Synthesis and desalination performance of Ar+–N+ irradiated polysulfone based new

合集下载

博士排名

博士排名

109030545
郑海清
85.9
14
12
2
56.95
109030555
陈珊珊
82.9
13
5
6
2
54.45
109030568
周永
81.4
13
2
5
6
53.7
109030551
冯岑岑
87
10
6
4
53.5
1、微生物燃料电池及其应用研究进展 《化工新型 材料》第一作者 (13);2、校优秀共产党员 (20);3、校优秀学生干部 (20)
109030565
卞红霞
88.8
15
3
12
59.4
1、Numerical Simulation of Seasonal Variation of Temperature in the Bohai Sea (EPLWW3S 2011)第二作者 (15);2、Study on Numerical Simulation of Concentrated Brine Discharged from Desalination Piant (GEESD 2011)第二作 者 (15);3、环境学院第一届研究生学术论文交 流活动二等奖(8) 1、Reductive degradation of 2,4dinitrotoluene wastewater by thecatalyzed FeCu process (BCES 2011)第一作者 (15);2、 Comparison of Removal of 2,4-DNT by Reduction Using Three Iron Materials(ISCEMP 2011) 第一 作者 (15);3、南京理工大学优秀研究生 (20) 1、Synthesis and Properties of Fluorenylcontaining Multiblock Sulfonated Poly(arylene ether sulfone) Membranes for Fuel Cell Applications (ISCEMP 2011) 第一作者(15);2 、南京理工大学第二十届“创新杯”大学生课外学 术科技作品竞赛,综合类作品一等奖 排名第二 (6);3、南京理工大学首届硕士研究生(非英语 专业)英语演讲比赛鼓励奖 (20) 1、用载铁TiO2纳米管吸附去除水中五价砷的方法 (专利申请)排名第三 (1);2、环境学院第一届 研究生学术论文交流活动一等奖(8);3、南京理 工大学优秀研究生(20);4、南京理工大学服务之 星(20);5、招聘大赛三等奖 (20)

InSeI单晶的制备及其结构与性能研究

InSeI单晶的制备及其结构与性能研究

第49卷第12期人工晶体学报Vol.49No.12 2020年12月JOURNAL OF SYNTHETIC CRYSTALS December,2020 InSei单晶的制备及其结构与性能研究周玄1,2,程国峰2,何代华1(1.上海理工大学材料科学与工程学院,上海200093;2.中国科学院上海硅酸盐研究所,上海200050)摘要:利用化学气相传输法(CVT)制备了InSeI单晶。

该晶体为黄色的针状物,晶体较脆。

在室温下进行X射线衍射分析发现,其属于四方晶系,晶胞参数为a=b=1.8643(5)nm,c=1.0120(3)nm,V=3.5172nm3,空间群为他/a。

紫外可见光吸收光谱、光致发光光谱等结果显示该晶体的禁带宽度是2.48eV,在一定波段光的激发下,InSeI单晶在600nm左右有较宽的发射峰,表明该晶体的发光方式为缺陷态发光。

介电温谱表明InSeI单晶在440K时其四方相的结构发生了相变。

关键词:InSeI;金属基硫卤化合物;化学气相传输法;光致发光;禁带宽度;介电性能中图分类号:O78文献标识码:A文章编号:1000-985X(2020)12-225244 Synthesis,Structure and Properties of InSei Single CrystalsZHOU Xuan1,2,CHENG Guofeng2,HE Daihua1(1.School of Materials Science and Engineering,Lniversity of Shanghai for Science and Technology,Shanghai200093,China;2.Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai200050,China)Abstract:InSeI single crystals were synthesized by the chemical vapor transport(CVT)method.The crystal is yellow needle­shaped and brittle.X-ray diffraction results at room temperature show the tetragonal system of InSeI,with lattice parameters of a=b=1.8643(5)nm,c=1.0120(3)nm,V=3.5172nm3,and space group is/a.The ultraviolet-visible absorption spectrum,photoluminescence spectrum results show that InSeI has a2.48eV band gap,under the excitation of a certain band of light,InSeI single crystal has a wide emission peak at about600nm,which indicates that the luminescence mode of the crystal is defect state luminescence.The dielectric temperature spectrum indicates that a phase transition happened in the tetragonal structure of InSeI crystals at440K.Key words:InSeI;metal based thiohalide;chemical vapor transport method;photoluminescence;band gap;dielectric property0引言近年来,金属基硫卤化合物MQX[1](M=Ga,In,Sb,Bi;Q=S,Se,Te;X=Cl,Br,I)由于其独特的光电性质如铁电性[2-3]、热电性[4]、光电导性[5]和非线性光学性能[6]等引起了科学界的浓厚兴趣。

CeO2-CdS/埃洛石纳米管的制备及可见光催化性能

CeO2-CdS/埃洛石纳米管的制备及可见光催化性能

第43卷第4期2015年4月硅酸盐学报Vol. 43,No. 4April,2015 JOURNAL OF THE CHINESE CERAMIC SOCIETY DOI:10.14062/j.issn.0454-5648.2015.04.18 CeO2-CdS/埃洛石纳米管的制备及可见光催化性能李霞章,殷禹,姚超,罗士平,左士祥,刘文杰(常州大学石油化工学院,江苏常州 213164)摘要:采用微波辐射法制备埃洛石纳米管(HNTs)负载CeO2-CdS复合材料CeO2-CdS/HNTs。

用X射线衍射、透射电子显微镜、紫外–可见漫反射光谱、Fourier变换红外光谱等对CeO2-CdS/HNTs样品结构和形貌进行表征,考察了可见光下降解亚甲基蓝的光催化活性,讨论了CeO2/CdS摩尔比对光催化剂活性的影响。

结果表明:纳米颗粒CeO2、CdS以紧密结合的形式牢固的负载在HNTs表面,二者具有协同催化作用。

当CeO2/CdS摩尔比为3:7时,80 min内亚甲基蓝的降解率可达95%。

关键词:埃洛石纳米管;硫化镉;氧化铈;微波辐射;光催化降解中图分类号:TB332 文献标志码:A 文章编号:0454–5648(2015)04–0482–06网络出版时间:2015–04–01 16:15:06 网络出版地址:/kcms/detail/11.2310.TQ.20150401.1615.015.html Preparation of CeO2-CdS/Halloysite Nanotubes Composite and Its Visible LightPhotocatalytic PerformanceLI Xiazhang, YIN Yu, YAO Chao, LUO Shiping, ZUO Shixiang, LIU Wenjie(School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China)Abstract: CeO2-CdS/halloysites nanotubes (HNTs) with HNTs-supported hybrid CeO2 and CdS were synthesized by a microwave radiation method. The photocatalyst CeO2-CdS/HNTs as-prepared was characterized by X-ray diffraction, transmission electron microscopy, ultraviolet-visible diffuse reflectance and Fourier-transform infrared spectroscopy, respectively. The photocatalytic activity of the CeO2-CdS/HNTs sample was evaluated via the degradation of methylene blue (MB) under visible-light irradiation. The influence of molar ratios of CeO2 to CdS was investigated. It is indicated that the CeO2 and CdS nanoparticles can be loaded on the surface of HNTs evenly, demonstrating a synergistic effect on the photocatalytic performance. The maximum degradation rate of MB is 95% at the molar ratio of CeO2 to CdS of 3:7.Key words: halloysite nanotube; cadmium sulfide; cerium oxide; microwave radiation; photocatalytic degradation含有大量苯环、偶氮、氨基等基团的染料有机废水危害着人类的健康和安全[1]。

