作轴对称图形课件PPT

合集下载

人教版八年级数学上册课件:13.1 轴对称(共25张PPT)

人教版八年级数学上册课件:13.1  轴对称(共25张PPT)

的形式,逆命题就容易写出.鼓励学生找出原命题的条件和
结论. 原命题的条件是“有一个点是线段垂直平分线上的点”, 结论是“这个点与这条线段两个端点的距离相等”.
此时 , 逆命题就很容易写出来.“如果有一个点与线 段两个端点的距离相等,那么这个点在这条线段的垂直平 分线上.” 写出逆命题后,就想到判断它的真假.如果真,那么 需证明它;如果假 ,那么需用反例说明.请同学们自行在 练习册上完成. 学生给出了如下的四种证法.
M A A′
P
B C C′ B′
N
下图是一个轴对称图形,你能发现什么结论?能说明 理由吗?
l
A B
A′ B′
(一)线段的垂直平分线的性质
教师出示教材第61页探究,让学生测量,思考有什
么发现?
如图,直线l垂直平分线段AB,P1,P2,P3…是l上的点, 分别量一量点 P1 , P2 , P3…到点 A 与点 B 的距离,你有什么 发现? 学生回答,教师小结:线段垂直平分线上的点与这条 线段两个端点的距离相等. 性质的证明:
证得PA=PB. 教师要求学生自己写已知 , 求证,证明过程.学 生证明完后教师板书证明过程供学生对照.
已知:MN⊥AB,垂足为点 C , AC = BC ,点 P 是直线 MN 上任 意一点.求证:PA=PB. 证明:在△APC和△BPC中,
∵PC=PC(公共边),∠PCA=∠PCB(垂直的定义),
如果一个平面图形沿一条直线折叠,直线两旁的 部分能够互相重合,这个图形就叫做轴对称图形,这 条直线就是它的对称轴.这时,我们也说这个图形关
于这条直线(成轴)对称.
猜字游戏: 在艺术字中,有些汉字是轴对称的,你能猜一猜下 列是哪些字的一半吗?
问题2 观察下面每对图形(如图),你能类比前面的 内容概括出它们的共同特征吗?

人教版八年级数学上册《画轴对称图形》课件(共39张PPT)

人教版八年级数学上册《画轴对称图形》课件(共39张PPT)

1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 4、好的教师是让学生发现真理,而不只是传授知识。 5、数学教学要“淡化形式,注重实质.
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/72021/11/72021/11/711/7/2021 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/72021/11/7November 7, 2021 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7
课堂小结
(1)本节课学习了哪些内容? (2)在平面直角坐标系中,已知点关于x 轴或y 轴的
对称点的坐标有什么变化规律,如何判断两个 点是否关于x 轴或y 轴对称?
(3)说一说画一个图形关于x 轴或y 轴对称的图形的 方法和步骤.
N分别是点P关于直线OA、OB的
对称点,线段MN交OA、OB于点
E、F,若△PEF的周长是20cm,
则线段MN的长是
cm.
如图,1班的同学跟3班的同学分别在 M、N两处参加植树活动,现在要在道 路AB与道路AC的交叉区域设茶水供应 点P,使它到两边的距离相等且 PM=PN. (1)画出点P(保留作图痕迹) (2)说明理由.

