成都七中15级中考数学模拟试题(5)
成都七中15级中考数学模拟试题(2)
成都七中育才学校初2015届初三下期数学第二周周练习出题人:罗丹梅 林玲 姓名 班级 学号:A 卷(100分)一、选择题:(每小题3分,共30分)1.2(-=( ) A .3 B .3- C .3± D .92.已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是( ) A .外离 B .外切 C .相交 D .内切3.甲、乙两人各打靶5次,甲所中的环数是8,7,9,7,9;乙所中环数的平均数为8x =乙,方差为20.5S =乙。
比较甲、乙的成绩,则( )A .甲的成绩较稳定B .乙的成绩较稳定C .甲、乙的成绩一样稳定D .甲、乙的成绩无法比较4.方程2650x x +-=的左边配成完全平方后所得方程为 ( ) A .14)3(2=-x B . 2(3)4x += C .21)6(2=+x D .14)3(2=+x . 5.如图,一个小球由地面沿着坡度1:2i =的坡面向上前进了10 m ,此时小球距离地面的高度为( ) A .5 m B .25m C .45m D .310m 6.若分式3342-+-x x x 的值为0,则x 的值为( )A .3B .1C .3或1D .3- 7.在函数12y x=-的图象上有三点111(,)A x y 、222(,)A x y 、333(,)A x y , 若1230x x x <<< , 则下列正确的是( )A .1230y y y <<<B .2310y y y <<<C .2310y y y <<<D .2130y y y <<< 8.下列命题正确的个数是( )①等腰三角形腰长大于底边;②三条线段a 、b 、c ,如果b a +>c ,则这三条线段一定可以组成三角形; ③等腰三角形是轴对称图形,它的对称轴是底边上的高;④面积相等的两三角形全等.A .0个B .1个C .2个D .3个 9.如图,小明从半径为5cm 的圆形纸片中剪下40%圆周的一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸帽(接缝处不重叠),那么这个圆锥的高为( )A .3cmB .4cmC .21cmD .62cm10.如图所示,已知在三角形纸片ABC 中,BC =3, 6AB =, ∠BCA =90°在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为 ( ) A .6B .3C. DACD二、填空题:(本大题共4小题,共16分) 11.函数xx y 12+=中自变量x 的取值范围是 . 12.将直角边长为5cm 的等腰直角ABC △绕点A 逆时针旋转15 后得到AB C ''△,则图中阴影部分的面积是 2cm . 13.随着人们节能意识的增强,节能产品的销售量逐年增加。
四川省成都七中实验学校2015届九年级上学期期中考试 数学试题(含答案)
4.若某商品的原价为100元,连续两次涨价x %后的售价为120元,则下面所列方程正确的是( )A 、2100(1)120x -=%B 、2100(1)120x +=%C 、2100(12)120x +=%D 、22100(1)120x +=%5.如右图是三个反比例函数x k y 1=,xk y 2=,x k y 3=在x 轴上方的图象,由此观察得到1k 、2k 、3k 的大小关系为( )A. 321k k k >>B. 123k k k >>C. 132k k k >>D. 213k k k >>6.如图,AD ⊥CD ,AB =13,BC =12,CD =3,AD =4,则sinB= ( )A 、513 B 、1213 C 、35 D 、457.在下列命题中真命题是( )A 、两条对角线相等的四边形是矩形B 、两条对角线互相垂直的四边形是菱形C 、两条对角线互相平分的四边形是平行四边形D 、两条对角线互相垂直且相等的四边形是正方形8.成都市为了解决街道路面问题,需在中心城区重新铺设一条长3000米的路面,实施施工Oyxxky 1=xk y 2=xk y 3=BD CA时“ ”,设实际每天....铺设路面x 米,则可得方程153000103000=--xx ,根据此情景,题中用“ ” 表示的缺失的条件应补为( ) A 、 每天比原计划多铺设10米,结果延期15天才完成; B 、 每天比原计划少铺设10米,结果延期15天才完成; C 、 每天比原计划多铺设10米,结果提前15天才完成;D 、 每天比原计划少铺设10米,结果提前15天才完成;9.形如的式子叫做二阶行列式,它的运算法则用公式表示=ad -bc , 则计算4231-的结果为( ) 依此法A 、-10B 、10C 、2D 、-210.如图4,边长为2正方形ABCD 绕点A 逆时针旋转45度后得到正方形D C B A ''',边C B ''与DC 交于点O ,则四边形OD B A '的周长..是( ) A 、24B 、6C 、22D 、2+22二、填空题:(每小题3分,共12分) 图411. 在Rt △ABC 中,090C ∠=,5tan 12A =,则sinB 的值为 。
成都七中15级中考数学模拟试题
成都七中育才 学校 2015届九年级(下)数 学第八周周练习命题人:刘馨梅审题人:姜向阳班级 姓名 学号:A 卷(共 100分)一、选择题:(每小题3分,共 30分)1.已知 2a b 1,则 4a 2b 1 的值为()A . 1B . 0C .1D .32.将如图 Rt △ABC 绕直角边 AC 旋转一周,所得几何体 的左视图是()AA12B CA .B .C .D .BC3.下列计算正确 的是 ( )A . x ·x =x 8B . x ÷x =x 2 2 4 6 3C . 2a +3a =5a 5 2 3D . (2x ) =4x 63 24.抛物线 y (x 8) 2 2 的顶点坐标是()A 、(2, 8)B 、(8,2)C 、(— 8,2)D 、(— 8,— 2)5.若圆 A 和圆 B 相切 ,它们 的半径分别为 8cm 和 2 cm .则圆心距 AB 为()A . 10cmB . 6cmC . 10cm 或 6cmD .以上答案均不对 o6.如图,在 ABC 中, A=60,按图中虚线将 A 剪去后, 1 2=()○A .120○B . 240○C . 300 ○D .360x 有意义 的 x 的取值范围是()7.使分式2x 4A . x 2B . x 0且 x 2C . x 0D . x 28.已知:圆锥 的底面半径为 9cm ,母线长为 30cm ,则圆锥 的侧面积为()27018013590D .A .B .C . 9.设 min x, y 表示,x , y 两个数中 的最小值,例如 min 0,2 0 min 12,8 8,若y min 2x, x 2,则关于 x 的函数 y 可以表示为()2x ( x 2) x 2 x 2)x 2 (x 2) 2x x 2)yyA .B .C . y =2xD . y=x +22x 的方程 ax 4x 1 0只有正实数根,那么 a 值是(10 .关于未知数) a 04 a 04 a 04 a 0D .A .B .C . 题号 12345678 910答案二、填空题(每小题 4分,共 16分)11.在 Rt ABC 中, C 90, cos A3,则 tan A = 2.12.小虹在距离路灯 9米 的地方,发现自己在地面上 的影长是 3米,如果小虹 的身高为 1.6米,那么路灯离地面 的高度是 米.13.如图,△ ABC 内接于⊙ O ,∠ BAC=120°, AB=AC ,BD 为⊙ O 的直径, AD=6,则 BC = 14.已知 A ( 2,3)B ( 4,6)在 X 轴上找一点 P ,使 PA+PB 最小,则点 P 坐标为 ,在 Y 轴上找一点 Q,使 BQ — AQ 最大, Q 点 的坐标为 。
四川省成都七中育才学校2015年中考数学二诊试题(含解析)
四川省成都七中育才学校2015年中考数学二诊试题一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)1.﹣2015的相反数是()A.2015 B.﹣2015 C.D.2.下列四个几何体中,主视图为圆的是()A.B.C.D.3.长度单位1纳米=10﹣9米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是()A.25.1×10﹣6米 B.0.251×10﹣4米C.2.51×105米D.2.51×10﹣5米4.下列说法正确的是()A.对角线互相垂直且相等的四边形是菱形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形5.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数是()A.15° B.60° C.45° D.75°6.在函数y=中,自变量x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≥17.如图,⊙O的弦CD与直径AB相交,若∠ACD=35°,则∠BAD=()A.55° B.40° C.35° D.30°8.某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1449.将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2B.y=(x﹣2)2+6 C.y=x2+6 D.y=x210.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分)11.分解因式:x2﹣2x= .12.如图,直线a∥b,∠1=65°,则∠2的度数.则我市各县(区)市这组气温数据的极差是.14.如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是.三、解答题(本大题共6个小题,共54分)15.(1)计算:(﹣1)0+sin45°﹣2﹣2;(2)解不等式组:(3)解方程:x2﹣4x+1=0.16.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)17.某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球 B.乒乓球C.羽毛球 D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)18.如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)19.已知一次函数y1=x+m的图象与反比例函数y2=的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.20.如图1,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作DP∥BA交CA 的延长线于点P;(1)求证:PD是⊙O的切线;(2)如图2,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,试猜想线段AE,EF,BF之间有何数量关系,并加以证明;(3)在(2)的条件下,如图2,若AC=6,tan∠CAB=,求线段PC的长.四、填空题(本大题共5个小题,每小题4分,共20分)21.若x2+x﹣2=0,则9﹣2x2﹣2x= .22.有6张正面分别标有数字﹣2,﹣1,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x的不等式有实数解的概率为.23.如图已知A1,A2,A3,…A n是x轴上的点,且OA1=A1A2=A2A3=A3A4=…=A n﹣1A n=1,分别过点A1,A2,A3,…A n′作x轴的垂线交二次函数y=x2(x>0)的图象于点P1,P2,P3,…Pn,若记△OA1P1的面积为S1,过点P1作P1B1⊥A2P2于点B1,记△P1B1P2的面积为S2,过点P2作P2B2⊥A3P3于点B2,记△P2B2P3的面积为S3,…依次进行下去,则S3= ,最后记△P n﹣1B n﹣1P n(n>1)的面积为S n,则S n= .24.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,则线段OG的长为.25.如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB的中点,⊙O过C、D两点且分别交边AC、BC 于点E、F,连接CO、EF.下列结论:①AE2+BF2=EF2;②设⊙O的面积为S,则π≤S≤π;③当⊙O从过点A变化到过点B时,点O移动的路径长为5;④当CO⊥AB时,△CEF面积的最大.其中正确的结论的序号是(把所有正确结论的序号都填上).五、解答题(本大题共3个小题,共30分)26.把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).27.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.已知DF:FA=1:2.(1)求证:△APB≌△APD;(2)当线段DP的长为6时,求线段FG的长;(3)当△DGP是等腰三角形时,求出tan∠DAB的值.28.如图1,已知直线y=kx 与抛物线y=交于点A (3,6).(1)求直线y=kx 的解析式和线段OA 的长度;(2)点P 为抛物线第一象限内的动点,过点P 作直线PM ,交x 轴于点M (点M 、O 不重合),交直线OA 于点Q ,再过点Q 作直线PM 的垂线,交y 轴于点N .试探究:线段QM 与线段QN 的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B 为抛物线上对称轴右侧的点,点E 在线段OA 上(与点O 、A 不重合),点D (m ,0)是x 轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m 在什么范围时,符合条件的E 点的个数分别是1个、2个?2015年四川省成都七中育才学校中考数学二诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)1.﹣2015的相反数是( )A .2015B .﹣2015C .D .【考点】相反数.【分析】根据相反数的定义即可得出答案.【解答】解:﹣2015的相反数是2015;故选A .【点评】此题考查了相反数,掌握好相反数的定义,只有符号不同的两个数是互为相反数.2.下列四个几何体中,主视图为圆的是( )A.B.C.D.【考点】简单几何体的三视图.【分析】先分析出四种几何体的主视图的形状,即可得出主视图为圆的几何体.【解答】解:A、圆柱的主视图是长方形,故A错误;B、圆锥的主视图是三角形,故B错误;C、球的主视图是圆,故C正确;D、正方体的主视图是正方形,故D错误.故选:C.【点评】本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.3.长度单位1纳米=10﹣9米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是()A.25.1×10﹣6米 B.0.251×10﹣4米C.2.51×105米D.2.51×10﹣5米【考点】科学记数法—表示较小的数.【专题】应用题.【分析】先将25 100用科学记数法表示为2.51×104,再和10﹣9相乘.【解答】解:2.51×104×10﹣9=2.51×10﹣5米.故选D.【点评】a×10n中,a的整数部分只能取一位整数,1≤|a|<10.此题中的n应为负数.4.下列说法正确的是()A.对角线互相垂直且相等的四边形是菱形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形【考点】矩形的判定;平行四边形的判定;菱形的判定.【分析】利用菱形的判定、矩形的判定定理、平行四边形的判定定理分别判断后即可确定正确的选项.【解答】解:A、对角线互相垂直且相等的四边形可能是等腰梯形,故错误;B、对角线相等的平行四边形才是矩形,故错误;C、对角线互相垂直的四边形不一定是平行四边形,故错误;D、对角线相等且互相平分的四边形是矩形,正确.故选D.【点评】本题考查了菱形的判定、矩形的判定定理、平行四边形的判定,了解各个图形的判定定理是解答本题的关键,难度不大.5.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数是()A.15° B.60° C.45° D.75°【考点】旋转的性质.【分析】根据∠AOD=∠DOB﹣∠AOB求解.【解答】解:∵将△AOB绕点O按逆时针方向旋转60°后得到△COD,∴∠BOD=60°,∵∠AOB=15°,∴∠AOD=∠DOB﹣∠AOB=60°﹣15°=45°.故选:C.【点评】本题考查了图形的旋转的性质,解题的关键是一个旋转图形的对应点的连线所夹的角相等,都等于旋转角.6.在函数y=中,自变量x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≥1【考点】函数自变量的取值范围.【专题】函数思想.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0可知:x﹣1>0,可求自变量x的取值范围.