离子交换膜英文

离子交换膜英文

离子交换膜英文Ionic Exchange MembranesIonic exchange membranes are a critical component in various electrochemical and separation processes, playing a vital role in diverse applications ranging from water treatment to energy storage. These specialized membranes possess the unique ability to selectively transport specific ions while rejecting others, making them invaluable in a wide array of industries.At the core of an ionic exchange membrane lies a polymer matrix, typically composed of a network of charged functional groups. These functional groups can be either positively charged (cationic) or negatively charged (anionic), and they serve as the foundation for the membrane's ion-exchange capabilities. The charged groups within the membrane attract and bind to oppositely charged ions, effectively creating a pathway for the selective transport of these ions across the membrane.One of the primary functions of ionic exchange membranes is in the field of water treatment. In processes such as desalination, reverse osmosis, and electrodialysis, these membranes are used to removedissolved salts and other ionic contaminants from water. The charged functional groups within the membrane attract and trap the unwanted ions, allowing for the production of high-quality, purified water. This technology is particularly crucial in regions with limited access to clean water, as it enables the conversion of brackish or seawater into a potable resource.Beyond water treatment, ionic exchange membranes find extensive applications in the energy sector. In fuel cells, these membranes act as the electrolyte, facilitating the transport of protons (H+ ions) between the anode and cathode. This proton exchange allows for the efficient conversion of chemical energy into electrical energy, making fuel cells a promising alternative to traditional combustion-based power generation. Similarly, in rechargeable batteries, ionic exchange membranes play a vital role in the movement of ions during the charging and discharging cycles, contributing to the overall performance and safety of the energy storage system.The versatility of ionic exchange membranes extends to the field of electrochemical synthesis and processing. In the production of various chemicals and materials, these membranes can be used to selectively separate and purify desired products, improving the efficiency and purity of the manufacturing process. Additionally, they are employed in the production of hydrogen gas through water electrolysis, where the membrane facilitates the separation ofhydrogen and oxygen.The development of ionic exchange membranes has undergone significant advancements in recent years, driven by the increasing demand for efficient and sustainable technologies. Researchers and engineers have been exploring new materials, designs, and manufacturing techniques to enhance the performance, durability, and cost-effectiveness of these membranes.One area of active research focuses on the development of novel polymer materials with improved ion-exchange properties. By tailoring the chemical structure and composition of the polymer matrix, scientists aim to create membranes with higher ion-exchange capacity, better selectivity, and enhanced resistance to fouling and degradation. This includes the exploration of hybrid materials, such as organic-inorganic composites, which can combine the advantages of different components to achieve enhanced performance.Another key area of innovation is the optimization of membrane fabrication processes. Techniques like phase inversion, electrospinning, and 3D printing are being investigated to produce membranes with precisely controlled pore structures, thickness, and surface properties. These advancements can lead to improved mass transfer, reduced resistance to ion transport, and enhanced mechanical stability, all of which contribute to the overall efficiencyand reliability of the membrane-based systems.In addition to material and manufacturing advancements, researchers are also exploring novel applications and integration strategies for ionic exchange membranes. For instance, the use of these membranes in redox flow batteries, water electrolyzers, and bioelectrochemical systems is an active area of investigation, as they offer the potential to enhance energy storage, hydrogen production, and wastewater treatment capabilities.As the global demand for sustainable and efficient technologies continues to grow, the importance of ionic exchange membranes is expected to increase. These versatile and essential components will play a crucial role in addressing the pressing challenges faced by various industries, from water scarcity and renewable energy to environmental remediation and chemical production.Through ongoing research, innovation, and collaborative efforts, the field of ionic exchange membranes is poised to witness further advancements, leading to the development of more efficient, cost-effective, and environmentally friendly solutions that will shape the future of various industries and communities around the world.。

甘子钧个人简历

甘子钧个人简历

甘子钧个人简历甘子钧,毕业于清华大学材料科学与工程系,拥有丰富的工业设计和研发经验,尤其在新材料及其应用领域里拥有极高的声誉。

教育经历2006年至2010年,就读于清华大学材料科学与工程系,获得学士学位。

2010年至2012年,在清华大学材料学院攻读硕士学位,研究方向为功能材料。

2012年至2015年,获得美国西北大学博士学位,研究领域为纳米材料及其应用。

工作经历2015年至今,在美国麻省理工学院任工学院研究员,主要研究方向为纳米材料应用于医学和电子领域。

2019年至今,与多个科技公司合作,担任技术顾问,主要职责为帮助公司研发高科技材料应用方案。

曾供职于2013年至2015年,在美国纳米材料公司(Nanomaterials Corporation)任研发工程师,主要职责为研发金属纳米材料及其应用。

2010年至2012年,在清华大学材料学院担任研究助理。

获奖经历2014年,获得“美国材料协会新材料奖”。

2012年,获得“林肯杰弗逊奖学金”。

2008年至现在,多次获得全国材料设计大赛一等奖。

学术成就甘子钧在多方面做出了突出贡献,并在相关领域发表了大量学术论文。

他所参与的研究项目得到了多个国家级和省级资助。

研究兴趣纳米材料医学材料应用电子材料及其应用功能材料学术论文1. A.C. Tan, Z.J. Gan, et al. “Spectroscopic imaging and analysis of XX nanoparticles synthesized by YY”. Nature Communications, 2014, 32 (2): 148-154.2. B.D. Li, Z.J. Gan, et al. “Effects of Gold Nanoparticle Size and Surface Chemistry on the Near-Infrared Photothermal Therapy Response”. Journal of Physical Chemistry C, 2015, 120 (22): 12104-12113.3. Y. Sun, Z.J. Gan, et al. “Smart Polymers for Drug Delive ry and Lysosomal-Mitochondrial Crosstalk Inhibitors: Design, Synthesis and Biomedical Applications”. Angewandte Chemie International Edition, 2014, 53 (47): 12502-12506.4. Z.J. Gan, et al. “The synthesis and characterization of thin-film composite membranes based on polyamide and carbon nanotubes for forward osmosis desalination”. Journal of Materials Chemistry A, 2016, 4 (16): 5959-5969.专业技能了解各种分析和研究工具,如 SEM、TEM、AFM、XPS、DLS 等。

高性能NaA沸石膜的制备及其脱盐性能

高性能NaA沸石膜的制备及其脱盐性能

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2017年第36卷第11期·4170·化 工 进展高性能NaA 沸石膜的制备及其脱盐性能邢庆达1,周亮1,李华征1,王金渠1,2,张文君1(1大连理工大学盘锦校区石油与化学工程学院,辽宁 盘锦 124221;2 大连理工大学精细化工国家重点实验室吸附与无机膜研究所,辽宁 大连 116024)摘要:以廉价大孔α-Al 2O 3管为载体,通过两步变温热浸渍涂晶法,修饰载体表面缺陷,得到连续而均匀的晶种层。

在微波辅助作用下,短时间内有效诱导制备出超薄NaA 分子筛膜。

将其用于渗透汽化脱盐体系中,研究发现,微波加热法制备的超薄NaA 沸石膜水通量明显高于常规加热法制备的较厚NaA 沸石膜,水的渗透通量随着盐浓度的增大在小范围内有所降低,而操作温度的升高对水的渗透具有明显促进作用,当原料液浓度为0.6mol/L 、操作温度85℃时,水通量达到11.03kg/(m 2·h)。

同时,离子截留率不受操作温度及原料液浓度的影响,始终保 持>99.9%。

此外,NaA 沸石膜在渗透蒸发脱盐中表现出较高的稳定性,75℃条件下,在0.6mol/L 的NaCl 溶液中性能可稳定72h 以上。

该方法在降低制膜成本的同时有效提高了水的渗透通量及离子截留率,表明NaA 沸石膜在膜法脱盐的工业化应用领域具有较好的应用前景。

关键词:大孔α-Al 2O 3载体;NaA 沸石膜;渗透蒸发;脱盐;微波加热中图分类号:TQ174 文献标志码:A 文章编号:1000–6613(2017)11–4170–06 DOI :10.16085/j.issn.1000-6613.2017-0577Preparation and desalination performance of high quality NaA zeolitemembraneXING Qingda 1,ZHOU Liang 1,LI Huazheng 1,WANG Jinqu 1,2,ZHANG Wenjun 1(1 School of Petroleum and Chemical Engineering ,Dalian University of Technology ,Panjin Campus ,Panjin 124221,Liaoning ,China ;2 Institute of Adsorption and Inorganic Membrane ,State Key Laboratory of Fine Chemicals ,DalianUniversity of Technology ,Dalian 116024,Liaoning ,China )Abstract :A continuous and uniform seed layer was obtained by modifying the surface defects of the low-cost macroporous α-Al 2O 3 tube support by the two-step hot-dip coating method. The ultra-thin NaA zeolite membranes were prepared by microwave-assisted synthesis in a short time ,and they were used for pervaporative desalination. It is found that the permeation flux of water decreased slightly with the increase of salt concentration and the increase of operating temperature had a significant effect on the water flux. When the salt concentration of feed was 0.6mol/L and the operating temperature was 85℃,the water flux reached 11.03kg/(m 2·h). But the ion retention rate was not affected by the operating temperature and the concentration of the feed solution ,and remained at more than 99.9%. In addition ,NaA zeolite membrane showed high stability in the pervaporative desalination ,and the performance was stable for more than 72h in the 0.6mol/L NaCl solution at 75℃. The method can effectively improve water flux and ions rejection while reducing the cost of membrane preparation ,which indicates that NaA zeolite membrane has a good application prospect in the field of membrane第一作者:邢庆达(1990—),男,硕士研究生。

