点P(0,1)对称的直线方程是() A.2x+11y+38=0 B.2x+11y-38=0C.2x-11y-38=0 D.2x-11y+16=0B[因为中心对称的两直线互相平行,并且对称中心到两直线的距离相等,故可设所求直线的方程为2x+11y+C=0,由点到直线的距离公式可得|0+11+16|22+112=|0+11+C|22+112,解得C=16(舍去)或C=-38.]3.直线l1的斜率为2,l1∥l2,直线l2过点(-1,1)且与y轴交于点P,则P点坐标为() A.(3,0) B.(-3,0)C.(0,-3) D.(0,3)D[∵l1∥l2,且l1斜率为2,∴l2的斜率为2.又l2过(-1,1),∴l2的方程为y-1=2(x+1),整理即得y=2x+3.令x=0,得P(0,3).]4.直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c应满足() A.ab>0,bc<0 B.ab>0,bc>0C.ab<0,bc>0 D.ab<0,bc<0A[由于直线ax+by+c=0经过第一、二、四象限,所以直线存在斜率,将方程变形为y =-a b x -cb , 易知-a b <0且-cb >0,故ab >0,bc <0.]5.将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为( )A .y =-13x +13 B .y =-13x +1 C .y =3x -3D .y =13x +1A [将直线y =3x 绕原点逆时针旋转90°得到直线y =-13x ,再向右平移1个单位,所得直线的方程为y =-13(x -1),即y =-13x +13.]6.已知点A (1,-2),B (m ,2),且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2B .-7C .3D .1C [线段AB 的中点⎝ ⎛⎭⎪⎫1+m 2,0代入直线x +2y -2=0中,得m =3.]二、填空题7.(2014·贵阳模拟)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.解析 设直线l 的斜率为k ,则方程为y -2=k (x -1), 在x 轴上的截距为1-2k ,令-3<1-2k <3,解得k <-1或k >12. 答案 (-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞8.(2014·常州模拟)过点P (-2,3)且在两坐标轴上的截距相等的直线l 的方程为________.解析 直线l 过原点时,l 的斜率为-32,直线方程为y =-32x ;l 不过原点时,设方程为x a +ya =1,将点(-2,3)代入,得a =1,直线方程为x +y =1. 综上,l 的方程为x +y -1=0或2y +3x =0. 答案 x +y -1=0或3x +2y =09.不论m 取何值,直线(m -1)x -y +2m +1=0恒过定点________. 解析 把直线方程(m -1)x -y +2m +1=0 整理得(x +2)m -(x +y -1)=0, 则⎩⎨⎧x +2=0,x +y -1=0,得⎩⎨⎧x =-2,y =3. 答案 (-2,3) 三、解答题10.(2012·莆田月考)已知两点A (-1,2),B (m ,3). (1)求直线AB 的方程;(2)已知实数m ∈⎣⎢⎡⎦⎥⎤-33-1,3-1,求直线AB 的倾斜角α的取值范围.解析 (1)当m =-1时,直线AB 的方程为x =-1; 当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1). (2)①当m =-1时,α=π2;②当m ≠-1时,m +1∈⎣⎢⎡⎭⎪⎫-33,0∪(0, 3 ],∴k =1m +1∈(-∞,- 3 ]∪⎣⎢⎡⎭⎪⎫33,+∞, ∴α∈⎣⎢⎡⎭⎪⎫π6,π2∪⎝ ⎛⎦⎥⎤π2,2π3.综合①②知,直线AB 的倾斜角α∈⎣⎢⎡⎦⎥⎤π6,2π3.11.(2014·河北沧州一模)如图,函数f (x )=x +2x 的定义域为(0,+∞).设点P 是函数图象上任一点,过点P 分别作直线y =x 和y 轴的垂线,垂足分别为M ,N .(1)证明:|PM |·|PN |为定值;(2)O 为坐标原点,求四边形OMPN 面积的最小值. 解析 (1)证明:设P ⎝ ⎛⎭⎪⎫x 0,x 0+2x 0(x 0>0),则|PN |=x 0,|PM |=⎪⎪⎪⎪⎪⎪2x 02=1x 0,因此|PM |·|PN |=1.即|PM |·|PN |为定值. (2)直线PM 的方程为y -x 0-2x 0=-(x -x 0),即y =-x +2x 0+2x 0,解方程组⎩⎨⎧y =x ,y =-x +2x 0+2x 0,解得x =y =x 0+12x 0.连接OP , S 四边形OMPN =S △NPO +S △OPM =12|PN ||ON |+12|PM ||OM |=12x 0⎝ ⎛⎭⎪⎫x 0+2x 0+12·1x 0·2⎝ ⎛⎭⎪⎫x 0+12x 0当且仅当x 0=1x 0,即x 0=1时等号成立,因此四边形OMPN 的最小值为1+ 2. 