钨薄膜的制备以及氢氦辐照效应研究

合集下载

氢氦在钨中的影响的第一性原理研究

氢氦在钨中的影响的第一性原理研究

氢氦在钨中的影响的第一性原理研究张峥;赵强;欧阳晓平【摘要】采用PBE形式的广义梯度近似(GGA)的第一性原理计算方法研究了氢或氦在钨中产生点缺陷的形成能以及缺陷形成后对钨的弹性的影响;采用同样的方法研究了空位和自间隙原子这两种缺陷.经计算发现:氢氦掺杂在钨的晶体结构中会引起晶体体积的变化,其变化结果跟掺杂的位置有关,在四面体或八面体处的掺杂会使晶体体积增加,替位掺杂会引起晶体体积减小;从形成能来看,氢掺杂在钨中最占优的位置是四面体处,而氦最占优的则是替位掺杂.在几种缺陷中,形成能最小的是氢的四面体掺杂,形成能最大的则是钨的自间隙原子形成;钨中若含有氢或氦的点缺陷,晶体的体弹模量和剪切模量会发生改变,当钨中含有氢替位或自间隙原子时晶体会向塑性改变,含有其他点缺陷时晶体会沿着脆性方向转变.但总体来说带有缺陷的钨仍然具有延展性.值得注意的是,氢或氦在钨中会引起晶体的各向异性,其具体结果与缺陷所处位置相关,只有缺陷属于替位时才不会发生各向异性.本文的研究工作可为第一壁材料的开发提供理论参考.%The formation energy of all kinds of point defects formed by hydrogen or helium and the change of elastic constants of tungsten containing a point defect were studied by using first-principles method based on GGA with a PBE form.The other two kinds of point defects,such as vacancy and self interstitial atom in tungsten,were studied by using the same method.After calculation,we found that the crystal volume has some changes due to the formation of a point defect in the tungsten formed by hydrogen or helium.And the results depend on the sites of point defects.The crystal volume becomes bigger when the defects are located in the tetrahedron or octahedron sites,while the volumebecomes smaller when a tungsten atom is replaced by a hydrogen or helium atom.For helium,the substitu-tion site is the most favorable over the tetrahedron and octahedron sites.For hydrogen,on the contrary,the tetrahedron site is the most perfect site over the substitution and octahed-ron sites.In these defects,we can find the smallest formation energy corresponds to the defect formed hydrogen which located in tetrahedron site,and the biggest formation energy to the formation of a self interstitial atom.If tungsten contains a point defect formed by hydrogen or helium,the body modulus and the shear modulus will have some changes.The crystal will change to plastic when there is a hydrogen substitute defect or self interstitial atom in tungsten.The tungsten becomes more brittle when it contains other point defects, but it still has the ductility in total.The crystals may become anisotropy when there is a defect in tungsten,and the results depend on the site of the defects.Only for the defects at the substitute site,the anisotropy will not happen.The research can provide a theoretical reference for the development of the plasma facing materials.【期刊名称】《核化学与放射化学》【年(卷),期】2016(038)001【总页数】6页(P19-24)【关键词】氢;氦;钨;第一性原理【作者】张峥;赵强;欧阳晓平【作者单位】华北电力大学核科学与工程学院非能动核能安全技术北京市重点实验室,北京 102206;华北电力大学核科学与工程学院非能动核能安全技术北京市重点实验室,北京 102206;华北电力大学核科学与工程学院非能动核能安全技术北京市重点实验室,北京 102206;西北核技术研究所,陕西西安 710024;湘潭大学材料科学与工程学院,湖南湘潭 411105【正文语种】中文【中图分类】TL341核聚变能是潜在的清洁安全能源[1]。

关于毕业设计初期检查的通知-电子科技大学光电学院

关于毕业设计初期检查的通知-电子科技大学光电学院

专家:汪平河(组长)、张利勋、王智勇老师时间:6月9日(周二)上午8:30,下午1:30地点:全天二教101教室学生名单:要求:1、每位同学务必于答辩前三天前将论文(纸质版)提交到答辩组长处,由组长指定论文评阅教师。