l

﹒﹒
l
﹒﹒
下面的第二个时间可由第一个怎样变换而得到

《轴对称》 ppt课件

《轴对称》  ppt课件
2.同样,我们把这条直线叫做_对__称_轴__.
3.折叠后重合的点是对应点,叫做_对__称_点__.
PPT课件
22
轴对称
对称点
D
A A′ D′
B C
B′ C′
23
PPT课件
八年级 数学
第十四章 轴对称
想一想:一辆汽车的车牌在水中的倒影如 图所示,你能确定该车车牌的号码吗?
PPT课件
24
轴对称
练习 :下列给出的每幅图形中的两个图案是轴 对称吗?如果是,试着找出它们的对称轴。
第十二章 轴对称
PPT课件
要 仔 细 观 察 哦!
6
八年级 数学
12.1 轴对称(1)
第十二章 轴对称
PPT课件
要 仔 细 观 察 哦!
7
定义
如果_一__个_图__形__沿一条直线折叠,直线两旁的部分
能够_互__相__重_合___,这个图形叫做__轴__对_称__图__形___.这条直
线就是它的__对__称_轴_____.
轴对称图形
两个图形成轴对称
27
PPT课件
比较归纳:
区别 联系
轴对称图形 一_个图形
两个图形成轴对称 _两 个图形
1.沿一条直线折叠,直线两旁的部分能够 _互_相_重合_.
2.都有_对_称_轴 _.
3.如果把一个轴对称图形沿对称轴分成 两个图形,那么这两个图形关于这条直线 _对_称_;如果把两个成轴对称的图形看成 一个图形,那么这个图形就是_轴_对称_图_形.PPTFra bibliotek件28
八年级 数学
12.1 轴对称(1)
第十二章 轴对称
做一做:
如图,△ABC与△DEF关于直线a对称,

轴对称课件(60张PPT)

轴对称课件(60张PPT)

轴对称在解直角三角形中应用
在解直角三角形时,可以利用轴对称的 性质来构造全等或相似的直角三角形,
从而简化计算过程。
例如,如果一个直角三角形关于某条直 线对称,那么它的两个锐角相等,同时 它的两条直角边也相等。这样我们就可 以通过已知的一边和一角来求解其他未
知量。
另外,如果两个直角三角形关于某条直 线对称,那么它们一定是相似的。这样 我们就可以通过已知的相似比来求解未
知量。
05
绘制和分析轴对称图形方 法技巧
使用直尺和圆规绘制轴对称图形
确定对称轴
在平面上选择一条直线作为对 称轴。
找到对称点
使用直尺和圆规,按照轴对称 的定义,找到该点关于对称轴 的对称点。
选择一个点
在对称轴的一侧选择一个点。
绘制图形
连接原点和对称点,即可得到轴对 称图形的一部分。重复以上步骤,
可以得到完整的轴对称图形。
动物
一些动物的身体结构也具 有轴对称性,如蝴蝶的翅 膀、蜻蜓的复眼等。
晶体
晶体结构中的原子排列往 往呈现出轴对称性,如雪 花、钻石等。
科技产品中的轴对称设计
电子产品
手机、平板电脑等电子产品的外观设 计中,常采用轴对称元素,实现简洁、 时尚的视觉效果。
汽车设计
航空航天
飞机、火箭等航空航天器的设计中也 广泛应用轴对称性,以确保飞行稳定 性和安全性。
典型例题解析
解析
根据轴对称性质,我们知道 △ABC≌△A'B'C',所以 ∠BAC=∠B'A'C'。
例题2
已知点P(2,3)关于x轴对称的点为P', 求点P'的坐标。
解析
由于点P关于x轴对称,所以点P'的 横坐标不变,纵坐标取反。因此, 点P'的坐标为(2,-3)。