12.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程. 解析 (1)证明:解法一:直线l 的方程可化为y =k (x +2)+1, 故无论k 取何值,直线l 总过定点(-2,1).解法二:设直线过定点(x 0,y 0),则kx 0-y 0+1+2k =0对任意k ∈R 恒成立,即(x 0+2)k -y 0+1=0恒成立, ∴x 0+2=0,-y 0+1=0,解得x 0=-2,y 0=1,故直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1, 要使直线l 不经过第四象限,则⎩⎨⎧k ≥0,1+2k ≥0,解得k 的取值范围是[0,+∞).(3)依题意,直线l 在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k , ∴A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ). 又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2kk (1+2k ) =12⎝ ⎛⎭⎪⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.。
(全国通用)近年高考数学一轮复习 第8章 平面解析几何 第6节 双曲线教师用书 文 新人教A版(20
(全国通用)2018高考数学一轮复习第8章平面解析几何第6节双曲线教师用书文新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用)2018高考数学一轮复习第8章平面解析几何第6节双曲线教师用书文新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用)2018高考数学一轮复习第8章平面解析几何第6节双曲线教师用书文新人教A版的全部内容。
第六节双曲线————-—-———-——-——-——-—-—————-————[考纲传真]1。
了解双曲线的实际背景,了解双曲线在刻画现实世界和解决实际问题中的作用。
2。
了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).3。
理解数形结合的思想.4。
了解双曲线的简单应用.1.双曲线的定义(1)平面内与两个定点F1,F2(|F1F2|=2c>0)的距离之差的绝对值为非零常数2a(2a <2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c〉0.①当2a〈|F1F2|时,M点的轨迹是双曲线;②当2a=|F1F2|时,M点的轨迹是两条射线;③当2a>|F1F2|时,M点不存在.2.双曲线的标准方程和几何性质标准方程错误!-错误!=1(a>0,b〉0)错误!-错误!=1(a〉0,b>0)图形性质范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性对称轴:坐标轴,对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±错误!x y=±错误!x离心率e=错误!,e∈(1,+∞),其中c=错误!a,b,c的关系c2=a2+b2(c>a>0,c〉b>0)3实轴和虚轴等长的双曲线叫做等轴双曲线,其渐近线方程为y=±x,离心率为e=错误!.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×")(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( ) (2)方程错误!-错误!=1(mn〉0)表示焦点在x轴上的双曲线.( )(3)双曲线方程错误!-错误!=λ(m>0,n〉0,λ≠0)的渐近线方程是错误!-错误!=0,即错误!±错误!=0.()(4)等轴双曲线的渐近线互相垂直,离心率等于2。
高三人教版数学(理)一轮复习课时作业 第八章 平面解析几何 第八节
课时作业一、选择题1.设动点P 在直线x -1=0上,O 为坐标原点,以OP 为直角边,点O 为直角顶点作等腰直角三角形OPQ ,则动点Q 的轨迹是( )A .椭圆B .两条平行直线C .抛物线D .双曲线B [设Q (x ,y ),P (1,a ),a ∈R ,则有OP ―→,·OQ ―→,=0,且|OP ―→,|=|OQ ―→,|,∴⎩⎨⎧x 2+y 2=1+a 2,x +ay =0, 消去a ,得x 2+y 2=1+x 2y 2=x 2+y2y 2.∵x 2+y 2≠0,∴y =±1.即动点Q 的轨迹为两条平行直线y =±1.]2.