-微积分的基本公式97692

合集下载

(完整版)微积分基本公式

(完整版)微积分基本公式

f ( x) sinx et2 dt , f ( x) esin2 x cos x ; 1
d x2 f (t )dt f ( x2 ) 2x .
dx a
d
x3
f (t)dt
f (x3)3x2
f (x2)2x .
dx x2
9
例2
设 f (x) 为连续函数, F(x)
ln x 1
11
例3 求下列极限.
x2 cos t 2 dt
(2) lim 0 x0 x sin x
分析:这是 0 型未定式, 0
等价无穷
x2 cos t 2 dt
解 原式 lim 0 x0
x2
小替换
2x cos lim
x4
limcos x4
1.
x0 2x
x0
12
例3 求下列极限.
1 et2 dt
(3) lim x0
cos x
x2
分析:这是 0 型未定式, 0
解 原式 lim ecos2 x ( sin x)
x0
2x
e cos2 x lim
1
.
x0 2
2e
13
例4 设 F( x) x2
x
f (t)dt ,其中 f ( x) 是连续函数,
xa a
则 lim F(x)
.
x a
x 2
x
f (t)dt
证 limF( x) lim a
xa a
x
( x a) f ( x) f (t)dt
证 F ( x)
a
(x a)2
x
只要证明 ( x a) f ( x) f (t)dt 0 即可. a

微积分公式与运算法则

微积分公式与运算法则

微积分公式与运算法则 Jenny was compiled in January 2021微积分公式与运算法则1.基本公式(1)导数公式(2)微分公式(xμ)ˊ=μxμ-1d(xμ)=μxμ-1dx(a x)ˊ=a x lnad(a x)=a x lnadx(loga x)ˊ=1/(xlna)d(loga x)=1/(xlna)dx(sinx)ˊ=cosxd(sinx)=cosxdx(conx)ˊ=-sinxd(conx)=-sinxdx(tanx)ˊ=sec2xd(tanx)=sec2xdx(cotx)ˊ=-csc2xd(cotx)=-csc2xdx(secx)ˊ=secx·tanxd(secx)=secx·tanxdx(cscx)ˊ=-cscx·cotxd(cscx)=-cscx·cotxdx(arcsinx)ˊ=1/(1-x2)1/2d(arcsinx)=1/(1-x2)1/2dx(arccosx)ˊ=-1/(1-x2)1/2d(arccosx)=-1/(1-x2)1/2dx(arctanx)ˊ=1/(1+x2)d(arctanx)=1/(1+x2)dx(arccotx)ˊ=-1/(1+x2)d(arccotx)=-1/(1+x2)dx(sinhx)ˊ=coshxd(sinhx)=coshxdx(coshx)ˊ=sinhxd(coshx)=sinhxdx2.运算法则(μ=μ(x),υ=υ(x),α、β∈R)(1)函数的线性组合积、商的求导法则(αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ(μ/υ)ˊ=(μˊυ-μυˊ)/υ2(2)函数和差积商的微分法则d(αμ+βυ)=αdμ+βdυd(μυ)=υdμ+μdυd(μ/υ)=(υdμ-μdυ)/υ23.复合函数的微分法则设y=f(μ),μ=ψ(x),则复合函数y=f[ψ(x)]的导数为dy/dx=fˊ[ψ(x)]·ψˊ(x)所以复合函数的微分为dy=fˊ[ψ(x)]·ψˊ(x)dx由于fˊ[ψ(x)]=fˊ(μ),ψˊ(x)dx=dμ,因此上式也可写成dy=fˊ(μ)dμ由此可见,无论μ是自变量,还是另一变量的可微函数,微分形式dy=fˊ(μ)dμ保持不变,这一性质称为微分形式不变性。

