第6章时序逻辑电路 ppt课件
合集下载
第6章 时序逻辑电路
J 和 K 接为互反,相当于一个D触发器。时钟相连 是同步时序电路。
电路功能: 有下降沿到来时,所有Q端更新状态。
2、移位寄存器 在计算机系统中,经常要对数据进行串并转换,移 位寄存器可以方便地实现这种转换。
左移移位寄存器
•具有左右移位功能的双向移位寄存器
理解了前面的左移移位寄存器,对右移移位寄存器 也就理解了,因位左右本身就是相对的。实际上,左右 移位的区别在于:N触发器的D端是与 Q N+1相连,还是 与Q N-1相连。
第六章 时序逻辑电路
如前所述,时序逻辑电路的特点是 —— 任一时刻 的输出不仅与当前的输入有关,还与以前的状态有关。
时序电路以触发器作为基本单元,使用门电路加以 配合,完成特定的时序功能。所以说,时序电路是由组 合电路和触发器构成的。
与学习组合逻辑电路相类似,我们仍从分析现成电 路入手,然后进行时序逻辑电路的简单设计。
状态化简 、分配
用编码表示 给各个状态
选择触发器 的形式
确定各触发器 输入的连接及 输出电路
NO 是否最佳 ?
YES
设计完成
下面举例说明如何实现一个时序逻辑的设计:
书例7-9 一个串行输入序列的检测电路,要求当序
列连续出现 4 个“1”时,输出为 1,作为提示。其他情 况输出为 0。
如果不考虑优化、最佳,以我们现有的知识可以很
第二步: 状态简化
前面我们根据前三位可能的所有组合,设定了 8 个
状态A ~ H,其实仔细分析一下,根本用不了这么多状态。
我们可以从Z=1的可能性大小的角度,将状态简化为
4 个状态:
a
b
c
d
A 000
B 100
D 110
6时序逻辑电路微机原理课件
0001 0011 0110
1101 1010
经过4个移位脉冲后,串行输入的数据,并行输出。
串行 输出
Q
3
D
Q2 D
Q1 D
Q0 D
DI(1101)
Q
Q
Q
Q
CP
移位
设初态 Q3Q2Q1Q0 = 0000
脉冲
Q3Q2Q1Q0 D3D2D1D0
D3 = Q2 D2 = Q1 D1 = Q0
D0 = DI
如何写状态转换表或图?
Q* Q
1
1
Q* 2
A
Q Q
1
2
A Q2 Q1 Q2* Q1* Y
00 0 0 1 0
YA Q 1Q 2A Q 1Q 2 0 0 1 1 0 0
Q2Q1
A 00 01 11 10
01 0 01 1
11 0 00 1
0 01/0 10/0 00/1 11/0
10 0 11 1
FF
FF
FF
FF 输出
输 并入-串出 入 多个输入端,一个输出端
输
出
FF
FF
FF
FF
输 并入-并出 入 多个输入端,多个输出端
1. 四位串入 - 串出的左移寄存器
D0 = DI D1 = Q0
D2 = Q1 D3 = Q2
并行输 出
串行
输出 DO
Q 3
D
清零 Q 脉冲 RD
CLR
Q2 D Q
Q1 D Q
右移寄存器:
D0 = Q1
D1 = Q2
D2 = Q3
= D3
DIR
左移寄存器:
= D0
数电第六章时序逻辑电路
• 根据简化的状态转换图,对状态进行编码,画出编码形式 的状态图或状态表
• 选择触发器的类型和个数 • 求电路的输出方程及各触发器的驱动方程 • 画逻辑电路图,并检查电路的自启动能力 EWB
典型时序逻辑集成电路
• 寄存器和移位寄存器 – 寄存器 – 移位寄存器 –集成移位寄存器及其应用 • 计数器 – 计数器的定义和分类 – 常用集成计数器 • 74LVC161 • 74HC/HCT390 • 74HC/HCT4017 – 应用 • 计数器的级联 • 组成任意进制计数器 • 组成分频器 • 组成序列信号发生器和脉冲分配器
– 各触发器的特性方程组:Q n1 J Q n KQ n CP
2. 将驱动方程组代入相应触发器的特性方程,求出各触发器 的次态方程,即时序电路的状态方程组
n n FF0:Q0 1 Q 0 CP n n n FF1:Q1 1 A Q0 Q1 CP
同步时序逻辑电路分析举例(例6.2.2C)
分析时序逻辑电路的一般步骤
• 根据给定的时序电路图写方程式 – 各触发器的时钟信号CP的逻辑表达式(同步、异步之分) – 时序电路的输出方程组 – 各触发器的驱动(激励)方程组 • 将驱动方程组代入相应触发器的特性方程,求出各触发器 的次态方程,即时序电路的状态方程组 • 根据状态方程组和输出方程组,列出该时序电路的状态 表,画状态图或时序图 • 判断、总结该时序电路的逻辑功能
• 电路中存在反馈
驱动方程、激励方程: E F2 ( I , Q )
状态方程 : Q n1 F3 ( E , Q n ) • 电路状态由当前输入信号和前一时刻的状态共同决定
• 分为同步时序电路和异步时序电路两大类
什么是组合逻辑电路?
