加速度传感器的选择
振动试验中加速度传感器的选择
![振动试验中加速度传感器的选择](https://img.taocdn.com/s3/m/8ce08517e97101f69e3143323968011ca300f7e4.png)
振动试验中加速度传感器的选择导语:振动试验中,我们对控制点、监测点等的振动量值大多是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。
影响振动试验中振动量值的正确获得,除了与传感器的安装位置、试件的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。
本文结合理论及实际经验,介绍振动试验中压电式加速度传感器的选择。
振动试验中,我们对控制点、监测点等的振动量值大多是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。
影响振动试验中振动量值的正确获得,除了与传感器的安装位置、试件的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。
本文结合理论及实际经验,介绍振动试验中压电式加速度传感器的选择。
1.灵敏度压电式加速度传感器的灵敏度有两种表示方法,一个是电荷灵敏度Sq,另一个是电压灵敏度Sv,其电学特性等效电路如图1。
图1压电式加速度传感器的是电学特性等效电路压电片上承受的压力为F1=ma,在压电片的工作表面上产生的qa 与被测振动的加速度a成正比:即展开剩余85%Qa=Sqa其中,比例系数Sq就是压电式加速度传感器的电荷灵敏度,量纲是[pC/ms²]。
传感器的开路电压:Ua=Qa/Ca式中,Ca为传感器的内部电容量,对于一个特定的传感器来说,Ca为一个确定值。
所以也就是说,加速度传感器的开路电压Ua也与被测加速度a成正比,比例系数Sv就是压电式加速度传感器的电压灵敏度,量纲是[mV/ms²]。
Ua=(Sq/Ca)*a在压电式加速度传感器的使用说明书上所标出的电压灵敏度,一般是指在限定条件下的频率范围内的电压灵敏度Sv。
在通常条件下,当其它条件相同时,几何尺寸较大的加速度传感器有较大的灵敏度。
使用说明书上还会给出最小加速度测量值,也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可能值,以确保最佳信噪比。
加速度传感器主要参考性能指标
![加速度传感器主要参考性能指标](https://img.taocdn.com/s3/m/5a6e735cc950ad02de80d4d8d15abe23482f03b4.png)
一、加速度传感器主要技术指标:整体上应满足信号波动小、稳定性好、抗干扰好,可长线使用(能适合300米以下水深的使用要求)等。
二、数据采集系统主要技术指标:整体上要满足无线、抗干扰、精度高、数据传输快、传输距离远、便于野外操作等条件。
文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
现在指的是公司或企业中从事文字工作的职位,就是以文字来表现已经制定的创意策略。
文案它不同于设计师用画面或其他手段的表现手法,它是一个与广告创意先后相继的表现的过程、发展的过程、深化的过程,多存在于广告公司,企业宣传,新闻策划等。
基本信息中文名称文案外文名称Copy目录1发展历程2主要工作3分类构成4基本要求5工作范围6文案写法7实际应用折叠编辑本段发展历程汉字"文案"(wén àn)是指古代官衙中掌管档案、负责起草文书的幕友,亦指官署中的公文、书信等;在现代,文案的称呼主要用在商业领域,其意义与中国古代所说的文案是有区别的。
在中国古代,文案亦作" 文按"。
公文案卷。
《北堂书钞》卷六八引《汉杂事》:"先是公府掾多不视事,但以文案为务。
"《晋书·桓温传》:"机务不可停废,常行文按宜为限日。
" 唐戴叔伦《答崔载华》诗:"文案日成堆,愁眉拽不开。
"《资治通鉴·晋孝武帝太元十四年》:"诸曹皆得良吏以掌文按。
"《花月痕》第五一回:" 荷生觉得自己是替他掌文案。
"旧时衙门里草拟文牍、掌管档案的幕僚,其地位比一般属吏高。
《老残游记》第四回:"像你老这样抚台央出文案老爷来请进去谈谈,这面子有多大!"夏衍《秋瑾传》序幕:"将这阮财富带回衙门去,要文案给他补一份状子。
"文案音译文案英文:copywriter、copy、copywriting文案拼音:wén àn现代文案的概念:文案来源于广告行业,是"广告文案"的简称,由copy writer翻译而来。
加速度传感器
![加速度传感器](https://img.taocdn.com/s3/m/f3f691c94028915f804dc2d2.png)
一、选择要求:
1、最大测量值+/-3g以上
2、灵敏度:越灵敏越好
车加速度:
侧向加速度:有1G的都已经非常猛了。一般最多0.2-0.4
刹车加速度:一般-4到-6m/s平方
三、加速度传感器:ST
数字:
LIS35DE (+-2g,8g)淘宝价格:5元 批量价格:含税4.0 华强北指数:
LIS302DL (+-2g,8g)批量价格:不含税5.5元,含税6.5 华强北指数:6.05元
LIS302DLTR (+-2g,8g)批量价格:不含税5.5元,含税6.5 华强北指数:5.88元
LIS3DH (+-2,4,8,16g) 批量价格:2.9不含税 华强北指数:
LIS331DLH 华强北指数:5.10元
LIS33DE
模拟
LIS344ALH (+-2 g, 6 g)批量价格:不含税11 含税12.8 华强北指数:
四、综上所列:模拟三轴加速度传感器比较贵,主要考虑数字三轴加速度传感器
其中LIS3DH和LIS35DE比较符合要求,特作以下比较
五、比较:
型号 价格/不含税 最大测量值 电源电压 功耗 输出位数 尺寸 灵敏度
LIS3DH 2.9 +-2,4,8,16g 1.71-3.6V 超低功耗模式2uA 16bit 3x3x1 1/2/4/12
LIS35DE 3.5以上 +-2g,8g 2.16-3.6V <1mW (0.3mA) 3x5x.9 18/72