微积分的基本公式_2022年学习资料

微积分的基本公式_2022年学习资料

2.微积分基本公式-如果f∈C[a,b],则ftdt为fx在[a,b]上-的一个原函数-若已知Fx为fx的 函数,则有-∫fdt=Fx+Co.-令x=a,则0=∫fdt=Fa+C,故C。=-Fa-取x=b,则得到fodufodx=ro-ra
定理-牛顿一莱布尼茨公式-若fx∈C[a,b],Fx为fx在[a,b]上的-一个原函数,则-["fxdx= x"=Fb-Fa.-将定积分的计算与求原数的计算联系起来了
定理2-若fx∈C[a,b,则Fx=∫fdt在[a,b]-上可导,且-F'=-fadr-fo-a≤x≤b.
定理3-若fx∈R[a,b],且在点x,∈[a,b]处连续-则Fx=ftdt在点x处可导,且F'xo=fx .-在端点处是指的左右导数
例1-easrdry-dIcosdr-cosx-Fx-cosxdx'=?-/-定积分与积分变量的记号无关. cosxdx'=cosx.
定积分的计算-问题转化为已-知函数的导函-数,求原来函数-的问题.
例5-sin x'=cosx,-π -[2cosxdx=sinx2=-sin 0=1.-问题的关键是如何求一 -函数的原函数,
例6-cnantn-unslan--兀-2-●-sinO=
例7-计算∫1+cos2xdx.-去绝对-值符号如果-是分段函数-解-o+cos2xdx=f2cosdx利用积分-的性质将积-分分成几个-怎么办?方201cos1dx-部分的和的-形式--cd+cd.x-=v2 inx-2sinx=2v2.
积分上限函数的几何意义-y-y-a-xx-b-X-曲边梯形的面积的代数和随x的位置而变化.
由积分的性质:fxdx=-∫公fxdx,有-∫fodr=-∫fodt.-所以,我们只需讨论积分上限函数.fdr称为积分下限函数

微积分基本公式16个

微积分基本公式16个

微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。

可以理解为小步长地移动拟合函数,接近曲线本身。

可以表示为\frac{dy}{dx} 或f'(x) 。

2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。

可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。

它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。

4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。

可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。

5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。

6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。

微积分的公式大全

微积分的公式大全

微积分的公式大全微积分是数学中的重要分支,涵盖了一系列的公式,用于计算和解决各种与变化相关的问题。

下面是微积分中的一些重要公式:1.导数的基本公式:- 常数的导数:$$\frac{d(c)}{dx}=0$$,其中c为常数。

- 幂函数的导数:$$\frac{d(x^n)}{dx}=nx^{n-1}$$,其中n为常数。

- e的指数函数的导数:$$\frac{d(e^x)}{dx}=e^x$$。

- 对数函数的导数:$$\frac{d(\ln(x))}{dx}=\frac{1}{x}$$。

2.常见初等函数的导数:- 正弦函数的导数:$$\frac{d(\sin(x))}{dx}=\cos(x)$$。

- 余弦函数的导数:$$\frac{d(\cos(x))}{dx}=-\sin(x)$$。

- 正切函数的导数:$$\frac{d(\tan(x))}{dx}=\sec^2(x)$$。

- 反正弦函数的导数:$$\frac{d(\arcsin(x))}{dx}=\frac{1}{\sqrt{1-x^2}}$$。

- 反余弦函数的导数:$$\frac{d(\arccos(x))}{dx}=-\frac{1}{\sqrt{1-x^2}}$$。

3.基本微分法则:- 常数乘积法则:$$\frac{d(cu)}{dx}=c\frac{du}{dx}$$。

- 加法法则:$$\frac{d(u+v)}{dx}=\frac{du}{dx}+\frac{dv}{dx}$$。

- 乘法法则:$$\frac{d(uv)}{dx}=u\frac{dv}{dx}+v\frac{du}{dx}$$。

- 商法则:$$\frac{d\left(\frac{u}{v}\right)}{dx}=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$$。

