立体几何压轴题.docx

合集下载

高考的立体几何压轴题精选

高考的立体几何压轴题精选

ABCDE F1.甲烷分子由一个碳原子和四个氢原子组成,其空间构型为一正四面体,碳原子位于该正四 面体的中心,四个氢原子分别位于该正四面体的四个顶点上.若将碳原子和氢原子均视为一 个点(体积忽略不计),且已知碳原子与每个氢原子间的距离都为a ,则以四个氢原子为顶点 的这个正四面体的体积为( ) A,3827a3C,313a D,389a 2.夹在两个平行平面之间的球,圆柱,圆锥在这两个平面上的射影都是圆,则它们的体积之 比为( )A,3:2:1 B,2:3:1 C,3:6:2 D,6:8:33.设二面角a αβ--的大小是060,P 是二面角内的一点,P 点到,αβ的距离分别为1cm, 2cm,则点P 到棱a 的距离是( )A,3B,3cm C,23cmD,34.如图,E,F 分别是正三棱锥A -BCD 的棱AB,BC的中点,且DE ⊥EF.若BC=a ,则此正三棱锥的体积是( )A,324aB,324C,312a35.棱长为的正八面体的外接球的体积是( ) A,6πB,27C,3D,36.若线段AB 的两端点到平面α的距离都等于2,则线段AB 所在的直线和平面α 的位置关系是 .7.若异面直线,a b 所原角为060,AB 是公垂线,E,F 分别是异面直线,a b 上到A,B 距离为 2和平共处的两点,当3EF =时,线段AB 的长为 .8.如图(1),在直四棱柱1111A BC D ABCD -中,当底面四边形ABCD 满足条件时,有1A C⊥1B 1D (注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)CDF ABOCD EOAA B C D P Q9.如图(2),是一个正方体的展开图,在原正方体中,有下列命题: ①AB 与EF 所连直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成060; ④MN 与CD 所在直线互相垂直.其中正确命题的序号为 .(将所有正确的都写出)10.如图,在ABC ∆中,AB=AC=13,BC=10,DE//BC 分别交AB,AC 于D,E.将ADE ∆沿 DE 折起来使得A 到1A ,且1A DE B --为060的二面角,求1A 到直线BC 的最小距离.11.如图,已知矩形ABCD 中,AB=1,BC=a (0)a >,PA ⊥平面ABCD,且PA=1.(1)问BC 边上是否存在点Q 使得PQ ⊥QD?并说明理由;(2)若边上有且只有一个点Q,使得PQ ⊥QD,求这时二面角Q PD A --的正切.12. 已知三角形ABC 的顶点分别是A (1, 2, 3)、B (3, 4, 5)、C (2, 4, 7), 求三角形ABC 的面积.A BCDA BC D图(1)A BENM 图(2)13.在正四棱柱1111ABCD A BC D -中,122AB BB==, P 为B 1C 1的中点.(1)求直线AC 与平面ABP 所成的角;(2)求异面直线AC 与B P 所成的角; (3)求点B 到平面APC 的距离.14.如图,正四棱锥P-ABCD 中,侧棱PA 与底面ABCD 所成的角的正切值为26。

立体几何压轴题

立体几何压轴题

1.如图,四棱锥P-ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面ABCD 所成二面角为60°(1)求四棱锥P-ABCD 的体积(2)证明PA ⊥BD2、如图,长方体框架ABCD -,,,,D C B A ,三边,、、AA AD AB 的长分别为6、8、3.6,AE 与底面的对角线,,D B 垂直于E 。

(1)证明,,,D B E A ;(2)求AE 的长3、如图,已知⊙O 的直径AB=3,点C 为⊙O 上异于A ,B 的一点,VC ⊥平面ABC,且VC=2,点M 为线段VB 的中点。

(1)求证:BC ⊥平面VAC;(2)若直线AM 与平面VAC 所成角为4π,求三棱锥B-ACM 的体积4、如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,CF⊥FB,BF=CF,G为BC的中点,(1)求证:FG∥平面BDE;(2)求平面BDE与平面BCF所成锐二面角的大小;(3)求四面体B-DEF的体积。

5、如图,三棱锥P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB 上的一点,且CD⊥平面PAB(1)求证AB⊥平面PCB;(2)求二面角C-PA-B的大小的余弦值。

6、ABCD为平行四边形,P为平面ABCD外的一点,PA⊥平面ABCD,且PA=AD=2,AB=1,AC=3(1)求证:平面ACD⊥平面PAC;(2)求异面直线PC与BD所成角的余弦值;(3)设二面角A-PC-B的大小为θ,试求θtan的值。

7、如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F 为CE上的点,且BF⊥平面ACE(1)求证AE⊥平面BCE;(2)求二面角B-AC-E的正弦值;(3)求点D到平面ACE的距离。

8、如图所示,四棱锥P-ABCD 的底面ABCD 是直角梯形,BC ∥AD ,AB ⊥AD ,AB=BC=21AD ,PA ⊥底面ABCD ,过BC 的平面交PD 于M ,交PA 与N (M 与D 不重合)。

专题12 立体几何小题压轴练(原卷版)

专题12 立体几何小题压轴练(原卷版)

【一专三练】 专题12 立体几何小题压轴练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·山东济宁·统考一模)已知直三棱柱111ABC A B C -,D 为线段11A B 的中点,E为线段1CC 的中点,1A E 过1AC E △的内切圆圆心,且1AD DC ⊥,CA =,2AB =,则三棱锥D ABC -的外接球表面积为( )A .27π8B .274πC .27π2D .27π 2.(2023春·湖北武汉·高三华中师大一附中校考期中)在正四棱台1111ABCD A B C D -中,112AB A B =,1AA =M 为棱11B C 的中点,当正四棱台的体积最大时,平面MBD 截该正四棱台的截面面积是( ).AB C .D .3.(2023·湖北武汉·华中师大一附中校联考模拟预测)在三棱锥D ABC -中,ABC V 是以AC 为底边的等腰直角三角形,DAC △是等边三角形,AC =,又BD 与平面ADCD ABC -外接球的表面积是( )A .8πB .12πC .14πD .16π4.(2023秋·湖南湘潭·高三校联考期末)点,M N 分别是棱长为2的正方体1111ABCD A B C D -中棱1,BC CC 的中点,动点P 在正方形11BCC B (包括边界)内运动.若1//PA 面AMN ,则1PA 的长度范围是( )A .⎡⎣B .C .⎤⎥⎦D .[]2,35.(2023春·湖南·高三统考阶段练习)正方体1111ABCD A B C D -的棱长为1,点P 在三棱锥1C BCD -的表面上运动,且1A P =P 轨迹的长度是( )A BC D 6.(2023·广东梅州·统考一模)《九章算术》是我国古代著名的数学著作,书中记载有几何体“刍甍”.现有一个刍甍如图所示,底面ABCD 为正方形,EF P 平面ABCD ,四边形ABFE ,CDEF 为两个全等的等腰梯形,122EF AB ==,且AE =则此刍甍的外接球的表面积为( )A .60πB .64πC .68πD .72π7.(2023·广东·校联考模拟预测)已知四棱锥P ABCD -的五个顶点都在球面O 上,底面ABCD 是边长为4的正方形,平面PAD ⊥平面ABCD ,且PA PD ==,则球面O 的表面积为( )A .39πB .40πC .41πD .42π8.(2023·广东深圳·深圳中学校联考模拟预测)在矩形ABCD 中,已知24AB AD ==,E 是AB 的中点,将ADE V 沿直线DE 翻折成1A DE △,连接1A C ,当二面角1A DE C --的平面角的大小为60︒时,则三棱锥1A CDE -外接球的表面积为( )A .56π3B .18πC .19πD .53π3二、多选题9.(2023·浙江温州·统考二模)蜜蜂是自然界的建筑大师,在18世纪初,法国数学家马拉尔迪指出,蜂巢是由许许多多类似正六棱柱形状的蜂房(如图)构成,其中每个蜂房的底部都是由三个全等的菱形构成,每个菱形钝角的余弦值是13-,则( )A .AB P 平面11EDD E B .AB EF⊥C .蜂房底部的三个菱形所在的平面两两垂直D .该几何体的体积与以六边形111111A B C DEF 为底面,以1BB 为高的正六棱柱的体积相等10.(2023春·江苏扬州·高三统考开学考试)在四面体ABCD 的四个面中,有公共棱AC的两个面全等,1AD =,CD =,90CDA ∠=︒,二面角B AC D --大小为θ,下列说法中正确的有( )A .四面体ABCD 外接球的表面积为3πB .四面体ABCDC .若AD AB =,AD AB ⊥,则120θ=°D .若AD BC =,120θ=°,则BD =11.(2023春·江苏南京·高三南京市第五高级中学校考阶段练习)已知正四棱台1111ABCD A B C D -的上下底面边长分别为4,6E 是11A B 的中点,则( )A .正四棱台1111ABCD ABCD -B .平面1BC D ⊥平面11AA C CC .AE ∥平面1BCD D .正四棱台1111ABCD A B C D -的外接球的表面积为104π12.(2023秋·辽宁葫芦岛·高三统考期末)在正方体1AC 中,M 为AB 中点,N 为BC 中点,P 为线段1CC 上一动点(不含C )过M ,N ,P 的正方体的截面记为α,则下列判断正确的是( )A .当P 为1CC 中点时,截面α为六边形B .当112CP CC <时,截面α为五边形C .当截面α为四边形时,它一定是等腰梯形D .设1DD 中点为Q ,三棱锥Q PMN -的体积为定值13.(2023春·江苏苏州·高三统考开学考试)六面体1111ABCD A B C D -中,底面ABCD 、1111D C B A 分别是边长为4和2的正方形,侧面11CDD C 、侧面11BCC B 均是直角梯形,且13CC =,1CC CD ⊥.若该六面体为台体,下列说法正确的是( )A .六面体1111ABCD ABCD -的体积为28B .异面直线1DD 与1BB 的夹角的余弦值为913C .二面角1B AB D --D .设P 为上底面上一点,且AP CP ⊥,则P 的轨迹为一个圆14.(2023·山东·沂水县第一中学校联考模拟预测)已知圆锥顶点为S ,高为1,底面圆O 的直径AB长为C 为底面圆周上不同于,A B 的任意一点,则下列说法中正确的是( )A .圆锥SO的侧面积为B .SAC V 面积的最大值为32C .圆锥SO 的外接球的表面积为9πD .若AC BC =,E 为线段AC 上的动点,则SE BE +15.(2023·湖北·校联考模拟预测)如图,在正四面体ABCD 中,棱AB 的中点为M,棱CD 的中点为N ,过MN 的平面交棱BC 于P ,交棱AD 于Q ,记多面体CAMPNQ 的体积为1V ,多面体BDMPNQ 的体积为2V ,则( )A .直线MQ 与PN 平行B .AQ BP AD BC =C .点C 与点D 到平面MPNQ 的距离相等D .12V V =16.(2023春·湖北武汉·高三华中师大一附中校考期中)已知异面直线a 与b 所成角为60 ,平面α与平面β的夹角为80 ,直线a 与平面α所成的角为20 ,点P 为平面α、β外一定点,则下列结论正确的是( )A .过点P 且与直线a 、b 所成角都是60 的直线有4条B .过点P 且与平面α、β所成角都是30 的直线有4条C .过点P 且与平面α、β所成角都是40 的直线有3条D .过点P 与平面α成60 角,且与直线a 成60 的直线有3条17.(2023春·湖南·某同学参加综合实践活动,设计了一个封闭的包装盒.包装盒如图所示,是由等高的半个圆柱和14个圆柱拼接而成,其中四边形ABCD 是边长为4的正方形,点G 是弧CD 上的动点,且,,,C E D G 四点共面.下列说法正确的有( )A .若点G 为弧CD 的中点,则平面BFD ⊥平面BCGB .存在点G ,使得BG DF∥C .存在点G ,使得直线CF 与平面BCG 所成的角为60D .当点G 到平面BDF 的距离最大时,三棱锥G BDF -外接球的半径R =18.(2023春·江苏南通·高三海安高级中学校考阶段练习)如图的六面体中,CA =CB =CD =1,AB =BD =AD =AE =BE =DE )A .CD ⊥平面ABCB .AC 与BE 所成角的大小为π3C .CE D .该六面体外接球的表面积为3π19.(2023·湖南岳阳·统考二模)在中国共产党第二十次全国代表大会召开期间,某学校组织了“喜庆二十大,永远跟党走,奋进新征程,书画作品比赛.如图①,本次比赛的冠军奖杯由一个铜球和一个托盘组成,若球的体积为4π3;如图②,托盘由边长为4的正三角形铜片沿各边中点的连线垂直向上折叠而成,则下列结论正确的是( )A .直线AD 与平面BEF 所成的角为π6B .经过三个顶点,,A BC 的球的截面圆的面积为π4C .异面直线AD 与CF 所成的角的余弦值为58D .球离球托底面DEF 120.(2023·广东·高三校联考阶段练习)如图,矩形ABCD 中,4AB =,2BC =,E 为边AB 的中点,沿DE 将ADE V 折起,点A 折至1A 处(1A ∉平面ABCD ),若M 为线段1A C 的中点,平面1A DE 与平面DEBC 所成锐二面角α,直线1A E 与平面DEBC 所成角为β,则在ADE V 折起过程中,下列说法正确的是( )A .存在某个位置,使得1BM A D⊥B .1A EC △面积的最大值为C .sin αβ=D .三棱锥1A EDC -体积最大时,三棱锥1A EDC -的外接球的表面积16π21.(2023·广东深圳·统考一模)如图,已知正三棱台111ABC A B C -的上、下底面边长分别为2和3,侧棱长为1,点P 在侧面11BCC B 内运动(包含边界),且AP 与平面11BCC B,则( )A .CP 1B .存在点P ,使得⊥AP BCC .存在点P ,存在点11Q B C ∈,使得1AP A Q∥D .所有满足条件的动线段AP 22.(2023·江苏南通·二模)如图,正三棱锥A -PBC 和正三棱锥D -PBC 的侧棱长均为BC = 2.若将正三棱锥A -PBC 绕BC 旋转,使得点A ,P 分别旋转至点A P '',处,且A ',B ,C ,D 四点共面,点A ',D 分别位于BC 两侧,则( )A .A D CP '⊥B .//PP '平面A 'BDCC .多面体PP A BDC ''的外接球的表面积为6πD .点A ,P 旋转运动的轨迹长相等23.(2023·广东江门·统考一模)勒洛Franz Reuleaux (1829~1905),德国机械工程专家,机构运动学的创始人.他所著的《理论运动学》对机械元件的运动过程进行了系统的分析,成为机械工程方面的名著.勒洛四面体是一个非常神奇的“四面体”,它能在两个平行平面间自由转动,并且始终保持与两平面都接触,因此它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是( )A .勒洛四面体能够容纳的最大球的半径为2B .勒洛四面体被平面ABC 截得的截面面积是(2πC .勒洛四面体表面上交线AC 的长度为2π3D 224.(2023秋·浙江·高三浙江省永康市第一中学校联考期末)正方体1111ABCD A B C D -的棱长为1,中心为O ,以O 为球心的球与四面体11AB CD 的四个面相交所围成的曲线的总O 的半径为( )A B C D 三、填空题25.(2023·浙江金华·浙江金华第一中学校考模拟预测)已知矩形ABCD 在平面α的同一侧,顶点A 在平面上,4AB =,BC =且AB ,BC 与平面α所成的角的大小分别为30°,45°,则矩形ABCD 与平面α所成角的正切值为______.26.(2023春·江苏南通·高三校考开学考试)在直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,侧棱12AA =,M 为侧棱1BB 的中点,N 在侧面矩形11ADD A 内(异于点1D ),则三棱锥1N MCD -体积的最大值为____________.27.(2023秋·江苏南京·高三南京市第一中学校考期末)在三棱锥-P ABC 中,AC BC PC ==,且30APC BPC ACB ∠=∠=∠=︒,则直线PC 与平面ABC 所成角的余弦值为__________.28.(2023·山东聊城·统考一模)已知正四棱柱1111ABCD A B C D -的体积为16,E 是棱BC 的中点,P 是侧棱1AA 上的动点,直线1C P 交平面11EB D 于点P ',则动点P '的轨迹长度的最小值为______.29.(2023春·湖北武汉·高三华中师大一附中校考阶段练习)蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球因而蹴鞠就是指古人以脚蹴、蹋、踢皮球的活动,类似于今日的足球.2006年5月20日,蹴鞠作为非物质文化遗产经国务院批准已列入第一批国家非物质文化遗产名录.已知某鞠(球)的表面上有四个点A ,B ,C ,P ,且球心О在PC 上,4AC BC ==,AC BC ⊥,tan tan PAB PBA ∠=∠=__________.30.(2023春·湖南·高三校联考阶段练习)在正四棱锥S ABCD -中,M 为SC 的中点,过AM 作截面将该四棱锥分成上、下两部分,记上、下两部分的体积分别为12,V V ,则21V V 的最大值是___________.。

立体几何压轴小题含答案)

立体几何压轴小题含答案)
则在直角三角形BOE中,BO2=OE2+BE2=(PE-EO)2+BE2,
即R2=(4-R)2+(3 )2,解得:R= ,故选C.
考点:三视图,球与多面体的切接问题,空间想象能力
12.如右图,在长方体 中, =11, =7, =12,一质点从顶点A射向点 ,遇长方体的面反射(反射服从光的反射原理),将 次到第 次反射点之间的线段记为 , ,将线段 竖直放置在同一水平线上,则大致的图形是()
一、选择题
1.如图,已知正方体 的棱长为4,点 , 分别是线段 , 上的动点,点 是上底面 内一动点,且满足点 到点 的距离等于点 到平面 的距离,则当点 运动时, 的最小值是()
A. B. C. D.
【答案】D
【解析】
试题分析:因为点 是上底面 内一动点,且点 到点 的距离等于点 到平面 的距离,所以,点 在连接 中点的连线上.为使当点 运动时, 最小,须 所在平面平行于平面 , ,选
故选A
点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.
18.二面角 为60°,A、B是棱 上的两点,AC、BD分别在半平面 内, , ,且AB=AC= ,BD= ,则CD的长为()
A. B. C. D.
考点:棱柱的结构特征.
9.下列命题中,错误的是()
A.一条直线与两个平行平面中的一个相交,则必与另一个平面相交
B.平行于同一平面的两条直线不一定平行
C.如果平面 不垂直于平面 ,那么平面 内一定不存在直线垂直于平面
D.若直线 不平行于平面 ,则在平面 内不存在与 平行的直线
【答案】B
【解析】

压轴题05 立体几何压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用-文)

压轴题05 立体几何压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用-文)

压轴题05立体几何压轴题题型/考向一:点、线、面间的位置关系和空间几何体的体积、表面积题型/考向二:外接球、内切球等相关问题题型/考向三:平面关系、垂直关系、体积、表面积等综合问题一、空间几何体的体积、表面积热点一空间几何体的侧面积、表面积柱体、锥体、台体和球的表面积公式:(1)若圆柱的底面半径为r,母线长为l,则S侧=2πrl,S表=2πr(r+l).(2)若圆锥的底面半径为r,母线长为l,则S侧=πrl,S表=πr(r+l).(3)若圆台的上、下底面半径分别为r′,r,则S侧=π(r+r′)l,S表=π(r2+r′2+r′l +rl).(4)若球的半径为R,则它的表面积S=4πR2.热点二空间几何体的体积柱体、锥体、台体和球的体积公式:(1)V柱体=Sh(S为底面面积,h为高);Sh(S为底面面积,h为高);(2)V锥体=13(S上+S下+S上S下)h(S上、S下分别为上、下底面面积,h为高);(3)V台体=13(4)V球=4πR3.3二、外接球、内切球问题类型一外接球问题考向1墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:考向2对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R )2=a 2+b 2+c 2(长方体的长、宽高分别为a ,b ,c ),即R 2=18(x 2+y 2+z 2),如图.考向3汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2的连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h 2,所以R 2=r 2+h 24.考向4垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O 的位置是△CBD 的外心O 1与△AB 2D 2的外心O 2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.类型二内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r,建立等式V P-ABC=V O-ABC+V O-P AB+V O-P AC+V O-PBC⇒V P-ABC=13S△ABC·r+13S△P AB·r+13S△P AC·r+13S PBC·r=13(S△ABC+S△P AB+S△P AC+S△PBC)r;第三步:解出r=3V P-ABCS△ABC+S△P AB+S△P AC+S△PBC.类型三球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).三、平行关系和垂直关系的证明、二面角等热点一空间线、面位置关系的判定判断空间线、面位置关系的常用方法(1)根据空间线面平行、垂直的判定定理和性质定理逐项判断,解决问题.(2)利用直线的方向向量、平面的法向量判断.(3)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线、面的位置关系,并结合有关定理进行判断.热点二几何法证明平行、垂直1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面○热○点○题○型一点、线、面间的位置关系和空间几何体的体积、表面积一、单选题1.设l ,m 是两条不同的直线,α,β,γ是三个不同的平面,下列说法正确的是()A .若//l α,//m α,则//l mB .若//l α,//l β,则//αβC .若l α⊥,m α⊥,则//l mD .若αγ⊥,βγ⊥,则//αβ2.将半径为6的半圆卷成一个无底圆锥(钢接处不重合),则该无底圆锥的体积为()A .273πB .27πC .3πD .9π3.在正方体1111ABCD A B C D -中,直线m 、n 分别在平面ABCD 和11ABB A ,且m n ⊥,则下列命题中正确的是()A .若m 垂直于AB ,则n 垂直于AB B .若m 垂直于AB ,则n 不垂直于ABC .若m 不垂直于AB ,则n 垂直于ABD .若m 不垂直于AB ,则n 不垂直于AB4.如图是一款多功能粉碎机的实物图,它的进物仓可看作正四棱台,已知该四棱台的上底面边长为40cm ,下底面边长为10cm ,侧棱长为30cm ,则该款粉碎机进物仓的容积为()A .32cmB .386003cmC .3105002cmD .33cm5.已知在春分或秋分时节,太阳直射赤道附近.若赤道附近某地在此季节的日出时间为早上6点,日落时间为晚上18点,该地有一个底面半径为4m 的圆锥形的建筑物,且该建筑物在一天中恰好有四个小时在地面上没有影子,则该建筑物的体积为()A .643πB .π3C .16π3D .π36.攒尖是古代中国建筑中屋顶的一种结构形式,依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑.如故宫中和殿的屋顶为四角攒尖顶,它的主要部分的轮廓可近似看作一个正四棱锥,设正四棱锥的侧面等腰三角形的顶角为60°,则该正四棱锥的侧面积与底面积的比为()A .4B 3C D 7.在三棱锥A BCD -中,4AB AC BD CD BC =====,平面α经过AC 的中点E ,并且与BC 垂直,则α截此三棱锥所得的截面面积的最大值为()A B .34C 2D .328.已知圆台的母线长为4,上底面圆和下底面圆半径的比为1:3,其侧面展开图所在扇形的圆心角为π2,则圆台的高为()A .BC .4D .二、多选题9.已知平面α,β,直线l ,m ,则下列命题正确的是()A .若αβ⊥,,,m l m l αβα⋂=⊥⊂,则l β⊥B .若l αβα⊂∥,,m β⊂,则//l mC .若m α⊂,则“l α⊥”是“l m ⊥”的充分不必要条件D .若m α⊂,l α⊄,则“l α∥”是“l m ”的必要不充分条件10.下列说法正确的是()A .若直线a 不平行于平面α,a α⊄,则α内不存在与a 平行的直线B .若一个平面α内两条不平行的直线都平行于另一个平面β,则αβ∥C .设l ,m ,n 为直线,m ,n 在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的充要条件D .若平面α⊥平面1α,平面β⊥平面1β,则平面α与平面β所成的二面角和平面1α与平面1β所成的二面角相等或互补三、解答题11.已知直棱柱1111ABCD A B C D -的底面ABCD 为菱形,且2AB AD BD ===,1AA =,点E 为11B D 的中点.(1)证明://AE 平面1BDC ;(2)求三棱锥1E BDC -的体积.12.如图,在三棱柱111ABC A B C -中,ABC 为边长为2的正三角形,D 为BC 的中点,12AA =,且160CCB ∠= ,平面11BB C C ⊥平面ABC .(1)证明:1C D AB ⊥;(2)求三棱锥111B AA C -的体积.○热○点○题○型二外接球、内切球等相关问题一、单选题1.已知ABC 是边长为3的等边三角形,其顶点都在球O 的球面上,若球O 的体积为323π,则球心O 到平面ABC 的距离为()AB .32C .1D .22.已知三棱锥-P ABC 的底面ABC 是边长为1的正三角形,侧棱,,PA PB PC 两两垂直,若此三棱锥的四个顶点都在同一个球面上,则该球的表面积是()A .3πB .πC .3π4D .3π23.一个圆锥的底面圆和顶点都恰好在一个球面上,且这个球的半径为5,则这个圆锥的体积的最大值时,圆锥的底面半径为()A .103B .2C .3D 4.已知圆锥的侧面积为2π,母线与底面所成角的余弦值为12,则该圆锥的内切球的体积为()A .4π3B C D 5.如图,几何体Ω为一个圆柱和圆锥的组合体,圆锥的底面和圆柱的一个底面重合,圆锥的顶点为A ,圆柱的上、下底面的圆心分别为B 、C ,若该几何体Ω存在外接球(即圆锥的顶点与底面圆周在球面上,且圆柱的底面圆周也在球面上).已知24BC AB ==,则该组合体的体积等于()A .56πB .70π3C .48πD .64π6.已知矩形ABCD 的顶点都在球心为O 的球面上,3AB =,BC =,且四棱锥O ABCD-的体积为,则球O 的表面积为()A .76πB .112πCD 7.水平桌面上放置了4个半径为2的小球,4个小球的球心构成正方形,且相邻的两个小球相切.若用一个半球形的容器罩住四个小球,则半球形容器内壁的半径的最小值为()A .4B .2C .2D .68.已知三棱锥-P ABC 的四个顶点均在球O 的球面上,2PA BC ==,PB AC ==PC AB =Q 为球O 的球面上一动点,则点Q 到平面PAB 的最大距离为()A 2211B C 2211D 二、填空题9.在三棱锥-P ABC 中,PA ⊥平面ABC ,14AB AC PA AB AC ⊥=+=,,,当三棱锥的体积最大时,三棱锥-P ABC 外接球的体积为______.10.如图,在直三棱柱111ABC A B C -中,1AA AB BC ==.设D 为1AC 的中点,三棱锥D ABC -的体积为94,平面1A BC ⊥平面11ABB A ,则三棱柱111ABC A B C -外接球的表面积为______.11.如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则直三棱柱111ABC A B C -的体积为___________.12.如图所示的由4个直角三角形组成的各边长均相等的六边形是某棱锥的侧面展开图,若该六边形的面积为12,则该棱锥的内切球半径为___.○热○点○题○型三平面关系、垂直关系、体积、表面积等综合问题1.已知直棱柱1111ABCD A B C D -的底面ABCD 为菱形,且2AB AD BD ===,1AA =,点E 为11B D 的中点.(1)证明://AE 平面1BDC ;(2)求三棱锥1E BDC -的体积.2.如图,在四棱锥P ABCD -中,PAD 是等边三角形,底面ABCD 是棱长为2的菱形,平面PAD ⊥平面ABCD ,O 是AD 的中点,π3DAB ∠=.(1)证明:OB ⊥平面PAD ;(2)求点O 到平面PAB 的距离.3.如图,在三棱柱111ABC A B C -中,ABC 为边长为2的正三角形,D 为BC 的中点,12AA =,且160CCB ∠= ,平面11BB C C ⊥平面ABC .(1)证明:1C D AB ⊥;(2)求三棱锥111B AAC -的体积.4.如图1,在直角梯形ABCD 中,90ADC ∠=︒,AB CD ,122AD CD AB ===,E 为AC 的中点,将ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,如图2.在图2所示的几何体D ABC -中:(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD EF ,求几何体F BCE -的体积.5.在如图所示的几何体中,四边形ABCD 为菱形,60BCD ∠=︒,4AB =,EF CD ∥,2EF =,4CF =,点F 在平面ABCD 内的射影恰为BC 的中点G .(1)求证:平面ACE 平面BED;(2)求该几何体的体积.。