结论:LIS3DH性价比更高
加速度传感器主要技术指标
![加速度传感器主要技术指标](https://img.taocdn.com/s3/m/876aefd1dc88d0d233d4b14e852458fb770b3897.png)
加速度传感器主要技术指标1. 测量范围(Measurement Range):加速度传感器能够测量的加速度的范围。
常见的测量范围从几个g到几百g不等,其中1g等于地球上的重力加速度9.8m/s²。
2. 分辨率(Resolution):加速度传感器能够区分的最小加速度变化。
通常以m/s²或g为单位。
3. 灵敏度(Sensitivity):加速度传感器输出信号相对于输入加速度的变化率,常以mV/g或mV/m/s²表示。
灵敏度越高,传感器对于微小加速度的响应越快。
4. 零点偏移(Zero Offset):在没有加速度作用下,传感器输出的信号不为零。
零点偏移指的是传感器输出信号与零点之间的差值。
通常以mV为单位。
5. 频率响应(Frequency Response):加速度传感器能够测量的加速度变化的频率范围。
常见的频率范围从几Hz到几千Hz不等。
6. 噪声(Noise):传感器输出信号的不确定性。
传感器噪声越小,对于微小加速度的测量越精确。
7. 非线性度(Nonlinearity):传感器输出信号与输入加速度之间的偏差。
常表示为百分比或者以g为单位。
8. 温度稳定性(Temperature Stability):传感器在不同温度下的输出信号的变化范围。
温度稳定性越好,传感器的测量精度越高。
9. 动态测量范围(Dynamic Range):加速度传感器能够测量的最大加速度和最小加速度之间的比值。
动态测量范围越大,传感器能够测量的加速度范围越宽。
10. 失真(Distortion):因非线性效应导致的传感器输出信号与实际加速度之间的偏差。
失真常以百分比表示。
此外,加速度传感器还可能具有以下特殊技术指标:11. 反向振动抑制特性(Anti-vibration Characteristics):传感器在高频振动环境下的稳定性能。
反向振动抑制特性好的传感器能够减小振动对于测量结果的影响。
三轴加速度 运动检测的一般方法 -回复
![三轴加速度 运动检测的一般方法 -回复](https://img.taocdn.com/s3/m/9591e52e571252d380eb6294dd88d0d233d43ced.png)
三轴加速度运动检测的一般方法-回复三轴加速度运动检测是一种常见的技术,在许多应用领域中都有广泛的应用。
这种技术通过使用三个加速度传感器,在三个轴向(X、Y和Z轴)上收集数据,并根据这些数据来检测物体的运动。
本文将一步一步回答关于三轴加速度运动检测的一般方法。
第一步:传感器选择在进行三轴加速度运动检测之前,我们需要选择适合的传感器。
市场上有许多不同类型的传感器可供选择,如MEMS(微机电系统)加速度传感器、陀螺仪和磁力计。
对于三轴加速度运动检测,MEMS加速度传感器是最常用的选择。
这些传感器具有小巧、低功耗和成本低廉的特点,广泛应用于消费电子、运动设备和汽车等领域。
第二步:传感器部署一旦选择了合适的传感器,就需要将其部署到要检测的物体上。
传感器应该按照一定的布局策略,在物体的不同轴向上正确定位。
例如,对于一个手持设备或智能手机,可以将传感器置于设备的底部,并垂直于设备的屏幕放置,以测量X、Y和Z轴上的加速度。
这种传感器部署方式可以提供准确的运动检测和姿态识别。
第三步:数据采集当传感器部署完成后,就可以开始采集数据。
传感器将实时地测量物体在各个轴向上的加速度,并以数字形式输出。
这些数据可以通过串行接口(如SPI或I2C)传输到控制单元或微处理器进行处理。
在数据采集过程中,需要注意传感器的采样率和分辨率。
采样率指的是传感器每秒钟采集的数据点数量,而分辨率则表示传感器能够区分的加速度范围。
高采样率和高分辨率可以提供更精确和细致的运动检测。
第四步:信号处理和数据分析采集到的原始数据需要进行信号处理和数据分析,以提取有用的信息。
常见的信号处理方法包括滤波、峰值检测和时域/频域分析。
滤波可以去除噪声,并提高数据的质量。
峰值检测可以用于检测物体的加速度峰值,从而判断是否发生了运动。
时域/频域分析可以帮助确定物体的运动模式和频率。
第五步:运动检测算法在信号处理和数据分析的基础上,可以开发运动检测算法来实现更高级的功能。
加速度传感器的原理及其选型方法
![加速度传感器的原理及其选型方法](https://img.taocdn.com/s3/m/9f3441cc4793daef5ef7ba0d4a7302768e996f8c.png)
加速度传感器的原理及其选型方法
加速度传感器的原理是基于牛顿第二定律,即力等于质量乘以加速度。
传感器内部有一个质量块,当物体加速时,质量块会受到一个力,从而产
生一个与加速度成正比的电信号。
这个电信号可以被读取和分析,从而得
到物体的加速度。
选型加速度传感器时,需要考虑以下几个因素:
1.测量范围:加速度传感器的测量范围是指它可以测量的最大加速度。
根据应用需求选择适当的测量范围,以确保传感器可以准确地测量所需的
加速度。
2.灵敏度:加速度传感器的灵敏度是指它可以检测到的最小加速度变化。
灵敏度越高,传感器可以检测到更小的加速度变化。
在选择传感器时,需要考虑应用中所需的精确度和灵敏度。
3.频率响应:加速度传感器的频率响应是指它可以测量的加速度变化
的最高频率。
根据应用需求选择具有适当频率响应的传感器,以确保传感
器可以捕捉到所需的高频加速度变化。
4.温度特性:加速度传感器的性能可能会受到温度变化的影响。
在选
择传感器时,需要考虑传感器在不同温度下的性能表现,以确保传感器在
所需的温度范围内能够提供准确的测量结果。
5.接口类型:加速度传感器可以采用不同的接口类型,如模拟输出、
数字输出或无线输出。
根据应用需求选择适当的接口类型,以便传感器可
以与其他设备进行通信和集成。
