人教版平行四边形单元 易错题难题提高题学能测试试题

合集下载

人教版八年级初二数学下学期平行四边形单元 易错题难题提高题学能测试试题

人教版八年级初二数学下学期平行四边形单元 易错题难题提高题学能测试试题

人教版八年级初二数学下学期平行四边形单元 易错题难题提高题学能测试试题一、选择题1.如图,菱形ABCD 中,AC 交BD 于点O ,DE BC ⊥于点E ,连接OE ,若50BCD ∠=︒,则OED ∠的度数是( )A .35°B .30°C .25°D .20°2.如图,四边形,ABCD AD 与BC 不平行,AB CD =.,AC BD 为四边形ABCD 的对角线,,,E F ,G H 分别是,,,BD BC AC AD 的中点下列结论:①EG FH ⊥;②四边形EFGH 是矩形;③HF 平分;EHG ∠④()1 2EG BC AD =-;⑤四边形EFGH 是菱形.其中正确的个数是 ( )A .1个B .2个C .3个D .4个3.如图,依次连结第一个菱形各边的中点得到一个矩形,再依次连结矩形各边的中点得到第二个菱形,按此方法继续下去.已知第一个菱形的面积为1,则第4个菱形的面积是( )A .14B .116C .132D .164 4.如图,正方形ABCD 中,点E 是AD 边的中点,BD 、CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②5:2;③S △BHE =S △CHD ;④∠AHB=∠EHD .其中正确的个数是A .1B .2C .3D .45.矩形纸片ABCD 中,AB =5,AD =4,将纸片折叠,使点B 落在边CD 上的点B '处,折痕为AE .延长B E '交AB 的延长线于点M ,折痕AE 上有点P ,下列结论中:①M DAB '∠∠=;②PB PB '=;③AE =552;④MB CD '=;⑤若B P CD '⊥,则EB B P ''=.正确的有( )个A .2B .3C .4D .56.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,AB 长为半径画弧,交边AD 于点;②再分别以B ,F 为圆心画弧,两弧交于平行四边形ABCD 内部的点G 处;③连接AG 并延长交BC 于点E ,连接BF ,若BF =3,AB =2.5,则AE 的长为( )A .2B .4C .8D .57.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =185.其中正确结论的个数是( )A .1B .2C .3D .48.如图,在菱形ABCD 中,AB=AC=1,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,连接DH 交AC 于点O ,则下列结论:①△ABF ≌△CAE ;②∠FHC=∠B ;③△ADO ≌△ACH ;④=3ABCD S 菱形;其中正确的结论个数是( )A .1个B .2个C .3个D .4个9.如图,一个四边形花坛ABCD ,被两条线段MN , EF 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S 1、S 2、S 3、S 4,若MN ∥AB ∥DC ,EF ∥DA ∥CB ,则有( )A .S 1= S 4B .S 1 + S 4 = S 2 + S 3C .S 1 + S 3 = S 2 + S 4D .S 1·S 4 = S 2·S 310.如图,正方形ABCD 中,延长CB 至E 使2CB EB =,以EB 为边作正方形EFGB ,延长FG 交DC 于M ,连接AM ,AF ,H 为AD 的中点,连接FH 分别与AB ,AM 交于点,N K .则下列说法:①ANH GNF △≌△;②DAM NFG ∠=∠;③2FN NK =;④:2:7AFN DMKH S S =△四边形.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题11.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDG FDG S S =,正确的有__________________.12.如图,在正方形ABCD 中,点,E F 将对角线AC 三等分,且6AC =.点P 在正方形的边上,则满足5PE PF +=的点P 的个数是________个.13.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.14.已知在矩形ABCD 中,3,3,2AB BC ==点P 在直线BC 上,点Q 在直线CD 上,且,AP PQ ⊥当AP PQ =时,AP =________________.15.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).16.如图,直线1l ,2l 分别经过点(1,0)和(4,0)且平行于y 轴.OABC 的顶点A ,C 分别在直线1l 和2l 上,O 是坐标原点,则对角线OB 长的最小值为_________.17.如图,在平面直角坐标系中,直线112y x =+与x 轴、y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD ,则D 点坐标是_______;在y 轴上有一个动点M ,当MDC △的周长值最小时,则这个最小值是_______.18.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.19.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.20.如图所示,在四边形ABCD 中,顺次连接四边中点E 、F 、G 、H ,构成一个新的四边形,请你对四边形ABCD 添加一个条件,使四边形EFGH 成一个菱形,这个条件是__________.三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接,PG PC .(1)求证:,PG PC PG PC ⊥=.简析:由Р是线段DF 的中点,//DC CF ,不妨延长GP 交DC 于点M ,从而构造出一对全等的三角形,即_______≅________.由全等三角形的性质,易证CMG 是_______三角形,进而得出结论;(2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PG PC的值,写出你的猜想并加以证明;(3)当6,2AB BE ==时,菱形ABCD 和菱形BEFG 的顶点都按逆时针排列,且60ABC BEF ∠=∠=︒.若点A B E 、、在一条直线上,如图2,则CP =________;若点A B G 、、在一条直线上,如图3,则CP =________.23.如图1,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF .(1)求证:四边形BFEP为菱形;(2)当E在AD边上移动时,折痕的端点P、Q也随着移动.①当点Q与点C重合时,(如图2),求菱形BFEP的边长;②如果限定P、Q分别在线段BA、BC上移动,直接写出菱形BFEP面积的变化范围.24.如图.正方形ABCD的边长为4,点E从点A出发,以每秒1个单位长度的速度沿射线AD运动,运动时间为t秒(t>0),以AE为一条边,在正方形ABCD左侧作正方形AEFG,连接BF.(1)当t=1时,求BF的长度;(2)在点E运动的过程中,求D、F两点之间距离的最小值;(3)连接AF、DF,当△ADF是等腰三角形时,求t的值.25.如图①,已知正方形ABCD的边长为3,点Q是AD边上的一个动点,点A关于直线BQ的对称点是点P,连接QP、DP、CP、BP,设AQ=x.(1)BP+DP的最小值是_______,此时x的值是_______;(2)如图②,若QP的延长线交CD边于点M,并且∠CPD=90°.①求证:点M是CD的中点;②求x的值.(3)若点Q是射线AD上的一个动点,请直接写出当△CDP为等腰三角形时x的值.26.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN :①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).27.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由;(2)求证:CP AE =;(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.28.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。

人教版八年级初二数学下学期平行四边形单元 易错题提高题学能测试试卷

人教版八年级初二数学下学期平行四边形单元 易错题提高题学能测试试卷

人教版八年级初二数学下学期平行四边形单元 易错题提高题学能测试试卷一、选择题1.已知在直角梯形ABCD 中, AD ∥BC ,∠BCD =90°, BC =CD =2AD , E 、F 分别是BC 、CD 边的中点,连结BF 、DE 交于点P ,连结CP 并延长交AB 于点Q ,连结AF ,则下列结论不正确的是( )A .CP 平分∠BCDB .四边形 ABED 为平行四边形C .CQ 将直角梯形 ABCD 分为面积相等的两部分D .△ABF 为等腰三角形 2.如图,平行四边形ABCD 中,AE 平分BAD ∠,交BC 于点E ,且AB AE =,延长AB 与DE 的延长线交于点F ,连接AC ,CF .下列结论:①ABC EAD ∆∆≌;②ABE ∆是等边三角形;③AD BF =;④BEF ACD S S ∆∆=;⑤CEF ABE S S ∆∆=中正确的有( )A .1个B .2个C .3个D .4个3.如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形1111D C B A ,又顺次连接正方形1111D C B A 四边中点得到第二个正方形2222A B C D ,……,以此类推,则第六个正方形6666A B C D 的面积是( )A .164B .116C .132D .184.如图所示,在Rt ABC ∆中,90ABC ︒∠=,30BAC ︒∠=,分别以直角边AB 、斜边AC 为边,向外作等边ABD ∆和等边ACE ∆,F 为AC 的中点,DE 与AC 交于点O ,DF 与AB 交于点G .给出如下结论:①四边形ADFE 为菱形;②DF AB ⊥;③14AO AE =;④4CE FG =;其中正确的是( )A .①②③B .①②④C .①③④D .②③④5.如图,在矩形ABCD 中,AB =6,BC =8,E 是BC 边上一点,将矩形沿AE 折叠,点B 落在点B '处,当△B 'EC 是直角三角形时,BE 的长为( )A .2B .6C .3或6D .2或3或66.如图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将ADE 沿AE 对折至AFE ,延长交BC 于点G ,连接AG.则BG 的长( )A .1B .2C .3D .37.如图,四边形ABCD 为平行四边形,D ∠为锐角,BAD ∠的平分线AE 交CD 于点F ,交BC 的延长线于点E ,且AF FE =.若25AB =,ABCD 面积为300,则AF 的长度为( )A .30B .15C .40D .208.如图,点P ,Q 分别是菱形ABCD 的边AD ,BC 上的两个动点,若线段PQ 长的最大值为5,最小值为8,则菱形ABCD 的边长为( )A .4 6B .10C .12D .169.如图,ABCD 的对角线,AC BD 交于点,O DE 平分ADC ∠交BC 于点,60,E BCD ∠=︒2,AD AB =连接OE .下列结论:ABCD S AB BD =⋅①;DB ②平分ADE ∠;AB DE =③;CDE BOC S S =④,其中正确的有( )A .1个B .2个C .3个D .4个10.如图,正方形ABCD 的边长为2,Q 为CD 边上(异于C ,D ) 的一个动点,AQ 交BD 于点M .过M 作MN ⊥AQ 交BC 于点N ,作NP ⊥BD 于点P ,连接NQ ,下面结论:①AM=MN ;②MP=2;③△CNQ 的周长为3;④BD+2BP=2BM ,其中一定成立的是( )A .①②③④B .①②③C .①②④D .①④二、填空题11.如图,正方形ABCD 的对角线相交于点O ,对角线长为1cm ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_____.12.已知:点B 是线段AC 上一点,分别以AB ,BC 为边在AC 的同侧作等边ABD △和等边BCE ,点M ,N 分别是AD ,CE 的中点,连接MN .若AC=6,设BC=2,则线段MN 的长是__________.13.如图,在平行四边形ABCD 中,AB =6,BC =4,∠A =120°,E 是AB 的中点,点F 在平行四边形ABCD 的边上,若△AEF 为等腰三角形,则EF 的长为_____.14.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).15.如图,在平行四边形ABCD ,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论:①∠BCD =2∠DCF ;②EF =CF ;③S △CDF =S △CEF ;④∠DFE =3∠AEF ,-定成立的是_________.(把所有正确结论的序号都填在横线上)16.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.17.如图,在平面直角坐标系中,直线112y x =+与x 轴、y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD ,则D 点坐标是_______;在y 轴上有一个动点M ,当MDC △的周长值最小时,则这个最小值是_______.18.如图,在平行四边形ABCD 中,AC ⊥AB ,AC 与BD 相交于点O ,在同一平面内将△ABC 沿AC 翻折,得到△AB’C ,若四边形ABCD 的面积为24cm 2,则翻折后重叠部分(即S △ACE ) 的面积为________cm 2.19.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.20.如图,长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1.正方形AEFG 绕点A 旋转的过程中,线段CF 的长的最小值为_____.三、解答题21.如图,在Rt ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动.同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是ts (0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF .(1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,DEF 为直角三角形?请说明理由.22.如图, 平行四边形ABCD 中,3AB cm =,5BC cm =,60B ∠=, G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF . (1) 求证:四边形CEDF 是平行四边形;(2) ①当AE 的长为多少时, 四边形CEDF 是矩形;②当AE = cm 时, 四边形CEDF 是菱形, (直接写出答案, 不需要说明理由).23.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .图1 图2(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .①求证:BF AB DF =+.②若3AD AB =,试探索线段DF 与FC 的数量关系.24.如图,在正方形ABCD 中,点M 是BC 边上任意一点,请你仅用无刻度的直尺,用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在如图(1)的AB 边上求作一点N ,连接CN ,使CN AM =;(2)在如图(2)的AD 边上求作一点Q ,连接CQ ,使CQ AM . 25.(1)问题探究:如图①,在四边形ABCD 中,AB ∥CD ,E 是BC 的中点,AE 是∠BAD的平分线,则线段AB ,AD ,DC 之间的等量关系为 ; (2)方法迁移:如图②,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,E 是BC 的中点,AE 是∠BAF 的平分线,试探究线段AB ,AF ,CF 之间的等量关系,并证明你的结论;(3)联想拓展:如图③,AB ∥CF ,E 是BC 的中点,点D 在线段AE 上,∠EDF =∠BAE ,试探究线段AB ,DF ,CF 之间的数量关系,并证明你的结论.26.如图,在正方形ABCD 中,点E 、F 是正方形内两点,BE DF ∥,EF BE ⊥,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接BD ,且BE DF =①求证:EF 与BD 互相平分; ②求证:222()2BE DF EF AB ++=;(2)在图2中,当BE DF ≠,其它条件不变时,222()2BE DF EF AB ++=是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当4AB =,135DPB ∠=︒2246B BP PD +=时,求PD 之长.27.如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).(1)求G点坐标(2)求直线EF解析式(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由28.在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC边上,且FE⊥AE.(1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.29.在四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF,GH分别交边AB、CD,AD、BC于点E、F、G、H.(1)观察发现:如图①,若四边形ABCD是正方形,且EF⊥GH,易知S△BOE=S△AOG,又因为S△AOB=14S四边形ABCD,所以S四边形AEOG=S正方形ABCD;(2)类比探究:如图②,若四边形ABCD 是矩形,且S 四边形AEOG =14S 矩形ABCD ,若AB =a ,AD =b ,BE =m ,求AG 的长(用含a 、b 、m 的代数式表示); (3)拓展迁移:如图③,若四边形ABCD 是平行四边形,且S 四边形AEOG =14S ▱ABCD ,若AB =3,AD =5,BE =1,则AG = .30.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC CF 、为邻边作平行四边形ECFG 。