立体几何压轴小题

立体几何压轴小题

立体几何压轴小题一、单选题1.已知一圆锥底面圆的直径为3,圆锥的高为2,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a 的最大值为( )A .3BC .92D .22.如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=,则直线1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .12⎡⎢⎣⎦D .12⎡⎢⎣⎦3.已知正六棱锥V ABCDEF -,P 是侧棱VC 上一点(不含端点),记直线PB 与直线DE 所成角为α,直线PB 与平面ABC 所成角为β,二面角P CD F --的平面角为γ,则( ) A .βγ<,αγ< B .βα<,βγ< C .βα<,γα<D .αβ<,γβ<4.斜三棱柱111ABC A B C -中,底面ABC 是正三角形,侧面11ABB A 是矩形,M 是线段AB 上的动点,记直线1A M 与直线AC 所成的角为α,直线1A M 与平面ABC 所成的角为β,二面角1A AC B --的平面角为γ,则( )A .αβ≤,≤βγB .≤βα,≤βγC .αβ≤,βγ≥D .≤βα,βγ≥5.如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8,高为5,点,M N 分别在1111,A B D C 上,且111A M D N ==.过点,M N 的平面α与此四棱台的下底面会相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为A .B .C .D .6.如图,直三棱柱111ABC A B C -的底面是边长为6的等边三角形,侧棱长为2,E 是棱BC 上的动点,F 是棱11B C 上靠近1C 点的三分点,M 是棱1CC 上的动点,则二面角A FM E --的正切值不可能...是( )A .5B .5C D 7.在棱长为3的正方体1111ABCD A B C D -中,O 为棱DC 的中点,E 为线段AO 上的点,且2AE EO =,若点,F P 分别是线段1DC ,1BC 上的动点,则PEF 周长的最小值为( )A .B .2C D8.三棱锥P ABC -中,AB BC ⊥,△PAC 为等边三角形,二面角P AC B --的余弦值为棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为( ) A .1B .2C .12D .139.已知矩形,4,2,ABCD A AD E B ==为AB 中点,沿直线DE 将ADE 翻折成PDE △,直线PB 与平面BCDE 所成角最大时,线段PB 长是( )A .743B .543C .742D .54210.已知四面体ABCD 的三组对棱的长分别相等,依次为3,4,x ,则x 的取值范围是( )A .B .)C .)D .()4,711.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A .,βγαγ<< B .,βαβγ<< C .,βαγα<<D .,αβγβ<<12.已知,,,A B C D 四点均在半径为R (R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为( )A .32π B .2πC .94π D .83π 13.蜂巢是由工蜂分泌蜂蜡建成的从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是10928'︒,这样的设计含有深刻的数学原理、我国著名数学家华罗庚曾专门研究蜂巢的结构著有《谈谈与蜂房结构有关的数学问题》.用数学的眼光去看蜂巢的结构,如图,在六棱柱ABCDEF A B C D E '''''﹣的三个顶点A ,C ,E 处分别用平面BFM ,平面BDO ,平面DFN 截掉三个相等的三棱锥M ABF -,O BCD -,N DEF -,平面BFM ,平面BDO ,平面DFN 交于点P ,就形成了蜂巢的结构.如图,设平面PBOD 与正六边形底面所成的二面角的大小为θ,则有:( )A.tan 5444θ'=︒ B.sin 5444θ'=︒ C.cos tan 54443θ'=︒ D .以上都不对14.如图,正方体1111ABCD A B C D -的棱长为,,a E F 分别是棱1AA ,1CC 的中点,过点,E F 的平面分别与棱1BB ,1DD 交于点,G H ,设,[0,]BG x x a =∈.给出以下四个命题: ①平面EGFH 与平面ABCD 所成角的最大值为45°; ②四边形EGFH 的面积的最小值为2a ;③四棱锥1C EGFH -的体积为36a ;④点1B 到平面EGFH的距离的最大值为3. 其中命题正确的序号为( )A .②③④B .②③C .①②④D .③④15.在三棱锥A BCD -中,60BAC BDC ∠=∠=︒,二面角A BC D --的余弦值为13-,当三棱锥A BCD -) A .5πB .6πC .7πD .8π16.在正方体1111ABCD A B C D -中,点E ∈平面11AA B B ,点F 是线段1AA 的中点,若1D E CF ⊥,则当EBC ∆的面积取得最小值时,=EBC ABCDS S ∆四边形( )A B .12C D 17.有一正三棱柱(底面为正三角形的直棱柱)木料111ABC A B C -,其各棱长都为2.已知12,O O 分别为上,下底面的中心,O 为线段12O O 的中点,过A B O ,,三点的截面把该木料截成两部分,则截面面积为( )AB C D .218.已知α,β为两个不重合的平面,m ,n 为两条不重合的直线,且m αβ=,n β⊂.记直线m 与直线n 的夹角和二面角m αβ--均为1θ,直线n 与平面α的夹角为2θ,则下列说法正确的是( ) A .若106πθ<<,则122θθ> B .若164ππθ<<,则12tan 2tan θθ> C .若143ππθ<<,则12sin sin θθ<D .若132ππθ<<,则123cos cos 4θθ>19.如图,在矩形ABCD 中,2AB =,1BC =,E 、N 分别为边AB 、BC 的中点,沿DE 将ADE ∆折起,点A 折至1A 处(1A 与A 不重合),若M 、K 分别为线段1A D 、1A C 的中点,则在ADE ∆折起过程中( )A .DE 可以与1A C 垂直B .不能同时做到//MN 平面1A BE 且//BK 平面1A DEC .当1MN AD ⊥时,MN ⊥平面1A DED .直线1AE 、BK 与平面BCDE 所成角分别为1θ、2θ,1θ、2θ能够同时取得最大值20.在四面体ABCD 中,若1AD DB AC CB ====,则当四面体ABCD 的体积最大时其外接球表面积为( ) A .53π B .43π C .πD .2π二.多选题21.(2020·蒙阴县实验中学高三期末)已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,BC =CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为622.(2020·山东高一期末)如图,矩形ABCD 中, 22AB AD ==,E 为边AB 的中点.将ADE 沿直线DE 翻折成1A DE △(点1A 不落在底面BCDE 内),若M 在线段1A C 上(点M 与1A ,C 不重合),则在ADE 翻转过程中,以下命题正确的是( )A .存在某个位置,使1DE A C ⊥B .存在点M ,使得BM ⊥平面1A DC 成立 C .存在点M ,使得//MB 平面1A DE 成立D .四棱锥1A BCDE -体积最大值为423.(2020·山东高三)如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π 24.(2020·全国高三(理))如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DPB .DPC .1AP PC +D .1AP PC +的最小值为525.(2020·山东高一期末)已知正方体1111ABCD A B C D -的棱长为2,点O 为11A D 的中点,若以O 为球为半径的球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,则下列结论正确的是( ) A .11//A D 平面EFGH B .1A C ⊥平面EFGHC .11A B 与平面EFGH 所成的角的大小为45°D .平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7 二、填空题26.已知长方体1111ABCD A B C D -的棱12AA =,4,3AB AD ==,点E ,F 分别为棱BC ,1CC 上的动点.若四面体11A B EF 的四个面都是直角三角形,则下列命题正确的是__________.(写出所有正确命题的编号)①存在点E ,使得1EF A F ⊥; ②不存在点E ,使得11B E A F ⊥;③当点E 为BC 中点时,满足条件的点F 有3个; ④当点F 为1CC 中点时,满足条件的点E 有3个; ⑤四面体11A B EF 四个面所在平面,有4对相互垂直.27.在四棱锥P ABCD -中,PAB 是边长为ABCD 为矩形,2AD =,PC PD ==若四棱锥P ABCD -的顶点均在球O 的球面上,则球O 的表面积为_____.28.《九章算术》中记载:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱剖开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,12,4,BB BC AB AC ====且有鳖臑C 1-ABB 1和鳖臑1C ABC -,现将鳖臑1C ABC -沿线BC 1翻折,使点C 与点B 1重合,则鳖臑1C ABC -经翻折后,与鳖臑11C ABB -拼接成的几何体的外接球的表面积是______.29.点M 为正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为11B C 上一点,112,NB NC DM BN =⊥,若球O 的体积为,则动点M 的轨迹的长度为__________.30.如图所示,某几何体由底面半径和高均为1的圆柱与半径为1的半球对接而成,在该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为__________.31.如图,AB 是平面α的斜线段,A 为斜足,点C 满足()0BC AC λλ=>,且在平面α内运动,则有以下几个命题:①当1λ=时,点C 的轨迹是抛物线; ②当1λ=时,点C 的轨迹是一条直线; ③当2λ=时,点C 的轨迹是圆; ④当2λ=时,点C 的轨迹是椭圆; ⑤当2λ=时,点C 的轨迹是双曲线.其中正确的命题是__________.(将所有正确的命题序号填到横线上) .32.已知三棱锥D ABC -的所有顶点都在球O 的表面上,AD ⊥平面ABC ,AC =1BC =,cos ACB ACB ∠=∠,2AD =,则球O 的表面积为__________.33.如图所示,在边长为2的菱形ABCD 中,60BCD ∠=︒,现将ABD △沿对角线BD 折起,得到三棱锥P BCD -.则当二面角P BD C --的大小为23π时,三棱锥P BCD -的外接球的表面积为______.34.如图,在四面体ABCD 中,2AB CD ==,AC BD ==AD BC ==,E F 分别是,AD BC 的中点若用一个与直线EF 垂直,且与四面体的每个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积的最大值为______.35.现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为221254y x += ,将此椭圆绕y 轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______.36.已知四面体ABCD 的四个顶点均在球O 的表面上,AB 为球O 的直径,4,2AB AD BC ===,四面体ABCD 的体积最大值为____37.已知单位向量i j k ,,两两的夹角均为θ(0θπ<<,且2πθ≠),若空间向量a 满足a xi y j zk =++,(,,)x y z R ∈,则有序实数组(,,)x y z 称为向量a 在“仿射”坐标系O xyz -(O 为坐标原点)下的“仿射”坐标,记作(, , )a x y z θ=,有下列命题:①已知()111,,a x y z θ=,(4,0,2)b θ=,则a b =0; ②已知3(,,0)a x y π=,3(0,0,)b z π=,其中,,0x y z >,则当且仅当x y =时,向量,a b 的夹角取得最小值;③已知()111,,a x y z θ=,()222,,b x y z θ=,则()123232,,a b x x y y z z θ+=+++;④已知()31,0,0OA π=,3(0,1,0)OB π=,3(0,0,1)OC π=,则三棱锥O ABC -的表面积S =其中真命题为________(写出所有真命题的序号).38.如图,在边长为4的正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H 分别为DE ,AF 的中点,将ABC 沿DE ,EF ,DF 折成正四面体P DEF -,则在此正四面体中,下列说法正确的是______.①异面直线PG 与DH 所成的角的余弦值为23; DF PE ⊥②;GH ③与PD 所成的角为45;PG ④与EF 所成角为6039.已知P ,E ,G F ,都在球面C 上,且P 在EFG ∆所在平面外,PE EF ⊥,PE EG ⊥,224PE GF EG===,120EGF∠=,在球C内任取一点,则该点落在三棱锥P EFG-内的概率为__________.40.如图,在透明塑料制成的长方体容器内灌进一些水,将容器底面一边固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形的面积不改变;③棱始终与水面平行;④当时,是定值.其中正确说法是.41.(2017届高三第二次湖北八校文数试卷第16题)祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆22221(0)y xa ba b+=>>所围成的平面图形绕y轴旋转一周后,得一橄榄状的几何体(如图)(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于______.42.斜线OA与平面α成15°角,斜足为O,A'为A在α内的射影,B为OA的中点,l是α内过点O的动直线,若l 上存在点1P ,2P 使1230APB AP B ︒∠=∠=,则12||P P AB 则的最大值是_______,此时二面角12A PP A '--平面角的正弦值是_______43.三棱锥P ABC -中,顶点P 在底面ABC 的投影恰好是ABC 的内心,三个侧面的面积分别为12,16,20,且底面的面积为24,则该三棱锥P ABC -的体积是________;它的外接球的表面积是________.立体几何压轴小题解析一、单选题1.已知一圆锥底面圆的直径为3,圆锥的高为2,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a 的最大值为( )A .3 BC .92 D 【答案】B【解析】【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a 的最大值.【详解】依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球设球心为P ,球的半径为r ,下底面半径为R ,轴截面上球与圆锥母线的切点为Q ,圆锥的轴截面如图:则32OA OB ==,因为SO ,故可得:3SA SB ===;所以SAB 为等边三角形,故P 是SAB 的中心,连接BP ,则BP 平分SBA ∠,所以30PBO ∠=︒;所以tan 30r R︒=,即32r ==,即四面体的外接球的半径为r =另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a 时,截得它的正方体的棱长为2a , 而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以12r ===,所以a =即a .故选:B .【点睛】本题考查了正四面体的外接球,将正四面体的外接球转化为正方体的外接球,是一种比较好的方法,本题属于难题.2.如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=,则直线1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .122⎡⎢⎣⎦D .1,22⎡⎢⎣⎦【答案】A【解析】【分析】求得点P 的轨迹是平面11A BC 内以点O 为圆心,半径为1的圆,可得111////AD BC B M ,进而可得出题中所求角等于直线1B M 与直线1B P 的夹角,然后过点O 作OH ⊥平面ABCD 于点H ,过点H 作HN BC ⊥于点N ,连接ON ,找出使得1PB M ∠最大和最小时的位置,进而可求得所求角的余弦值的取值范围.【详解】连接1B D 交平面11A BC 于点O ,延长线段CB 至点M ,使得CB BM =,连接1B M 、OM 、PM ,如下图所示:已知在正方体1111ABCD A B C D -中,1DD ⊥底面1111D C B A ,11A C ⊂平面1111D C B A ,111DD A C ∴⊥, 又四边形1111D C B A 为正方形,所以,1111AC B D ⊥, 1111DD B D D ⋂=,11A C ∴⊥平面11B DD ,1B D ⊂平面11B DD ,111B D AC ∴⊥,同理11B D A B ⊥,1111AC A B A =,1B D ∴⊥平面11A BC ,三棱锥111B A B C -的体积为11131193322B A BC V -=⨯⨯=,(111242A B C S ==△,1111119322B A BC V B O O -=⨯==,可得1113B O B D ==, 所以,线段1B D 的长被平面11A BC 与平面1AD C 三等分,且与两平面分别垂直,而正方体1111ABCD A B C D -的棱长为3,所以1OB =OD =其中1PO B D ⊥,不妨设OP x =,由题意可12PB PD +=2=1x =,所以,点P 在平面11A BC 内以点O 为圆心,半径为1的圆上.因为111////AD BC B M ,所以,直线1B M 与直线1B P 的夹角即为直线1B P 与直线1AD 所成角.接下来要求出线段1B M 与PM 的长,然后在1B PM △中利用余弦定理求解.如图,过点O 作OH ⊥平面ABCD 于点H ,过点H 作HN BC ⊥于点N ,连接ON ,根据题意可知2OH =,1HN BN ==,且ON MN ⊥,所以,ON =OM ==如图所示,121OP OP ==,当点P 在1P 处时,1PB M ∠最大,当点P 在2P 处时,1PB M ∠最小.这两种情况下直线1B P 与直线1B M 夹角的余弦值最大,为111cos sin 2PB M PB O ∠=∠=; 当点P 在点O 处时,1PB M ∠为直角,此时余弦值最小为0.综上所述,直线1B P 与直线1AD 所成角的余弦值的取值范围是10,2⎡⎤⎢⎥⎣⎦. 故选:A.【点睛】本题考查异面直线所成角的取值范围的求解,解题的关键就是确定点P 的轨迹,考查推理能力与计算能力,属于难题.3.已知正六棱锥V ABCDEF -,P 是侧棱VC 上一点(不含端点),记直线PB 与直线DE 所成角为α,直线PB 与平面ABC 所成角为β,二面角P CD F --的平面角为γ,则( )A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<【答案】B【解析】【分析】通过明确异面直线所成的角、直线与平面所成的角、二面角,应用三角函数知识求解,而后比较大小.【详解】解:如图,设点V 在底面上的射影为O 点,连接OC ,PB ,作PG VO //,则PG ⊥平面ABC ,所以PB 与平面ABC 所成的角为PBG ∠,即PBG β=∠,根据线面角最小定理知βα<,作GM CD ⊥,则二面角P CD F --的平面角为PMG ∠,即PMG γ=∠,根据tan tan PG PG GM GBγβ=>=,所以γβ>. 故选B.【点睛】本题考查立体几何中异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算,考查空间想象能力,数形结合思想,分析问题能力,属于难题.4.斜三棱柱111ABC A B C -中,底面ABC 是正三角形,侧面11ABB A 是矩形,M 是线段AB 上的动点,记直线1A M 与直线AC 所成的角为α,直线1A M 与平面ABC 所成的角为β,二面角1A AC B --的平面角为γ,则( )A .αβ≤,≤βγB .≤βα,≤βγC .αβ≤,βγ≥D .≤βα,βγ≥【答案】B【解析】【分析】根据直线和平面的最小角定理,结合线面角和二面角的定义,即可得解.【详解】根据最小角定理,可得≤βα,当M 在线段AB 上的移动时,M 和A 重合时,1A M 与平面ABC 所成角最大,(因为ABB 1A 1为矩形)作1A P ⊥平面ABC 于P ,作PQ CA ⊥的延长线于Q ,连接1A Q 和PQ ,则1A MP β=∠,1=A QP γ∠,由于1A QA ∠ 为直角,所以11A M AQ ≥,可得βγ≤, 故选:B.【点睛】本题考查了线线角、线面角以及面面角的比较,考查了最小角定理,考查了线面角以及面面角的定义以及立体空间感,属于难题.5.如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8,高为5,点,M N 分别在1111,A B D C 上,且111A M D N ==.过点,M N 的平面α与此四棱台的下底面会相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为A .B .C .D .【答案】B 【解析】 【分析】由题意可知,当平面α经过BCNM 时取得的截面面积最大,此时截面是等腰梯形;根据正四棱台的高及MN 中点在底面的投影求得等腰梯形的高,进而求得等腰梯形的面积. 【详解】当斜面α经过点BCNM 时与四棱台的面的交线围成的图形的面积最大,此时α为等腰梯形,上底为MN=4,下底为BC=8此时作正四棱台1111ABCD A B C D -俯视图如下:则MN 中点在底面的投影到BC 的距离为8-2-1=5因为正四棱台1111ABCD A B C D -的高为5=所以截面面积的最大值为()1482S =⨯+⨯= 所以选B 【点睛】本题考查了立体几何中过定点的截面面积问题,关键是分析出截面的位置,再根据条件求得各数据,需要很好的空间想象能力,属于难题.6.如图,直三棱柱111ABC A B C -的底面是边长为6的等边三角形,侧棱长为2,E 是棱BC 上的动点,F 是棱11B C 上靠近1C 点的三分点,M 是棱1CC 上的动点,则二面角A FM E --的正切值不可能...是( )A B C D 【答案】B 【解析】 【分析】建立空间直角坐标系,求得二面角A FM E --的余弦值,进而求得二面角A FM E --的正切值,求得正切值的最小值,由此判断出正确选项. 【详解】取BC 的中点O ,连接OA ,根据等边三角形的性质可知OA BC ⊥,根据直三棱柱的性质,以O 为原点建立如图所示的空间直角坐标系.则()(),1,0,2A F ,设()()3,0,02M t t ≤≤. 则()()1,33,2,2,0,2AF FM t =-=-. 设平面AMF 的一个法向量为(),,m x y z =,则()20220m AF x z m FM x t z ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,令1y =,得63m ⎛= ⎝⎭. 平面FME 的一个法向量是()0,1,0n =,所以cos ,6m n m n m n⋅===⋅⎛,所以2sin ,1cos ,m n m n =-120252t =+所以二面角A FME --的正切值为()sin ,27cos ,m n f t m n===因为02t ≤≤,所以111466t -≤≤--,216125405-=-⨯ 结合二次函数的性质可知 当1165t =--时,()f t= 当1166t =--时,()f t=, 所以()f t ∈⎣, 所以二面角A FM E --的正切值不可能是5. 故选:B. 【点睛】本小题主要考查二面角的求法,考查数形结合的数学思想方法,属于难题.7.在棱长为3的正方体1111ABCD A B C D -中,O 为棱DC 的中点,E 为线段AO 上的点,且2AE EO =,若点,F P 分别是线段1DC ,1BC 上的动点,则PEF 周长的最小值为( )A .BC D【答案】D 【解析】 【分析】连接BD ,易知E 为线段AO 与BD 的交点,即E 为线段DB 上靠近D 的三等分点,将PEF 周长的最小值问题转化到平面上几何知识连接两点间的线中线段最短与平面几何中对称问题处理,最后由余弦定理求得12E E 的长度即可. 【详解】连接BD ,易知E 为线段AO 与BD 的交点,即E 为线段DB 上的点,由勾股定理可知BD =2BE DE ==分别作点E 关于线段1DC ,1BC 的对称点1E ,2E ,且由对称关系有垂直关系且显然1BDC 为等边三角形,即12120E EE ∠=︒,由等边三角形对称问题可求得1EE =2EE =据余弦定理得12E E ==,由平面几何知识连接两点间的线中线段最短,得PEF .故选:D 【点睛】本题考查空间中三角形周长的最值,涉及空间中直线与对称点的算法,属于难题.8.三棱锥P ABC -中,AB BC ⊥,△PAC 为等边三角形,二面角P AC B --的余弦值为3-,当三棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为( ) A .1 B .2C .12D .13【答案】D 【解析】 【分析】由已知作出图象,找出二面角P AC B --的平面角,设出AB BC AC ,,的长,即可求出三棱锥P ABC -的高,然后利用基本不等式即可确定三棱锥体积的最大值(用含有AC 长度的字母表示),再设出球心O ,由球的表面积求得半径,根据球的几何性质,利用球心距,半径,底面半径之间的关系求得AC 的长度,则三棱锥体积的最大值可求. 【详解】如图所示,过点P 作PE ⊥面ABC ,垂足为E ,过点E 作ED AC ⊥交AC 于点D ,连接PD , 则PDE ∠为二面角PAC B -的平面角的补角,即有63cos PDE, 易知AC ⊥面PDE ,则AC PD ⊥,而△PAC 为等边三角形,∴D 为AC 中点, 设22ABa BCb ACa b c ,,,则PE PDsin PDE =∠=c 32c ⨯=, 故三棱锥P ABC -的体积为:1132V ab =⨯2231121212224c a b c abc c +⨯=≤⨯=,当且仅当2a b ==时,体积最大,此时B D E 、、共线. 设三棱锥P ABC -的外接球的球心为O ,半径为R ,由已知,248R ππ=,得R =.过点O 作OF PE ⊥于F ,则四边形ODEF 为矩形,则OD EF ==232ED OF PDcos PDE c ==∠=⨯=,2c PE =,在Rt △PFO 中222)(22c c =+-,解得2c = ∴三棱锥P ABC -的体积的最大值为:332124243c ==.故选:D. 【点睛】本题考查三棱锥体积最值的求法与三棱锥外接球的表面积的求法,涉及二面角的运用,基本不等式的应用,以及球的几何性质的应用,属于难题.9.已知矩形,4,2,ABCD A AD E B ==为AB 中点,沿直线DE 将ADE 翻折成PDE △,直线PB 与平面BCDE 所成角最大时,线段PB 长是( )A .743B .543C .742D .542【答案】C 【解析】 【分析】取CD 的中点F ,连接AF 交于DE 的中点O ,AF DE ⊥,进而有DE ⊥平面POF ,过点P 作PQ AF ⊥于点Q ,可证PQ ⊥平面BCDE ,连接BQ ,设直线PB 与平面BCDE 所成的角为α,平面PDE 与平面BCDE 所成的角为β,根据条件可知,AO DE PO DE ⊥⊥,PQ ⊥平面BCDE ,,PBQ POQ αβ∠=∠=,通过边长关系求出OQ β=,PQ β=,AQ AO OQ β=+=,以及利用余弦定理求出)228BQ β=+,从而得出)()22222tan 8PQBQ βαβ==+,根据同角三角函数关系和换元法令[]2cos 64,8t β+=∈,得出24tan 1328t tα=-++-,再根据基本不等式时得出当cos 3t β=⇒=时,2tan α取得最大值,从而可求出线段PB 长【详解】解:取CD 的中点F ,连接AF 交于DE 的中点O , 在矩形ABCD 中,4,2,AB AD E ==为AB 中点, 所以四边形AEFD 为正方形,AF DE ⊥, 所以,,PO DE OF DE POOF O ⊥⊥=,故DE ⊥平面POF ,在平面POF 内过点P 作PQ AF ⊥于点Q , 则,DE PQ DEAF O ⊥=,所以PQ ⊥平面BCDE ,连接BQ ,设直线PB 与平面BCDE 所成的角为α,即PBQ α∠= 设平面PDE 与平面BCDE 所成的角为β,,OF DE PO DE ⊥⊥,所以POQ β∠=,所以DE PO AO ===所以在Rt POQ △中,,PQ OQ ββ==,则AQ AO OQ β=+=,在ABQ △中,4,4AB BAQ π=∠=,则由余弦定理得出:)228BQ β=+,则有)()22222tan 8PQBQ βαβ==+222sin 822cos 4cos βββ=+++22sin cos 2cos 5βββ=++ 221cos cos 2cos 5βββ-=++22cos 61cos 2cos 5βββ+=-+++,令[]2cos 64,8t β+=∈,则6cos 2t β-=, 即:24tan 1328t tα=-++-, 当直线PB 与平面BCDE 所成角α最大时,2tan α最大, 即24tan 1328t tα=-++-取得最大值时,当且仅当32t t=,此时cos 3t β=⇒=,所以,))2228PB ββ=++72124cos 2β=+==,即742PB =.故选:C.【点睛】本题考查线面角和二面角的定义,还运用余弦定理和利用基本不等式求最值,还涉及同角三角函数关系和换元法,考查转化思想和化简运算能力.10.已知四面体ABCD 的三组对棱的长分别相等,依次为3,4,x ,则x 的取值范围是( )A .B .)C .)D .()4,7【答案】B 【解析】 【分析】作出图形,设3AB =,4AC =,四面体A ABC '-可以由ABC ∆和在同一平面的△A BC '沿着BC 为轴旋转构成,利用数形结合能求出x 的取值范围. 【详解】 解:如图所示,第一排 三个图讨论最短;第二排 三个图讨论最长,设3AB =,4AC =,四面体A ABC '-可以由ABC ∆和在同一平面的△A BC '沿着BC 为轴旋转构成, 第一排,三个图讨论最短:当90ABC ∠<︒向90︒趋近时,BC 逐渐减少,AA BC '<,可以构成x AA BC '==的四面体; 当90ABC ∠︒时构成的四面体AA BC '>,不满足题意;, 第二排,三个图讨论最长:当90BAC ∠<︒向90︒趋近时,BC 逐渐增大,AA BC '>,可以构成x AA BC '==的四面体; 当90ABC ∠︒时构成的四面体AA BC '<,不满足题意;5;综上,x ∈5). 故选B . 【点睛】本题考查了四面体中边长的取值范围问题,也考查了推理论证能力,属于难题.11.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A .,βγαγ<< B .,βαβγ<< C .,βαγα<< D .,αβγβ<<【答案】B 【解析】 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半. 【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ) 由最大角定理β<γ'=γ,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin sin α=⇒α=β=γ=,故选B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法. 12.已知,,,A B C D 四点均在半径为R (R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为( )A .32π B .2πC .94π D .83π 【答案】C 【解析】 【分析】由题意要使四面体的体积最大,则D 在底面ABC 的投影恰好为底面三角形外接圆的圆心N ,则外接球的球心在DN 上,求出三棱锥的体积,由均值不等式可得R 的值,进而求出外接球的表面积. 【详解】因为,,AB AC AB AC AD BC =⊥⊥,作AN BC ⊥于N , 则N 为BC 的中点,且12AN BC =, 若四面体ABCD 的体积的最大值时,则DN ⊥面ABC ,则外接球的球心在DN 上,设为O , 设外接球的半径为R ,连接OA ,则OA OD R ==,()()2111123263D ABC V BC AN DN AN AN R ON AN R ON -=⋅⋅⋅⋅=⋅⋅⋅+=⋅+()2213()OA ON R ON =-+ ()()()13R ON R ON R ON =+-+ ()()()1226R ON R ON R ON =+-+ 331()(22)()146363R ON R ON R ON R ++-++⎛⎫⎛⎫≤=⋅ ⎪ ⎪⎝⎭⎝⎭当且仅当22R ON R ON -=+,即3R ON =时取等号, 因为三棱锥的最大体积为16, 所以3141636R ⎛⎫⋅= ⎪⎝⎭,可得34R =, 所以外接球的表面积为29944164S R πππ==⋅=, 故选:C . 【点睛】本题考查的是几何体的体积和表面积公式及利用基本不等式求最值,属于较难题.13.蜂巢是由工蜂分泌蜂蜡建成的从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是10928'︒,这样的设计含有深刻的数学原理、我国著名数学家华罗庚曾专门研究蜂巢的结构著有《谈谈与蜂房结构有关的数学问题》.用数学的眼光去看蜂巢的结构,如图,在六棱柱ABCDEF A B C D E '''''﹣的三个顶点A ,C ,E 处分别用平面BFM ,平面BDO ,。