【解答】解:根据题意得:x﹣1>0,解得x>1.故选B.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.7.如图,⊙O的弦CD与直径AB相交,若∠ACD=35°,则∠BAD=()A.55° B.40° C.35° D.30°【考点】圆周角定理.【分析】由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B的度数,又由AB是⊙O的直径,根据半圆(或直径)所对的圆周角是直角,即可求得∠ADB=90°,继而可求得∠BAD的度数.【解答】解:∵∠ACD与∠B是对的圆周角,∴∠B=∠ACD=35°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BAD=90°﹣∠B=55°.故选A.【点评】此题考查了圆周角定理与直角三角形的性质.此题比较简单,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等与半圆(或直径)所对的圆周角是直角定理的应用.8.某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】2014年的产量=2012年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:设该果园水果产量的年平均增长率为x,则2013年的产量为100(1+x)吨,2014年的产量为100(1+x)(1+x)=100(1+x)2吨,根据题意,得100(1+x)2=144,故选:D.【点评】本题考查了由实际问题抽象出一元二次方程;得到2014年产量的等量关系是解决本题的关键.9.将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2B.y=(x﹣2)2+6 C.y=x2+6 D.y=x2【考点】二次函数图象与几何变换.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=(x﹣1)2+3向左平移1个单位所得直线解析式为:y=(x﹣1+1)2+3,即y=x2+3;再向下平移3个单位为:y=x2+3﹣3,即y=x2.故选D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.【考点】相似三角形的判定与性质.【专题】压轴题.【分析】由∠ADC=∠BDE,∠C=∠E,可得△ADC∽△BDE,然后由相似三角形的对应边成比例,即可求得答案.【解答】解:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE==.故选:B.【点评】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.二、填空题(本大题共4个小题,每小题4分,共16分)11.分解因式:x2﹣2x= x(x﹣2).【考点】因式分解-提公因式法.【分析】提取公因式x,整理即可.【解答】解:x2﹣2x=x(x﹣2).故答案为:x(x﹣2).【点评】本题考查了提公因式法分解因式,因式分解的第一步:有公因式的首先提取公因式.12.如图,直线a∥b,∠1=65°,则∠2的度数115°.【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由补角的定义即可得出结论.【解答】解:∵直线a∥b,∠1=65°,∴∠1=∠3=65°,∴∠2=180°﹣∠3=180°﹣65°=115°.故答案为:115°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.则我市各县(区)市这组气温数据的极差是7℃.【考点】极差.【分析】找出这组数据中的最高气温和最低气温,进行相减,即可得出答案.【解答】解:最高气温是37℃,最低气温是30℃,则我市各县(区)市这组气温数据的极差是37℃﹣30℃=7℃.故答案为:7℃.【点评】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.14.如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是4cm .【考点】垂径定理;勾股定理.【专题】探究型.【分析】由垂径定理及CD=6cm可求出CP及PD的长,再由P是半径OB的中点可设出PB及AP的长,再由相交弦定理可求出PB的长,进而可求出直径AB的长.【解答】解:∵AB为⊙O的直径,AB⊥CD,CD=6cm,∴CP=PD=3cm,∵P是半径OB的中点,∴设PB=x,则AP=3x,由相交弦定理得,CP•PD=AP•PB,即3×3=3x•x,解得x=cm,∴AP=3cm,PB=cm,∴直径AB的长是3+=4cm.【点评】考查的是垂径定理及相交弦定理,解答此题的关键是利用相交弦定理列出方程求出PB的长,进而可求出直径AB的长.三、解答题(本大题共6个小题,共54分)15.(1)计算:(﹣1)0+sin45°﹣2﹣2;(2)解不等式组:(3)解方程:x2﹣4x+1=0.【考点】实数的运算;零指数幂;负整数指数幂;解一元二次方程-配方法;解一元一次不等式组;特殊角的三角函数值.【专题】计算题.【分析】(1)原式第一项利用零指数幂法则计算,第二项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出不等式组的解集;(3)找出a,b,c的值,代入求根公式即可求出解.【解答】解:(1)原式=1+3×﹣=3;(2),由①得:x>1;由②得:x≤2,则不等式组的解集为1<x≤2;(3)这里a=1,b=﹣4,c=1,∵△=16﹣4=12,∴x==2±.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)【考点】作图-旋转变换;轴对称-最短路线问题;作图-平移变换.【专题】压轴题.【分析】(1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象;(2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2;(3)作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.【解答】解;(1)如图所示:(2)如图所示:(3)如图所示:作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,可得P点坐标为:(,0).【点评】此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求最小值问题是考试重点,同学们应重点掌握.17.某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球 B.乒乓球C.羽毛球 D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200 人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)【考点】条形统计图;扇形统计图;列表法与树状图法.【专题】计算题.【分析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:则P==.【点评】此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.18.如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)【考点】解直角三角形的应用-坡度坡角问题.【分析】本题可通过构造直角三角形来解答,过B点作BD⊥AC,D为垂足,在直角三角形BCD中,已知BC 的长,可求∠BCD的度数,那么可求出BD的长,在直角三角形ABD中,可求∠DAB=70°﹣40°=30°,前面又得到了BD的长,那么就可求出AB的长.【解答】解:过B点作BD⊥AC,D为垂足,在直角三角形BCD中,∠BCD=180°﹣70°﹣90°=20°,BD=BC•sin20°=4×0.34=1.36米,在直角三角形ABD中,∠DAB=70°﹣40°=30°,AB=BD÷sin30°=1.36÷≈2.7米.答:树影AB的长约为2.7米.【点评】本题是将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.19.已知一次函数y1=x+m的图象与反比例函数y2=的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.【考点】反比例函数与一次函数的交点问题.【专题】压轴题.【分析】(1)首先根据x>1时,y1>y2,0<x<1时,y1<y2确定点A的横坐标,然后代入反比例函数解析式求出点A的纵坐标,从而得到点A的坐标,再利用待定系数法求直线解析式解答;(2)根据点C到y轴的距离判断出点C的横坐标,代入反比例函数解析式求出纵坐标,从而得到点C的坐标,过点C作CD∥x轴交直线AB于D,求出点D的坐标,然后得到CD的长度,再联立一次函数与双曲线解析式求出点B的坐标,然后△ABC的面积=△ACD的面积+△BCD的面积,列式进行计算即可得解.【解答】解:(1)∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴点A的横坐标为1,代入反比例函数解析式, =y,解得y=6,∴点A的坐标为(1,6),又∵点A在一次函数图象上,∴1+m=6,解得m=5,∴一次函数的解析式为y1=x+5;(2)∵第一象限内点C到y轴的距离为3,∴点C的横坐标为3,∴y==2,∴点C的坐标为(3,2),过点C作CD∥x轴交直线AB于D,则点D的纵坐标为2,∴x+5=2,解得x=﹣3,∴点D的坐标为(﹣3,2),∴CD=3﹣(﹣3)=3+3=6,点A到CD的距离为6﹣2=4,联立,解得(舍去),,∴点B的坐标为(﹣6,﹣1),∴点B到CD的距离为2﹣(﹣1)=2+1=3,S△ABC=S△ACD+S△BCD=×6×4+×6×3=12+9=21.【点评】本题考查了反比例函数图象与一次函数图象的交点问题,根据已知条件先判断出点A的横坐标是解题的关键.20.如图1,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作DP∥BA交CA 的延长线于点P;(1)求证:PD是⊙O的切线;(2)如图2,过点A作AE⊥C D于点E,过点B作BF⊥CD于点F,试猜想线段AE,EF,BF之间有何数量关系,并加以证明;(3)在(2)的条件下,如图2,若AC=6,tan∠CAB=,求线段PC的长.【考点】圆的综合题.【分析】(1)连接OD,OA,OB,根据圆周角定理可知∠ADB=∠ACB=90°,再由∠ACB的平分线交⊙O于点D可知∠BCD=45°,故∠DAB=45°,由直角三角形的性质可知∠ABD=45°,故△ABD是等腰直角三角形,再由点O是AB的中点可知OD⊥AB,根据DP∥BA可知OD⊥PD,进而可得出结论;(2)根据圆周角定理易得∠ADE+∠BDF=90°=∠FBD+∠BDF=90°,从而得到∠FBD=∠ADE,易得AD=BD,从而得出△ADE≌△DBF,得到BF=DE,AE=DF,从而得出结论BF﹣AE=EF.(3)先根据勾股定理计算出AB=10,由于△DAB为等腰直角三角形,可得到AD==5;由△ACE为等腰直角三角形,得到AE=CE==3,在Rt△AED中利用勾股定理计算出DE=4,则CD=7,易证得△PDA∽△PCD,得到===,所以PA=PD,PC=PD,然后利用PC=PA+AC可计算出PD,故可得出PC的长.【解答】(1)证明:连接OD,OA,OB,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°.∵∠ACB的平分线交⊙O于点D,∴∠BCD=45°,∴∠DAB=45°,∴∠ABD=90°﹣45°=45°,∴△ABD是等腰直角三角形.∵点O是AB的中点,∴OD⊥AB.∵DP∥BA,∴OD⊥PD,即PD是⊙O的切线;(2)BF﹣AE=EF,证明如下:∵AB是⊙O的直径,∴∠ADB=∠ADE+∠BDF=90°,∵AE⊥C D,BF⊥CD,∴∠AED=∠BFD=90°,∴∠FBD+∠BDF=90°,∴∠FBD=∠ADE,∵∠AOD=∠BOD,∴AD=BD,在△ADE和△DBF中,,∴△ADE≌△DBF(AAS),∴BF=DE,AE=DF,∴BF﹣AE=DE﹣DF,即BF﹣AE=EF;(3)解:在Rt△ACB中,AC=6,tan∠CAB=,∴BC=8,∴AB==10,∵△DAB为等腰直角三角形,∴AD===5,∵AE⊥CD,∴△ACE为等腰直角三角形,∴AE=CE===3,在Rt△AED中,DE===4,∴CD=CE+DE=3+4=7,∵∠PDA=∠PCD,∠P=∠P,∴△PDA∽△PCD,∴===,∴PA=PD,PC=PD.∵PC=PA+AC,∴PD+6=PD,∴PD=,∴PC=×=.【点评】本题考查的圆的综合题,涉及到切线的性质和圆周角定理定理、等腰直角三角形的性质和三角形相似的判定与性质等知识,根据题意作出辅助线,构造出直角三角形是解答此题的关键.四、填空题(本大题共5个小题,每小题4分,共20分)21.若x2+x﹣2=0,则9﹣2x2﹣2x= 5 .【考点】代数式求值.【专题】计算题.【分析】所求式子后两项提取﹣2变形后,将已知等式变形代入计算即可求出值.【解答】解:∵x2+x﹣2=0,即x2+x=2,∴9﹣2x2﹣2x=9﹣2(x2+x)=9﹣4=5.故答案为:5.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.22.有6张正面分别标有数字﹣2,﹣1,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x的不等式有实数解的概率为.【考点】概率公式;解一元一次不等式组.【分析】首先求得关于x的不等式有实数解时,a的取值范围,再利用概率公式即可求得答案.【解答】解:,由①得:x<3,由②得:x>,∴当<3,即a<4时,关于x的不等式有实数解,∴使关于x的不等式有实数解的概率为: =.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.23.如图已知A1,A2,A3,…A n是x轴上的点,且OA1=A1A2=A2A3=A3A4=…=A n﹣1A n=1,分别过点A1,A2,A3,…A n′作x轴的垂线交二次函数y=x2(x>0)的图象于点P1,P2,P3,…Pn,若记△OA1P1的面积为S1,过点P1作P1B1⊥A2P2于点B1,记△P1B1P2的面积为S2,过点P2作P2B2⊥A3P3于点B2,记△P2B2P3的面积为S3,…依次进行下去,则S3= ,最后记△P n﹣1B n﹣1P n(n>1)的面积为S n,则S n= =.【考点】二次函数图象上点的坐标特征.【专题】规律型.【分析】先根据二次函数图象上点的坐标特征,求出P1(1,),则根据三角形面积公式计算出S1=,同样可得S2=;S3=,S4=,所有相应三角形的面积等于分母为4,分子为奇数的分式,从而得到S n=.【解答】解:当x=1时,y=x2=,则P1(1,),所以S1=×1×=;当x=2时,y=x2=2,则P2(2,2),所以S2=×1×(2﹣)=;当x=3时,y=x2=,则P3(3,),所以S3=×1×(﹣2)=,同样方法可得S4=,所以S n=.故答案为,.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了三角形面积公式.24.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,则线段OG的长为.【考点】反比例函数综合题.【专题】综合题.【分析】由E的坐标确定出OA的长,根据tan∠BOA,利用锐角三角形函数定义求出AB的长,确定出B的坐标,根据D为OB的中点,确定出D坐标,进而确定出反比例函数解析式中k的值,求出反比例解析式,设F(a,2),代入反比例解析式求出a的值,得到CF的长,连接FG,在之间三角形CGF中,设OG=t,利用勾股定理列出关于t的方程,求出方程的解即可得到t的值,即可确定出OG的长.【解答】解:∵点E(4,n)在边AB上,∴OA=4,在Rt△AOB中,tan∠BOA=,∴AB=OA×tan∠BOA=4×=2,∴点B的坐标为(4,2),∵点D为OB的中点,∴点D(2,1),∴=1,解得k=2,∴反比例函数解析式为y=,如图,设点F(a,),∵反比例函数的图象与矩形的边BC交于点F,∴=2,解得a=1,∴CF=1,连接FG,设OG=t,则OG=FG=t,CG=2﹣t,在Rt△CGF中,GF2=CF2+CG2,即t2=(2﹣t)2+12,解得t=,∴OG=t=.故答案为:【点评】此题属于反比例函数综合题,涉及的知识有:待定系数法确定反比例函数解析式,坐标与图形性质,勾股定理,锐角三角函数定义,熟练掌握待定系数法是解本题的关键.25.如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB的中点,⊙O过C、D两点且分别交边AC、BC 于点E、F,连接CO、EF.下列结论:①AE2+BF2=EF2;②设⊙O的面积为S,则π≤S≤π;③当⊙O从过点A变化到过点B时,点O移动的路径长为5;④当CO⊥AB时,△CEF面积的最大.其中正确的结论的序号是①④(把所有正确结论的序号都填上).【考点】圆的综合题.【分析】(1)由中线倍长将三条线段转移到一个三角形当中,然后判定这个三角形为直角三角形即可.(2)要求圆的面积的取值范围,就是求半径的取值范围,而EF是直径,从而将问题转化为求EF长度的取值范围.注意到CD长度是不变的,且是圆的一条弦,连接OD由三角形三边关系可知CD就是直径的最小值,由于E点只能在AC上运动,所以当E点取极端位置(与A点或C点重合)时,EF取最大值,由此确定圆面积的取值范围.(3)如果说E只能在AC上变动,那么圆O是不可能经过B点的,此论断描述有误.(4)设CE=b,CF=a,由勾股定理得出4a+3b=25,和为定值,由此考虑利用均值不等式判断出△CEF面积最大时的条件为 4a=3b,再看这一条件能否等价推出CO垂直AB,从而作出判断.【解答】解:(1)如图1,连接DF、DE,延长FD至G,使DG=DF,连接EG、AG.∵AD=BD,∠ADG=∠BDF,从而△AGD与△BFD全等,∴AG=BF,∠FBD=∠GAD,∴AG∥BF,。