人教版平行四边形单元 易错题专项训练学能测试试卷

人教版平行四边形单元 易错题专项训练学能测试试卷

人教版平行四边形单元 易错题专项训练学能测试试卷一、选择题1.如图,正方形ABCD 的边长为定值,E 是边CD 上的动点(不与点C ,D 重合),AE 交对角线BD 于点F , FG AE ⊥交BC 于点G ,GH BD ⊥于点H ,连结AG 交BD 于点N .现给出下列命题:① AF FG =;②DF DE =;③FH 的长度为定值;④GE BG DE =+;⑤222BN DF NF +=.真命题有( )A .2个B .3个C .4个D .5个2.如图,菱形ABCD 中,∠ABC =60°,AB =4,对角线AC 、BD 交于点O ,E 是线段BO 上一动点,F 是射线DC 上一动点,若∠AEF =120°,则线段EF 的长度的整数值的个数有( )A .1个B .2个C .3个D .4个3.如图,在矩形ABCD 中,AB=2,BC=4,P 为边AD 上一动点,连接BP ,把△ABP 沿BP 折叠,使A 落在A′处,当△A′DC 为等腰三角形时,AP 的长为( )A .2B 23C .223D .2434.如图,矩形ABCD 中,AB =3BC =6,P 为矩形内一点,连接PA ,PB ,PC ,则PA +PB +PC 的最小值是( )A .43+3B .221C .23+6D .455.如图,在平行四边形ABCD 中,272BC AB B CE AB =∠=︒⊥,,于E F ,为AD 的中点,则AEF ∠的大小是( )A .54︒B .60︒C .66︒D .72︒ 6.如图,在矩形ABCD 中,P 是边AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,如果3, 4AB AD ==,那么( )A .125PE PF += B .121355PE PF <+< C .5PE PF += D .34PE PF <+< 7.如图,一张长方形纸片的长4=AD ,宽1AB =,点E 在边AD 上,点F 在边BC 上,将四边形ABFE 沿着EF 折叠后,点B 落在边AD 的中点G 处,则EG 等于( )A 3B .3C .178D .54 8.如图,在ABCD 中,AD=2AB ,CE AB ⊥,垂足E 在线段AB 上,F 、G 分别是AD 、CE 的中点,连接FG ,EF 、CD 的延长线交于点H ,则下列结论:①12DCF BCD ∠=∠;②EF CF =:③2BEC CEF S S =;④3DFE AEF ∠=∠.其中,正确结论的个数是( )A.1个B.2个C.3个D.4个9.如图,在正方形ABCD中,AB=4,E是CD的中点,将BCE沿BE翻折至BFE,连接DF,则DF的长度是()A.55B.255C.355D.45510.已知菱形ABCD的面积为83,对角线AC的长为43,∠BCD=60°,M为BC的中点,若P为对角线AC上一动点,则PB+PM的最小值为()A.3B.2 C.23D.4二、填空题11.在平行四边形ABCD 中, BC边上的高为4 ,AB=5 ,25AC ,则平行四边形ABCD 的周长等于______________ .12.如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为.13.如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为_____.14.在平行四边形ABCD 中,30,23,2A AD BD ∠=︒==,则平行四边形ABCD 的面积等于_____.15.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,AB =OB ,点E ,F 分别是OA ,OD 的中点,连接EF ,EM ⊥BC 于点M ,EM 交BD 于点N ,若∠CEF =45°,FN =5,则线段BC 的长为_____.16.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .17.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.18.如图,正方形ABCD 面积为1,延长DA 至点G ,使得AG AD =,以DG 为边在正方形另一侧作菱形DGFE ,其中45EFG ︒∠=,依次延长, , AB BC CD 类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点, , , ,F H M N 则四边形FHMN 的面积为___________.19.已知:如图,在ABC 中,AD BC ⊥,垂足为点D ,BE AC ⊥,垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED ,设4AB =,30DAC ∠=︒则EM =______;EDM 的面积为______,20.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt △ABC 中,∠ACB =90°,若点D 是斜边AB 的中点,则CD =12AB ,运用:如图2,△ABC 中,∠BAC =90°,AB =2,AC =3,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED 连接BE ,CE ,DE ,则CE 的长为_____.三、解答题21.在四边形ABCD 中,AD ∥BC ,AB=8cm ,AD=16cm ,BC=22cm ,∠ABC=90°.点P 从点A 出发,以1cm/s 的速度向点D 运动,点Q 从点C 同时出发,以3cm/s 的速度向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒.(1)当t= 时,四边形ABQP 成为矩形?(2)当t= 时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD 是否能成为菱形?若能,求出t 的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度.22.如下图1,在平面直角坐标系中xoy 中,将一个含30的直角三角板如图放置,直角顶点与原点重合,若点A 的坐标为()1,0-,30ABO ∠=︒.(1)旋转操作:如下图2,将此直角三角板绕点O 顺时针旋转30时,则点B 的坐标为 . (2)问题探究:在图2的基础上继续将直角三角板绕点O 顺时针60︒,如图3,在AB 边上的上方以AB 为边作等边ABC ,问:是否存在这样的点D ,使得以点A 、B 、C 、D 四点为顶点的四边形构成为菱形,若存在,请直接写出点D 所有可能的坐标;若不存在,请说明理由.(3)动点分析:在图3的基础上,过点O 作OP AB ⊥于点P ,如图4,若点F 是边OB 的中点,点M 是射线PF 上的一个动点,当OMB △为直角三角形时,求OM 的长.23.已知,在△ABC 中,∠BAC =90°,∠ABC =45°,D 为直线BC 上一动点(不与点B ,C 重合),以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BC 与CF 的位置关系是 ,BC 、CF 、CD 三条线段之间的数量关系为 ;(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请猜想BC 与CF 的位置关系BC ,CD ,CF 三条线段之间的数量关系并证明;(3)如图3,当点D 在线段BC 的反向延长线上时,点A ,F 分别在直线BC 的两侧,其他条件不变.若正方形ADEF 的对角线AE ,DF 相交于点O ,OC =132,DB =5,则△ABC 的面积为 .(直接写出答案)24.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .图1 图2(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .①求证:BF AB DF =+. ②若3AD AB =,试探索线段DF 与FC 的数量关系.25.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:如图1,90MON ∠=,点A 为边OM 上一定点,点B 为边ON 上一动点,以AB 为一边在∠MON 的内部作正方形ABCD ,过点C 作CF OM ⊥,垂足为点F (在点O 、A 之间),交BD 与点E ,试探究AEF ∆的周长与OA 的长度之间的等量关系该兴趣小组进行了如下探索:(动手操作,归纳发现)(1)通过测量图1、2、3中线段AE 、AF 、EF 和OA 的长,他们猜想AEF ∆的周长是OA 长的_____倍.请你完善这个猜想(推理探索,尝试证明)为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程:(2)如图4,过点C 作CG ON ⊥,垂足为点G则90CGB ∠=90GCB CBG ∴∠+∠=又四边形ABCD 正方形,AB BC =,90ABC ∠=则90CBG ABO ∠+∠=GCB ABO ∴∠=∠在CBE ∆与ABE ∆中,(类比探究,拓展延伸)(3)如图5,当点F 在线段OA 的延长线上时,直接写出线段AE 、EF 、AF 与OA 长度之间的等量关系为 .26.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明..)ABCD 中,AB BC ≠,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D . 结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形;结论2:'B D AC .试证明以上结论.(应用与探究)在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)27.如图1,在正方形ABCD (正方形四边相等,四个角均为直角)中,AB =8,P 为线段BC 上一点,连接AP ,过点B 作BQ ⊥AP ,交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC ′,延长QC ′交AD 于点N .(1)求证:BP =CQ ;(2)若BP =13PC ,求AN 的长; (3)如图2,延长QN 交BA 的延长线于点M ,若BP =x (0<x <8),△BMC '的面积为S ,求S 与x 之间的函数关系式. 28.已知:如下图,ABC 和BCD 中,90BAC BDC ∠=∠=,E 为BC 的中点,连接DE AE 、.若DC AE ,在DC 上取一点F ,使得DF DE =,连接EF 交AD 于O . (1)求证:EF DA ⊥.(2)若4,23BC AD ==,求EF 的长.29.如图,ABC ∆是边长为3的等边三角形,点D 是射线BC 上的一个动点(点D 不与点B 、C 重合),ADE ∆是以AD 为边的等边三角形,过点E 作BC 的平行线,交直线AC 于点F ,连接BE .(1)判断四边形BCFE 的形状,并说明理由;(2)当DE AB ⊥时,求四边形BCFE 的周长;(3)四边形BCFE 能否是菱形?若可为菱形,请求出BD 的长,若不可能为菱形,请说明理由.30.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC的外部作等腰Rt CED,使90∠=,连接AD,分别以AB,AD为邻CED边作平行四边形ABFD,连接AF.()1请直接写出线段AF,AE的数量关系;()2①将CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;CE=,在图②的基础上将CED绕点C继续逆时针旋转一周的过②若25AB=,2程中,当平行四边形ABFD为菱形时,直接写出线段AE的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题意,连接CF,由正方形的性质,可以得到△ABF≌△CBF,则AF=CF,∠BAF=∠BCF,由∠BAF=∠FGC=∠BCF,得到AF=CF=FG,故①正确;连接AC,与BD相交于点O,由正方形性质和等腰直角三角形性质,证明△AOF≌△FHG,即可得到EH=AO,则③正确;把△ADE顺时针旋转90°,得到△ABM,则证明△MAG≌△EAG,得到MG=EG,即可得到EG=DE+BG,故④正确;②无法证明成立,即可得到答案.【详解】解:连接CF,在正方形ABCD 中,AB=BC ,∠ABF=∠CBF=45°,在△ABF 和△CBF 中,45AB BC ABF CBF BF BF =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△CBF (SAS ),∴AF=CF ,∠BAF=∠BCF ,∵FG ⊥AE ,∴在四边形ABGF 中,∠BAF+∠BGF=360°-90°-90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF ,∴∠CGF=∠BCF∴CF=FG ,∴AF=FG ;①正确;连接AC 交BD 于O .∵四边形ABCD 是正方形,HG ⊥BD ,∴∠AOF=∠FHG=90°,∵∠OAF+∠AFO=90°,∠GFH+∠AFO=90°,∴∠OAF=∠GFH ,∵FA=FG ,∴△AOF ≌△FHG ,∴FH=OA=定值,③正确;如图,把△ADE 顺时针旋转90°,得到△ABM ,∴AM=AE ,BM=DE ,∠BAM=∠DAE ,∵AF=FG ,AF ⊥FG ,∴△AFG 是等腰直角三角形,∴∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△AMG 和△AEG 中,45AM AE EAG MAG AG AG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AMG ≌△AEG ,∴MG=EG ,∵MG=MB+BG=DE+BG ,∴GE= DE+BG ,故④正确;如图,△ADE 顺时针旋转90°,得到△ABM ,记F 的对应点为P ,连接BP 、PN , 则有BP=DF ,∠ABP=∠ADB=45°,∵∠ABD=45°,∴∠PBN=90°,∴BP 2+BN 2=PN 2,由上可知△AFG 是等腰直角三角形,∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△ANP 和△ANF 中,45AP AF EAG MAG AN AN =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ANP ≌△ANF ,∴PN=NF ,∴BP 2+BN 2=NF 2,即DF 2+BN 2=NF 2,故⑤正确;根据题意,无法证明②正确,∴真命题有四个,故选C.【点睛】本题考查了正方形的性质,全等三角形的判定与性质等知识,解题的关键是作辅助线构造出等腰三角形和全等三角形.2.C解析:C【解析】【分析】连结CE ,根据菱形的性质和全等三角形的判定可得△ABE ≌△CBE ,根据全等三角形的性质可得AE =CE ,设∠OCE =a ,∠OAE =a ,∠AEO =90°﹣a ,可得∠ECF =∠EFC ,根据等角对等边可得CE =EF ,从而得到AE =EF ,在Rt △ABO 中,根据含30°的直角三角形的性质得到AO =2,可得2≤AE ≤4,从而得到EF 的长的整数值可能是2,3,4.【详解】解:如图,连结CE ,∵在菱形ABCD 中,AB =BC ,∠ABE =∠CBE =30°,BE =BE ,∴△ABE ≌△CBE ,∴AE =CE ,设∠OCE =a ,∠OAE =a ,∠AEO =90°﹣a ,∴∠DEF =120°﹣(90°﹣a )=30°+a ,∴∠EFC =∠CDE +∠DEF =30°+30°+a =60°+a ,∵∠ECF =∠DCO +∠OCE =60°+a ,∴∠ECF =∠EFC ,∴CE =EF ,∴AE =EF ,∵AB=4,∠ABE=30°,∴在Rt△ABO中,AO=2,∵OA≤AE≤AB,∴2≤AE≤4,∴AE的长的整数值可能是2,3,4,即EF的长的整数值可能是2,3,4.故选:C.【点睛】考查了菱形的性质,全等三角形的判定与性质,等角对等边,根据含30°的直角三角形的性质,解题的关键是添加辅助线,证明△ABE≌△CBE.3.C解析:C【解析】【分析】根据△A′DC为等腰三角形,分三种情况进行讨论:①A'D=A'C,②A'D=DC,③CA'=CD,分别求得AP的长,并判断是否符合题意.【详解】①如图,当A′D=A′C时,过A′作EF⊥AD,交DC于E,交AB于F,则EF垂直平分CD,EF 垂直平分AB∴A'A=A'B由折叠得,AB=A'B,∠ABP=∠A'BP∴△ABA'是等边三角形∴∠ABP=30°∴AP=23333 ==;②如图,当A'D=DC时,A'D=2由折叠得,A'B=AB=2∴A'B+A'D=2+2=4连接BD,则Rt△ABD中,22222425AB AD++=∴A'B+A'D<BD(不合题意)故这种情况不存在;③如图,当CD=CA'时,CA'=2由折叠得,A'B=AB=2∴A'B+A'C=2+2=4∴点A'落在BC上的中点处此时,∠ABP=12∠ABA'=45°∴AP=AB=2.综上所述,当△A′DC为等腰三角形时,AP的长为233或2.故选C.【点睛】本题以折叠问题为背景,主要考查了等腰三角形的性质,解决问题的关键是画出图形进行分类讨论,分类时注意不能重复,不能遗漏.4.B解析:B【解析】【分析】将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.【详解】解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB=ABBC=33,∴∠ACB=30°,AC=2AB=43,∵∠BCE=60°,∴∠ACE=90°,∴AE=22(43)6=221.故选B.【点睛】本题考查轴对称—最短问题、矩形的性质、旋转变换等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考常考题型.5.A解析:A【分析】过F作AB的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的度数,由此得解.【详解】解:过F作FG∥AB交BC于G,连接EG,∵在平行四边形ABCD中,AB∥CD,AD∥BC,∴FG∥AB∥CD,∵FG∥AB,AD∥BC,∴四边形ABGF是平行四边形,∴AF=BG,又∵F为AD中点∴G是BC的中点;∵BC=2AB,F为AD的中点,∴BG=AB=FG=AF,∵在Rt△BEC中,EG是斜边上的中线,∴BG =GE =FG =12BC ; ∴∠BEG =∠B =72°,∴∠AEG =∠AEF +∠FEG =180°﹣∠BEG =108°,∵AE ∥FG ,∴∠EFG =∠AEF ,∵GE =FG ,∴∠EFG =∠FEG ,∴∠AEF =∠FEG =12∠AEG =54°, 故选:A .【点睛】此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出辅助线是解决问题的关键. 6.A解析:A【分析】设AC 、BD 交于点O ,连接OP ,根据矩形的性质及勾股定理求出OA=OD=2.5,再求出△AOD 的面积,根据面积关系即可求出答案.【详解】设AC 、BD 交于点O ,连接OP ,∵3, 4AB AD ==,∴BD=AC=5,∴OA=OD=2.5, ∵1134344AOD ABCD SS ==⨯⨯=矩形, ∴3AOP DOP S S +=,∵PE AC ⊥于E ,PF BD ⊥于F , ∴112.5 2.5322PE PF ⨯+⨯=, 15()322PE PF ⨯+=, ∴125PE PF +=, 故选:A.