已知点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .x 2-y 28=1(x >1) B .x 2-y 28=1(x <-1)C .x 2+y 28=1(x >0) D .x 2-y 210=1(x >1)A [设另两个切点为E 、F , 如图所示,则|PE |=|PF |,|ME |=|MB |, |NF |=|NB |,从而|PM |-|PN |=|ME |-|NF |=|MB |-|NB |=4-2=2<|MN |,所以P 的轨迹是以M 、N 为焦点,实轴长为2的双曲线的右支.a =1,c =3,则b 2=8.故方程为x 2-y 28=1(x >1).]3.已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆B [设N (a ,b ),M (x ,y ),则a =x -22,b =y2,代入圆O 的方程得点M 的轨迹方程是(x -2)2+y 2=22,此时|PF 1|-|PF 2|=|PF 1|-(|PF 1|±2)=±2,即||PF 1|-|PF 2||=2,故所求的轨迹是双曲线.]4.若点P (x ,y )到点F (0,2)的距离比它到直线y +4=0的距离小2,则点P (x ,y )的轨迹方程为( )A .y 2=8xB .y 2=-8xC .x 2=8yD .x 2=-8yC [点P (x ,y )到点F (0,2)的距离比它到直线y +4=0的距离小2,说明点P (x ,y )到点F (0,2)和到直线y +2=0的距离相等,所以P 点的轨迹为抛物线,设抛物线方程为x 2=2py ,其中p =4,故所求的轨迹方程为x 2=8y .]5.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点的椭圆经过A ,B 两点,则椭圆的另一个焦点F 的轨迹方程是( ) A .y 2-x 248=1(y ≤-1)B .y 2-x 248=1(y ≥1)C .x 2-y 248=1(x ≤-1)D .x 2-y 248=1(x ≥1)A [由题意知|AC |=13,|BC |=15,|AB |=14,又∵|AF |+|AC |=|BF |+|BC |,∴|AF |-|BF |=|BC |-|AC |=2,故点F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线的下支.又c =7,a =1,b 2=48,∴点F 的轨迹方程为y 2-x 248=1(y ≤-1).]6.设过点P (x ,y )的直线分别与x 轴正半轴和y 轴正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0) D .3x 2+32y 2=1(x >0,y >0)A [设A (a ,0),B (0,b )(a ,b >0).可得BP ―→,=(x ,y -b ),P A ―→,=(a -x ,-y ),OQ ―→,=(-x ,y ),AB ―→,=(-a ,b ).由BP ―→,=2P A ―→,得⎩⎨⎧x =2a -2x ,y -b =-2y ,即⎩⎪⎨⎪⎧a =32x ,b =3y .由OQ ―→,·AB ―→,=1得ax +by =1.所以32x 2+3y 2=1(x >0,y >0).] 二、填空题7.点P 是圆C :(x +2)2+y 2=4上的动点,定点F (2,0),线段PF 的垂直平分线与直线CP 的交点为Q ,则点Q 的轨迹方程是________. 解析 依题意有|QP |=|QF |, 则||QC |-|QF ||=|CP |=2,又|CF |=4>2,故点Q 的轨迹是以C 、F 为焦点的双曲线,a =1,c =2,得b 2=3,所求轨迹方程为x 2-y 23=1.答案 x 2-y 23=18.直线x a +y2-a=1与x ,y 轴交点的中点的轨迹方程__________.解析 设直线x a +y2-a =1与x ,y 轴交点为A (a ,0),B (0,2-a ),A ,B 中点为M (x ,y ),则x =a 2,y =1-a2,消去a ,得x +y =1, ∵a ≠0,a ≠2,∴x ≠0,x ≠1.答案 x +y =1(x ≠0,x ≠1)9.由抛物线y 2=2x 上任意一点P 向其准线l 引垂线,垂足为Q ,连接顶点O 与P 的直线和连接焦点F 与Q 的直线交于点R ,则点R 的轨迹方程为______________.解析 设P (x 1,y 1),R (x ,y ), 则Q ⎝ ⎛⎭⎪⎫-12,y 1,F ⎝ ⎛⎭⎪⎫12,0, 则直线OP 的方程为y =y 1x 1x ,①直线FQ 的方程为y =-y 1⎝ ⎛⎭⎪⎫x -12,②由①②得x 1=2x 1-2x ,y 1=2y1-2x ,将其代入y 2=2x , 可得y 2=-2x 2+x .即点R 的轨迹方程为y 2=-2x 2+x . 答案 y 2=-2x 2+x 三、解答题10.已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆的圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交动点C 的轨迹于P ,Q 两点,交直线l 1于点R ,求,的最小值.