- 复合函数求导法则:如果y是x的函数,z是y的函数,则$$\frac{dz}{dx}=\frac{dz}{dy}\frac{dy}{dx}$$。

高等数学中所涉及到的微积分公式汇总

高等数学中所涉及到的微积分公式汇总

高等数学中所涉及到的微积分公式汇总微积分是高等数学中的一门重要学科,涉及到很多重要的公式和定理。

下面是一些微积分中常用的公式的汇总:1.导数公式:- 函数f(x)在点x处的导数:f'(x) = lim (f(x+h)-f(x))/h,其中h -> 0- 常见函数的导数公式:常数函数导数为0,幂函数导数为nx^(n-1),三角函数的导数等-乘法法则:(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)-商法则:(f/g)'(x)=(f'(x)g(x)-f(x)g'(x))/(g(x))^22.积分公式:- 不定积分和定积分的基本定理:若F'(x) = f(x),则∫f(x) dx = F(x) + C- 基本不定积分:∫x^n dx = (1/n+1)*x^(n+1) + C (其中n不等于-1)- 定积分的性质:∫(a to b) f(x) dx = -∫(b to a) f(x) dx,∫(a to b) [f(x) ± g(x)] dx = ∫(a to b) f(x) dx ± ∫(a to b)g(x) dx3.微分学的基本定理:- 导数的基本定理:如果F(x)是f(x)的一个原函数,那么∫(a to b) f(x) dx = F(b) - F(a)- 牛顿-莱布尼茨公式:若F(x)是f(x)的一个原函数,那么∫(a tob) f(x) dx = F(x),_(a to b) = F(b) - F(a)4.极限定理:- 极限的四则运算定理:设lim (x -> a) f(x) = L,lim (x -> a) g(x) = M,则lim (x -> a) [f(x)±g(x)] = L±M,lim (x -> a)[f(x)*g(x)] = L*M,lim (x -> a) [f(x)/g(x)] = L/M (其中M不等于0)- L'Hospital法则:设lim (x -> a) f(x) = 0,lim (x -> a) g(x) = 0,并且lim (x -> a) f'(x)/g'(x) 存在,则lim (x -> a) f(x)/g(x) = lim (x -> a) f'(x)/g'(x)- 夹逼定理:如果数列{a_n}、{b_n}、{c_n}满足a_n <= b_n <=c_n,并且lim (n -> ∞) a_n = lim (n -> ∞) c_n = L,则lim (n -> ∞) b_n = L5.泰勒级数:-函数f(x)的泰勒级数展开:f(x)=f(a)+f'(a)(x-a)+f''(a)*(x-a)^2/2!+...+f^n(a)*(x-a)^n/n!+...,其中f^n(a)表示函数f(x)在点a处的n阶导数以上仅是微积分中涉及到的一些公式,实际上微积分的公式和定理非常丰富,还有更多的公式可以在相关的教材和文献中找到。

微积分24个基本公式

微积分24个基本公式

微积分24个基本公式微积分是数学中一个重要的分支,它的重要意义在于它关于空间、时间和速度的结构描述,它把自然界的复杂结构描述为简单的几何形状和数学结构,能够为任何一类科学研究提供客观、系统和深入的解释。

微积分的基本公式是非常重要的,它们不仅反映了微积分的基本概念和定律,而且支持了整个微积分体系的发展和实用应用,是科学研究的基石。

在实际运用中,24个基本公式是微积分中最为重要的公式之一,可以解释许多微积分的基本概念,并可用来解决各种不同的实际问题。

24个基本公式可以分为函数概念、导数概念、几何概念和无穷小概念四大块。

在函数概念中,包括函数定义、函数图像、最大最小值、函数极限等;在导数概念中,包括导数定义、导数方程、隐函数导数等;在几何概念中,包括几何变换、向量、曲线长度、曲率等;而在无穷小概念中,包括无穷小量与无穷大量的基本定律。

其中,函数概念的24个基本公式是:函数的定义:f(x)=y;函数的图像:图解函数的增减性;最大最小值:....;函数极限:极限的定义;极限的性质:极限的运算法则。

而在导数概念中包括:导数定义:导数的定义;导数方程:求导法则;隐函数导数:反函数求导公式;偏导数:多元函数的偏导数;曲率:曲率的定义。

在几何概念中,24个基本公式主要围绕几何变换、向量、曲线长度、曲率等概念构建而成,包括:几何变换:变换后图形的基本性质;向量:向量的定义及其运算;曲线长度:计算曲线长度的方法;曲率:曲率公式、曲率半径等。

最后,在无穷小概念中,24个基本公式包括:无穷小量与无穷大量的基本定律,以及无穷小量的定义和无穷大量的运算法则,几何意义上的无穷大量的定义,微积分法的求微分、积分计算等。