不按期提交论文,影响答辩的同学,后果自负。

2、答辩专家联系方式:汪平河:光电楼416室;张利勋:光电楼325;王智勇:逸夫楼5313、请该组同学准备答辩PPT。

4、每个学生答辩时间20分钟,其中学生论文报告时间10分钟,回答问题时间10分钟。

专家:郭小伟(组长)、杨春平、张行至老师时间:6月9日(周二)上午8:30,下午2:30地点:上午二教203教室,下午二教201教室学生名单:要求:1、每位同学务必于答辩前三天前将论文(纸质版)提交到答辩组长处,由组长指定论文评阅教师。

不按期提交论文,影响答辩的同学,后果自负。

2、答辩专家联系方式:郭小伟:光电楼416室;杨春平:逸夫楼509;张行至:光电楼4293、请该组同学准备答辩PPT。

4、每个学生答辩时间20分钟,其中学生论文报告时间10分钟,回答问题时间10分钟。

专家:岳慧敏(组长)、陆荣国、肖峻老师时间:6月12日(周五)上午9:00,下午2:30地点:全天二教103教室学生名单:要求:1、每位同学务必于答辩前三天前将论文(纸质版)提交到答辩组长处,由组长指定论文评阅教师。

不按期提交论文,影响答辩的同学,后果自负。

2、答辩专家联系方式:岳慧敏:光电楼317室;陆荣国:光电楼227;肖峻:逸夫楼5033、请该组同学准备答辩PPT。

4、每个学生答辩时间20分钟,其中学生论文报告时间10分钟,回答问题时间10分钟。

专家:陈文彬(组长)、陈晓西、兰长勇老师时间:6月11日(周四)上午8:30,下午2:30地点:上午二教206教室,下午二教207教室学生名单:要求:1、每位同学务必于答辩前三天前将论文(纸质版)提交到答辩组长处,由组长指定论文评阅教师。

一种多孔氧化钨薄膜的制备方法[发明专利]

一种多孔氧化钨薄膜的制备方法[发明专利]

[19]中华人民共和国国家知识产权局[12]发明专利申请公布说明书[11]公开号CN 101660124A [43]公开日2010年3月3日[21]申请号200910192095.0[22]申请日2009.09.08[21]申请号200910192095.0[71]申请人中国科学院广州能源研究所地址510640广东省广州市天河区五山园区能源路1号[72]发明人徐刚 黄志峰 黄春明 徐雪青 苗蕾 [74]专利代理机构广州华进联合专利商标代理有限公司代理人莫瑶江[51]Int.CI.C23C 14/14 (2006.01)C23C 14/35 (2006.01)C23C 14/58 (2006.01)C23F 1/02 (2006.01)C23F 1/36 (2006.01)权利要求书 2 页 说明书 7 页 附图 3 页[54]发明名称一种多孔氧化钨薄膜的制备方法[57]摘要本发明提供了一种多孔氧化钨薄膜的制备方法,其特征在于包括以下步骤:采用钨靶、铝靶双靶磁控共溅射的工艺把钨、铝沉积在基片上,形成钨-铝合金薄膜;把所得到的钨-铝合金薄膜浸入碱性溶液中进行选择性腐蚀氧化,最后在基片上得到了多孔氧化钨薄膜。

该方法制得的多孔氧化钨薄膜孔径分布均匀,孔径平均大小为100nm左右。

本发明具有下列明显先进性和独创性:制备简单,工艺参数容易控制,孔隙度及孔径大小可控,孔径分布均匀。

其产品结构和性质非常适用于制作电致变色器件和气敏器件。

200910192095.0权 利 要 求 书第1/2页1.一种多孔氧化钨薄膜的制备方法,其特征在于包括以下步骤: (1)将清洗好的衬底基片放入磁控溅射系统的溅射室,采用高纯钨靶和铝靶作为溅射靶材,将溅射室本底真空抽至10-3Pa以下,基片温度设定在室温至3 00℃;(2)向溅射室通入工作气体,调整工作气压,设定钨靶和铝靶电源的溅射功率,以双靶共溅射的方式在衬底基片上镀膜;(3)溅射结束后在基片上得到银伯色的钨-铝合金薄膜;(4)把钨-铝合金薄膜浸入碱性溶液中腐蚀氧化,去除金属铝,在基片上得到多孔氧化钨薄膜。