数字电子技术 时序逻辑电路的分析与设计 国家精品课程课件
《数字电子技术》精品课程——第6章
FF0
FF1
1J
Q0 1J
Q1
时序逻辑电路的分析与设计
&Z
FF2
1J
Q2
C1
C1
C1
1K
1K
1K
Q0
Q1
Q2
CP
➢驱动方程:
《数字电子技术》精品课程——第6章 时序逻辑电路的分析与设计
② 求状态方程
JK触发器的特性方程:
Qn1 JQ n KQn
将各触发器的驱动方程代入,即得电路的状态方程:
简化状态图(表)中各个状态。 (4)选择触发器的类型。
(5)根据编码状态表以及所采用的触发器的逻辑功能,导出待设计 电路的输出方程和驱动方程。
(6)根据输出方程和驱动方程画出逻辑图。
返回 (7)检查电路能否自启动。
《数字电子技术》精品课程——第6章 时序逻辑电路的分析与设计
2.同步计数器的设计举例
驱动方程: T1 = X T2 = XQ1n
输出方程: Z= XQ2nQ1n
(米利型)
2.写状态方程
T触发器的特性 方程为:
Qn1 TQn TQn
Q 1nQ1QX21nn TX1QQ1n1nXTQX11nQ1n X Q1n
Q1n
Qn1 2
T2 Q2n
T2Qn2
T Q n 将T1、 T2代入则得X到Q两1n Q2n XQ1nQn2
0T1 = X0 0 0 0 0 0
0
求T1、T2、Z
0T2
0
=ZX=01QX1nQ10 2nQ010n
0 0
0 1
1 0
0 0
由状态方程
求Q2n+1 、 Q1n+1
数字电路与逻辑 第6章
CP 1 2 3 4 5 6 7 8 9
A 111100000
Q1 0 1 1 0 0 0 1 1 0
Q0 0 1 0 1 0 1 0 1 0
n 1 1
Q1n1 1 1 0 0 0 1 1 0 0
Q0n1 1 y0n211 0 1 0 1 0 1
状态表
现态 y1n次1态 Q1n1 Q0n1
yn2 1
器的逻辑功能及其应用; 5. 了解时序可编程器件。
厦门理工学院
6.1 时序逻辑电路基本概念 6.1.1 时序逻辑电路模型与分类
1. 时序电路的模型
时序逻辑电路由进行逻 辑运算的组合电路和起 记忆作用的存储电路组 成。电路模型如图。
输入信号 I,I=( I1,I2,···,Ii )
触发器或锁存器构成
其余五个状态为无效状态。 无论电路的初始能力称为自启动能力。
厦门理工学院
6.2 同步时序电路分析
6.2.2 同步时序逻辑电路分析举例
例6.2.3 根据状态图画出时序图
4. 确定其逻辑功能 由状态图可见,电路的有 效状态是三位循环码;
输出信号 O,O=( O1,O2,···,Oj )
激励信号 E,E=( E1,E2,···,Ek ) ——存储电路的输入信号
状态信号 S,S=( S1,S2,···,Sm ) ——存储电路的输出信号
输出方程组: O=f ( I,S) ——输出信号是输入I与状态S的函数
激励方程组: E= g ( I,S) ——激励信号是输入I与状态S的函数
Z↑借位操作
Z↓进位操作
4. 确定电路的逻辑功能:电路是一个2位二进制数可逆计数器,输出
Z作为进位或借位操作。
厦门理工学院
6.2 同步时序电路分析
第六章时序逻辑电路
异步 置0端
CLK异0为步计计数数输器入与端、同Q步0为计输数出器端比,二,进具制有计如数下器 特点: CLK* 1电为计路数简输单入;端、Q3为输出端,五进制计数器 CLK* 1速与Q度0慢相连;、CLK0为输入端、Q3为输出端,十进制计数器
四、任意进制计数器的构成方法 设已知计数器的进制为N,要构成的任意进制计数
圆圈表示电路的各个状态,箭头表示状态表示的方向, 箭头旁注明转换前的输入变量取值和输出值
三、状态机流程图(SM图) 采用类似于编写计算机程序时使用的程序流程图的形