以上就是24个基本公式的详细内容,它们不仅涵盖了函数概念、导数概念、几何概念和无穷小概念四大块,而且介绍了一些能够解决实际问题的技巧:如图解函数的增减性、多元函数的偏导数、计算曲线长度的方法等,可以说,24个基本公式为学习微积分提供了非常重要的参考依据。

微积分的公式大全

微积分的公式大全

微积分的公式大全一、极限公式1.无穷小量定义:若当x→0时,Δx是x的函数之一,且满足Δx/x→0,则称Δx为x的一个无穷小量。

2.极限的基本性质:-函数f(x)的极限即为f(x)的左极限和右极限存在且相等的值。

-函数的极限与函数的值在有限点无关,只与趋向于该点的方式有关。

-函数有界,且极限存在,则函数必定有极大值和极小值。

3.基本极限:-极限的四则运算规则:设x→x0时有f(x)→A,g(x)→B,则f(x)±g(x)→A±B,f(x)g(x)→AB,f(x)/g(x)→A/B。

- 幂函数极限:若m是正整数,则lim(x→a) (x^m) = a^m。

- e 的指数函数极限:lim(x→∞) (1+1/x)^x = e。

- 自然对数函数极限:lim(x→0) (ln(1+x)/x) = 1-三角函数极限:- lim(x→0) (sinx/x) = 1- lim(x→0) (cosx-1)/x = 0。

四、导数公式1. 基本定义:函数 y=f(x) 在 x0 处可导,当且仅当函数在 x0 处存在极限lim(x→x0) (f(x)-f(x0))/(x-x0),即导数 f'(x0) 存在。

2.基本导数:- 常数函数的导数为 0:d/dx(c) = 0。

- 幂函数的导数:d/dx(x^n) = nx^(n-1)。

- 指数函数的导数:d/dx(e^x) = e^x。

- 对数函数的导数:d/dx(loga(x)) = 1/(xln(a))。

-三角函数的导数:- d/dx(sin(x)) = cos(x)。

- d/dx(cos(x)) = -sin(x)。

- d/dx(tan(x)) = sec^2(x)。

-反三角函数的导数:- d/dx(arcsin(x)) = 1/√(1-x^2)。

- d/dx(arccos(x)) = -1/√(1-x^2)。

- d/dx(arctan(x)) = 1/(1+x^2)。

微积分的公式大全

微积分的公式大全

微积分的公式大全微积分是数学的一个分支,主要研究连续变化的函数及其相关性质。

在微积分中,有许多重要的公式在各个方面被广泛应用。

下面给出了微积分的一些重要公式。

1.极限公式(1)a^0=1,a≠0(2)lim(x→0) sinx/x = 1(3)lim(x→∞) (1+1/x)^x = e(4)lim(x→∞) (1+1/n)^nt = e^t(5)lim(x→0) (1+x)^1/x = e(6)lim(x→∞) (1+1/x)^x = e2.微分公式(1)dy/dx (x^n) = nx^(n-1)(2)dy/dx (a^x) = a^x ln(a)(3)dy/dx (e^x) = e^x(4)d/dx (ln(x)) = 1/x(5)d/dx (sinx) = cosx(6)d/dx (cosx) = -sinx(7)d/dx (tanx) = sec^2x(8)d/dx (cotx) = -csc^2x(9)d/dx (secx) = secx tanx(10)d/dx (cscx) = -cscx cotx3.积分公式(1)∫x^n dx = x^(n+1)/(n+1) + C,n≠-1(2)∫a^x dx = a^x/ln(a) + C(3)∫e^x dx = e^x + C(4)∫1/x dx = ln,x, + C(5)∫sinx dx = -cosx + C(6)∫cosx dx = sinx + C(7)∫sec^2x dx = tanx + C(8)∫csc^2x dx = -cotx + C(9)∫secx tanx dx = secx + C(10)∫cscx cotx dx = -cscx + C4.导数规则(1)(f+g)’=f’+g’(2)(af)’ = af’,a为常数(3)(f×g)’=f’×g+f×g’(4)(f/g)’ = (f’g - fg’)/g^2,g≠0(5)(fog)’=f’og×g’,o表示复合函数(6)(f^n)’ = nf^(n-1) f’,n为常数5.积分规则(1)∫(f + g) dx = ∫f dx + ∫g dx(2)∫(af) dx = a∫f dx,a为常数(3)∫(f × g) dx = ∫f dx ∫g dx - ∫f’ dx ∫g dx + C,C 为常数(4)∫(1/f) dx = ∫1/f dx(5)∫f’(x) dx = f(x) + C,C为常数以上是微积分中的一些公式,它们在求解问题和推导定理时都起到了重要的作用。