九年级几何模型压轴题单元练习(Word版 含答案)

九年级几何模型压轴题单元练习(Word版 含答案)

九年级几何模型压轴题单元练习(Word版含答案)一、初三数学旋转易错题压轴题(难)1.我们定义:如图1,在△ABC看,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.【答案】(1)①12;②4;(2)AD=12BC,证明见解析;(3)存在,证明见解析,39.【解析】【分析】(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=12AB′即可解决问题;②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题;(2)结论:AD=12BC.如图1中,延长AD到M,使得AD=DM,连接E′M,C′M,首先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M,即可解决问题;(3)存在.如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.想办法证明PA=PD,PB=PC,再证明∠APD+∠BPC=180°,即可;【详解】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AB=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=12AB′=12BC,故答案为12.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=12B′C′=12BC=4,故答案为4.(2)结论:AD=12 BC.理由:如图1中,延长AD到M,使得AD=DM,连接E′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=1BC.2(3)存在.理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.∵∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵3,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°,在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,∴EM=1BM=7,2∴DE=EM﹣DM=3,∵AD=6,∴AE=DE,∵BE⊥AD,∴PA=PD,PB=PC,在Rt△CDF中,∵3CF=6,∴tan∠3∴∠CDF=60°=∠CPF,易证△FCP≌△CFD,∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠ADP=60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”,在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=2222++=39.DN PD=(3)6【点睛】本题考查四边形综合题.2.综合与实践问题情境在一节数学活动课上,老师带领同学们借助几何画板对以下题目进行了研究.如图1,MN是过点A的直线,点C为直线MN外一点,连接AC,作∠ACD=60°,使AC=DC,在MN上取一点B,使∠DBN=60°.观察发现(1)根据图1中的数据,猜想线段AB、DB、CB之间满足的数量关系是;(2)希望小组认真思考后提出一种证明方法:将CB所在的直线以点C为旋转中心,逆时针旋转60°,与直线MN交于点E,即可证明(1)中的结论. 请你在图1中作出线段CE,并根据此方法写出证明过程;实践探究(3)奋进小组在继续探究的过程中,将点C绕点A逆时针旋转,他们发现当旋转到图2和图3的位置时,∠DBN=120°,线段AB、BD、CB的大小发生了变化,但是仍然满足一定的数量关系,请你直接写出这两种关系:在图2中,线段AB、DB、CB之间满足的数量关系是;在图3中,线段AB、DB、CB之间满足的数量关系是;提出问题(4)智慧小组提出一个问题:若图3中BC⊥CD于点C时,BC=2,则AC为多长?请你解答此问题.【答案】(1)AB+DB=CB;(2)见解析;(3)AB-DB=CB;DB-AB=CB;(4)23【解析】【分析】(1)根据图中数据直接猜想AB+DB=CB(2)在射线AM上一点E,使得∠ECB=60°,证明△ACE≌△DCB,推出EB=CB从而得出(1)中的结论;(3)利用旋转的性质和线段的和差关系以及全等三角形的性质得出线段关系;(4)过点C作∠BCE=60º,边CE与直线MN交于点E,设AC与BD交于点F.证明△ACE≌△DCB,得出BC=EC,结合△ECB为等边三角形,得出∠ECA=90°,在Rt△AEC中根据边长计算出AC的长度.【详解】综合与实践(1)AB+DB=CB(2)线段CE如图所示.证明:∵∠ECB=∠ACD=60º,∴∠2+∠ACB=∠1+∠ACB,∴∠2=∠1.∵∠ACD=∠DBN=60º, ∠ABD+∠DBN=180º,∴∠ABD+∠ACD=180º,∴在四边形ACDB中,∠CAB+∠3=180º.∵∠CAB+∠4=180º,∴∠4=∠3.又∵AC=DC,∴△ACE≌△DCB(ASA)∴EA=BD,EC=BC.又∵∠ECB=60°,∴△ECB为等边三角形,∴EB=CB.而EB=EA+AB=DB+AB,∴CB=DB+AB.(3) AB-DB=CB;DB-AB=CB;(4)证明:如图,过点C作∠BCE=60º,边CE与直线MN交于点E,设AC与BD交于点F.∵∠DCA=60º∴∠ECB+∠BCA=∠DCA+∠BCA即∠ECA=∠BCD∵∠DBN=120º∴∠DBA=60º又∵∠AFB=∠DFC∴∠EAF=∠BDC又∵AC=DC∴△ACE≌△DCB(ASA)∴BC=EC∴△ECB为等边三角形∴∠CEB=60º∵BC⊥CD∴∠ECA=∠BCD=90º∴在Rt△AEC中,∠CAE=30º∵BC=2,EC=BC∴AC=EC·tan60º= 23【点睛】本题考查了全等三角形的判定和性质,旋转的性质,根据题中条件适当添加辅助线构造全等三角形,利用全等的性质得出线段关系是本题的关键.3.请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),从而得到∠BPC=∠AP′B=__________;,进而求出等边△ABC的边长为__________;问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=5,BP=2,PC=1.求∠BPC度数的大小和正方形ABCD的边长.【答案】(17;(25【解析】试题分析:(1)利用旋转的性质,得到全等三角形.(2)利用(1)中的解题思路,把△BPC,旋转,到△BP’A,连接PP’,BP’,容易证明△APP’是直角三角形,∠BP’E=45°,已知边BP’=BP2,BE=BP’=1,勾股定理可求得正方形边长.(17(2)将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.∴AP′=PC=1,BP=BP′=2;连接PP′,在Rt△BP′P中,∵BP=BP′=2,∠PBP′=90°,∴PP′=2,∠BP′P=45°;在△AP′P中,AP′=1,PP′=2,AP=5,∵222+=,即AP′2+PP′2=AP2;125∴△AP′P是直角三角形,即∠AP′P=90°,∴∠AP′B=135°,∴∠B PC=∠AP′B=135°.过点B作BE⊥AP′,交AP′的延长线于点E;则△BEP′是等腰直角三角形,∴∠EP′B=45°,∴EP′=BE=1,∴AE=2;∴在Rt△ABE中,由勾股定理,得AB=5;∴∠BPC=135°,正方形边长为5.点睛:本题利用题目中的原理迁移解决问题,解题利用了旋转的性质,一般利用正方形,等腰,等边三角形的隐含条件,构造全等三角形,把没办法利用的已知条件转移到方便利用的图形位置,从而求解.4.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=O C′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.5.如图,在直角坐标系中,已知点A(-1,0)、B(0,2),将线段AB绕点A按逆时针方向旋转90°至AC.(1)点C的坐标为(,);(2)若二次函数的图象经过点C.①求二次函数的关系式;②当-1≤x≤4时,直接写出函数值y对应的取值范围;Z_X_X_K]③在此二次函数的图象上是否存在点P(点C除外),使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【答案】(1) ∴点C的坐标为(-3,1) .(2)①∵二次函数的图象经过点C(-3,1),∴.解得∴二次函数的关系式为②当-1≤x≤4时,≤y≤8;③过点C作CD⊥x轴,垂足为D,i) 当A为直角顶点时,延长CA至点,使,则△是以AB为直角边的等腰直角三角形,过点作⊥轴,∵=,∠=∠,∠=∠=90°,∴△≌△,∴AE=AD=2,=CD=1,∴可求得的坐标为(1,-1),经检验点在二次函数的图象上;ii)当B点为直角顶点时,过点B作直线L⊥BA,在直线L上分别取,得到以AB为直角边的等腰直角△和等腰直角△,作⊥y轴,同理可证△≌△∴BF=OA=1,可得点的坐标为(2, 1),经检验点在二次函数的图象上.同理可得点的坐标为(-2, 3),经检验点不在二次函数的图象上综上:二次函数的图象上存在点(1,-1),(2,1)两点,使得△和△是以AB为直角边的等腰直角三角形.【解析】(1)根据旋转的性质得出C点坐标;(2)①把C点代入求得二次函数的解析式;②利用二次函数的图象得出y的取值范围;③分二种情况进行讨论.6.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB= ,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,102;(2)(33,9);(3)123545(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(),C (0,﹣3)代入得,解得,∴直线O′C 的解析式为y=x ﹣3, 当y=0时,x ﹣3=0,解得x=,则P(,0), ∴OP=, ∴O′P′=OP=, 作P′D ⊥O′H 于D ,∵∠BO′A=∠BOA=90°,∠BO′H=30°, ∴∠DP′O′=30°, ∴O′D=O′P′=,P′D=, ∴DH=O′H ﹣O′,∴P′点的坐标为(,).考点:几何变换综合题7.在矩形ABCD 中,2AB =,1BC =,以点A 为旋转中心,逆时针旋转矩形ABCD ,旋转角为(0180)αα<<,得到矩形AEFG ,点B 、点C 、点D 的对应点分别为点E 、点F 、点G .()1如图①,当点E 落在DC 边上时,直写出线段EC 的长度为______; ()2如图②,当点E 落在线段CF 上时,AE 与DC 相交于点H ,连接AC ,①求证:ACD ≌CAE ; ②直接写出线段DH 的长度为______.()3如图③设点P 为边FG 的中点,连接PB ,PE ,在矩形ABCD 旋转过程中,BEP 的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.【答案】(1)23;(2)①见解析;34②;(3)存在,PBE 的面积的最大值为21,理由见解析 【解析】 【分析】()1如图①中,在Rt ADE 中,利用勾股定理即可解决问题; ()2①证明:如图②中,根据HL 即可证明ACD ≌CAE ;②如图②中,由ACD ≌CAE ,推出ACD CAE ∠∠=,推出AH HC =,设AH HC m ==,在Rt ADH 中,根据222AD DH AH +=,构建方程即可解决问题; ()3存在.如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M.由题意:PF PC 1==,由AG EF 1==,G F 90∠∠==,推出PA PE 2==PBE12SPE BM 22=⋅⋅=,推出当BM 的值最大时,PBE 的面积最大,求出BM 的最大值即可解决问题; 【详解】()1四边形ABCD 是矩形,AB CD 2∴==,BC AD 1==,D 90∠=,矩形AEFG 是由矩形ABCD 旋转得到,AE AB 2∴==,在Rt ADE 中,22DE 213=-=CE 23∴=,故答案为23.()2①当点E 落在线段CF 上,AEC ADC 90∠∠∴==,在Rt ADC 和Rt AEC 中,{AC CACD AE ==,Rt ACD ∴≌()Rt CAE HL ;ACD ②≌CAE ,ACD CAE ∠∠∴=,AH HC ∴=,设AH HC m ==,在Rt ADH 中,222AD DH AH +=,2221(2m)m ∴+-=,5m 4∴=, 53DH 244∴=-=, 故答案为34; ()3存在.理由如下:如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M ,由题意:PF PC 1==,AG EF 1==,G F 90∠∠==, PA PE 2∴==PBE12SPE BM BM 22∴=⋅⋅=, ∴当BM 的值最大时,PBE 的面积最大,BM PB ≤,PB AB PA ≤+,PB 22∴≤,BM 22∴≤BM ∴的最大值为22+ PBE ∴21.【点睛】本题是四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,勾股定理,三角形的面积,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.8.如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形,如图2.①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°【解析】分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.详解:如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,,,在和中,,≌,,,,,即;在旋转过程中,成为直角有两种情况:Ⅰ由增大到过程中,当时,,在中,sin∠AGO=,,,,,即;Ⅱ由增大到过程中,当时,同理可求,.综上所述,当时,或.如图3,当旋转到A、O、在一条直线上时,的长最大,正方形ABCD 的边长为1,,,, ,,,此时.点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.二、初三数学 圆易错题压轴题(难)9.在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、 AD 、BD .已知圆O 的半径长为5,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC=x ,ACO OBDS S=y ,求y 关于x 的函数解析式并写出定义域;(3)若四边形AOBD 是梯形,求AD 的长.【答案】(1)2;(2)2825x x x -+(0<x <8);(3)AD=145或6.【解析】 【分析】(1)根据垂径定理和勾股定理可求出OC 的长.(2)分别作OH ⊥AB ,DG ⊥AB ,用含x 的代数式表示△ACO 和△BOD 的面积,便可得出函数解析式.(3)分OB ∥AD 和OA ∥BD 两种情况讨论. 【详解】解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB=8, ∴OD ⊥AB ,AC=12AB=4, 在Rt △AOC 中,∵∠ACO=90°,AO=5,∴,∴OD=5, ∴CD=OD ﹣OC=2;(2)如图2,过点O 作OH ⊥AB ,垂足为点H , 则由(1)可得AH=4,OH=3, ∵AC=x , ∴CH=|x ﹣4|,在Rt △HOC 中,∵∠CHO=90°,AO=5,∴∴CD=OD ﹣OC=5过点DG ⊥AB 于G , ∵OH ⊥AB , ∴DG ∥OH , ∴△OCH ∽△DCG , ∴OH OCDG CD=, ∴DG=OH CD OC ⋅35, ∴S △ACO =12AC ×OH=12x ×3=32x , S △BOD =12BC (OH +DG )=12(8﹣x )×(335)=32(8﹣x )∴y=ACO OBDS S=()323582x x-=()58x -(0<x <8)(3)①当OB ∥AD 时,如图3,过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F , 则OF=AE , ∴S=12AB•OH=12OB•AE , AE=AB OH OB ⋅=245=OF , 在Rt △AOF 中,∠AFO=90°,AO=5,∴AF=22AO OF -=75∵OF 过圆心,OF ⊥AD ,∴AD=2AF=145. ②当OA ∥BD 时,如图4,过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得DG=BM=245, 在Rt △GOD 中,∠DGO=90°,DO=5,∴GO=22DO DG -=75,AG=AO ﹣GO=185, 在Rt △GAD 中,∠DGA=90°,∴AD=22AG DG +=6综上得AD=145或6.故答案为(1)2;(2)()2825x x x -+(0<x <8);(3)AD=145或6.【点睛】本题是考查圆、三角形、梯形相关知识,难度大,综合性很强.10.已知:四边形ABCD 内接于⊙O ,∠ADC =90°,DE ⊥AB ,垂足为点E ,DE 的锯长线交⊙O 于点F ,DC 的延长线与FB 的延长线交于点G . (1)如图1,求证:GD =GF ;(2)如图2,过点B 作BH ⊥AD ,垂足为点M ,B 交DF 于点P ,连接OG ,若点P 在线段OG 上,且PB =PH ,求∠ADF 的大小;(3)如图3,在(2)的条件下,点M 是PH 的中点,点K 在BC 上,连接DK ,PC ,D 交PC 点N ,连接MN ,若AB =2,HM +CN =MN ,求DK 的长.【答案】(1)见解析;(2)∠ADF =45°;(3)1810. 【解析】【分析】 (1)利用“同圆中,同弧所对的圆周角相等”可得∠A =∠GFD ,由“等角的余角相等”可得∠A =∠GDF ,等量代换得∠GDF =∠GFD ,根据“三角形中,等角对等边”得GD =GF ; (2)连接OD 、OF ,由△DPH ≌△FPB 可得:∠GBH =90°,由四边形内角和为360°可得:∠G =90°,即可得:∠ADF =45°;(3)由等腰直角三角形可得AH =BH =12,DF =AB =12,由四边形ABCD 内接于⊙O ,可得:∠BCG =45°=∠CBG ,GC =GB ,可证四边形CDHP 是矩形,令CN =m ,利用勾股定理可求得m =2,过点N 作NS ⊥DP 于S ,连接AF ,FK ,过点F 作FQ ⊥AD 于点Q ,过点F 作FR ⊥DK 交DK 的延长线于点R ,通过构造直角三角形,应用解直角三角形方法球得DK .【详解】解:(1)证明:∵DE ⊥AB∴∠BED =90°∴∠A +∠ADE =90°∵∠ADC =90°∴∠GDF +∠ADE =90°∴∠A =∠GDF∵BD BD =∴∠A =∠GFD∴∠GDF =∠GFD∴GD =GF(2)连接OD 、OF∵OD =OF ,GD =GF∴OG ⊥DF ,PD =PF在△DPH 和△FPB 中PD PF DPH FPB PH PB =⎧⎪∠=∠⎨⎪=⎩∴△DPH ≌△FPB (SAS )∴∠FBP =∠DHP =90°∴∠GBH =90°∴∠DGF =360°﹣90°﹣90°﹣90°=90°∴∠GDF =∠DFG =45°∴∠ADF =45°(3)在Rt △ABH 中,∵∠BAH =45°,AB =∴AH =BH =12∴PH =PB =6∵∠HDP =∠HPD =45°∴DH =PH =6∴AD =12+6=18,PN =HM =12PH =3,PD = ∵∠BFE =∠EBF =45°∴EF =BE∵∠DAE =∠ADE =45°∴DE =AE∴DF =AB =∵四边形ABCD 内接于⊙O∴∠DAB +∠BCD =180°∴∠BCD =135°∴∠BCG =45°=∠CBG∴GC =GB又∵∠CGP =∠BGP =45°,GP =GP∴△GCP ≌△GBP (SAS )∴∠PCG =∠PBG =90°∴∠PCD =∠CDH =∠DHP =90°∴四边形CDHP 是矩形∴CD =HP =6,PC =DH =6,∠CPH =90°令CN =m ,则PN =6﹣m ,MN =m +3在Rt △PMN 中,∵PM 2+PN 2=MN 2∴32+(6﹣m )2=(m +3)2,解得m =2∴PN =4过点N 作NS ⊥DP 于S ,在Rt △PSN 中,PS =SN =DS =﹣=SN 1tanDS 2SDN ∠=== 连接AF ,FK ,过点F 作FQ ⊥AD 于点Q ,过点F 作FR ⊥DK 交DK 的延长线于点R在Rt △DFQ 中,FQ =DQ =12 ∴AQ =18﹣12=6∴tan 1226FQ FAQ AQ ∠=== ∵四边形AFKD 内接于⊙O ,∴∠DAF +∠DKF =180°∴∠DAF =180°﹣∠DKF =∠FKR在Rt △DFR 中,∵DF =1122,tan 2FDR ∠= ∴12102410,FR DR == 在Rt △FKR 中,∵FR =1210 tan ∠FKR =2 ∴KR =6105∴DK =DR ﹣KR =24106101810555=-= .【点睛】本题是一道有关圆的几何综合题,难度较大,主要考查了圆内接四边形的性质,圆周角定理,全等三角形性质及判定,等腰直角三角形性质,解直角三角形等知识点;解题关键是添加辅助线构造直角三角形.11.已知:如图,梯形ABCD 中,AD//BC ,AD 2=,AB BC CD 6===,动点P 在射线BA 上,以BP 为半径的P 交边BC 于点E (点E 与点C 不重合),联结PE 、PC ,设x BP =,PC y =.(1)求证:PE //DC ; (2)求y 关于x 的函数解析式,并写出定义域;(3)联结PD ,当PDC B ∠=∠时,以D 为圆心半径为R 的D 与P 相交,求R 的取值范围.【答案】(1)证明见解析;(2)2436(09)y x x x =-+<<;(3)3605R << 【解析】【分析】 ()1根据梯形的性质得到B DCB ∠=∠,根据等腰三角形的性质得到B PEB ∠∠=,根据平行线的判定定理即可得到结论;()2分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、.G 推出四边形ADGF 是矩形,//PH AF ,求得2BF FG GC ===,根据勾股定理得到22226242AF AB BF =-=-=,根据平行线分线段成比例定理得到223PH x =,13BH x =,求得163CH x =-,根据勾股定理即可得到结论; ()3作//EM PD 交DC 于.M 推出四边形PDME 是平行四边形.得到PE DM x ==,即 6MC x =-,根据相似三角形的性质得到1218655PD EC ==-=,根据相切两圆的性质即可得到结论.【详解】 ()1证明:梯形ABCD ,AB CD =,B DCB ∠∠∴=,PB PE =,B PEB ∠∠∴=,DCB PEB ∠∠∴=,//PE CD ∴;()2解:分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、G .梯形ABCD 中,//AD BC ,,BC DG ⊥,BC PH ⊥,∴四边形ADGF 是矩形,//PH AF ,2AD =,6BC DC ==,2BF FG GC ∴===,在Rt ABF 中,AF ===,//PH AF ,PH BP BH AF AB BF∴==62x BH ==,PH ∴=,13BH x =, 163CH x ∴=-, 在Rt PHC中,PC =y ∴=9)y x =<<, ()3解:作//EM PD 交DC 于M .//PE DC ,∴四边形PDME 是平行四边形.PE DM x ∴==,即 6MC x =-,PD ME ∴=,PDC EMC ∠∠=,又PDC B ∠∠=,B DCB ∠=∠,DCB EMC PBE PEB ∠∠∠∠∴===.PBE ∴∽ECM ,PB BE EC MC ∴=,即232663x x xx =--, 解得:185x =, 即125BE =, 1218655PD EC ∴==-=, 当两圆外切时,PD r R =+,即0(R =舍去); 当两圆内切时,-PD r R =,即10(R =舍去),2365R =;即两圆相交时,365R<<.【点睛】本题属于圆综合题,梯形的性质,平行四边形的性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.12.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(-2,0),(8,0),(0,-4);①求此抛物线的函数解析式;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,c=-4,求证:无论b取何值,点D的坐标均不改变.【答案】(1)①y=x2-x-4;②△BDM的面积有最大值为36;(2)证明见解析.【解析】试题分析:(1)①只需运用待定系数法就可解决问题;②过点M作ME∥y轴,交BD于点E,连接BC,如图1.根据勾股定理的逆定理可得∠ACB=90°,从而可得AB为直径,根据垂径定理可得OD=OC,即可得到D(0,4),然后运用待定系数法可求得直线BD的解析式为y=-x+4,设M(x,x2-x-4),则E(x,-x+4),从而得到ME=-x2+x+8,运用割补法可得S△BDM=S△DEM+S△BEM=-(x-2)2+36,然后根据二次函数的最值性就可求出△BDM 的面积的最大值;(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,可得C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,根据根与系数的关系可得OA•OB=4.由A、D、B、C四点共圆可得∠ADC=∠ABC,∠DAB=∠DCB,从而可得△ADO∽∽△CBO,根据相似三角形的性质可得OC•OD=OA•OB=4,从而可得OD=1,即可得到D(0,1),因而无论b取何值,点D的坐标均不改变.试题解析:(1)①∵抛物线y=ax2+bx+c过点A(-2,0),B(8,0),C(0,-4),∴,解得.∴抛物线的解析式为y=x2-x-4;②过点M作ME∥y轴,交BD于点E,连接BC,如图1.∵A(-2,0),B(8,0),C(0,-4),∴OA=2,OB=8,OC=4,∴AB=10,AC=2,BC=4,∴AB2=AC2+BC2,∴∠ACB=90°,∴AB为直径.∵CD⊥AB,∴OD=OC,∴D(0,4).设直线BD的解析式为y=mx+n.∵B(8,0),D(0,4),∴,解得,∴直线BD的解析式为y=-x+4.设M(x,x2-x-4),则E(x,-x+4),∴ME=(-x+4)-(x2-x-4)=-x2+x+8,∴S△BDM=S△DEM+S△BEM=ME(x E-x D)+ME(x B-x E)=ME(x B-x D)=(-x2+x+8)×8=-x2+4x+32=-(x-2)2+36.∵0<x<8,∴当x=2时,△BDM的面积有最大值为36;(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,则C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,∴OA•OB=-x1•x2=-(-4)=4.∵A、D、B、C四点共圆,∴∠ADC=∠ABC,∠DAB=∠DCB,∴△ADO∽△CBO,∴,∴OC•OD=OA•OB=4,∴4OD=4,∴OD=1,∴D(0,1),∴无论b取何值,点D的坐标均不改变.考点:圆的综合题13.如图1,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=13,BC=8.(1)求证:CF是⊙O的切线;(2)求⊙O的半径OC;(3)如图2,⊙O的弦AH经过半径OC的中点F,连结BH交弦CD于点M,连结FM,试求出FM的长和△AOF的面积.【答案】(1)见解析;(2)32332232【解析】【分析】(1)由DF=2OD,得到OF=3OD=3OC,求得13OE OCOC OF==,推出△COE∽△FOE,根据相似三角形的性质得到∠OCF=∠DEC=90°,于是得到CF是⊙O的切线;(2)利用三角函数值,设OE=x,OC=3x,得到CE=3,根据勾股定理即可得到答案;(3)连接BD,根据圆周角定理得到角相等,然后证明△AOF∽△BDM,由相似三角形的性质,得到FM为中位线,即可求出FM的长度,由相似三角形的性质,以及中线分三角形的面积为两半,即可求出面积.【详解】解:(1)∵DF=2OD,∴OF=3OD=3OC,∴13 OE OCOC OF==,∵∠COE=∠FOC,∴△COE∽△FOE,∴∠OCF=∠DEC=90°,∴CF是⊙O的切线;(2)∵∠COD=∠BAC,∴cos∠BAC=cos∠COE=13 OEOC=,∴设OE=x,OC=3x,∵BC=8,∴CE=4,∵CE⊥AD,∴OE2+CE2=OC2,∴x2+42=9x2,∴x2(负值已舍去),∴OC =3x =32,∴⊙O 的半径OC 为32;(3)如图,连结BD ,由圆周角定理,则∠OAF=∠DBM ,2AOF ADC ∠=∠,∵BC ⊥AD ,∴AC AB =,∴∠ADC=∠ADB ,∴2AOF ADC BDM ∠=∠=∠,∴△AOF ∽△BDM ;∵点F 是OC 的中点,∴AO :OF=BD :DM=2,又∵BD=DC ,∴DM=CM ,∴FM 为中位线,∴322, ∴S △AOF : S △BDM =(326 2 34=; ∵111118(322)4222222BDM BCD S S BC DE ∆∆==⨯•=⨯⨯⨯= ∴S △AOF =3424=32 【点睛】本题考查了圆的综合问题,圆周角定理,切线的判定和性质,相似三角形的判定和性质,利用勾股定理求边长,以及三角形中线的性质,解题的关键是熟练掌握所学的定理和性质,运用属性结合的思想进行解题.14.已知:ABC 内接于O ,过点B 作O 的切线,交CA 的延长线于点D ,连接OB .(1)如图1,求证:DAB DBC ∠=∠;(2)如图2,过点D 作DM AB ⊥于点M ,连接AO ,交BC 于点N ,BM AM AD =+,求证:BN CN =;(3)如图3,在(2)的条件下,点E 为O 上一点,过点E 的切线交DB 的延长线于点P ,连接CE ,交AO 的延长线于点Q ,连接PQ ,PQ OQ ⊥,点F 为AN 上一点,连接CF ,若90DCF CDB ∠+∠=︒,tan 2ECF ∠=,12ON OQ =,10PQ OQ +=求CF 的长.【答案】(1)详见解析;(2)详见解析;(3)10=CF【解析】【分析】(1)延长BO 交O 于G ,连接CG ,根据切线的性质可得可证∠DBC +∠CBG=90°,然后根据直径所对的圆周角是直角可证∠CBG +∠G=90°,再根据圆的内接四边形的性质可得∠DAB=∠G ,从而证出结论;(2)在MB 上截取一点H ,使AM=MH ,连接DH ,根据垂直平分线性质可得DH=AD ,再根据等边对等角可得∠DHA=∠DAH ,然后根据等边对等角和三角形外角的性质证出∠ABC=∠C ,可得AB=AC ,再根据垂直平分线的判定可得AO 垂直平分BC ,从而证出结论;(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,证出tan ∠BGE=tan ∠ECF=2,然后利用AAS 证出△CFN ≌△BON ,可设CF=BO=r ,ON=FN=a ,则OE=r ,根据锐角三角函数和相似三角形即可证出四边形OBPE 为正方形,利用r 和a 表示出各线段,最后根据10PQ OQ +=a 和CF .【详解】解:(1)延长BO 交O 于G ,连接CG∵BD 是O 的切线∴∠OBD=90°∴∠DBC +∠CBG=90°∵BG 为直径∴∠BCG=90°∴∠CBG +∠G=90°∴∠DBC=∠G∵四边形ABGC 为O 的内接四边形∴∠DAB=∠G∴∠DAB=∠DBC(2)在MB 上截取一点H ,使AM=MH ,连接DH∴DM 垂直平分AH∴DH=AD∴∠DHA=∠DAH∵BM AM AD =+,=+BM MH BH∴AD=BH∴DH=BH∴∠HDB=∠HBD∴∠DHA=∠HDB +∠HBD=2∠HBD由(1)知∠DAB=∠DBC∴∠DHA=∠DAB=∠DBC∴∠DBC =2∠HBD∵∠DBC =∠HBD +∠ABC∴∠HBD=∠ABC ,∠DBC=2∠ABC∴∠DAB=2∠ABC∵∠DAB=∠ABC +∠C∴∠ABC=∠C∴AB=AC∴点A 在BC 的垂直平分线上∵点O 也在BC 的垂直平分线上∴AO 垂直平分BC∴BN CN =(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,∵90DCF CDB ∠+∠=︒∴∠DMC=90°∵∠OBD=90°∴∠DMC=∠OBD∴CF ∥OB∴∠BGE=∠ECF ,∠CFN=∠BON ,∴tan ∠BGE=tan ∠ECF=2由(2)知OA 垂直平分BC∴∠CNF=∠BNO=90°,BN=CN∴△CFN ≌△BON∴CF=BO ,ON=FN ,设CF=BO=r ,ON=FN=a ,则OE=r∵12ON OQ = ∴OQ=2a∵CF ∥OB∴△QGO ∽△QCF∴=OG QO CF QF 即2122==++OG a r a a a ∴OG=12r 过点O 作OE ′⊥BG ,交PE 于E ′∴OE ′=OG ·tan ∠BGE=r=OE∴点E ′与点E 重合∴∠EOG=90°∴∠BOE=90°∵PB 和PE 是圆O 的切线∴∠OBP=∠OEP=∠BOE=90°,OB=OE=r∴四边形OBPE 为正方形∴∠BOE=90°,PE=OB=r∴∠BCE=12∠BOE==45° ∴△NQC 为等腰直角三角形∴NC=NQ=3a ,∴BC=2NC=6a在Rt △CFN 中,=∵PQ OQ ⊥∴PQ ∥BC∴∠PQE=∠BCG∵PE ∥BG∴∠PEQ=∠BGC∴△PQE ∽△BCG ∴=PQ PE BC BG即126=+PQ r r a r 解得:PQ=4a∵PQ OQ +=∴4a +2a=解得:∴=10【点睛】此题考查的是圆的综合大题,难度较大,掌握圆的相关性质、相似三角形的判定及性质、锐角三角函数、勾股定理、全等三角形的判定及性质、等腰三角形的判定及性质、正方形的判定及性质是解决此题的关键.15.如图,PA ,PB 分别与O 相切于点A 和点B ,点C 为弧AB 上一点,连接PC 并延长交O 于点F ,D 为弧AF 上的一点,连接BD 交FC 于点E ,连接AD ,且2180APB PEB ∠+∠=︒.(1)如图1,求证://PF AD ; (2)如图2,连接AE ,若90APB ∠=︒,求证:PE 平分AEB ∠;(3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,4sin 5ABD ∠=,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)257【解析】【分析】 (1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=︒,由四边形内角和是360︒,得180∠+∠=︒P AOB ,由同弧所对的圆心角是圆周角的一半,得到2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=︒得290PEB ∠=︒,从而45PEB ∠=︒,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=︒,得PE PK =,从而90APE EPB ︒∠=-∠,进而APE BPK ∠=∠,即可证得APE BPK ∆∆≌由此45K AEP ∠=∠=︒,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由45ADE ∠=︒,90AED ∠=︒,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ∆∆≌,由直径所对的圆周角是直角,可得90ADM ∠=︒,在Rt ADM ∆中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ∆中,252OP OA ==延长EO 交AD 于K ,在Rt OEP ∆中,由勾股定理得7PE =,在Rt OEH ∆中,由勾股定理得257PH =.【详解】(1)连接OA 、OB∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径,∴OA AP ⊥,OB BP ⊥,∴90OAP OBP ∠=∠=︒,∴在四边形AOBP 中,360180180P AOB ∠+∠=︒-︒=︒,∵AB AB =,∴2AOB ADB ∠=∠,∴2180P ADB ∠+∠=︒,∵2180P PEB ∠+∠=︒,∴ADB PEB ∠=∠,∴//PF AD(2)过点P 做PK PF ⊥交EB 延长线于点K∵90APB ∠=︒,∴21809090PEB ∠=︒-︒=︒,∴45PEB ∠=︒,∵PA 、PB 为圆O 的切线,∴PA PB =,∵PK PE ⊥,45PEK ∠=︒,∴PE PK = ,∵9090APE EPB KPB EPB ︒︒∠=-∠=∠=-∠,∴APE BPK ∠=∠,∴APE BPK ∆∆≌,∴45K AEP ∠=∠=︒,∴AEP PEB ∠=∠,∴PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM。