成都七中中考数学模拟试卷
6.已知下列命题:①同位角相等;②若a>b>0,则a <b;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2-2x与坐标轴有3个不同交点;⑤已知一圆锥的高为4,母线长为5,则该圆锥的侧面积为15π.从中任选一个命题是真命题的概率为()A.1B.2C.3D.4(注:图2中相邻两虚线形成的圆心角为30°.)21.如图,小明用一块有一个锐角为30°的直角三角板测量树高,已知小明离树的距离为4米,DE为1.68米,那么这棵树大约有多高?(精确到0.1米)22.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.23.已知:AB为⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,设切点为C.(1)当点P在AB延长线上的位置如图1所示时,连接AC,作∠APC的平分线,交AC于点D,请你测量出∠CDP的度数;(2)当点P在AB延长线上的位置如图2和图3所示时,连接AC,请你分别在这两个图中用尺规作∠APC的平分线(不写作法,保留作图痕迹).设此角平分线交AC于点D,然后在这两个图中分别测量出∠CDP的度数;猜想:∠CDP的度数是否随点P 在AB延长线上的位置的变化而变化?请对你的猜想加以证明.24.小明家想要在自己家的阳台上铺地砖,经测量后设计了如图的图纸,黑色区域为宽度相等的一条“7”形的健身用鹅卵石小路,空白部分为地砖铺设区域.要使铺地砖的面积为14平方米.(1)小路的宽度应为多少?(2)小明家决定在阳台上铺设规格为80×80的地砖(即边长为80厘米的正方形),为了美观起见,工人师傅常采用下面的方法来估算至少需要的地砖数量:尽量保证整块地砖的铺设,边上有多余空隙的,空隙宽度小于地砖边长一半的,可将一块割成两块来铺设空隙处,大于一半的只能铺设一处一边长80厘米的矩形空隙,请你帮助工人师傅估算一下小明家至少需要多少块地砖?25.如图1,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D,AD与BC相交于E点,已知:A(-2,-6),C (1,-3),一抛物线经过A,E,C三点.(1)求点E的坐标及此抛物线的表达式;(2)如图2,如果AB位置不变,将DC 向右平移k(k>0)个单位,求△AEC的面积S关于k的函数表达式;(3)在第(2)问中,是否存在k的值,使AD⊥BC?如果存在,求出k的值;如果不存在,请说明理由.。
成都七中数学中考模拟试卷
成都七中数学中考模拟试卷A 卷(共100分)一、选择题(每小题3分,共30分) 1.4的平方根是( )A .±2B .2C .±D .2.如图在长方体中挖去一个圆柱体后,得到的几何体的左视图为( )3.花粉的质量很小,一粒某种花粉的质量约为0.000103毫克,那么0.000103用科学计数法表示为( )A .510.310-⨯B .41.0310-⨯C .30.10.10-⨯D .31.0310-⨯ 4.在Rt △ ABC 中,∠ C=90°,BC=2,AB=4,则cosA=( ) A .B .C .D .5.如图,一个正六边形转盘被分成6个全等的三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是( )A .13B .14C .16D .126.下列计算正确的是( )A .448a a a +=B .3(2)32a b a b -=-C .532a a a ÷=D .222(2)4a b a b -=-7.若一个多边形的内角和是900°,则这个多边形的边数是( ) A .5 B .6 C .7 D .88.将抛物线y=2(x ﹣1)2﹣1,先向上平移2个单位,再向右平移1个单位后其顶点坐标是( ) A .(2,1) B .(1,2) C .(1,﹣1) D .(1,1) 9.已知在正方形ABCD 中,对角线AC 与BD 相交于点O ,//OE AB 交BC 于点E ,若8AD cm =,则OE 的长为( )A .3cmB .4cmC .6cmD .8cm 10.如图,在圆O 中,30C ∠=,2AB =,则弧AB 的长为( )A .πB .6πC .4πD .23π二、填空题(每小题4分,共16分)11.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为 米.12.关于x 的一元二次方程x 2﹣4x+2m=0没有实数根,则实数m 的取值范围是 .13.如图,在△ ABC 中,点D 在线段BC 上且∠ BAD=∠ C ,BD=2,CD=6,则AB 的值是 . 14.如图,在△ABC 中,AB=AC=7,BC=6,AF ⊥BC 于F ,BE ⊥AC 于E ,D 是AB 的中点,则△DEF 的周长是 . 三、解答题(共54分)15(1)计算:|﹣3|﹣14﹣2tan45°﹣(π﹣1)0 (6分)(2)解不等式组1123(1)5x x x x-⎧-≤⎪⎨⎪-<⎩,在数轴上表示其解集,并写出该不等式组的整数解. (6分)16.先化简再求值:165)121(2-+-÷--x x x x ,其中x 从0,1,2,3四个数中适当选取.(6分)17.(8分)如图,放置在水平桌面上的台灯的灯臂AB 长为42cm ,灯罩BC 长为32cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm ,参考数据:≈1.732)18.(9分)成都市某校在推进新课改的过程中,开设的体育选修课有:A ﹣篮球,B ﹣足球,C ﹣排球,D ﹣羽毛球,E ﹣乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图). (1)求出该班的总人数,并补全频数分布直方图;(3分) (2)求出“足球”在扇形的圆心角是多少度;(3分)(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.(3分)19.(9分)如图,一次函数y=ax+b 的图象与反比例函数xky 的图象交于C ,D 两点,与x ,y 轴交于B ,A 两点,且tan ∠ABO=21,OB=4,OE=2. (1)求一次函数的解析式和反比例函数的解析式;(3分) (2)求△OCD 的面积;(3分)(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x 的取值范围.(3分)20.(10分)如图,在Rt △ABC 中,∠C=90°,AD 是角平分线,DE ⊥AD 交AB 于E ,△ADE 的外接圆⊙O 与边AC 相交于点F ,过F 作AB 的垂线交AD 于P ,交AB 于M ,交⊙O 于G ,连接GE . (1)求证:BC 是⊙O 的切线;(3分) (2)若43tan =∠GEM ,BE=20,求⊙O 的半径;(4分) (3)在(2)的条件下,求AP 的长.(3分)成都七中数学中考模拟试卷B 卷(共50分)一、填空题(每小题4分,共20分)21.已知实数a ,b 同时满足01122=-+b a ,0552=--b a ,则b = .22.从-3,﹣1,1,2这四个数字中,随机抽取一个数,记为a ,那么,使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形的面积为41,且使关于x 的方程xx a 111=-+有正数解的概率为 .23.把一副三角板如图放置,∠ACB=∠ADB=90°,E 是AB 的中点,连接CE 、DE 、CD ,F 是CD 的中点,连接EF .若AB =4,则S △CEF = .24.等边三角形ABO 的顶点B 的坐标分别为B (﹣2,0),过点C (0,732)作直线交AB 于点E ,交AO 于点 D ,交x 轴于点F ,点E 在双曲线)0(<=x xky 上,若S △ADE =S △OFD ,则k = .25.如图,AB 为半圆直径,AC ⊥AB ,BF ⊥AB ,BF=3,AB=4,CA=5,连接AF 交半圆于D ,连接CD ,作DE ⊥CD 交直径AB 于E ,则tan ∠ACE= .CABDEF姓名: 班级: 学号:二、解答题(共30分)26.某公司投资1300万元购买了一条新生产线生产新产品.根据市场调研,生产每件产品需要成本50元,该产品进入市场后不得低于80元/件且不得超过160元/件,该产品销售量y(万件)与产品售价x(元)之间的关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(3分)(2)第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;(3分)(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,公司第二年重新确定产品售价,能否使前两年盈利总额达690万元?若能,求出第二年产品售价;若不能,说明理由.(2分)27.如图,有一等腰直角三角形ABC ,AC=BC=4,有一条过点B 的直线MN 与BC 形成的夹角∠CBN=45°.点P 为直线MN 上一动点,连接CP ,作∠CPQ=45°,交射线BA 于点Q. (1)如图,若PC ⊥QC ,求证:BP=AQ ;(3分) (2)若AQ=2,求BCP tan 的值;(4分)(3)直线MN 绕点B 顺时针旋转15°,当点Q 从B 点运动到A 点时,求线段PQ 的中点所经过的路径(线段)长。
成都七中15级中考数学模拟试题(9)
初2015级下期第九周数学周练习A 卷班级 姓名 学号一、选择题:(每小题3分,共30分) 1. 下图中几何体的主视图是( )2. 下列计算正确的是( )A .3232=+B .236x x x =÷C .ab b a 532=+D .(3x )2=6x3. 和谐小组进行投篮比赛,投进的个数分别为2、3、3、5、10、13,这六个数的中位数为 ( ) A .3 B . 4 C . 5 D . 64. 嫦娥三号,是嫦娥绕月探月工程计划中嫦娥系列的第三颗人造绕月探月卫星。
将于2013年下半年择机发射。
奔向距地球1500000km 的深空.用科学记数法表示1500000为( ) A .1.5×106 B .0.15×107 C .1.5×107 D .15×106 5.下列命题中正确的个数.....是( )①两组对边分别相等的四边形是平行四边形 ②对角线互相垂直的四边形是菱形 ③对角线相等的四边形是矩形 ④对角线相等的矩形是正方形 A .1个 B .2个 C .3个 D .4个 6.已知反比例函数3y x=,下列结论中,不正确...的是( ) A .图象必经过点(1),3 B .y 随x 的增大而减少 C .图象的两支分别在第一、三象限内 D .若1x >,则0<3y <7. 如图,邱家大桥的桥拱(为圆弧形)的跨度AB =12米,拱高CD =4米,则拱桥的半径为( )A .6.5米B .9米C .13米D .15米8.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .26n +B .86n +C .44n +D .8n9.如图,四边形OABC 为菱形,点B 、C 在以点O 为圆心的⌒EF 上,若OA =1,∠1=∠2,则扇形OEF 的面积为( )A . 6πB . 4πC . 3πD . 32π10.如图,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是( )① ② ③…(第7题图)火车隧道C .B .A . D .第1题图A BECF O12A .B .C .D .题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题:(每小题4分,共16分)11.要使代数式142x x -+-有意义,则x 应满足 .12.在直角坐标系中,点(-2,3)关于直线x=1对称的点的坐标是 . 13.如图,已知Rt ΔABC 中,斜边BC 上的高AD=8,cosB=54,则AC= . 14.将一块三角板和半圆形量角器按图中方式叠放,点A 、O 在三角板上所对应的刻度分别是8cm 、2cm ,重叠阴影部分的量角器弧⌒AB 所对的扇形圆心角∠AOB =120º,若用该扇形AOB 围成 一个圆锥的侧面(接缝处不重叠),则该圆锥的底面半径为 cm .三、解答题:15.(6分)(1)计算:22012(tan 601)3()232-⎛⎫-+-⨯+-+-π-- ⎪⎝⎭(6分)(2)311323162x x -=--16.(6分)化简求值:xx x x x x x x x 416)44122(2222+-÷+----+,其中22+=x .第13题图ABCD oyxoy xoy xoyxO AB2817.(8分)我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A处于同一水平线上,视线恰好落在装饰画中心位置E处,且与AD垂直.已知装饰画的高度AD为0.66米,求:⑴装饰画与墙壁的夹角∠CAD的正弦值;⑵装饰画顶部到墙壁的距离DC(精确到0.01米).18.(8分)为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成了如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.19.(10分)如图,直线1y k x b=+与反比例函数2kyx=的图象交于A(1,6),B(a,3)两点.(其中0>x)(1)求1k、2k的值.(2)直接写出21kk x bx+->时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.20.(10分)如图,在△ABC中,∠ACB=90º,BC=nAC,CD⊥AB于D,点P为AB边上一动点,PE⊥AC,PF⊥BC,垂足分别为E、F.ABPECDO xyCEF(1)若n=2,则CEBF= ;(直接写出结果,不需证明)(2)当n=3时,连结EF、DF,求EFDF的值;(3)当n= 时,EFDF=332(直接写出结果,不需证明).初2014届下期第九周数学周练习B卷班级姓名学号(请同学们B 填保留必要过程)21. 已知7115P m =-,2815Q m m =-(m 为任意实数),则P 、Q 的大小关系为 .22.已知关于x 的方程2(2)20x k x k -++=,若等腰△ABC 的一边长1a =,另两边b 、c 恰好是这个方程的两个根,则ABC △的周长是23.关于x 的方程222(1)0x k x k +++=两实根之和为m ,关于y 的不等式 4y y m>-⎧⎨<⎩组有实数根,则k 的取值范围是________.24.如图,直线y=-21x+2与x 轴交于C ,与y 轴交于D , 以CD 为边作矩形CDAB ,点A 在x 轴上,双曲线xky =(0k ≠)经过点B 与直线CD 交于E ,EM ⊥x 轴于M ,则S BEMC =25.如图,P 为△ABC 的边BC 上的任意一点,设BC=a ,当B 1、C 1分别为AB 、AC 的中点时,B 1C 1=a 21,当B 2、C 2分别为BB 1、CC 1的中点时,B 2C 2=a 43,当B 3、C 3分别为BB 2、CC 2的中点时,B 3C 3=a 87,当B 4、C 4分别为BB 3、CC 3的中点时,B 4C 4=a 1615,……当B n 、C n 分别为BB n -1、CC n -1的中点时,则B n C n = _______ ;设△ABC 中BC 边上的高为h ,则△PB n C n 的面积为____________________(用含a 、h 的式子表示).26.成都市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则C AD OM EBxy (第25题图)PC 1C 2C 3 C 4 CBB 1B 2 B 3B 4A再减少10间包房租出,以每次提高20元的这种方法变化下去.(1)设每间包房收费提高x (元),则每间包房的收入为y 1(元),但会减少y 2间包房租出,请分别写出y 1、y 2与x 之间的函数关系式.(2)为了投资少而利润大,每间包房提高x (元)后,设酒店老板每天晚餐包房总收入为y (元),请写出y 与x 之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.27.如图,以Rt △BCF 的斜边BC 为直径作⊙O ,A 为弧BF 上一点,且AB AF =,AD ⊥BC ,垂足为D ,过A 作AE ∥BF 交CB 的延长线于E . (1)AE 是⊙O 切线;(2)求证:ECBECD BD =; (3)若⊙O 直径为d ,则dEC CD 211=+。