微积分的公式大全

微积分的公式大全

微积分的公式大全微积分是数学的一个重要分支,涉及到函数的极限、导数、积分等概念和方法。

以下是微积分中常见的公式:1. 极限公式:- 函数f(x)当x趋近于a时的极限:lim[x→a]f(x)- 无穷小量的定义:lim[x→0]f(x)=02. 导数公式:- 导数的定义:f'(x)=lim[h→0](f(x+h)-f(x))/h- 幂函数的导数:(x^n)'=nx^(n-1)- 三角函数的导数:(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec^2x- 指数函数和对数函数的导数:(e^x)'=e^x,(lnx)'=1/x3. 积分公式:- 不定积分的定义:∫f(x)dx=F(x)+C,其中F(x)为f(x)的一个原函数,C为常数- 基本积分法则:∫u(x)v'(x)dx=u(x)v(x)-∫u'(x)v(x)dx- 幂函数的不定积分:∫x^n dx=(x^(n+1))/(n+1)+C,其中n不等于-1- 三角函数的不定积分:∫sinx dx=-cosx+C,∫cosx dx=sinx+C - 指数函数和对数函数的不定积分:∫e^x dx=e^x+C,∫1/xdx=ln|x|+C4. 微分方程公式:- 一阶线性微分方程:dy/dx+p(x)y=q(x),通解为y=e^(-∫p(x)dx)∫[e^(∫p(x)dx)]q(x)dx- 欧拉-拉格朗日方程:d/dx(∂L/∂(dy/dx))-∂L/∂y=0,其中L为拉格朗日量5. 泰勒展开公式:- 函数f(x)在x=a处的n阶泰勒展开:f(x)=f(a)+(f'(a)(x-a))/1!+(f''(a)(x-a)^2)/2!+...+(f^n(a)(x-a)^n)/n!,其中f^n(a)为f(x)的n阶导数在x=a处的值这些公式只是微积分中的一部分,它们在解决函数的性质、曲线的切线与极值、曲线下面积等问题中发挥着重要的作用。

微积分基本公式和基本定理

微积分基本公式和基本定理
题目
利用泰勒公式展开函数$f(x) = sin x$在$x = frac{pi}{2}$处的幂级数。
答案
根据泰勒公式,得到$sin x = sum_{n=0}^{infty} (1)^n cdot frac{x^{2n+1}}{(2n+1)!}$。代入$x = frac{pi}{2}$,得到$sin frac{pi}{2} = sum_{n=0}^{infty} (-1)^n cdot frac{(frac{pi}{2})^{2n+1}}{(2n+1)!} = 1$。
求函数$f(x) = ln(x + sqrt{1 + x^2})$的导数。
利用链式法则和基本导数公式 ,得到$f'(x) = frac{1}{sqrt{1 + x^2}} cdot frac{x}{sqrt{1 + x^2}} = frac{x}{1 + x^2}$。
积分习题及答案
题目
计算$int_0^1 (x^2 + 1) dx$。
泰勒公式是一个重要的微积分定理,它可以用来近似计算复杂的函数。通过泰勒公式,可以将一个复 杂的函数展开成多项式的和,从而简化计算。
泰勒公式在近似计算中广泛应用于数值分析、物理、工程等领域。例如,在计算物理现象的近似解时 ,可以使用泰勒公式来逼近真实解。此外,泰勒公式还可以用于求解函数的极限、证明不等式等数学 问题。
牛顿-莱布尼兹定理
总结词
牛顿-莱布尼兹定理是计算定积分的 核心定理,它提供了计算定积分的简 便方法。
详细描述
牛顿-莱布尼兹定理表述为:对于任意 在[a, b]区间上连续的函数f(x),F(x)是f(x)的一个原函数。这个定理大大 简化了定积分的计算过程,是微积分学 中的重要内容。