立体几何压轴题

立体几何压轴题

1. 如图,四棱锥P-ABCD中,底面ABC[为矩形,AB=8 AD=4 3,侧面PAD为等边三角形,并且与底面ABCD所成二面角为60(1)求四棱锥P-ABCD勺体积(2)证明PAL BD2、如图,长方体框架ABCD- A,B,C,D,,三边AB、AD、AA,的长分别为6、&3.6,AE与底面的对角线B,D,垂直于E。

(1)证明A,E BD ;(2)求AE的长n(2)若直线AM 与平面VAC 所成角为-,求三棱锥B-ACM 的体积 43、如图,已知。

O 的直径AB=3点C 为。

0上异于A , B 的一点,VC 1平面ABC, 且VC=2点M 为线段VB 的中点。

(1)求证:BC 丄平面VAC;4、如图,在多面体ABCDE中,四边形ABCD是正方形,AB=2EF=2 EF// AB, EF 丄FB,CF丄FB, BF=CF G为BC的中点,(1)求证:FG//平面BDE⑵求平面BDE与平面BCF所成锐二面角的大小;⑶求四面体B-DEF的体积。

5、如图,三棱锥P-ABC中,PC丄平面ABC PC=AC=2AB=BC D是PB上的一点, 且CD L平面PAB(1)求证AB丄平面PCB(2)求二面角C-PA-B的大小的余弦值。

仁BE7、如图,直二面角D-AB-E 中,四边形ABCD 是边长为2的正方形,AE=EB,F 为 CE上的点,且BF 丄平面ACE(1)求证AE!平面BCE(2)求二面角B-AC-E 的正弦值;(3)求点D 到平面ACE 的距离。

1.如图,四棱锥 P-ABCD 中,底面ABCD 为矩形,AB=8, AD=4. 3,侧面PAD 为等边三角形, 并且与底面ABCD 所成二面角为60°(3 )求四棱锥P-ABCD 的体积(4)证明 PA ^ BD解;< I )如园L ,5UD 的中点E ,连接FE ,则PE 丄舶)・所以NFEO 为側面P2D 与底面所成的二面角的平面角*所以PO3也,四複锥P-ABCD 的体积^P-ABCO=y x 8^443«343=96 ・迭二:如图2,连接込 延卡;L O 交BD 于点F.通过计算可得£0二4 AE=2^J )又知和二4於,A0=S -得 EO-ADAE AB朋以5.t AAEGcoRt A BAD - 得 ZEAO=ZABD-所以 ZIAO+ZADF=90°所BUF 丄BD ・因为直线AF 为頁线菲在平面圧CDF1的身剧,所以醐丄前. 2、如图,长方体框架 ABCD - A 'BC 'D ',三边 与底面的对角线 B ,D ,垂直于E 。

立体几何小题之压轴篇(解析版)

立体几何小题之压轴篇(解析版)

题目7:矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B-AC-D,则四面体ABCD的外接球的体积是(答案:1256π)解析:∵∠ADC=∠ABC=90°,故AC为外接球的直径,易得2R=5⇒R=52,四面体ABCD的外接球的体积为4π3×(52)3=1256π.题型三、体积之比的最值问题题目8:如图,四棱锥P-ABCD中,底面为正方形,侧棱PA⊥底面ABCD,PA=4,AB=3,G,H分别在PC,CA上,且PG=45PC,PH=13PA,过直线GH作平面与侧棱PB,PD 分别交于点M,N,截面把四棱锥分成上下两部分,则上部分与下部分体积比值的最小值为解析:引理:如图,V D−EFGV D−ABC=DE∙DF∙DGDA∙DB∙DC.证明:设DB与平面DAC所成角为α,∠ADC=β,则V D−EFGV D−ABC=13×12DE∙DGsinβ∙DF∙sinα13×12DA∙DC∙sinβ∙DB∙sinα=DE∙DF∙DGDA∙DB∙DC.回归本题:设PM→=mPB→,PN→=nPD→,PG→=45PC→=45(PA→+AC→ )=45(PA→+AB→+AD→ )=45(PB→+PD→−PA→ )点评:二面角与外接球的综合题,主要利用图形的对称性即球的性质,直接作出球心,构造直角三角形进行求解。

此类题较难,江浙卷出现的较多,但是不排除全国卷也会出类似的考题。

立体几何压轴题

立体几何压轴题
两段圆弧 两段椭圆弧 两段双曲线弧 两段抛物线弧
D. ������2 ≤ ������3 ≤ ������1
第 1 页,共 8 页
6.
在正方体������������������������ − ������1 ������1 ������1 ������1中,E 是棱������������1的中点,F 是侧 面������������������1 ������1 内的动点,且������1 ������//平面������1 ������������,则������1 ������与平面 ������������������1 ������1所成角的正切值 t 构成的集合是( )
A. B. C. D.
4.
18 + 3√2 6√13 + 3√2 6√5 + 9√2 10 + 3√2 + 4√10
已知四棱锥������ − ������������������������的底面是正方形,侧棱长均相等,E 是线段 AB 上的点(不含 SE 与平面 ABCD 所成的角为������2, 端点).设 SE 与 BC 所成的角为������1, 二面角������ − ������������ − ������ 的平面角为������3,则( )
B.
9√2 4
������
C. 2√3������
D. 3√2������
已知三棱锥������ − ������������������的所有顶点都在球 O 的球面上,������������ = ������������ = 2,������������ = 2√2,若 ) 三棱锥������ − ������������������ 体积的最大值为 2,则球 O 的表面积为(

专题03 立体几何大题压轴练(原卷版)

专题03 立体几何大题压轴练(原卷版)

【一专三练】 专题03 立体几何大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·湖北·校联考模拟预测)如图,在棱长为2的正方体ABCD EFGH -中,点M 是正方体的中心,将四棱锥M BCGF -绕直线CG 逆时针旋转(0π)αα<<后,得到四棱锥M B CGF -'''.(1)若π2α=,求证:平面MCG //平面M B F ''';(2)是否存在α,使得直线M F ''⊥平面MBC ?若存在,求出α的值;若不存在,请说明理由.2.(2023春·湖南株洲·高三株洲二中校考阶段练习)如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,2PA AD ==,1AB BC ==.(1)求平面PAB 与平面PCD 夹角的余弦值;(2)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值,利用此定义求异面直线PB 与CD 之间的距离.3.(2023·湖南张家界·统考二模)如图,已知三棱柱111ABC A B C -,90ACB ∠=︒,11AC A C ⊥,D 为线段1A C 上的动点,1AC BD ⊥.(1)求证:平面11ACC A ⊥平面ABC ;(2)若1AA AC ⊥,D 为线段1A C 的中点,22AC BC ==,求1B D 与平面1A BC 所成角的余弦值.4.(2023春·湖南·高三长郡中学校联考阶段练习)如图①,已知AB C 'V 是边长为2的等边三角形,D 是AB '的中点,DH B C ⊥',如图②,将B DH 'V 沿边DH 翻折至BDH △.(1)在线段BC 上是否存在点F ,使得//AF 平面BDH ?若存在,求BF FC的值;若不存在,请说明理由;(2)若平面BHC 与平面BDA 所成的二面角的余弦值为13,求三棱锥B DCH -的体积.5.(2023·湖南长沙·湖南师大附中校考一模)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,△PAD 为等边三角形,平面PAD ⊥平面ABCD ,PB BC ⊥.(1)求点A 到平面PBC 的距离;(2)E 为线段PC 上一点,若直线AE 与平面ABCD 求平面ADE与平面ABCD 夹角的余弦值.6.(2023春·广东揭阳·高三校考阶段练习)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是边长为2的菱形,3DAB π∠=,平面11BDD B ⊥平面ABCD ,点1,O O 分别为11,B D BD 的中点,1111,,O B A AB O BO ∠∠=均为锐角.(1)求证:1AC BB ⊥;(2)若异面直线CD 与1AA 1A ABCD -的体积为1,求二面角1B AA C --的平面角的余弦值.7.(2023·山西太原·统考一模)如图,四棱锥P ABCD -中,,AB CD AB AD ⊥∥,且24260,,AB AD CD PA PAB =====∠ ,直线PA 与平面ABCD 的所成角为30,,E F 分别是BC 和PD 的中点.(1)证明:EF P 平面PAB ;(2)求平面PAB 与平面PAD 夹角的余弦值.8.(2023·江苏·统考一模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC V 和ACD V 均为正三角形,4AC =,BE =.(1)在线段AC 上是否存在点F ,使得BF ∥平面ADE ?说明理由;(2)求平面CDE 与平面ABC 所成的锐二面角的正切值.9.(2023·云南昆明·昆明一中校考模拟预测)在三棱锥-P ABC 中,PA PB =,90BAC ∠=︒,M 为棱BC 的中点.(1)证明:AB PM ⊥;(2)若平面PAB ⊥平面ABC,PA PB ==2AB AC ==,E 为线段PC 上一点,2PE EC =,求点E 到平面PAM 的距离.10.(2023·云南·统考一模)如图,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与BD 的交点,AB AD =,60BAD ∠=︒.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为2V ,求12V V ;(2)设点F 在线段AP 上,4,4PA PF PC CE ==,求二面角F CD P --的余弦值.11.(2023·云南·高三云南师大附中校考阶段练习)如图,直四棱柱1111ABCD A B C D -的底面ABCD 是菱形,E 是11A D 的中点,F 为线段BC 上一点,2AB =,11AA =,60BAD ∠=︒.(1)证明:当BF FC =时,⊥AE 平面DEF ;(2)是否存在点F ,使二面角A DE F --的余弦值为15若存在,请指出点F 的位置;若不存在,请说明理由.12.(2023春·重庆·高三重庆市长寿中学校校考期末)如图,在四棱台1111ABCD A B C D-中,底面为矩形,平面11AA D D ⊥平面11CC D D ,且1111112CC CD DD C D ====.(1)证明:AD ⊥平面11CC D D ;(2)若1A C 与平面11CC D D 所成角为3π,求二面角1C AA D --的余弦值.13.(2023秋·重庆璧山·高三校联考阶段练习)如图,已知圆柱的上,下底面圆心分别为11,,P Q AA C C 是圆柱的轴截面,正方形ABCD 内接于下底面圆Q ,12,AB AA k ==.(1)当k 为何值时,点Q 在平面PBC 内的射影恰好是△PBC 的重心;(2)若[]2,4k ∈,当平面PAD 与平面PBC 所成的锐二面角最大时,求该锐二面角的余弦值.14.(2023春·重庆万州·高三重庆市万州第二高级中学校考阶段练习)如图1,,A D 分别是矩形11A BCD 上的点,1222AB AA AD ===,12DC DD =,把四边形11A ADD 沿AD 折叠,使其与平面ABCD 垂直,如图2所示,连接1A B ,1D C 得到几何体11ABA DCD -.(1)当点E 在棱AB 上移动时,证明:11D E A D ⊥;(2)在棱AB 上是否存在点E ,使二面角1D EC D --的平面角为π6?若存在,求出AE 的长;若不存在,请说明理由.15.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)如图四棱锥,2,,S ABCD AC B D -=在以AC 为直径的圆上,SA ⊥平面π,,6ABCD DAC E ∠=为SC 的中点,(1)若π6BAC ∠=,证明:DE ⊥AB ;(2)当二面角D SC A --时,求点B 到平面SCD 距离的最大值.16.(2023·辽宁铁岭·校联考模拟预测)如图,在三棱台111ABC A B C -中,三棱锥111C A B C -,1AB C △的面积为4,112AB A B =,且1A A ⊥平面ABC .(1)求点B 到平面1AB C 的距离;(2)若1BB BA =,且平面1AB C ⊥平面11ABB A , 求二面角11A B C A --的余弦值.17.(2023秋·辽宁沈阳·高三沈阳二中校考期末)如图,在四棱锥P ABCD -中,平面ABCD ⊥平面PAD ,//AD BC ,1AB BC PA ===,2AD =,30ADP ∠=︒,90BAD ∠=︒,E 是PD 的中点.(1)求证:PD PB ⊥;(2)若点M 在线段PC 上,异面直线BM 和CE 求面MAB 与面PCD 夹角的余弦值.18.(2023·辽宁朝阳·校联考一模)如图,已知四棱锥E ABCD -,底面ABCD 是平行四边形,且π3DAB ∠=,22,,AD AB BE PE P ===是线段AD 的中点,BE PC ⊥.(1)求证:PC ⊥平面BPE ;(2)下列条件任选其一,求二面角P EC B --的余弦值.①AE 与平面ABCD 所成的角为π4;②D 到平面EPC 注:如果选择多个条件分别解答,按一个解答计分.19.(2023秋·江苏南京·高三南京市第一中学校考期末)如图,三棱锥E ABD -和F BCD -均为棱长为2的正四面体,且A ,B ,C ,D 四点共面,记直线AE 与CF 的交点为Q .(1)求三棱锥Q BDE -的体积;(2)求二面角A QD C --的正弦值.20.(2023春·河北承德·高三河北省隆化存瑞中学校考阶段练习)如图,在四棱锥P ABCD -中,1,90,1,2AD BC ADC PAB BC CD AD E ∠∠=====∥ 为边AD 的中点,异面直线PA 与CD 所成的角为90 .(1)在直线PA 上找一点M ,使得直线//MC 平面PBE ,并求AM AP 的值;(2)若直线CD 到平面PBE ,求平面PBE 与平面PBC 夹角的正弦值.21.(2023秋·河北石家庄·高三石家庄精英中学校考阶段练习)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD V 是正三角形,且平面SAD ⊥平面ABCD ,1AB =,P为棱AD 的中点,四棱锥S ABCD -(1)若E 为棱SB 的中点,求证://平面SCD ;(2)在棱SA 上是否存在点M ,使得平面PMB 与平面SAD 若存在,指出点M 的位置并给以证明;若不存在,请说明理由.22.(2023春·河北衡水·高三河北衡水中学校考阶段练习)如图所示,圆锥的高2PO =,底面圆O 的半径为R ,延长直径AB 到点C ,使得BC R =,分别过点A ,C 作底面圆O 的切线,两切线相交于点E ,点D 是切线CE 与圆O 的切点.(1)证明:平面PDE ⊥平面POD ;(2)若直线PE 与平面PBD ,求点A 到平面PED 的距离.23.(2023·河北衡水·河北衡水中学校考模拟预测)异面直线1l 、2l 上分别有两点A 、B .则将线段AB 的最小值称为直线1l 与直线2l 之间的距离.如图,已知三棱锥-P ABC 中,PA ⊥平面PBC ,PB PC ⊥,点D 为线段AC 中点,1AP BP CP ===.点E 、F 分别位于线段AB 、PC 上(不含端点),连接线段EF .(1)设点M 为线段EF 中点,线段EF 所在直线与线段AC 所在直线之间距离为d ,证明:DM d > .(2)若AB PC k AE FC==()1k >,用含k 的式子表示线段EF 所在直线与线段BD 所在直线之间的距离.24.(2023·河北·高三河北衡水中学校考阶段练习)如图,在长方体ABCD FGHE -,平面ABCD 与平面BCEF 所成角为02πθθ⎛⎫<< ⎪⎝⎭.(1)若AB BC =,求直线AH 与平面BCEF 所成角的余弦值(用cos θ表示);(2)将矩形BCEF 沿BF 旋转θ度角得到矩形BFPQ ,设平面ABCD 与平面BFPQ 所成角为π02αα⎛⎫<< ⎪⎝⎭,请证明:2cos cos αθ=.25.(2023秋·福建宁德·高三校考阶段练习)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,点P 在底面ABCD 内的投影恰为AC 中点,且BM MC =.(1)若2PC =,求证:PM ⊥面PAD ;(2)若平面PAB 与平面PCD 所成的锐二面角为3π,求直线PM 与平面PCD 所成角的正弦值.26.(2023秋·山东烟台·高三山东省烟台第一中学校考期末)如图,在三棱台111ABC A B C -中,底面ABC V 是边长为2的正三角形,侧面11ACC A 为等腰梯形,且1111A C AA ==,D 为11A C 的中点.(1)证明:AC BD ⊥;(2)记二面角1A AC B --的大小为θ,2,33ππθ⎡⎤∈⎢⎥⎣⎦时,求直线1AA 与平面11BB C C 所成角的正弦值的取值范围.27.(2023秋·山东枣庄·高三统考期末)已知直三棱柱111ABC A B C -,D 为线段11A B 的中点,E 为线段1CC 的中点,1AC CE ==,平面ABE ⊥平面11AA C C .(1)证明:AB AE ⊥;(2)三棱锥E ABD -的外接球的表面积为132π,求平面ADE 与平面BDE 夹角的余弦值.28.(2023·湖北·校联考模拟预测)如图所示,在梯形ABCD 中,AB CD ∥,120BCD ∠= ,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD CD BC CF ===.(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF MAB 与平面FCB 所成锐二面角为θ,试求cos θ的取值范围.29.(2023春·湖北·高三统考阶段练习)如图所示,六面体1111ABCD A B C D -的底面ABCD 是菱形,1111,π3BAD AA BB CC DD ∠=∥∥∥,且1BB ⊥平面111111,,,(01),2ABCD AA CC AE AA CF CC DD BB λλλ===<≤= ,平面BEF 与平面ABCD的交线为l .(1)证明:直线l ⊥平面11B BDD ;(2)已知2EF =,三棱锥1B BDF -的体积1B BDF V -=1D F 与平面1BDD 所成角为θ,求sin θ的取值范围.30.(2023·江苏南通·二模)如图,在圆台1OO 中,11,A B AB 分别为上、下底面直径,且11//A B AB ,112AB A B =, 1CC 为异于11,AA BB 的一条母线.(1)若M 为AC 的中点,证明:1//C M 平面11ABB A ;(2)若13,4,30OO AB ABC ==∠=︒,求二面角1A C C O --的正弦值.。