2015年四川省成都七中中考数学模拟试卷(一)资料
2015年四川省成都七中中考数学模拟试卷(一)一、选择题:(每小题3分,共30分)2013×(﹣3)=1 B 3.(3分)(2013•益阳)据益阳市统计局在网上发布的数据,2012年益阳市地区生产总值(GDP)突破千亿元大关,达到了1020亿元,将102 000 000 000用科学记数法表示正确的4.(3分)(2011•昭通)如图是一个由4个相同的正方体组成的立体图形,它的三视图为( )B5.(3分)(2009•西藏)若方程:x 2﹣2x+m=0有两个不相等的实数根,则m 的取值范围是6.(3分)(2013•台州)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也随之改变.密度ρ(单位:kg/m 3)与体积V (单位:m 3)满足函数关系式ρ=(k 为常数,k ≠0),其图象如图所示,则k 的值为( )7.(3分)(2012•六盘水)定义:f(a,b)=(b,a),g(m,n)=(﹣m,﹣n).例如f8.(3分)(2009•安徽)武汉市2010年国内生产总值(GDP)比2009年增长了12%,由于受到国际金融危机的影响,预计今年比2010年增长7%,若这两年GDP年平均增长率为x%,9.(3分)(2013•广安)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>O,②2a+b=O,③b2﹣4ac<O,④4a+2b+c>O其中正确的是()10.(3分)(2012•岳阳)如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是()B二、填空题:(每小题3分,共15分)11.(3分)(2014•内江)a﹣4ab2分解因式结果是.12.(3分)(2014•达州)己知实数a、b满足a+b=5,ab=3,则a﹣b=.13.(3分)(2013•德州)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为.14.(3分)(2010•威海)如图,点A,B,C的坐标分别为(2,4),(5,2),(3,﹣1).若以点A,B,C,D为顶点的四边形既是轴对称图形,又是中心对称图形,则点D的坐标为.15.(3分)(2012•六盘水)两块大小一样斜边为4且含有30°角的三角板如图水平放置.将△CDE绕C点按逆时针方向旋转,当E点恰好落在AB上时,△CDE旋转了度,线段CE旋转过程中扫过的面积为.三、计算题:((每小题18分,共18分)16.(18分)(2015•成都校级模拟)解答下列各题:(1)计算:(﹣1)2003+(2sin30°)0﹣+()﹣1;(2)解方程:;(3)先化简,再求值:,其中m是方程x2+3x+1=0的根.四、解答题:(17题8分,18题9分,共17分)17.(8分)(2013•咸宁)如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线y=(x>0)交于D点,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB≌△ACD.(1)如果b=﹣2,求k的值;(2)试探究k与b的数量关系,并写出直线OD的解析式.18.(9分)(2014•本溪)某海域有A、B、C三艘船正在捕鱼作业,C船突然出现故障,向A、B两船发出紧急求救信号,此时B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏东33°方向,同时又位于B船的北偏东78°方向.(1)求∠ABC的度数;(2)A船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时).(参考数据:≈1.414,≈1.732)五、解答题:(19题8分,20题12分,共20分)19.(8分)(2015•成都校级模拟)甲口袋有2个相同的小球,它们分别写有数字1和2,;乙口袋中装有3个相同的小球,它们分别写有数字3、4、5,从这两个口袋中各随机地取出1个球.(1)用“树状图法”或“列表法”表示所有可能出现的结果;(2)取出的两个小球上所写数字之和是偶数的概率是多少?20.(12分)(2014•绵阳)如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.六、填空题:(每小题4分,共20分)21.(4分)(2015•湖北模拟)若函数,则当函数值y=8时,自变量x 的值等于.22.(4分)(2014•内江)已知+=3,则代数式的值为.23.(4分)(2012•黄石)“数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令S=1+2+3+…+98+99+100 ①S=100+99+98+…+3+2+1 ②①+②:有2S=(1+100)×100 解得:S=5050请类比以上做法,回答下列问题:若n为正整数,3+5+7+…+(2n+1)=168,则n=.24.(4分)(2009•陕西)如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.25.(4分)(2013•杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)七、解答题:(共30分)26.(10分)(2012•朝阳)某商家经销一种绿茶,用于装修门面已投资3000元,已知绿茶每千克成本50元,在第一个月的试销时间内发现,销量w(kg)随销售单价x(元/kg)的设该绿茶的月销售利润为y(元)(销售利润=单价×销售量﹣成本﹣投资).(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);(2)求y与x之间的函数关系式(不必写出自变量x的取值范围).并求出x为何值时,y 的值最大?(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?27.(10分)(2014•成都)如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,=,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)28.(10分)(2013•荆州)如图,已知:如图①,直线y=﹣x+与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止);对称轴过点A且顶点为M的抛物线y=a(x﹣k)2+h(a<0)始终经过点E,过E作EG∥OA 交抛物线于点G,交AB于点F,连结DE、DF、AG、BG.设D、E的运动速度分别是1个单位长度/秒和个单位长度/秒,运动时间为t秒.(1)用含t代数式分别表示BF、EF、AF的长;(2)当t为何值时,四边形ADEF是菱形?判断此时△AFG与△AGB是否相似,并说明理由;(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.2015年四川省成都七中中考数学模拟试卷(一)参考答案一、选择题:(每小题3分,共30分)1.B 2.B 3.A 4.B 5.B 6.A 7.A 8.D 9.C 10.B二、填空题:(每小题3分,共15分)11.a(1-2b)(1+2b) 12.±13.-2 14.(0,1)15.30三、计算题:((每小题18分,共18分)16.四、解答题:(17题8分,18题9分,共17分)17.18.五、解答题:(19题8分,20题12分,共20分)19.20.六、填空题:(每小题4分,共20分)21.4或-22.-23.12 24.4 25.t=2或3≤t≤7或t=8七、解答题:(共30分)26.27.28.。
成都七中2015级高三“一诊”模拟考试数学答案
C D OBE'AH成都七中2015级高三“一诊”模拟考试数学试题参考答案一、选择题:(本大题共10小题,每小题5分,共50分) BAADB ACBAD 二、填空题:(本大题共5小题,每小题5分,共25分) 11. 180 12.12 13. - 14. (-7, 3) 15. ①②③⑤ 三、解答题:本大题共6小题,共75分。
解答应写出文字说明,证明过程或演算步骤。
16、(本小题满分12分)【解析】(I )由已知条件得:cos23cos 1A A +=22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒ (II )1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A ==25sin sin 47bc B C R ∴==.17、(本小题满分12分) 解答:(1)331328()327p C ==,22232128()33327p C =⋅=,222342114()()33227p C =⋅=(2)由题意可知X 的可能取值为:0, 1, 2, 3. 乙队得分X 的分布列为:乙队得分X 的数学期望:1644170123.27272799EX =⨯+⨯+⨯+⨯=18、(本小题满分12分)【解析】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O = ,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.3210X P2742742719结合图1可知,H 为AC 中点,故2OH =,从而A H '==所以cos 5OH A HO A H '∠==',所以二面角A CD B '--的平面角的余弦值为5.向量法:以O 点为原点,建立空间直角坐标系O xyz -如图所示, 则(A ',()0,3,0C -,()1,2,0D -所以(CA '= ,(1,DA '=-设(),,n x y z = 为平面A CD '的法向量,则 00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩令1x =,得(1,n =-由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,n OA n OA n OA '⋅'===',即二面角A CD B '--的平面角的余弦19、(本小题满分12分)(1)解:由222(1)()0n n S n n S n n -+--+=,得2[()](1)0.n n S n n S -++=由于{a n }是正项数列,所以20,.n n S S n n >=+于是112,2a S n ==≥时,221(1)(1)2.n n n a S S n n n n n -=-=+----= 综上,数列{a n }的通项2.n a n = (2)证明:由于2,n a n =221(2)n nn b n a +=+, 则22221111[4(2)16(2)n n b n n n n +==-++.2222222221111111111[11632435(1)(1)(2)n T n n n n =-+-+-++-+--++ 2221111[1]162(1)(2)n n =+--++2115(1).16264<+=【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=结合0c >, 解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==), 则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.。
成都七中实验学校2015-2016学年七年级下学期期中考试数学试题
成都七中实验学校初2015级七年级(下)期中考试数学试题一、选择题(每小题3分,共30分) 1、下列计算正确是( ) A .n n na a a32=+ B .n n n a a a 32=⋅ C .()624x a = D .()()235xy xy xy =÷2、下列各组长度的三条线段能组成三角形的是( )A.1cm ,2cm ,3cm B .1cm ,1cm ,2cm C.1cm ,2cm ,2cm D .1cm ,5cm ,7cm3、纳米是一种长度单位,1纳米=109-米,已知某种植物花粉的直径约为3500纳米,那么用科学记数法表示该种花粉直径为( ) A .3.5×104 米 B .3.5×104-米 C .3.5×105-米 D .3.5×106-米4、计算)1)(32(-+x x 的结果是( )A.322-+x x B.322--x x C.322+-x x D.322--x x5、如图,点E 在BC 的延长线上,下列条件中,不能判定AB//CD 的是( ) A.∠1=∠2 B.∠3=∠4 C.∠A=∠DCE D.∠D+∠DBA=180°6、下列乘法中,不能运用平方差公式进行运算的是( )A.()()a x a x -+B.()()x a a x +-+C.()()b x b x ---D.()()b a b a --+ 7、等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边长为( ) A.7cm B.3cm C.7cm 或3cm D.5cm 8、如图,下列条件不能证明△ABC ≌△DCB 的是( )A .AB=DC ,AC=DB B .∠A=∠D ,∠ABC=∠DCBC .BO=CO ,∠A=∠D D .AB=DB ,AC=DC 9、下列说法中正确的个数有( )(1)在同一平面内,不相交的两条直线必平行(2)同旁内角互补(3)相等的角是对顶角(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离(5)经过直线外一点,有且只有一条直线与已知直线平行A .2个 B.3个 C.4个 D.5个10、如图,△ABC 中,0α=∠A ,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于点1A ,BC A 1∠与CD A 1∠的平分线相交于点2A ,依此类推,(第5题图)(第8题图)(第10题图)BC A n 1-∠与CD A n 1-∠的平分线相交于点n A ,则n A ∠的度数为( ) A.0⎪⎭⎫ ⎝⎛n α B.02⎪⎭⎫ ⎝⎛n α C.02⎪⎭⎫ ⎝⎛n α D.012⎪⎭⎫ ⎝⎛+n α 二、填空题(每小题3分,共15分) 11、计算:=-223)2(z xy .12、如图,直线AB 、CD 、EF 相交于一点,∠1=50°,∠2=64°,则∠COF= 度.13、将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2= .14、如果多项式k x x ++82是一个完全平方式,则k 的值是 .15、如图,△ABC 中, BF 、CF 分别平分∠ABC 和∠ACB ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②∠DFB=∠EFC ;③△ADE 的周长等于AB 与AC 的和;④BF=C F .其中正确的是 .(填序号,错选、漏选不得分) 三、计算与求值(每小题6分,共24分)16、(1)(121122332201641)()()()-⨯+---- (2)()()()33232--+-+-x x x(3)()()xy xy y x y x 33692234-÷+-(4)先化简,再求值[()()xy x y y y x 8422-+-+]()x 2-÷.其中1,2-==y x .(第12题图) (第13题图) (第15题图)四、解答题(共31分)17、(5分)解关于x 的方程:()()()62222=+--+x x x18、(6分)已知:4=-b a ,1-=ab ,求:()2b a +和226b ab a +-的值.19、(4+6=10分)如图,已知点A 、F 、E 、C 在同一直线上,AB ∥CD ,∠ABE=∠CDF ,AF=CE . (1)从图中任找两对全等三角形,并用“≌”符号连接起来;(2)求证:AB=CD .20、(4+3+3=10分)平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB ∥CD ,点P 在AB 、CD 外部,则有∠B=∠BOD ,又因∠BOD 是△POD 的外角,故∠BOD=∠BPD+∠D .得∠BPD=∠B-∠D .将点P 移到AB 、CD 内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD 、∠B 、∠D 之间有何数量关系?请证明你的结论;(2)在如图2中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图3,则∠BPD 、∠B 、∠D 、∠BQD 之间有何数量关系?(直接写出结论,不需要证明) (3)根据(2)的结论求如图4中∠A+∠B+∠C+∠D+∠E 的度数.