【点睛】此题考查矩形的性质,勾股定理,根据矩形的性质求出△AOD 的面积是解题的关键.7.D解析:D【分析】连接BE ,根据折叠的性质证明△ABE ≌△A GE ',得到BE=EG ,根据点G 是AD 的中点,AD=4得到AE=2-EG=2-BE ,再根据勾股定理即可求出BE 得到EG.【详解】连接BE ,由折叠得:AE A E '=,A A '∠=∠=90°,AB A G '=,∴△ABE ≌△A GE ',∴BE=EG,∵点G 是AD 的中点,AD=4,∴AG=2,即AE+EG=2,∴AE=2-EG=2-BE ,在Rt △ABE 中,222BE AE AB =+,∴ 222(2)1BE BE =-+,∴EG=5BE 4=, 故选:D.【点睛】此题考查折叠的性质,勾股定理,三角形全等的判定及性质,利用折叠证明三角形全等,目的是证得EG=BE ,由此利用勾股定理解题.8.C解析:C【分析】由点F 是AD 的中点,结合ABCD 的性质,得FD=CD ,即可判断①;先证∆AEF ≅∆DHF ,再证∆ECH 是直角三角形,即可判断②;由EF=HF ,得2HEC CEF S S =,由CE AB ⊥,CE ⊥CD ,结合三角形的面积公式,即可判断③;设∠AEF=x ,则∠H=x ,根据直角三角形的性质,得∠FCH=∠H=x ,由FD=CD ,∠DFC=∠FCH=x ,由FG ∥CD ∥AB ,得∠AEF=∠EFG=x ,由EF=CF ,∠EFG=∠CFG=x ,进而得到3DFE AEF ∠=∠,即可判断④.【详解】∵点F 是AD 的中点,∴2FD=AD , ∵在ABCD 中,AD=2AB ,∴FD=AB=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠BCF ,∴∠DCF=∠BCF ,即:12DCF BCD ∠=∠, ∴①正确;∵AB ∥CD ,∴∠A=∠FDH ,∠AEF=∠H ,又∵AF=DF ,∴∆AEF ≅∆DHF (AAS ),∴EF=HF ,∵CE AB ⊥,∴CE ⊥CD ,即:∆ECH 是直角三角形,∴EF CF ==12EH , ∴②正确;∵EF=HF ,∴2HEC CEF S S =∵CE AB ⊥,CE ⊥CD ,垂足E 在线段AB 上,∴BE CH <,∴BEC HCE SS <, ∴2BEC CEFS S <, ∴③错误;设∠AEF=x ,则∠H=x ,∵在Rt ∆ECH 中,CF=FH=EF ,∴∠FCH=∠H=x ,∵FD=CD ,∴∠DFC=∠FCH=x ,∵点F ,G 分别是EH ,EC 的中点,∴FG ∥CD ∥AB ,∴∠AEF=∠EFG=x ,∵EF=CF ,∴∠EFG=∠CFG=x ,∴∠DFE=∠DFC+∠EFG+∠CFG=3x ,∴3DFE AEF ∠=∠.∴④正确.故选C .【点睛】本题主要考查平行四边形和直角三角形的性质定理的综合,掌握直角三角形斜边上的中线等于斜边的一半,是解题的关键.9.D解析:D【分析】由勾股定理可求BE 的长,由折叠的性质可得CE =EF =2,BE ⊥CF ,FH =CH ,由面积法可求CH =45,由勾股定理可求EH 的长,由三角形中位线定理可求DF =2EH =45. 【详解】解:如图,连接CF ,交BE 于H ,∵在正方形ABCD 中,AB =4,E 是CD 的中点,∴BC =CD =4,CE =DE =2,∠BCD =90°,∴BE 2216425BC CE +=+=∵将△BCE 沿BE 翻折至△BFE ,∴CE =EF =2,BE ⊥CF ,FH =CH ,∵S △BCE =12×BE×CH =12×BC×CE , ∴CH 45, ∴22162545CE CH -=-= ∵CE =DE ,FH =CH ,∴DF=2EH=455,故选:D.【点睛】本题考查了翻折变换,正方形的性质,全等三角形的判定与性质,掌握折叠的性质是本题的关键.10.C解析:C【分析】作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;由菱形的面积可求出BD=4,由题意可证△BCD是等边三角形,由等边三角形的性质可得DM⊥BC,CM=BM=2,由勾股定理可求DM=23.【详解】解:作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;∵菱形ABCD的面积为3,对角线AC长为3,∴BD=4,∵BC=CD,∠BCD=60°,∴△BCD是等边三角形,∴BD=BC=4,∵M是BC的中点,∴DM⊥BC,CM=BM=2,在Rt△CDM中,CM=2,CD=4,∴2216423CD CM-=-故选:C.【点睛】本题考查了轴对称-最短路线问题,菱形的性质,等边三角形的性质,直角三角形勾股定理;掌握利用轴对称求最短距离,将PB与PM之和的最小值转化为线段DM的长是解题的关键.二、填空题11.12或20【分析】根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【详解】解:情况一:当BC边上的高在平行四边形的内部时,如图1所示:在平行四边形ABCD中,BC边上的高为4,AB=5,AC=25,在Rt△ACE中,由勾股定理可知:2222CE AC AE,(25)42在Rt△ABE中,由勾股定理可知:2222BE AB AE543=-=-=,∴BC=BE+CE=3+2=5,此时平行四边形ABCD的周长等于2×(AB+BC)=2×(5+5)=20;情况二:当BC边上的高在平行四边形的外部时,如图2所示:在平行四边形ABCD中,BC边上的高为AE=4,AB=5,AC=25在Rt△ACE中,由勾股定理可知:2222CE AC AE,(25)42在Rt△ABE中,由勾股定理可知:2222-=-,BE AB AE543∴BC=BE-CE=3-2=1,∴平行四边形ABCD的周长为2×(AB+BC)=2×(5+1)=12,综上所述,平行四边形ABCD的周长等于12或20.故答案为:12或20.【点睛】此题主要考查了平行四边形的性质以及勾股定理等知识,分高在平行四边形内部还是外部讨论是解题关键.12.5【详解】由于点B与点D关于AC对称,所以如果连接DE,交AC于点P,那PE+PB的值最小.在Rt△CDE中,由勾股定理先计算出DE的长度,即为PE+PB的最小值.连接DE,交AC于点P,连接BD.∵点B与点D关于AC对称,∴DE的长即为PE+PB的最小值,∵AB=4,E是BC的中点,∴CE=2,在Rt△CDE中, DE=25.考点:(1)、轴对称-最短路线问题;(3)、正方形的性质.13.22【解析】分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P 从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=12(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=12(AC+CP),∴OC=2CE=22(AC+CP ), 当AC=2,CP=CD=1时,OC=22×(2+1)=322, 当AC=2,CP=CB=5时,OC=22×(2+5)=722, ∴当P 从点D 出发运动至点B 停止时,点O 的运动路径长=722-322=22. 故答案为22.点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.14.43或23【分析】分情况讨论作出图形,通过解直角三角形得到平行四边形的底和高的长度,根据平行四边形的面积公式即可得到结论.【详解】解:过D 作DE AB ⊥于E ,在Rt ADE △中,30A ∠=︒,23AD =, 132DE AD ∴==,332AE AD ==, 在Rt BDE △中,2BD =,22222(3)1BE BD DE ∴=-=-=,如图1,4AB ∴=,∴平行四边形ABCD 的面积4343AB DE ==⨯=,如图2,2AB =,∴平行四边形ABCD 的面积2323AB DE ===,如图3,过B 作BE AD ⊥于E ,在Rt ABE △中,设AE x =,则23DE x =-, 30A ∠=︒,3BE x =, 在Rt BDE △中,2BD =, 22232()(23)x x ∴=+-, 3x ∴=,23x =(不合题意舍去),1BE ∴=,∴平行四边形ABCD 的面积12323AD BE ==⨯=,如图4,当AD BD ⊥时,平行四边形ABCD 的面积43AD BD ==,故答案为:323【点睛】本题考查了平行四边形的性质,平行四边形的面积公式的运用、30度角的直角三角形的性质,根据题意作出图形是解题的关键.15.5【分析】设EF =x ,根据三角形的中位线定理表示AD =2x ,AD ∥EF ,可得∠CAD =∠CEF =45°,证明△EMC 是等腰直角三角形,则∠CEM =45°,证明△ENF ≌△MNB ,则EN =MN =12x ,BN =FN =5,最后利用勾股定理计算x 的值,可得BC 的长.【详解】解:设EF =x ,∵点E 、点F 分别是OA 、OD 的中点,∴EF 是△OAD 的中位线,∴AD =2x ,AD ∥EF ,∴∠CAD =∠CEF =45°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =2x ,∴∠ACB =∠CAD =45°,∵EM ⊥BC ,∴∠EMC =90°,∴△EMC 是等腰直角三角形,∴∠CEM =45°,连接BE ,∵AB =OB ,AE =OE∴BE ⊥AO∴∠BEM =45°,∴BM =EM =MC =x ,∴BM =FE ,易得△ENF ≌△MNB ,∴EN =MN =12x ,BN =FN =5, Rt △BNM 中,由勾股定理得:BN2=BM2+MN2, 即22215()2x x =+解得,x =5∴BC =2x =5 故答案为:5【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.16.5【分析】作BE ⊥AD 于E ,BF ⊥CD 于F ,则四边形BEDF 是矩形,证明△ABE ≌△CBF (AAS ),得出BE=BF ,△ABE 的面积=△CBF 的面积,则四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,求出10,即可求得BD 的长.【详解】解:作BE ⊥AD 交DA 延长线于E ,BF ⊥CD 于F ,如图所示:则∠BEA=∠BFC=90°,∵∠ADC=90°,∴四边形BEDF 是矩形,∴∠EBF=90°,∵∠ABC=90°,∴∠EBF=∠ABC=90°,∴∠ABE=∠CBF ,在△ABE 和△CBF 中,BEA BFC ABE CBF AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (AAS ),∴BE=BF ,△ABE 的面积=△CBF 的面积,∴四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,∴BE=DE ,BE 2=10 cm 2,∴10(cm),∴25.故答案为:5【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、矩形的判定与性质等知识;熟练掌握正方形的判定与性质,证明三角形全等是解题的关键.17.65【分析】先由正方形的性质得到∠ABF 的角度,从而得到∠AEB 的大小,再证△AEB ≌△AED ,得到∠AED 的大小【详解】∵四边形ABCD 是正方形∴∠ACB=∠ACD=∠BAC=∠CAD=45°,∠ABC=90°,AB=AD∵∠FBC=20°,∴ABF=70°∴在△ABE 中,∠AEB=65°在△ABE 与△ADE 中45AB AD BAE EAD AE AE =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△ADE∴∠AED=∠AEB=65°故答案为:65°【点睛】本题考查正方形的性质和三角形全等的证明,解题关键是利用正方形的性质,推导出∠AEB 的大小.18.1382+【分析】如图所示,延长CD 交FN 于点P ,过N 作NK ⊥CD 于点K ,延长FE 交CD 于点Q ,交NS 于点R ,首先利用正方形性质结合题意求出AD=CD=AG=DQ=1,然后进一步根据菱形性质得出DE=EF=DG=2,再后通过证明四边形NKQR 是矩形得出QR=NK=2,进一步可得2221382FN FR NR =+=+,再延长NS 交ML 于点Z ,利用全等三角形性质与判定证明四边形FHMN 为正方形,最后进一步求解即可.【详解】如图所示,延长CD 交FN 于点P ,过N 作NK ⊥CD 于点K ,延长FE 交CD 于点Q ,交NS 于点R ,∵ABCD 为正方形,∴∠CDG=∠GDK=90°,∵正方形ABCD 面积为1,∴AD=CD=AG=DQ=1,∴DG=CT=2,∵四边形DEFG 为菱形,∴DE=EF=DG=2,同理可得:CT=TN=2,∵∠EFG=45°,∴∠EDG=∠SCT=∠NTK=45°,∵FE ∥DG ,CT ∥SN ,DG ⊥CT ,∴∠FQP=∠FRN=∠DQE=∠NKT=90°,∴FQ=FE+EQ=2+∵∠NKT=∠KQR=∠FRN=90°,∴四边形NKQR 是矩形,∴,∴FR=FQ+QR=2+,NR=KQ=DK −11=,∴22213FN FR NR =+=+再延长NS 交ML 于点Z ,易证得:△NMZ ≅△FNR(SAS),∴FN=MN ,∠NFR=∠MNZ ,∵∠NFR+∠FNR=90°,∴∠MNZ+∠FNR=90°,即∠FNM=90°,同理可得:∠NFH=∠FHM=90°,∴四边形FHMN 为正方形,∴正方形FHMN 的面积=213FN =+故答案为:13+【点睛】本题主要考查了正方形和矩形性质与判定及与全等三角形性质与判定的综合运用,熟练掌握相关方法是解题关键.19.2【分析】根据EM 是Rt ABE △斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半即可求出EM 的长;根据已知条件推导出DME 是等边三角形,且边长为2,进一步计算即可得解.【详解】解:∵AD BC ⊥,M 为AB 边的中点,4AB =∴在Rt ABD △中,114222DM AM AB ===⨯= 同理,在Rt ABE △中,114222EM AM AB ===⨯= ∴MDA MAD ∠=∠,MEA MAE ∠=∠∵2BME MEA MAE MAE ∠=∠+∠=∠,2BMD MDA MAD MAD ∠=∠+∠=∠ ∴DME BME BMD ∠=∠-∠22MAE MAD =∠-∠()2MAE MAD =∠-∠2DAC =∠60=︒∵=DM EM∴DME 是等边三角形,且边长为2∴122EDM S =⨯=故答案是:2【点睛】本题考查了直角三角形斜边上的中线的性质、三角形的外角定理、角的和差以及等边三角形的判定和性质,熟练掌握相关知识点是进行推理论证的前提.20.13【分析】根据12•BC •AH =12•AB •AC ,可得AH =13,根据 12AD •BO =12BD •AH ,得OB =,再根据BE =2OB EC . 【详解】设BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∠BAC =90°,AB =2,AC =3,由勾股定理得:BC∵点D 是BC 的中点,∴AD =DC =DB , ∵12•BC •AH =12•AB •AC ,∴AH =13, ∵AE =AB ,DE =DB ,∴点A 在BE 的垂直平分线上,点D 在BE 的垂直平分线上,∴AD 垂直平分线段BE , ∵12AD •BO =12BD •AH ,∴OB =13,∴BE =2OB , ∵DE =DB=CD , ∴∠DBE=∠DEB ,∠DEC=∠DCE ,∴∠DEB+∠DEC=12×180°=90°,即:∠BEC=90°, ∴在Rt △BCE 中,EC =22BC BE - =221213(13)()13-=513. 故答案为:513. 【点睛】本题主要考查直角三角形的性质,勾股定理以及翻折的性质,掌握“直角三角形斜边长的中线等于斜边的一半”以及面积法求三角形的高,是解题的关键.三、解答题21.(1)112;(2)112或4;(3)四边形PBQD 不能成为菱形 【分析】(1)由∠B=90°,AP ∥BQ ,由矩形的判定可知当AP=BQ 时,四边形ABQP 成为矩形; (2)由(1)可求得点P 、Q 与点A 、B 为顶点的四边形为平行四边形;然后由当PD=CQ 时,CDPQ 是平行四边形,求得t 的值;(3)由PD ∥BQ ,当PD=BQ=BP 时,四边形PBQD 能成为菱形,先由PD=BQ 求出运动时间t 的值,再代入求BP ,发现BP≠PD ,判断此时四边形PBQD 不能成为菱形;设Q 点的速度改变为vcm/s 时,四边形PBQD 在时刻t 为菱形,根据PD=BQ=BP 列出关于v 、t 的方程组,解方程组即可求出点Q 的速度.【详解】(1)如图1,∵∠B=90°,AP ∥BQ ,∴当AP=BQ 时,四边形ABQP 成为矩形,此时有t=22﹣3t ,解得t=112. ∴当t=112时,四边形ABQP 成为矩形; 故答案为112; (2)如图1,当t=112时,四边形ABQP 成为矩形, 如图2,当PD=CQ 时,四边形CDPQ 是平行四边形,则16﹣t=3t ,解得:t=4,∴当t=112或4时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形; 故答案为112或4; (3)四边形PBQD 不能成为菱形.理由如下:∵PD ∥BQ ,∴当PD=BQ=BP 时,四边形PBQD 能成为菱形. 由PD=BQ ,得16﹣t=22﹣3t ,解得:t=3, 当t=3时,PD=BQ=13,BP=22AB AP + =228t +=2283+=73≠13,∴四边形PBQD 不能成为菱形;如果Q 点的速度改变为vcm/s 时,能够使四边形PBQD 在时刻ts 为菱形,由题意,得221622168t vtt t-=-⎧⎪⎨-=+⎪⎩,解得62t v =⎧⎨=⎩. 故点Q 的速度为2cm/s 时,能够使四边形PBQD 在某一时刻为菱形.【点睛】此题属于四边形的综合题.考查了矩形的判定、菱形的判定以及勾股定理等知识.注意掌握分类讨论思想与方程思想的应用是解此题的关键.22.(1)(32,32);(2)存在,点D 的坐标为(0,3)或(231)或(0,-1);(3)OM=32或212 【分析】(1)过点B 作BD ⊥y 轴于D ,利用30°所对的直角边是斜边的一半和勾股定理求出OB ,再利用30°所对的直角边是斜边的一半和勾股定理求出BD 和OD 即可得出结论;(2)根据题意和等边三角形的性质分别求出点A 、B 、C 的坐标,然后根据菱形的顶点顺序分类讨论,分别画出对应的图形,根据菱形的对角线互相平分即可分别求出结论; (3)利用30°所对的直角边是斜边的一半和勾股定理求出OP 和BP ,然后根据直角三角形的直角顶点分类讨论,分别画出对应的图形,利用直角三角形斜边上的中线等于斜边的一半、平行四边形的判定及性质、等腰三角形的判定及性质求解即可.【详解】解:(1)如图2,过点B 作BD ⊥y 轴于D由图1中,点A 的坐标为()1,0-,30ABO ∠=︒,∠AOB=90°∴OA=1,AB=2OA=2由勾股定理可得223AB OA -=∵将此直角三角板绕点O 顺时针旋转30∴∠BOD=30°∴BD=132OB =∴2232OB BD -=∴点B 332) 332); (2)在图2的基础上继续将直角三角板绕点O 顺时针60︒,此时点A 落在y 轴上,点B 落在x 轴上∴点A 的坐标为(0,1),点B 30)∵△ABC 为等边三角形∴∠ABC=60°,AB=BC=AC=2∴∠OBC=90°∴点C 32)设点D 的坐标为(a ,b )如图所示,若四边形ABCD 为菱形,连接BD ,与AC 交于点O。