解析 (1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线, ∴动点C 的轨迹方程为x 2=4y .(2)由题意知,直线l 2方程可设为y =kx +1(k ≠0), 与抛物线方程联立消去y ,得x 2-4kx -4=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4. 又易得点R 的坐标为⎝ ⎛⎭⎪⎫-2k ,-1,,=⎝ ⎛⎭⎪⎫x 1+2k ,y 1+1·⎝ ⎛⎭⎪⎫x 2+2k ,y 2+1 =⎝ ⎛⎭⎪⎫x 1+2k ⎝ ⎛⎭⎪⎫x 2+2k +(kx 1+2)(kx 2+2) =(1+k 2)x 1x 2+⎝ ⎛⎭⎪⎫2k +2k (x 1+x 2)+4k 2+4=-4(1+k 2)+4k ⎝ ⎛⎭⎪⎫2k +2k +4k 2+4=4⎝ ⎛⎭⎪⎫k 2+1k 2+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号,≥4×2+8=16,即RP ―→,·RQ ―→,的最小值为16.11.已知椭圆的中心是坐标原点O ,焦点F 1,F 2在y 轴上,它的一个顶点为A (2,0),且中心O 到直线AF 1的距离为焦距的14,过点M (2,0)的直线l 与椭圆交于不同的两点P ,Q ,点N 在线段PQ 上. (1)求椭圆的标准方程;(2)设|PM |·|NQ |=|PN |·|MQ |,求动点N 的轨迹方程. 解析 (1)设椭圆的标准方程是y 2a 2+x 2b 2=1(a >b >0). 由于椭圆的一个顶点是A (2,0),故b 2=2. 根据题意得∠AF 1O =π6,sin ∠AF 1O =ba , 即a =2b ,a 2=8,所以椭圆的标准方程是y 28+x 22=1.(2)设P (x 1,y 1),Q (x 2,y 2),N (x ,y ),由题意知,直线l 的斜率存在,设直线l 的方程为y =k (x -2).直线l 的方程与椭圆方程联立消去y 得 (k 2+4)x 2-4k 2x +4k 2-8=0. 由Δ=16k 4-4(k 2+4)(4k 2-8)>0, 得-2<k <2.根据根与系数的关系得x 1+x 2=4k 24+k 2,x 1x 2=4k 2-84+k 2.又|PM |·|NQ |=|PN |·|MQ |, 即(2-x 1)(x 2-x )=(x -x 1)(2-x 2).解得x =1,代入直线l 的方程得y =-k ,y ∈(-2,2). 所以动点N 的轨迹方程为x =1,y ∈(-2,2).12.(2012·辽宁高考)如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左,右顶点. (1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积; (2)求直线AA 1与直线A 2B 的交点M 的轨迹方程. 解析 (1)设A (x 0,y 0), 则矩形ABCD 的面积S =4|x 0||y 0|. 由x 209+y 20=1得y 20=1-x 209,从而x 20y 20=x 20⎝ ⎛⎭⎪⎫1-x 209=-19⎝ ⎛⎭⎪⎫x 20-922+94.当x 20=92,y 20=12时,S max =6.从而t =5时,矩形ABCD 的面积最大,最大面积为6.(2)由A (x 0,y 0),B (x 0,-y 0),A 1(-3,0),A 2(3,0)知 直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3).② 由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).。
2021届高考数学一轮复习 第8章《平面解析几何》(第1课时)知识过关检测 理 新人教A版
最新届高考数学(理)一轮复习知识过关检测:第8章《平面解析几何》(第1课时)(新人教A 版)一、选择题1.(最新·聊城质检)关于直线的倾斜角与斜率,下列说法正确的是( ) A .所有的直线都有倾斜角和斜率B .所有的直线都有倾斜角但不一定都有斜率C .直线的倾斜角和斜率有时都不存在D .所有的直线都有斜率,但不一定有倾斜角解析:选B.所有的直线都一定有倾斜角,而倾斜角为90°的直线不存在斜率. 2.直线5x -2y -10=0在x 轴上的截距为a ,在y 轴上的截距为b ,则( ) A .a =2,b =5 B .a =2,b =-5 C .a =-2,b =5 D .a =-2,b =-5 解析:选B.直线5x -2y =10可化为x 2+y-5=1,∴a =2,b =-5.3.(最新·东营质检)直线经过A (2,1),B (1,m 2)(m ∈R )两点,那么直线l 的倾斜角α的取值范围是( )A .0≤α<πB .0≤α≤π4或π2<α<πC .0≤α≤π4 D.π4≤α<π2或π2<α<π解析:选B.直线l 的斜率k =m 2-11-2=1-m 2≤1,又直线l 的倾斜角为α,则有tan α≤1,即tan α<0或0≤tan α≤1,所以π2<α<π或0≤α≤π4,故选B.4.