式,表示在一系列时钟脉冲作用下时序电路状态的流程以及 每个状态下的输入和输出。
四、时序图 在输入信号和时钟脉冲序列作用下,电路状态、
输出状态随时间变化的波形图。
电路在某一给定时刻的输出
取决于该时刻电路由的触输发入器保存 还取决于前一时刻电路的状态
时序电路: 组合电路 + 触发器
电路的状态与时间顺序有关
例:串行加法器电路
利用D触发器 把本位相加后 的进位结果保 存下来
时序电路在结构上的特点:
(1)包含组合电路和存储电路两个组成部分
(2)存储输出状态必须反馈到组合电路的输入端,与输入 信号共同决定组合逻辑电路的输出
串行进位方式以低位片的进位输出信号作为高位片的时 钟输入信号;
并行进位方式以低位片的进位输出信号作为高位片的 工作状态控制信号(计数的使能信号),两片的CLK同时接 计数输入信号。
二、异步计数器
B、减法计数器
二、异步计数器
B、减法计数器
根据T触发器的翻转规律即可画出在一系列CLK0脉冲信号 作用下输出的电压波形。
2、异步十进制计数器
J K端悬空相当于接逻辑1电平 将4位二进制计数器在计数过程中跳过从1010到1111这6个状态。
CLK异0为步计计数数输器入与端、同Q步0为计输数出器端比,二,进具制有计如数下器 特点: CLK* 1电为计路数简输单入;端、Q3为输出端,五进制计数器 CLK* 1速与Q度0慢相连;、CLK0为输入端、Q3为输出端,十进制计数器
四、任意进制计数器的构成方法 设已知计数器的进制为N,要构成的任意进制计数
圆圈表示电路的各个状态,箭头表示状态表示的方向, 箭头旁注明转换前的输入变量取值和输出值
三、状态机流程图(SM图) 采用类似于编写计算机程序时使用的程序流程图的形
式,表示在一系列时钟脉冲作用下时序电路状态的流程以及 每个状态下的输入和输出。
四、时序图 在输入信号和时钟脉冲序列作用下,电路状态、
输出状态随时间变化的波形图。
电路在某一给定时刻的输出
取决于该时刻电路由的触输发入器保存 还取决于前一时刻电路的状态
时序电路: 组合电路 + 触发器
电路的状态与时间顺序有关
例:串行加法器电路
利用D触发器 把本位相加后 的进位结果保 存下来
时序电路在结构上的特点:
(1)包含组合电路和存储电路两个组成部分
(2)存储输出状态必须反馈到组合电路的输入端,与输入 信号共同决定组合逻辑电路的输出
串行进位方式以低位片的进位输出信号作为高位片的时 钟输入信号;
并行进位方式以低位片的进位输出信号作为高位片的 工作状态控制信号(计数的使能信号),两片的CLK同时接 计数输入信号。
二、异步计数器
B、减法计数器
二、异步计数器
B、减法计数器
根据T触发器的翻转规律即可画出在一系列CLK0脉冲信号 作用下输出的电压波形。
2、异步十进制计数器
J K端悬空相当于接逻辑1电平 将4位二进制计数器在计数过程中跳过从1010到1111这6个状态。
时序逻辑电路讲解ppt
Q JQ C KQ
CP
J K AQn AQn ,A与Qn是异或关系
A与Qn相同时, J K 0 Qn1 Qn 具有保持原状态功能
A与Qn不同时,J K 1 Qn1 Qn 具有计数功能
时序逻辑电路
特点:
在数字电路中,凡就是任一时刻得稳定输出不仅决定 于该时刻得输入,而且还与电路原来得状态有关者,都 叫做时序逻辑电路,简称时序电路。
3、动作特点: 在CP=1得全部时间里,输入信号 得变化都对主触发器起控 制作用,所以当CP下降沿到达时从触发器得状态不仅仅由 此时刻输入信号得状态决定,还必须考虑整个CP=1期间输 入信号得变化过程。
三、 主从RS、JK触发器
主从RS触发器 的图形符号
S
1S
Q
CP C1
R
1R
Q
主从JK触发器 的图形符号
4. 根据状态转换情况总结电路功能。