翻译修改版

翻译修改版

环氧磷腈纳米管的合成及对环氧树脂的增强作用古晓君,黄小兵,昊巍,唐晓真上海交大化学工程、中国上海东川路800号,200240国家重点实验室纳米级微加工技术,重点实验室和微细加工技术的薄膜部上海交大教育研究所、微/纳米科学与技术、中国上海,200240上海交大国家重点实验室的金属基复合材料、中国上海东川路800号200240关键词:环氧树脂、纳米复合材料、纳米管摘要:这篇论文是采用环氧氯丙烷和带有活性羟基的磷腈纳米管来制备环氧磷腈纳米管(EPPZTs),通过傅立叶变换红外光谱(FTIR)和电子显微镜(SEM)分别对其结构和形貌进行表征。

对不同含量的PPZTs/EP复合材料进行冲击强度和拉伸强度试验。

通过SEM来研究EPPZTs在基体里的分散效果,当EPPZTs为0.1wt%时,增强效果最为明显。

通过TGA研究复合材料的热稳定性,EPPZTs的加入明显提高了残余量和降低了热失重速率。

1 引言环氧树脂有许多优点,如低制造成本、低收缩、良好的耐化学腐蚀性能和良好的综合机械性能。

其被泛应用于涂料、胶粘剂、电子仪器、汽车和航天等领域[1-4],然而它的脆性性质和易燃性限制了其在一些先进领域的应用。

为了进一步提高EP的物理机械性能,研究人员已经研究出了很多种添加剂如碳酸钙、氧化铝、硅石、海泡石、蒙脱石和碳纳米管(CNTs)[5 - 11]。

在所有的方法中CNTs的加入被看作是最好的,因为研究人员想要CNTs分散在聚合物基体中来提高机械性能、热性能和电气性能[12]。

研究人员已经研究出了很多将CNTs加入到聚合物基体中的方法[13]。

因为改性破坏了它的结构,所以碳纳米管的机械或电气性能也得到了改变[14]。

开发一种新型的低成本纳米管,使其均匀地分散在的聚合物基体中,这项研究将在这一领域有着十分重要的意义。

磷腈是一种新型的有机-无机杂化材料,交替的氮和磷原子在主链上。

磷腈材料已被用作阻燃材料、光学材料、生物材料、电极材料、膜材料,观测等。

211064114_二维纳米材料在渗透汽化脱盐膜中的应用

211064114_二维纳米材料在渗透汽化脱盐膜中的应用

化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 3 期二维纳米材料在渗透汽化脱盐膜中的应用陈仪1,郭耀励1,2,叶海星3,李宇璇1,牛青山1(1 深圳大学高等研究院,广东 深圳 518000;2 中国石油大学(华东)重质油国家重点实验室,山东 青岛 266580;3中国石油大学(华东)材料科学与工程学院,山东 青岛 266580)摘要:渗透汽化(PV )具有预处理要求低,截留率及水回收率高、抗污染性强等优势,在水处理尤其是高盐废水处理方面具有巨大的应用前景。

但目前PV 脱盐技术的分离效率较低、稳定性差、抗污染性能欠佳的劣势限制了PV 膜在分离膜技术的应用和认可。

新型膜材料如二维纳米材料的引入使得PV 膜从材料到性能都有了较大提升,被认为是提高PV 膜脱盐性能的有效手段。

本文首先介绍了PV 脱盐技术的分离机理,并从3个方面综述了二维纳米材料在制备PV 脱盐膜中的应用现状:二维纳米材料的分类与合成方法、PV 复合脱盐膜的制备途径与稳定性提高策略以及二维纳米材料对PV 膜特性及脱盐性能的影响。

文中指出现有的PV 传质模型存在较大局限性且新型二维纳米材料的合成方法较难,为了进一步提高PV 复合膜的性能并降低制备成本,还需完善PV 复合膜的传质机制并优化二维纳米材料的制备工艺。

关键词:渗透汽化;二维纳米材料;脱盐;膜;复合材料中图分类号:TQ028.8 文献标志码:A 文章编号:1000-6613(2023)03-1437-11Application of two-dimensional nanomaterials in pervaporationdesalination membraneCHEN Yi 1,GUO Yaoli 1,2,YE Haixing 3,LI Yuxuan 1,NIU Q.Jason 1(1 Institute of Advance Study, Shenzhen University, Shenzhen 518000, Guangdong, China; 2 State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, Shandong, China; 3 School of MaterialsScience andEngineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China)Abstract: Pervaporation (PV) possesses advantages such as the low requirement for feed water, high rejection and water recovery rate, and strong fouling resistance. Therefore, PV desalination can be competitive with other desalination technologies, especially for high-salinity brine. Current applications of PV desalination however are limited due to its relatively low separation efficiency, stability and fouling resistance. The introduction of novel membrane materials such as two-dimensional (2D) nanomaterials isconsidered to be an effective means to improve both the material properties and performance of PV desalination membranes. In this paper, a brief introduction to PV desalination technology is initially given. Then, the research status of two-dimensional nanomaterials in the field of PV desalination is reviewed from three perspectives: the properties and synthesis methods of nanomaterials, the preparation综述与专论DOI :10.16085/j.issn.1000-6613.2022-0967收稿日期:2022-05-24;修改稿日期:2022-08-10。

功能化水性聚氨酯的合成及其光致变色性能研究

功能化水性聚氨酯的合成及其光致变色性能研究

第50卷第11期 辽 宁 化 工 Vol.50,No.11 2021年11月 Liaoning Chemical Industry November,2021基金项目: 福州市科技成果转移转化项目(项目编号:2020-GX -10)。

功能化水性聚氨酯的合成 及其光致变色性能研究林芙蓉(福建宝利特科技股份有限公司,福建 福清 350309)摘 要:采用共聚法将光致变色化合物罗丹明-乙二胺引入水性聚氨酯,合成了一种对可见光具有光致变色响应的功能化水性聚氨酯材料。

考察了罗丹明-乙二胺添加量对聚氨酯乳液以及薄膜性能的影响。

采用荧光光谱法分别研究了罗丹明-乙二胺添加量和光照时间,对功能化水性聚氨酯薄膜荧光光谱的影响。

关 键 词:光致变色;水性聚氨酯;罗丹明;功能材料中图分类号:TQ630.4 文献标识码: A 文章编号: 1004-0935(2021)11-1619-04光致变色材料由于其光致变色性而被广泛的应用于强光防护、光学信息存储、分子开关等领域,近年来已成为功能材料领域的研究热点之一[1]。

水性聚氨酯具有优良机械性能、绿色环保特性,近年来广泛地应用于皮革、建材、家居用品等领域[2-3]。

将光致变色性质与水性聚氨酯的优良性能结合起来,发展出的具有光致变色性能的水性聚氨酯材料是一种新型的功能高分子材料,可用于制造柔性智能器件、智能可穿戴鞋服和高端防护用品[2-4]。

将光致变色化合物通过共价键引入水性聚氨酯结构中,是制备光致变色水性聚氨酯的一般方法。

常用的光致变色化合物有偶氮化合物[5]、螺吡喃化合物[6]。

这两种化合物的光物理性质决定了,以其为原料制备的光致变色水性聚氨酯,只能对紫外区或者近紫外区光产生变色响应。

罗丹明酰胺衍生物具有独特的螺环酰胺结构,在可见光照条件下发生螺环打开,从而可以产生荧光发射和相应的颜色变化,而在加热的情况下螺环又可以关闭,相应的荧光和颜色消失[7]。

罗丹明酰胺衍生物可以对可见光产生光致变色响应,是理想的光致变色化合物。

催化基础知识普及、探讨帖之五:催化期刊及投稿

催化基础知识普及、探讨帖之五:催化期刊及投稿

催化基础知识普及、探讨帖之五:催化期刊及投稿催化基础知识普及、探讨帖之五:催化期刊及投稿催化知识普及、探讨系列帖第 5 帖——催化期刊及投稿此帖主题相信大家平时了解的比较多,恐怕也是大家最为关心的问题之一。

小木虫论文投稿专版关于此方面的介绍比较多也比较详细,且我们催化专版也有几个帖子专门进行了探讨和讨论,而我对这方面了解比较少(主要是没发过什么文章,哈哈),此帖内容主要是对网络上的一些投稿知识进行汇总(加入了少的可怜的自己对催化期刊的认识及投稿经验)。

目的还是办此系列帖的主旨:介绍催化相关基础知识、抛砖引玉、相互学习、分享经验及教训。

催化是一门跨学科、跨专业的科学,按理论上讲化学类,甚至物理等类的期刊都可以收录催化相关的文章,因此本贴并不打算介绍诸如《科学》《自然》《德国应用化学》、、、JACS 等等这些高等次的通用型期刊,此帖只局限于催化专业期刊。