已知ab <0,bc <0,则直线ax +by =c 通过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限解析:选C.原直线可化为y =-ab x +c b ,则k =-a b >0,c b<0.故直线通过第一、三、四象限.5.直线x +a 2y -a =0(a >0,a 是常数),当此直线在x ,y 轴上的截距和最小时,a 的值是( )A .1B .2 C. 2 D .0解析:选A.方程可化为x a +y 1a=1,因为a >0,所以截距之和t =a +1a≥2,当且仅当a=1a,即a =1时取等号.二、填空题6.已知直线的倾斜角是60°,在y 轴上的截距是5,则该直线的方程为________. 解析:因为直线的倾斜角是60°,所以直线的斜率为k =tan60°=3,又因为直线在y 轴上的截距是5,由斜截式,得直线的方程为y =3x +5.答案:y =3x +57.若经过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是________.解析:∵直线的斜率k =a -1a +2,且直线的倾斜角为钝角, ∴a -1a +2<0,解得-2<a <1. 答案:(-2,1)8.(最新·日照质检)若点A (a,0),B (0,b ),C (1,-1)(a >0,b <0)三点共线,则a -b 的最小值等于________.解析:因为A (a,0),B (0,b ),C (1,-1)三点共线,所以k AB =k AC ,即b -00-a =-1-01-a,整理得1a -1b=1,于是a -b =(a -b )·⎝ ⎛⎭⎪⎫1a -1b =2-b a -a b=2+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-b a +⎝ ⎛⎭⎪⎫-a b ≥2+2=4,即a -b 的最小值等于4. 答案:4 三、解答题9.求下列直线l 的方程:(1)过点A (2,1),它的倾斜角是直线l 1:3x +4y +5=0的倾斜角的一半; (2)过点A (2,1)和直线x -2y -3=0与2x -3y -2=0的交点.解:(1)设直线l 与l 1的倾斜角分别为α、β,则α=β2, 又tan β=-34,则-34=2tan α1-tan 2α,解得tan α=3,或tan α=-13(舍去). 由点斜式得y -1=3(x -2),即3x -y -5=0.(2)解方程组⎩⎪⎨⎪⎧x -2y -3=0,2x -3y -2=0,得⎩⎪⎨⎪⎧x =-5,y =-4,即两条直线的交点坐标为(-5,-4).由两点式得y -1-4-1=x -2-5-2,即5x -7y -3=0.10.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16.解:(1)设直线l 的方程是y =k (x +3)+4,它在x 轴、y 轴上的截距分别是-4k-3,3k +4,由已知,得|(3k +4)(-4k-3)|=6,解得k 1=-23或k 2=-83.所以直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.一、选择题1.已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是( )A .k ≥12B .k ≤-2C .k ≥12或k ≤-2D .-2≤k ≤12解析:选D.由已知直线l 恒过定点P (2,1),若l 与线段AB 相交,则k PA ≤k ≤k PB ,∵k PA=-2,k PB =12,∴-2≤k ≤12.2.(最新·东营质检)过点(1,3)作直线l ,若l 经过点(a,0)和(0,b ),且a 、b ∈N +,则可作出这样的直线l 的条数为( )A .1B .2C .3D .多于3解析:选B.由题意可知直线l :x a +y b =1,∴1a +3b=1,∴b =3a a -1=3a -1a -1+3a -1=3+3a -1(a ≥2,且a ∈N +). ∴a -1为3的正约数,当a -1=1时,b =6,当a -1=3时,b =4,所以这样的直线有2条,故选B.二、填空题 3.已知A (3,0),B (0,4),动点P (x ,y )在线段AB 上移动,则xy 的最大值等于________.解析:AB 所在直线方程为x 3+y4=1,∴x 3·y 4≤14(x 3+y 4)2=14, ∴xy ≤3,当且仅当x 3=y4时取等号.答案:34.(2011·高考安徽卷)在平面直角坐标系中,如果x 与y 都是整数,就称点(x ,y )为整点.下列命题中正确的是________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点; ②如果k 与b 都是无理数,则直线y =kx +b 不经过任何整点; ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点;④直线y =kx +b 经过无穷多个整点的充分必要条件是:k 与b 都是有理数; ⑤存在恰经过一个整点的直线.