例:时序电路见下图, FF1~FF3为主从JK触发器、下降沿动作。 分析其逻辑功能。输入端悬空时等同逻辑1。
1J
Q1
C1
1K
Q1 &
FF1
1J
Q2
C1
1K
Q2
FF2
& 1J Q3 &
1
Y
C1
1K
Q3
FF3 CP
J1 Q2 • Q3
K1 1
1、驱动方程 J2 Q1
RD
0–t1: RD=0、 SD=1
Q=1、Q=0
SD t1 t2 t3 t4 t5 t
t1–t2: RD= SD=0
保持Q=1、Q=0
t2 –t3: RD=1、 SD=0
Q
t
Q=0、Q=1
数字电子技术课件第六章 时序逻辑电路(调整序列码)0609
(3)移入数据可控的并行输入移位寄存器
Z
M
Z D3 X Q3MX Q3NX
N 0 1 0 1
Q3n+1 置0 Q3不变 Q3计翻 置1
0 0 1 1
X 0, Z D3 同步(并行)置数 X 1, Z M Q3 NQ3 右移
右移数据由MN组合而定
3、双向移位寄存器 加选通门构成。
t1
t2
t3
存1 个 数 据 占 用1 个 cp
D1 D2 D3、 Q1 Q2 Q3波形略
二、移位寄存器
移位:按指令(cp),触发器状态可 向左右相邻的触发器传递。 功能:寄存,移位。
构成:相同的寄存单元(无空翻触发器)
共用统一的时钟脉冲(同步工作) 分类:单向、双向
1、单向移位寄存器(4位,右移为例,JK触发器构成) (1)电路:4个相同寄存单元(4个JK触发器); 同步cp为移位指令; 移1(即: Qn+1 =1) → J=1,K=0 移0(即: Qn+1 =0) → J=0,K=1
1
4个脉冲以后 可从Q3~Q0并 行输出1101
2、并行输入移位寄存器
可预置数的移 位寄存器
(1)选通门——与或逻辑,2选1数据选择器 A B X X:控制信号 F=AX+BX X=1,F=A X=0,F=B
1
&
≥1
F
(2)电路(4位,右移,JK触发器构成)
X控制信号:X=0,置数; X=1,右移。 Dr右移数据输入端。 D3~D0并行数据输入端。
X控制信号:X=0,左移,DL左移数据输入端。 X=1,右移,Dr右移数据输入端;
双向移位寄存器示例,X控制信号:X=0,左移, X=1,右移,
第6章 时序逻辑电路
时序逻辑电路的特点? 寄存器分类?
8位二进制数码需几个触发器来存放?
2021/8/5
37
计数器:用以统计输入时钟脉冲CLK个数的电路。 计数器的分类:
1.按计数进制分 二进制计数器:按二进制数运算规律进行计数的 电路称作二进制计数器。 十进制计数器:按十进制数运算规律进行计数的 电路称作十进制计数器。 任意进制计数器:二进制计数器和十进制计数器 之外的其它进制计数器统称为任意进制计数器。
驱动方程代入特性方程得状态方程。 输出方程:输出变量的逻辑表达式。
2021/8/5
7
2. 状态表
反映输出Z、次 态Q*与输入X、现 态Q之间关系的 表格。
2021/8/5
8
3. 状态图
标注:输入/输出
反映时序电路 箭尾: 状态转换规律, 现态
及相应输入、
输出取值关系
的图形。
箭头: 次态
2021/8/5
2021/8/5
时钟方程、 2
驱动方程和
状态方程
输出方程
3
5 状态图、 状态表或
时序图ห้องสมุดไป่ตู้
4
计算
11
例
1 时钟方程:C2 L C K 1 L C K 0 L C K同钟L 步方时程K 序可电省路去的不时写。
写 输出方程: YQ'1Q2 输出仅与电路现态有关,
方
为穆尔型时序电路。
程 式
驱动方程:JJ21
Q1 Q0
K2 Q1' K1 Q0'
2021/8/5
J0 Q2'
K0 Q2
12
2 求状态方程
JK触发器的特性方程:
JJ21
Q1
8位二进制数码需几个触发器来存放?