简而言之:只介绍含有“催化”两字的相关期刊。

具体介绍各个催化期刊之前,有必要对现今几大出版社或数据库简要介绍一下(一般催化期刊都是这四个出版社或数据库名下的):(1)Elsevier Science 出版社Elsevier 出版的期刊是世界公认的高品位学术期刊,且大多数为核心期刊,被世界上许多著名的二次文献数据库所收录。

SDOS 目前收录1700 多种数字化期刊,该数据库涵盖了食品、数学、物理、化学、生命科学、商业及经济管理、计算机科学、工程技术、能源科学、环境科学、材料科学和社会科学等众多学科。

该数据库不仅涵盖了以上各个学科的研究成果,还提供了简便易用的智能检索程序。

通过Science Direct Onsite(SDOS)中国集团的数据库支持,用户可以使用Elsevier Science 为其特别定制的科学、技术方面的学术期刊并共享资源。

目前 (截止到 2005 年 11 月 16 日)该数据库已有期刊种数1,734,期刊期数145,078 ,文章篇数2,576,316,最早年份为1995 年。

丙烯酰胺型菊粉合成工艺优化及其絮凝性能

丙烯酰胺型菊粉合成工艺优化及其絮凝性能

第42卷第6期2020年11月南京工业大学学报(自然科学版)JOURNAL OF NANJING TECH LNIVERSITY(Natural Science Edition)Vol.42No.6Nov.2020doi:10.3969/j.issn.l671-7627.2020.06.005丙烯酰胺型菊粉合成工艺优化及其絮凝性能韩乐,秦冬玲,孙振柱,刘中海,李丹,杨冈V(南京工业大学化工学院材料化学工程国家重点实验室,江苏南京211800)摘要:采用水热合成法制备丙烯酰胺型菊粉(IN G PAM),通过单因素实验考察单体丙烯酰胺(AM)浓度、引发剂Ce(NH4)2(NO3)6浓度、接枝反应温度和反应时间对单体转化率和接枝率的影响。

采用傅里叶变换红外光谱仪(FT IR)和扫描电子显微镜(SEM)对样品进行表征。

结果表明:在最佳合成条件单体丙烯酰胺初始浓度为0.42mo^L、引发剂Ce(NH4)2(NO3)6浓度为5.47mmo^L、接枝反应温度为65C和接枝反应时间为3h时,制得丙烯酰胺型菊粉的转化率为93.1%,接枝率为175.8%;丙烯酰胺成功接枝到菊粉(IN)上,菊粉主链完好。

接枝产物IN G PAM对高岭土悬浮液的絮凝效果明显好于菊粉原料以及市售的聚丙烯酰胺,其浊度去除率可以达到87.2%。

关键词:菊粉;丙烯酰胺;丙烯酰胺型菊粉;高岭土悬浮液;单体转化率;絮凝剂中图分类号:TQ314文章编号:1671-7627(2020)06-0721-05Optimization of synthesis process and flocculation performance ofacrylamide-type inulinHAN Le,QIN Dongling,SLN Zhenzhu,LIL Zhonghai,LI Dan,YANG Gang (State Key Laboratory of Materials-Oriented Chemical Engineering,College of Chemieal Engineering,Nanjing Tech Lniversity,Nanjing211800,China)Abstract:The acrylamide-type inulin(IN-G-PAM)was prepared by hydrothermal synthesis.The single­factor test was used to investigate the concentration of monomeric acrylamide(AM),the concentration of initiator ammonium cerium nitrate,the effect of grafting reaction temperature and the grafting reaction time on monomer conversion rate and graft ratio.The samples were characterized by Fourier transform infrared spectroscopy(FT-IR)and scanning electron microscopy(SEM).Results showed that the optimum initial concentration of monomer acrylamide was0.42mo^L,the concentration of initiator ammonium cerium(IV) nitrate was5.47mmol/L,the grafting reaction temperature was65C,and the grafting reaction time was 3h.The acrylamide type inulin had a monomer conversion rate of93.1%and a graft ratio of175.8%.Acrylamide was successfully grafted onto inulin(IN)and the inulin backbone was intact.The grafting product IN-G-PAM had a better flocculation effect on the kaolin suspension than the inulin raw material and the commercially available polyacrylamide,and the turbidity removal rate could reach87.2%.Key words:inulin;acrylamide;acrylamide-type inulin;kaolin suspension;monomer conversion rate;flocculant收稿日期:2019-04-02基金项目:国家科技支撑计划(2013BAE11B03)作者简介:韩乐(1993—),男,E-mail:1098929879@;杨刚(联系人),教授,E-mail:yanggang@.引用格式:韩乐,秦冬玲,孙振柱,等.丙烯酰胺型菊粉合成工艺优化及其絮凝性能[J].南京工业大学学报(自然科学版),2020,42(6):721-725.HAN Le,QIN Dongling,SLN Zhenzhu,et al.Optimization of synthesis process and flocculation performance of acrylamide-type inulin[J].Journal of Nanjing Tech Lniversity(Natural Science Edition),2020,42(6):721-725.722南京工业大学学报(自然科学版)第42卷菊粉(IN)是一种天然、丰富、可再生的多糖,主要从菊苣根(菊苣)和菊芋(菊芋块茎)[1]中提取获得。

负载型ni催化剂高效催化2-羟基四氢吡喃还原胺化制备5-氨基-1-戊醇

负载型ni催化剂高效催化2-羟基四氢吡喃还原胺化制备5-氨基-1-戊醇

ARTICLE INFO
Article history: Received 1 September 2019 Accepted 10 October 2019 Published 5 April 2020
Keywords: Ni catalyst Reductive amination Dihydropyran 5-Amino-1-pentanol Structure-performance relationship
Xuemei Li †, Junying Tian †, Hailong Liu, Congkui Tang, Chungu Xia, Jing Chen #, Zhiwei Huang *
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
Article (Special Column for the Youth Innovation Promotion Association, Chinese Academy of Sciences)
Effective synthesis of 5-amino-1-pentanol by reductive amination of biomass-derived 2-hydroxytetrahydropyran over supported Ni catalysts
© 2020, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

一种双响应范围ph荧光探针的合成与性能

一种双响应范围ph荧光探针的合成与性能
迄今为止,许多优异的 pH荧光探针已被报道, 其中一些探针已经在分析化学、生理学和生物学中 得到了广泛 应 用.然 而,大 部 分 探 针 只 能 检 测 单 一 酸性[12-13]或碱性[14-15]范围的 pH,在实际应用中相
对受限,只有很少一部分能够在酸性和碱性 2个范 围内对 pH进行检测[16].因此,有必要设计能够覆 盖较大 pH范围的荧光探针.
TheSynthesisandPropertiesofapH FluorescentProbewithDual-ResponsiveRanges
LIUTian,LUOQianyu,HUANGZijie,ZHENGZhenkai,OUZhiqi,MALijun
(SchoolofChemistry,SouthChinaNormalUniversity,Guangzhou510006,China)
Abstract:ApH fluorescentprobecapableofdetectingbothacidicandalkalinerangeswasdesignedandsynthe sizedfrom pyrene-1-carboxaldehydeand3,4-dihydroxybenzaldehyde.Thespectroscopicexperimentresultsshow thatindimethylsulfoxide(volumefractionbeing30%)aqueoussolution,theprobehascolorimetricandfluores cenceresponsesfordetectingpHinbothpH<6.0andpH>9.5,thepKavaluesbeing4.69and10.40,respectively, whilethereisalmostnosimilarrecognitionofotherionsunderthesameconditions.Therefore,theprobehasaspe cificrecognitionresponseforpH detectionintheacidicandalkalineranges. Keywords:3,4-dihydroxybenzaldehyde;dual-responsive;pH probe

溶液结晶过程强化

溶液结晶过程强化

化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 1 期溶液结晶过程强化冯瑶光1,陈奎1,赵佳伟1,王娜1,王霆1,黄欣1,周丽娜1,郝红勋1,2(1 天津大学化工学院,国家工业结晶工程技术研究中心 天津 300072;2 天津化学化工协同创新中心,天津 300072)摘要:溶液结晶是化学工业中最重要的产品分离、纯化和功能化技术之一,广泛应用于医药、食品、精细化工等领域。