综上所述,选型加速度传感器时需要考虑测量范围、灵敏度、频率响应、温度特性和接口类型等因素。
根据应用需求选择适当的传感器,以确保能够获得准确可靠的加速度测量结果。
加速度传感器原理与使用选择
![加速度传感器原理与使用选择](https://img.taocdn.com/s3/m/1e5264b39f3143323968011ca300a6c30c22f138.png)
加速度传感器原理与使用选择
在选择加速度传感器时,需要考虑以下几个因素:
1.测量范围:加速度传感器的测量范围是指它可以测量的加速度的最大值和最小值。
根据需要测量的物体运动状态,选择合适的测量范围。
2.精度:精度是指传感器测量结果与真实值之间的偏差。
通常以百分比或者最大偏差来表示。
选择精度较高的传感器可以提高测量结果的准确性。
3.输出类型:加速度传感器的输出类型可以是模拟信号或数字信号。
根据系统的要求和接口的兼容性,选择合适的输出类型。
4.尺寸和重量:加速度传感器尺寸和重量的大小对于特定应用场景很重要。
如果应用场景对于尺寸和重量有限制,选择体积小、重量轻的传感器。
5.工作温度范围:加速度传感器的工作温度范围是指它可以正常工作的环境温度范围。
根据应用场景的温度条件,选择具有合适工作温度范围的传感器。
6.耐久性和可靠性:加速度传感器需要具有较好的耐久性和可靠性,以保证长时间稳定工作。
选择经过可靠性测试和具有较长使用寿命的传感器。
7.电源和功耗:加速度传感器需要供电才能正常工作,而不同的传感器的电源要求和功耗也会有所不同。
根据系统的电源供给和功耗限制,选择合适的传感器。
总之,选择合适的加速度传感器需要综合考虑以上几个因素,根据应用场景的需求和约束条件来进行选择。
加速度传感器主要技术指标
![加速度传感器主要技术指标](https://img.taocdn.com/s3/m/f5571911ac02de80d4d8d15abe23482fb4da020e.png)
加速度传感器主要技术指标1.测量范围:加速度传感器的测量范围指的是能够准确测量的加速度范围。
通常以重力加速度(g)作为单位,常见的测量范围有±2g、±4g、±8g、±16g等。
选择合适的测量范围要根据具体应用需求而定,避免数据超出测量范围导致失真或损坏。
2.灵敏度:加速度传感器的灵敏度指的是单位加速度变化所引起的传感器输出变化。
一般以mV/g或mV/m/s²作为单位,越高代表灵敏度越高。
高灵敏度的传感器可以提供更精确的测量结果,但也容易受到噪音的影响。
3.频率响应:加速度传感器的频率响应指的是传感器能够测量的有效频率范围。
频率响应通常以Hz为单位,常见的范围为0-1000Hz或更高。
高频率响应对于测量快速加速度变化的场景非常重要。
4.噪音水平:加速度传感器的噪音水平是一个重要的指标,它影响了传感器的信号质量和测量精度。
噪音通常用加速度单位(g)表示,即m/s²。
噪音水平越低代表传感器测量结果更准确。
5.非线性误差:加速度传感器有一个称为非线性误差的指标,它描述了传感器输出与实际加速度之间的偏差。
非线性误差通常以百分比或最大误差(最大偏差值)来表示。
较小的非线性误差意味着较高的测量精度。
6.温度稳定性:加速度传感器的测量结果可能会受到温度变化的影响,因此温度稳定性是一个重要的指标。
它描述了传感器在温度变化时输出是否稳定。
常见的温度范围为-40°C至+125°C。
7.冲击和振动耐受性:加速度传感器常常用于测量冲击和振动,因此它们需要具备良好的冲击和振动耐受性。
这些指标通常以g为单位,描述了传感器可以承受的最大冲击和振动力的大小。
8.供电电压和功耗:加速度传感器的供电电压和功耗是设计和应用中需要考虑的重要因素。
供电电压通常为3.3V或5V,功耗越低代表传感器使用电池的续航时间越长。
9.接口:加速度传感器常常需要与其他设备进行数据交换,因此传感器的接口也是需要考虑的指标。
bosch加速度传感器的命名规则
![bosch加速度传感器的命名规则](https://img.taocdn.com/s3/m/646c283fbfd5b9f3f90f76c66137ee06eff94ee4.png)
bosch加速度传感器的命名规则一、命名规则概述Bosch加速度传感器的命名规则通常由一串字符组成,其中包含了多个重要的信息。
这些字符代表了传感器的特定属性和功能,方便用户在选择和使用传感器时快速了解其性能。
二、传感器类型Bosch加速度传感器的命名规则中,首字母通常代表传感器的类型。
例如,A代表三轴加速度传感器,G代表陀螺仪传感器,M代表磁力计传感器等。
通过这个字母,用户就能直观地了解到传感器的基本功能。
三、传感器系列在命名规则中,接下来的几个字母通常代表传感器的系列。
不同系列的传感器在尺寸、精度、功耗等方面可能有所不同,用户可以根据自己的需求选择合适的系列。
例如,BMA系列是Bosch的三轴加速度传感器系列,BMC系列是磁力计传感器系列。
四、传感器功能和特性在命名规则中,接下来的几个字母和数字通常代表传感器的功能和特性。
例如,加速度传感器的命名规则中,字母C代表数字输出接口,D代表模拟输出接口,E代表数字I²C接口。
数字部分通常代表重要的特性,如测量范围、分辨率、精度等。
通过这些字母和数字的组合,用户可以快速了解到传感器的具体功能和特性。
五、示例举例来说,Bosch的一款三轴加速度传感器命名为BMA456。
根据命名规则,B代表三轴加速度传感器,MA代表该系列的传感器,456代表该传感器的具体功能和特性。
通过这个命名,用户可以了解到该传感器是一款三轴加速度传感器,属于BMA系列,具有特定的功能和特性。
六、小结通过Bosch加速度传感器的命名规则,用户可以在选择和使用传感器时快速了解其类型、系列、功能和特性。
这些命名规则不仅方便用户快速找到合适的传感器,还能帮助用户更好地理解和应用传感器的性能。
Bosch加速度传感器的命名规则是一个简洁而有用的系统,为用户提供了方便和效率。
通过遵循这些命名规则,用户可以更好地选择和使用Bosch加速度传感器,从而满足其在各种应用场景下的需求。
常用加速度传感器的选择指南