(第19题图)B 卷(50分)一、填空题(4分,共20分) 21、已知:23=m,59=n ,则1233+-n m = .22、若()()b ax x x -+-22的积中不含x 的二次项和一次项,则a= ,b= .23、若0132=+-a a ,则=+221a a . 24、已知等腰△ABC 中一腰上的高与另一腰的夹角为30°,则△ABC 的底角度数为 度. 25、已知△ABC 的面积为1,把它的各边延长一倍得到111C B A ∆;再把111C B A ∆的各边延长两倍得到222C B A ∆;再把222C B A ∆的各边延长三倍得到333C B A ∆,则333C B A ∆的面积为 .二、解答题(每小题10分,共30分)26、(5+5=10分)(1)已知△ABC 三边长是a 、b 、c ,化简代数式:c a b a c b b a c c b a --+---+---+ (2)已知0132=-+x x ,求:20155523+++x x x 的值.27、(3+3+4=10分)先阅读理解下面的例题,再按要求解答下列问题: 例题:求代数式842++y y 的最小值.[来源:学科网] 解:()4244484222++=+++=++y y y y y∵()022≥+y ∴()4422≥++y ∴842++y y 的最小值是4.(1)求代数式42++m m 的最小值;(2)求代数式x x 242+-的最大值;(3)某居民小区要在一块一边靠墙(墙长15m )的空地上建一个长方形花园ABCD ,花园一边靠墙,另三边用总长为20m 的栅栏围成.如图,设AB=x (m ),请问:当x 取何值时,花园的面积最大?最大面积是多少2m ?(第25题图)(第27题图)28、(3+3+4=10分)如图(1),在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D .AF 平分∠CAB ,交CD 于点E ,交CB 于点F .(1)求证:∠CEF=∠CFE ;(2)若,AB AD 41=,CB CF 31=,△ABC 、△CEF 、△ADE 的面积分别为ABC S ∆、CEF S ∆、ADE S ∆,且24=∆ABC S ,则=-∆∆AD E CEF S S ;(3)将图(1)中的△ADE 沿AB 向右平移到△A ′D ′E ′的位置,使点E ′落在BC 边上,其它条件不变,如图(2)所示,试猜想:BE ′与CF 有怎样的数量关系?并证明你的结论.成都七中实验学校初2015级七年级(下)数学期中考试参考答案 A 卷1-10 B C D A B D B D A C11、4624z y x 12、74 13、090 14、16 15、16、2116131282+-x x y x y x -+-2323 842-=+-y x 17、21-=x 18、()122=+b a 24622=+-b ab a19、CDF ABE ∆≅∆ CDA ABC ∆≅∆20、(1)D B BPD ∠+∠=∠ (2)BQD D B BPD ∠+∠+∠=∠(3)∠A+∠B+∠C+∠D+∠E=0180B 卷21、52422、2,4 23、7 24、30或60 25、4921 26、c a 22- 2017 27、42++m m 的最小值为415,x x 242+-的最大值为5,x 为5时,最大为502m28、(2)=-∆∆ADE CEF S S 2初2015级七年级(下)数学期中考试双向细目表考试内容目标达成(能力要求)题型出处[来源:学科网ZXXK]难度分值[来源:学科网ZXXK]题号内容(考点)了解理解运用A卷1 幂的运算√选择题教材内0.90 3 2三角形三边关系√选择题教材内0.853 3科学计数法√选择题教材内0.903 4多项式乘法√选择题教材外0.903 5平行线的判定√选择题教材内0.853 6平方差公式√选择题教材内0.653 7等腰三角形√选择题教材外0.70 3 8全等Δ判定√选择题教材外0.90 39 概念判断√选择题教材外0.75 310 找规律√√选择题教材外0.65 311 幂的运算√填空教材外0.80 312 相交线√填空教材外0.65 313 平行线√填空教材外0.50 314完全平方式√√填空教材外0.50 3 15角平分线与平行√填空教材内0.85 316计算与求值√√解答教材内0.70 1017 解方程√√解答教材外0.65 1218 乘法公式√解答教材外0.90 719全等Δ证明√解答教材外0.80 9 20 角度综合√解答教材外0.70 10B卷1 幂的运算√填空教材外0.60 42 整式含参√√填空教材外0.70 4 3完全平方公式运用√填空教材外0.80 4 4 等腰Δ√填空教材外0.65 4 5Δ面积问题√填空教材外0.85 4 6整式化简及求值√解答教材外0.70 8 7 配方法√解答教材外0.60 10 8全等Δ综合√解答教材外0.50 12统计0.70-0.75150。
2024届四川省成都七中中考数学五模试卷含解析
2024学年四川省成都七中中考数学五模试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.下列运算正确的是( ) A .3a 2﹣2a 2=1B .a 2•a 3=a 6C .(a ﹣b )2=a 2﹣b 2D .(a+b )2=a 2+2ab+b 22.下列实数中,结果最大的是( ) A .|﹣3| B .﹣(﹣π)C .7D .33.如图,AB 是O 的直径,弦CD AB ⊥,垂足为点E ,点G 是AC 上的任意一点,延长AG 交DC 的延长线于点F ,连接,,GC GD AD .若25BAD ∠=︒,则AGD ∠等于( )A .55︒B .65︒C .75︒D .85︒4.计算1211x xx x +---的结果是( ) A .1B .﹣1C .1﹣xD .311x x +- 5.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A .3cmB 6 cmC .2.5cmD 5cm6.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE ,过点A 作AE 的垂线交DE 于点P ,若AE=AP=1,PB=5.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S=4+6.其中正确结论的序号是()正方形ABCDA.①③④B.①②⑤C.③④⑤D.①③⑤7.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是()A.4.5πcm2B.3cm2C.4πcm2D.3πcm28.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣79.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差10.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.节约用水量(单位:吨) 1 1.1 1.4 1 1.5家庭数 4 6 5 3 1这组数据的中位数和众数分别是()A.1.1,1.1;B.1.4,1.1;C.1.3,1.4;D.1.3,1.1.二、填空题(共7小题,每小题3分,满分21分)11.分解因式2x2﹣4x+2的最终结果是_____.12.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[1.3]=1,(1.3)=3,[1.3)=1.则下列说法正确的是________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣1.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.13.已知边长为5的菱形ABCD中,对角线AC长为6,点E在对角线BD上且1tan3EAC∠=,则BE的长为__________.14.如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则∠APB=_____________ .15.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=()A.﹣1 B.4 C.﹣4 D.116.计算:(﹣2a3)2=_____.17.如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为_____.三、解答题(共7小题,满分69分)18.(10分)如图1,在平面直角坐标系中,O 是坐标原点,长方形OACB 的顶点A、B 分别在x 轴与y 轴上,已知OA=6,OB=1.点 D 为y 轴上一点,其坐标为(0,2),点P 从点 A 出发以每秒 2 个单位的速度沿线段AC ﹣CB 的方向运动,当点P 与点 B 重合时停止运动,运动时间为t 秒.(1)当点P 经过点C 时,求直线DP 的函数解析式;(2)如图②,把长方形沿着OP 折叠,点 B 的对应点B′恰好落在AC 边上,求点P 的坐标.(3)点P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.19.(5分)如图,直线y=kx+b (k≠0)与双曲线y=mx(m≠0)交于点A (﹣12,2),B (n ,﹣1).求直线与双曲线的解析式.点P 在x 轴上,如果S △ABP =3,求点P 的坐标.20.(8分)(5分)计算:.21.(10分)如图,在平面直角坐标系中,点1O 的坐标为()4,0-,以点1O 为圆心,8为半径的圆与x 轴交于A ,B 两点,过A 作直线l 与x 轴负方向相交成60的角,且交y 轴于C 点,以点()213,5O 为圆心的圆与x 轴相切于点D .(1)求直线l 的解析式;(2)将2O 以每秒1个单位的速度沿x 轴向左平移,当2O 第一次与1O 外切时,求2O 平移的时间.22.(10分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?23.(12分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?24.(14分)解方程组3{3814x yx y-=-=参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】根据合并同类项法则,可知3a2﹣2a2= a2,故不正确;根据同底数幂相乘,可知a2•a3=a5,故不正确;根据完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正确;根据完全平方公式,可知(a+b)2=a2+2ab+b2,正确.故选D.【题目详解】请在此输入详解!2、B【解题分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【题目详解】根据实数比较大小的方法,可得<|-3|=3<-(-π),所以最大的数是:-(-π).故选B.【题目点拨】此题主要考查了实数大小比较的方法,及判断无理数的范围,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3、B【解题分析】连接BD,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.【题目详解】连接BD,∵AB是直径,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故选B.【题目点拨】此题考查圆周角定理,关键是利用直径得出∠ABD=65°.4、B【解题分析】根据同分母分式的加减运算法则计算可得.【题目详解】解:原式=121 x x x+--=1-1 x x-=() --11 x x-=-1,故选B.【题目点拨】本题主要考查分式的加减法,解题的关键是熟练掌握同分母分式的加减运算法则.5、D【解题分析】分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.详解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,22224845BE EC+=+=∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴OF OCBE BC=,即445OF=,解得:5故选D.点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.6、D【解题分析】①首先利用已知条件根据边角边可以证明△APD≌△AEB;②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB 是等腰Rt △,故B 到直线AE 距离为,故②是错误的; ③利用全等三角形的性质和对顶角相等即可判定③说法正确;④由△APD ≌△AEB ,可知S △APD +S △APB =S △AEB +S △APB ,然后利用已知条件计算即可判定;⑤连接BD ,根据三角形的面积公式得到S △BPD =12PD×BE=32,所以S △ABD =S △APD +S △APB +S △BPD 判定. 【题目详解】由边角边定理易知△APD ≌△AEB ,故①正确;由△APD ≌△AEB 得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°, 所以∠BEP=90°,过B 作BF ⊥AE ,交AE 的延长线于F ,则BF 的长是点B 到直线AE 的距离,在△AEP 中,由勾股定理得,在△BEP 中,,,由勾股定理得:, ∵∠PAE=∠PEB=∠EFB=90°,AE=AP , ∴∠AEP=45°,∴∠BEF=180°-45°-90°=45°, ∴∠EBF=45°, ∴EF=BF ,在△EFB 中,由勾股定理得: 故②是错误的;因为△APD ≌△AEB ,所以∠ADP=∠ABE ,而对顶角相等,所以③是正确的; 由△APD ≌△AEB ,∴可知S △APD +S △APB =S △AEB +S △APB =S △AEP +S △BEP =12+2连接BD ,则S △BPD =12PD×BE=32,所以S △ABD =S △APD +S △APB +S △BPD =2+2所以S正方形ABCD=2S△ABD=4+6.综上可知,正确的有①③⑤.故选D.【题目点拨】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.7、A【解题分析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.【题目详解】∵圆锥的轴截面是一个边长为3cm的等边三角形,∴底面半径=1.5cm,底面周长=3πcm,∴圆锥的侧面积=×3π×3=4.5πcm2,故选A.【题目点拨】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.8、B【解题分析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.【题目详解】∵一次函数y=﹣2x+3中k=﹣2<0,∴y随x的增大而减小,∴在0≤x≤5范围内,x=0时,函数值最大﹣2×0+3=3,故选B.【题目点拨】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小. 9、D 【解题分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【题目详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4,23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【题目点拨】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 10、D 【解题分析】分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 详解:这组数据的中位数是1.2 1.41.32+=; 这组数据的众数是1.1. 故选D .点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.二、填空题(共7小题,每小题3分,满分21分) 11、1(x ﹣1)1【解题分析】先提取公因式1,再根据完全平方公式进行二次分解.【题目详解】解:1x1-4x+1,=1(x1-1x+1),=1(x-1)1.故答案为:1(x﹣1)1【题目点拨】本题考查提公因式法与公式法的综合运用,难度不大.12、②③【解题分析】试题解析:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+1+1=5,故①错误;②当x=﹣1.1时,[x]+(x)+[x)=[﹣1.1]+(﹣1.1)+[﹣1.1)=(﹣3)+(﹣1)+(﹣1)=﹣7,故②正确;③当1<x<1.5时,4[x]+3(x)+[x)=4×1+3×1+1=4+6+1=11,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有三个交点,故④错误,故答案为②③.