微积分的基本公式

微积分的基本公式

微积分的基本公式微积分是数学的一个分支,涉及到函数、极限、导数、积分等概念和理论。

在微积分中,有很多基本公式被广泛应用于解决各种问题。

下面是一些微积分的基本公式及其应用:1.导数公式:-常数导数公式:对于任意常数c,其导数为0。

- 幂函数导数公式:对于任意实数n,导数公式为d(x^n) / dx = n * x^(n-1)。

- 指数函数导数公式:对于任意实数a,指数函数e^x的导数为d(e^x) / dx = e^x。

- 对数函数导数公式:对于任意实数a和b,自然对数函数ln(x)的导数为d(ln(x)) / dx = 1 / x。

2.积分公式:- 幂函数积分公式:对于任意实数n(n ≠ -1),积分公式为∫(x^n)dx = (1 / (n+1)) * x^(n+1) + C,其中C为常数。

- 指数函数积分公式:对于任意实数a,指数函数e^x的积分公式为∫e^xdx = e^x + C,其中C为常数。

- 对数函数积分公式:对于任意实数a和b,自然对数函数ln(x)的积分公式为∫(1 / x)dx = ln,x, + C,其中C为常数。

3.基本微积分定理:基本微积分定理是微积分的核心定理之一,它定量描述了函数与其导函数之间的关系。

根据基本微积分定理,如果F(x)是函数f(x)的一个原函数,则有∫f(x)dx = F(x) + C,其中C为常数。

4.链式法则:链式法则是求复合函数导数的一个重要工具。

设有函数y = f(g(x)),其中f(u)和g(x)分别是可导函数,那么复合函数关于自变量x的导数可以表示为dy / dx = dy / du * du / dx。

5.积分换元法:积分换元法是求定积分的一个常用方法。

当遇到被积函数中含有复杂的函数形式时,可以通过引入一个合适的变量代换,将原函数转化为较简单的形式来进行积分计算。

上述只是微积分中的几个基本公式,实际上微积分涉及到更多的公式和方法。

微积分在物理、工程、经济学等领域中具有广泛的应用,可以用于描述和分析各种变化过程,计算曲线的斜率、面积、体积等。

高中常用微积分公式表

高中常用微积分公式表

高中常用微积分公式表微积分可以被认为是数学的核心部分,高中的学生在学习高数的过程中,微积分公式是学习的重要组成部分。

下面我们来了解一些常见的高中数学微积分公式。

首先,让我们来看看一些基础的微积分公式。

1、求导公式:$frac{d}{dx}(u(x)cdot v(x))=u(x)cdotv(x)+u(x)cdot v(x)$2、求积分公式:$int u(x)cdot v(x);dx=u(x)cdot v(x)-int u(x)cdot v(x);dx$3、泰勒公式:$f(x)=f(a)+frac{f(a)}{1!}(x-a)+frac{f(a)}{2!}(x-a)^2+frac{f ^{(3)}(a)}{3!}(x-a)^3+cdots$4、微分中值定理:如果在$[a,b]$区间内,函数$f(x)$连续,则存在一个$cin[a,b]$使得$f(c)=frac{f(b)-f(a)}{b-a}$。

接下来,看看一些更复杂的微积分公式。

1、三角函数的偏导公式:$frac{partial}{partialx}Sin(x)=Cos(x)$、$frac{partial}{partial x}Cos(x)=-Sin(x)$2、极限公式:$lim_{xrightarrow a}f(x)=L$3、改变变量公式:$int f(x)dx=int f(x(t))x(t)dt$4、泰勒展开公式:$f(x)=f(a)+frac{1}{1!}f(a)(x-a)+frac{1}{2!}f(a)(x-a)^2+frac {1}{3!}f^{(3)}(a)(x-a)^3+cdots$最后,我们来看看一些极端的微积分公式。