溶液结晶中晶体的成核和生长过程将决定最终晶体产品的晶型、晶习、粒度、纯度等关键质量指标。

因此,对溶液结晶过程,尤其是晶体成核和生长过程进行强化既有利于提高过程效率,也有助于满足晶体产品不同的性能需求。

本文围绕晶体成核和生长强化这一关键问题,从受限空间、物理场、添加剂和模板剂等方面系统综述了溶液结晶中的过程强化策略。

探讨了各种过程强化策略的优点和局限性,并总结了溶液结晶过程强化策略的主要研究重点和发展前景。

关键词:结晶;成核;生长;粒度分布;过程强化中图分类号:TQ026.5 文献标志码:A 文章编号:1000-6613(2024)01-0087-13Process intensification of solution crystallizationFENG Yaoguang 1,CHEN Kui 1,ZHAO Jiawei 1,WANG Na 1,WANG Ting 1,HUANG Xin 1,ZHOU Lina 1,HAO Hongxun 1,2(1 National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering andTechnology, Tianjin University, Tianjin, China; 2 Collaborative Innovation Center of Chemical Science andEngineering (Tianjin), Tianjin, 300072, China)Abstract: Solution crystallization is one of the most important product separation, purification and functionalization techniques in chemical industry, which is widely used in pharmaceutical, food, fine chemicals and other fields. The nucleation and growth process of crystals in solution crystallization willdetermine the key physicochemical properties such as crystal form, crystal habit, particle size and purity of the final crystal products. Therefore, process intensification of solution crystallization, especially crystal nucleation and growth process, can help to improve the process efficiency and meet the different performance requirements of crystal products. In this paper, process intensification strategies fornucleation and crystal growth in solution crystallization are systematically reviewed, including the technologies of confined space, physical fields, additives and template agents. The advantages and limitations of various process intensification strategies are discussed, and the main research focuses and development prospects of solution crystallization process intensification strategies are summarized.Keywords: crystallization; nucleation; growth; particle size distribution; process intensification特约评述DOI :10.16085/j.issn.1000-6613.2023-1146收稿日期:2023-07-09;修改稿日期:2023-08-17。

硫代硫酸钠原料药生产

硫代硫酸钠原料药生产

硫代硫酸钠原料药生产硫代硫酸钠原料药生产知识全解硫代硫酸钠(Sodium thiosulfate)是一种常用于科研、医疗和工业领域的化学物质。

它的应用范围广泛,包括医疗中用作抗氰化物中毒的解毒剂和治疗皮肤病等,工业中用于废水处理和分析化学等。

本文将深入探讨硫代硫酸钠原料药的生产过程、应用领域和潜在问题,以便您全面、深刻地了解这一主题。

一、硫代硫酸钠原料药的生产过程1. 原料准备:硫代硫酸钠的生产需要硫酸钠和硫化氢作为原料。

其中,硫酸钠可以通过从天然盐矿中提取或通过化学合成得到;硫化氢则可以通过与硫或铁、水和硫酸反应得到。

2. 反应过程:硫酸钠和硫化氢反应形成硫代硫酸钠,反应方程式如下:Na2SO3 + H2S → Na2S2O3 + H2O在这个反应过程中,硫酸钠和硫化氢在适当的温度和压力条件下反应生成硫代硫酸钠。

该反应通常在反应釜中进行,并配有搅拌装置以促进反应的进行。

3. 结晶和精制:经过反应生成的硫代硫酸钠溶液需要进行结晶和精制处理。

结晶的过程通常包括冷却和搅拌等步骤,以促进结晶的形成。

之后,通过过滤和洗涤等处理,可以得到纯度较高的硫代硫酸钠晶体。

4. 干燥和包装:硫代硫酸钠晶体需要进行干燥以去除水分,并根据需要进行包装。

常见的包装形式包括塑料袋、纸箱或标准化的容器。

二、硫代硫酸钠原料药的应用领域硫代硫酸钠原料药的应用领域广泛。

以下是几个主要的应用领域:1. 医疗领域:硫代硫酸钠被广泛应用于医疗中,主要用作抗中毒剂。

它可以与氰化物结合形成无毒的硫氰酸盐,从而减少氰化物对身体的毒性作用。

硫代硫酸钠还被用于治疗某些皮肤病,如心风湿病和银屑病等。

2. 工业领域:硫代硫酸钠被广泛应用于工业中的废水处理。

它能够与氯和重金属离子等有毒物质发生反应,从而将其转化为无毒的物质。

硫代硫酸钠还可以用于分析化学中,如滴定和定氰酸根等。

3. 学术研究:硫代硫酸钠也被广泛应用于学术研究领域。

它可以作为化学试剂用于分析和实验室研究,例如用于还原光谱法的分析。

松香基功能性单体的合成及应用

松香基功能性单体的合成及应用

2016年第35卷第12期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·4001·化工进展松香基功能性单体的合成及应用陈莉晶,曹晓琴,徐徐(南京林业大学化学工程学院,江苏省生物质绿色燃料与化学品重点实验室,江苏南京 210037)摘要:松香是我国重要的林业生物质资源,主要成分为松香树脂酸。

由于松香分子结构中含有双键和羧基,可经多种反应途径合成功能性单体制备高分子材料,广泛应用在涂料、胶黏剂、航空航天等领域中。

由于松香价格低廉、力学性能与热性能优越,同时具有环境友好、可再生等优点,在高分子领域引起了广泛的关注。

论文分别对丙烯酸酯类、乙烯基酯类及烯丙基类的改性松香功能性单体的合成进行了综述,重点论述了在聚氨酯树脂、环氧树脂、酚醛树脂、有机硅树脂和不饱和聚酯等领域的应用。

针对松香基功能性单体的深度研究,探讨了一系列由松香基衍生物参与的新型材料的应用,为新型表面活性剂、交联剂、形状记忆类材料等领域的发展提供了新的视角。

最后,论文对未来松香基高分子材料合成研究的方向进行了展望。

关键词:松香;功能性单体;合成与应用中图分类号:TQ 351 文献标志码:A 文章编号:1000–6613(2016)12–4001–06DOI:10.16085/j.issn.1000-6613.2016.12.037Synthesis and application of rosin-based functional monomerCHEN Lijing,CAO Xiaoqin,XU Xu(College of Chemical Engineering,Nanjing Forestry University,Jiangsu Key Lab of Biomass-based Green Fuels andChemicals,Nanjing 210037,Jiangsu,China)Abstract:Rosin is one of the most important forestry resources in China. The main components of rosin include different resin acids. As raw material,it can take part in various reactions to synthesize functional monomers in polymer science field because of its unique chemical structures including double bond and carboxyl group. The rosin can be widely applied in painting,adhesive,aerospace,and other fields. Due to low cost,superior mechanical and thermal properties,as well as environmental friendly and renewable alternative,rosin has drawn wide public attention in polymer science field. This article reviewed the rosin-based functional monomer containing acrylate group,vinyl group,and allyl group,respectively. Its application was mainly discussed in polymer and other new material areas including polyurethane resins,epoxy resins,phenol-formaldehyde resin,organic silicone resin and unsaturated polyester. Based on the rosin-based functional monomers,a series of rosin derivatives as application of new application materials were explored,and provided new perspectives for the novel surfactants,cross-linking agents,shape memory materials and other new fields. Moreover,the prospective direction of rosin-based polymer materials was given.Key words:rosin;functional monomers;synthesis and application随着循环经济和生态价值的提出,生物基可再生易降解的生物质资源开发成为了研究热点。

松香酰胺基多巴胺的合成及缓蚀性能评价

松香酰胺基多巴胺的合成及缓蚀性能评价

收稿日期:20170928 基金项目:陕西省教育厅科学研究计划自然科学专项(15JK1574);陕西省科技厅工业科技攻关项目(2016GY-158);陕
西省科技厅工业领域一般项目(2017GY-1向:油气田化学和精细化工。Email:qdli@xsyu.edu.cn 通讯作者:刘婉(1992),女,硕士研究生,研究方向:油田化学。Email:1078637491@qq.com
Abstract:Anewtypeofoilfieldwaterinjectioncorrosioninhibitor,rosinamidebasedopamine,wassynthesizedusingrosinanddopa mine.Theeffectsofrawmaterialratioandreactiontimeontheyieldwerestudied.Thecorrosioninhibitionperformanceoftheproduct wasevaluatedbystaticweightlessnessmethod,andthecorrosioninhibitionmechanism ofitwasstudiedbyelectrochemistry,thermody namicsandSEM.Theexperimentalresultsshowthattheoptimumsynthesisconditionsofrosinamidebasedopaminewereasfollows:the ratioofrosintodopamineatroomtemperatureis1∶1.20,thereactiontimeis24h.At60℃,whenthemassconcentrationofthecorro sioninhibitorincorrosionmedium withasalinityof54303mg/Lis150mg/L,thecorrosionrateofN80steelinthemedium wasre ducedto0.0621mm/a,andthecorrosioninhibitionrateis65.97%.Theelectrochemicaltestrevealsthattheinhibitormainlyinhibits cathodereaction,anditisamixedtypeinhibitor.TheresearchalsoindicatesthattheadsorptionoftheinhibitoronN80steelisina greementwithFrumkinadsorptionisotherm,andtheinhibitormoleculeisspontaneouslyadsorbedintoN80steelsurface.Inaddition, chemisorptionisthepredominantmodeofadsorption. Keywords:inhibitor;rosinamidebasedopamine;optimum synthesiscondition;corrosioninhibitionperformance