氢离子辐照诱导的钨表面周期性刻蚀研究

氢离子辐照诱导的钨表面周期性刻蚀研究

第44卷第5期2021年5月核技术NUCLEAR TECHNIQUESV ol.44,No.5May2021氢离子辐照诱导的钨表面周期性刻蚀研究谢俊范红玉罗一语杨秀园覃纪英李园园牛金海(大连民族大学辽宁省等离子体技术重点实验室大连116600)摘要采用扫描电镜(Scanning Electron Microscope,SEM)、导电原子力显微镜(Conductive Atomic Force Microscope,CAFM)、能谱仪(Energy Dispersive Spectrometer,EDS)和纳米压痕等表征技术和方法,综合分析了130eV氢(H)离子辐照诱导的多晶钨(W)材料的辐照损伤行为。

研究表明:H离子辐照剂量从1.0×1024ions∙m−2增加到1.5×1025ions∙m−2时,W材料表面经历了H聚集成泡、在晶界处长大,并逐渐扩散至晶粒表面,直至H泡破裂导致的W表面层脱落的周期性演变过程,一个周期的演变过程所需的H离子辐照剂量约为(6.0~8.0)×1024ions∙m−2。

纳米压痕的分析表明辐照后W材料的表面硬度降低,EDS也未检测到W材料表面含有C、O等杂质,这进一步验证了低能H离子辐照后W表面不稳定损伤层的演变是导致W材料刻蚀的主要原因。

该工作对于进一步理解在低于溅射阈值能条件下H离子辐照诱导W材料表面刻蚀机制上具有重要参考价值。

关键词等离子体,钨,氢离子辐照,氢泡,刻蚀中图分类号TG14DOI:10.11889/j.0253-3219.2021.hjs.44.050501The periodic etching of tungsten surface induced by hydrogen ion irradiationXIE Jun FAN Hongyu LUO Yiyu YANG Xiuyuan QIN Jiying LI Yuanyuan NIU Jinhai (Liaoning Key Laboratory of Plasma Technology,Dalian Minzu University,Dalian116600,China)Abstract[Background]Metal tungsten(W)has a high melting point,low hydrogen solubility and high thermal conductivity.Therefore,it has been selected as one of the most promising plasma-facing materials for the future international thermonuclear experimental reactor(ITER).[Purpose]This study aims to investigate the etching process of polycrystalline W induced by low energy hydrogen ion irradiation.[Methods]Polycrystalline W materials were irradiated with130eV hydrogen ions.The irradiation damage behavior of W was researched by scanning electron microscopy(SEM),conductive atomic force microscopy(CAFM),Energy Dispersive Spectrometer(EDS) and nano indentation.[Results]The investigates show that when the irradiation dose of H ions increases from1.0×1024ions∙m-2to1.5×1025ions∙m-2,the surface of W material experiences a periodic evolution process from forming bubbles with H aggregation,the bubbles becoming bigger at grain boundaries,and gradually diffusing to the grain surface,until the W surface layer falls off due to the rupture of H bubbles.The irradiation dose required for one period of evolution is about(6.0~8.0)×1024ions∙m-2.Nano indentation measurements show that the surface hardness of W material decreases after H ion irradiation.No impurities,especially elements of C and O,are detected on the W国家自然科学基金项目(No.11405023)、辽宁省自然科学基金项目(No.20180510006)、大连市青年科技之星项目(No.2017RQ149)、国家级大学生创新创业训练项目(No.202012026058)、大连民族大学"太阳鸟"学生科研项目(No.tyn2020277)资助第一作者:谢俊,男,1994年出生,2019年至今大连民族大学本科在读,研究领域为功能材料通信作者:范红玉,E-mail:收稿日期:2020-10-09,修回日期:2020-12-02Supported by National Natural Science Foundation of China(No.11405023),Natural Science Foundation of Liaoning Province(No.20180510006), Dalian Youth Science and Technology Star Project(No.2017RQ149),College Students Innovation Training Project of China(No.202012026058),and "Taiyangniao"Student Research Project of Dalian Nationalities University(No.tyn2020277)First author:XIE Jun,male,born in1994,has been studying in Dalian Nationalities University since2019,focusing on functional materials Corresponding author:FAN Hongyu,E-mail:Received date:2020-10-09,revised date:2020-12-02核技术2021,44:050501surface by EDS.[Conclusions]It is verified that the evolution of the unstable damage layer on the W surface induced by irradiations of low energy H ion is the main reason for the etching of W material.This work is very important for further understanding of the etching mechanism of W surface induced by H ion irradiation under the condition that the energy of irradiated H ion is lower than the sputtering threshold energy.Key words Plasma,Tungsten,H ions irradiation,H bubble,Erosion在氘氚聚变堆中低能、大流强的离子辐照会导致面向等离子体材料的损伤、性能下降,严重危害聚变装置的稳定性和可靠性。