2021/8/5
37
计数器:用以统计输入时钟脉冲CLK个数的电路。 计数器的分类:
1.按计数进制分 二进制计数器:按二进制数运算规律进行计数的 电路称作二进制计数器。 十进制计数器:按十进制数运算规律进行计数的 电路称作十进制计数器。 任意进制计数器:二进制计数器和十进制计数器 之外的其它进制计数器统称为任意进制计数器。
驱动方程代入特性方程得状态方程。 输出方程:输出变量的逻辑表达式。
2021/8/5
7
2. 状态表
反映输出Z、次 态Q*与输入X、现 态Q之间关系的 表格。
2021/8/5
8
3. 状态图
标注:输入/输出
反映时序电路 箭尾: 状态转换规律, 现态
及相应输入、
输出取值关系
的图形。
箭头: 次态
2021/8/5
2021/8/5
时钟方程、 2
驱动方程和
状态方程
输出方程
3
5 状态图、 状态表或
时序图ห้องสมุดไป่ตู้
4
计算
11
例
1 时钟方程:C2 L C K 1 L C K 0 L C K同钟L 步方时程K 序可电省路去的不时写。
写 输出方程: YQ'1Q2 输出仅与电路现态有关,
方
为穆尔型时序电路。
程 式
驱动方程:JJ21
Q1 Q0
K2 Q1' K1 Q0'
2021/8/5
J0 Q2'
K0 Q2
12
2 求状态方程
JK触发器的特性方程:
JJ21
Q1
数电 第6章时序电路
' 2 ' 3 ' 1 ' 3 ' 0 ' (Q1Q0 )Q2 (Q3' (Q1Q0 )' )Q2
J2
* 1 ' 1 ' 0
K '2
' 1 ' 0
Q Q Q0 Q1Q Q0Q Q Q1
J1
* ' ' ' Q0 Q3' Q0 Q2 Q0 ' 3 ' 2 ' 0 '
' K1
0 0 1 1 0 1 1 0
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 0
1 0 1 0 1 0 1 0
6.4 同步时序逻辑电路的设计方法
逻辑电路设计:给定设计要求(或者是一段文字描叙,或 者是状态图),求满足要求的时序电路. 设计步骤:
1、进行逻辑抽象,建立电路的状态转换图(状态转换表)。 在状态表中未出现的状态将作为约束项 2、选择触发器,求时钟方程、输出方程和状态方程; 时钟:若采用同步方案,则CP1=CP2=CPn; 如果采用异步方案, 则需根据状态图先画出时序图,然后从翻转要求出发,为各个 触发器选择合适的时钟信号; 输出:输出与现态和输入的逻辑关系; 状态:各触发器的次态输出方程。
这三组方程反映的电路中各个变量 之间的逻辑关系。
3、进行计算:从输出方程和状态方程,不能看出电路 状态的变化情况。还需要转换成状态转换表和状态转 换图。
状态转换表:把任一组输入变量的值和电路的初态值代入状态 方程和输出方程,得到电路的次态和输出值;把得到的次态作 为新的初态,和现在的输入变量值再代入状态方程和输出方程, 得到电路新的次态和输出值。如此继续下去,把每次得到的结 果列成真值表的形式,得到状态转换表。
J2
* 1 ' 1 ' 0
K '2
' 1 ' 0
Q Q Q0 Q1Q Q0Q Q Q1
J1
* ' ' ' Q0 Q3' Q0 Q2 Q0 ' 3 ' 2 ' 0 '
' K1
0 0 1 1 0 1 1 0
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 0
1 0 1 0 1 0 1 0
6.4 同步时序逻辑电路的设计方法
逻辑电路设计:给定设计要求(或者是一段文字描叙,或 者是状态图),求满足要求的时序电路. 设计步骤:
1、进行逻辑抽象,建立电路的状态转换图(状态转换表)。 在状态表中未出现的状态将作为约束项 2、选择触发器,求时钟方程、输出方程和状态方程; 时钟:若采用同步方案,则CP1=CP2=CPn; 如果采用异步方案, 则需根据状态图先画出时序图,然后从翻转要求出发,为各个 触发器选择合适的时钟信号; 输出:输出与现态和输入的逻辑关系; 状态:各触发器的次态输出方程。
这三组方程反映的电路中各个变量 之间的逻辑关系。