聚(柠檬酸-三乙醇胺)的缓蚀阻垢性能

聚(柠檬酸-三乙醇胺)的缓蚀阻垢性能

聚(柠檬酸-三乙醇胺)的缓蚀阻垢性能刘快迎;赵玉增;陈曈;葛红花【摘要】采用溶液聚合法合成了聚(柠檬酸-三乙醇胺),并采用体积排阻色谱(SEC)对其重均分子量进行了测定;在模拟冷却水中,采用极化曲线和电化学阻抗谱研究了聚合物对碳钢Q235缓蚀性能,并采用静态阻垢法研究了聚合物对硫酸钙的阻垢性能.结果表明:聚(柠檬酸-三乙醇胺)重均分子量越大,对碳钢Q235的缓蚀率和对硫酸钙的阻垢率越大.当聚(柠檬酸-三乙醇胺)用量为100 mg/L时,缓蚀率可达93.8%;聚(柠檬酸-三乙醇胺)用量为10 mg/L时阻垢率可达96.28%.【期刊名称】《腐蚀与防护》【年(卷),期】2016(037)002【总页数】6页(P113-117,146)【关键词】聚(柠檬酸-三乙醇胺);缓蚀;阻垢【作者】刘快迎;赵玉增;陈曈;葛红花【作者单位】上海电力学院上海热交换系统节能工程技术研究中心上海市电力材料防护与新材料重点实验室,上海200090;上海电力学院上海热交换系统节能工程技术研究中心上海市电力材料防护与新材料重点实验室,上海200090;上海电力学院上海热交换系统节能工程技术研究中心上海市电力材料防护与新材料重点实验室,上海200090;上海电力学院上海热交换系统节能工程技术研究中心上海市电力材料防护与新材料重点实验室,上海200090【正文语种】中文【中图分类】TG174.42注水采油技术是各大油田提高原油采收率的主要方法。

油田注水中含有大量Ca2+和SO42-等离子,极易形成难以溶解去除的硫酸钙垢,造成管线的污堵[1-3]。

另外,管道中结垢还容易导致垢下腐蚀现象,严重时可造成管线损毁。

随着油田开采时间的增长,注水水质的恶化,在油田井下管柱和输油管线中出现的结垢及腐蚀问题直接影响到油气开采和输送的安全性和生产效率的提高[4-5]。

相对于容易酸洗去除的碳酸盐垢,硫酸盐垢由于结构紧密、硬度较大且难溶于普通酸碱溶液而很难用传统方法清除[6]。

聚乙烯醇修饰多孔氧化铝载体及其表面化学镀制备透氢钯膜

聚乙烯醇修饰多孔氧化铝载体及其表面化学镀制备透氢钯膜

聚乙烯醇修饰多孔氧化铝载体及其表面化学镀制备透氢钯膜郭宇;吴红梅;周立岱;陈强强【摘要】先采用聚乙烯醇(PVA)对多孔氧化铝载体进行修饰,再通过化学镀制备了透氢性能良好的钯膜.PVA修饰层不仅能够有效改善粗糙载体的表面形貌,而且可通过热处理从钯复合膜中去除,以避免修饰层产生的透氢阻力.采用扫描电子显微镜(SEM)和能谱仪(EDS)分析了钯复合膜的形貌和组成,并测定了其在350~500C温度范围内的氢气渗透性能.结果表明,钯膜厚度约为6μm,连续、致密,无明显的针孔和其他缺陷.在温度为500℃、渗透压力为100kPa的条件下,钯复合膜的H2渗透通量可达0.238 mol/(m2·s),理想气体分离因子α(H2/N2)达956,并且测试进行100h后其透氢性能依旧保持稳定.【期刊名称】《电镀与涂饰》【年(卷),期】2017(036)004【总页数】4页(P194-197)【关键词】钯膜;聚乙烯醇;化学镀;氧化铝;多孔载体;修饰;氢渗透【作者】郭宇;吴红梅;周立岱;陈强强【作者单位】辽宁工业大学化学与环境工程学院,辽宁锦州 121001;辽宁工业大学化学与环境工程学院,辽宁锦州 121001;辽宁工业大学化学与环境工程学院,辽宁锦州 121001;辽宁工业大学化学与环境工程学院,辽宁锦州 121001【正文语种】中文【中图分类】TG178;TQ153.19First-author’s address: School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China钯及其合金膜作为一种良好的透氢材料,被广泛应用于氢气分离、纯化等领域[1-4]。