人教版平行四边形单元 易错题难题学能测试试题

人教版平行四边形单元 易错题难题学能测试试题

人教版平行四边形单元 易错题难题学能测试试题一、选择题1.如图,E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,且AB =CD .结论:①EG ⊥FH ;②四边形EFGH 是矩形;③HF 平分∠EHG ;④EG 12=BC ;⑤四边形EFGH 的周长等于2AB .其中正确的个数是( )A .1B .2C .3D .42.如图,正方形ABCD 中,点E F 、分别在边BC CD 、上,且AE EF FA ==,有下列结论:①ABE ADF ∆≅∆;②CE CF =;③75AEB ∠=︒;④BE DF EF +=;⑤A ABE DF CEF S S S ∆∆∆+=;其中正确的有( )个.A .2B .3C .4D .53.七巧板是一种古老的中国传统智力玩具.如图,在正方形纸板ABCD 中,BD 为对角线,E 、F 分别为BC 、CD 的中点,AP ⊥EF 分别交BD 、EF 于O 、P 两点,M 、N 分别为BO 、DO 的中点,连接MP 、NF ,沿图中实线剪开即可得到一副七巧板.若AB =1,则四边形BMPE 的面积是( )A .17B .18C .19D .1104.正方形ABCD ,正方形CEFG 如图放置,点B 、C 、E 在同一条直线上,点P 在BC 边上,PA =PF ,且∠APF =90°,连接AF 交CD 于点M .有下列结论:①EC =BP ;②AP =AM :③∠BAP =∠GFP ;④AB 2+CE 2=12AF 2;⑤S 正方形ABCD +S 正方形CGFE =2S △APF ,其中正确的是( )A .①②③B .①③④C .①②④⑤D .①③④⑤5.如图所示,在四边形ABCD 中,AD BC =,E 、F 分别是AB 、CD 的中点,AD 、BC 的延长线分别与EF 的延长线交于点H 、G ,则( )A .AHE BGE ∠>∠B .AHE BGE ∠=∠C .AHE BGE ∠<∠D .AHE ∠与BGE ∠的大小关系不确定 6.已知四边形ABCD 中,对角线BD 被AC 平分,那么再加上下述中的条件( ) 可以得到结论: “四边形ABCD 是平行四边形”.A .AB =CD B .∠BAD=∠BCDC .∠ABC=∠ADCD .AC= BD7.如图,在Rt ABC 中,90ACB ∠=︒,分别以AB ,AC ,BC 为边,在AB 的同侧作正方形ABHI ,ACFG ,BCED .若图中两块阴影部分的面积分别记为1S ,2S ,则对1S ,2S 的大小判断正确的是( )A .12S S >B .12S SC .12S S <D .无法确定8.如图,直角梯形ABCD 中AD ∥BC ,∠D =90°.∠A 的平分线交DC 于E ,EF ⊥AB 于F .已知AD =3.5cm ,DC =4cm ,BC =6.5cm .那么四边形BCEF 的周长是( )A.10cm B.11cm C.11.5cm D.12cm9.如图,点P,Q分别是菱形ABCD的边AD,BC上的两个动点,若线段PQ长的最大值为85,最小值为8,则菱形ABCD的边长为( )A.4 6B.10 C.12 D.1610.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB:②GC平分∠BGD;③S四边形BCDG=34CG2;④∠BGE的大小为定值.其中正确的结论个数为()A.1 B.2 C.3 D.4二、填空题11.在平行四边形ABCD 中, BC边上的高为4 ,AB=5 ,25AC ,则平行四边形ABCD 的周长等于______________ .12.如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是直线AB、AC上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连结AM、MN,若AC=6,AB=5,则AM-MN的最大值为________.13.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是_____.14.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.15.菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (23,0),∠DOB =60°,点P 是对角线OC 上一个动点,E (0,-1),则EP 十BP 的最小值为__________.16.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.17.如图,正方形ABCD 的边长为4,点E 为AD 的延长线上一点,且DE =DC ,点P 为边AD 上一动点,且PC ⊥PG ,PG =PC ,点F 为EG 的中点.当点P 从D 点运动到A 点时,则CF 的最小值为___________18.已知:如图,在ABC 中,AD BC ⊥,垂足为点D ,BE AC ⊥,垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED ,设4AB =,30DAC ∠=︒则EM =______;EDM 的面积为______,19.如图,在△ABC 中,AB =AC ,E ,F 分别是BC ,AC 的中点,以AC 为斜边作Rt △ADC ,若∠CAD =∠BAC =45°,则下列结论:①CD ∥EF ;②EF =DF ;③DE 平分∠CDF ;④∠DEC =30°;⑤AB =2CD ;其中正确的是_____(填序号)20.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.三、解答题21.在四边形ABCD 中,AD ∥BC ,AB=8cm ,AD=16cm ,BC=22cm ,∠ABC=90°.点P 从点A 出发,以1cm/s 的速度向点D 运动,点Q 从点C 同时出发,以3cm/s 的速度向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒.(1)当t= 时,四边形ABQP 成为矩形?(2)当t= 时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD 是否能成为菱形?若能,求出t 的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度.22.如图, 平行四边形ABCD 中,3AB cm =,5BC cm =,60B ∠=, G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF . (1) 求证:四边形CEDF 是平行四边形;(2) ①当AE 的长为多少时, 四边形CEDF 是矩形;②当AE = cm 时, 四边形CEDF 是菱形, (直接写出答案, 不需要说明理由).23.如图,在菱形ABCD 中,AB =2cm ,∠ADC =120°.动点E 、F 分别从点B 、D 同时出发,都以0.5cm/s 的速度向点A 、C 运动,连接AF 、CE ,分别取AF 、CE 的中点G 、H .设运动的时间为ts (0<t <4).(1)求证:AF ∥CE ;(2)当t 为何值时,△ADF 的面积为3cm 2; (3)连接GE 、FH .当t 为何值时,四边形EHFG 为菱形.24.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长;(3)在(2)的条件下,求四边形BEDF 的面积.25.如图1,点E 为正方形ABCD 的边AB 上一点,EF EC ⊥,且EF EC =,连接AF ,过点F 作FN 垂直于BA 的延长线于点N .∠的度数;(1)求EAF(2)如图2,连接FC交BD于M,交AD于P,试证明:=+=+.BD BG DG AF DM226.已知正方形ABCD与正方形(点C、E、F、G按顺时针排列),是的中点,连接,.(1)如图1,点E在上,点在的延长线上,求证:DM=ME,DM⊥.ME简析:由是的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即≌ .由全等三角形性质,易证△DNE是三角形,进而得出结论.(2)如图2,在DC的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点E在直线CD上,则DM= ;若点E在直线BC上,则DM= .27.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.图① 图② 图③证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)当点P在CB延长线上时,其余条件不变(如图3).试探索PD、PE、CF之间的数量关系并说明理由.请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF 上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH 的值;(迁移拓展)在直角坐标系中.直线l1:y=443x-+与直线l2:y=2x+4相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为1.求点P的坐标.28.已知:如图,在ABC中,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C作//CF BA交PQ于点F,连接AF.(1)求证:四边形AECF 是菱形;(2)若8AC =,AE=5,则求菱形AECF 的面积.29.如图,矩形ABCD 中,点O 是对角线BD 的中点,过点O 的直线分别交AB ,CD 于点E ,F .(1)求证:四边形DEBF 是平行四边形;(2)若四边形DEBF 是菱形,则需要增加一个条件是_________________,试说明理由; (3)在(2)的条件下,若AB=8,AD=6,求EF 的长.30.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC CF 、为邻边作平行四边形ECFG 。