3、进行计算:从输出方程和状态方程,不能看出电路 状态的变化情况。还需要转换成状态转换表和状态转 换图。
状态转换表:把任一组输入变量的值和电路的初态值代入状态 方程和输出方程,得到电路的次态和输出值;把得到的次态作 为新的初态,和现在的输入变量值再代入状态方程和输出方程, 得到电路新的次态和输出值。如此继续下去,把每次得到的结 果列成真值表的形式,得到状态转换表。
清华数字电路课件第六章-时序逻辑电路
YF(Q)
仅取决于电路
6.2.时序逻辑电路的分析方法
6.2.1 同步时序逻辑电路的分析方法
时序逻辑电路的分析:就是给定时序电路,找出该的 逻辑功能,即找出在输入和CLK作用下,电路的次态和 输出。由于同步时序逻辑电路是在同一时钟作用下, 故分析比较简单些,只要写出电路的驱动方程、输出 方程和状态方程,根据状态方程得到电路的状态表或 状态转换图,就可以得出电路的逻辑功能。
6.2.时序逻辑电路的分析方法
(4)状态转换表:
Q Q12n n 1 1 D D12Q A1Q1Q2
A=0时
Y [ A Q 1 ( Q 2 ) ( A Q 1 Q 2 ) ] A Q 1 Q 2 A Q 1 Q 2 A=1时
Q2 Q1 Q2* Q1* Y
00 0 1 0 01 1 0 0 10 1 1 0 11 0 0 1
J3 Q1Q2,
K3 Q2
6.2.时序逻辑电路的分析方法
(2) 状态方程:
JK触发器的特性方程
Q *JQ KQ
将驱动方程代入JK触发器的特性方程中,得出电 路的状态方程,即
J1 (Q2Q3), K1 1
J2 Q1,
K2 (Q1Q3)
J3 Q1Q2,
K3 Q2
(3)输出方程:
QQ2*1*Q(1QQ22Q3)Q1QQ31Q2 Q3*Q1Q2Q3 Q2Q3
YQ2Q3
6.2.时序逻辑电路的分析方法
6.2.2时序逻辑电路的状态转换表、状态转换图、状态 机流程图和时序图
从例题可以看出,逻辑电路的三个方程应该说已 经清楚描述一个电路的逻辑功能,但却不能确定电路 具体用途,因此需要在时钟信号作用下将电路所有的 的状态转换全部列出来,则电路的功能一目了然
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
39
2)状态编码
∵M=5, ∴取触发器位数 n=3
2020/12/12
29
4)状态表
2020/12/12
30
5)状态图
2020/12/12
31
6)波形图 设Q=0(初态),加到输入端A、B的波形如图。
2020/12/12
32
2020/12/12
33
7)功能分析 ☆该电路为串行加法器电路
A——被加数, B——加数 Y——加法和, Q——进位
☆波形图表示了两个八位二进制数相加得到 和数的过程。
A=01101100, B=00111010, Y=10100110
2020/12/12
34
6.3 时序逻辑电路的设计方法
2020/12/12
35
一、设计步骤
1. 设定状态
从逻辑功能要求出发,确定输入、输出变量 以及电路的状态数。通常取原因(或条件)为 输入变量,结果为输出变量。
2020/12/12
13
1)时钟方程 CLK1=CLK2=CLK(对同步电路可省去)
2)驱动方程(输入方程)
J1 Q2 ',K1 1
J2 Q1,K2 1
3)状态方程 由JK特性方程:Q*=JQ’+K’Q 可得各触发器的次态表达式——状态方程
Q1 Q2 'Q1 ' Q2* Q1 Q2 '
2020/12/12
第六章 时序逻辑电路
学习要点
了解时序逻辑电路的特点与分类。 掌握时序逻辑电路的分析方法,能熟练分析计数 器等常用时序逻辑电路。 了解时序逻辑电路的设计方法,能设计简单的时 序逻辑电路。
2020/12/12
1
6.1 概 述
2020/12/12
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
T1 X T2 X Q1
2)输出方程
YXQ1Q2
2020/12/12
24
3)状态方程
由T特性方程: Q*=TQ'+T'Q
得:
Q 1* T Q 1 ' T 'Q 1
X Q 1 ' X 'Q 1
X Q 1