传统商用钯膜多采用滚轧法制备,金属钯用量大,成本高。

另外,由于钯膜较厚(50 ~100 μm),氢气渗透速率较低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Synthesis and desalination performance of Ar +–N +irradiated polysulfone based new NF membraneChitrakara Hegde a ,Arun M Isloor b ,⁎,Mahesh Padaki b ,Pikul Wanichapichart c ,d ,Yu Liangdeng d ,eaDepartment of Chemistry,Nitte Meenakshi Institute of Technology,Yelahanka,Bangalore,IndiabMembrane Technology Division,Chemistry Department,National Institute of Technology,Surathkal,Mangalore 575025,India cMembrane Science and Technology Research Center,Department of Physics,Prince of Songkla University,Songkhla,Thailand dThEP Center,CHE,328Si Ayutthaya Rd.,Bangkok 10400,Thailand eFast Neutron Research Facilities,Department of Physics,Chiangmai University,Thailanda b s t r a c ta r t i c l e i n f o Article history:Received 5April 2010Received in revised form 20July 2010Accepted 20July 2010Available online xxxx Keywords:RO membrane NF membraneSurface modi fication FiltrationPlasma treatmentIn the last few years,membrane technology has gained more attention from polymer chemists throughout the globe.Nowadays,surface modi fication of membrane is very useful in biotechnology and food science.In the present investigation,we have synthesized polysulfone based composite nano filtration (NF)membranes,and characterized these membranes by FT-IR,SEM and membrane performance studies.Surface plasma treatment was carried out by irradiation with argon and nitrogen beams in suitable conditions.It was observed that nitrogen beam caused surface roughness that was more severe than the Ar beam.After irradiation,water contact angle was slightly increased.For pure water permeability,flux increased linearly with the operating pressure.However,for the salt solution,the flux was decreased marginally and salt rejection increased after irradiation due to surface modi fication.The modi fication effect was characterized in terms of contact angle,AFM employed roughness measurement and dielectric property.It revealed that irradiated NF membranes showed higher salt rejection and lower flux as compared to the nonmodi fied membranes.Accordingly,the roughness of the membrane surface intensively affected the performance of RO membrane.©2010Elsevier B.V.All rights reserved.1.IntroductionThe need for drinking water with good microbiological and chemical quality is clearly increasing around the world.Simulta-neously,membrane processes have met a large expansion in desalting of brackish and seawater in the two last decades.In the 20th century,membrane technologies have made great progress,and commercial markets have been spreading very rapidly.Porous membranes are a major tool in water treatment.The transfer mechanism of RO membranes involves both pore flow and solution diffusion.Categor-ically,four types of membranes are distinguished,namely reverse osmosis (RO),nano filtration (NF),ultra filtration (UF)and micro filtra-tion (MF)[1].At present,reverse osmosis (RO)is the best possible membrane process in liquid/liquid separation.Because of vastly expanding populations,increasing water demand,and the deteriora-tion of water resource quality and quantity,water is going to be the most precious resource in the world.Therefore,RO membranes play very crucial roles in obtaining fresh water from nonconventional water resources such as seawater and wastewater [2].Not only inwater treatment,but by tailoring appropriate [3]pore size,pore structure and pore distribution,membranes can be used for fuel cell and other filtration applications too.According to Zhou et al.[4],in RO and NF membranes,water molecules (0.27nm)permeate while hydrated salt ions (e.g.Na +10.72nm diameter)are rejected.The ef ficiency of the membrane can be improved by two methods,the phase inversion method and surface modi fication by interfacial polymerization for thin film composite membranes.The pore size of the membrane can be controlled by phase inversion techniques but getting symmetric pores is still a big ually,composite RO and NF membranes are prepared by phase inversion technique [5].Recently,surface modi-fication [6]has been used to increase the ef ficiency of RO membranes,thin film composites [5]and charged surface membranes [7].Recently,the transport parameters of the RO composite mem-branes have been tested by performing electron radiation and gamma radiation on RO composite membranes,so that these membranes can be used in the treatment of radioactive liquid ef fluents with an activity that involves an absorbed dose in the membrane within the studied range [8].Cold plasma treatment to the polymers changes their properties such as biocompatibility permeability,adhesion,and hydrophilicity.The surface reactions on polymers are etching,cleaning,cross-linking,Desalination xxx (2010)xxx –xxx⁎Corresponding author.Tel.:+918242474000x3206;fax:+918242474033.E-mail address:isloor@ (A.M.Isloor).DES-10137;No of Pages 60011-9164/$–see front matter ©2010Elsevier B.V.All rights reserved.doi:10.1016/j.desal.2010.07.046Contents lists available at ScienceDirectDesalinationj o u r n a l h o m e p a g e :w ww.e l s e v i e r.c o m /l o c a t e /d e s a lgrafting,addition,substitution,and formation of functional groups depending on the presence of active species in plasma[9].Cold plasma is a mixture of electrons,ionized gas and molecular fragments of the gas.Its contents and effect on the material surface depend on the composition of the gas in the discharge,the composition of the sample treated and all the process parameters.This type of surface modification is effective for water purification[10].A very popular technique is surface grafting—a technology that can provide polymers with a new,stable and monofunctional surface.The most versatile technique seems to be cold plasma and its applications for treatment of polymer surfaces have grown rapidly in the last decade.A great contribution to this is the fact that plasma techniques are fast,clean and environmentally friendly[11].In the present investigation,we have synthesized polysulfone based nanofiltration(NF)membranes,and characterized these membranes by FT-IR,SEM and membrane performance studies. Surface modification was done by bombarding with argon and nitrogen under suitable conditions.The modified polymer was characterized by the contact angle,AFM and dielectric property.The desalination properties of surface-modified membranes were com-pared with the original membrane[12].2.Experimental2.1.Materials and methodsPolysulfone(PS)with a molecular weight of35,000Da and poly (1,4-phenylene-ether-ether sulfone)(PPEES)were obtained from Sigma-Aldrich,Co.,Germany.1-Methyl-2-pyrrolidone(NMP)and analytical grade NaCl were procured from Merck India,Ltd.These were used without any further purification.Solutions containing80wt.%of PS(0.8g)and20wt.%of PPEES (0.4g)in4.5ml of1-methyl-2-pyrrolidone(NMP)were prepared by mild stirring for24h at a constant temperature of65°C.The so obtained viscous solution was cast over a glass plate using K-Control coater. Further the cast membrane was kept for slow solvent evaporation and finally the membrane(M1)(Fig.1)was separated by spraying water at the sides and stored in double distilled water[13–15].2.2.Plasma treatmentIrradiation with N+and Ar+beams was carried out in a vacuum chamber[13].Since the mass of Ar+is larger,the energy used for beam bombardment was chosen to be double of that used for N+beams and the two energy levels used were30and60kV,respectively. Membranes were then characterized for water contact angle(contact angle meter,model OCA15EC,Data Physics Company),surface roughness using atomic force microscopy(Nanosurf®,easyScan2), and dielectric constant using LCR meter(Agilent Technologies)[16].2.3.Flux-retention measurementFlux-retention measurements were carried out with a3.5%sodium chloride solution(35,000ppm)at different pressures ranging from2 to14bar pressure.Pure water was prepared using Milli-Q-Plus demineralising unit and pure water permeability was measured.The flux-rejection measurements were carried out in a stirred dead-end filtration set-up containing membranes with an area of12.5cm2.The stirred permeation cell was pressurized by nitrogen.The obtained data was recorded as a function of pressure by means of a computer. The concentrations were determined by conductivity measurements [17–19].C H3CH3MISOOPS PPEESFig.1.Schematic representation of formation of composite membrane(M1).Fig.2.Cross-section of membrane M1.Fig.3.Surface picture of M1.2 C.Hegde et al./Desalination xxx(2010)xxx–xxx2.4.Membrane morphologyThe membrane was cryogenically fractured in liquid nitrogen and then coated with gold before the cross-section image of the membrane was observed with a Jeol JSM-6380LA,Scanning electron microscope.3.Results and discussion3.1.Morphology and structural characteristicsIn membrane technology,the most important factors to control are membrane structure and performance (flux and rejection).These membrane performances could be monitored by adopting appropri-ate pore distribution,pore structure and pore size.SEM is a powerful tool to investigate the pore size of the membranes.A cross-section of the membrane was generally distinguished into three layers —the top layer,an intermediate layer,and a sublayer.All cross-sections of the membrane showed small dense pores in the top layer followed by medium pores in the intermediate layer and a thick sublayer having relatively bigger pore size with finger-like structures.Surface views of the membranes show that the surface is smooth and loosely packed with small pores under 3500×magni fication of the M1membrane (5–80nm size).The cross-section image of the composite membrane in Fig.2clearly shows that there is a thin selective layer on a finger-like “micro void ”support layer suggesting the composite structure of this membrane.Meanwhile,the surface pictures (Figs.3and 4)give an overall view of pore size and pore distribution [12–17].From the SEM image,it is certain that the spongy layer provides the sustained structure that could support high pressure.The porous finger-like layer allows transport in the permeated solvent.The membrane performance mainly depends upon fabrication conditions,which apparently affect the membrane.The effect of heat treatment during evaporation is also another important factor whichaffects salt rejection.Previous experiments showed that [20]increasing heat treatment time increases the salt rejection.This is due to variations in the cross-linkings.3.2.In fluences from N +and Ar +beamsAfter M1was irradiated with N +and Ar +beams,water contact angle was slightly increased in all cases,as shown in Table 1.It should be pointed out that the increased N +dosage from 1.25×1014to 10×1014ion cm −2has no effect on the increased contact angle.This is also true for Ar +beams,of which the increased dosage increased the contact angle to a similar value.This result indicates that the contact angle seems to be mainly dependent on membrane materials but not on the ion energy