![常用加速度传感器的选择指南](https://img.taocdn.com/s3/m/503852770a4c2e3f5727a5e9856a561252d32138.png)
常用加速度传感器的选择指南加速度传感器是一种常用的传感器,广泛应用于各个领域,如运动检测、工业自动化、智能手机、汽车电子、医疗设备等。
在选择加速度传感器时,需要考虑以下几个方面。
1.测量范围:加速度传感器的测量范围是指传感器所能测量的最大加速度。
选择传感器时,需要根据实际需要确定所需的测量范围。
如果需要测量较小的加速度变化,可以选择测量范围较小的传感器,而如果需要测量较大的加速度变化,就需要选择测量范围较大的传感器。
2.灵敏度:传感器的灵敏度是指传感器对加速度的响应能力。
灵敏度越高,传感器对加速度变化的检测能力越强。
在选择传感器时,需要根据要求的测量精度确定所需的灵敏度。
3.频率响应:加速度传感器的频率响应是指传感器对不同频率的加速度变化的检测能力。
在选择传感器时,需要根据测量对象的频率范围确定所需的频率响应。
例如,对于高频振动的测量,需要选择频率响应较高的传感器。
4.稳定性:稳定性是指传感器在长期使用过程中的性能变化。
传感器的稳定性越好,长期使用时性能变化越小。
在选择传感器时,需要考虑传感器的稳定性,并选择稳定性较好的传感器。
5.防护等级:加速度传感器通常需要在恶劣的环境条件下使用,如高温、低温、湿度等。
因此,传感器的防护等级至关重要。
常见的防护等级有IP65、IP67、IP68等,选择传感器时需要根据实际使用条件确定所需的防护等级。
6.接口和输出信号:加速度传感器通常提供模拟输出和数字输出两种接口。
模拟输出通常为电压输出,可以直接连接到数据采集系统进行数据采集和处理。
数字输出通常有I2C、SPI等接口,可以与微控制器或数字信号处理器进行通信。
在选择传感器时,需要根据实际需求确定所需的接口和输出信号种类。
7.功耗:功耗是指传感器在工作过程中所消耗的功率。
在一些对功耗要求比较严格的应用中,如便携式设备,需要选择功耗较低的传感器。
8.成本:成本是选择传感器时需要考虑的一个重要因素。
传感器的成本通常由多个因素决定,包括品牌、品质、性能等。
加速度传感器原理与使用选择
![加速度传感器原理与使用选择](https://img.taocdn.com/s3/m/a539665477232f60ddcca153.png)
加速度传感器原理与使用选择2011-10-08 9:29加速度:(Acceleration)是速度变化量与发生这一变化所用时间的比值(△V/△t),是描述物体速度改变快慢的物理量,通常用a表示,a=F/m,加速度只和施加在物体上合力F,和物体的质量有关,与速度和时间无关。
重力加速度:地球表面附近的物体因受重力产生的加速度叫做重力加速度,也叫自由落体加速度,用g表示。
重力加速度g的方向总是竖直向下的。
在同一地区的同一高度,任何物体的重力加速度都是相同的。
惯性传感器:应用惯性原理和测量技术,感受载体运动的加速度、位置和姿态的各种敏感装置。
如加速度传感器,陀螺仪MEMS是(Micro-Electro-Mechanical Systems)的英文缩写,它是指可批量制作的,集微型机械结构构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。
现在的加速度传感器,陀螺仪都是基于MEMS的。
加速度传感器是一种能够测量加速力的电子设备。
加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。
加速力可以是个常量,比如g,也可以是变量。
加速度传感器可以帮助你的机器人了解它现在身处的环境。
是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。
更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。
一个好的程序员能够使用加速度传感器来回答所有上述问题。
加速度传感器甚至可以用来分析发动机的振动。
概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。
加速度传感器工作原理:线加速度计的原理是惯性原理,也就是力的平衡,A(加速度)=F(惯性力)/M(质量)我们只需要测量F就可以了。
冲击加速度传感器的选择该怎么做呢
![冲击加速度传感器的选择该怎么做呢](https://img.taocdn.com/s3/m/960294ea29ea81c758f5f61fb7360b4c2e3f2a94.png)
冲击加速度传感器的选择该怎么做呢在工业领域,冲击加速度传感器是一种广泛使用的传感器类型,被广泛应用于测量冲击、振动和震动等应用场景中。
从汽车制造到医疗设备再到工业控制,冲击加速度传感器可以提供准确的数据,以帮助优化系统性能和生产率。
然而,为了选购一款合适的冲击加速度传感器,我们需要了解一些重要的性能指标和选购因素。
1. 频率响应频率响应是决定传感器能否准确地测量特定频率振动的最重要因素之一。
不同应用场景下的传感器需要有不同的频率响应能力。
通常情况下,我们要选用适合我们应用场景中振动频率的冲击加速度传感器。
如果我们选择的传感器频率响应太低,可能会导致丢失重要的振动信息。
选择频率响应范围更宽的传感器通常意味着更高的成本,因此权衡成本和准确性,进行选型。
2. 测量范围另一个我们需要考虑的重要性能指标是测量范围。
这是传感器能够正常工作的振动水平范围。
我们需要测量的振动水平决定了我们需要选择多大的测量范围。
如果传感器不能测量预期的最大振动水平,它就可能无法提供有用的测量数据。
另一方面,如果传感器被过度震动,会对传感器造成伤害,甚至可能打破传感器。
因此,选用适宜的测量范围是至关重要的。
3. 灵敏度灵敏度指的是给定的加速度水平下输出传感器的电信号值。
通过了解传感器的灵敏度,我们可以确定测量的精度,并将数据与其他传感器进行比较。
灵敏度通常用“mv/g”(mv每重力单位)表示。
越高的灵敏度通常意味着更准确的测量,但也需要更高的价格。