第5讲 立体几何选择压轴题(原卷版)

第5讲  立体几何选择压轴题(原卷版)

第5讲 立体几何选择压轴题一、单选题1.(浙江超级全能生3月联考)如图,已知在中,为线段上一点,沿将翻转至,若点在平面内的射影恰好落在线段上,则二面角的正切的最大值为( )AB .1C D2.(浙江宁波模拟)设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则A .B .C .D .3.(湖南长沙市·长沙一中高三月考)在三棱锥中,,二面角的余弦值为,当三棱锥的体积的最大值为时,其外接球的表面积为 A . B . C . D . 4.(天一大联考(理))在棱长为的正四面体中,点为所在平面内一动点,且满足,则的最大值为() A . B . C . D . ABC 90,1,2,BAC AB BC D ∠=︒==BC AD ABD △AB D 'B 'ADC HAC B DC A '--V ABC -P VA PB AC αPB ABC βP AC B --γ,βγαγ<<,βαβγ<<,βαγα<<,αβγβ<<A BCD -60BAC BDC ∠=∠=︒A BC D --13-A BCD -45π6π7π8π2ABCD P ABC 433PA PB +=PD 33325.(四川成都二模(理))已知四面体,,分别为棱,的中点,为棱上异于,的动点.有下列结论:①线段的长度为1;②若点为线段上的动点,则无论点与如何运动,直线与直线都是异面直线; ③的余弦值的取值范围为; ④.其中正确结论的个数为( )A .1B .2C .3 D .46.(内蒙古呼和浩特一模(理))四面体的四个顶点都在球O 上且,O 的表面积为( )A .B .C .D .7.(山东日照一模)已知直三棱柱的侧棱长为,,.过、的中点、作平面与平面垂直,则所得截面周长为( )A .B C. D .8.(山东滨州一模)如图,斜线段与平面所成的角为,为斜足.平面上的动点满足,则点的轨迹为()A .圆B .椭圆C .双曲线的一部分D .抛物线的一部分9.(山东淄博一模)四棱锥中,侧面为等边三角形,底面为矩形,,,点是棱的中点,顶点在底面的射影为,则下列结论正确的是( )A .棱上存在点使得面ABCD M N AD BC F AB A B MN G MN F G FG CD MFN ∠0,5⎡⎢⎣⎭FMN 1ABCD 4AB AC BC BD CD =====AD =70π380π330π40π111ABC A B C -2AB BC ⊥2AB BC ==AB 1BB E F α11AAC C +AB απ4B αP π6PAB ∠=P S ABCD -SBC ABCD 2BC =AB a F AD S ABCD H SC P //PD BSFB .当落在上时,的取值范围是C .当落在上时,四棱锥的体积最大值是2D .存在的值使得点到面10.(湖北武汉月考)已知三棱锥的各个顶点都在球的表面上,底面,,,,是线段上一点,且.过点作球的截面,若所得截面圆面积的最大值与最小值之差为,则球的表面积为( )A .B .C .D .11.(安徽蚌埠二模(理))已知直四棱柱,其底面是平行四边形,外接球体积为,若,则其外接球被平面截得图形面积的最小值为( )A .B .C .D .12.(浙江省宁海中学高三月考)如图,在中,,,点E 为线段AB 上一点,将绕DE 翻折.若在翻折过程中存在某个位置,使得,记为的最小值,则()A .B .C .D .13.(天津河西区·高三一模)将长、宽分别为和的长方形沿对角线折成直二面角,得到四面体,则四面体的外接球的表面积为( )A .B .C .D .14.(江西八校4月联考(理))已知三棱锥的外接球的表面积为,,,,,则三棱锥的体积为( )A .8B .CD .16H AD a (H AD S ABCD -a B SFC P ABC -O PA ⊥ABC AB AC ⊥6AB =8AC =D AB 2AD DB =D O 25πO 128π132π144π156π1111ABCD A B C D -ABCD 36π1AC BD ⊥11AB D 8π24310π8110π6πABC ∆36A ∠=AD DB BC ==ADE ∆AE CD ⊥θADE ∠(15,20]θ∈(20,25]θ∈(25,30]θ∈(30,35]θ∈43ABCD AC A BCD -A BCD -25π50π5π10πP ABC -64π2AB =AC =AB AC ⊥8PA =P ABC -315.(山西临汾一模(理))在棱长为2的正方体中,平面,则以平面截正方体所得的截面面积最大时的截面为底面,以为顶点的锥体的外接球的表面积为( )A .B .C .D .16.(浙江省宁海中学高三月考)如图,矩形中,,点在,上,满足,,将沿向上翻折至,使得在平面上的射影落在的重心处,设二面角的大小为,直线,与平面所成角分别为,,则( )A .B .C .D .17.(河南高三一模(理))如图,在棱长为1正方体中,为棱的中点,动点在侧面及其边界上运动,总有,则动点的轨迹的长度为( )A . BC .D . 18.(江苏徐州二模)“帷幄”是古代打仗必备的帐篷,又称“幄帐”.如图是一种幄帐示意图,帐顶采用“五脊1111ABCD A B C D -1B D α⊥α1B 12π253π203π6πABCD 236AB AD ==(),1,2i i E F i =CD AD 112E F =1221//E F E F 11DE F ∆11E F 11D E F ∆'D 'ABCD 22DE F ∆G D AB C '--αD A 'D C 'ABCD βγαβγ>>γαβ>>αγβ>>βαγ>>1111ABCD A B C D -M AB P 11BCC B 1AP D M ⊥P 2π162四坡式”,四条斜脊的长度相等,一条正脊平行于底面.若各斜坡面与底面所成二面角的正切值均为,底面矩形的长与宽之比为,则正脊与斜脊长度的比值为( )A .B .C .D .119.(浙江名校协作体联考)在矩形中,,,E 、F 分别为边、上的点,且,现将沿直线折成,使得点在平面上的射影在四边形内(不含边界),设二面角的大小为,直线与平面所成的角为,直线与直线所成角为,则( )A .B .C .D .20.(河南高考适应性考试(理))棱长为的正方体密闭容器内有一个半径为的小球,小球可在正方体容器内任意运动,则其不能到达的空间的体积为( )A .B .C .D . 21.(辽宁高三一模(理))球面上两点之间的最短连线的长度,就是经过这两个点的大圆在这两点间的一段劣弧的长度(大圆就是经过球心的平面截球面所得的圆),我们把这个弧长叫做两点的球面距离.已知正的项点都在半径为的球面上,球心到所在平面距离为,则、两点间的球面距离为( ) 125:33589910ABCD AB =3AD =AD BC 2AE BF ==ABE △BE 1A BE 1A BCDE CDEF 1A BE C --θ1A B BCDE α1A E BCββαθ<<βθα<<αβθ<<αθβ<<4122323π-4812π-4283π-13203π-ABC 2ABC 3A BA .B .C .D . 22.(湖北武汉月考)某圆锥母线长为2,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为()A .2B CD .123.(中学生标准学术能力3月测试(理))在棱长为的正四面体中,点,分别为直线,上的动点,点为中点,为正四面体中心(满足),若,则长度为( )A .BC .D .24.(湖南长沙市·长郡中学高三月考)如图,已知正四棱柱的底面边长为1,侧棱长为2,点分别在半圆弧,(均不含端点)上,且,,,在球上,则( )A.当点在的三等分点处,球O 的表面积为B .当点在的中点处,过,,三点的平面截正四棱柱所得的截面的形状都是四边形C .球的表面积的取值范围为D .当点在的中点处,三棱锥的体积为定值25.(河南高三一模(理))在三棱锥中,,,则该三棱锥的内切球的表面积为( )A .B .C .D . 26.(百校联盟质检(理))已知四棱锥中,平面,四边形为正方形,,平面过,,的中点,则平面截四棱锥所得的截面面积为( )π2π23π34πA BCD -E F AB CD P EF Q QA QB QC QD ===PQ =EF 321111ABCD A B C D -,P Q 1C C 1A A 1C P Q C O Q 1A A (11π-P 1C C 1C P Q O ()4,8ππP 1C C 1C PQC -A BCD -4AB CD ==3AC BD AD BC ====4π517π3π23π4S ABCD -SA ⊥ABCD ABCD 6SA AB ==αSB CD SD αS ABCD -A .B .C .D .27.(河南金太阳3月联考(理))在正四棱锥,若四棱锥的体积为,则该四棱锥外接球的体积为() A . B . C . D . 28.(超级全能生1月联考(理))已知三棱锥中,是等腰直角三角形,,,,三棱锥,则三棱锥外接球的表面积为( )A .B .C .D .29.(贵州新高考联盟质检(理))在直三棱柱中,,,,则该三棱柱内能放置的最大球的表面积是( )A .B .C .D .二、多选题 30.(山东德州一模)如图,在边长为4的正方形中,点、分别在边、上(不含端点)且,将,分别沿,折起,使、两点重合于点,则下列结论正确的有( ).A.B .当时,三棱锥C .当时,三棱锥4564276296126P ABCD -=P ABCD -25635003π100π4903π500πP ABC -ABC AB AC ⊥AB =PA =PAB PAC ∠=∠P ABC -1P ABC -36π32π24π16π111ABC A B C -16AA AB ==8BC =10AC =16π24π36π64πABCD E F AB BC BE BF =AED DCF DE DF A C 1A 1A D EF ⊥12BE BF BC ==1A F DE -14BE BF BC ==1A F DE -D .当时,点到平面31.(湖北九师联盟3月联考)如图,在棱长为6的正方体中,为棱上一点,且为棱的中点,点是线段上的动点,则( )A .无论点在线段上如何移动,都有B .四面体的体积为24C .直线与所成角的余弦值为D .直线与平面所成最大角的余弦值为 33.(江苏南通期末)如图,在棱长为1的正方体中,P 为线段上一动点(包括端点),则以下结论正确的有( )A .三棱锥的体积为定值B .过点P 平行于平面的平面被正方体14BE BF BC ==1A DEF 1111ABCD A B C D -E 1DD 2,DE F =11C D G 1BC G 1BC 11A G B D ⊥A BEF -AE BF 151A G 1BDC 131111ABCD A B C D -11B D 1P A BD -131A BD 1111ABCD A B C D -C .直线与平面所成角的正弦值的范围为D .当点P 与重合时,三棱锥34.(济南市·山东省实验中学高三月考)正方体中,E 是棱的中点,F 在侧面上运动,且满足平面.以下命题正确的有( )A .侧面上存在点F ,使得B .直线与直线所成角可能为C .平面与平面所成锐二面角的正切值为D .设正方体棱长为1,则过点E ,F ,A35.(山东泰安月考)如图,点是正四面体底面的中心,过点的直线交,于点,,是棱上的点,平面与棱的延长线相交于点,与棱的延长线相交于点,则( )A .若平面,则B .存在点S 与直线MN ,使平面1PA 1A BD 33⎣⎦1B 1P A BD -1111ABCD A B C D -1DD 11CDD C 1//B F 1A BE 11CDD C 11B F CD ⊥1B F BC 30︒1A BE 11CDD C O P ABC -ABC O AC BC M N S PC SMN PA Q PB R //MN PAB //AB RQ PC ⊥SRQC .存在点与直线,使D .是常数36.(湖南岳阳一模)将边长为2的正方形ABCD 沿对角线BD 折成直二面角,点P 为线段AD上的一动点,下列结论正确的是( )A .异面直线AC 与BD 所成的角为60°B .是等边三角形C .D .四面体ABCD的外接球的表面积为8π37.(山东临沂模拟)如图,在正方形中,点为线段上的动点(不含端点),将沿翻折,使得二面角为直二面角,得到图所示的四棱锥,点为线段上的动点(不含端点),则在四棱锥中,下列说法正确的有( )A .四点不共面B .存在点,使得平面平面C .三棱锥的体积为定值D .存在点使得直线与直线垂直38.(山东日照一模)已知正方体的棱长为4,为的中点,为所在平面上一动点,则下列命题正确的是( ) S MN ()0PS PQ PR ⋅+=111PQ PR PS ++A BD C --ACD △BCP 1ABCD E BC ABE AE B AE D --2B AECD -F BD B AECD -,,,B E C F F //CF BAE B ADC -E BE CD 1111ABC A B C D -M 1DD N ABCDA .若与平面所成的角为,则点的轨迹为圆B .若,则的中点的轨迹所围成图形的面积为C .若点到直线与直线的距离相等,则点的轨迹为抛物线D .若与所成的角为,则点的轨迹为双曲线 39.(广东深圳一模)在空间直角坐标系中,棱长为1的正四面体的顶点A ,B 分别为y 轴和z 轴上的动点(可与坐标原点O 重合),记正四面体在平面上的正投影图形为S ,则下列说法正确的有( )A .若平面,则S 可能为正方形B .若点A 与坐标原点O 重合,则S 的面积为C .若,则S 的面积不可能为D .点D 到坐标原点O 的距离不可能为 40.(山东济宁一模)如图,为圆锥底面圆的直径,点是圆上异于,的动点,,则下列结论正确的是( )MN ABCD 4πN 4MN =MN P 2πN 1BB DC N 1D N AB 3πN O xyz -ABCD ABCD xOy //CDxOy 4OA OB OC ==1232AC SO O B O A C 2SO OC ==A .圆锥的侧面积为B .三棱锥体积的最大值为C .的取值范围是D .若,为线段上的动点,则的最小值为 41.(广东肇庆二模)在长方体中,,,是线段上的一动点,则下列说法正确的是( )A .平面B .与平面C .的最小值为D .以为半径的球面与侧面的交线长是 42.(广东广州一模)已知正方体的棱长为4,是棱上的一条线段,且,点是棱的中点,点是棱上的动点,则下面结论中正确的是( ) A .与一定不垂直 B .二面角的正弦值是 C .的面积是 D .点到平面的距离是常量 43.(江苏苏州开学考试)在长方体中,已知分别为的中点,则()SO S ABC -83SAB ∠ππ,43⎛⎫ ⎪⎝⎭AB BC =E AB SE CE +)21+1111ABCD A B C D -1AB AD ==12AA =P 1BC 1//A P 1AD C 1A P 11BCC B 1A P PC +5A 11DCC D 2π1111ABCD A B C D -EF AB 1EF =Q 11A D P 11C D PQ EF P EF Q --10PEF P QEF 1111ABCD A B C D -122,,AA AB AD E F ===111,BB D CA .B .平面C .三棱锥外接球的表面积为D .平面被三棱锥外接球截得的截面圆面积为 EF EC ⊥//BD AEF 1C CEF -5π11A BCD 1C CEF -98π。

第一章 空间向量与立体几何【压轴题专项训练】(解析版)

第一章 空间向量与立体几何【压轴题专项训练】(解析版)