《设计轴对称图案》课件

《设计轴对称图案》课件

商业设计中的应用
许多商业品牌都使用轴对 称图案来展示他们的产品 和品牌形象。
如何制作轴对称图案
1
制作步骤
2
1. 准备素材
2. 制作基本单元
3. 制作整体图案
4. 保存并导出
制作工具
为了制作轴对称图案,您可以使用 图形设计软件或手工工具,如纸和 铅笔。
实例展示
实例一:轴对称的花朵图案
探索一个美丽而充满活力的轴对称花朵图案, 带您进入大自然的花海。
实例二:轴对称的几何图案
欣赏这个精心设计的轴对称几何图案,体验几 何形状的无限性
轴对称图案在艺术、设计和商业中起着重要作用,为作品增添美感和吸引力。
2 轴对称图案设计的基本要点
在设计轴对称图案时,需要考虑对称中心、基本单元和细节的添加。
3 怎样制作高质量的轴对称图案
轴对称图案的设计
设计前的准备
在开始设计之前,我们需要明确对称中心 和基本单元的选择。
设计步骤
1. 确定对称中心 2. 确定基本单元 3. 设计对称图案 4. 添加细节
轴对称图案的应用
日常生活中的应用
轴对称图案在日常生活中 无处不在,例如家居装饰、 服装设计和手工艺品。
艺术设计中的应用
艺术家经常使用轴对称图 案来创作独特而吸引人的 作品,如绘画和雕塑。
通过准备素材、制作基本单元和整体图案,可以制作出高质量的轴对称图案。
参考资料
1 图书、网站
2 设计大师的作品欣赏
学习更多关于轴对称图案的知识,可以 参考相关图书和网站资源。
欣赏设计大师们创作的令人惊叹的轴对 称图案作品,汲取灵感。
《设计轴对称图案》PPT 课件
设计轴对称图案是一个令人着迷的主题。本课程将介绍轴对称图案的定义、 特征、设计方法、应用领域以及制作步骤。让我们一起来探索这个创意世界!

人教版八年级上册 13.2轴对称图形 课件(共30张PPT)

人教版八年级上册 13.2轴对称图形 课件(共30张PPT)

轴对称与轴对称图形的区别和联系:
区别: 轴对称是说两个图形的形状,大小和位置关系。
轴对称图形是说一个具有特殊形状的图形。
前者是针对两个图形,后者是针对对一个图形。
轴对称与轴对称图形的区别和联系:
联系: 两个概念没有本质的区别,定义中都有一条直线, 都沿这条直线对折重合
轴对称与轴对称图形的基本特征
N (N1)
N (M1) M
以上答案 M1 都不对
M
M
N1
A
B
C
D
练一练:
如下各图,已知线段AB和直线L,试画 出线段AB关于直线L的对称线段A'B' 。
L B
A A
L
B


练一练:
如下各图,已知线段AB和直线L,试画 出线段AB关于直线L的对称线段A'B' 。
L B
A
A'
A L
A'
B'
B
B' ①
试一试 请同学们尝试解决以下问题:
如图(1),(2)实线所构成的图形为已知图形, 虚线为对称轴,请画出已知图形的轴对称 图形。
(1)你可以通过什么方法来验证你 画的是否正确?
(2)和其他同学比较一下,你的方 法是最简单的吗?
试一试:如图,实线所构成的图形为已知图形,
直线L为对称轴,请画出已知图形的轴对称图形。
2.能利用轴对称进行图案设 计.
过程与方法
通过利用轴对称作图和图案设计,发 展实践能力.
情感态度与价值观
1.通过欣赏轴对称图案,形成了解数 学、应用数学的态度;
2.通过作轴对称图形、设计图案、 锻炼克服困难的意志,培养创新精神.

轴对称--完整版课件

轴对称--完整版课件

BC=10cm,那么△BCD的周长是
_______cm.
26cm
A
E D
B
C
一,本章知识结构图
等腰三角形
等边三角形
生 活
轴对称
作图形的对称轴
中 的
用坐标表示轴对称

作轴对称图形

轴对称变换
轴对称的性质
•对应点所连的线段的中垂线就是 对称轴 •对应线段相等,对应角相等
轴对称变换
准确做图形对称轴的方法
因为对称轴垂直平分每对对应点所连接 的线段,所以只要找一对对应点,用圆规 作出对应点所连线段的垂直平分线即可。
8、已知,如图: AB=AC AD=DC=BC
则∠A=
Байду номын сангаас
360
A
D
B
C
9.在△ABC中,AB=AC,DE 为AB的垂直 A 平分线,D为垂足,交AC与E,若AB=8cm, △ABC的周长为21cm,求△BCE的周长.
D E
10.如图∠ ABC=70°, ∠ A=50°
B
C
AB的垂直平分线交AC于D,则∠DBC=___.
A
E
B
D
C
11 如图, ∠ABC、∠ACB的平分线相 交于F,过F作DE//BC交AB于D,交AC于E, 若AB=9cm, AC=8cm,则△ADE的周长是 多少? A
AB=AD+DB=AD+DF D F E AC=AE+EC=AE+EF
B
C
13、如图,在△ABC中,AB=AC=16cm,
AB的垂直平分线交AC于D,如果
利用轴对称变换作图1
作出三角形关于直线L对称的图形