考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组.13、3或1【解题分析】菱形ABCD 中,边长为1,对角线AC 长为6,由菱形的性质及勾股定理可得AC ⊥BD ,BO=4,分当点E 在对角线交点左侧时(如图1)和当点E 在对角线交点左侧时(如图2)两种情况求BE 得长即可.【题目详解】解:当点E 在对角线交点左侧时,如图1所示:∵菱形ABCD 中,边长为1,对角线AC 长为6,∴AC ⊥BD ,BO=222253AB AO -=- =4, ∵tan ∠EAC=133OE OE OA ==, 解得:OE=1,∴BE=BO ﹣OE=4﹣1=3,当点E 在对角线交点左侧时,如图2所示:∵菱形ABCD 中,边长为1,对角线AC 长为6,∴AC ⊥BD ,222253AB AO --, ∵tan ∠EAC=133OE OE OA ==, 解得:OE=1,∴BE=BO ﹣OE=4+1=1,故答案为3或1.【题目点拨】本题主要考查了菱形的性质,解决问题时要注意分当点E在对角线交点左侧时和当点E在对角线交点左侧时两种情况求BE得长.14、135°【解题分析】通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APB.【题目详解】把△PAB绕B点顺时针旋转90°,得△P′BC,则△PAB≌△P′BC,设PA=x,PB=2x,PC=3x,连PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案为135°.【题目点拨】本题考查的是正方形四边相等的性质,考查直角三角形中勾股定理的运用,把△PAB顺时针旋转90°使得A′与C点重合是解题的关键.15、1【解题分析】据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b即可.【题目详解】∵点A(a,3)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣3,∴a+b=1,故选D .【题目点拨】考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.16、4a 1.【解题分析】根据积的乘方运算法则进行运算即可.【题目详解】原式64.a =故答案为64.a【题目点拨】考查积的乘方,掌握运算法则是解题的关键.17、23﹣23π 【解题分析】 过点F 作FE ⊥AD 于点E ,则AE=12AD=12AF ,故∠AFE=∠BAF=30°,再根据勾股定理求出EF 的长,由S 弓形AF =S 扇形ADF -S △ADF 可得出其面积,再根据S 阴影=2(S 扇形BAF -S 弓形AF )即可得出结论【题目详解】如图所示,过点F 作FE ⊥AD 于点E ,∵正方形ABCD 的边长为2,∴AE=12AD=12AF=1,∴∠AFE=∠BAF=30°,∴EF=3. ∴S 弓形AF =S 扇形ADF -S △ADF =6041223336023ππ⨯-⨯⨯=-, ∴ S 阴影=2(S 扇形BAF -S 弓形AF )=2×[304233603ππ⨯⎛⎫-- ⎪⎝⎭]=2×(12333ππ-+)=2 233π-.【题目点拨】本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力.三、解答题(共7小题,满分69分)18、(1)y=43x+2;(2)y=43x+2;(2)①S=﹣2t+16,②点P 的坐标是(103,1);(3)存在,满足题意的P 坐标为(6,6)或(6,27+2)或(6,1﹣27).【解题分析】分析:(1)设直线DP 解析式为y=kx+b ,将D 与B 坐标代入求出k 与b 的值,即可确定出解析式;(2)①当P 在AC 段时,三角形ODP 底OD 与高为固定值,求出此时面积;当P 在BC 段时,底边OD 为固定值,表示出高,即可列出S 与t 的关系式;②设P (m ,1),则PB=PB′=m ,根据勾股定理求出m 的值,求出此时P 坐标即可;(3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可. 详解:(1)如图1,∵OA=6,OB=1,四边形OACB 为长方形,∴C (6,1).设此时直线DP 解析式为y=kx+b ,把(0,2),C (6,1)分别代入,得2610b k b =⎧⎨+=⎩,解得432k b ⎧=⎪⎨⎪=⎩ 则此时直线DP 解析式为y=43x+2; (2)①当点P 在线段AC 上时,OD=2,高为6,S=6; 当点P 在线段BC 上时,OD=2,高为6+1﹣2t=16﹣2t ,S=12×2×(16﹣2t )=﹣2t+16; ②设P (m ,1),则PB=PB′=m ,如图2,∵OB′=OB=1,OA=6,∴AB′=22OB OA'-=8,∴B′C=1﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=10 3则此时点P的坐标是(103,1);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB﹣OD=1﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP12286-7∴AP1=1﹣7,即P1(6,1﹣7;②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P32286-7∴AP3=AE+EP37+2,即P3(6,7+2),综上,满足题意的P坐标为(6,6)或(6,+2)或(6,1﹣).点睛:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键.19、(1)y=﹣2x+1;(2)点P的坐标为(﹣32,0)或(52,0).【解题分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ABP=3,即可得出122x-=,解之即可得出结论.【题目详解】(1)∵双曲线y=mx(m≠0)经过点A(﹣12,2),∴m=﹣1.∴双曲线的表达式为y=﹣1x.∵点B(n,﹣1)在双曲线y=﹣1x上,∴点B的坐标为(1,﹣1).∵直线y=kx+b经过点A(﹣12,2),B(1,﹣1),∴1k b=22k b=1⎧-+⎪⎨⎪+-⎩,解得k=2b=1-⎧⎨⎩∴直线的表达式为y=﹣2x+1;(2)当y=﹣2x+1=0时,x=12,∴点C(12,0).设点P的坐标为(x,0),∵S△ABP=3,A(﹣12,2),B(1,﹣1),∴12×3|x﹣12|=3,即|x﹣12|=2,解得:x1=﹣32,x2=52.∴点P 的坐标为(﹣32,0)或(52,0). 【题目点拨】 本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及S △ABP =3,得出122x -=. 20、. 【解题分析】试题分析:利用负整数指数幂,零指数幂、绝对值、特殊角的三角函数值的定义解答.试题解析:原式==.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.21、(1)直线l 的解析式为:3123y x =--(2)2O 平移的时间为5秒.【解题分析】(1)求直线的解析式,可以先求出A 、C 两点的坐标,就可以根据待定系数法求出函数的解析式.(2)设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1. 在直角△O 1O 3D 1中,根据勾股定理,就可以求出O 1D 1,进而求出D 1D 的长,得到平移的时间. 【题目详解】(1)由题意得OA 4812=-+=,∴A 点坐标为()12,0-.∵在Rt ΔAOC 中,OAC 60∠=︒, OC OAtan OAC 12tan60123∠==⨯︒=,∴C 点的坐标为(0,123-.设直线l 的解析式为y kx b =+, 由l 过A 、C 两点, 得123012b k b ⎧-=⎪⎨=-+⎪⎩, 解得33b k ⎧=-⎪⎨=-⎪⎩∴直线l 的解析式为:y 3x 123=--. (2)如图,设2O 平移t 秒后到3O 处与1O 第一次外切于点P ,3O 与x 轴相切于1D 点,连接13O O ,31O D .则1313O O O P PO 8513=+=+=,∵31O D x ⊥轴,∴31O D 5=,在131Rt ΔO O D 中,2225111331O D O O O D 13512=-=-=.∵11O D O O OD 41317=+=+=,∴1111D D O D O D 17125=-=-=,∴5t 51==(秒), ∴2O 平移的时间为5秒.【题目点拨】本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.22、1平方米【解题分析】设原计划平均每天施工x 平方米,则实际平均每天施工1.2x 平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x 的分式方程,解之即可得出结论.【题目详解】解:设原计划平均每天施工x 平方米,则实际平均每天施工1.2x 平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=1.答:实际平均每天施工1平方米.【题目点拨】考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程.23、()1?0.14p x =+;()22580040000y x x =-++;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【解题分析】(1)根据按每千克4元的市场价收购了这种苹果10000千克,此后每天每千克苹果价格会上涨0.1元,进而得出x 天后每千克苹果的价格为p 元与x 的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【题目详解】()1根据题意知,0.14p x =+;()()()220.141000050580040000y x x x x =+-=-++.()3300410000w y x =--⨯25500x x =-+25(50)12500x =--+∴当50x =时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【题目点拨】此题主要考查了二次函数的应用以及二次函数最值求法,得出w 与x 的函数关系是解题关键.24、21x y =⎧⎨=-⎩【解题分析】 解:由①得③ 把③代入②得 把代人③得 ∴原方程组的解为。
四川省成都市天府第七中学2024届中考数学五模试卷含解析
四川省成都市天府第七中学2024学年中考数学五模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.12B.13C.310D.152.如图1,在△ABC中,D、E分别是AB、AC的中点,将△ADE沿线段DE向下折叠,得到图1.下列关于图1的四个结论中,不一定成立的是()A.点A落在BC边的中点B.∠B+∠1+∠C=180°C.△DBA是等腰三角形D.DE∥BC3.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A.19B.14C.16D.134.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.3B.3C.3D.85.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-16.如图的立体图形,从左面看可能是()A .B .C .D .7.下列式子成立的有( )个 ①﹣12的倒数是﹣2 ②(﹣2a 2)3=﹣8a 5③2(32-)=5﹣2④方程x 2﹣3x+1=0有两个不等的实数根A .1B .2C .3D .48.如图,△ABC 中,AB=5,BC=3,AC=4,以点C 为圆心的圆与AB 相切,则⊙C 的半径为( )A .2.3B .2.4C .2.5D .2.69.数轴上有A ,B ,C ,D 四个点,其中绝对值大于2的点是( )A .点AB .点BC .点CD .点D 10.下列各点中,在二次函数2y x =-的图象上的是( )A .()1,1B .()2,2-C .()2,4D .()2,4--二、填空题(共7小题,每小题3分,满分21分)11.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.12.如图,已知//9060 BC 24AD BC B C AD ∠=︒∠=︒==,,,,点M 为边BC 中点,点E F 、在线段AB CD 、上运动,点P 在线段MC 上运动,连接EF EP PF 、、,则EPF ∆周长的最小值为______.13.已知△ABC 中,BC=4,AB=2AC ,则△ABC 面积的最大值为_______.14.化简()()201720182121-+的结果为_____.15.如果点P 1(2,y 1)、P 2(3,y 2) 在抛物线22y x x =-+上,那么 y 1 ______ y 2.(填“>”,“<”或“=”).16.如图,在正方形ABCD 中,等边三角形AEF 的顶点E ,F 分别在边BC 和CD 上,则∠AEB =__________.17.如图,在正方形ABCD 中,O 是对角线AC 、BD 的交点,过O 点作OE ⊥OF ,OE 、OF 分别交AB 、BC 于点E 、点F ,AE=3,FC=2,则EF 的长为_____.三、解答题(共7小题,满分69分)18.(10分)如图,在三角形ABC 中,AB=6,AC=BC=5,以BC 为直径作⊙O 交AB 于点D ,交AC 于点G ,直线DF 是⊙O 的切线,D 为切点,交CB 的延长线于点E .(1)求证:DF ⊥AC ;(2)求tan ∠E 的值.19.(5分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)20.(8分)如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC.(1)求证:AC是⊙O的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)21.(10分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店每天的利润.若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.22.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,求证:AF=DC;若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.(12分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)24.(14分)如图1,在四边形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90°得到PQ.(1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;(2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留π);(3)若点Q落在AB或AD边所在直线上,请直接写出BP的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【题目详解】根据题意:从袋中任意摸出一个球,是白球的概率为=210=15.故答案为D【题目点拨】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n.2、A【解题分析】根据折叠的性质明确对应关系,易得∠A=∠1,DE是△ABC的中位线,所以易得B、D答案正确,D是AB中点,所以DB=DA,故C正确.【题目详解】根据题意可知DE是三角形ABC的中位线,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A错,BA≠CA.故选A.【题目点拨】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.还涉及到翻折变换以及中位线定理的运用.(1)三角形的外角等于与它不相邻的两个内角和.(1)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作.3、A【解题分析】作出树状图即可解题.【题目详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是1 9 ,故选A.【题目点拨】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.4、A【解题分析】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=32OC=23,∴AC=2CD=43.故选A.