第一章空间向量与立体几何【压轴题专项训练】一、单选题1.已知(),(3,0,1),(131,2,3,1),55a b c =-==--r r r 给出下列等式:①||||a b c a b c ++=--;②()()a b c a b c +⋅=⋅+;③2222()a b c b c a =++++④()()a b c a b c ⋅⋅=⋅⋅.其中正确的个数是A .1个B .2个C .3个D .4个【答案】D 【详解】由题设可得197(,3,)55a b c ++=,则5a b c ++==;923(,1,)55a b c --=-,a b c --=因1346()(4,2,2)(,1,)205555a b c +⋅=⋅--=-+-=,1481424()(1,2,3)(,1,205555a b c ⋅+=⋅-=+-=,故②正确;又因2635127()255a b c ++==,而22235714,10,255a b c ====,所以22271272455a b c ++=+=,即③正确;又3030a b ⋅=+-=,则()0a b c ⋅⋅=,而330055b c ⋅=-++=,故()0a b c ⋅⋅=,也即④正确.故选:D .2.点P 是棱长为1的正方体1111ABCD A B C D -的底面ABCD 上一点,则1PA PC ⋅的取值范围是()A .1[1,]4--B .11[,]24--C .[1,0]-D .1[,0]2-【答案】D 【分析】以点D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴,以1DD 所在的直线为z 轴,建立空间直角坐标系,写出各点坐标,同时设点P 的坐标为(,,)x y z ,其中01,01,1x y z ≤≤≤≤=,用坐标运算计算出1PA PC ⋅,配方后可得其最大值和最小值,即得其取值范围.【详解】以点D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴,以1DD 所在的直线为z 轴,建立空间直角坐标系,如图所示;则点1(1,0,0),(0,1,1)A C 设点P 的坐标为(,,)x y z ,由题意可得01,01,1x y z ≤≤≤≤=,1(1,,1),(,1,0)PA x y PC x y ∴=---=--22221111(1)(1)0222PA PC x x y y x x y y x y ⎛⎫⎛⎫∴⋅=----+=-+-=-+--⎪ ⎪⎝⎭⎝⎭,由二次函数的性质可得,当12x y ==时1PA PC ⋅取得最小值为12-;当0x =或1,且0y =或1时,1PA PC ⋅取得最大值为0,则1PA PC ⋅的取值范围是1,02⎡⎤-⎢⎥⎣⎦故选D .【点睛】本题考查空间向量的数量积运算,解题方法量建立空间直角坐标系,引入坐标后,把向量的数量积用坐标表示出来,然后利用函数的性质求得最大值和最小值.3.空间任意四个点A 、B 、C 、D ,则BA CB CD +-等于A .DB B .AD uuu vC .DAD .AC【答案】C 【分析】利用平面向量运算法则即可得出.【详解】.BA CB CD CA DC DA +-=+=.故选C.【点睛】本题考查了平面向量运算法则,属于基础题.4.三棱锥O ABC -中,M ,N 分别是AB ,OC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示NM ,则NM 等于()A .1()2a b c -++B .1()2a b c +-C .1()2a b c -+D .1()2a b c --+【答案】B 【分析】利用向量的平行四边形法则、三角形法则可得:1()2NM NA NB =+,1()2AN AO AC =+,1()2BN BO BC =+,AC OC OA =-,BC OC OB =-,代入化简即可得出.【详解】解:1()2NM NA NB =+,1()2AN AO AC =+,1()2BN BO BC =+,AC OC OA =-,BC OC OB =-,∴1111()2222MN AN BN OA OB OC=+=--+111222a b c =--+,∴111222NM a b c =+-,故选:B .【点睛】本题考查了向量的平行四边形法则、三角形法则,考查了数形结合方法、推理能力与计算能力,属于中档题.5.如图,在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,则OG 等于()A .111333OA OB OC++B .111234OA OB OC++C .111244OA OB OC++D .111446OA OB OC++【答案】C 【分析】因为在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,12OE OA AD =+,即可求得答案.【详解】在四面体OABC 中,D 是BC 的中点,G 是AD 的中点∴12OG OA AD =+11()22OA AB AC =+⨯+1()4OA OB OA OC OA =+⨯-+-111244OA OB OC =++故选:C.【点睛】本题主要考查了向量的线性运算,解题关键是掌握向量基础知识和数形结合,考查了分析能力和空间想象能力,属于基础题.6.如图,在正方体1111ABCD A B C D -中,M ,N 分别是棱AB ,1BB 的中点,点P 在对角线1CA 上运动.当△PMN 的面积取得最小值时,点P 的位置是()A .线段1CA 的三等分点,且靠近点1AB .线段1CA 的中点C .线段1CA 的三等分点,且靠近点CD .线段1CA 的四等分点,且靠近点C【答案】B 【分析】将问题转化为动点P 到直线MN 的距离最小时,确定点P 的位置,建立空间直角坐标系,取MN 的中点Q ,通过坐标运算可知PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离,再由空间两点间的距离公式求出||PQ 后,利用二次函数配方可解决问题.【详解】设正方体的棱长为1,以A 为原点,1,,AB AD AA 分别为,,x y z 轴,建立空间直角坐标系,如图所示:则1(,0,0)2M ,1(1,0,2N ,MN 的中点31(,0,44Q ,1(0,0,1)A ,(1,1,0)C ,则1(1,1,1)AC =-,设(,,)P t t z ,(1,1,)PC t t z =---,由1AC 与PC 共线,可得11111t t z---==-,所以1t z =-,所以(1,1,)P z z z --,其中01z ≤≤,因为||PM ==,||PN ==所以||||PM PN =,所以PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离,由空间两点间的距离公式可得||PQ ===所以当12c =时,||PQ P 为线段1CA 的中点,由于||4MN =为定值,所以当△PMN 的面积取得最小值时,P 为线段1CA 的中点.故选:B 【点睛】本题考查了空间向量的坐标运算,考查了空间两点间的距离公式,考查了数形结合法,考查了二次函数求最值,属于基础题.7.在空间直角坐标系中,正方体1111ABCD A B C D -棱长为2,E 为正方体的棱1AA 的中点,F 为棱AB 上的一点,且190C EF ∠=则点F 的坐标为A .12,,04⎛⎫ ⎪⎝⎭B .12,,03⎛⎫ ⎪⎝⎭C .12,,02⎛⎫ ⎪⎝⎭D .22,,03⎛⎫ ⎪⎝⎭【答案】C 【详解】由正方体的性质可得()()12,0,1,0,2,2E C ,设()2,,0F y ,则()()12,2,1,0,,1EC EF y =-=-,因为190C EF ∠=,1210EC EF y ∴⋅=-=,解得12y =,则点F 的坐标为12,,02⎛⎫⎪⎝⎭,故选C.8.已知空间直角坐标系O xyz -中,()1,2,3OA =u u u r ,()2,1,2OB =u u u r ,()1,1,2OP =uu u r,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为()A .131,,243⎛⎫⎪⎝⎭B .133,,224⎛⎫ ⎪⎝⎭C .448,,333⎛⎫ ⎪⎝⎭D .447,,333⎛⎫ ⎪⎝⎭【答案】C 【分析】设(,,)Q x y z ,根据点Q 在直线OP 上,求得(,,2)Q λλλ,再结合向量的数量积和二次函数的性质,求得43λ=时,QA QB ⋅取得最小值,即可求解.【详解】设(,,)Q x y z ,由点Q 在直线OP 上,可得存在实数λ使得OQ OP λ=,即(,,)(1,1,2)x y z λ=,可得(,,2)Q λλλ,所以(1,2,32),(2,1,22)QA QB λλλλλλ=---=---,则2(1)(2)(2)(1)(32)(22)2(385)QA QB λλλλλλλλ⋅=--+--+--=-+,根据二次函数的性质,可得当43λ=时,取得最小值23-,此时448(,,)333Q .故选:C.【点睛】本题主要考查了空间向量的共线定理,空间向量的数量积的运算,其中解答中根据向量的数量积的运算公式,得出关于λ的二次函数是解答的关键,着重考查运算与求解能力.9.已知正四棱柱1111ABCD A B C D -中,12AA AB =,则CD 与平面1BDC 所成角的正弦值等于A .23B .33C .23D .13【答案】A 【详解】试题分析:设1AB =112,5BD BC DC ∴===,1BDC ∆面积为3211C BDC C BCDV V --=131********d d ∴⨯⨯=⨯⨯∴=2sin 3d CD θ∴==考点:线面角10.在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB=BC=AA 1,∠ABC=90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是A .30°B .45°C .90°D .60°【答案】D 【分析】本题可用空间向量的方法先求出向量EF →和向量1BC →的夹角,再由直线的方向向量所成角与异面直线所成角相等或互补的关系,从而可确定结果.【详解】因为点E ,F 分别是棱AB ,B B 1的中点,所以EF →=BF →-BE→=12(1BB →-BA →),1BC →=1BC BB →+→,所以1BC EF →→=12(1BB →-BA →)(1BC BB →+→)=12BB 1 2→(),设所求异面直线的夹角为θ,则cosθ=11BC BC EFEF→→→→=12,所以θ60︒=.【点睛】本题考查异面直线所成的角,常用方法由几何法和空间向量的方法.几何法即是在几何体中作出异面直线所成的角或所成角的补角,解三角形即可;空间向量的方法可通过求直线方向向量的夹角来确定异面直线所成的角.二、多选题11.将正方形ABCD 沿对角线BD 折成直二面角A BD C --,有如下四个结论:①AC BD ⊥;②ACD △是等边三角形;③AB 与平面BCD 所成的角为60;④AB 与CD 所成的角为60.其中正确的结论有()A .①B .②C .③D .④【答案】ABD 【分析】根据题意,建立空间直角坐标系,用向量知识依次讨论即可得答案.【详解】解:取BD 中点O ,由正方形的性质得:,AO BD CO BD ⊥⊥,所以AOC ∠为二面角A BD C --的平面角,因为二面角A BD C --是直二面角A BD C --,所以如图所示,建立空间直角坐标系Oxyz ,设正方形ABCD则(),(),1,0,01,0,00(),(),0,10,1,0D B C A -所以()0,1,1AC →=-,()2,0,0BD →=,()1,0,1CD →=-,()1,1,0AD →=-,()1,1,0AB →=--,因为0AC BD →→⋅==0,故AC BD ⊥,①正确.又AC →=,CD →AD →所以ACD △为等边三角形,②正确.对于③,OA →为平面BCD 的一个法向量,()0,1,0OA →=2cos ,2OA AB OA AB OA AB→→→→→→⋅==-⋅.因为直线与平面所成的角的取值范围是0,90⎡⎤⎣⎦,所以AB 与平面BCD 所成的角为45,故③错误.又1cos ,2CD AB CD AB CD AB→→→→→→⋅==-⋅,因为异面直线所成的角为锐角或直角,所以AB 与CD 所成的角为60,故④正确.故选:ABD【点睛】本题解题的关键是建立空间直角坐标系,用空间向量的方法解决立体几何问题,考查运算求解能力,空间思维能力,是中档题.12.在三棱锥P ABC -中,三条侧棱,,PA PB PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为,BC PB 上的点,且::1:2BE EC PF FB ==,则下列说法正确的是()A .EG PG ⊥B .EG BC⊥C .//FG BCD .FG EF⊥【答案】ABD 【分析】取,,PA a PB b PC c ===,以{},,a b c 为基底表示EG uuu r,FG ,EF ,结合向量数量积运算性质、向量共线定理即可选出正确答案.【详解】如图,设,,PA a PB b PC c ===,则{},,a b c 是空间的一个正交基底,则0a b a c b c ⋅=⋅=⋅=,取AB 的中点H ,则22111()33233PG PH a b a b ==⨯+=+,1121111,3333333EG PG PE a b b c a b c BC c b =-=+--=--=-,11113333FG PG PF a b b a =-=+-=,1121133333EF PF PE b c b c b ⎛⎫=-=-+=-- ⎪⎝⎭,∴0EG PG ⋅=,A 正确;0EG BC ⋅=,B 正确;()FG BC R λλ≠∈,C 不正确;0FG EF ⋅=,D 正确.故选:ABD.【点睛】本题考查了平面向量共线定理,考查了由数量积求两向量的位置关系,考查了平面向量基本定理的应用,属于中档题.13.设1111ABCD A B C D -是棱长为a 的正方体,以下结论为正确的有()A .21ABC A a ⋅=-B .211AB AC ⋅=C .21BC AD a ⋅=D .211AB C A a ⋅=【答案】AC 【分析】利用向量数量积的几何意义,对照选项一一验证,即可得答案;【详解】如图所示,在正方体1111ABCD A B C D -中,对A ,1C A 在AB 方向上的投影为a -,∴21AB C A a ⋅=-,故A 正确;对B ,11A C 在AB 方向上的投影为a ,∴211AB A C a ⋅=,故B 错误;对C ,1A D 在BC 方向上的投影为a ,∴21BC A D a ⋅=,故C 正确;对D ,11C A 在AB 方向上的投影为a -,∴211AB C A a ⋅=-,故D 错误;故选:AC.【点睛】本题考查向量数量积的几何意义的应用,考查空间想象能力、运算求解能力.14.设,,a b c 是空间一个基底,下列选项中正确的是()A .若a b ⊥,b c ⊥,则a c⊥B .则,,a b c 两两共面,但,,a b c 不可能共面C .对空间任一向量p ,总存在有序实数组(,,)x y z ,使p xa yb zc=++D .则a b +,b c +r r,a c +一定能构成空间的一个基底【答案】BCD 【分析】根据空间向量的基底的概念,对选项逐一分析,可得正确选项.【详解】由,,a b c 是空间一个基底,知:在A 中,若a b ⊥,b c ⊥,则a 与c 的夹角不一定是2π,故A 错误;在B 中,,,a b c 两两共面,但,,a b c 不可能共面,故B 正确;在C 中,根据空间向量的基本定理可知C 正确;在D 中,因为,,a b c 不共面,假设a b +,b c +r r ,a c +共面,设()(1)()a b x b c x a c +=++-+,化简得(1)c xa x b =+-,可得,,a b c 共面,与已知矛盾,所以a b +,b c +r r ,a c +不共面,可作为基底,故D 正确.故选:BCD.【点睛】本题主要考查向量的基底的概念,需要注意:(1)如果,,a b c 是基底,则,,a b c 一定不共面;(2)对空间中任意向量,都可以用基底向量,,a b c 进行表示;(3)如果,1a mb nc m n =++=,则,,a b c 共面.三、填空题15.在正方体1111ABCD A B C D -中,已知1A A a =,11A B b =,11AD c =,O 为底面的ABCD 的中心,G 为11D C O 的重心,则AG =______.(用a ,b ,c 表示AG )【答案】215326a b c ++【分析】根据向量的三角形法则和平行四边形法则化简计算即可.【详解】解:在正方体1111ABCD A B C D -中,11111,,A A a A B b A D c ===,O 为底面ABCD 的中心,G 为△11D C O 的重心,∴AG AO OG=+1111()()23AB AD OD OC =+++111111()[()()]2322b c BA BC DD AB AD CC =+++++++11111()()()26363b c b c a b c a =++-+++++215326a b c =++.故答案为:215326a b c ++.【点睛】本题考查向量的求法,考查空间向量加法法则等基础知识,考查运算求解能力,属于中档题.16.在四棱锥P ABCD -中,底面ABCD 是正方形,E 为PD 中点,若PA =a ,PB =b ,PC =c ,则BE =_____.【答案】131222a b c -+【分析】根据底面ABCD 是正方形,E 为PD 中点,向量加法的平行四边形法则得到)1(2BE BP BD =+,而()()BD BA BC PA PB PC PB =+=-+-,即可求得BE 的结果.【详解】解:)1(2BE BP BD =+=12(b -+BA BC +)=12b -+1(2PA PB PC PB -+-)=12b -+12(2)a c b +-=131222a b c -+.故答案为:131222a b c -+.【点睛】本题考查向量在几何中的应用以及向量共线定理和空间向量基本定理,要用已知向量表示未知向量,把要求向量放在封闭图形中求解,体现了数形结合的思想,是基础题型.17.已知空间向量(1a =,n ,2),(2b =-,1,2),若2a b -与b 垂直,则||a 等于___________.35【分析】利用向量垂直关系,2a b -与b 垂直,则(2)·0a b b -=,可求得n ,得到向量a ,进而求模长即可.【详解】解:(1a =,n ,2),(2b =-,1,2),2(4a b ∴-=,21n -,2),2a b -与b 垂直,(2)·0a b b ∴-=,82140n ∴-+-+=,解得,52n =,∴(1a =,52,2)2a ∴==.故答案为:2.18.在正四棱锥PABCD ﹣中,PA AB =,E ,F 分别是PB ,PC 的中点,设异面直线AE 与BF 所成角的大小为α,则cos =α__________.【答案】13【分析】先建立空间直角坐标系,写出各点的坐标,然后用向量法求异面直线所成的角即可【详解】建立如图所示的空间直角坐标系,设PA AB ==1OA OB OP ===,()()11111,0,0,0,1,0,0,,,,0,2222A B E F ⎛⎫⎛⎫∴- ⎪ ⎪⎝⎭⎝⎭11111,,,,1,2222AE BF ⎛⎫⎛⎫∴=-=- ⎪ ⎪⎝⎭⎝⎭设异面直线AE 与BF 所成角的大小为α,则1cos 3AE BFAE BF α⋅==故答案为:13四、解答题19.如图,已知四棱锥P ABCD -,底面是边长为2的正方形,PAD 是以AD 为斜边的等腰直角三角形,PB =E 、O 分别为PA ,BD 中点.(1)求证://OE 平面PDC(2)求直线PC 与平面PAB 所成角的正弦值.【答案】(1)证明见解析;(2【分析】(1)连接AC ,可得//OE PC ,进而证明//OE 面PDC ;(2)建立空间直角坐标系,设(),,P a b c ,根据,PA PD PB ,得到方程组求出P 点坐标,再计算平面PAB 的法向量,利用向量夹角公式来求直线PC 与平面PAB 所成角的正弦值.【详解】解:(1)证明:连接AC ,因为ABCD 为正方形,O 分别为 BD 中点,所以O 为AC 中点,故//OE PC ,因为OE ⊄面PDC ,PC ⊂面PDC ,所以//OE 面PDC .(2)AB 所在直线为x 轴,以AD 所在直线为y 轴,过点A 且垂直底面ABCD 的直线为z 轴建立如图所示的空间直角坐标系:()0,0,0A ,()2,0,0B ,()2,2,0C ,()0,2,0D ,设(),,P a b c ,因为PAD △为等腰直角三角形,且斜边2AD =,所以PA PD ==由PB =即2222222222(2)2(2)8a b c a b c a b c ⎧++=⎪+-+=⎨⎪-++=⎩⇒12132a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,故点13122P ⎛⎫- ⎪ ⎪⎝⎭,,,设平面PAB 的法向量为:(),,n x y z =r ,由()1353200112222AB AP PC ⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,所以2013022AB n x AP n x y z ⎧⋅==⎪⎨⋅=-++=⎪⎩,令3y =,则0x =,2z =-所以()032n =-,,,设直线PC 与平面PAB 所成角为α,即()()()222223132242sin cos 14,5332122PC nPC n PC n α⎛⎫⨯+-⨯- ⎪⎝⎭=〈〉===⎛⎫⎛⎫⎪⋅+-⨯++- ⎪⎝⎭⎝⎭.所以直线PC 与平面PAB 所成角的正弦值为4214;20.四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2DC SD ==,点M 是侧棱SC 的中点,2AD =.(Ⅰ)求异面直线CD 与BM 所成角的大小;(Ⅱ)求二面角S AM B --的正弦值.【答案】(1)3π;(2)33.【解析】(Ⅰ)以点D 为坐标原点,建立空间直角坐标系如图所示,则(2,0,0),(2,2,0),(0,2,0),(0,0,2)A B C S ,(0M ,1,1),所以(0,2,0),(2,1,1)DC BM ==--,则0201|cos ,|||22211DC BM -+<>==⨯++,因为异面直线所成的角为(0,]2π,所以异面直线CD 与BM 所成角的大小为3π;(Ⅱ)由(Ⅰ)可得,(0,2,0),(2,0,2),(0,2,2)AB AS SC ==-=-,设平面SAM 的法向量为(,,)m x y z =,则00m AS m SC ⎧⋅=⎪⎨⋅=⎪⎩,即220220x z y z ⎧-+=⎪⎨-=⎪⎩,令1z =,则(2,1,1)m =,设平面AMB 的法向量为(,,)n a b c =,则00n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩,即2020b a b c =⎧⎪⎨--+=⎪⎩,令1a =,则(1,0,2)n =,所以||2026|cos ,|||||323m n m n m n ⋅++<>===⨯,故二面角S AM B --2631()33-=.21.如图,三棱锥O ABC -各棱的棱长都是1,点D 是棱AB 的中点,点E 在棱OC 上,且OE OC λ=,记OA a =,OB b =,OC c =.(1)用向量a ,b ,c 表示向量DE ;(2)求||DE 的最小值.【答案】(1)1122DE a b c λ=--+;(2)22.【分析】(1)利用空间向量运算求解即可;(2)结合棱长都是1,转换成2||DE 为关于λ的二次函数,求最小值即可.【详解】(1)12DE DA AE BA OE OA =+=+-111()222OA OB OC OA a b c λλ=-+-=--+.(2)三棱锥棱长都为1,故2221a b c ===,12a b a c b c ⋅=⋅=⋅=,2211||22DE a b c λ⎛⎫=--+ ⎪⎝⎭2111442a b a c b c λλλ=+++⋅-⋅-⋅2311(1)422λλλ⎛⎫=+-=-+ ⎪⎝⎭,故当12λ=时,||DE 取得最小值,且min 12||22DE ==.【点睛】本题考查了空间向量的加减运算,与模长最值问题,属于中档题.22.(2021•甲卷)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点,11BF A B ⊥.(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)证明见解析;(2)112B D =.【解析】(1)证明:连接AF ,E ,F 分别为直三棱柱111ABCA B C -的棱AC 和1CC 的中点,且2AB BC ==,1CF ∴=,5BF =,11BF A B ⊥,11//AB A B ,BF AB∴⊥22222(5)3AF AB BF ∴=+=+=,22223122AC AF CF =-=-=,222AC AB BC ∴=+,即BA BC ⊥,故以B 为原点,BA ,BC ,1BB 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则(2A ,0,0),(0B ,0,0),(0C ,2,0),(1E ,1,0),(0F ,2,1),设1B D m =,则(D m ,0,2),∴(0BF =,2,1),(1DE m =-,1,2)-,∴0BF DE ⋅=,即BF DE ⊥.(2)解:AB ⊥平面11BB C C ,∴平面11BB C C 的一个法向量为(1p =,0,0),由(1)知,(1DE m =-,1,2)-,(1EF =-,1,1),设平面DEF 的法向量为(n x =,y ,)z ,则00n DE n EF ⎧⋅=⎪⎨⋅=⎪⎩,即(1)200m x y z x y z -+-=⎧⎨-++=⎩,令3x =,则1y m =+,2z m =-,∴(3n =,1m +,2)m -,cos p ∴<,2222333||||12719(1)(2)22142()22p n n p n m m m m m ⋅>====⋅⨯+++--+-+,∴当12m =时,面11BB C C 与面DFE 所成的二面角的余弦值最大,此时正弦值最小,故当112B D =时,面11BB C C 与面DFE 所成的二面角的正弦值最小.。

立体几何小题之压轴篇(解析版)

立体几何小题之压轴篇(解析版)

立体几何小题之压轴篇(解析版)题型一、体积的最值题目1:三棱柱ADF-BCE中,四边形ABCD和正方形ABEF的边长均为2,∠ABC=60°,平面ABCD⊥平面ABEF,M,N分别是AC,BF上的动点,若AM=FN=a,0≤a≤2,当四面体A-MNB的体积最大时,实数a的值为(答案2)解析:作NG⊥AB交AB于点G,由已知易得NG⊥平面ABCD,FN=a, NB=22−a,NG=22−a22∆AMB=12×2×a×32=32a,V A−MNB=V13×32a×2−,当且仅当a=a=2时,四面体A-MNB的体积最大。

题目2:如图,将一张长为2m,宽为1m的长方体纸板按图中方式剪裁并废弃阴影部分,若剩余部分恰好能折叠成一个长方体纸盒(接缝部分忽略不计),则此长方体体积的最大值为解析:设废弃的四个小矩形部分长为2x,宽为x,则折叠成的长方体的长为2x,宽为1-2x,高为2−4x2=1−2x,其中0 12,设长方体的体积为V=2x∙1−2x∙(1−2x)=1∙4x∙1−2x∙1−2x≤3=4,当且仅当4x=1-2x即x=16时取到等号,∴长方体体积的最大值为427。

注:也可直接求导求出最值。

题目3:将一个底面半径为1,高为2的圆锥工件切割成一个圆柱体,能割出的圆柱的最大体积为(答案:827π)解析:设圆柱的底面圆半径为r,高为h,则r1=2−h2⇒h=2−2r,则0设圆柱的体积为V,则V=πr2h=πr2∙2−2r=π∙r∙r∙2−2r≤=827,当且仅当r=2−2r即r=23时取到等号,∴能割出的圆柱的最大体积为827。

题目4:一个等腰三角形的周长为10,四个这样相同的等腰三角形的底边围成正方形,如图,若这四个三角形都绕底边旋转,四个顶点能重合在一起,构成一个四棱锥,则该四棱锥的体积的最大值为(答案:解析:设等腰三角形底边长为x,腰为y,x+2y=10,则四棱锥的底面边长为x,高体积V=13×x2×y2x=25x5x−4x设f(x)=25x4−5x5−14x6,则f'x=1210−3x x+20,令f'x=0,得x=103,易得此时体积V注:本题若作为解答题,解答欠严密,没有指出x的取值范围。

几何模型压轴题章末训练(Word版 含解析)

几何模型压轴题章末训练(Word版 含解析)