人教版平行四边形单元 易错题难题提高题学能测试试卷

人教版平行四边形单元 易错题难题提高题学能测试试卷

人教版平行四边形单元 易错题难题提高题学能测试试卷一、解答题1.在一次数学探究活动中,小明对对角线互相垂直的四边形进行了探究,得出了如下结论:如图1,四边形ABCD 的对角线AC 与BD 相交于点O ,AC BD ⊥,则2222AB CD AD BC +=+.(1)请帮助小明证明这一结论;(2)根据小明的探究,老师又给出了如下的问题:如图2,分别以Rt ACB 的直角边AC 和斜边AB 为边向外作正ACFG 和正方形ABDE ,连结CE 、BG 、GE .已知4AC =,5AB =,求GE 的长,请你帮助小明解决这一问题.2.在等边三角形ABC 中,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 的上方作菱形ADEF ,且∠DAF=60°,连接CF .(1)(观察猜想)如图(1),当点D 在线段CB 上时,①BCF ∠= ;②,,BC CD CF 之间数量关系为 .(2)(数学思考):如图(2),当点D 在线段CB 的延长线上时,(1)中两个结论是否仍然成立?请说明理由.(3)(拓展应用):如图(3),当点D 在线段BC 的延长线上时,若6AB =,13CD BC =,请直接写出CF 的长及菱形ADEF 的面积..3.如图, 平行四边形ABCD 中,3AB cm =,5BC cm =,60B ∠=, G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF . (1) 求证:四边形CEDF 是平行四边形;(2) ①当AE 的长为多少时, 四边形CEDF 是矩形;②当AE = cm 时, 四边形CEDF 是菱形, (直接写出答案, 不需要说明理由).4.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC 、CF 为邻边作平行四边形ECFG .(1)求证:四边形ECFG 是菱形;(2)连结BD 、CG ,若120ABC ∠=︒,则BDG ∆是等边三角形吗?为什么? (3)若90ABC ∠=︒,10AB =,24AD =,M 是EF 的中点,求DM 的长.5.已知:在ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BD 与CF 的位置关系为__________;CF 、BC 、CD 三条线段之间的数量关系____________________.(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,请你写出CF 、BC 、CD 三条线段之间的数量关系并加以证明;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系.②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.6.已知在ABC 和ADE 中, 180ACB AED ∠+∠=︒,CA CB =,EA ED =,3AB =.(1)如图1,若90ACB ∠=︒,B 、A 、D 三点共线,连接CE : ①若522CE =,求BD 长度; ②如图2,若点F 是BD 中点,连接CF ,EF ,求证:2CE EF =; (2)如图3,若点D 在线段BC 上,且2CAB EAD ∠=∠,试直接写出AED 面积的最小值.7.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由; (3)当02x <<时,六边形AEFCHG 的面积可能等于34吗?如果能,求此时x 的值;如果不能,请说明理由.8.已知正方形ABCD 与正方形(点C 、E 、F 、G 按顺时针排列),是的中点,连接,.(1)如图1,点E在上,点在的延长线上,求证:DM=ME,DM⊥.ME简析:由是的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即≌ .由全等三角形性质,易证△DNE是三角形,进而得出结论.(2)如图2,在DC的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点E在直线CD上,则DM= ;若点E在直线BC上,则DM= .9.已知:在矩形ABCD中,点F为AD中点,点E为AB边上一点,连接CE、EF、CF,EF平分∠AEC.(1)如图1,求证:CF⊥EF;(2)如图2,延长CE、DA交于点K, 过点F作FG∥AB交CE于点G若,点H为FG上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;(3)如图3, 过点H作HN⊥CH交AB于点N,若EN=11,FH-GH=1,求GK长.10.已知三角形纸片ABC的面积为48,BC的长为8.按下列步骤将三角形纸片ABC进行裁剪和拼图:第一步:如图1,沿三角形ABC的中位线DE将纸片剪成两部分.在线段DE上任意..取一点F,在线段BC上任意..取一点H,沿FH将四边形纸片DBCE剪成两部分;第二步:如图2,将FH左侧纸片绕点D旋转180°,使线段DB与DA重合;将FH右侧纸片绕点E旋转180°,使线段EC与EA重合,再与三角形纸片ADE拼成一个与三角形纸片ABC 面积相等的四边形纸片.图1 图2(1)当点F ,H 在如图2所示的位置时,请按照第二步的要求,在图2中补全拼接成的四边形;(2)在按以上步骤拼成的所有四边形纸片中,其周长的最小值为_________.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)证明见解析;(2)73.【分析】(1)由题意根据勾股定理分别表示出2222,AB CD AD BC ++进行分析求证即可;(2)根据题意连接CG 、BE ,证明△GAB ≌△CAE ,进而得BG ⊥CE ,再根据(1)的结论进行分析即可求出答案.【详解】解:(1)∵AC ⊥BD ,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,222222AD BC AO DO BO CO +=+++,222222AB CD AO BO CO DO +=+++,∴2222AD BC AB CD +=+;(2)连接CG 、BE ,如图2,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC ,即∠GAB=∠CAE ,在△GAB 和△CAE 中,AG AC GAB CAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴△GAB ≌△CAE (SAS ),∴∠ABG=∠AEC ,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE ⊥BG ,由(1)得,2222CG BE CB GE +=+,∵AC=4,AB=5,∴BC=3,,,∴222273GE CG BE CB =+-=,∴【点睛】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,熟练并正确理解全等三角形的判定和性质以及灵活运用勾股定理是解题的关键.2.(1)①120°;② BC =CD +CF ;(2)不成立,见解析;(3)8,【分析】(1)①根据菱形的性质以及等边三角形的性质,推出△ACF ≌△ABD ,根据全等三角形的性质即可得到结论;②根据全等三角形的性质得到CF=BD ,再根据BD+CD=BC ,即可得出CF+CD=BC ;(2)依据△ABD ≌△ACF ,即可得到∠ACF+∠BAC=180°,进而得到AB ∥CF ;依据△ABD ≌△ACF 可得BD=CF ,依据CD-BD=BC ,即可得出CD-CF=BC ;(3)依据≅△△ADB AFC ,即可得到8==+=CF BD BC CD ,利用ABC ∆是等边三角形,AH BC ⊥,可得132===BH HC BC ,即可得出HD 的长度,利用勾股定理即可求出AD 的长度,即可得出结论.【详解】解:(1) 在等边△ABC 中,AB=AC ,∠BAC=∠ACB=∠ABC=60°∴∠BAD+∠DAC=60°在菱形ADEF 中AD=AF∵∠DAF=∠DAC+∠FAC=60°∴∠CAF=∠DAB又∵AC=AB ,AF=AD∴△ACF ≌△ABD∴∠ACF=∠ABD=60°,CF=BD∴∠BCF=∠ACB+∠ACF=120°故答案为:120°②∵BC=BD+CD ,BD=CF∴BD=CF+CD故答案为:BC=CD+CF(2)不成立理由:∵ABC ∆是等边三角形∴60BAC ABC ACB ∠=∠=∠=,AB AC =又∵60DAF ∠=∴BAC BAF DAF BAF ∠-∠=∠-∠∴FAC DAB ∠=∠∵四边形ADEF 是菱形∴AD AF =∴≅△△ADB AFC∴DB FC =,18060120ACF ABD ∠=∠=-=∴1206060BCF ACF ACB ∠=∠-∠=-=∵BC CD BD =-∴BC CD CF =-(3)8=CF ,菱形ADEF 的面积是263∵60BAC DAF ∠=∠=∴BAD CAF ∠=∠又∵AB AC =,AD AF =∴≅△△ADB AFC∴16683CF BD BC CD ==+=+⨯=∴如图,过点A 作AH BC ⊥于点H ,连接FD∵ABC 是等边三角形,AH BC ⊥∴116322BH HC BC ===⨯=∴325HD HC CD =+=+=∵22236927AH AB BH =-=-=∴AD =∴1222AFD ADEF S S ∆==⨯⨯=菱形 【点睛】此题属于四边形综合题,主要考查了全等三角形的判定和性质,菱形的性质,等边三角形的判定和性质的综合运用,利用已知条件判定△DAB ≌△FAC 是解本题的关键.3.(1)证明见解析;(2)①当AE=3.5时,平行四边形CEDF 是矩形;②2【分析】(1)证明△FCG ≌△EDG (ASA ),得到FG=EG 即可得到结论;(2)①当AE=3.5时,平行四边形CEDF 是矩形.过A 作AM ⊥BC 于M ,求出BM=1.5,根据平行四边形的性质得到∠CDA=∠B=60°,DC=AB=3,BC=AD=5,求出DE=1.5=BM ,证明△MBA ≌△EDC(SAS),得到∠CED=∠AMB=90°,推出四边形CEDF 是矩形;②根据四边形CEDFCEDF 是菱形,得到CD ⊥EF ,DG=CG=1212CD=1.5,求出∠DEG=30°,得到DE=2DG=3,即可求出AE=AD-DE=5-3=2.【详解】(1)证明:∵ 四边形ABCD 是平行四边形,∴ CF ∥ED ,∴ ∠FCG =∠EDG ,∵ G 是CD 的中点,∴ CG =DG ,在△FCG 和△EDG 中,FCG EDG CG DG CGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ △FCG ≌△EDG (ASA ),∴ FG =EG ,∵ CG =DG ,∴ 四边形CEDF 是平行四边形;(2)解:①当AE=3.5时,平行四边形CEDF 是矩形,理由是:过A 作AM ⊥BC 于M ,∵∠B=60°,∴∠BAM=30°,∵AB=3,∴BM=1.5,∵四边形ABCD 是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM ,在△MBA 和△EDC 中,BM DE B CDE AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△MBA ≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF 是平行四边形,∴四边形CEDF 是矩形;②∵四边形CEDFCEDF 是菱形,∴CD ⊥EF ,DG=CG=1212CD=1.5,∵∠CDE=∠B=60∘∠B=60∘,∴∠DEG=30°,∴DE=2DG=3,∴AE=AD-DE=5-3=2,故答案为:2.【点睛】此题考查了平行四边形的性质,矩形的判定定理,菱形的性质定理,直角三角形30度角所对的直角边等于斜边的一半,三角形全等的判定及性质定理,熟练掌握各定理并运用解答问题是解题的关键.4.(1)详见解析;(2)是,详见解析;(3)132【分析】(1)平行四边形的性质可得AD ∥BC ,AB ∥CD ,再根据平行线的性质证明∠CEF=∠CFE ,根据等角对等边可得CE=CF ,再有条件四边形ECFG 是平行四边形,可得四边形ECFG 为菱形,即可解决问题;(2)先判断出∠BEG=120°=∠DCG ,再判断出AB=BE ,进而得出BE=CD ,即可判断出△BEG ≌△DCG (SAS ),再判断出∠CGE=60°,进而得出△BDG 是等边三角形,即可得出结论;(3)首先证明四边形ECFG 为正方形,再证明△BME ≌△DMC 可得DM=BM ,∠DMC=∠BME ,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到△BDM 是等腰直角三角形,由等腰直角三角形的性质即可得到结论.【详解】(1)证明:∵AF 平分∠BAD ,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=12∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵BE CDBEM DCM EM CM=⎧⎪∠=∠⎨⎪=⎩,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=10,AD=24,∴22221024AB AD++=26,∴21322DM BD==【点睛】本题主要考查了平行四边形的判定与性质,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质,正方形的判定与性质,等腰直角三角形的判定和性质等知识点,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.5.(1)BD⊥CF,CF=BC-CD;(2)CF=BC+CD,见解析;(3)①CF=CD−BC,②等腰三角形,见解析【分析】(1)先说明△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF⊥BD、CF=BD,又 BD+CD=BC, CF=BC-CD;(2)先利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF-CD=BC;(3)①与(2)同理可得BD=CF,然后结合图形可得CF=CD-BC;②先根据等腰直角三角形的性质得到∠ABC=∠ACB=45°,再根据邻补角的定义求出∠ABD=135°,再根据同角的余角相等求出∠BAD=∠CAF,然后利用“边角边”证明△BAD≌△CAF,得∠ACF=∠ABD,求出∠FCD=90°,然后根据直角三角形斜边上的中线等于斜边的一半求出OC=12DF,再根据正方形的对角线相等求出OC=OA,从而得到△AOC是等腰三角形.【详解】(1)解:∵∠B4C=90°,AB=AC∴∠ABC=∠ACB=45°∵四边形ADEF是正方形∴AD=AF,∠DAF=90°∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°∴∠BAD=∠CAF在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴BD=CF,∠ABD=∠ACF=45°∴∠FCB=∠ACF+ ∠ACB=90°,即CF⊥BC∵BD+CD=BC∴CF+CD=BC;故答案为:BD⊥CF,CF=BC-CD;(2)证明:∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=∠BAC+∠DAC,∠CAF=∠DAF+∠DAC,∴∠BAD=∠CAF,在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD=BC+CD,∴CF=BC+CD;(3)①与(2)同理可得,BD=CF,所以,CF=CD−BC;②∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,则∠ABD=180∘−45°=135°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAF+∠CAF=90°,∠DAF=∠BAD+∠BAF=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=180°−45°=135°,∴∠FCD=∠ACF−∠ACB=90°,则△FCD为直角三角形,∵正方形ADEF中,O为DF中点,∴OC=1DF,2∵在正方形ADEF中,OA=1AE,AE=DF,2∴OC=OA,∴△AOC是等腰三角形.【点睛】本题考查了四边形的综合题,正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、等腰三角形的判定以及同角的余角相等的性质,在(1)证明三角形全等得到思路并推广到(2)(3)是解答本题的关键.6.(1)①7;②证明见解析;(2,理由见解析【分析】(1)①如图1中,延长BC交DE的延长线于T,过点T作TH⊥BD于H,设BD=2x.证明△BDT是等腰直角三角形,四边形ACTE是矩形,进而利用勾股定理构建方程求解即可;②如图2中,延长BC交DE的延长线于T,连接TF,进而利用全等三角形的性质证明△CEF是等腰直角三角形即可解决问题;(2)如图3中,根据题意设∠EAD=x,则∠BAC=2x.证明△ABC是等边三角形,再根据垂线段最短即可解决问题.【详解】解:(1)①如图1中,延长BC交DE的延长线于T,过点T作TH⊥BD于H,设BD=2x.∵∠ACB=90°,∠ACB+∠AED=180°,∴∠AED=90°,∵CA=CB ,EA=ED ,∴∠B=∠D=45°,∴∠BTD=90°,∵∠TCA=∠CTE=∠TEA=90°,∴四边形ACTE 是矩形, ∴52EC AT ==, ∵TH ⊥BD ,∴BH=HD=x ,∴TH=HB=HD=x ,∵AB=3,∴AH=x-3,在Rt △ATH 中,则有22252(())23x x =-+, 解得:72x =或12-(不符合题意舍弃), ∴BD=2x=7.②证明:如图2中,延长BC 交DE 的延长线于T ,连接TF .∵∠B=∠D=45°,∴TB=TD ,∵∠BTD=90°,BF=DF ,∴TF ⊥BD ,∠FTE=∠BTF=45°,∴TF=BF ,∠BFT=90°,∵四边形ACTE是矩形,∴TE=AC,∴AC=BC,∴BC=TE,∵∠B=∠FTE=45°,∴△FBC≌△FTE(SAS),∴FC=EF,∠BFC=∠TFE,∴∠CFE=∠BFT=90°,∴△CFE是等腰直角三角形,∴EC=2EF.(2)如图3中,设∠EAD=x,则∠BAC=2x.∵EA=ED,∴∠EAD=∠EDA=x,∴2x+∠AED=180°,∵∠ACB+∠AED=180°,∴∠ACB=2x,∵CB=CA,∴∠B=∠CAB=2x,∴∠C=∠B=∠CAB,∴△ABC是等边三角形,∴∠CAB=60°,∠EAD=30°,当AD⊥BC时,△ADE的面积最小,∵AB=BC=AC=3,∴322 AD=,∴S△ADE的最小值132393 224=⨯⨯=.【点睛】本题属于三角形综合题,考查等腰直角三角形的判定和性质,等边三角形的判定和性质,矩形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.7.(1)见解析;(2)不变,见解析;(3)能,1x =-1+ 【分析】(1)由折叠的性质得到BE=EP ,BF=PF ,得到BE=BF ,根据菱形的性质得到AB ∥CD ∥FG ,BC ∥EH ∥AD ,于是得到结论;(2)由菱形的性质得到BE=BF ,AE=FC ,推出△ABC 是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;(3)记AC 与BD 交于点O ,得到∠ABD=30°,解直角三角形得到AO=1,S 四边形ABCD AEFCHG 的面积等于4时,得到S △BEF +S △DGH =4,设GH 与BD 交于点M ,求得GM=12x ,根据三角形的面积列方程即可得到结论. 【详解】解:()1折叠后B 落在BD 上, ,BE EP ∴=BF PF = BD 平分,ABC ∠BE BF ∴=,∴四边形BEPF 为菱形,同理四边形GDHP 为菱形,////,// //,AB CD FG BC EH AD ∴∴四边形AEPG 为平行四边形,AG EP BE ∴==.()2不变.理由如下:由()1得.AG BE =四边形BEPF 为菱形,,.BE BF AE FC ∴==60,BAC ABC ∠=︒为等边三角60B D ∴∠=∠=︒,,,EF BE GH DG ∴==36AEFCHG C AE EF FC CH GH AG AB ∴=+++++==六边形为定值.()3记AC 与BD 交于点O .2,60,AB BAC =∠=30,ABD ∴∠=1,AO ∴=3,BO =12332ABC S ∴=⨯=23ABCD S ∴=四边形当六边形AEFCHG 534 53233344DEF DGH S S +==由()1得BE AG =AE DG ∴=DG x =2BE x ∴=-记GH 与BD 交于点,M12GM x ∴=,3DM x = 23DHG S x ∴= 同理()223323344BEF Sx x x =-=+ 223333334x x x +=化简得22410,x x -+= 解得121x =-221x = ∴当212x =-或212+时,六边形AEPCHG 534 【点睛】此题是四边形的综合题,主要考查了菱形的性质,等边三角形的判定和性质,三角形的面积公式,菱形的面积公式,解本题的关键是用x 表示出相关的线段,是一道基础题目.8.(1)等腰直角;(2)结论仍成立,见解析;(32或4217.【分析】(1)结论:DM ⊥EM ,DM=EM .只要证明△AMH ≌△FME ,推出MH=ME ,AH=EF=EC ,推出DH=DE ,因为∠EDH=90°,可得DM ⊥EM ,DM=ME ;(2)结论不变,证明方法类似;(3)分两种情形画出图形,理由勾股定理以及等腰直角三角形的性质解决问题即可;【详解】解:(1) △AMN ≌ △FME ,等腰直角.如图1中,延长EM 交AD 于H .∵四边形ABCD 是正方形,四边形EFGC 是正方形,∴0ADE DEF 90∠=∠=,AD CD =,∴//AD EF ,∴MAH MFE ∠=∠,∵AM MF =,AMH FME ∠=∠,∴△AMH ≌△FME ,∴MH ME =,AH EF EC ==,∴DH DE =,∵0EDH 90∠=,∴DM ⊥EM ,DM=ME .(2)结论仍成立.如图,延长EM 交DA 的延长线于点H,∵四边形ABCD 与四边形CEFG 都是正方形,∴0ADE DEF 90∠=∠=,AD CD =,∴AD ∥EF,∴MAH MFE ∠=∠.∵AM FM =,AMH FME ∠=∠,∴△AMF ≌△FME(ASA), …∴MH ME =,AH FE=CE =,∴DH DE =.在△DHE 中,DH DE =,0EDH 90∠=,MH ME =,∴=DM EM ,DM ⊥EM.(3)①当E 点在CD 边上,如图1所示,由(1)的结论可得三角形DME 为等腰直角三角形,则DM 的长为2DE 2,此时DE EC DC 532=-=-=,所以2DM = ②当E 点在CD 的延长线上时,如图2所示,由(2)的结论可得三角形DME 为等腰直角三角形,则DM的长为2DE2,此时DE DCCE538=+=+=,所以42DM=;③当E点在BC上是,如图三所示,同(1)、(2)理可得到三角形DME为等腰直角三角形,证明如下:∵四边形ABCD与四边形CEFG都是正方形, 且点E在BC上∴AB//EF,∴HAM EFM∠=∠,∵M为AF中点,∴AM=MF∵在三角形AHM与三角形EFM中:HAM EFMAM MFAMH EMF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMH≌△FME(ASA),∴MH ME=,AH FE=CE=,∴DH DE=.∵在三角形AHD与三角形DCE中:90AD DCDAH DCEAH EF=⎧⎪∠=∠=⎨⎪=⎩,∴△AHD≌△DCE(SAS),∴ADH CDE∠=∠,∵∠ADC=∠ADH+∠HDC=90°,∴∠HDE=∠CDE+∠HDC=90°,∵在△DHE中,DH DE=,0EDH90∠=,MH ME=,∴三角形DME为等腰直角三角形,则DM的长为2DE2,此时在直角三角形DCE中2222DE DC CE5334=+=+=,所以DM=17【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质,灵活运用相关的定理、正确作出辅助线是解题的关键.9.(1)证明见解析;(2)证明见解析;(3)CN=25.【解析】【分析】(1)如图,延长EF交CD延长线于点Q,先证明CQ=CE,再证明△FQD≌△FEA,根据全等三角形的对应边相等可得EF=FQ,再根据等腰三角形的性质即可得CF⊥EF;(2)分别过点F、H作FM⊥CE ,HP⊥CD,垂足分别为M、P,证明四边形DFHP是矩形,继而证明△HPC≌△FMK,根据全等三角形的性质即可得CH=FK;(3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α,先证明得到FG=CG=GE,∠CGT=2α,再由FG是BC的中垂线,可得BG = CG,∠CGT=∠FGK=∠BGT=2α,再证明HN∥BG,得到四边形HGBN是平行四边形,继而证明△HNC≌△KGF,推导可得出HT=CT=TN ,由FH-HG=1,所以设GH=m,则BN=m,FH=m+1,CE=2FG=4m+2,继而根据22222BC CN BN CE BE=-=-,可得关于m的方程,解方程求得m的值即可求得答案.【详解】(1)如图,延长EF交CD延长线于点Q,∵矩形ABCD,AB∥CD,∴∠AEF=∠CQE,∠A=∠QDF,又∵EF 平分∠AEC ,∴∠AEF=∠CEF,∴∠CEF=∠CQE,∴CQ=CE,∵点F是AD中点,∴AF=DF,∴△FQD≌△FEA,∴EF=FQ,又∵CE=CQ,∴CF⊥EF;(2)分别过点F、H作FM⊥CE ,HP⊥CD,垂足分别为M、P,∵CQ=CE ,CF⊥EF,∴∠DCF=∠FCE,又∵FD⊥CD,∴FM=DF,∵FG//AB,∴∠DFH=∠DAC=90°,∴∠DFH=∠FDP=∠DPH=90°,∴四边形DFHP是矩形,∴DF=HP,∴FM= DF=HP,∵∠CHG=∠BCE,AD∥BC,FG∥CD,∴∠K=∠BCE=∠CHG=∠DCH,又∵∠FMK=∠HPC=90°,∴△HPC≌△FMK,∴CH=FK;(3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α,∵FG∥CD ,∴∠DCF=∠CFG,∴∠FCG=∠CFG,∴FG=CG,∵CF⊥EF,∴∠FEG+∠FCG=90°,∠CFG+∠GFE=90°,∴∠GFE=∠FEG,∴GF=FE,∴FG=CG=GE,∠CGT=2α,∵FG是BC的中垂线,∴BG = CG,∠CGT=∠FGK=∠BGT=2α,∵∠CHG=∠BCE=90°-2α,∠CHN=90°,∴∠GHN=∠FGK=∠BGT=2α,∴HN∥BG,∴四边形HGBN是平行四边形,∴HG=BN ,HN=BG = CG =FG ,∴△HNC ≌△KGF ,∴GK=CN ,∠HNC=∠FGK=∠NHT=2α,∴HT=CT=TN ,∵FH-HG=1,∴设GH=m ,则BN=m ,FH=m+1,CE=2FG=4m+2,∵GT=1122EN =,∴CN=2HT=11+2m , ∵22222BC CN BN CE BE =-=-,∴2222(112)(42)(11)m m m m +-=+-+∴1176m =-(舍去),27m =, ∴CN=GK=2HT=25.【点睛】 本题考查的是四边形综合题,涉及了等腰三角形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,矩形的性质与判定,三角形外角的性质等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.10.28【分析】(1)利用旋转的旋转即可作出图形;(2)先求出ABC 的边长边上的高为12,进而求出DE 与BC 间的距离为6,再判断出FH 最小时,拼成的四边形的周长最小,即可得出结论.【详解】(1)∵DE 是△ABC 的中位线,1DE BC 4,AD BD,AE CE 2∴==== ∴四边形BDFH 绕点D 顺时针旋转,点B 和点A 重合,四边形CEFH 绕点E 逆时针旋转,点C 和点A 重合,∴补全图形如图1所示,(2)∵△ABC 的面积是48,BC=8,∴点A 到BC 的距离为12,∵DE 是△ABC 的中位线,∴平行线DE 与BC 间的距离为6,由旋转知,∠DAH''=∠B,∠CAH'=∠C,∴∠DAH''+∠BAC+∠CAH'=180°,∴点H'',A,H'在同一条直线上,由旋转知,∠AEF'=∠CEF,∴∠AEF'+∠CEF'=∠CEF+∠CEF'=180°,∴点F,E,F'在同一条直线上,同理:点F,D,F''在同一条直线上,即:点F',F''在直线DE上,由旋转知,AH''=BH,AH'=CH,DF''=DF,EF'=EF,F''H''=FH=F'H',∴F'F''=2DE=BC=H'H'',∴四边形F'H'H''F''是平行四边形,∴▱F'H'H''F''的周长为2F'F''+2F'H'=4DE+2FH=2BC+2FH=16+2FH,∵拼成的所有四边形纸片中,其周长的最小时,FH最小,即:FH⊥BC,∴FH=6,∴周长的最小值为16+2×6=28,故答案为28.【点睛】此题是四边形综合题,主要考查了旋转的旋转和作图,判断三点共线的方法,平行四边形FH H F是平行四边形是解本题的关键.的判断和性质,判断出四边形'''''。