1、极限的运算公式:$lim_{xrightarrow 0}frac{Sin(x)}{x}=1$2、Stoke公式:$int_{C}overrightarrow{F}cdot doverrightarrow{s}=iint_{S}(ablatimesoverrightarrow{F})cdot doverrightarrow{S}$3、有界分的定公式:$int_{a}^{b}f(x);dx=F(b)-F(a)$4、微分的运算公式:$frac{d^2y}{dx^2}=frac{d}{dx}frac{dy}{dx}$通过以上介绍,相信大家都能够更加熟悉高中常用的微积分公式了。

-微积分的基本公式97692 31页

-微积分的基本公式97692 31页

4 0
cos2xdx
1 2si2 x n 4 01 2(s2i 4 n si0 )n 1 2 .
例7 解
计算 1co 2xd sx. 0
去绝对 值符号(如果
是分段函数,
0 1 c2 o x d x s 0 2 c2 o x d x s则的利性用质积将分积
故 li m (x x ) (x ) lifm () x
x 0 x
x 0 x
条件
这说明了什么 ?
lim f()f(x) x 0
定理 2
若 f( x ) C (a ,b [ ]则 ) , ( x ) x f( t ) d t在 [ a ,b ] a
高等院校非数学类本科数学课程
高 等 数 学 A(1)
—— 一元微积分学
第二十六讲 微积分的基本公式
授课老师:彭亚新
第七章 一元函数积分学
第四节 微积分的基本公式
一. 积分上限函数 二. 微积分基本公式
本讲学习要求
理解积分上限函数的概念、求导定理 及其与原函数的关系;
熟悉牛顿—莱布尼兹公式.
就是:说 任意两个原函 差数 一之 个间 . 常相 数 F(x)C包含f(了 x)的所有.原函数
例4
(s 2 x ) i 2 n sx icn x o ss 2 ix ,n
( c2 x o ) 2 s cx ( o sx ) s i s n 2 x i,n
故 F ( x ) s2 i x ,n G ( x ) c2 o x s
一. 积分上限函数 (变上限的定积分)
对可f(积 x)而 函 ,每 言 数 给a,定 b值 ,就 一有 对
确定的I定 bf(积 x)dx分 与值 之 . 对应 a 这意f(味 x)的 着 定b积 f(x)d分 x与它的上 a

微积分基本公式与计算

微积分基本公式与计算

dx x

2

2
d sin x
0 1 sin 2 x
2[arctan(sin x)] 2
02
2.
I

2
1
x
xdx
奇函数

I

1
1
x
x
d
x

2
1
x
xd x
3

0

2
1
x2 d x

[
2 5
x
5 2
]
2 1
2 (4 2 1) 5
2)利用定积分的几何意义——曲边梯形面积

uv
b

b
vudx
a
a
a
解:
原式 =
1
1
x arcsin x 2 2
00
x dx 1 x2
1
1
2(1

x2
1
)2
d
(1

x2
)
12 2 0

11
(1 x2 ) 2 2
12
0
u arcsin x v 1; u 1
1 x2 vx

12
3 1 2
1
解 原式 =
1
dx
1 x 2 tan xdx
1
1
奇函数
20 2
例2 求
1 ( x3 x 2 2 x 3)dx.
1
解 原式 =
1 ( x 2 3)dx 1 ( x3 2 x)dx
1
1
奇函数
1
2 1 ( x2 3)dx 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