几何模型压轴题章末训练(Word 版 含解析)一、初三数学 旋转易错题压轴题(难)1.已知:如图①,在矩形ABCD 中,AB =5,203AD =,AE ⊥BD ,垂足是E .点F 是点E 关于AB 的对称点,连接AF 、BF .(1)求AE 和BE 的长; (2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,求出相应的m 的值; (3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的ABF 为A BF '',在旋转过程中,设A F ''所在的直线与直线AD 交于点P ,与直线BD 交于点Q ,若△DPQ 为等腰三角形,请直接写出此时DQ 的长.【答案】(1)4;3 (2)3或163 (3)2512525310103243-、、103 【解析】【分析】(1)由矩形的性质,利用勾股定理求解BD 的长,由等面积法求解AE ,由勾股定理求解BE 即可,(2)利用对称与平移的性质得到:AB ∥A′B′,∠4=∠1,BF =B′F′=3.当点F′落在AB 上时,证明BB′=B′F′即可得到答案,当点F′落在AD 上时,证明△B′F′D 为等腰三角形,从而可得答案,(3)分4种情况讨论:①如答图3﹣1所示,点Q 落在BD 延长线上,证明A′Q =A′B ,利用勾股定理求解',,F Q BQ 从而求解DQ ,②如答图3﹣2所示,点Q 落在BD 上,证明点A′落在BC 边上,利用勾股定理求解,BQ 从而可得答案,③如答图3﹣3所示,点Q 落在BD 上,证明∠A′QB =∠A′BQ ,利用勾股定理求解,BQ ,从而可得答案,④如答图3﹣4所示,点Q 落在BD 上,证明BQ =BA′,从而可得答案.【详解】 解:(1)在Rt △ABD 中,AB =5,203AD =, 由勾股定理得:222025533BD ⎛⎫=+= ⎪⎝⎭. 11,22ABD S BD AE AB AD =⋅=⋅.2532053 4.AB ADAEBD⨯⋅∴===在Rt△ABE中,AB=5,AE=4,由勾股定理得:BE=3.(2)设平移中的三角形为△A′B′F′,如答图2所示:由对称的性质可知,∠1=∠2.由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,∴∠3=∠2,∴BB′=B′F′=3,即m=3;②当点F′落在AD上时,∵AB∥A′B′,∴∠6=∠2,∵∠1=∠2,∠5=∠1,∴∠5=∠6,,AB AD⊥∴A′B′⊥AD,'''',B F D B DF∴∠=∠∴△B′F′D为等腰三角形,∴B′D=B′F′=3,2516333BB BD B D''∴=-=-=,即163m=.(3)DQ的长度分别为2512525310103243、、或103.在旋转过程中,等腰△DPQ依次有以下4种情形:①如答图3﹣1所示,点Q落在BD延长线上,且PD=DQ,∴∠2=2∠Q,∵∠1=∠3+∠Q ,∠1=∠2,∴∠3=∠Q ,∴A′Q =A′B =5,∴F′Q =F′A′+A′Q =4+5=9.在Rt △BF′Q 中,由勾股定理得:222293310BQ F Q F B ''=+=+=.253103DQ BQ BD ∴=-=-; ②如答图3﹣2所示,点Q 落在BD 上,且PQ =DQ ,∴∠2=∠P ,∵∠1=∠2,∴∠1=∠P ,∴BA′∥PD ,∵PD ∥BC ,∴此时点A′落在BC 边上.∵∠3=∠2,∴∠3=∠1,∴BQ =A′Q ,∴F′Q =F′A′﹣A′Q =4﹣BQ .在Rt △BQF′中,由勾股定理得:'2'22,BF F Q BQ +=即:2223(4),BQ BQ +-= 解得:258BQ =, 25251253824DQ BD BQ ∴=-=-=; ③如答图3﹣3所示,点Q 落在BD 上,且PD =DQ ,∴ ∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,149022∴∠︒∠=﹣. ∵∠1=∠2,149012∴∠=︒-∠. 149012A QB ∴∠'∠︒∠==﹣, 118019012A BQ A QB ∴∠'︒∠'∠︒∠=﹣﹣=﹣, ∴∠A′QB =∠A′BQ ,∴A′Q =A′B =5,∴F′Q =A′Q ﹣A′F′=5﹣4=1.在Rt △BF′Q 中,由勾股定理得:223110BQ =+=,25103DQ BD BQ ∴=-=-; ④如答图3﹣4所示,点Q 落在BD 上,且PQ =PD ,∴ ∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ =BA′=5,2510533DQ BD BQ ∴=-=-=. 综上所述,DQ 的长度分别为2512525310103243--、、或103.【点睛】本题是几何变换压轴题,涉及旋转与平移变换、矩形、勾股定理、等腰三角形等知识点.第(3)问难度很大,解题关键是画出各种旋转图形,依题意进行分类讨论;在计算过程中,注意识别旋转过程中的不变量,注意利用等腰三角形的性质简化计算.2.已知如图1,在ABC 中,90ABC ∠=︒,BC AB =,点D 在AC 上,DF AC ⊥交BC 于F ,点E 是AF 的中点.(1)写出线段ED 与线段EB 的关系并证明;(2)如图2,将CDF 绕点C 逆时针旋转()090a α︒<<︒,其它条件不变,线段ED 与线段EB 的关系是否变化,写出你的结论并证明; (3)将CDF 绕点C 逆时针旋转一周,如果6BC =,32CF =,直接写出线段CE 的范围.【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;(3)最大值22=最小值322=. 【解析】【分析】(1)在Rt △ADF 中,可得DE=AE=EF ,在Rt △ABF 中,可得BE=EF=EA ,得证ED=EB ;然后利用等腰三角形的性质以及四边形ADFB 的内角和为180°,可推导得出∠DEB=90°; (2)如下图,先证四边形MFBA 是平行四边形,再证△DCB ≌△DFM ,从而推导出△DMB 是等腰直角三角形,最后得出结论;(3)如下图,当点F 在AC 上时,CE 有最大值;当点F 在AC 延长线上时,CE 有最小值.【详解】(1)∵DF ⊥AC ,点E 是AF 的中点∴DE=AE=EF ,∠EDF=∠DFE∵∠ABC=90°,点E 是AF 的中点∴BE=AE=EF ,∠EFB=∠EBF∴DE=EB∵AB=BC ,∴∠DAB=45°∴在四边形ABFD 中,∠DFB=360°-90°-45°-90°=135°∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB)=360°-2×135°=90°∴DE ⊥EB(2)如下图,延长BE 至点M 处,使得ME=EB ,连接MA 、ME 、MF 、MD 、FB 、DB ,延长MF交CB于点H∵ME=EB,点E是AF的中点∴四边形MFBA是平行四边形∴MF∥AB,MF=AB∴∠MHB=180°-∠ABC=90°∵∠DCA=∠FCB=a∴∠DCB=45°+a,∠CFH=90°-a∵∠DCF=45°,∠CDF=90°∴∠DFC=45°,△DCF是等腰直角三角形∴∠DFM=180°-∠DFC-∠CFH=45°+a∴∠DCB=∠DFM∵△ABC和△CDF都是等腰直角三角形∴DC=DF,BC=AB=MF∴△DCB≌△DFM(SAS)∴∠MDF=∠BDC,DB=DM∴∠MDF+∠FDB=∠BDC+∠FDB=90°∴△DMB是等腰直角三角形∵点E是MB的中点∴DE=EB,DE⊥EB(3)当点F在AC上时,CF有最大值,图形如下:∵BC=6,∴在等腰直角△ABC 中,AC=62 ∵CF=32,∴AF=32∴CE=CF+FE=CF+12AF 922= 当点F 在AC 延长线上时,CE 有最小值,图形如下:同理,CE=EF -CF 322=【点睛】 本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关键是构造并证明△BDM 是等腰直角三角形.3.综合与探究:如图1,Rt AOB 的直角顶点O 在坐标原点,点A 在y 轴正半轴上,点B 在x 轴正半轴上,4OA =,2OB =,将线段AB 绕点B 顺时针旋转90︒得到线段BC ,过点C 作CD x ⊥轴于点D ,抛物线23y ax x c =++经过点C ,与y 轴交于点(0,2)E ,直线AC 与x 轴交于点H .(1)求点C 的坐标及抛物线的表达式;(2)如图2,已知点G 是线段AH 上的一个动点,过点G 作AH 的垂线交抛物线于点F (点F 在第一象限),设点G 的横坐标为m .①点G 的纵坐标用含m 的代数式表示为________;②如图3,当直线FG 经过点B 时,求点F 的坐标,判断四边形ABCF 的形状并证明结论;③在②的前提下,连接FH ,点N 是坐标平面内的点,若以F ,H ,N 为顶点的三角形与FHC 全等,请直接写出点N 的坐标.【答案】(1)点C 的坐标为(6,2),21322y x x =-++;(2)①143m -+;②点F 的坐标为(4,6),四边形ABCF 为正方形,证明见解析;③点N 的坐标为(10,4)或4226,55⎛⎫ ⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭. 【解析】【分析】(1)根据已知条件与旋转的性质证明ABO BCD ≌,根据全等三角形的性质得出点C 的坐标,结合点E 的坐标,根据待定系数法求出抛物线的表达式;(2)①设直线AC 的表达式为y kx b =+,由点A 、C 的坐标求出直线AC 的表达式,进而得解;②过点G 作GM x ⊥轴于点M ,过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,根据等腰三角形三线合一得出AG CG =,结合①由平行线分线段成比例得出点G 的坐标,根据待定系数法求出直线BG 的表达式,结合抛物线的表达式求出点F ;利用勾股定理求出AB BC CF FA ===,结合90ABC ︒∠=可得出结论; ③根据直线AC 的表达式求出点H 的坐标,设点N 坐标为(,)s t ,根据勾股定理分别求出2FC ,2CH ,2FN ,2NH ,然后分两种情况考虑:若△FHC ≌△FHN ,则FN =FC ,NH =CH ,若△FHC ≌△HFN ,则FN =CH ,NH =FC ,分别列式求解即可.【详解】解:(1)4=OA ,2OB =,∴点A 的坐标为(0,4),点B 的坐标为(2,0),线段AB 绕点B 顺时针旋转90︒得到线段BC ,AB BC ∴=,90ABC ︒∠=,90ABO DBC ︒∴∠+∠=,在Rt AOB 中,90ABO OAB ︒∴∠+∠=,=OAB DBC ∴∠∠,CD x ⊥轴于点D ,90BDC ︒∴∠=,90AOB BDC ︒∴∠=∠=.AB BC =,ABO BCD ∴△≌△,2CD OB ∴==,4BD OA ==,6OB BD ∴+=,∴点C 的坐标为(6,2),∵抛物线23y ax x c =++的图象经过点C ,与y 轴交于点(0,2)E , 236182c a c =⎧∴⎨++=⎩, 解得,122a c ⎧=-⎪⎨⎪=⎩, ∴抛物线的表达式为21322y x x =-++; (2)①设直线AC 的表达式为y kx b =+,∵直线AC 经过点()6,2C ,(0,4)A ,∴624k b b +=⎧⎨=⎩, 解得,134k b ⎧=-⎪⎨⎪=⎩,即143y x =-+, ∴点G 的纵坐标用含m 的代数式表示为:143m -+, 故答案为:143m -+.②过点G 作GM x ⊥轴于点M , OM m ∴=,143GM m =-+, AB BC =,BG AC ⊥,AG CG ∴=, 90AOB GMH CDH ︒∠=∠=∠=,OA GMCD ∴, 1OM AG MD GC∴==, 132OM MD OD ∴===, 3m ∴=,1433m -+=,∴点G 为(3,3), 设直线BG 的表达式为y kx b =+,将(3,3)G 和(2,0)B 代入表达式得,2033k b k b +=⎧⎨+=⎩, 36k b =⎧∴⎨=-⎩,即表达式为36y x =-, 点F 为直线BG 和抛物线的交点,∴得2132362x x x -++=-, 14x ∴=,24x =-(舍去),∴点F 的坐标为(4,6),过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q , 4PF ∴=,2AP =,2FQ =,4CQ =,在Rt AFP △中和Rt FCQ △中,根据勾股定理,得25AF FC ==, 同理可得25AB BC ==,AB BC CF FA ∴===,∴四边形ABCF 为菱形,90ABC ︒∠=,∴菱形ABCF 为正方形;③∵直线AC :143y x =-+与x 轴交于点H , ∴1403x -+=, 解得,x =12,∴(12,0)H ,∴222(64)(26)20FC =-+-=,222(126)(02)40CH =-+-=,设点N 坐标为(,)s t ,∴222(4)(6)FN s t =-+-,222(12)(0)NH s t =-+-,第一种情况:若△FHC ≌△FHN ,则FN =FC ,NH =CH , ∴2222(4)(6)20(12)40s t s t ⎧-+-=⎨-+=⎩, 解得,11425265s t ⎧=⎪⎪⎨⎪=⎪⎩,2262s t =⎧⎨=⎩(即点C ), ∴4226,55N ⎛⎫ ⎪⎝⎭; 第二种情况:若△FHC ≌△HFN ,则FN =CH ,NH =FC ,∴2222(4)(6)40(12)20s t s t ⎧-+-=⎨-+=⎩, 解得,1138545s t ⎧=⎪⎪⎨⎪=⎪⎩,22104s t =⎧⎨=⎩, ∴384,55N ⎛⎫ ⎪⎝⎭或(10,4)N , 综上所述,以F ,H ,N 为顶点的三角形与△FHC 全等时,点N 坐标为(10,4)或4226,55⎛⎫⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭. 【点睛】本题是函数与几何的综合题,考查了待定系数法求函数的表达式,全等三角形的判定与性质,菱形与正方形的判定,旋转的性质,勾股定理等知识,其中对全等三角形存在性的分析,因有一条公共边,可对另外两边进行分类讨论,本题有一定的难度,是中考压轴题.4.两块等腰直角三角形纸片AOB 和COD 按图1所示放置,直角顶点重合在点O 处,25AB =,17CD =.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转(090)αα<<角度,如图2所示.()1利用图2证明AC BD =且AC BD ⊥;()2当BD 与CD 在同一直线上(如图3)时,求AC 的长和α的正弦值.【答案】(1)详见解析;(2)7,725.【解析】【分析】(1)图形经过旋转以后明确没有变化的边长,证明AOC BOD≅,得出AC=BD ,延长BD交AC于E,证明∠AEB=90︒,从而得到BD AC⊥.(2) 如图3中,设AC=x,在Rt △ABC中,利用勾股定理求出x,再根据sinα=sin∠ABC=ACAB 即可解决问题【详解】()1证明:如图2中,延长BD 交OA于G,交AC于E.∵90AOB COD∠=∠=,∴AOC DOB∠=∠,在AOC和BOD中,OA OBAOC BODOC OD=⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD≅,∴AC BD=,CAO DBO∠=∠,∵90DBO GOB∠+∠=,∵OGB AGE∠=∠,∴90CAO AGE∠+∠=,∴90AEG∠=,∴BD AC⊥.()2解:如图3中,设AC x=,∵BD 、CD 在同一直线上,BD AC ⊥,∴ABC 是直角三角形,∴222AC BC AB +=,∴222(17)25x x ++=,解得7x =,∵45ODC DBO α∠=∠+∠=,45ABC DBO ∠+∠=, ∴ABC α∠=∠,∴7sin sin 25AC ABC AB α=∠==. 【点睛】本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,第二个问题的关键是利用(1)的结论解决问题,属于中考常考题型.5.如图1,在正方形ABCD 中,点E 、F 分别在边BC ,CD 上,且BE=DF ,点P 是AF 的中点,点Q 是直线AC 与EF 的交点,连接PQ ,PD .(1)求证:AC 垂直平分EF ;(2)试判断△PDQ 的形状,并加以证明;(3)如图2,若将△CEF 绕着点C 旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ 是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD ,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF ,得出CE=CF ,△CEF 是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF ,PQ=AF ,得出PD=PQ ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF ,PQ=AF ,得出PD=PQ ,再证明点A 、F 、Q 、P 四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF ,∴CE=CF ,∴AC 垂直平分EF ;(2)解:△PDQ 是等腰直角三角形;理由如下:∵点P 是AF 的中点,∠ADF=90°,∴PD=AF=PA ,∴∠DAP=∠ADP ,∵AC 垂直平分EF ,∴∠AQF=90°,∴PQ=AF=PA ,∴∠PAQ=∠AQP ,PD=PQ ,∵∠DPF=∠PAD+∠ADP ,∠QPF=∠PAQ+∠AQP ,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ )=2×45°=90°,∴△PDQ 是等腰直角三角形;(3)成立;理由如下:∵点P 是AF 的中点,∠ADF=90°,∴PD=AF=PA ,∵BE=DF ,BC=CD ,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF ,∠FCQ=∠ECQ ,∴CQ ⊥EF ,∠AQF=90°,∴PQ=AF=AP=PF ,∴PD=PQ=AP=PF ,∴点A 、F 、Q 、P 四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ 是等腰直角三角形.考点:四边形综合题.6.在矩形ABCD 中,2AB =,1BC =,以点A 为旋转中心,逆时针旋转矩形ABCD ,旋转角为(0180)αα<<,得到矩形AEFG ,点B 、点C 、点D 的对应点分别为点E 、点F 、点G .()1如图①,当点E 落在DC 边上时,直写出线段EC 的长度为______;()2如图②,当点E 落在线段CF 上时,AE 与DC 相交于点H ,连接AC ,①求证:ACD ≌CAE ;②直接写出线段DH 的长度为______.()3如图③设点P 为边FG 的中点,连接PB ,PE ,在矩形ABCD 旋转过程中,BEP 的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.【答案】(1)23;(2)①见解析;34②;(3)存在,PBE 的面积的最大值为21,理由见解析 【解析】 【分析】 ()1如图①中,在Rt ADE 中,利用勾股定理即可解决问题;()2①证明:如图②中,根据HL 即可证明ACD ≌CAE ;②如图②中,由ACD ≌CAE ,推出ACD CAE ∠∠=,推出AH HC =,设AH HC m ==,在Rt ADH 中,根据222AD DH AH +=,构建方程即可解决问题; ()3存在.如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M.由题意:PF PC 1==,由AG EF 1==,G F 90∠∠==,推出PA PE 2==PBE 12S PE BM 22=⋅⋅=,推出当BM 的值最大时,PBE 的面积最大,求出BM 的最大值即可解决问题;【详解】 ()1四边形ABCD 是矩形,AB CD 2∴==,BC AD 1==,D 90∠=, 矩形AEFG 是由矩形ABCD 旋转得到,AE AB 2∴==,在Rt ADE 中,22DE 213=-=CE 23∴=,故答案为23.()2①当点E 落在线段CF 上,AEC ADC 90∠∠∴==,在Rt ADC 和Rt AEC 中,{AC CA CD AE ==, Rt ACD ∴≌()Rt CAE HL ;ACD ②≌CAE ,ACD CAE ∠∠∴=,AH HC ∴=,设AH HC m ==,在Rt ADH 中,222AD DH AH +=,2221(2m)m ∴+-=,5m 4∴=, 53DH 244∴=-=, 故答案为34; ()3存在.理由如下:如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M ,由题意:PF PC 1==,AG EF 1==,G F 90∠∠==,PA PE 2∴==PBE 12S PE BM BM 22∴=⋅⋅=, ∴当BM 的值最大时,PBE 的面积最大,BM PB ≤,PB AB PA ≤+,PB 22∴≤,BM 22∴≤BM ∴的最大值为22+PBE ∴21.【点睛】本题是四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,勾股定理,三角形的面积,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.7.(问题提出)如图①,已知△ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF(类比探究)(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.【解析】【分析】(1)根据旋转的性质得出△EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∴△DEB≌△EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.【详解】(1)证明:DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠CAF=∠BAC=60°,∴∠EAF=∠BAC+∠CAF=120°,∵∠DBE=120°,∴∠EAF=∠DBE,又∵A,E,C,F四点共圆,∴∠AEF=∠ACF,又∵ED=DC,∴∠D=∠BCE,∠BCE=∠ACF,∴∠D=∠AEF,∴△EDB≌FEA,∴BD=AF,AB=AE+BF,∴AB=BD+AF.类比探究(1)DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠EFC=∠BAC=60°,∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∴∠FCG=∠FEA,又∠FCG=∠EAD∠D=∠EAD,∴∠D=∠FEA,由旋转知∠CBE=∠CAF=120°,∴∠DBE=∠FAE=60°∴△DEB≌△EFA,∴BD=AE, EB=AF,∴BD=FA+AB.即AB=BD-AF.(2)AF=BD+AB(或AB=AF-BD)如图③,,ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,BC=AC,∴△CEF 是等边三角形,∴EF=EC ,又∵ED=EC ,∴ED=EF ,∵AB=AC ,BC=AC ,∴△ABC 是等边三角形,∴∠ABC=60°,又∵∠CBE=∠CAF ,∴∠CAF=60°,∴∠EAF=180°-∠CAF-∠BAC=180°-60°-60°=60°∴∠DBE=∠EAF ;∵ED=EC ,∴∠ECD=∠EDC ,∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC ,又∵∠EDC=∠EBC+∠BED ,∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC ,∵∠AEF=∠CEF+∠BEC=60°+∠BEC ,∴∠BDE=∠AEF ,在△EDB 和△FEA 中,DBE EAF BDE AEF ED EF ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△EDB ≌△FEA (AAS ),∴BD=AE ,EB=AF ,∵BE=AB+AE ,∴AF=AB+BD ,即AB ,DB ,AF 之间的数量关系是:AF=AB+BD .考点:旋转变化,等边三角形,三角形全等,8.已知,正方形ABCD 的边长为4,点E 是对角线BD 延长线上一点,AE=BD .将△ABE 绕点A 顺时针旋转α度(0°<α<360°)得到△AB ′E ′,点B 、E 的对应点分别为B ′、E ′.(1)如图1,当α=30°时,求证:B ′C=DE ;(2)连接B ′E 、DE ′,当B ′E=DE ′时,请用图2求α的值;(3)如图3,点P 为AB 的中点,点Q 为线段B ′E ′上任意一点,试探究,在此旋转过程中,线段PQ长度的取值范围为.【答案】(1)证明见解析(2)45°或22.5°(3)22-2≤PQ≤42+2【解析】【分析】(1)先由正方形的性质得到直角三角形AOE,再经过简单计算求出角,判断出△ADE≌△AB′C即可;(2)先判断出△AEB′≌△AE′D,再根据旋转角和图形,判断出∠BAB′=∠DAB′即可;(3)先判断出点Q的位置,PQ最小时和最大时的位置,进行计算即可.【详解】解:(1)如图1,连接AC,B′C,∵四边形ABCD是正方形,∴AB=AD,AC⊥BD,AC=BD=2OA,∠CAB=ADB=45°,∵AE=BD,∴AC=AE=2OA,在Rt△AOE中,∠AOE=90°,AE=2OA,∴∠E=30°,∴∠DAE=∠ADB-∠E=45°-30°=15°,由旋转有,AD=AB=AB′∠BAB′=30°,∴∠DAE=15°,在△ADE和△AB′C中,'' AD ABDAE CAB AE AC=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△AB′C,∴DE=B′C,(2)如图2,由旋转得,AB′=AB=AD,AE′=AE,在△AEB′和△AE′D中,''''AE AEAD ABDB DE=⎧⎪=⎨⎪=⎩,∴△AEB′≌△AE′D,∴∠DAE′=∠EAB′,∴∠EAE′=∠DAB′,由旋转得,∠EAE′=∠BAB′,∴∠BAB′=∠DAB′,∵∠BAB′+∠DAB′=90°,∴α=∠BAB′=45°,或α=360°-90°-45°=225°;(3)如图3,∵正方形ABCD的边长为4,∴122,连接AC交BD于O,∴OA ⊥BD ,OA=12AC=12BD=22 在旋转过程中,△ABE 在旋转到边B'E'⊥AB 于Q ,此时PQ 最小, 由旋转知,△ABE ≌△AB'E', ∴AQ=OA=12BD (全等三角形对应边上的高相等), ∴PQ=AQ-AP=12BD-AP=22-2 在旋转过程中,△ABE 在旋转到点E 在BA 的延长线时,点Q 和点E'重合, ∴AE'=AE=42, ∴PE'=AE'+AP=42+2, 故答案为22-2≤PQ≤42+2. .二、初三数学 圆易错题压轴题(难)9.如图,二次函数y=x 2-2mx+8m 的图象与x 轴交于A 、B 两点(点A 在点B 的左边且OA≠OB ),交y 轴于点C ,且经过点(m ,9m ),⊙E 过A 、B 、C 三点。

立体几何压轴小题-6013a92b4cb14dfd94d630596176cefe

立体几何压轴小题-6013a92b4cb14dfd94d630596176cefe
【详解】
如图,设球心 在平面 内的射影为 ,在平面 内的射影为
则二面角 的平面角为
点 在截面圆 上运动,点 在截面圆 上运动,
由图知,当 , 时,三棱锥 的体积最大,此时 与 是等边三角形
设 ,则 ,
解得 ,所以
, ,设

解得

球 的半径
所求外接球的表面积为
故选B.
【点睛】
本题考查了三棱锥外接球的综合应用,根据空间几何关系求得球的半径,进而求得表面积,对空间想象能力要求较高,属于难题。
39.如图,在透明塑料制成的长方体 容器内灌进一些水,将容器底面一边 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:
①水的部分始终呈棱柱状;
②水面四边形 的面积不改变;
③棱 始终与水面 平行;
④当 时, 是定值.
其中正确说法是.
参考答案
1.B
【解析】
【分析】
本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.
30.在三棱锥 中, 是边长为3的等边三角形, ,二面角 的大小为120°,则此三棱锥的外接球的表面积为__________.
31.点 为正方体 的内切球 球面上的动点,点 为 上一点, ,若球 的体积为 ,则动点 的轨迹的长度为__________.
32.已知球 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心) 的外接球, ,点 在线段 上,且 ,过点 作圆 的截面,则所得截面圆面积的取值范围是__________.
33.如图,在长方体 中, ,点 为线段 上的动点(包含线段端点),则下列结论正确的__________.

专题23 立体几何中的压轴小题(解析版)

专题23 立体几何中的压轴小题(解析版)