人教版八年级数学上册 13.2.1 画轴对称图形课件(共23张PPT)

人教版八年级数学上册 13.2.1 画轴对称图形课件(共23张PPT)

(1)认真观察,左脚印和右脚印有什么关系? 成轴对称
(2)对称轴是折痕所在的直线,即直线l,它与 图中的线段PP ′是什么关系?直线l垂直平分线段PP′
归纳
由一个平面图形可以得到与它关于一条直线l对称的 图形,这个图形与原图形的形状、大小完全相同; 新图形上的每一点都是原图形上的某一点关于直线l 的对称点;连接任意一对对应点的线段被对称轴垂 直平分.
做一做 1 如下图,已知点A和直线L,试画出点A关于直线L 的对称点A'.
L
A
·
如下图,已知点A和直线L,试画出点A关于直线L的 对称点A'.
O
A
A′
请一位同学说说画法.
O
A
A′
画法: (1)过点A画直线l的垂线,与l交于点O; (2) 在垂线上取OA′=OA; 从而得到点A的对称点A′.
思考:画完之后,你可以通过什么方法来验一下,你画 的点A′是否是A点关于直线的对称点. 折叠
3.连接A’B’、B’C’、C’A’。
∴△A’B’C’即为所求。
如图,已知△ABC和直线l,作出与△ABC关于直线l对称的图形。
B B A A
B’
C C
l
C’
作法:
1、分别作出点B、C关于直线l的
对称点B’、C’;
2、连接AB’、B’C’、C’A。
∴△AB’C’即为所求。
如图,已知△ABC和直线l,作出与△ABC关于直线l对称的图形。
归纳 先找( 特殊点), 然后作出其(对称点 ), 最后顺次连结( 对称点 )构成轴对称图形 .
从例题可知: 如果图形是由直线、线段或射线组成时,那么在画
它关于某一条直线的对称图形时,只要画出图形中的特 殊点(如线段的端点、角的顶点等)的对称点,然后连 结对称点,就可以画出关于这条直线的对称图形.

画轴对称图形(共39张PPT)

画轴对称图形(共39张PPT)
A B1 O1
运用变化规律作图
解:点(x,y)关于y 轴对称的点的坐标为
(-x,y),因此四边形 ABCD 的顶点A,B,C, D 关于y 轴对称的点分别
C y C′
D
D′
为: A′( 5 , 1 ), B′( 2, 1),
A
B
1
O
B′
1
A′x
C′( 2 , 5 ),
D′( 5 , 4 ),
运用变化规律作图
的对称点B′、C′;
(3)连接A′B′、B′C′、C′A′;
∴△A′B′C′就是所求作的图形。
变式训练
请画出⊿ABC关于直线 l 的对称
图形⊿ A’B’C’.
A
A
Cl
l
C B
B
议一议 通过以上探究,你能总结出作轴对称 图形的方法吗?
归纳
作 图 步 骤
1、找特征点 2、作垂线 3、截取等长
4、依次连线
探究一 已知直线 l 和一个点A,作出点 A关于直线l 的对称点A′。

A'
O
l
作法: 1、过点A作对称轴l的垂线,垂足为O. 2、延长AO至A´,使得OA´= OA
∴点A´就是点A关于直线l的对称点。
探究二 已知直线l和线段AB,作出线段AB
作法:
关于直线 l 的对称线段A′B′。
l
1、过点A作直线l的垂线,
垂足为点O,在垂线上截 OA’=OA,点A’就是点A关
A ┎ o A’
于直线l的对称点;
2、类似地,作出点B关 B