因此,合理的选择增益是非常重要的。
4. 工业环境要求在工业环境中,冲击加速度传感器需要承受极其严苛的条件。
因此,对于不同的工业环境,我们需要选择不同类型的传感器。
例如,在化学品生产线上,我们需要使用耐腐蚀的传感器;在油田中选择有防水和防尘功能的传感器。
关注并了解传感器的材料和防护等级是非常关键的。
5. 品牌与可靠性最后,品牌与可靠性也是我们一定要考虑的因素。
在选择冲击加速度传感器时,我们要选择知名品牌的传感器,并通常会选择在市场上备受好评的厂家。
加速度传感器的正确使用方法
![加速度传感器的正确使用方法](https://img.taocdn.com/s3/m/0d94c8b3b90d6c85ed3ac60d.png)
但是, ap:安装加速度传感器时样品的加速度 fp:安装加速度传感器时样品的共振频率 a0:不安装加速度传感器时样品的加速度 f0:不安装加速度传感器时样品的共振频率 m0:样品的有效质量(mg) mp:传感器的有效质量(mg)
7、 振动物体质量轻的情况 在测量系统有 2个以上接地点时就会产生接地回路中的交流声。这是由于各个接地点之间
感器基座的底面是精加工的,而且中心位置有固定传感器用的螺丝孔。理想状态是将振动体表 面尽可能的打磨平滑,并在接触面涂抹上硅油或润滑油,用螺丝钳固定牢固。固定状态的好坏 直接影响测量效果,特别是在高频特性中影响比较大。
理想固定状态
螺栓倾斜
螺栓浅 (螺丝长)
图 4 加速度传感器的安装方法
接触面混有铁 粉、砂砾等
(c)挠曲型 与双压电晶片的原理相同,利用了压电体的横向效果。压电体薄板粘接在金属板上,
使其弯曲后对压电体施加横向的应力,并根据弯曲程度按比例输出。
图 3 挠曲型 根据用途、规格,构造可以分为中心固定、两端固定、一端固定三种方式。挠曲型的共振频 率并不是很高,但在低频域中具有高灵敏度,因此适用于地震地基振动、水坝发电站等大型 建筑物的微型振动测量。 下面列举出各个类型的优势,请根据应用需求来进行选择。
<零点漂移造成的误差> 半正弦波
单个矩形波
表(1)
<振铃造成的误差> 半正弦波以及半三角波 但将加速度传感器的衰减比定为
表(2) 。
表(3)
6、 振动物体质量轻的情况 压电型加速度传感器从原理上属于接触型振动传感器。因此进行振动测量时通常会把传感
器的动态质量计算进去。传感器的质量最多数 10gr,因此对于一般测量没有任何影响。但是 在测量质量比较轻的振动体时,加上传感器重量的话就会影响振动体的振动模式。特别是测量 轻薄的振动板的共振特性时,加了传感器就会造成共振频率下降。这种情况下,就需要使用小型 轻量的传感器了。作为一般的解决方案传感器的自重要保证在被测振动物体质量的1/10 以下。
冲击加速度传感器的选择
![冲击加速度传感器的选择](https://img.taocdn.com/s3/m/fd136935ba68a98271fe910ef12d2af90342a87e.png)
冲击加速度传感器的选择冲击加速度传感器是一种具有高精度、高灵敏度和高可靠性的测量装置,常用于工业控制、运动测量、安全监测等领域。
在选择一款适合自己的冲击加速度传感器时,需要考虑多种因素,如量程、灵敏度、传感器类型、安装方式、信号输出方式等。
量程量程是指传感器能够测量的最大加速度范围,通常以g为单位。
传感器的量程应该与测量对象的加速度范围相匹配,否则将无法正确测量。
一般来说,传感器的量程应该略大于测量对象的最大加速度值,但是也不宜选取过大的量程,因为过大的量程会降低传感器的测量灵敏度。
灵敏度灵敏度是指传感器的输出电压或电流与其所受外部加速度之间的比值。
传感器的灵敏度应该与测量对象的加速度变化范围相适应,如果灵敏度过低,则无法测量微小的加速度变化;如果灵敏度过高,则可能因环境噪声等原因产生误差。
一般来说,灵敏度应该在0.1 mV/g至100 mV/g之间。
传感器类型冲击加速度传感器根据其工作原理可以分为压电型、压阻型、微机械制造型等多种类型。
不同类型的传感器具有不同的测量范围、工作温度范围和稳定性等特点。
在选择传感器类型时,应该根据具体的应用需求进行综合考虑。
安装方式传感器的安装方式对其测量结果有很大的影响。
传感器安装时应该避免振动、冲击等外部干扰,并确保与测量对象之间的接触良好。
一般来说,传感器的安装应该在原材料的生产过程中进行,以便更好地控制测量对象的状态,并且能够减少测量误差。
信号输出方式冲击加速度传感器的信号输出方式通常有模拟输出和数字输出两种。
模拟输出通常是输出电压或电流等模拟信号,需要使用模拟信号采集卡进行采集和处理;数字输出则直接输出数字信号,可以直接与计算机等设备相连。
在选择信号输出方式时,应该根据具体的应用场景和设备要求进行综合考虑。
综上所述,选择冲击加速度传感器时,应该根据测量对象的加速度范围、输出信号等特点进行综合考虑,以选择适合自己的传感器。
在使用传感器时,应该注意传感器的安装方式和环境条件,以确保传感器的测量结果准确可靠。
传感器的灵敏度,量程和频率范围的选择
![传感器的灵敏度,量程和频率范围的选择](https://img.taocdn.com/s3/m/8f3e6486da38376baf1faeac.png)
联系方式:压电型式的加速度计是振动测试的最主要传感器。
虽然压电型加速度计的测量范围宽,但因市场上此类加速度计品种繁多,所以给正确的选用带来一定的难度。
作为选用振动传感器的一般原则:正确的选用应该基于对测量信号以下三方面的分析和估算。
a.被测振动量的大小b.被测振动信号的频率范围c.振动测试现场环境以下将针对上述三个方面并参照传感器的相关技术指标对具体的选用作进一步地讨论·传感器的灵敏度与量程范围传感器的灵敏度是传感器的最基本指标之一。
灵敏度的大小直接影响到传感器对振动信号的测量。
不难理解,传感器的灵敏度应根据被测振动量(加速度值)大小而定,但由于压电加速度传感器是测量振动的加速度值,而在相同的位移幅值条件下加速度值与信号的频率平方成正比,所以不同频段的加速度信号大小相差甚大。