and species.The changes in the contact angle do not relate to the membrane surface roughness.The results also con firm the lower hydrophilic (polysulfone based)nature of the membrane material.This is well-understood by average pure water permeability of membrane (Table 2).Table 1shows a comparison of contact angle with ion beam irradiation [21].On the surface morphology,AFM pictures show less roughness on the membrane without irradiation,that is even well understood by average flux-rejection rates shown by membrane.On the other hand,the N beam causes surface roughness that is more severe than the Ar beam (Figs.5–7).This might be because N ions are smaller than Ar ions,and hence,with larger kinetic energy,they could penetrate deeper into the membrane.These morphologies further proved the results of unevenness obtained from SEM photographs [12–18,21].Fig.4.Surface picture of M1.Table 1Comparing water contact angle of M1membrane,before (control)and after ion beam irradiation.Ion irradiation Fluences (ion cm −2)Contact angles Control M191.3±1.830kV,N +beams1.25×101498.7±2.72.50×1014101.0±0.95.0×101499.9±7.110×101496.4±2.860kV,Ar +beams5×1014102.4±2.510×101499.8±4.8Table 2Comparing pure water flux with pressure for virgin membrane (M1)and irradiated membranes.Pressure in bar Flux (L/m 2h)before irradiation Flux (L/m 2h)after Ar +irradiation Flux (L/m 2h)after N+irradiation 2 1.95 1.85 1.624 3.68 3.40 2.906 6.1 5.65 4.7687.97.30 6.30109.859.10 6.951211.88.957.601413.7910.108.20Fig.5.AFM picture of M1without irradiation.3C.Hegde et al./Desalination xxx (2010)xxx –xxxThe value of dielectric strength for a specimen is also in fluenced by its temperature and ambient humidity,by any voids or foreign materials in the specimen,and by the conditions of the test,so that it is often dif ficult to compare data from different sources.For membrane porosity aspect,the N +-treated membrane in Fig.8shows relatively larger dielectric property,indicating greater void volume.This agrees well with the finding of more roughness due to ion penetration in the membrane.3.3.Pure water permeabilityPure water permeability was obtained by measuring the flux for pure water against operating pressure.As shown in Fig.9and Table 2,the flux increases linearly with the operating pressure.This linear behavior is described by a slope,close to pure water permeability,according to the Spiegler –Kedem model [22].For this purpose,an in-house,self-assembled instrument was used (Fig.10).A circular membrane sample with diameter of 60mm was placed in the test cell,the active surface facing towards the incoming feed water.The flux was measured by direct measurement of the permeate flow in terms of liters per meter square per hour (L/m 2h).Membranes were dipped in distilled water for 24h prior to the water permeability test for swelling,which enlarges the pore size.Nitrogen gas was used to build the pressure for operating the instrument.Pressure was serially increased at an increment of 2bars at a time.3.4.Effect of the kind of salt solution on membrane performance The percentage of salt rejection was determined by comparing the conductivity of feed and permeate solutions,these samples were analyzed for their salt concentrations by conductivity measurement using the results from the present retention:R i %ðÞ=1−C ip =C ifwhere C ip is the salt concentration in the permeate and C if is the concentration in the feed [23].The rejection and flux for 3.5%NaCl [20](Figs.11and 12;Table 3)show the predictable characteristic for the smooth surface of membrane as shown by AFM image (Fig.6).It is worth mentioning that virgin membrane gives an average 9.7L/m 2h flux at 12bar pressure.However,the flux was decreased marginally andsaltFig.6.AFM picture of M1after irradiation with 30kV N +beam.Fig.7.AFM picture of M1after irradiation with 60kV Ar +beam.paring dielectric property of 30kV N +and 60kV Ar +-treated membranes with the control M1.Pressure (bar)F l u xparison curve of the flux for pure water against operating pressure.4 C.Hegde et al./Desalination xxx (2010)xxx –xxxrejection increased after irradiation due to the surface modi fication,which was clearly shown in the AFM picture.Considering the salt flux and rejection in Fig.11,the untreated membrane shows larger flux when the applied pressure is increased.With the percentage of rejection shown,the untreated membrane is classi fied as nano filtra-tion.Irradiation of membrane surface with argon and nitrogen has blocked the larger pore sizes on the surface,thereby increasing salt rejection.As N ions are smaller than Ar,N ions have penetrated deeply in the pores than Ar ions,resulting in better salt rejection as compared to the Ar-treated membranes.4.ConclusionsWe have prepared new NF polymer composite membranes comprising of PS and PPEES by DIPS method.It was characterized by studying membrane morphologies,IR,water permeability and salt rejection.Further the membrane was irradiated by N and Ar,which resulted in a decrease of the pore size of the membrane,thereby resulting in increased salt rejection.Contact angle measurement after irradiation indicates that the contact angle is mainly dependent on membrane materials but not on the ion energy and species.The changes in the contact angle do not relate to the membrane surface roughness.It also con firms the lower hydrophilic (polysulfone based)nature of the membrane material.The relationship between the morphology and structure of the top surface of membranes along with their performance has been studied by using SEM,AFM and based on irradiation effect.The surface roughness of the NF membrane affects the performance of the membrane.Accordingly,in the future,further investigation on the top surface of membranes will be needed for the effects of the surface structure on the NF and RO performances.AcknowledgementsAMI is thankful to the Board of Research in Nuclear Sciences,Government of India for “Young Scientist ”award.AMI is also thankful to Prof.Sandeep Sancheti,Director,National Institute of Technology-Karnataka,India for providing research facilities and encouragement.CH is thankful to the Director,NMIT,Bangalore for financial help.References[1]M.Mulder,Basic Principles of Membrane Technology,Kluwer Academic Publish-ers,1991.[2]Mark Wilf,The Guide Book of Membrane Technology for Waste WaterReclamation,Balaban Desalination Publications,2007.[3]L.P.Raman,M.Cheryan,N.Rajagopalan,Bench-scale membrane degumming ofcrude vegetable oil:process optimization,Journal of American Oil Chemists Society 73(1996)219–224.[4]M.J.Zhou,P.R.Nemade,X.Y.Lu,X.H.zeng,E.S.Hatakeyama,R.D.Nobel,D.L.Gen,New type of membrane material for water desalination based on cross-linked bicontinuous cubic lyotropic liquid crystal assembly,Journal of American Chemical Society 129(2007)9574.[5]Zhaoxia Hu,Yan Yin,Ken-ichi Okamoto,Yukari Moriyama,Atsushi Morikawa,Synthesis and characterization of sulfonated polyimide derived from 2,2-bis(4-sulfonyl)-4,4-oxydianiline as polymer electrolyte membranes for fuel cell applications,Journal of Membrane Science 329(2009)146–152.F l u x (L /m 2h )pressure in barFig.10.Schematic picture of salinity test instrument.F l u x (L /m 2h )pressure in barparison of the salt flux versus pressure.% R e j e c t i o nPressure (bar)parison of %rejection of salt versus pressure.Table 3Comparing salt flux-rejection rate with pressure for virgin membrane (M1)irradiated membranes using 3.5%NaCl solution.Pressure in bar Flux (L/m 2h)%rejection before irradiation %rejection after Ar+irradiation %rejection after N +irradiation 2 1.5821.023.526.04 1.8920.022.1023.56 2.9817.017.9019.58 5.0013.015.5016.5107.6910.011.9513.0129.868.59.6010.51411.756.77.858.85C.Hegde et al./Desalination xxx (2010)xxx –xxx[6]Pikul Wanichapichart,Liangdeng Yu,Chitosan membranefiltering characteristicsmodification by N-ion beams,Surface and Coatings Technology201(19-20) (2007)8165–8169.[7]Ming-Huang Chen,Tze-Chiang chaio,Tsai-wie tseng,Preparation of sulfonatedpolysulfone/polysulfone and aminated polysulfone/polysulfone blend mem-branes,Journal of Applied Polymer Science61(1996)1205–1209.[8]P.Wanichapichart,R.Sungkum,W.Taweepreda,M.Nisoa,Characteristics ofchitosan membranes modified by argon plasmas,Surface&Coating Technology 203(2009)2531–2535.[9]J.M.Arnal,M.Sanchoa,G.Verdti,J.M.Campayob,J.I.Villaescusa,Treatment of137Cs liquid wastes by reverse osmosis Part I.Preliminary tests,Desalination154 (2003)27–33.[10]J.Chen,J.Li,Z.P.Zhao,D.Wang,C.X.Chen,Nanofiltration membrane preparedfrom polyacrylonitrile ultrafiltration membrane by low temperature plasma:5.Grafting of styrene in vapor phase and its application,Surface&Coating Technology201(2007)6789–6792.[11]Aleksander Ciszewski,Irena Gancarz,Jerzy Kunicki,Marek Bryjak,Plasma-modified polypropylene membranes as separators in high power alkaline batteries,Surface&Coating Technology201(2006)3676–3684.[12]Yao Yongyi,G.Shiwei,Z.Yunxiang,Surface properties of reverse osmosismembrane,Journal of Applied Polymer science105(3)(2007)1261–1266. [13] C.Stropnik,V.Kaiser,Polymeric membranes preparation by wet phaseseparation:mechanisms and elementary processes,Desalination145(2002)1–3.[14]H.Matsuyama,H.Okafuji,T.Maki,Membrane formation via thermally inducedphase separation in polypropylene/polybutene/diluent system,Journal of Applied Polymer science84(2002)1701–1708.[15]J.-F.Blanco,J.Sublet,Q.Nguyen,P.Schaetzel,Formation and morphology studiesof different polysulfones-based membranes made by wet phase inversion process, Journal of Membrane Science283(2006)27–33.[16]P.Wanichapichart,L.D.Yu,Chitosan membranefiltering characteristics modifi-cation by N-ion beams,Surface&Coating Technology201(2007)8165–8169. [17] C.Hegde,M.Padaki,A.M.Isloor,Synthesis,characterization and impedance studyof some novel nanofiltration membranes,Iraqi Journal of Polymers13(2)(2009) 1–12.[18] C.Hegde,M.Padaki, A.M.Isloor,Synthesis,characterization and protonconductivity study of some novel reverse osmosis membranes,Iraqi Journal of Polymers13(2)(2009)59.[19]L.Li,S.Zhang,X.Zhang,Preparation and characterization of poly(piperazinea-mide)composite nanofiltration membrane by interfacial polymerization of3,3′, 5,5′-biphenyl tetraacyl chloride and piperazine,Journal of Membrane Science335 (2009)133–139.[20]S.Jian,S.X.Ming,Crosslinked PVA-PS thin-film composite membrane for reverseosmosis,Desalination62(1987)395–403.[21]P.Wanichapichart,W.Taweepreeda,P.Choomgan,L.D.Yu,Argon and nitrogenbeams influencing membrane permeatefluxes and microbial growth,Radiation Physics and Chemistry79(3)(2010)214–218.[22]Y.Z.Xu,R.E.Lebrun,Comparison of nanofiltration properties of two membranesusing electrolyte and nonelectrolyte,Desalination122(1999)95–106.[23]Lei Li,Suobo Zhang,Xiaosa Zhang,Preparation and characterization of poly(piperazineamide)composite nanofiltration membrane by interfacial polymeri-zation of3,3′,5,5′-biphenyl tetraacyl chloride and piperazine,Journal of Membrane Science335(2009)133–139.6 C.Hegde et al./Desalination xxx(2010)xxx–xxx。

相关文档
最新文档