解析:①正确.设y =2x +12,当x 是整数时,y 是无理数,(x ,y )必不是整点.②不正确.设k =2,b =-2,则y =2(x -1),过整点(1,0).③正确.直线l 经过无穷多个整点,则直线l 必然经过两个不同的整点,显然成立;反之亦成立,设直线l 经过两个整点P 1(x 1,y 1)、P 2(x 2,y 2),则l 的方程为(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1),令x =x 1+k (x 2-x 1)(k ∈Z ),则x ∈Z ,且y =k (y 2-y 1)+y 1也是整数,故直线l 经过无穷多个整点.④不正确.由③知直线l 经过无穷多个整点的充要条件是直线l 经过两个不同的整点,设为P 1(x 1,y 1)、P 2(x 2,y 2),则直线l 的方程为(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1),又∵直线方程为y =kx +b 的形式,∴x 2≠x 1,∵y =y 2-y 1x 2-x 1x +y 1x 2-y 2x 1x 2-x 1,∴k ,b ∈Q ;反之不成立,若k ,b ∈Q ,设y =13x +14,则x=3y -34,若y ∈Z ,则⎝ ⎛⎭⎪⎫3y -34∈/Z ,即x ∈/Z ,即由k ,b ∈Q 得不到y =kx +b 经过无穷多个整点. ⑤正确.直线y =2(x -1)只经过整点(1,0).答案:①③⑤ 三、解答题5.直线l 过点P (-2,1)且斜率为k (k >1),将直线l 绕P 点按逆时针方向旋转45°得到直线m ,若直线l 和m 分别和y 轴交于Q 、R 两点.(1)用k 表示直线m 的斜率;(2)当k 为何值时,△PQR 的面积最小,并求面积最小时直线l 的方程. 解:(1)设直线l 的倾斜角为α,则直线m 的倾斜角为α+45°,故k m =tan (45°+α)=1+tan α1-tan α=1+k1-k.(2)由题意及(1)可知直线l :y -1=k (x +2),直线m :y -1=1+k1-k(x +2),故Q (0,2k+1),R ⎝ ⎛⎭⎪⎫0,k +31-k .∴|RQ |=|2k +1-k +31-k |=2k +4k -1+2=2(k -1)+4k -1+4.∴S △PQR =12×2×⎣⎢⎡⎦⎥⎤2k -1+4k -1+4 =2(k -1)+4k -1+4.∵k >1,∴k -1>0, ∴S △PQR ≥42+4.当且仅当2(k -1)=4k -1,即k =2+1时等号成立,此时直线l 方程为(2+1)x -y +22+3=0.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业61 直线与圆锥曲线的位置关系一、选择题1.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.答案:A2.椭圆x 24+y 23=1的离心率为e ,点(1,e )是圆x 2+y 2-4x -4y +4=0的一条弦的中点,则此弦所在直线的方程是( )A .3x +2y -4=0B .4x +6y -7=0C .3x -2y -2=0D .4x -6y -1=0解析:依题意得e =12,圆心坐标为(2,2),圆心(2,2)与点(1,12)的连线的斜率为2-122-1=32,所求直线的斜率为-23,所以所求直线方程是y -12=-23(x -1).即4x +6y -7=0. 答案:B3.直线l 过抛物线y 2=8x 的焦点,且与抛物线交于A (x 1,y 1),B (x 2,y 2)两点,则( ) A .y 1·y 2=-64 B .y 1·y 2=-8 C .x 1·x 2=4D .x 1·x 2=16解析:由抛物线的焦点为F (2,0),设直线l 的方程为my =x -2,由⎩⎪⎨⎪⎧x =my +2,y 2=8x ⇒y2-8my -16=0,又A (x 1,y 1),B (x 2,y 2),故y 1·y 2=-16,x 1·x 2=y 21y 2264=16264=4.故选C.答案:C4.已知直线y =12x 与双曲线x 29-y24=1交于A ,B 两点,P 为双曲线上不同于A ,B 的点,当直线PA ,PB 的斜率k PA ,k PB 存在时,k PA ·k PB =( )A.49B.12C.23D .与P 点位置有关解析:设点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则由⎩⎪⎨⎪⎧y =12x x 29-y24=1得y 2=367,y 1+y 2=0,y 1y 2=-367,x 1+x 2=0,x 1x 2=-4×367.由k PA ·k PB =y 0-y 1x 0-x 1·y 0-y 2x 0-x 2=y 20+y 1y 2x 0+x 1x 2=y 20-367y 24+-4×367=y 20-36794y 20-367=49知k PA ·k PB 为定值49,选A.