核聚变反应中不同粒子源对钨内衬壁的辐射损伤研究

核聚变反应中不同粒子源对钨内衬壁的辐射损伤研究

2021年6期创新前沿科技创新与应用Technology Innovation and Application核聚变反应中不同粒子源对钨内衬壁的辐射损伤研究*臧真麟1,Jaime Marian 2,刘志林1*(1.西藏农牧学院水利土木工程学院,西藏林芝860000;2.Department of Materials Science and Engineering UCLA ,美国洛杉机90050)1概述当今世界上,能源短缺问题是人类面临的巨大问题之一。

矿物燃料已探明储量正在逐渐减少[1]。

随着现代科学技术的发展,随着现代技术的发展,人类对清洁能源的需求越来越迫切[2],核聚变作为其中效率最高的能源,走进了人们的视野。

(核聚变能源相对于核裂变和其他能源,在交互环境、安全和经济方面具有显著的优势,这使得核聚变有成为长期能源的潜质[3]。

21世纪初,国际热核聚变实验堆计划(ITER )在35个国家和地区的合作下成立,专注于核聚变能源的研究和开发。

托克马克在运行中面临着许多问题,辐射损伤是其中最难以解决的问题。

当暴露在大等离子体热量和粒子通量时,内衬壁不应出现任何大规模的故障或腐蚀,以保护外层容器部件免受辐射损伤[4]。

所以等离子体和磁体之间的内衬壁的选择是非常重要的。

钨具有最高的熔点和最低的蒸气压。

由于W 溅射的入射离子能量分布低于阈值(100eV ),钨在分离模式下有望免受物理侵蚀[5],这使它比其他任何金属更适合内衬墙。

本文综述了氦、氢等粒子源以及其他混合粒子源对钨表面的辐照损伤。

研究了钨在辐照损伤过程中钨表面形貌的变化及其损伤产物。

2氦粒子源(He )2.1表面形态氦离子照射下钨表面形成的纳米卷须一直是科学研究的对象之一。

在等离子体的照射下,钨的表面逐渐纳米卷须化,抛光的表面转变为几乎纯钨的互连纳米结构层。

纳米结构的生长取决于入射的等离子体物质,这些物质必须通过纳米结构网络扩散到钨本体,然后才能发生进一步的结构生长。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中图分类号:TB3论文编号:10006BY1119120博士学位论文钨薄膜的制备及其氢氦辐照效应研究作者姓名俞坚钢学科专业凝聚态物理指导教师朱开贵教授培养学院物理科学与核能工程学院Study on Preparation of Tungsten Film and its Irradiation Effects of Hydrogen and HeliumA Dissertation Submitted for the Degree of Doctor of ScienceCandidate:Jiangang YuSupervisor:Prof. Kaigui ZhuSchool of Physics and Nuclear Energy EngineeringBeihang University, Beijing, ChinaI摘要钨材料具有较好的物理和化学性质,比如:极高的熔点、较好的热导率、良好的高温力学性能、较低的物理化学溅射率以及几乎不与氢反应等优点,因此被人们视为是未来核聚变装置中最有希望的面对等离子体材料。