大型结构的低频振动其振动量的加速度值可能会相当小,例如当振动位移为1mm,频率为1 Hz的信号其加速度值仅为0.04m/s2(0.004g);然而对高频振动当位移为0.1mm,频率为10 kHz的信号其加速度值可达4 x 10 5m/s2 (400g)。
因此尽管压电式加速度传感器具有较大的测量量程范围,但对用于测量高低两端频率的振动信号,选择加速度传感器灵敏度时应对信号有充分的估计。
最常用的振动测量压电式加速度计灵敏度,电压输出型(IEPE 型)为50~100 mV/g,电荷输出型为10 ~ 50 pC/g。
加速度值传感器的测量量程范围是指传感器在一定的非线性误差范围内所能测量的最大测量值。
通用型压电加速度传感器的非线性误差大多为1%。
作为一般原则,灵敏度越高其测量范围越小,反之灵敏度越小则测量范围越大。
IEPE电压输出型压电加速度传感器的测量范围是由在线性误差范围内所允许的最大输出信号电压所决定,最大输出电压量值一般都为±5V。
通过换算就可得到传感器的最大量程,即等于最大输出电压与灵敏度的比值。
需要指出的是IEPE压电传感器的量程除受非线性误差大小影响外,还受到供电电压和传感器偏置电压的制约。
加速度传感器原理与使用选择
![加速度传感器原理与使用选择](https://img.taocdn.com/s3/m/8dcf923d0640be1e650e52ea551810a6f424c85f.png)
加速度传感器原理与使用选择一、加速度传感器的原理常见的加速度传感器有压电式加速度传感器和微机电系统(MEMS)加速度传感器。
1.压电式加速度传感器压电式加速度传感器是一种利用压电效应测量加速度的传感器。
压电材料具有压电效应,即在施加压力时会产生电荷。
压电式加速度传感器包含一个压电材料晶体和一个负载电容。
当传感器受到加速度时,晶体会受到压力变形,从而产生电荷。
通过测量负载电容的电荷变化,可以间接测量加速度。
2.MEMS加速度传感器MEMS加速度传感器利用微机电系统技术制造,是一种微小化的加速度传感器。
MEMS加速度传感器通常由微小质量的振动结构和感应器件组成。
当传感器受到加速度时,振动结构会产生微小的位移,感应器件可以测量位移并将其转换为电信号。
MEMS加速度传感器具有体积小、功耗低、成本低等优点。
二、加速度传感器的使用选择在选择加速度传感器时,需要考虑以下因素:1.测量范围:加速度传感器的测量范围决定了可以测量的最大加速度值。
根据具体应用需求选择适当的测量范围,避免传感器过载或无法测量。
2.精度:传感器的精度决定了其测量结果的准确性。
根据应用需求选择合适的精度,例如在高精度测量领域需要选择高精度传感器。
3.响应频率:加速度传感器的响应频率决定了传感器对高频振动的响应能力。
根据应用需求选择适当的响应频率,以确保传感器能够满足测量要求。
4.接口类型:加速度传感器的接口类型包括模拟接口和数字接口。
根据系统要求选择合适的接口类型,以便与系统进行数据通信。
5.工作温度范围:加速度传感器的工作温度范围决定了其在不同环境下的适用性。
根据应用环境选择适当的工作温度范围,以确保传感器能够正常工作。
6.供电电压:加速度传感器的供电电压决定了传感器的电源要求。
根据系统电源供应情况选择合适的供电电压。
7.封装类型:加速度传感器的封装类型决定了传感器的外形和安装方式。
根据具体应用需求选择适当的封装类型,以方便传感器的安装和使用。
高速轨道交通安全检测系统的传感器选择与布置
![高速轨道交通安全检测系统的传感器选择与布置](https://img.taocdn.com/s3/m/7ac0dc7abdd126fff705cc1755270722192e59f6.png)
高速轨道交通安全检测系统的传感器选择与布置随着城市交通的快速发展和人们对出行的需求增加,高速轨道交通已成为现代城市中不可或缺的交通方式之一。
然而,高速轨道交通存在一定的安全隐患,如列车超速、道路施工等情况可能会引发严重的事故。
因此,为了保障高速轨道交通的安全运行,高速轨道交通安全检测系统的传感器选择与布置变得尤为关键。
在高速轨道交通安全检测系统中,传感器是收集数据、监测列车状态和环境变化的关键组成部分。
传感器的选择与布置将直接影响到系统的性能和有效性。
下面将从传感器的选择、布置和注意事项等方面进行详细介绍。
一、传感器的选择1. 速度传感器:高速轨道交通的安全与速度密切相关。
因此,选择准确可靠的速度传感器至关重要。
常见的速度传感器主要有霍尔效应传感器、光电传感器和激光雷达传感器。
这些传感器可以通过测量车轮转动的频率来计算列车的速度,并向系统提供实时的速度数据。
2. 温度传感器:高速轨道交通在运行过程中会由于电器设备的工作产生大量热能,因此温度传感器的选择及其布置至关重要。
常见的温度传感器包括热电偶传感器、热敏电阻传感器和红外线传感器。
这些传感器可以实时检测车体和关键设备的温度变化,从而帮助系统及时发现并处理可能存在的隐患。
3. 加速度传感器:高速轨道交通的运行过程中,会受到各种因素的影响,如风力、地震等。
因此,选择合适的加速度传感器对于监测列车的运行状态和安全性至关重要。
常见的加速度传感器有压阻式加速度传感器、电容式加速度传感器和光纤加速度传感器。
4. 摄像头和图像传感器:高速轨道交通的安全检测系统还需要监控列车的行驶状态和乘客的安全情况。
因此,在系统中选择高清晰度的摄像头和图像传感器是必要的。
这些传感器可以实时捕捉列车和乘客的图像,并通过图像处理和识别技术分析车厢内的情况,如人员拥挤度、物品遗留等。
二、传感器的布置1. 位置选择:传感器的布置位置应尽量选择在车辆的关键部位,如车轮、车轴、车门等。
加速度传感器的几个关键特性
![加速度传感器的几个关键特性](https://img.taocdn.com/s3/m/c48160ca87c24028915fc3f0.png)
加速度传感器的几个关键特性为了正确地选用加速度传感器,获得有用的加速度数据,全面的了解加速度传感器的特效是非常必要的。
下面就来解释一下加速度传感器的几个关键特性。
灵敏度加速度传感器的灵敏度是指其输出信号量(电压/电荷)与输入信号量(加速度)的比值。