专题23 立体几何中的压轴小题【题型归纳目录】 题型一:球与截面面积问题题型二:体积、面积、周长、角度、距离定值问题 题型三:体积、面积、周长、距离最值与范围问题 题型四:立体几何中的交线问题 题型五:空间线段以及线段之和最值问题 题型六:空间角问题 题型七:立体几何装液体问题 【典例例题】题型一:球与截面面积问题例1.(2022·河南安阳·模拟预测(文))已知球O 的体积为125π6,高为1的圆锥内接于球O ,经过圆锥顶点的平面α截球O 和圆锥所得的截面面积分别为12,S S ,若125π8S =,则2S =( ) A .2B 5C 6D .22【解析】球O 半径为R ,由34π125π36R =得52R =,平面α截球O 所得截面小圆半径1r ,由21128π5πS r ==得122r =因此,球心O 到平面α的距离221122d R r r =-=,而球心O 在圆锥的轴上,则圆锥的轴与平面α所成的角为45,因圆锥的高为1,则球心O 到圆锥底面圆的距离为132d =,于是得圆锥底面圆半径2222153()()222r R d =-=-,令平面α截圆锥所得截面为等腰PAB △,线段AB 为圆锥底面圆1O 的弦,点C 为弦AB 中点,如图,依题意,145CPO ∠=,111CO PO ==,2PC =221223AB r O C =-= 所以2162AB S PC =⋅=故选:C例2.(2022·广西·南宁二中高三阶段练习(理))已知正四棱柱1111ABCD A B C D -中,122CC AB ==,E 为1CC 的中点,P 为棱1AA 上的动点,平面α过B ,E ,P 三点,有如下四个命题: ①平面α⊥平面11A B E ;①平面α与正四棱柱表面的交线围成的图形一定是四边形; ①当P 与A 重合时,α截此四棱柱的外接球所得的截面面积为11π8; ①存在点P ,使得AD 与平面α所成角的大小为π3.则正确的命题个数为( ). A .1B .2C .3D .4【解析】由题意可知,12BE B E ==112CC BB ==, 所以22211BE B E BB +=,所以1BE B E ⊥,又因为11A B ⊥平面11BCC B ,且BE ⊂平面11BCC B ,所以11A B BE ⊥, 因为1111A B B E B ⋂=,11A B ,1B E ⊂平面11A B E ,所以BE ⊥平面11A B E , 又BE ⊂平面α,所以平面α⊥平面11A B E ,故①正确; 对于①,当1PA PA >时,可延长BP 交11B A 的延长线于点M ,延长BE 交11B C 的延长线于点N ,连结MN ,分别交11A D ,11D C 于点R ,Q ,连结PR ,EQ ,则截面α为五边形BPRQE ,故①错误;对于①,当P 与A 重合时,可取1DD 的中点为点F ,截面为图示中的矩形ABEF ,则四棱柱的外接球半径为2221126R ++==设点1O 为平面11ADD A 的中心,过1O 作1O G AF ⊥于G ,连接1O F , 则可得1O G AB ⊥,1O G ⊥平面ABEF , 所以点1O 到平面ABEM 的距离12sin4d O F π==所以α截此四棱柱的外接球所得的截面圆的半径226211248r ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以α截此四棱柱的外接球所得的截面的面积为211ππ8S r ==,故①正确; 对于①,AD 与平面α所成角的大小,即为BC 与平面α所成角,可设为θ, 作CH BE ⊥于点H ,设点C 到平面α的距离为h ,则2h CH ≤=,所以23sin 2h h CH BC θ==≤=<,则π3θ<,故①错误. 综上,正确的命题个数为2. 故选:B .例3.(2022·四川资阳·高二期末(理))如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2BD =,1DE =,点P 在线段EF 上.给出下列命题:①存在点P ,使得直线//DP 平面ACF ; ①存在点P ,使得直线DP ⊥平面ACF ;①直线DP 与平面ABCD 所成角的正弦值的取值范围是5⎡⎤⎢⎥⎣⎦;①三棱锥A CDE -的外接球被平面ACF 所截得的截面面积是9π8. 其中所有真命题的序号( ) A .①①B .①①C .①①①D .①①①【解析】取EF 中点G ,连DG ,令AC BD O =,连FO ,如图,在正方形ABCD 中,O 为BD 中点,而BDEF 是矩形,则//DO GF 且DO GF =,即四边形DGFO 是平行四边形,即有//DG FO ,而FO ⊂平面ACF ,DG ⊄平面ACF ,于是得//DG 平面ACF ,当点P 与G 重合时,直线//DP 平面ACF ,①正确;假定存在点P ,使得直线DP ⊥平面ACF ,而FO ⊂平面ACF ,则DP FO ⊥,又//DG FO ,从而有DP DG ⊥, 在Rt DEF △中,90DEF ∠=,DG 是直角边EF 上的中线,显然在线段EF 上不存在点与D 连线垂直于DG , 因此,假设是错的,即①不正确;因平面BDEF ⊥平面ABCD ,平面BDEF ⋂平面ABCD BD =,则线段EF 上的动点P 在平面ABCD 上的射影在直线BD 上,于是得PDB ∠是直线DP 与平面ABCD 所成角的,在矩形BDEF 中,当P 与E 不重合时,PDB DPE ∠=∠, 222sin sin 1DEPDB DPE DPDE EP EP ∠=∠===++02EP <≤5sin 1PDB ≤∠<, 当P 与E 重合时,2PDB π∠=,sin 1PDB ∠=5sin 1PDB ≤∠≤,①正确; 因平面BDEF ⊥平面ABCD ,平面BDEF ⋂平面ABCD BD =,BF BD ⊥,BF ⊂平面BDEF ,则BF ⊥平面ABCD ,2BC =ACF 中,223AF CF BC BF =+FO AC ⊥,222sin 3FOBO BF FAC AF+∠===, 由正弦定理得ACF 外接圆直径2sin 2CF R FAC ==∠22R =三棱锥A CDE -的外接球被平面ACF 所截得的截面是ACF 的外接圆,其面积为298R ππ=,①正确, 所以所给命题中正确命题的序号是①①①. 故选:D例4.(2022·全国·高三专题练习)如图所示,圆锥的轴截面PAB △是以P 为直角顶点的等腰直角三角形,2PA =,C 为PA 中点.若底面O 所在平面上有一个动点M ,且始终保持0MA MP ⋅=,过点O 作PM 的垂线,垂足为H .当点M 运动时,①点H 在空间形成的轨迹为圆①三棱锥O HBC -的体积最大值为112①AH HO +的最大值为2①BH 与平面PAB 5上述结论中正确的序号为( ). A .①①B .①①C .①①①D .①①①【解析】建系如图,PAB △为等腰直角三角形,2,2,22PA PO AB =∴==()(2,0,0,2A P ∴-M 在O 所在圆上,设(),,0M x y ,()(0,2,,0,,2MA MP MA x y MP x y ⋅==---=--, 2220x x y ∴++=,则M 的轨迹为圆22212x y ⎛+= ⎝⎭, M ∴是以OA 为直径在xoy 面上的圆.又OH PM ⊥随着M 运动,H 轨迹是以OC 为直径的圆,故①正确 ①由图可得,B 到面COH 的距离为1,()max 1111224CHO S =⨯⨯=, ()()max max 11113412O HBC B CHO V V --∴==⨯⨯=故①正确;①设[0,1]OH x =∈,则21CH x -22AO x =-2222222AO OH x x x x +=-+-,当1x =时等号成立,即当H 运动到点C 时,()max 2AH HO +=,故①正确;①由①知H 在以OC 为直径的圆上,且该圆所在的平面与平面P AB 垂直,由对称性,只考虑C 在上半圆,如图,过H 作1HH CO ⊥,过B 作1BB CO ⊥,则BH 与平面P AB 所成的角为1HBH ∠,又145BOB ∠=,22112BO BB OB +11111522tan 222CO HH HBH BH BO ∠=<==<,故①错误.综上所述,正确的序号为①①① 故选:D例5.(2022·安徽省舒城中学一模(理))已知正三棱锥A BCD -的高为3,侧棱AB 与底面BCD 所成的角为3π,E 为棱BD 上一点,且12BE =,过点E 作正三棱锥A BCD -的外接球的截面,则截面面积S 的最小值为( ) A .54πB .34π C .4π D .4π【解析】如图①,①三棱锥A BCD -为正三棱锥,①顶点A 在底面的射影H 为BCD △的中心, 连接AH ,则三棱锥外接球的球心O 在AH 上,连接BH ,OE ,EH . 显然过点E 作球O 的截面中,面积最小的是垂直于OE 的截面,①正三棱锥A BCD -的高为3,即3AH =,侧棱AB 与底面BCD 所成的角为3π, 在Rt AHB △中,可解得23AB =3BH = ①BCD △是正三角形,①3BC =.设正三棱锥的外接球半径为R ()22233R R +-=,解得2R =, 如图①,在BEH △中,12BE =,3BH = 由余弦定理得22211313672cos3032342444EH BH BE BH BE =+-⋅︒=+-=-=,①222711144OE EH OH =+=+=,①垂直于OE 的截面半径r 满足222115444r R OE =-=-=, ①254r S ππ==,即截面最小面积为54π.故选:A .例6.(2022·全国·高三专题练习)已知三棱锥P ABC -的各个顶点都在球O 的表面上,PA ⊥底面ABC ,AB AC ⊥,6AB =,8AC =,D 是线段AB 上一点,且2AD DB =.过点D 作球O 的截面,若所得截面圆面积的最大值与最小值之差为25π,则球O 的表面积为( ) A .128πB .132πC .144πD .156π【解析】PA ⊥平面ABC ,AB AC ⊥,将三棱锥P ABC -补成长方体PQMN ABEC -,如下图所示:设AE BC F =,连接OF 、DF 、OD ,可知点O 为PE 的中点,因为四边形ABEC 为矩形,AEBC F =,则F 为AE 的中点,所以,//OF PA 且12OF PA =,设2PA x =,且2210AE AB BE =+,222225PE PA AE x ∴+=+ 所以,球O 的半径为21252R PE x ==+, 在Rt ABE △中,2ABE π∠=,6AB =,10AE =,3cos 5AB BAE AE ∠==,在ADF 中,243AD AB ==,5AF =, 由余弦定理可得222cos 17DF AD AF AD AF BAE =+-⋅∠ PA ⊥平面ABCD ,OF ∴⊥平面ABCD ,DF ⊂平面ABCD ,则OF DF ⊥,12OF PA x ==,22217OD OF DF x ∴++ 设过点D 的球O 的截面圆的半径为r ,设球心O 到截面圆的距离为d ,设OD 与截面圆所在平面所成的角为θ,则22sin d OD R r θ==-当0θ=时,即截面圆过球心O 时,d 取最小值,此时r 取最大值,即2max 25r R x ==+ 当2πθ=时,即OD 与截面圆所在平面垂直时,d 取最大值,即2max 17d OD x =+此时,r 取最小值,即()22min max 22r R d =-由题意可得()()()222max min 1725r r x πππ⎡⎤-=+=⎣⎦,0x ,解得22x =所以,33R =因此,球O 的表面积为24132S R ππ==. 故选:B .例7.(2022·全国·高三专题练习)已知直四棱柱1111ABCD A B C D -,其底面ABCD 是平行四边形,外接球体积为36π,若1AC BD ⊥,则其外接球被平面11AB D 截得图形面积的最小值为( ) A .8πB .24310π C .8110π D .6π【解析】由直四棱柱1111ABCD A B C D -内接于球,则,,,A B C D 四点在球面上, 所以四边形ABCD 为球的一截面圆的内接四边形,所以对角互补. 又四边形ABCD 是平行四边形,所以ABCD 为矩形.在直四棱柱1111ABCD A B C D -中,1CC ⊥平面ABCD ,所以1CC BD ⊥ 又1AC BD ⊥,111AC CC C =,所以BD ⊥平面1ACC ,所以BD AC ⊥所以四边形ABCD 为正方形,所以直四棱柱1111ABCD A B C D -为正四棱柱. 由外接球体积为34363R ππ=,则球的半径为3R =, 由1AC 为该外接球的直径,则16AC =设1,AB AD a CC b ===,则2221236AC a b =+=,则22362b a =-在11AB D 中,()222221136236AB AD a b a a a ==+=+--112B D a =由余弦定理可得222211*********cos 22362362AD B D AB AD B AD B D a a a +-∠==⋅⨯-⨯-⨯所以()222111122723sin 1cos 1722236a a AD B AD B a a -∠=-∠=--⨯-设11AB D 的外接圆的半径为r ,由正弦定理可得22122112236362sin 723723722a AB a r AD B aa a --===∠---所以22222224212226666242424r a a a a ⎫==----222424a a-=-,即3a =r 的最小值为2其外接球被平面11AB D 截得图形面积的最小值为:28S r ππ== 故选:A例8.(2022·全国·高三专题练习(文))已知正三棱锥A BCD -的外接球是球O ,正三棱锥底边3BC =,侧棱23AB =点E 在线段BD 上,且BE DE =,过点E 作球O 的截面,则所得截面圆面积的取值范围是( ) A .9,34ππ⎡⎤⎢⎥⎣⎦B .[]2,3ππC .11,44ππ⎡⎤⎢⎥⎣⎦ D .9,44ππ⎡⎤⎢⎥⎣⎦【解析】如图,由题,设BCD △的中心为1O ,球O 的半径为R ,连接11,,,O D OD O E OE ,则123sin333O D π=⨯=22113AOAD O D -=,在1Rt OO D 中,()22233R R =+-,解得2R =,所以111OO AO R =-=, 因为BE DE =,所以32=DE , 在1DEO 中,()221333323cos 226O E π⎛⎫=+-⨯⨯⨯=⎪⎝⎭所以22117OE O E OO =+ 过点E 作球O 的截面,当截面与OE 2232R OE -=,则截面面积为23924ππ⎛⎫⨯= ⎪⎝⎭,当截面过球心时,截面面积最大,最大面积为4π, 故选:D例9.(2022·浙江省江山中学模拟预测)如图,在单位正方体1111ABCD A B C D -中,点P 是线段1AD 上的动点,给出以下四个命题:①异面直线1PC 与直线1B C 所成角的大小为定值; ①二面角1P BC D --的大小为定值;①若Q 是对角线1AC 上一点,则PQ QC +长度的最小值为43; ①若R 是线段BD 上一动点,则直线PR 与直线1A C 不可能平行. 其中真命题有( ) A .1个B .2个C .3个D .4个【解析】对于①,由正方体的性质可知,1B C ⊥平面11ABC D ,又1PC ⊂平面11ABC D ,故11B C PC ⊥,异面直线1PC 与直线1BC 的所成的角为定值,①正确;对于①,平面1PBC 即为平面11ABC D ,平面11ABC D 与平面1BC D 所成的二面角为定值,故二面角1P BC D --为定值,①正确;对于①,将平面1ACC 沿直线1AC 翻折到平面11ABC D 内,平面图如下,过C 点做1CP AD ⊥,1CP AC Q =,1CPBC E =,此时,PQ QC +的值最小.由题可知,111,2,3CC CA AC =1111D AC C AC AC B ∠=∠=∠, 11323sin C AC C AC ∠∠=, 则1122CC E C AC π∠=-∠,21111sin cos 22cos 13CC E C AC C AC ∠=∠=∠-=, 故111sin 3EC CC CC E =⨯∠=,又1PE AB ==,故PQ QC +的最小值为43,故①正确.对于①,在正方体1111ABCD A B C D -中易证1A C ⊥平面1BDC ,设AC BD O =,则11AOC ∠即为二面角11A BD C --的平面角,又正方体边长为1,故1122,A C AO OC ===116A O C O ==222111111112cos 29AO C O AC AOC AO C O +-∠==⋅⋅,故112AOC π∠<,同理12AOC ππ<∠<, 故在1AA 上必然存在一点E ,使得二面角1E BD C --为2π,即平面EBD ⊥平面1BDC ,平面EBD 与平面11ADD A 的交线为ED ,则1ED AD P =,过P 点作BD 的垂线PR .此时PR ⊥平面1BDC ,又1A C ⊥平面1BDC ,故1//PR AC .故①错误.故选:C .例10.(2022·北京·人大附中模拟预测)已知正方体1111,ABCD A B C D O -为对角线1AC 上一点(不与点1,A C 重合),过点O 作垂直于直线1AC 的平面α,平面α与正方体表面相交形成的多边形记为M ,下列结论不正确的是( )A .M 只可能为三角形或六边形B .平面ABCD 与平面α的夹角为定值C .当且仅当O 为对角线1AC 中点时,M 的周长最大D .当且仅当O 为对角线1AC 中点时,M 的面积最大【解析】如下图,在正方体中,体对角线1AC 与平面11CB D ,平面1A BD ,平面OPQRST 都垂直,由图可知,在平面α运动过程中M 只可能为三角形或六边形,故A 正确;由题可知平面α与1AC 都垂直,所以平面α在移动过程中都是平行平面,与平面ABCD 的夹角为定值,故B 正确;如下图,当O 为对角线1AC 中点时,M 为正六边形OPQRST ,而三角形1A BD 为等边三角形,根据中位线定理112OT B C =,可得两个截面周长相等,故C 错误;由图可得,当O 为对角线1AC 中点时,M 为正六边形OPQRST ,设边长OT a =,233,当O 向下刚开始移动时,M 为六边形111111O PQ R S T ,结合图形可知两邻边一条增大,一条减小且变化量相等,设1111,(0)O T a x S T a x x a =+=-<<3a ,两邻边夹角都为120,则S 六边形111111O PQ R S T 111O T P S S =+梯形1111P Q S T 111Q R S S+11()()sin1202()322a x a x a x a x a =+-⨯+++-22233333x <,当M 22333a <,所以当且仅当O 为对角线1AC 中点时,M 的面积最大,故D 正确. 故选:C .例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关【解析】如下图,连接,AM BN ,在正方体1111ABCD A B C D -中,M ,N 分别为11A D ,11B C 的中点,可得////MN AB CD ,//DC MEN 平面,所以当F 在棱CD 移动时,F 到平面MEN 的距离为定值,当E 在棱AB 移动时,E 到MN 的距离为定值,所以MENS 为定值,则三棱锥M NEF -的体积为定值.平面MEN 即平面MABN ,作CH BN H ⊥于,由于AB CH ⊥,可得CH ⊥平面MABN ,由1BB NCHB ,可得14525BB CH CH CH BN BC =⇒=⇒=,而1125522MENS MN BN =⨯⨯=⨯1433M NEF F MEN MENV V SCH --==⨯=. 故选:C .例12.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π 【解析】对A :连接1C D ,作图如下:因为1111ABCD A B C D -为正方体,故可得1DC //1AB ,又11DC CD ⊥,EF 与1CD 是同一条直线, 故可得1DC EF ⊥,则1AB EF ⊥,故A 正确;对B :根据题意,1EF =,且线段EF 在1CD 上运动,且点A 到直线1CD 的距离不变,故△AEF 的面积为定值,又点1B 到平面1ACD 的距离h 也为定值, 故三棱锥1AEFB 的体积113AEFB AEFV Sh =⨯为定值,故B 正确;对C :取111,C D C C 的中点分别为,M N ,连接11,,B M MN NB ,作图如下:容易知在△11C D C 中,MN //1CD ,又1PD //1B M ,1111,MN B M M CD PD D ⋂=⋂=, 1,MN B M ⊂面111,,B MN CD PD ⊂面1PD CQ ,故面1B MN //面1PD CQ ,又G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,故G 的轨迹即为线段MN ; 又因为1111ABCD A B C D -为正方体,故CD ⊥面111,BCC B B N ⊂面11BCC B ,故1B N CD ⊥, 则当G 与N 重合时,1B G CD ⊥,故C 正确;对D :因为BC //11B C ,故直线1B G 与BC 所成角即为直线1B G 与11B C 所成角,即11C B G ∠,在11Rt B C G 中,111max 11min111222,22C M C N C G C N C G MN ⨯⨯=====故11111121tan 2C G C B G C G B C ⎡⎤∠==∈⎢⎥⎣⎦,而当直线1B G 与直线BC 所成的角为6π时,321tan62π⎡⎤=⎢⎥⎣⎦,故直线1B G 与直线BC 所成的角不可能为6π,故D 错误.故选:D .例13.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ①四边形1BFD E 有可能是正方形; ①平面1BFD E 有可能垂直于平面1BB D ;①设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ①四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2B .3C .4D .5【解析】因为平面11AA D D 与平面11BCC B 平行,截面与它们交于1D E ,BF ,可得1//D E BF , 同样可得1//BE D F ,所以四边形1BFD E 是一个平行四边形,故①正确; 如果四边形1BFD E 是正方形,则1BE D E ⊥, 因为11BE A D ⊥,所以BE ⊥平面11A D E ,又BA ⊥平面11A D E ,E 与A 重合,此时1BFD E 不是正方形,故①错误; 当两条棱上的交点是中点时,四边形1BFD E 为菱形,EF ⊥平面11BB D D , 此时四边形1BFD E 垂直于平面11BB D D ,故①正确;由1D F 与DC 的延长线交于M ,可得1M D F ∈,且M DC ∈, 又因为1D F ⊂平面1BFD E ,DC ⊂平面ABCD , 所以M ∈平面1BFD E ,M ∈平面ABCD , 又因为B ∈平面1BFD E ,B ∈平面ABCD , 所以平面1BFD E 平面ABCD BM =, 同理平面1BFD E平面ABCD BN =,所以BM ,BN 都是平面1BFD E 与平面ABCD 的交线, 所以B ,M ,N 三点共线,故①正确;由于111111B BED F E BB D F BB D V V V ---=+,11////CC AA 平面11BB D ,则E ,F 到平面11BB D 的距离相等,且为正方体的棱长,三角形11BB D 的面积为定值,所以四棱锥11B BED F -的体积为定值,故①正确. 故选:C .例14.(2022·陕西·西北工业大学附属中学模拟预测(理))如图,棱长为1的正方体1111ABCD A B C D -中,点P 为线段1A C 上的动点,点,M N 分别为线段111,AC CC 的中点,则下列说法错误..的是( )A .11A P AB ⊥ B .三棱锥1M B NP -的体积为定值C .[]160,120APD ∠∈︒︒D .1AP D P +的最小值为23【解析】由BC ⊥平面11ABB A ,可得1BC AB ⊥,则由1111,,AB BC AB A B A B BC B ⊥⊥⋂=,可得1AB ⊥平面1A BC 又1A P ⊂平面1A BC ,则11A P AB ⊥,所以A 项命题正确; 由于M ,N 分别为111AC CC ,中点,可得MN ∥1A C 因为点P 在1A C 上,所以点P 到平面1B NM 的距离为定值, 则三棱锥1M B NP -的体积11113M B NP P B NM B NM V V S h --∆==⋅由于1B NM S ∆和h 都为定值所以三棱锥1M B NP -的体积为定值,所以B 项命题正确;设=AP x ,由对称性可得1=D P x ,则2222111221221cos =122AP D P D A x APD AP D P x x +--∠==-⋅ 当P 与C 重合时,==2AP x 1211cos 1=2APD x ∠=-,1APD ∠达到最小为60︒, 当1AP A C ⊥交1A C 于P 时,由等面积法可得11126==3AA AC AP x AC ⋅⨯=1211cos 1=2APD x ∠=--,1APD ∠达到最大为120︒,所以C 项命题正确;将平面1AA C 与平面11D AC 沿1A C 展成平面图,当1AP A C ⊥交1A C 于P 时,可得16==AP D P x =,此时126AP D P +=所以D 项命题错误;故选D .例15.(2022·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,点P 为线段11A C 上的动点(点P 与1A ,1C 不重合),则下列说法不正确的是( )A .BD CP ⊥B .三棱锥C BPD -的体积为定值C .过P ,C ,1D 三点作正方体的截面,截面图形为三角形或梯形 D .DP 与平面1111D C B A 所成角的正弦值最大为13【解析】由题可知BD ⊥平面11ACC A ,所以BD CP ⊥,故A 正确; 由等体积法得113C BPD P BCD BCDV V SAA --==⋅⋅为定值,故B 正确;设11A C 的中点为M ,当1P MC ∈时,如下图所示:此时截面是三角形1D QC , 当1P MA ∈时,如下图所示:此时截面是梯形1D QRC ,故C 正确;选项D ,在正方体中,连接1D P ,则1D P 为DP 在平面1111D C B A 上的射影,则1D PD ∠为DP 与平面1111D C B A 所成的角,设正方体的棱长为1,1PD x =,则21DP x +12sin 1D PD x ∠=+当x 取得最小值时,1sin D PD ∠的值最大,即111D P AC ⊥时,x 2所以1sin D PD ∠6,故D 不正确. 故选:D .例16.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -内切球的表面积为π,P 是空间中任意一点: ①若点P 在线段1AD 上运动,则始终有11C P CB ⊥; ①若M 是棱11C D 中点,则直线AM 与1CC 是相交直线; ①若点P 在线段1AD 上运动,三棱锥1D BPC -体积为定值;①E 为AD 中点,过点1B ,且与平面1A BE 6 以上命题为真命题的个数为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面ABCD,则
球体毛坯体积的最小值应为(
)
A.64
B.32
C.8 6
D.32 6
二.填空题(共2小题)
7(.2018?台州一模)如图,在直角梯形ABCD中,AB / /CD,ABC 90,
1

AB
AC
CD DA
2,动点M在边DC上(不同于D点),P为边AB上任意一
点,沿AM将
ADM翻折成
AD M,当平面AD M垂直于平面ABC时,线
在梯形ACEF中,由AF
CE
EF,可得AG
1,
2
由三角形ABC为直角三角形,且AB
1,BC
3,可得
BAC 60,
则BG
12
(1)2
2 1
1 1
3.
2
2
2

AGB
90,即BG
AC,则AC
平面GFB,
BFG为二面角B EF
A的平面角,
同理可得
DEH为二面角D
EF
C的平面角,
AC平 面B G F,AC
平面DHE,则 二 面 角B
BCD与平面ABC在
异侧与平面BCD与平面ABC在
同侧两类求解得答案.
【解答】 解:如图,设正四面体ABCD的棱长为2,过A作AO
底面BCD,
连接DO并延长,交BC于E,连接AE,可知
AEO为二面角A
的等腰三角形,且AC
2,
点D是AB的中点.将ACD沿CD折起,使得AC
BC,则此时直线BC与
平 面
A
C所 成 角 的 正 弦 值 为(
)
A.
6
B.3
C.2
D.1
3
3
3
3
6.(2017?浙江模拟)利用一个球体毛坯切削后得到一个四棱锥
P ABCD,其中
底面四边形ABCD是边长为
2的正方形,PA 4,且PA
CDBC,
即有CD平面ABC,
D.不是平面图形
BD,连接AD,CD,
,即可得到所求轨迹.
可得CD
BH,
BH AC,
即有BH
平面ACD,
则BH
DH,
在直角三角形BDH中,可得OH OB OD
r,
即有H的轨迹为以O为圆心,r为半径的圆.
故选:A.
第5页(共13页)
【点评】本题考查线面垂直的判定定理和性质定理的运用,考查动点的轨迹问题,
立体几何压轴题
一.选择题(共6小题)
1.(2018?浙江三模)在平面内,已知ABBC,过直线AB,BC分别作平面
,,使锐二面角AB为,锐二面角BC为,则平面与
33
平面所成的锐二面角的余弦值为()
1
B.
3
1
D.
3
A.
4
C.
4
4
2
2.(2018?温州二模)已知线段
AB垂直于定圆所在的平面,
B,
C是圆上的两
BG,DH,可得
BFG为二面角B
EF A的平面角,
DEH为二面角
D
EF
C的平面角,由AC
平面BGF,AC平面DHE,可得二面角
B
EF
D的平面角为BFG
DEH,进一步求得
BFG
DEH 90得
答案.
【解答】 解:如图,
第6页(共13页)
在等腰梯形ACEF中,过F作FG
AC于G,作EH
AC于H,
连接BG,DH,
上的射影,当C运动,点H运动的轨迹()
第4页(共13页)
A.是圆B.是椭圆C.是抛物线
【分析】 设定圆圆心为O,半径为r,连接OH,设直径
运用线面垂直的判定定理和性质定理,可得BHDH
【解答】 解:设定圆圆心为O,半径为r,
连接OH,设直径BD,连接AD,CD,
由AB平面BCD,
可得ABCD,
由直径所对圆周角为直角,可得
等基础知识,训练了二面角的平面的求法,考查运算求解能力,是中档题.
4.已知正四面体ABCD和平面,BC,当平面ABC与平面所成的二面
角为60,则平面BCD与平面所成的锐二面角的余弦值为()
A.2 6
1
B.2 23
C.2 6 1或2 23
6
6
6
6
第7页(共13页)
D.2 6
1或2
2
3
6
6
【分析】首先求出正四面体侧面与底面所成角,然后分平面
考查推理能力和空间想象能力,属于中档题.
3.如图,设矩形ABCD所在平面与梯形ACEF所在平面相交于AC,若AB1,
BC3,AFFEEC1,则下列二面角的平面角大小为定值的是(
)
A.F AB C
B.B EF D
C.A BF C
D.B AF D
【分析】在等腰梯形
ACEF中,过F作FG
AC于G,作EH
AC于H,连接
第1页(共13页)
4.(2017?浙江模拟)已知正四面体ABCD和平面 ,BC
,当平面ABC与
平面 所成的二面角为60,则平面BCD与平面
所成的锐二面角的余弦值
为(
)
A.2 6 1
B.2 2
3
C.2 6 1或2 2
3
6
6
6
6
D.2 6
1或2
23
6
6
5.(2017?浙江模拟)如图,已知ABC是顶角为C 120
点,H是点B在AC上的射影,当C运动,点H运动的轨迹(
)
A.是圆B.是椭圆C.是抛物线D.不是平面图形
3.(2018?浙江模拟)如图,设矩形ABCD所在平面与梯形ACEF所在平面相交
于AC,若AB1,BC3,AFFEEC1,则下列二面角的平面角大
小为定值的是()
A.FABCB.BEFDC.ABFCD.BAFD
段PD长度的最小值为.
第2页(共13页)
8.(2016?太原三模)在正方体ABCDA BC D中,E是棱CC的中点,F是侧
11111
面BCC1B1内的动点, 且A1F / /平面D1AE,则A1F与平面BCC1B1所成角的正
切值的取值范围是.
第3页(共13页)
立体几何压轴题
参考答案与试题解析
一.选择题(共
6小题)
1.在平面内,已知AB
BC,过直线AB,BC分别作平面
, ,使锐二面
角AB

,锐二面角
BC为
,则平面
与平面
所成的锐二
3
3
面角的余弦值为(
)
1
B.
3
1
D.
3
A.
4
C.
4
4
2
【 分 析 】 推 导 出 平 面与 平 面所 成 的 锐 二 面 角的 余 弦 值 为 :
cos
cos
cos
3
1.
3
4
【解答】 解:
在平面
内,AB
BC,过直线AB,BC分别作平面


使锐二面角
AB

,锐二面角BC


3
3
平面
与平面
所成的锐二面角
的余弦值为:
cos
coscos
1.
3
3
4
故选:A.
【点评】本题考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位
置关系,考查运算求解能力,考查函数与方程思想,是中档题.
2.已知线段AB垂直于定圆所在的平面,B,C是圆上的两点,H是点B在AC
EF
D的 平 面 角 为
B F G
D E.H
BGF与DHE均为等腰三角形,
BFG
180
BGF,DEH
180
DHE,
2
2
FG / / EH,GB / /HD,
BGF
DHE
180

BFG
DEH
360
(
BGF
DHE )
360
180
90

2
2
二面角BEFD为定值.
故选:B.
【点评】本题考查面面垂直的证明,考查空间中线线、线面、面面间的位置关系
相关文档
最新文档