然而,在真实的核聚变装置中,作为第一壁材料以及偏滤器的钨材料将会受到高束流强度的载能氘氦以及其他粒子的轰击。

这些粒子的轰击会导致钨材料的表面起泡和剥落现象,这会在核聚变装置长时间运行后造成氘氦在材料内的大量滞留。

因此,提高钨的抗辐照性就显得尤为重要。

此外,不同结构的钨材料由于内部具有不同的缺陷和晶界情况,因此在氘氦辐照后会产生不同的辐照效应。

本论文采用磁控溅射方法制备出具有一定厚度的钨薄膜。

对样品进行低能氘辐照以及高能氦辐照,并与常规的粉末冶金多晶钨进行对比,研究辐照后钨块体和薄膜材料在不同微观结构下的表面形貌变化和滞留行为。

首先,研究了不同基底钨薄膜的表面形貌和微观结构。

利用SEM观测到薄膜具有典型的柱状结构以及表面具有“纳米山脊”状形貌。

另一方面,尽管不同基底上的钨薄膜的表面形貌比较相似,但是其择优取向有着明显的区别,多晶硅基底和钨基底的薄膜具有明显的(211)择优取向,而铜基底钨薄膜具有明显的(110)择优取向。

经过1000 ℃的退火处理之后薄膜表面发生了较大的形貌变化,原有的纳米山脊形貌消失,纳米晶形貌形成;而薄膜的择优取向却没有明显变化。

此外,通过薄膜应力公式计算出薄膜的内部应力,发现其内部应力为压应力且在退火之后压应力减小。

其次,将再结晶的钨块体和退火前后的钨薄膜在同样的条件下进行低能大束流的D 离子辐照,辐照参数为:能量78 eV,剂量为4.0 × 1024 D/m2,辐照温度450 K。

通过SEM 和TDS手段,研究了钨块体和退火前后钨薄膜材料不同的起泡行为以及滞留特性。

块体材料表面出现了局部超塑性引发的“穹顶”泡,而薄膜表面形貌却没有任何变化。

此外,钨块体和薄膜在脱附曲线上也有明显的不同。

再结晶钨块体的脱附曲线中具有两个明显脱附峰:490 K 和670 K,且分别对应着晶界或者位错和空位或者空隙这两个捕获位置。

但是钨薄膜的脱附峰位具有一定的展宽且相互产生了交叠,其中未退火钨薄膜的脱附曲线在550 K、650 K以及800 K有三个脱附峰位,而退火后钨薄膜只有前两个峰位,没有第三个峰位。

此外,未退火钨薄膜中的D滞留量高出再结晶钨块体30多倍,而退火后钨薄膜高出钨块体10多倍。

钨块体和钨薄膜在同辐照条件下具有不同起泡行为和滞留行为应该归因于磁控溅射制备的钨薄膜具有纳米结构特点,其自身存在丰富的晶界和大量的本征缺陷正是D辐照后表面不起泡且没有任何变化以及D在材料内部具有较大滞留量的原因。

退火后钨薄膜由于其本征缺陷和内应力的减少也导致与未退火钨薄膜相比,大幅减少了D滞留。

然后,用退火前后的钨薄膜和粉末冶金制备的钨块体同时在能量为60 keV剂量为1.49×1022He/m2的He离子于室温下进行辐照。

辐照后观察到块体和薄膜表面都出现了起泡和泡破裂的现象。

钨薄膜和块体样品在起泡行为上有着明显的不同,其中钨块体在起泡密度和泡径尺寸上都大于钨薄膜材料。

而在He泡的次表面形貌表现出块体和薄膜材料具有不同的起泡行为。

可以推断,在具有纳米结构的薄膜材料中晶界对起泡行为具有重要的作用。

另外,尽管退火前后的钨薄膜具有相似的微观结构,包括晶粒大小和择优取向,但是两者在起泡密度、泡径尺寸和氦泡形状都不尽相同。

因此,可以推断出是因为薄膜内部不同的应力状态及其本征缺陷导致了起泡行为的不同,并明确指出材料内部预设一定的压应力可以在一定程度上起到抑制起泡的作用。

本论文在制备钨薄膜并对其生长过程及微观结构进行深入分析的基础上,对钨薄膜与常规多晶钨块体的氢氦辐照行为进行了比较,具体分析了钨薄膜与常规多晶钨块体在内部结构以及内应力方面对其氢氦辐照行为的影响机理,为进一步理解钨作为聚变堆第一壁材料在等离子体辐照下的氢氦行为提供一定的参考。