人教版平行四边形单元 易错题难题提高题学能测试试卷

人教版平行四边形单元 易错题难题提高题学能测试试卷

人教版平行四边形单元 易错题难题提高题学能测试试卷一、选择题1.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,1BC =,3CE =,H 是AF 的中点,那么CH 的长是( )A .2B .52C .332D .52.如图,在四边形ABCD 中,AB ∥CD ,∠BCD=90°,AB=AD=10cm ,BC=8cm ,点P 从点A 出发,以每秒3cm 的速度沿折线A-B-C-D 方向运动,点Q 从点D 出发,以每秒2cm 的速度沿线段DC 方向向点C 运动、已知动点P ,Q 同时出发,当点Q 运动到点C 时,点P ,Q 停止运动,设运动时间为t 秒,在这个运动过程中,若△BPQ 的面积为20cm 2 , 则满足条件的t 的值有( )A .1个B .2个C .3个D .4个3.如图,在正方形ABCD 中,点G 是对角线AC 上一点,且CG =CB ,连接BG ,取BG 上任意一点H ,分别作HM ⊥AC 于点M ,HN ⊥BC 于点N ,若正方形的边长为2,则HM +HN 的值为( )A 2B .1C 3D .224.如图,平行四边形ABCD 中,AE 平分BAD ∠,交BC 于点E ,且AB AE =,延长AB 与DE 的延长线交于点F ,连接AC ,CF .下列结论:①ABC EAD ∆∆≌;②ABE ∆是等边三角形;③AD BF =;④BEF ACD S S ∆∆=;⑤CEF ABE S S ∆∆=中正确的有( )A .1个B .2个C .3个D .4个5.如图,分别以Rt ACB ∆的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连结CE 、BG 、GE .给出下列结论:①CE BG =;②EC BG ⊥③22222FG BF BD BC +=+④222222BC GE AC AB +=+其中正确的是( )A .②③④B .①②③C .①②④D .①②③④ 6.如图,在ABCD 中,AD=2AB ,CE AB ⊥,垂足E 在线段AB 上,F 、G 分别是AD 、CE 的中点,连接FG ,EF 、CD 的延长线交于点H ,则下列结论:①12DCF BCD ∠=∠;②EF CF =:③2BEC CEF S S =;④3DFE AEF ∠=∠.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个7.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片,使AD 落在BC 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB ,AC 于点E 、G ,连结GF ,给出下列结论①∠AGD =110.5°;②S △AGD =S △OGD ;③四边形AEFG 是菱形;④BF 2OF ;⑤如果S △OGF =1,那么正方形ABCD 的面积是2,其中正确的有( )个.A.2个B.3个C.4个D.5个8.下列命题中,真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个B.2个C.1个D.0个9.如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=725.其中正确结论的个数是()A.2个B.3个C.4个D.5个10.如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB延AE折叠刀AF,延长EF交DC于G,连接AG,现在有如下结论:①∠EAG=45°;②GC=CF;③FC∥AG;④S△GFC=14.4;其中结论正确的个数是()A.1 B.2 C.3 D.4二、填空题11.如图,正方形ABCD的边长为4,点E为CD边上的一个动点,以CE为边向外作正方形ECFG,连结BG,点H为BG中点,连结EH,则EH的最小值为______12.如图,菱形ABCD的BC边在x轴上,顶点C坐标为(3,0)-,顶点D坐标为(0,4),点E在y轴上,线段//EF x轴,且点F坐标为(8,6),若菱形ABCD沿x轴左右运动,连接AE、DF,则运动过程中,四边形ADFE周长的最小值是_______.13.如图,在平行四边形ABCD中,AB=6,BC=4,∠A=120°,E是AB的中点,点F在平行四边形ABCD的边上,若△AEF为等腰三角形,则EF的长为_____.14.已知在矩形ABCD中,3,3,2AB BC==点P在直线BC上,点Q在直线CD上,且,AP PQ⊥当AP PQ=时,AP=________________.15.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(23,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,-1),则EP十BP的最小值为__________.16.菱形ABCD的周长为24,∠ABC=60°,以AB为腰在菱形外作底角为45°的等腰△ABE,连结AC ,CE ,则△ACE 的面积为___________.17.如图,在ABC 中,D 是AB 上任意一点,E 是BC 的中点,过C 作//CF AB ,交DE 的延长线于F ,连BF ,CD ,若30FDB ∠=︒,45ABC ∠=︒,22BC =,则DF =_________.18.如图,长方形ABCD 中,26AD =,12AB =,点Q 是BC 的中点,点P 在AD 边上运动,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为______,19.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,E 为AC 上一点,BE 平分∠ABO ,EF ⊥BC 于点F ,∠CAD =45°,EF 交BD 于点P ,BP =5,则BC 的长为_______.20.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.三、解答题21.如图,在Rt ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动.同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是ts (0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF .(1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,DEF 为直角三角形?请说明理由.22.综合与探究如图1,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF ,解答下列问题:(1)研究发现:如果AB AC =,90BAC ∠=︒①如图2,当点D 在线段BC 上时(与点B 不重合),线段CF 、BD 之间的数量关系为______,位置关系为_______.②如图3,当点D 在线段BC 的延长线上时,①中的结论是否仍成立并说明理由. (2)拓展发现:如果AB AC ≠,点D 在线段BC 上,点F 在ABC ∆的外部,则当ACB =∠_______时,CF BD ⊥.23.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC 、CF 为邻边作平行四边形ECFG .(1)求证:四边形ECFG 是菱形;(2)连结BD 、CG ,若120ABC ∠=︒,则BDG ∆是等边三角形吗?为什么? (3)若90ABC ∠=︒,10AB =,24AD =,M 是EF 的中点,求DM 的长.24.(1)如图①,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求EAF ∠的度数;(2)如图②,在Rt ABD ∆中,90,BAD AD AB ︒∠==,点M ,N 是BD 边上的任意两点,且45MAN ︒∠=,将ABM ∆绕点A 逆时针旋转90度至ADH ∆位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由;(3)在图①中,连接BD 分别交AE ,AF 于点M ,N ,若正方形ABCD 的边长为12,GF=6,BM= 32,求EG ,MN 的长.25.已知在平行四边形ABCD 中,AB BC ≠,将ABC 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B ∠=︒,3AB =,6=BC ,求OAC 的面积;(3)如果30B ∠=︒,23AB =,当AED 是直角三角形时,求BC 的长.26.直线1234,,,,l l l l 是同一平面内的一组平行线.(1)如图1.正方形ABCD 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点A ,点C 分别在直线1l 和4l 上,求正方形的面积;(2)如图2,正方形ABCD 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为123h h h ,,.①求证:13h h =;②设正方形ABCD 的面积为S ,求证222211 2 2 S h h h h =++.27.如图1,在正方形ABCD (正方形四边相等,四个角均为直角)中,AB =8,P 为线段BC 上一点,连接AP ,过点B 作BQ ⊥AP ,交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC ′,延长QC ′交AD 于点N .(1)求证:BP =CQ ;(2)若BP =13PC ,求AN 的长; (3)如图2,延长QN 交BA 的延长线于点M ,若BP =x (0<x <8),△BMC '的面积为S ,求S 与x 之间的函数关系式.28.如图,在矩形ABCD 中,AB a ,BC b =,点F 在DC 的延长线上,点E 在AD 上,且有12CBE ABF ∠=∠.(1)如图1,当a b =时,若60CBE ∠=︒,求证:BE BF =;(2)如图2,当32b a =时, ①请直接写出ABE ∠与BFC ∠的数量关系:_________; ②当点E 是AD 中点时,求证:2CF BF a +=;③在②的条件下,请直接写出:BCF ABCD S S ∆矩形的值.29.已知:正方形ABCD 和等腰直角三角形AEF ,AE=AF (AE <AD ),连接DE 、BF ,P 是DE 的中点,连接AP .将△AEF 绕点A 逆时针旋转.(1)如图①,当△AEF 的顶点E 、F 恰好分别落在边AB 、AD 时,则线段AP 与线段BF 的位置关系为 ,数量关系为 .(2)当△AEF 绕点A 逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立.(3)若AB=3,AE=1,则线段AP 的取值范围为 .30.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ 的长(用含t 的代数式表示);(2)当四边形ABQP 是平行四边形时,求t 的值;(3)当325t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】连接AC 、CF ,根据正方形性质求出AC 、CF ,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF ,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】如图,连接AC 、CF ,∵正方形ABCD 和正方形CEFG 中,BC=1,CE=3,∴2,CF=32ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,22AF=AC CF =25- ∵H 是AF 的中点,∴CH=12AF=12×255故选D .【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.2.B解析:B【解析】【分析】过A 作AH ⊥DC ,由勾股定理求出DH 的长.然后分三种情况进行讨论:即①当点P 在线段AB 上,②当点P 在线段BC 上,③当点P 在线段CD 上,根据三种情况点的位置,可以确定t 的值.【详解】解:过A 作AH ⊥DC ,∴AH =BC =8cm ,DH =22AD AH - =10064-=6. i )当P 在AB 上时,即1003t ≤≤时,如图,1110382022BPQ S BP BC t =⋅=-⨯=(),解得:53t =;ii )当P 在BC 上时,即103<t ≤6时,BP =3t -10,CQ =16-2t ,113101622022BPQ S BP CQ t t =⋅=-⨯-=()(),化简得:3t 2-34t +100=0,△=-44<0,∴方程无实数解.iii )当P 在线段CD 上时,若点P 在线段CD 上,若点P 在Q 的右侧,即6≤t ≤345,则有PQ =34-5t ,13458202BPQ S t =-⨯=(),295t =<6(舍去); 若点P 在Q 的左侧时,即3485t ≤<,则有PQ =5t -34,15348202BPQ S t =-⨯=(); t =7.8. 综上所述:满足条件的t 存在,其值分别为153t =,t 2=7.8.故选B .【点睛】本题是平行四边形中的动点问题,解决问题时,一定要变动为静,将其转化为常见的几何问题,再进行解答.3.A解析:A【分析】连接CH ,过G 点作GP ⊥BC 于点P ,根据BHC GHC BCG S S S ∆∆∆+=将HM HN +转化为GP 的长,再由等腰直角三角形的性质进行求解即可得解.【详解】连接CH ,过G 点作GP ⊥BC 于点P ,如下图所示:由题可知:12HBC S BC HN ∆=⨯,12HGC S GC HM ∆=⨯,12BGC S BC GP ∆=⨯ ∵BHC GHC BCG S S S ∆∆∆+=∴111222BC HN GC HM BC GP ⨯+⨯=⨯ ∵CG =CB ,∴HN HM GP += ∵四边形ABCD 是正方形,正方形的边长为2∴45BCA ∠=︒,22AC =∴22CB CG AC === ∵GP ⊥BC ∴GPC ∆是等腰直角三角形∴GP ==∴HN HM +=,故选:A.【点睛】 本题主要考查了三角形的面积求法,正方形的性质,等腰直角三角形的性质等,熟练掌握相关知识点是解决本题的关键.4.C解析:C【分析】由平行四边形的性质得出AD ∥BC ,AD=BC ,由AE 平分∠BAD ,可得∠BAE=∠DAE ,可得∠BAE=∠BEA ,得AB=BE ,由AB=AE ,得到△ABE 是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS 证明△ABC ≌△EAD ,①正确;由△FCD 与△ABD 等底(AB=CD )等高(AB 与CD 间的距离相等),得出S △FCD =S △ABD ,由△AEC 与△DEC 同底等高,所以S △AEC =S △DEC ,得出S △ABE =S △CEF ,⑤正确.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠EAD=∠AEB ,又∵AE 平分∠BAD ,∴∠BAE=∠DAE ,∴∠BAE=∠BEA ,∴AB=BE ,∵AB=AE ,∴△ABE 是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵AB=AE ,BC=AD ,在△ABC 和△EAD 中,AB AE ABE EAD BC AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EAD (SAS );①正确;∵△FCD 与△ABC 等底(AB=CD )等高(AB 与CD 间的距离相等),∴S △FCD =S △ABC ,又∵△AEC 与△DEC 同底等高,∴S △AEC =S △DEC ,∴S △ABE =S △CEF ;⑤正确;若AD 与AF 相等,即∠AFD=∠ADF=∠DEC ,即EC=CD=BE ,即BC=2CD ,题中未限定这一条件,∴③④不一定正确;故选C .【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.5.C解析:C【分析】利用SAS 证明△AGB ≌△ACE ,即可判断①;证明∠BNM=∠MAE=90︒,即可判断②;假设③成立,利用勾股定理对等式变形证得AC =BC ,而AC 与BC 不一定相等,即可判断③;利用勾股定理证得2222BC EG BE CG +=+,从而证得结论④成立.【详解】∵四边形ACFG 和四边形ABDE 都是正方形,∴AC=AG ,AB=AE ,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC ,即∠GAB=∠CAE ,在△AGB 和△ACE 中,∵AG AC GAB CAE AB AE ⎧⎪∠∠⎨⎪⎩===,∴△AGB ≌△ACE(SAS),∴GB=CE ,故①正确;设BA 、CE 相交于点M ,∵△AGB ≌△ACE ,∴∠GBA=∠CEA ,又∵∠BMN=∠EMA ,∴∠BNM=∠MAE=90︒,∴EC BG ⊥,故②正确;设正方形ACFG 和正方形ABDE 的边长分别为a 和b ,∵ACB 为直角三角形,且AB 为斜边,∴22222AB AC b a BC -=-=,假设22222FG BF BD BC +=+成立,则有()22222a a BC b BC ++=+,整理得:()2222a BC b a =-,即2a BC BC =,∴a BC =,即AC BC =,∵AC 与BC 不一定相等,∴假设不成立,故③不正确;连接CG ,BE ,设BG 、CE 相交于N ,∵EC BG ⊥,∴222222222222BC EG BN NC EN NG BN EN NC NG BE CG +=+++=+++=+, ∵四边形ACFG 和四边形ABDE 都是正方形,∴222BE AB =,222CG AC =,∴222222BC EG AB AC +=+,故④正确;综上,①②④正确,故选:C .【点睛】本题是四边形综合题,主要考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,灵活运用勾股定理是解题的关键.6.C解析:C【分析】由点F 是AD 的中点,结合ABCD 的性质,得FD=CD ,即可判断①;先证∆AEF ≅∆DHF ,再证∆ECH 是直角三角形,即可判断②;由EF=HF ,得2HEC CEF S S =,由CE AB ⊥,CE ⊥CD ,结合三角形的面积公式,即可判断③;设∠AEF=x ,则∠H=x ,根据直角三角形的性质,得∠FCH=∠H=x ,由FD=CD ,∠DFC=∠FCH=x ,由FG ∥CD ∥AB ,得∠AEF=∠EFG=x ,由EF=CF ,∠EFG=∠CFG=x ,进而得到3DFE AEF ∠=∠,即可判断④.【详解】∵点F 是AD 的中点,∴2FD=AD , ∵在ABCD 中,AD=2AB ,∴FD=AB=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠BCF ,∴∠DCF=∠BCF ,即:12DCF BCD ∠=∠, ∴①正确;∵AB ∥CD ,∴∠A=∠FDH ,∠AEF=∠H ,又∵AF=DF ,∴∆AEF ≅∆DHF (AAS ),∴EF=HF ,∵CE AB ⊥,∴CE ⊥CD ,即:∆ECH 是直角三角形,∴EF CF ==12EH , ∴②正确;∵EF=HF ,∴2HEC CEF S S =∵CE AB ⊥,CE ⊥CD ,垂足E 在线段AB 上,∴BE CH <,∴BEC HCE SS <, ∴2BEC CEFS S <, ∴③错误;设∠AEF=x ,则∠H=x ,∵在Rt ∆ECH 中,CF=FH=EF ,∴∠FCH=∠H=x ,∵FD=CD ,∴∠DFC=∠FCH=x ,∵点F ,G 分别是EH ,EC 的中点,∴FG ∥CD ∥AB ,∴∠AEF=∠EFG=x ,∵EF=CF ,∴∠EFG=∠CFG=x ,∴∠DFE=∠DFC+∠EFG+∠CFG=3x ,∴3DFE AEF ∠=∠.∴④正确.故选C .【点睛】本题主要考查平行四边形和直角三角形的性质定理的综合,掌握直角三角形斜边上的中线等于斜边的一半,是解题的关键.7.B解析:B【分析】①由四边形ABCD 是正方形,可得∠GAD =∠ADO =45°,又由折叠的性质,可求得∠ADG 的度数,从而求得∠AGD ;②证△AEG ≌△FEG 得AG =FG ,由FG >OG 即可得;③先计算∠AGE =∠GAD+∠ADG =67.5°,∠AED=∠AGD -∠EAG=67.5°,从而得到∠AGE =∠AED ,易得AE=AG ,由AE =FE 、AG =FG 即可得证;④设OF =a ,先求得∠EFG =45°,易得∠GFO =45°,在Rt △OFG 中,GFa ,从而可证得BF =EF =GF;⑤由S △OGF =1求出a 2,再表示出BE 及AE 的长,利用正方形的面积公式可得出结论.