B’
于直线l的对称点B’;
3、连接A’B’.
∴ 线段A´B´就是所求作的线段。

轴对称与轴对称图形课件PPT课件

轴对称与轴对称图形课件PPT课件

1
2
3
整个图形是轴对称图形吗?
试一试
4
它们共有几条对称轴?
1
2
1
3
2
1
数学源于生活
对称就在我们身边,并且给我 们带来丰富多彩的视觉享受。
云南大理三塔
苏州园林 静思园
吉祥物
交通标志
表盘的对称 保证了走时的均 匀性。 飞机的对称性能够在空中保持平衡。
请你谈一谈
通过今天的学习,你有什么收获与体会?
都有对称轴、对称 点和两部分完全重 合的特性。
请你举出生活中的轴对称和轴对称图形? 注意:平行四边 形不是轴对称图形 生活中的数学
轴对称图形:
圆、正方形、长方形、菱形、 等腰三角形、等边三角形、 等腰梯形、线段、角……
轴对称:
两扇大门、一双鞋、两只手、 同一人的两脸颊、物体和镜 中的像……
图中三角形(4)与哪些三角形成轴对称?
1. 什么是轴对称和轴对称图形及区别、联系? 2. 如何画出对称轴、如何找对称点? 3. 生活中的轴对称和轴对称图形。
议一议
如图: 你能求出这七 个角的和吗?
看一看谁最
下图曾被哈佛大学选为入学考试的试题. 请在下列一组图形符号中找出它们所蕴 含的内在规律,然后在空白处填上恰当 的图形.
练一练:下面的字母哪些是轴对称图形?找出对称轴?
A E
B F
C G
D H
猜字游戏
在艺术字中,有些汉字是轴对称的,你 能猜一猜下列是哪些字的一半吗?
后,能够与另一个图形重合, A B
那么这两个图形关于这条直
线成轴对称,
这条直线叫做对称轴。 C
D
折叠重合的两点叫对应点
也叫对称点。