关键词:钨薄膜,磁控溅射,氦辐照,氘辐照,起泡IIIAbstractTungsten has been considered as one of the most promising candidates for plasma facing materials (PFMs) in future fusion reactors due to its favorable physical and chemical properties, such as high melting point, high thermal conductivity, high temperature mechanics performance, low physical and chemical sputtering yields, and no chemical reaction with hydrogen. However, in the fusion reactors, tungsten used as first-wall materials and divertor will be subjected to intense fluxes of energetic deuterium and tritium ions and other particles. This implantation process leads to blistering and exfoliation of tungsten. Hence, it is very important to improve its irradiation resistance. Besides, different microstructures of tungsten have discrepant effects on the deuterium irradiation due to their various internal defects and grain boundaries. For these reasons, in this paper, the tungsten film with a certain thickness was deposited by magnetron sputtering. In order to compare differences between polycrystalline and nanocrystalline tungsten, they were exposed simultaneously to high energy helium and low energy deuterium. After irradiation, the differences in morphology and retention between both samples are compared and the results suggest that they can be attributed to different microstructures.First of all, the morphology and microstructure of pure tungsten thin films on different substrates has been investigated. SEM observations show the typical columnar structure and “nano-ridge” on the surfaces of all films. Even thought the morphologies of the films on different substrates are similar, the preferred grain orientations are different. The films deposited on the tungsten and polycrystalline silicon substrates show strong (211) preferred orientation especially on the tungsten substrate, while the films prepared on the copper substrate have strong (110) preferred orientation. After annealing, morphologies of films changed significantly including the disappearance of nano-ridge, formation of fine grains, but the preferred grain orientations remains unchanged. Besides, the total stress of the the parallel to film surface were obtained by the formula of mismatch stress; it was indicated that the total stress of films is compressive and the thermal treatment reduced the compressive stress.Secondly, the recrystallized tungsten and W films were exposed simultaneously to deuterium plasma with low energy of 78 eV and high fluence of 3.9 × 1024 D/m2 at temperature of 450 K. Differences in surface topography and deuterium retention between the bulk and the films before and after annealing were investigated, which were examined by SEM and TDS, respectively. The high-dome blisters resulting from local superplasticity were formed on the polycrystalline tungsten bulk, however, no changes in the surface morphology are observed on both films. The shapes of desorption spectra of polycrystalline tungsten and both films areobviously different. The desorption spectra of the polycrystalline tungsten shows two release peaks of deuterium located at 490 K and 670 K corresponding to two trapping sites of grain-boundaries/dislocations and vacancies/voids respectively. However, the desorption spectra of the as-deposited film is characterized by a broad temperature range, which is thought to contain three peaks at 550 K, 650 K and 800 K. And then there are two peaks of 550 K and 650 K in annealed film. In addition, the deuterium retention in the tungsten film is thirty times higher