【详解】解:∵四边形ABCD 是正方形,∴∠EAG=∠GAD =∠ADO =45°,∠AOB=90°,由折叠的性质可得:∠ADG =12∠ADO =22.5°, ∴∠AGD =180°-∠GAD -∠ADG =112.5°,故①错误;由折叠的性质可得:AE =EF ,∠AEG =∠FEG ,在△AEG 和△FEG 中,AE FE AEG FEG EG EG =⎧⎪∠=∠⎨⎪=⎩,∴△AEG ≌△FEG (SAS ),∴AG =FG ,∵在Rt △GOF 中,AG =FG >GO ,∴S △AGD >S △OGD ,故②错误;∵∠AGE =∠GAD+∠ADG =67.5°,∠AED=∠AGD -∠EAG=67.5°,∴∠AGE =∠AED ,∴AE =AG ,又∵AE=FE,AG=FG,∴AE=EF=GF=AG,∴四边形AEFG是菱形,故③正确;设OF=a,∵△AEG≌△FEG,∴∠EFG=∠EAG=45°,又∵∠EFO=90°,∴∠GFO=45°,∴在Rt△OFG中,GF,∵∠EFO=90°,∠EBF=45°,∴在Rt△EBF中,BF=EF=GF a,即BF OF,故④正确;∵S△OGF=1,∴12OF2=1,即12a2=1,则a2=2,∵BF=EF a,且∠BFE=90°,∴BE=2a,又∵AE=EF,∴AB=AE+BE+2a=)a,则正方形ABCD的面积是)2a2=(6+=12+故⑤正确;故选:B.【点睛】本题考查了四边形的综合,熟练掌握正方形的性质、折叠的性质、等腰直角三角形的性质以及全等三角形、菱形的判定与性质等知识是解题的关键.8.C解析:C【分析】正确的命题是真命题,根据矩形的判定定理,菱形的判定定理及平行四边形的判定定理依次判断.【详解】①对角线相等且互相平分的四边形是矩形,故该项错误;②四条边相等的四边形是菱形,故该项错误;③一组对边平行且相等的四边形是平行四边形,故该项正确;故选:C.【点睛】此题考查真命题的定义,正确掌握矩形、菱形、平行四边形的判定定理是解题的关键. 9.D【分析】根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;根据角的和差关系求得∠GAF=45°;在直角△ECG中,根据勾股定理可证CE=2DE;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;求出S△ECG,由S△FCG=35GCE S∆即可得出结论.【详解】①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:∵∠BAG=∠FAG,∠DAE=∠FAE.又∵∠BAD=90°,∴∠EAG=45°;③正确.理由:设DE=x,则EF=x,EC=12-x.在直角△ECG中,根据勾股定理,得:(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=x=4,CE=12-x=8,∴CE=2DE;④正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;⑤正确.理由:∵S△ECG=12GC•CE=12×6×8=24.∵S△FCG=35GCES∆=3245⨯=725.故选D.【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.10.C【分析】选项①正确.证明∠GAF=∠GAD,∠EAB=∠EAF即可.选项②错误.可以证明DG=GC=FG,显然△GFC不是等边三角形,可得结论.选项③正确.证明CF⊥DF,AG⊥DF 即可.选项④正确.证明FG:EG=3:5,求出△ECG的面积即可.【详解】解:如图,连接DF.∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠ABE=∠BAD=∠ADG=∠ECG=90°,由折叠可知:AB=AF,∠ABE=∠AFE=∠AFG=90°,BE=EF=4,∠BAE=∠EAF,∵∠AFG=∠ADG=90°,AG=AG,AD=AF,∴Rt△AGD≌Rt△AGF(HL),∴∠GAF=∠GAD,∴∠EAG=∠EAF+∠GAF=12(∠BAF+∠DAF)=45°,故①正确,设GD=GF=x,在Rt△ECG中,∵EG2=EC2+CG2,∴(4+x)2=82+(12-x)2,∴x=6,∵CD=BC=BE+EC=12,∴DG=CG=6,∴FG=GC,易知△GFC不是等边三角形,显然FG≠FC,故②错误,∵GF=GD=GC,∴∠DFC=90°,∴CF⊥DF,∵AD=AF,GD=GF,∴AG⊥DF,∴CF∥AG,故③正确,∵S△ECG=12×6×8=24,FG:FE=6:4=3:2,∴FG:EG=3:5,∴S△GFC=35×24=725=14.4,故④正确,故①③④正确,故选:C.【点睛】本题考查翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题时设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.二、填空题11.2【分析】过B点作HE的平行线交AC于O点,延长EG交AB于I点,得到BO=2HE,其中O点在线段AC上运动,再由点到直线的距离垂线段最短求出BO的长即可求解.【详解】解:过B点作HE的平行线交AC于O点,延长EG交AB于I点,如下图所示:∵H是BG的中点,且BO与HE平行,∴HE为△BOG的中位线,且BO=2HE,故要使得HE最短,只需要BO最短即可,当E点位于C点时,则O点与C点重合,当E点位于D点时,则O点与A点重合,故E点在CD上运动时,O点在AC上运动,由点到直线的距离垂线段最短可知,当BO⊥AC时,此时BO最短,∵四边形ABCD是正方形,∴△BOC为等腰直角三角形,且BC=4,、∴2222BO,∴122HE BO,故答案为:2. 【点睛】本题考查了正方形的性质,等腰直角三角形的性质,点到直线的距离垂线段最短等知识点,本题的关键是要学会将要求的HE 线段长转移到线段BO 上.12.18【分析】由题意可知AD 、EF 是定值,要使四边形ADFE 周长的最小,AE +DF 的和应是最小的,运用“将军饮马”模型作点E 关于AD 的对称点E 1,同时作DF ∥AF 1,此时AE +DF 的和即为E 1F 1,再求四边形ADFE 周长的最小值.【详解】在Rt △COD 中,OC =3,OD =4,CD =22OC +OD =5,∵ABCD 是菱形,∴AD =CD =5,∵F 坐标为(8,6),点E 在y 轴上,∴EF =8,作点E 关于AD 的对称点E 1,同时作DF ∥AF 1,则E 1(0,2),F 1(3,6),则E 1F 1即为所求线段和的最小值,在Rt △AE 1F 1中,E 1F 1=22211EE +EF =-+(8-5)=52(62), ∴四边形ADFE 周长的最小值=AD +EF +AE +DF = AD +EF + E 1F 1=5+8+5=18.【点睛】本题考查菱形的性质、“将军饮马”作对称点求线段和的最小值,比较综合,难度较大. 13.33或3或572 【分析】△AEF 为等腰三角形,分三种情况讨论,由等腰三角形的性质和30°直角三角形性质、平行四边形的性质可求解.【详解】解:当AE AF =时,如图,过点A 作AH EF ⊥于H ,E 是AB 的中点,132AE AB ∴==, =AE AF ,AH EF ⊥,120A ∠=︒,30AEF AFE ∴∠=∠=︒,FH EH =,1322AH AE ∴==,333EH AH ==, 233EF EH ∴==,当AF EF =时,如图2,过点A 作AN CD ⊥于N ,过点F 作FM AB ⊥于M ,图2在平行四边形ABCD 中,6AB =,4BC =,120A ∠=︒,4AD BC ∴==,60ADC ∠=︒,30DAN ∴∠=︒,122DN AD ∴==,323AN DN == //AB CD ,AN CD ⊥,FM AB ⊥,23AN MF ∴==AF EF =,FM AB ⊥,32AM ME ∴==,22957124EF ME MF ∴=+=+=; 当3AE EF ==时,如图3,图33EF ∴=,综上所述:EF 的长为33357. 【点睛】 本题考查了平行四边形的性质,等腰三角形的性质,勾股定理,利用分类讨论思想解决问题是本题的关键.143223102【分析】 根据点P 在直线BC 上,点Q 在直线CD 上,分两种情况:1.P 、Q 点位于线段上;2.P 、Q 点位于线段的延长上,再通过三角形全等得出相应的边长,最后根据勾股即可求解.【详解】解:当P 点位于线段BC 上,Q 点位于线段CD 上时:∵四边形ABCD 是矩形,AP PQ ⊥∴∠BAP=∠CPQ ,∠APB=∠PQC∵AP PQ =∴ABP PCQ ≅∴PC=AB=32,BP=BC-PC=3-32=32∴223322+()()322当P 点位于线段BC 的延长线上,Q 点位于线段CD 的延长线上时:∵四边形ABCD 是矩形,AP PQ ⊥∴∠BAP=∠CPQ ,∠APB=∠PQC∵AP PQ =∴ABP PCQ ≅∴PC=AB=32,BP=BC+PC=3+32=92∴223922+()()31023223102【点睛】 此题主要考查三角形全等的判定及性质、勾股定理,熟练运用判定定理和性质定理是解题的关键.1519【分析】先根据菱形的性质可得OC 垂直平分BD ,从而可得=DP BP ,再根据两点之间线段最短可得EP BP +的最小值为DE ,然后利用等边三角形的判定与性质求出点D 的坐标,最后利用两点之间的距离公式即可得.【详解】如图,连接BP 、DP 、EP 、DE 、BD ,过点D 作DA OB ⊥于点A , (23,0)B ,23OB ∴=四边形ABCD 是菱形,OC ∴垂直平分BD ,23OB OD ==点P 是对角线OC 上的点,DP BP ∴=,EP BP EP DP ∴+=+,由两点之间线段最短可知,EP DP +的最小值为DE ,即EP BP +的最小值为DE ,,60OB OD DOB =∠=︒,BOD ∴是等边三角形,DA OB ⊥, 132OA OB ∴==,2222(23)(3)3AD OD OA =-=-=, (3,3)D ∴,又(0,1)E -,22(30)(31)19DE ∴=-++=,即EP BP +的最小值为19,故答案为:19.【点睛】本题考查了菱形的性质、等边三角形的判定与性质、两点之间的距离公式等知识点,根据两点之间线段最短得出EP BP +的最小值为DE 是解题关键.16.9或31).【分析】分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.【详解】解:①如图1,延长EA 交DC 于点F ,∵菱形ABCD 的周长为24,∴AB=BC=6,∵∠ABC=60°,∴三角形ABC 是等边三角形,∴∠BAC=60°,当EA ⊥BA 时,△ABE 是等腰直角三角形,∴AE=AB=AC=6,∠EAC=90°+60°=150°,∴∠FAC=30°,∵∠ACD=60°,∴∠AFC=90°,∴CF=12AC=3,则△ACE的面积为:12AE×CF=12×6×3=9;②如图2,过点A作AF⊥EC于点F,由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,∵AB=BE=BC=6,∴∠BEC=∠BCE=15°,∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,∴AF=12AE,AF=CF=22AC=32∵AB=BE=6,∴AE=2∴2236AE AF-=∴EC=EF+FC=3632则△ACE的面积为:12EC×AF=1(3632)329(31)2⨯⨯=.故答案为:9或31).【点睛】本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.17.4【分析】证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.【详解】解:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED(ASA).∴CF=BD.∴四边形CDBF 是平行四边形.作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,22BC =,∴BE=122BC =,DF=2DE , 在Rt △EMB 中,EM 2+BM 2=BE 2且EM=BM∴EM=1,在Rt △EMD 中,∵∠EDM=30°,∴DE=2EM=2,∴DF=2DE=4.故答案为:4.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,18.6.5或8或18【分析】根据题意分BP QP =、BQ QP =两种情况分别讨论,再结合勾股定理求解即可.【详解】解:∵四边形ABCD 是矩形,26AD =,点Q 是BC 的中点∴13BQ =∴①当BP QP =时,过点P 作PM BQ ⊥交BQ 于点M ,如图,则 6.5BM MQ ==,且四边形ABMP 为矩形∴ 6.5AP BM ==②当BQ QP =时,以点Q 为圆心,BQ 为半径作圆,与AD 交于P '、P ''两点,如图,过Q 作QN P P '''⊥,交P P '''于点N ,则可知P N P N '''=∵在Rt P NQ ',13P Q '=,12NQ AB == ∴222213125P N P Q NQ ''=-=-=同理,在Rt P NQ ''中,5P N ''= ∴2655822AD P N P N AP '''----'===,85518AP AP P N P N ''''''=++=++= 即P '、P ''为满足条件的P 点的位置∴8AP =或18∴综上所述,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为6.5或8或18. 故答案是:6.5或8或18【点睛】本题考查了矩形的性质、等腰三角形的性质以及勾股定理等知识,根据等腰三角形的性质进行分类讨论是一个难点,也是解题的关键.19.4【分析】过点E 作EM ∥AD ,由△ABO 是等腰三角形,根据三线合一可知点E 是AO 的中点,可证得EM=12AD=12BC ,根据已知可求得∠CEF=∠ECF=45°,从而得∠BEF=45°,△BEF 为等腰直角三角形,可得BF=EF=FC=12BC ,因此可证明△BFP ≌△MEP (AAS ),则EP=FP=12FC ,在Rt △BFP 中,利用勾股定理可求得x ,即得答案.【详解】 过点E 作EM ∥AD ,交BD 于M ,设EM=x ,∵AB=OB ,BE 平分∠ABO ,∴△ABO 是等腰三角形,点E 是AO 的中点,BE ⊥AO ,∠BEO=90°,∴EM 是△AOD 的中位线,又∵ABCD 是平行四边形,∴BC=AD=2EM=2x ,∵EF ⊥BC , ∠CAD=45°,AD ∥BC ,∴∠BCA=∠CAD=45°,∠EFC=90°,∴△EFC 为等腰直角三角形,∴EF=FC ,∠FEC=45°,∴∠BEF=90°-∠FEC=45°,则△BEF 为等腰直角三角形,∴BF=EF=FC=12BC=x , ∵EM ∥BF , ∴∠EMP=∠FBP ,∠PEM=∠PFB=90°,EM=BF ,则△BFP ≌△MEP (ASA ),∴EP=FP=12EF=12FC=12x , ∴在Rt △BFP 中,222BP BF PF =+, 即:2221(5)()2x x =+,解得:2x =,∴BC=2x =4,故答案为:4.【点睛】考查了平行四边形的性质,等腰三角形的性质,三线合一的应用,平行线的性质,全等三角形的判定和性质,利用勾股定理求三角形边长,熟记图形的性质定理是解题的关键. 20.【分析】作AB 的中点E ,连接EM 、CE ,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE 和EM 的长,然后确定CM 的范围.【详解】解:作AB 的中点M ,连接EM 、CM .在Rt △ABC 中,AB 22AC BC +2286+10,∵M 是直角△ABC 斜边AB 上的中点,∴CM =12AB =5.∵E是BD的中点,M是AB的中点,∴ME=12AD=2.∴5﹣2≤CE≤5+2,即3≤CE≤7.∴最大值为7,故答案为:7.【点睛】本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.三、解答题21.(1)证明见解析;(2)能,10;(3)152,理由见解析;【分析】(1)利用题中所给的关系式,列出CD,DF,AE的式子,即可证明.(2)由题意知,四边形AEFD是平行四边形,令AD=DF,求解即可得出t值.(3)由题意可知,当DE∥BC时,△DEF为直角三角形,利用AD+CD=AC的等量关系,代入式子求值即可.【详解】(1)由题意知:三角形CFD是直角三角形∵∠B=90°,∠A=60°∴∠C=30°,CD=2DF,又∵由题意知CD=4t,AE=2t,∴CD=2AE∴AE=DF.(2)能,理由如下;由(1)知AE=DF又∵DF⊥BC,∠B=90°∴AE∥DF∴四边形AEFD是平行四边形.当AD=DF时,平行四边形AEFD是菱形∵AC =60cm ,DF=12CD ,CD=4t , ∴AD=60-4t ,DF=2t ,∴60-4t=2t∴t=10.(3)当t 为152时,△DEF 为直角三角形,理由如下; 由题意知:四边形AEFD 是平行四边形,DF ⊥BC ,AE ∥DF ,∴当DE ∥BC 时,DF ⊥DE∴∠FDE=∠DEA=90°在△AED 中,∵∠DEA=90°,∠A =60°,AE=2t∴AD=4t ,又∵AC =60cm ,CD=4t ,∴AD+CD=AC ,8t=60,∴t=152. 即t=152时,∠FDE=∠DEA=90°,△DEF 为直角三角形. 【点睛】 本题主要考查了三角形、平行四边形及菱形的性质,正确掌握三角形、平行四边形及菱形的性质是解题的关键.22.(1)①=CF BD ,CF BD ⊥;②当点D 在BC 的延长线上时①中结论仍成立,详见解析;(2)45︒【分析】(1)①结论:CF 与BD 位置关系是垂直、数量关系是相等; 只要证明△BAD ≌△CAF,即可解决问题;②当点D 在BC 的延长线上时①的结论仍成立.证明方法类似;(2)过点A 作AG ⊥AC 交BC 于点G,理由(1)中的结论即可解决问题.【详解】解:(1)①相等(或=CF BD ),互相重直(或CF BD ⊥)理由如下:∵AB=AC,∠BAC=90︒,∴∠ABC=∠ACB=45︒,∵∠BAC=∠DAF,∴∠BAD=∠CAF,在△BAD 和△CAF 中,BA CA BAD CAF DA FA ⎧⎪∠∠⎨⎪⎩=== , ∴△BAD ≌△CAF (SAS ),∴BD=CF,∠ABD=∠ACF=45︒,∵∠ACB=45︒,∴∠FCB=90︒,∴CF ⊥BD,CF=BD,故答案为CF ⊥BD,CF=BD .②当点D 在BC 的延长线上时①的结论仍成立.理由:由正方形ADEF 得 AD=AF,∠DAF=90︒.∵∠BAC=90︒,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又AB=AC,∴△DAB ≌△FAC (SAS ),∴CF=BD,∠ACF=∠ABD,∵∠BAC=90︒,AB=AC,∴∠ABC=45︒,∴∠ACF=45︒,∴∠BCF=∠ACB+∠ACF=90︒.即 CF ⊥BD .(2)结论:当∠ACB=45︒时,CF ⊥BD .理由:过点A作AG⊥AC交BC于点G,∴AC=AG,由(1)可知:△GAD≌△CAF,∴∠ACF=∠AGD=45︒,∴∠BCF=∠ACB+∠ACF=90︒,即CF⊥BD.故答案为45︒.【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的性质、正方形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会添加辅助线,构造全等三角形解决问题,属于中考压轴题.23.(1)详见解析;(2)是,详见解析;(3)【分析】(1)平行四边形的性质可得AD∥BC,AB∥CD,再根据平行线的性质证明∠CEF=∠CFE,根据等角对等边可得CE=CF,再有条件四边形ECFG是平行四边形,可得四边形ECFG为菱形,即可解决问题;(2)先判断出∠BEG=120°=∠DCG,再判断出AB=BE,进而得出BE=CD,即可判断出△BEG≌△DCG(SAS),再判断出∠CGE=60°,进而得出△BDG是等边三角形,即可得出结论;(3)首先证明四边形ECFG为正方形,再证明△BME≌△DMC可得DM=BM,∠DMC=∠BME,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到△BDM是等腰直角三角形,由等腰直角三角形的性质即可得到结论.【详解】(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,。