答案:A5.已知A ,B 为抛物线C :y 2=4x 上的两个不同的点,F 为抛物线C 的焦点,若FA →=-4FB →,则直线AB 的斜率为( )A .±23B .±32C .±34D .±43解析:焦点F (1,0),直线AB 的斜率必存在,且不为0.故可设直线AB 的方程为y =k (x -1)(k ≠0),代入y 2=4x 中化简得ky 2-4y -4k =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4k,①y 1y 2=-4,②又由FA →=-4FB →可得y 1=-4y 2,③ 联立①②③式解得k =±43.答案:D6.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+2相切,则此双曲线的离心率是( )A .2B .3 C. 6D .9解析:双曲线的渐近线为y =±b a x ,不妨取y =b a x ,代入抛物线得b ax =x 2+2,即x 2-b ax+2=0,则Δ=b 2a 2-8=0,即b 2=8a 2,又b 2=c 2-a 2=8a 2,所以c 2=9a 2,故e =c a=3.答案:B 二、填空题7.直线y =kx +1与椭圆x 25+y 2m=1恒有公共点,则m 的取值范围是________.解析:直线y =kx +1过定点(0,1),由题意知⎩⎨⎧m >0,m ≠5,m ≥1,∴m ≥1,且m ≠5.答案:m ≥1,且m ≠58.设抛物线x 2=4y 的焦点为F ,经过点P (1,4)的直线l 与抛物线相交于A ,B 两点,且点P 恰为AB 的中点,则|AF →|+|BF →|=________.解析:设A (x 1,y 1),B (x 2,y 2),由题意知x 1+x 2=2,且x 21=4y 1,x 22=4y 2,两式相减整理得,y 1-y 2x 1-x 2=x 1+x 24=12,所以直线AB 的方程为x -2y +7=0.将x =2y -7代入x 2=4y 整理得4y 2-32y +49=0,所以y 1+y 2=8,又由抛物线定义得|AF →|+|BF →|=y 1+y 2+2=10.答案:109.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A ,B ,M 是直线l 与椭圆C 的一个公共点,设|AM |=e |AB |,则该椭圆的离心率e =________.解析:因为点A ,B 分别是直线l :y =ex +a 与x 轴、y 轴的交点,所以点A ,B 的坐标分别是⎝ ⎛⎭⎪⎫-a e ,0,(0,a ).设点M 的坐标是(x 0,y 0),由|AM |=e |AB |,得⎩⎪⎨⎪⎧x 0=a e e -,y 0=ea .(*)因为点M 在椭圆上,所以x 20a 2+y 20b 2=1,将(*)式代入,得e -2e 2+e 2a 2b2=1,整理得,e 2+e -1=0,解得e =5-12. 答案:5-12三、解答题10.已知椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率为32,抛物线C 2:x 2=2py (p >0)的焦点是椭圆的顶点.(1)求抛物线C 2的方程.(2)过点M (-1,0)的直线l 与抛物线C 2交于E ,F 两点,过E ,F 作抛物线C 2的切线l 1,l 2,当l 1⊥l 2时,求直线l 的方程.解:(1)∵椭圆C 1的长半轴长a =2,半焦距c =4-b 2,由e =c a =4-b 22=32得b 2=1,∴椭圆C 1的上顶点为(0,1), ∴抛物线C 2的焦点为(0,1), ∴抛物线C 2的方程为x 2=4y .(2)由已知可得直线l 的斜率必存在,设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2).由x 2=4y 得y =14x 2,∴y ′=12x .∴切线l 1,l 2的斜率分别为12x 1,12x 2.当l 1⊥l 2时,12x 1·12x 2=-1,即x 1x 2=-4.由⎩⎪⎨⎪⎧y =k x +x 2=4y 得x 2-4kx -4k =0,∴Δ=(4k )2-4×(-4k )>0,解得k <-1或k >0.①且x 1x 2=-4k =-4,得k =1,满足①式. ∴直线l 的方程为x -y +1=0.11.已知圆C :(x +3)2+y 2=16,点A (3,0),Q 是圆上一动点,AQ 的垂直平分线交CQ 于点M ,设点M 的轨迹为E .(1)求轨迹E 的方程;(2)过点P (1,0)的直线l 交轨迹E 于两个不同的点A ,B ,△AOB (O 是坐标原点)的面积S =45,求直线AB 的方程. 解:(1)由题意|MC |+|MA |=|MC |+|MQ |=|CQ |=4>23,所以轨迹E 是以A ,C 为焦点,长轴长为4的椭圆,即轨迹E 的方程为x 24+y 2=1.(2)记A (x 1,y 1),B (x 2,y 2),由题意,直线AB 的斜率不可能为0,而直线x =1也不满足条件,故可设AB 的方程为x =my +1.