than that in the bulk tungsten. These differences are attributed to different microstructures. The fact that both films deposited by magnetron sputtering have a higher density of grain boundaries and native defects is responsible for no blistering and high retention in comparison with the polycrystalline tungsten. Due to the decrease in intrinsic defects and internal stress, the heat treatment can result in a substantial reduction of deuterium retention in annealed film compared with the as-deposited film.Thirdly, the W films with the thickness of 10 micrometers before and after annealing and W bulk prepared by powder metallurgy were simultaneously exposed to He+ ions with the energy of 60keV and fluence of 1.49×1022 m-2 at room temperature. After irradiation, the blisters are observed on bulk and films, some of which has partially burst. The different behavior of blistering on bulk and films shows that the density and the average size of the blisters on the W bulk are larger than that of the blisters on the as-deposited film and annealed film. In addition, the difference in morphologies after blisters rupture implies different behavior of blistering on both samples. It is speculated that GBs in nanostructured materials play a dominant role in the blistering after He irradiation. Moreover, in spite of similar microstructures of films before and after annealing, i.e. grain size and orientation, there are some differences in volume, density and shape of blisters on both the irradiated films. It is speculated that the different compressive stress can lead to the different behaviors of blistering, thus pre-existing compressive stress can be propitious to restrain blistering.In this paper, on the basis of the preparation of tungsten thin films and their growth process and microstructure, the deuterium and helium irradiation of tungsten thin films and conventional polycrystalline tungsten is compared. The mechanism of difference of deuterium and helium irradiation behavior between tungsten thin films and conventional polycrystalline tungsten is analyzed in detail. The hydrogen and helium behavior under plasma irradiation provides a certain reference for the first wall material in the fusion reactor.Key words: Tungsten film, Magnetron sputtering, Helium, Deuterium, Irradiation, BlisterV目录第一章绪论 (1)1.1引言 (1)1.2核聚变介绍 (1)1.2.1 核聚变原理 (2)1.2.2 国际热核聚变实验堆简介 (2)1.3面对等离子体材料 (4)1.3.1 等离子体与壁材料的相互作用 (4)1.3.2 面对等离子体材料简介 (5)1.3.3 钨材料在托卡马克装置中的应用 (6)1.4钨材料的氘氦辐照研究 (7)1.4.1 氘辐照效应研究 (8)1.4.2 氦辐照效应研究 (10)1.4.3 钨中氢氦之间的相互作用 (13)1.5钨基材料的研究现状 (14)1.5.1钨的合金化研究 (14)1.5.2 超细晶和纳米晶钨材料 (16)1.5.3 钨薄膜材料 (19)1.6本论文研究目标和结构安排 (22)1.6.1 本论文的研究目的 (22)1.6.2 本论文的结构安排 (22)第二章磁控溅射制备钨薄膜的微结构及其形貌研究 (24)2.1磁控溅射简介 (24)2.2实验方法 (25)2.3 不同基底钨薄膜的形貌表征 (27)2.3.1 未退火钨薄膜表面形貌 (27)2.3.2 退火后钨薄膜表面形貌 (30)2.4 不同基底钨薄膜的XRD表征 (33)2.4.1 未退火钨薄膜的XRD衍射谱 (33)2.4.2 退火前后钨薄膜的XRD对比 (34)2.4.3 退火前后钨薄膜的错配应力计算及其分析 (35)2.5 结果讨论 (36)2.6 本章小结 (37)第三章钨薄膜的低能氘辐照效应研究 (38)3.1引言 (38)3.2样品制备以及辐照实验 (38)3.2.1 样品制备 (38)3.2.2 D辐照实验设备以及实验参数 (39)3.2.3 辐照后样品的热脱附实验设备和实验参数 (41)3.3实验结果 (42)3.3.1 样品的表面形貌和微观结构 (42)3.3.2 样品在D辐照后的表面形貌 (45)3.3.3 D辐照后样品的热脱附谱分析 (47)3.4 结果讨论 (48)3.4.1 D辐照后的表面起泡 (48)3.4.2 微观结构对D辐照后表面行为的影响 (50)3.4.3 微观结构对D滞留行为的影响 (51)3.5本章小结 (54)第四章钨薄膜的氦辐照效应研究 (56)4.1引言 (56)4.2样品制备以及辐照实验 (56)4.3 钨薄膜与块体的表面形貌及其辐照起泡 (58)4.3.1 钨薄膜与块体在辐照前的表面形貌和结构 (58)VII4.3.2 钨薄膜与块体在辐照后的起泡形貌 (62)4.3.3 氦泡的内部形貌 (66)4.4 结果讨论 (69)4.4.1 He辐照的起泡行为 (69)4.4.2 微观结构对He泡行为的影响 (71)4.4.3 钨薄膜中内应力对He泡的影响 (74)4.5 本章小结 (75)结论与展望 (77)参考文献 (79)攻读博士期间取得的学术成果 (91)致谢 (95)作者简介 (96)第一章绪论1.1引言能源是人类社会文明得以延续和发展的物质基础。

相关文档
最新文档