Q 2 * X Q 1Q 2 ' ( X Q 1 )'Q 2
(X Q 1) Q 2
时序逻辑电路:t时刻输出不仅与t时刻输入有关, 还与电路过去的状态有关。
2020/12/12
5
a a
1 2
组合逻辑
y
y
1
2
电路
an
ym
组合逻辑电路的框图
存储电路主要 由触发器构成
时序逻辑电路框图
2020/12/12
6
X——外部输入 Y——外部输出 Z——触发器的控制输入 Q——触发器的状态输出
时序电路的结构: 1)由组合电路和存储电路(触发器)构成; 2)触发器的状态与电路的输入信号共同决定了电 路的输出。
2n1m2n
2020/12/12
37
5. 选触发器类型 6. 求输出方程、状态方程、驱动方程 7. 画电路图 8. 检查自启动能力
2020/12/12
38
二、设计举例
☆Moore型同步时序电路设计
例1 试设计一个自然态序、带进位输出端的同步 五进制计数器。
解: 1)设定状态,作原始状态图
2020/12/12
一个时序电路可以没有组合电路部分, 但是不能没有存储电路。
2020/12/12
7
2、从电路结构上看
组合电路不含存储信息的触发器等元件。 时序电路一定含有存储信息的元件——触发器。
3、从功能描述上看
2020/12/12
8
二、时序逻辑电路的形式
1、Moore型 输出仅与存储电路的现态Q有关,而与
当前输入无关。
J1 (Q2Q3)',K1 1 J2 Q1,K2 (Q1'Q3')' J3 Q1Q2,K3 Q2
2020/12/12
18
3)状态方程 由JK特性方程:Q*=JQ’+K’Q 可得各触发器的次态表达式——状态方程
Q1*(Q2 Q3)'Q1' Q2*Q1 Q2 'Q1'Q3 'Q2 Q3*Q1 Q2 Q3 'Q2 'Q3
14
4)状态转换表(依次设初态,求次态)
5)状态图
电路具有自启动能力
2020/12/12
主循环 无效状态
15
6)波形图
功能:同步三进制计数器,有自启动能力
2020/12/12
16
例2 试分析图示时序电路的逻辑功能。 (带有外部输出Y,触发器为主从JK F-F)
2020/12/12Fra bibliotek171)时钟方程 (略) 2)驱动方程(输入方程)
Y F(Q)
2、Mealy型
输出不仅与存储电路的现态Q有关,而且 还与当前输入有关。
YF(X,Q)
2020/12/12
9
三、时序逻辑电路的分类
2020/12/12
10
6.2 时序逻辑电路的分析方法
2020/12/12
11
一、分析步骤
异步
2020/12/12
12
二、分析举例 ☆同步时序电路分析 1、无外部输入的时序电路 例1 试分析图示电路,并画出状态图和时序图。
2020/12/12
25
4)状态转换表
2020/12/12
26
5)状态图
2020/12/12
27
例2 试分析图示时序电路。
2020/12/12
28
1)驱动方程(输入方程)
J AB K (A B)'
2)输出方程
YABQ
3)状态方程
Q * = J Q '+ K 'Q = A B Q '+ (A + B )Q
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
一、组合逻辑电路和时序逻辑电路的区别
1、从逻辑功能上看
组合逻辑电路:t时刻输出仅与t时刻输入有关, 与t以前的状态无关。
2. 画状态图
这一步是关键。对每一个需要记忆的输入 信息用一个状态来表示,以确定所涉及电路 需多少个状态。此时状态用S0、S1、….来表示。
2020/12/12
36
3. 状态化简 消去原始状态中的多余状态以得到最简状态图。
4. 状态编码
给化简后的状态图中的每一个状态赋以二进制码。 二进制码的位数 n等于触发器的个数,它与电路的 状态数m之间应满足:
4)输出方程
YQ2 Q3
2020/12/12
19
5)状态转换表(依次设初态,求次态)
2020/12/12
20
状态转换表的另一种形式:
2020/12/12
21
6)状态图
2020/12/12
22
2、有外部输入的时序电路 例1 试分析图示时序电路。
2020/12/12
23
1)驱动方程(输入方程)