灵敏度越高,则信噪比就越大,静电干扰和电磁干扰噪声也就越小。
但是,在其它条件相同的前提下,想要得到较高的灵敏度,需要较大的质量快,这随之带来了两个缺点:加速度传感器质量变大和共振频率变低.质量加速度传感器在使用时通常是通过螺钉连接或胶黏的方法固定在被测物表面的,如果果加速度传感器的动态质量接近被测物的动态质量,则这部分质量将会影响到被测物的运动状态,从而得到有一定程度失真的测量结果。
因此,当被测物较为轻薄时(电路板、壳体等),尤其应当注意选用质量小的加速度传感器。
谐振频率加速度传感器本身是一个弹簧-质量—阻尼系统,因此必然有一个谐振频率,如果被测物的振动频率正好接近这个谐振频率,加速度传感器的灵敏度会急剧增加,这时输出的值是没有意义的。
一般来说,加速度传感器都工作在其谐振频率的1/5或1/3的频段内。
频率响应加速度传感器的频率响应通常是指其幅频响应。
理想的加速度传感器的频率响应当然是从0Hz至+∞Hz都保持相同的灵敏度,但实际上并不存在这要的传感器。
加速度传感器按照其工作原理不同,有些在高频段表现出色,可以达到几十kHz,有些则是低频响应较好,并可以提供直流响应。
横向灵敏度在理想情况下,若被测物存在垂直于加速度传感器测量轴的方向的振动,输出的测量信号应该是为零的。
但实际上,由于材料特性及制造误差等原因,可能会有高达5%的输出信号.这是一种串扰输出,因此横向灵敏度也被称为“串扰灵敏度”。
温度灵敏度加速度传感器是一种电子产品,它的输出特性不可避免的会受到温度的影响,一般说来,温度越高,测量误差就越大,但可进行温度补偿。
不同类型的加速度传感器的适用温度范围差别很大,如PE传感器可以耐受到700℃,而IEPE传感器由于内置了处理电路,一般只能耐受到175℃。
冲击加速度传感器测2000g设计方案
![冲击加速度传感器测2000g设计方案](https://img.taocdn.com/s3/m/cac749efd05abe23482fb4daa58da0116c171f2f.png)
冲击加速度传感器测2000g设计方案
要设计一个冲击加速度传感器测量2000g的方案,需要考虑以下几个方面:
1. 选择合适的传感器:传感器的量程需要大于2000g,因此可以选择满量程范围高于2000g的加速度传感器。
常见的选择包括MEMS传感器和压电传感器。
2. 信号采集电路:设计基于传感器的信号采集电路,用于捕捉传感器输出的模拟信号。
采集电路需要具备高速、高精度的特性,以确保能够准确测量高加速度的冲击。
3. 模数转换器(ADC):将采集到的模拟信号转换成数字信号,便于后续处理和分析。
选择高分辨率、高采样率的ADC 以提高测量精度。
4. 数据处理与存储:设计相应的数字处理算法,对采集到的数据进行实时处理,提取感兴趣的特征参数如峰值加速度、时间持续等。
并将数据存储在内存或外部存储介质中,方便后续分析与处理。
5. 数据通信与显示:将处理过的数据通过合适的通信方式(如UART、SPI或USB)传输给外部设备,如计算机或控制器,以进行进一步的数据分析和处理。
同时,可以设计一个显示屏或指示灯,实时显示测量结果。
6. 电源管理:由于测量冲击加速度需要较高的功耗,因此需要
设计合适的电源管理电路,以提供稳定的电源给传感器和其他电路。
需要注意的是,设计方案的具体细节还需要根据具体需求和应用场景进行优化,如温度补偿、抗振动设计等。
加速度计参数
![加速度计参数](https://img.taocdn.com/s3/m/b2153bc1760bf78a6529647d27284b73f242363a.png)
加速度计参数简介加速度计是一种用于测量物体加速度的传感器。
它广泛应用于许多领域,包括航空航天、汽车工业、运动医学等。
本文将详细介绍加速度计的参数及其相关知识。
加速度计工作原理加速度计的工作原理基于质量与力的关系。
它利用质量在受力作用下产生的加速度来测量物体的加速度。
常见的加速度计采用微机电系统(MEMS)技术,通过微小的力传感器来测量物体的加速度。
加速度计参数加速度计通常具有以下几个重要参数:1. 测量范围加速度计的测量范围指的是它能够测量的加速度的最大值和最小值。
常见的单位为g(重力加速度)。
例如,一个测量范围为±2g 的加速度计可以测量从 -2g 到+2g 的加速度。
2. 分辨率分辨率是指加速度计能够区分的最小加速度变化。
它通常以位(bit)或毫米每秒平方(mm/s²)表示。
较高的分辨率意味着加速度计能够更准确地测量小的加速度变化。
3. 灵敏度灵敏度是指加速度计输出的电压或数字信号与实际加速度之间的关系。
它通常以mV/g 或 LSB/g(最小可分辨加速度的单位)表示。
较高的灵敏度意味着加速度计能够更精确地测量加速度。
4. 频率响应频率响应是指加速度计能够测量的加速度变化的频率范围。
它通常以赫兹(Hz)表示。
较高的频率响应意味着加速度计能够更好地测量高频的加速度变化。
5. 噪声加速度计的噪声指的是其输出中的随机波动。
它通常以g/√Hz 或mg/√Hz 表示,表示每根号赫兹(Hz)的噪声水平。
较低的噪声意味着加速度计能够更准确地测量加速度。
6. 温度稳定性温度稳定性是指加速度计在不同温度下的输出稳定性。
它通常以mV/℃ 或%FS/℃ 表示。
较好的温度稳定性意味着加速度计能够在不同温度条件下提供更一致的测量结果。
加速度计应用加速度计的应用非常广泛。
以下是一些常见的应用领域:1. 航空航天在航空航天领域,加速度计被用于飞行器姿态控制、惯性导航系统和飞行数据记录等方面。
它们可以帮助飞行器实时监测加速度变化,确保飞行的稳定性和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加速度传感器选型
压电加速度传感器因其频响宽、动态范围大、可靠性高、使用方便,受到广泛应用。
在一般通用振动测量时,用户主要关心的技术指标为:灵敏度、频率范围,内部结构、内置电路型与纯压电型的区别,现场环境与后续仪器配置等。
一、灵敏度的选择