【题目点拨】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.5、C【解题分析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.6、A【解题分析】根据三视图的性质即可解题.【题目详解】解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,故选A.【题目点拨】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.7、B【解题分析】根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断.【题目详解】解:①﹣12的倒数是﹣2,故正确;②(﹣2a2)3=﹣8a6,故错误;③2(3-2)=6﹣2,故错误;④因为△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有两个不等的实数根,故正确.故选B.【题目点拨】考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答.8、B【解题分析】试题分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=12AC×BC=12AB×CD,∴AC×BC=AB×CD,即CD=AC BCAB⋅=345⨯=125,∴⊙C的半径为125,故选B.考点:圆的切线的性质;勾股定理.9、A【解题分析】根据绝对值的含义和求法,判断出绝对值等于2的数是﹣2和2,据此判断出绝对值等于2的点是哪个点即可.【题目详解】解:∵绝对值等于2的数是﹣2和2,∴绝对值等于2的点是点A .故选A .【题目点拨】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.10、D【解题分析】将各选项的点逐一代入即可判断.【题目详解】解:当x=1时,y=-1,故点()1,1不在二次函数2y x =-的图象;当x=2时,y=-4,故点()2,2-和点()2,4不在二次函数2y x =-的图象;当x=-2时,y=-4,故点()2,4--在二次函数2y x =-的图象;故答案为:D .【题目点拨】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式.二、填空题(共7小题,每小题3分,满分21分)11、15【解题分析】分析:设输出结果为y ,观察图形我们可以得出x 和y 的关系式为:32y x =-,将y 的值代入即可求得x 的值. 详解:∵32,y x =-当y =127时,32127,x -= 解得:x =43;当y =43时,3243,x -=解得:x =15;当y=15时,3215,x -= 解得17.3x =不符合条件. 则输入的最小正整数是15.故答案为15.点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.12、【解题分析】作梯形ABCD 关于AB 的轴对称图形,将BC'绕点C'逆时针旋转120°,则有GE'=FE',P 与Q 是关于AB 的对称点,当点F'、G 、P 三点在一条直线上时,△FEP 的周长最小即为F'G+GE'+E'P ,此时点P 与点M 重合,F'M 为所求长度;过点F'作F'H ⊥BC',M 是BC 中点,则Q 是BC'中点,由已知条件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以F'H=3,HC'=1,在Rt △MF'H 中,即可求得F'M .【题目详解】作梯形ABCD 关于AB 的轴对称图形,作F 关于AB 的对称点G ,P 关于AB 的对称点Q ,∴PF=GQ ,将BC'绕点C'逆时针旋转120°,Q 点关于C'G 的对应点为F',∴GF'=GQ ,设F'M 交AB 于点E',∵F 关于AB 的对称点为G ,∴GE'=FE',∴当点F'、G 、P 三点在一条直线上时,△FEP 的周长最小即为F'G+GE'+E'P ,此时点P 与点M 重合,∴F'M 为所求长度;过点F'作F'H ⊥BC',∵M 是BC 中点,∴Q 是BC'中点,∵∠B=90°,∠C=60°,BC=2AD=4,∴C'Q=F'C'=2,∠F'C'H=60°,∴3HC'=1,∴MH=7,在Rt △MF'H 中,F'M ()2222F H MH 37213=+=+=';∴△FEP 的周长最小值为故答案为:【题目点拨】本题考查了动点问题的最短距离,涉及的知识点有:勾股定理,含30度角直角三角形的性质,能够通过轴对称和旋转,将三角形的三条边转化为线段的长是解题的关键.13、163【解题分析】设AC =x ,则AB =2x ,根据面积公式得S △ABC =2 ,由余弦定理求得 cos C 代入化简S △ABC ,由三角形三边关系求得443x << ,由二次函数的性质求得S △ABC 取得最大值. 【题目详解】设AC =x ,则AB =2x ,根据面积公式得:c =1sin 2sin 2AC BC C x C ⋅⋅= =2.由余弦定理可得:2163cos 8x C x-= ,∴S △ABC =2 由三角形三边关系有2442x x x x+>⎧⎨+>⎩ ,解得443x <<,故当x =时, 443x <<取得最大值163, 故答案为:163. 【题目点拨】本题主要考查了余弦定理和面积公式在解三角形中的应用,考查了二次函数的性质,考查了计算能力,当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.14+1【解题分析】利用积的乘方得到原式=[﹣1))]2017•+1),然后利用平方差公式计算.【题目详解】原式=[﹣1)+1)]2017•)=(2﹣1)2017•+1+1.+1.【题目点拨】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15、>【解题分析】分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可.详解:抛物线y=﹣x2+2x的对称轴是x=﹣22-=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.故答案为>.点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.16、75【解题分析】因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案为75.17【解题分析】由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,从而求得EF的值.【题目详解】∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,∴∠EOB=∠FOC,在△BOE和△COF中,45{OCB OBEOB OCEOB FOC∠∠︒∠∠====,∴△BOE≌△COF(ASA)∴BE=FC=2,同理BF=AE=3,在Rt△BEF中,BF=3,BE=2,∴【题目点拨】本题考查了正方形的性质、三角形全等的性质和判定、勾股定理,在四边形中常利用三角形全等的性质和勾股定理计算线段的长.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)tan∠CBG=7 24.【解题分析】(1)连接OD,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.【题目详解】解:(1)证明:连接OD,CD,∵BC是⊙O的直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线∴OD∥AC,∵DF为⊙O的切线,∴OD⊥DF,∴DF⊥AC;(2)解:如图,连接BG,∵BC是⊙O的直径,∴∠BGC=90°,∵∠EFC=90°=∠BGC ,∴EF ∥BG ,∴∠CBG=∠E ,Rt △BDC 中,∵BD=3,BC=5,∴CD=4,∵S △ABC =11··22AB CD AC BG =,即6×4=5BG , ∴BG=245, 由勾股定理得:CG=222475()55-=, ∴tan ∠CBG=tan ∠E=77524245CG BG ==.【题目点拨】本题考查了切线的性质、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角的正切进行转移是基本思路,利用面积法求BG 的长是解决本题的难点.19、古塔AB 的高为(103+2)米.【解题分析】试题分析:延长EF 交AB 于点G .利用AB 表示出EG ,AC .让EG-AC=1即可求得AB 长.试题解析:如图,延长EF 交AB 于点G .设AB=x 米,则BG=AB ﹣2=(x ﹣2)米.则EG=(AB﹣2)÷tan∠BEG=3(x﹣2),CA=AB÷tan∠ACB=33x.则CD=EG﹣AC=3(x﹣2)﹣33x=1.解可得:x=103+2.答:古塔AB的高为(103+2)米.20、(1)证明见解析;(2)23 3π-;【解题分析】(1)连接OD,先根据切线的性质得到∠CDO=90°,再根据平行线的性质得到∠AOC=∠OBD,∠COD=∠ODB,又因为OB=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根据全等三角形的判定与性质得到∠CAO=∠CDO=90°,根据切线的判定即可得证;(2)因为AB=OC=4,OB=OD,Rt△ODC与Rt△OAC是含30°的直角三角形,从而得到∠DOB=60°,即△BOD为等边三角形,再用扇形的面积减去△BOD的面积即可.【题目详解】(1)证明:连接OD,∵CD与圆O相切,∴OD⊥CD,∴∠CDO=90°,∵BD∥OC,∴∠AOC=∠OBD,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠AOC=∠COD,在△AOC和△DOC中,OA OD AOC COD OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△EOC (SAS ),∴∠CAO=∠CDO=90°,则AC 与圆O 相切;(2)∵AB=OC=4,OB=OD ,∴Rt △ODC 与Rt △OAC 是含30°的直角三角形,∴∠DOC=∠COA=60°,∴∠DOB=60°,∴△BOD 为等边三角形,图中阴影部分的面积=扇形DOB 的面积﹣△DOB 的面积,=260212236023ππ⨯-⨯=. 【题目点拨】本题主要考查切线的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质,扇形的面积公式等,难度中等,属于综合题,解此题的关键在于熟练掌握其知识点.21、(1)①y=400x ﹣1.(5<x≤10);②9元或10元;(2)能, 11元.【解题分析】(1)、根据利润=(售价-进价)×数量-固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x 的值得出答案.【题目详解】解:(1)①y=400(x ﹣5)﹣2.(5<x≤10),②依题意得:400(x ﹣5)﹣2≥800, 解得:x≥8.5,∵5<x≤10,且每份套餐的售价x (元)取整数, ∴每份套餐的售价应不低于9元.(2)依题意可知:每份套餐售价提高到10元以上时,y=(x ﹣5)[400﹣40(x ﹣10)]﹣2,当y=1560时, (x ﹣5)[400﹣40(x ﹣10)]﹣2=1560,解得:x 1=11,x 2=14,为了保证净收入又能吸引顾客,应取x 1=11,即x 2=14不符合题意.故该套餐售价应定为11元.【题目点拨】本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型.理解题意,列出关系式是解决这个问题的关键.22、(1)见解析(2)见解析【解题分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【题目详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形23、(1)13;(2)19;(3)第一题.【解题分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;即可求得答案.【题目详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=13;故答案为13;(2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为19;(3)建议小明在第一题使用“求助”.理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=18,因为18>19,所以建议小明在第一题使用“求助”.【题目点拨】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.24、(1);(2)5π;(3)PB的值为或.【解题分析】(1)如图1中,作AM⊥CB用M,DN⊥BC于N,根据题意易证Rt△ABM≌Rt△DCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;(2)连接AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;(3)当点Q落在直线AB上时,根据相似三角形的性质可得对应边成比例,即可求出PB的值;当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13﹣x,再根据全等三角形的性质可得对应边相等,即可求出PB的值.【题目详解】解:(1)如图1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四边形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如图2中,连接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的长==5π.(3)如图3中,当点Q落在直线AB上时,∵△EPB∽△AMB,∴==,∴==,∴PB=.如图4中,当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G.设PB=x,则AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.综上所述,满足条件的PB的值为或.【题目点拨】本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.。
成都七中数学中考模拟试卷
成都七中数学中考模拟试卷姓名:班级:学号:成都七中数学中考模拟试卷(满分150分,考试时间120分钟)出题人:XXX、XXX 审题人:XXXA卷(共100分)一、选择题(每小题3分,共30分)1.4的平方根是()A。
±2 B。
2 C。
± D。
无解2.如图,在长方体中挖去一个圆柱体后,得到的几何体的左视图为(删除图)3.花粉的质量很小,一粒某种花粉的质量约为0.毫克,那么0.用科学计数法表示为()A。
10.3×10⁻⁵ B。
1.03×10⁻⁴ C。
0.10.×10⁻³ D。
1.03×10⁻³4.在直角三角形ABC中,∠C=90°,BC=2,AB=4,则cosA=()A。
1/2 B。
2/3 C。
3/4 D。
4/55.如图,一个正六边形转盘被分成6个全等的三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是(删除图)6.下列计算正确的是()A。
a+a=a B。
3(a-2b)=3a-2b C。
a÷a=1 D。
(2a-b)÷2=a-b/27.若一个多边形的内角和是900°,则这个多边形的边数是()A。
5 B。
6 C。
7 D。
88.将抛物线y=2(x-1)⁻¹,先向上平移2个单位,再向右平移1个单位后其顶点坐标是()A。
(2,1) B。
(1,2) C。
(1,-1) D。
(1,1)9.已知在正方形ABCD中,对角线AC与BD相交于点O,OE//AB交BC于点E,若AD=8cm,则OE的长为()A。
3cm B。
4cm C。
6cm D。
8cm10.如图,在圆O中,∠C=30°,AB=2,则弧AB的长为(删除图)二、填空题(每小题4分,共16分)11.如图,路灯距离地面8米,身高1.6米的XXX站在距离灯的底部(点O)20米的A处,则XXX的影子AM长为4米。
12.关于x的一元二次方程x²-4x+2m=0没有实数根,则实数m的取值范围是(-1,1/2]。
成都七中育才学校2015届九年级上期中模拟考试数学试题
△ABC 的面积为
。
14.如图 5,是二次函数 y1 ax2 bx c 和一次函数 y2 mx n 的图象,观察图象,写出
y1 y2 时 x 的取值范围:
。
15.如图 6,已知二次函数 y x2 2x ,当 1 x a 时, y 随 x 的增大而增大,则实数 a
成都七中育才学校 2015 届初三(上)期中模拟考试数学试卷
第1页共8页
成都七中育才学校 2015 届初三(上)期中模拟考试
数学试卷
命题人:叶强 审题人:焦锐 陈英
姓名:
班级:
学号:
一、选择题:(每小题 3 分,共 30 分)
1.