由⎩⎪⎨⎪⎧x 2+4y 2=4,x =my +1,消去x 得(4+m 2)y 2+2my -3=0,所以⎩⎪⎨⎪⎧y 1+y 2=-2m4+m 2,y 1·y 2=-34+m2.S =12|OP ||y 1-y 2|=12y 1+y 22-4y 1y 2=2m 2+3m 2+4.由S =45,解得m 2=1,即m =±1.故直线AB 的方程为x =±y +1, 即x +y -1=0或x -y -1=0为所求.1.对于直线l :y =k (x +1)与抛物线C :y 2=4x ,k =±1是直线l 与抛物线C 有唯一交点的____________条件.( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要解析:联立方程组⎩⎪⎨⎪⎧y =k x +,y 2=4x ,消去y 并整理得,k 2x 2+2(k 2-2)x +k 2=0.当k =0时,上式变为-4x =0,解得x =0,l 与C 有唯一交点, 当k ≠0时,Δ=4(k 2-2)2-4k 4=0,解得k =±1.故k =±1是直线l 与抛物线C 有唯一交点的充分不必要条件. 答案:A2.已知椭圆x 225+y 216=1的焦点是F 1,F 2,如果椭圆上一点P 满足PF 1⊥PF 2,则下面结论正确的是( )A .P 点有两个B .P 点有四个C .P 点不一定存在D .P 点一定不存在解析:设椭圆的基本量为a ,b ,c ,则a =5,b =4,c =3.以F 1F 2为直径构造圆,可知圆的半径r =c =3<4=b ,即圆与椭圆不可能有交点,所以P 点一定不存在.答案:D3.双曲线C 的方程为x 2a 2-y 2b2=1(a >0,b >0),l 1,l 2为其渐近线,F 为右焦点,过F 作l∥l 2且l 交双曲线C 于R ,交l 1于M ,若FR →=λFM →,且λ∈⎝ ⎛⎭⎪⎫12,23,则双曲线的离心率的取值范围为( )A .(1,2]B .(2,3)C .(3,5)D .(5,+∞)解析:由题意得令l 1:y =-b a x ,l 2:y =b ax ,l :y =ba(x -c ),由l 交双曲线C 于R ,令⎩⎪⎨⎪⎧y =bax -c ,x 2a 2-y2b 2=1,解此方程组得R ⎝ ⎛⎭⎪⎫a 2+c 22c,b a ×a 2-c 22c ,故有FR →=⎝ ⎛⎭⎪⎫a 2-c 22c ,b a ×a 2-c 22c ,由l 交l 1于M ,令⎩⎪⎨⎪⎧y =bax -c ,y =-ba x ,解此方程组得M ⎝ ⎛⎭⎪⎫c 2,-bc 2a ,故有FM →=⎝ ⎛⎭⎪⎫-c 2,-bc 2a ,由FR →=λFM →,得⎝ ⎛⎭⎪⎫a 2-c 22c,b a ×a 2-c 22c =λ⎝ ⎛⎭⎪⎫-c 2,-bc 2a ,所以a 2-c 22c =-λc 2,整理得a 2=(1-λ)c 2,即e 2=11-λ,又λ∈⎝ ⎛⎭⎪⎫12,23,所以e 2∈(2,3),即e ∈(2,3).答案:B4.(2014·福建卷)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.解:(1)因为双曲线E 的渐近线分别为y =2x ,y =-2x ,所以b a =2,所以c 2-a 2a=2,故c =5a ,从而双曲线E 的离心率e =ca= 5.(2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 与x 轴相交于点C .当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点, 则|OC |=a ,|AB |=4a , 又因为△OAB 的面积为8, 所以12|OC |·|AB |=8,因此12a ·4a =8,解得a =2,此时双曲线E 的方程为x 24-y 216=1.故存在满足条件的双曲线E ,则E 的方程只能为x 24-y 216=1.以下证明:当直线l 不与x 轴垂直时,双曲线E :x 24-y 216=1也满足条件.设直线l 的方程为y =kx +m ,依题意,得k >2或k <-2,则C ⎝ ⎛⎭⎪⎫-mk,0.记A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +m ,y =2x 得y 1=2m 2-k ,同理得y 2=2m 2+k, 由S △OAB =12|OC |·|y 1-y 2|得,12⎪⎪⎪⎪⎪⎪-m k ·⎪⎪⎪⎪⎪⎪2m 2-k -2m 2+k =8,即m 2=4|4-k 2|=4(k 2-4). 由⎩⎪⎨⎪⎧y =kx +m ,x 24-y216=1得,(4-k 2)x 2-2kmx -m 2-16=0.因为4-k 2<0,所以Δ=4k 2m 2+4(4-k 2)(m 2+16)=-16(4k 2-m 2-16), 又因为m 2=4(k 2-4),所以Δ=0,即l 与双曲线E 有且只有一个公共点. 因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.。