制造商在产品介绍或说明书中一般都给出传感器的灵敏度和参考量程范围,目的是让用户在选择不同灵敏度的加速度传感器时能方便地选出合适的产品,最小加速度测量值也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可用值,以确保最佳信噪比。
最大测量极限要考虑加速度传感器自身的非线性影响和后续仪器的最大输出电压。
估算方法:最大被测加速度×传感器电荷(电压)灵敏度,其数值是否超过配套仪器的最大输入电荷(电压)值。
建议如已知被测加速度范围可在传感器指标中的“参考量程范围”中选择(兼顾频响、重量),同时,在频响、质量允许的情况下,尽量选择高灵敏度的传感器,以提高后续仪器输入信号,提高信噪比。
在兼顾频响、质量的同时,可参照以下范围选择传感器灵敏度:以电荷输出型压电加速度传感器为例:
1、土木工程和超大型机械结构的振动在0.1g-10g (1g=9.81m/s2)左右,可选电荷灵敏度在300pC/ms-2~ 30pC/ms-2的压电加速度传感器,属于电荷输出型压电加速度传感器
2、特殊的土木结构(如桩基)和机械设备的振动在100ms-2~1000ms-2,可选择20pC/ms-2~2pC/ms-2的加速度传感器。
3、冲击,碰撞测量量程一般10000ms-2~1000000ms-2,可选则传感器灵敏度是0.2pC/ms-2~ 0.002pC/ms-2的加速度传感器。
二、频率选择
制造商给出的加速度传感器的频响曲线是用螺钉刚性连接安装的。
一般将曲线分成二段:谐振频率和使用频率。
使用频率是按灵敏度偏差给出的,有±10%、±5%、±3dB。
谐振频率一般是避开不用的,但也有特例,如轴承故障检测。
选择加速度传感器的频率范围应高于被测试件的振动频率。
有倍频分析要求的加速度传感器频率响应应更高。
土木工程一般是低频振动,加速度传感器频率响应范围可选择0.2Hz~1kHz,机械设备一般是中频段,可根据设备转速、设备刚度等因素综合估算振动频率,选择0.5Hz~ 5kHz 的加速度传感器。
如发电机转速在3000rms 时,除以60s 此时它的主频率为50Hz。
碰撞、冲击测量高频居多。
加速度传感器的安装方式不同也会改变使用频响(对振动值影响不大)。
安装面要平整、光洁,安装选择应根据方便、安全的原则。
我们给出同一只AD500S 加速度传感器不同安装方式的使用频率:螺钉刚性连接(±10%误差)10kHz;环氧胶或“502”粘接安装6kHz;磁力吸座安装 2kHz;双面胶安装1kHz。
由此可见,安装方式的不同对测试频率的响应影响很大,应注意选择。
加速度传感器的质量、灵敏度与使用频率成反比,灵敏度高,质量大,使用频率低,这也是选择的技巧。
三、内部结构
内部结构是指敏感材料晶体片感受振动的方式及安装形式。
有压缩和剪切两大类,常见的有中心压缩、平面剪切、三角剪切、环型剪切。
中心压缩型频响高于剪切型,剪切型对环境适应性好于中心压缩型。
如配用积分型电荷放大器测量速度、位移时,最好选用剪切型产品,这样所获得的信号波动小,稳定性好。
四、内置电路
内置的概念是将放大电路置于加速度传感器内,成为具有电压输出功能的传感元件。
它可分双电源(四线)和单电源(二线、带偏置,又称ICP) 两种,下面所指内装电路专指ICP
型。
目前,内置电路传感器一般是与数据采集仪配套,在国内使用较多的方面是用于机械故障、桩基检测,不少在线监测项目上也在使用该类产品。
ICP 型加速度传感器的供电和信号输出共用一根线。
其特点是:低阻抗输出,抗干扰,噪声小,性能价格比高,安装方便,尤其适于多点测量,稳定可靠、抗潮湿、抗粉尘、抗有害气体。
内置电路传感器灵敏度的选型计算:
被测加速度值(g)=最大输出电压(mV)/传感器灵敏度(mV/g)如选用目前最为通用的100mV/g, 可测50g 以内振动,如测量100g,则用 50mV/g 的加速度计,其余以此类推。
五、环境影响
某些测试现场的环境较为恶劣,考虑的因素较多,如防水、高温、安装位置、强磁电场及地电回路等,均会给测量带来很大的影响。
防水:防水有两个概念,浅层防水和深层防水,尤以深层防水为难,如三峡工程永久船闸闸门的振动监测,水深近百米,它涉及地回路干扰、高压渗水、导线防护、长期可靠性等诸多问题。
高温:多数厂商给出的传感器温度范围为可用值,而不是高温状况的灵敏度,实际上,高温时灵敏度偏差较大,特殊用户应向厂商索取专用的高温时的灵敏度指标,灵敏度指标是保证测试准确的关键。
位置限制:加速度传感器永久安装在现场会受到人为碰撞,应选择工业型长期监测加速度传感器,它采用外加防护罩,三角法兰安装,具有对地绝缘、防尘的作用。
对出线方向有要求的可向制造商提出。
对于不能触及的部位,可用手持式加速度传感器(带长探针)。
绝缘、地电回路及磁电场:对磁电场较强的测试现场,应选择特殊外壳材料的加速度传感器和专用导线,此类研究国内还比较少见。
对于两点接地、潮湿等现场,要解决好测试干扰则可采用浮地或绝缘型加速度传感器,同时要考虑导线接头的防护。
为了克服两点或多点接地产生地电回路电流对测试的影响,可以选用浮地或绝缘传感器。
没有特殊要求且干扰不大的工况,可用绝缘型加速度传感器,而永久型监测或干扰大的工况则应采用浮地型。
这二种命名的区别在于绝缘型产品的外壳为信号地,而浮地型产品的外壳为屏蔽层。
附加质量:在振动结构上安装的加速度传感器的质量要小于被测点的自身动态质量的1/10 即可,认为对被测信号的影响可以忽略。
六、配套仪器
压电类加速度传感器如是电荷输出的,可与任何一种高阻输入的电荷放大器或具有电荷前置功能的采集器相配,电荷放大器种类较多,有单台、多路、积分、准静态,这都要根据测量要求来确定。
也有特例,如直接将压电传感器的输出信号接入具有一定高阻性能的三次仪表(如示波器),同样可测得信号,但因阻抗匹配不够,只能是定性了解动态状况。
内装IC 放大器加速度传感器(ICP 型)专门有恒流适配器,一台恒流适配器可供多只加速度传感器的恒流供电及信号输出。
对于提供恒流源供电的数据采集仪器,可以将该类型传感器直接接入数据采集仪器。
双电源供电的加速度传感器可由采集器提供双电源或用双路直流稳压电源供电。
以上为我们多年测试工作中积累的经验,部分技术也参照了国内外知名厂商的经验。