已知函数 y
1 2
x2
x 4 ,当函数值 y 随 x 的增大而减小时, 的取值范围为( x
,
2
),则
k
的值为(
)
A. 2
B.2
C.3
D.4
10.二次函数 y mx2 2mx (3 m) 的图象如图 3 所示,则 m 的取值范围是( )
A. m 3
B. m 3
C. m 0
D. 0 m 3
y
y
-1
O 1 2x
y B
O
C x
-1 O
x
A
D
图1
图2
图3
成都七中育才学校 2015 届初三(上)期中模拟考试数学试卷
图7
18.(10 分)放风筝是大家喜爱的一种运动。星期天的上午小明在大洲广场上放风筝。如图 8 他
在 A 处时不小心让风筝挂在了一棵树的树梢上,风筝固定在了 D 处。此时风筝线 AD 与水平
成都七中2015级中考数学模拟试题(二)
成都七中2015级中考数学模拟试题(二)A卷(共100分一、选择题:(每小题3分,共30分)1. 2的负倒数是()A. 2 B . 2 C . 11D .-222.据测算,我国每天因土地沙漠化造成的经济损失平均为150000000元,若不加治理,一年按365天计,我国姨奶奶中因土地沙漠化造成的经济损失(用科学记数法表示)为()5.475 1011元A . 5.475 107元B . 5.475 109元C . 5.475 1010元D .3 .x不等式组3的解集是x a,则a的取值范围是()x aA . a3B . a3C . a 3D . a 34 . 若3x2y0 , 则代数式2x—3y的值为)2x3yA . 1B . 1 C.5D .不能确定135 .一元二.次方程2 x2x 30的两个根分别为( )A . x11, X2 3B . x11, x23 C . x1 1 , x2 3 D . X11,x23 6-已知a、b都是实数,且b a 2 4 2 a 1,化简bV1 2b b2 1的结果是()A. 2B. 2C. 1D. 33x 5y m 27.若方程组的解x与y的和为0,则m的值为()2x 3y mA . 2B . 0C 2 D.4& 如杲X[、X2是两个不相等实数,且满足2X122x11,X22x21,那么X1CX2 等于()A . 2B . 1C . 1 D. 29.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,职称一幅矩形挂图。
整个挂图的面积是5400 cm2,设金色纸边的宽为xcm,那么x满足的方程是(题号12345678910答案211.因式分解:3y x 12x ___________________12.不等式(m 2)x 2 m的解集为x 1,贝U m的取值范围是_____________213•已知关于x的方程10x (m 3)x m 7 0,若有一个根为0,则如果要使)A . 2 X130x140002B . XC . 2 X130x140002D . X10 .关于X的方程2x a1的解是正数,则x 1A . a1B . a1且a 065x 350 065x 350 0a的取值范围是( )C. a 1D. a 1 且a温馨提示:请将选择题的答案填入下面的表格中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都七中育才学校2015届九年级下期第五周数学周练习
姓名: 班级: 学号:
一、选择题:(每小题3分,共30分)
1. 从不同方向看一只茶壶,你认为是俯视图的是( )
2. 下列等式一定成立的是( )
A .2
3
5
a a a +=
B .222()a b a b +=
C .2336(2)6ab a b =
D .2()()()x a x b x a b x ab --=-++ 3. 下列图形中,既是轴对称图形又是中心对称图形的是( )
4. 若不等式组2
32x a x a >+⎧⎨<-⎩
无解,则实数a 的取值范围是( )
A .2a <
B .2a ≤
C .2a >
D .2a ≥
5. 若三角形的两边长是方程2
560x x -+=的两个根,则该三角形的周长L 的取值范围是( )
A .15L <<
B .26L <<
C .59L <<
D .610L <<
6. 反比例函数2
y x
=图象上的两个点(1x ,1y ),(2x ,2y ),且12x x >,则下列关系式成立
的是( ) A .12y y >
B .12y y <
C .12y y =
D .不能确定
7. 若等腰梯形两地底之差等于一腰的长,则腰与下底的夹角是( )
A .
60 B .
30 C .
45 D .15
8. 经过某十字路口的汽车,它可能继续直行,也可能向左或向右转。
若这三种可能性大小相同,
则两辆汽车经过该十字路口全部继续直行的概率为( )
A .
13 B .23 C .19 D .12
9. 函数1y ax =+与2
1y ax bx =++(0a ≠)的图象可能为( )
10.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需买140张,其中票价为
100元的票数不少于票价为60元的票数的两倍,则购买这种票最少共需( ) A .12120元 B .12140元 C .12160元 D .12200元 二、填空题:(每小题4分,共16分)
A B C D
A B C D
11.因式分解:3
9x x -= 。
12.如图,AB 为O 的直径,点C ,D 在O 上,若30AOD ∠=,则B C D ∠的度数
是 。
13.甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自
己的影子顶部正好接触路灯乙的底部。
已知小华的身高为 1.5米,那么路灯甲的高为 米(如图)。
14.如图,在ABC △中,AB BC =,将ABC △绕点B 顺时针旋转α度,得到11A BC △,1A B
交AC 于点E ,11AC 分别交
AC 、BC 于点D 、F ,下列结论:①C DF α∠=;②1A E CF =;③D F F C =
;④A D C E =
;⑤1A F C E =。
其中正确的是
(只填正确结论的代号)。
三、解答题:
15.(1)(6
1
31tan 6082|2-⎛⎫
--+- ⎪⎝⎭
;
(2)(6
分)化简求值:21111
a a a a -⎛
⎫-÷
⎪++⎝⎭,其中1a =
(第14题图)
A
B
C
C
1
A 1
D
E F
小华 (第13题图) A
B
(第12题图)
16.(6分)某市规划局Z 计划在一坡角为16的斜坡AB 上安装一球形雕塑,其横截面示意图如图
所示。
已知支架AC 与斜坡AB 的夹角为28,支架BD AB ⊥于点B ,且AC 、BD 的延长线均过O 的圆心,12AB m =,O 的半径为1.5m ,求雕塑最顶端到水平地面的垂直距离。
(结果精确到0.01m )(参考数据:cos 280.9≈,sin 620.9≈,sin 440.7≈,
cos 460.7≈)。
17.(8分)已知两个全等的直角三角形重叠在直线m 上,如图90ABC ∠=,6AB cm =,
8BC cm =,将ABC △在直线m 上向左平移。
(1)求证:四边形ACFD 是平行四边形;
(2)ABC △在直线m 上向左平移多少,四边形ACFD 为菱形,并说明理由; (3)将ABC △向左平移4cm ,求四边形DHCF 的面积。
N (第16题图) A B E C F A D H m m ( )
( ) ( ) D (第17题图)
18.(8分)据媒体报道,某市4月份空气质量优良,高居全国榜首,青春中学九年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们根据国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽取了今年1~4月份中30天空气综合污染指数,统计数据如下:
空气综合污染指数:
30 32 40 42 45 45 77 83 85 87 90 113 127 153 167
38 45 48 53 57 64 66 77 92 98 130 184 201 235 243
请根据空气质量级别表和抽查的空气综合污染指数,解答下列问题:
(1)填写频率分布表未完成的空格;(2)写出统计数据中的中位数、众数;
(3)请根据抽样数据,估计该市今年(按360天计算)空气质量是优良(包括Ⅰ、Ⅱ级)的天数。
正
正正
19.(8分)如图直线AC :1y x k =+-与双曲线k
y x
=
的图象在第一象限相交于A ,C 是直线1y x k =+-与x 轴的交点,过A 作AB 垂直x 轴于B ,且3AOB S =△。
(1)求k 的值;
(2)求ABC S △的值。
(第19题图)
20.(10分)已知:在如图1所示的锐角ABC △中,CH AB ⊥于点H ,点B 关于直线CH 的对
称点为D ,AC 边上一点E 满足EDA A ∠=∠,直线DE 交直线CH 于点F 。
(1)求证:BF AC ∥; (2)若AC 边的中点为M ,求证:2DF EM =;
(3)当A B B C =时(如图2),在未添加辅助线和其他字母的条件下,找出图2中所有与BE 相等的线段,并证明你的结论。
B A F E
C
D H (第20题图2) B A
F E C D H (第20题图1)
B 卷(共20分)
一、填空题:(每小题3分,共9分)
21.如果m 是从0,1,2,3四个数中任取的一个数,n 是从0,1,2三个数中任取的一个数,那么
关于x 的一元二次方程2
2
20x mx n -+=有实数根的概率为 。
22.如图,二次函数2y ax bx c =++(0a ≠)的图象经过点(1-,2),且与x 轴交点的横坐标
分别为1x 、2x ,其中121x -<<-,201x <<。
给出下列结论:①0b <;②0a b c ++<;③420a b c -+<;④20a b -<。
其中正确的有 (填代号)。
23.如图,正方形1112A B PP 的顶点1P 、2P 在反比例函数2
y x
=
(0x >)的图象上,顶点1A 、1B 分别在x 轴和y 轴的正半轴上,再在其右侧作正方形2322P P A B ,顶点3
P 在反比例函数2y x
=(0x >)的图象上,顶点3A 在x 轴的正半轴上,则点3P 的坐标为 。
二、解答题:
24.(11分)如图1,已知抛物线2y ax bx =+(0a ≠)经过A (3,0)、B (4,4)两点。
(1)
求抛物线的解析式;
(第22题图)
(第22题图)
(第24题图1)
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
∠=∠,则在(2)的条件下,求出所有满足(3)如图2,若点N在抛物线上,且NBO ABO
△∽△的点P的坐标(点P、O、D分别与点N、O、B对应)。
POD NOB
25.
(第24题图2)。