故 li m (x x ) (x ) lifm () x
x 0 x
x 0 x
条件
这说明了什么 ?
lim f()f(x) x 0
定理 2
若 f( x ) C (a ,b [ ]则 ) , ( x ) x f( t ) d t在 [ a ,b ] a
一. 积分上限函数 (变上限的定积分)
对可f(积 x)而 函 ,每 言 数 给a,定 b值 ,就 一有 对
确定的I定 bf(积 x)dx分 与值 之 . 对应 a 这意f(味 x)的 着 定b积 f(x)d分 x与它的上 a
之间存在一种函数关系.
固定积分 ,让 下 积 限 分 不 ,上 则 变 限 得变 到
于 0 | 是 ( x ) | |x x f ( t ) d t | x x |f ( t ) |d t M x
x
x
由夹逼 x的 定 任 ,即 理 意 可 及 (x)性 C 得 ( 点 a [,b ].)
定理1说明: 定义在区[a间 ,b]上的 积分上限函数是连 . 续的
( x ) ( x x ) ( x )
x x
x
x x
a f( t) d t a f( t) d t x f( t) d t
又 f( x ) R (a ,[ b ]故 )f ,( x )在 [ a ,b ]上|f有 ( x )| M .界
a
b
b
x
xf(t)dtbf(t)dt,
所以,我们只需讨论积分上限函数.
bf (t)dt 称为积分下限函 . 数 x
定理 1 若 f( x ) R ( a , b [ ]则 ) ( x , ) x f( t ) d t C ( a , b [ ].) a 证 x [ a ,b ] ,且 x x [ a ,b ] ,则
若 F 1 ( x ) f ( x ) F 2 ( x ) , f ( x ) 则 F 1 , ( x ) F 2 ( x ) C .
若能找F 到 (x),这 就样 可的 以计 bf(算 x)dx定 . a x F(x)af(x)dxC b af(x)dxF (b)F (a)
上可,导 且
(x ) dxf(t)d t f(x )(a x b ). d xa
例1
(
x
cotsdt
)
d
x
costdt cx o . s
a
dx a
(x)
x
(acoxsdx)?
定积分与积分变量的记号无关.
x
(acoxdsx)cox.s
例2 解
设 (x )x 2 s1 i n t2 )d t(,求 (x ). 0
高等院校非数学类本科数学课程
高 等 数 学 A(1)
—— 一元微积分学
第二十六讲 微积分的基本公式
授课老师:彭亚新
第七章 一元函数积分学
第四节 微积分的基本公式
一. 积分上限函数 二. 微积分基本公式
本讲学习要求
理解积分上限函数的概念、求导定理 及其与原函数的关系;
熟悉牛顿—莱布尼兹公式.
分上限函数:
x
x
( x ) a f( x ) d x a f( t) d t x [ a ,b ] .
积分上限函数的几何意义 y
yf(x)
aO
xx b x
积分上限函数的几何意义 y
x
a f (t)dt
yf(x)
aO
xx b x
曲边梯形的面积的代数和随 x 的位置而变化。
由积分bf的 (x)dx性 a质 f(x)dx : ,有
上可,导 且
(x ) dxf(t)d t f(x )(a x b ). d xa
由 (x)
x
f(t)dt
及 (x)f(x)你会想到什
a
若 F ( x ) 存 , 则 ( F ( x ) C 在 ) F ( x ) f ( x ) .
这样F的 (x)若存, 在 则必有无.穷多个
这是复合函数求导, 你能由此写出它的一般形式吗?
一般地,
若 (x )可 ,f(x 导 ) C ,则
( x )
( x ) ( a f( t) d t) f(( x )) ( x ) .
例3
e 1 t2 dt
计算lx im 0 coxsx2 .

1et2dt
令 u x 2 ,g ( u ) u s1 i t 2 ) n d t ,则 ( ( x ) g ( x 2 ) , 0
故(x)g(u)du (usi1n t2 ()dt)(x2)
dx
0
s1 i n u 2 )2 (x 2 x s1 i n x 4 ).(
积分上限函数是否可导?
由 (x x ) (x )x xf( t)d t, x
如果 f(x)C(a [,b])则 , 由积分,中 得值定
x x
( x x ) ( x ) f( t) d t f() x , x (在 x与 xx之) 间
定积分的计算 问题转化为:已 知函数的导函 数,求原来函数 的问题 .
二. 微积分基本公式 1. 原函数的定义
定义 若在 I上 某 F (x 有 ) f( 区 x ),则 间 F (x ) 称 为 f (x)在区间 I上的一个原.函数
由前面的讨 : 一 论个 可函 知数要,有 则原 必有无穷多, 个 他原 们函 构数 成一ox x2 s
lim1 x 0
x2
罗必达法则
lim eco2sx(sinx)
x0
2x
e1 1 . 2 2e
下面再看 定理 2 .
(x )
(a f(t)d t) f((x ))(x )
定理 2
若 f( x ) C (a ,b [ ]则 ) , ( x ) x f( t ) d t在 [ a ,b ] a
相关文档
最新文档