轴对称图形ppt课件

轴对称图形ppt课件

05

教学方法:讲解、示范、实践
讲解
通过语言描述,向学生解释轴对称图形的定义、性质和特点,使学 生对轴对称图形有基本的认识。
示范
通过展示轴对称图形的制作过程或解题步骤,让学生直观地了解轴 对称图形的应用和操作方法。
实践
组织学生进行实践活动,如制作轴对称图形、解决与轴对称图形相关 的问题等,以提高学生的实际操作能力和问题解决能力。
几何学基础
轴对称图形是几何学中的基础概 念,对于理解几何学的基本原理
和性质至关重要。
对称性研究
在数学中,轴对称图形是研究对 称性的一个重要方面,对于理解 更复杂的对称概念有重要意义。
应用领域
轴对称图形在物理学、工程学、 计算机图形学等领域都有广泛的 应用,是解决实际问题的重要工
具。
04
轴对称图形的制作和创造
轴对称图形ppt课件
目录
• 轴对称图形的基本概念 • 轴对称图形的识别 • 轴对称图形的性质和特点 • 轴对称图形的制作和创造 • 轴对称图形的教学方法和技巧
01
轴对称图形的基本概念
轴对称图形的定义
01 轴对称图形
如果一个平面图形在某一条直线的两侧部分可以 完全重合,那么这个图形就被称为轴对称图形。
03 美学价值
轴对称图形在美学上具有很高的价值,被广泛应 用于建筑设计、图案设计等领域。
轴对称图形的分类
01
02
03
中心对称图形
如果一个图形关于某一点 旋转180度后与自身重合 ,则称为中心对称图形。
镜面对称图形
如果一个图形关于某一条 直线对称,则称为镜面对 称图形。
旋转对称图形
如果一个图形关于某一条 直线旋转一定角度后与自 身重合,则称为旋转对称 图形。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我们一起来 吧!
要在燃气管道L上修建一个 泵站,分别向A、B两镇供 气,泵站修在管道的什么地 方,可使所用的输气管线最 短?
你可以在L上找几个点 试一试,能发现什么规 律吗?
A
哈,我知道怎样作
C
B
B/
通过今天的学习,你有什么收获与体会?
1、轴对称变换的定义;
由一个平面图形得到它的轴对称图形叫做轴对称变换。
2、轴对称变换的特征;
3、画已知图形关于已知 直线的对称图
轴对称变换的特征:
1、由一个平面图形可以得到它关于一条直线l对 称的图形,这个图形与原图形的形状、大小完全 一样;
2、新图形上的每一点,都是原图形上的某一点关 于直线l的对称点;
3、连接任意一对对应点的线段被对称轴垂直平分。
作已知图形关于已知直线对称的图形的一般步聚:
作轴对称图形
PPT教学课件
剪纸艺术
服饰文化
实物图案
几何图案
花边艺术
利用轴对称变换设计美丽图案
一个轴对称图形可以看作是以它的一 部分作为基础,经轴对称变换扩展而来.
对称轴的方向和位置发生变化,得到 图形的方向和位置也会发生变化.
轴对称变换:由一个平面图形 得到它的轴对称图形的过程.
轴对称变换的特征: 由一个平面图形可以得到它关于一条直 线l对称的图形,这个图形与原图形的 形状、大小完全一样; 新图形上的每一点,都是原图形上的某 一点关于直线l的对称点; 连接任意一对对应点的线段被对称轴垂 直平分。
成轴对称的两个图形中的任何一个可以看作由另 一个图形经过轴对称变换后得到。一个轴对称图形也 可以看作以它的一部分为基础,经轴对称变换扩展 而成的。
做已知图形的轴对称图形
尝试探究
l
已知对称轴 l 和一
个点A,如何画出点A
关于 l 的对称点A′ ?
AO
A′
作法:
过点A作直线l的垂线在垂线上截取 OA’=OA,垂足为点O,点A’就是点A 关于直线l的对称点.
∴△A’B’C即为所求。
作法: 1、分别作出点A、B关于 直线l的对称点A’、B’;
2、连接AB’、B’C’、C’A。 2、连接A’B’、B’C、CA’。
B A’
Cl A
B’
作已知图形关于已知直线对称的图形的一般步聚:
1、找点(确定图形中的一些特殊点);
2、画点(画出特殊点关于已知直线的对称点);
2、类似地,分别作出点B、C关 于直线l的对称点B’、C’;
3、连接A’B’、B’C’、C’A’。
例1:如图,已知△ABC和直线l,作出与 △ABC关于直线l对称的图形。
B
B
B
A A
C
B
C
A’
l
C Cl
C’
A B’
B’
∴△AB’C’即为所求。 作法:
1、分别作出点B、C关于 直线l的对称点B’、C’;
1、找点(确定图形中的一些特殊点); 2、画点(画出特殊点关于已知直线的对称点); 3、连线(连接对称点)。
作业:
• 习题12.2 第5题
谢谢大家
再见
△ABC关于直线l对称的图形。
分析:△ABC可以由三个
顶点的位置确定,只要能分别作
B
出这三个顶点关于直线l的对称点,
连接这些对称点,就能得到要作
C
的图形。
A O
作法: l 1、过点A作直线l的垂线,垂足
A’
为点O,在垂线上截取OA’=OA,
C’
点A’就是点A关于直线l的对称
B’
点;
∴△A’B’C’即为所求。
如何画线段AB关于 直线l 的对称线段A′B′?
l
A
A’
作法:
1、过点A作直线l的垂线,垂 足为点O,在垂线上截 OA’=OA,点A’就是点A关于 直线l的对称点;
2、类似地,作出点B关于直 线l的对称点B’;
3、连接A’B’.
B
B’
∴ 线段A’B’即为所求。
例1:如图,已知△ABC和直线l,作出与
3、连线(连接对称点)。
请你用所学的知识来欣赏下列美丽的图案中Leabharlann 建筑法国著名画家 V·瓦萨雷利
·
《 委 加 派 尔 》
1969
雕刻家 威廉斯·多佛
《 木 制 卫 兵 雕 像 》 1971
如果有一个图形和一条 直线,作出与这个图形关于 这条直线对称的图形,你会 了吗?
我来试一试,
第45页练习1
相关文档
最新文档