人教版平行四边形单元 易错题难题自检题学能测试试题

人教版平行四边形单元 易错题难题自检题学能测试试题

人教版平行四边形单元 易错题难题自检题学能测试试题一、解答题1.已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .提出问题:当点E 运动时,线段CF 与线段DE 之间的数量关系是否发生改变? 探究问题:(1)首先考察点E 的一个特殊位置:当点E 与点B 重合(如图①)时,点F 与点B 也重合.用等式表示线段CF 与线段DE 之间的数量关系: ;(2)然后考察点E 的一般位置,分两种情况:情况1:当点E 是正方形ABCD 内部一点(如图②)时;情况2:当点E 是正方形ABCD 外部一点(如图③)时.在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由; 拓展问题:(3)连接AF ,用等式表示线段AF 、CF 、DF 三者之间的数量关系: .2.在数学的学习中,有很多典型的基本图形.(1)如图①,ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为D 、E .试说明ABD CAE ≌;(2)如图②,ABC 中,90BAC ∠=︒,AB AC =,点D 、A 、F 在同一条直线上,BD DF ⊥,3AD =,4BD =.则菱形AEFC 面积为______.(3)如图③,分别以Rt ABC 的直角边AC 、AB 向外作正方形ACDE 和正方形ABFG ,连接EG ,AH 是ABC 的高,延长HA 交EG 于点I ,若6AB =,8AC =,求AI 的长度.3.如图,点E 为▱ABCD 的边AD 上的一点,连接EB 并延长,使BF =BE ,连接EC 并延长,使CG =CE ,连接FG .H 为FG 的中点,连接DH ,AF .(1)若∠BAE =70°,∠DCE =20°,求∠DEC 的度数;(2)求证:四边形AFHD 为平行四边形;(3)连接EH ,交BC 于点O ,若OC =OH ,求证:EF ⊥EG .4.在矩形ABCD 中,AE ⊥BD 于点E ,点P 是边AD 上一点,PF ⊥BD 于点F ,PA =PF . (1)试判断四边形AGFP 的形状,并说明理由.(2)若AB =1,BC =2,求四边形AGFP 的周长.5.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,AE =AD ,作DF ⊥AE 于点F . (1)求证:AB =AF ;(2)连BF 并延长交DE 于G .①EG =DG ;②若EG =1,求矩形ABCD 的面积.6.如图所示,四边形ABCD 是正方形, M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A B 、重合),另一直角边与CBM ∠的平分线BF 相交于点F .(1)求证: ADE FEM ∠=∠;(2)如图(1),当点E 在AB 边的中点位置时,猜想DE 与EF 的数量关系,并证明你的猜想;(3)如图(2),当点E 在AB 边(除两端点)上的任意位置时,猜想此时DE 与EF 有怎样的数量关系,并证明你的猜想.7.已知在平行四边形ABCD 中,AB BC ≠,将ABC 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B ∠=︒,3AB =,6=BC ,求OAC 的面积;(3)如果30B ∠=︒,23AB =,当AED 是直角三角形时,求BC 的长.8.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由; (3)当02x <<时,六边形AEFCHG 的面积可能等于53吗?如果能,求此时x 的值;如果不能,请说明理由.9.如图,ABCD 中,60ABC ∠=︒,连结BD ,E 是BC 边上一点,连结AE 交BD 于点F .(1)如图1,连结AC ,若6AB AE ==,:5:2BC CE =,求ACE △的面积; (2)如图2,延长AE 至点G ,连结AG 、DG ,点H 在BD 上,且BF DH =,AF AH =,过A 作AM DG ⊥于点M .若180ABG ADG ∠+∠=︒,求证:3BG GD +=.10.已知,矩形ABCD 中,4,8AB cm BC cm ==,AC 的垂直平分EF 线分别交AD BC 、于点E F 、,垂足为O .(1)如图1,连接AF CE 、,求证:四边形AFCE 为菱形;(2)如图2,动点P Q 、分别从A C 、两点同时出发,沿AFB △和CDE △各边匀速运动一周,即点P 自A F B A →→→停止,点O 自C D E C →→→停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A C P Q 、、、四点为顶点的四边形是平行四边形时,则t =____________.②若点P Q 、的运动路程分别为a b 、 (单位:,0cm ab ≠),已知AC P Q 、、、四点为顶点的四边形是平行四边形,则a 与b 满足的数量关系式为____________.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)DE 2CF ;(2)在情况1与情况2下都相同,详见解析;(3)AF +CF =2DF 或|AF -CF |2【分析】(1)易证△BCD 是等腰直角三角形,得出2CB ,即可得出结果;(2)情况1:过点C 作CG ⊥CF ,交DF 于G ,设BC 交DF 于P ,由ASA 证得△CDG ≌△CBF ,得出DG=FB ,CG=CF ,则△GCF 是等腰直角三角形,2CF ,连接BE ,设∠CDG=α,则∠CBF=α,∠DEA=∠ADE=90°-α,求出∠DAE=2α,则∠EAB=90°-2α,∠BEA=∠ABE=12(180°-∠EAB )=45°+α,∠CBE=45°-α,推出∠FBE=45°,得出△BEF 是等腰直角三角形,则EF=BF ,推出EF=DG ,DE=FG ,得出2CF ;情况2:过点C 作CG ⊥CF 交DF 延长线于G ,连接BE ,设CD 交BF 于P ,由ASA 证得△CDG ≌△CBF ,得出DG=FB ,CG=CF ,则△GCF 是等腰直角三角形,得2CF ,设∠CDG=α,则∠CBF=α,证明△BEF 是等腰直角三角形,得出EF=BF ,推出DE=FG ,得出2CF ;(3)①当F 在BC 的右侧时,作HD ⊥DF 交FA 延长线于H ,由(2)得△BEF 是等腰直角三角形,EF=BF ,由SSS 证得△ABF ≌△AEF ,得出∠EFA=∠BFA=12∠BFE=45°,则△HDF 是等腰直角三角形,得2DF ,DH=DF ,∵∠HDF=∠ADC=90°,由SAS 证得△HDA ≌△FDC ,得CF=HA ,即可得出2;②当F在AB的下方时,作DH⊥DE,交FC延长线于H,在DF上取点N,使CN=CD,连接BN,证明△BFN是等腰直角三角形,得BF=NF,由SSS证得△CNF≌△CBF,得∠NFC=∠BFC=12∠BFD=45°,则△DFH是等腰直角三角形,得FH=2DF,DF=DH,由SAS证得△ADF≌△CDH,得出CH=AF,即可得出AF+CF=2DF;③当F在DC的上方时,连接BE,作HD⊥DF,交AF于H,由(2)得△BEF是等腰直角三角形,EF=BF,由SSS证得△ABF≌△AEF,得∠EFA=∠BFA=12∠BFE=45°,则△HDF是等腰直角三角形,得出HF=2DF,DH=DF,由SAS证得△ADC≌△HDF,得出AH=CF,即可得出AF-CF=2DF;④当F在AD左侧时,作HD⊥DF交AF的延长线于H,连接BE,设AD交BF于P,证明△BFE是等腰直角三角形,得EF=BF,由SSS证得△ABF≌△AEF,得∠EFA=∠BFA=12∠BFE=45°,则∠DFH=∠EFA=45°,△HDF是等腰直角三角形,得DH=DF,HF=2DF,由SAS证得△HDA≌△FDC,得出AF=CF,即可得出CF-AF=2DF.【详解】解:(1)∵四边形ABCD是正方形,∴CD=CB,∠BCD=90°,∴△BCD是等腰直角三角形,∴DB=2CB,当点E、F与点B重合时,则DE=2CF,故答案为:DE=2CF;(2)在情况1或情况2下,线段CF与线段DE之间的数量关系与(1)中结论相同;理由如下:情况1:∵四边形ABCD是正方形,∴CD=CB=AD=AB=AE,∠BCD=∠DAB=∠ABC=90°,过点C作CG⊥CF,交DF于G,如图②所示:则∠BCD=∠GCF=90°,∴∠DCG=∠BCF,设BC交DF于P,∵BF⊥DE,∴∠BFD=∠BCD=90°,∴∠CDP=∠FBP ,在△CDG 和△CBF 中,DCG BCF CD CBCDG CBF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△CDG ≌△CBF (ASA ),∴DG=FB ,CG=CF ,∴△GCF 是等腰直角三角形,∴FG=2CF,连接BE ,设∠CDG=α,则∠CBF=α,∠ADE=90°-α,∵AD=AE ,∴∠DEA=∠ADE=90°-α,∴∠DAE=180°-2(90°-α)=2α,∴∠EAB=90°-2α,∵AB=AE ,∴∠BEA=∠ABE=12(180°-∠EAB )=12(180°-90°+2α)=45°+α, ∴∠CBE=90°-(45°+α)=45°-α,∴∠FBE=∠CBE+∠CBF=45°-α+α=45°,∵BF ⊥DE ,∴△BEF 是等腰直角三角形,∴EF=BF ,∴EF=DG ,∴EF+EG=DG+EG ,即DE=FG ,∴DE=2CF ;情况2:过点C 作CG ⊥CF 交DF 延长线于G ,连接BE ,设CD 交BF 于P ,如图③所示:∵∠GCF=∠BCD=90°,∵∠FPD=∠BPC ,∴∠FDP=∠PBC ,在△CDG 和△CBF 中,DCG BCF CD CBCDG CBF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△CDG ≌△CBF (ASA ),∴DG=FB ,CG=CF ,∴△GCF 是等腰直角三角形,∴FG=2CF ,设∠CDG=α,则∠CBF=α,同理可知:∠DEA=∠ADE=90°-α,∠DAE=2α,∴∠EAB=90°+2α,∵AB=AE ,∴∠BEA=∠ABE=45°-α,∴∠FEB=∠DEA-∠AEB=90°-α-(45°-α)=45°,∵BF ⊥DE ,∴△BEF 是等腰直角三角形,∴EF=BF ,∴EF=DG ,∴DE=FG ,∴DE=2CF ;(3)①当F 在BC 的右侧时,作HD ⊥DF 交FA 延长线于H ,如图④所示:由(2)得:△BEF 是等腰直角三角形,EF=BF ,在△ABF 和△AEF 中,AB AE AF AF BF EF ⎧⎪⎨⎪⎩===,∴△ABF ≌△AEF (SSS ),∴∠EFA=∠BFA=1 2∠BFE=45°,∴△HDF是等腰直角三角形,∴HF=2DF,DH=DF,∵∠HDF=∠ADC=90°,∴∠HDA=∠FDC,在△HDA和△FDC中,DH DFHDA FDCDA DC⎧⎪∠∠⎨⎪⎩===,∴△HDA≌△FDC(SAS),∴CF=HA,∴2DF=HF=HA+AF=CF+AF,即AF+CF=2DF;②当F在AB的下方时,作DH⊥DE,交FC延长线于H,在DF上取点N,使CN=CD,连接BN,如图⑤所示:设∠DAE=α,则∠CDN=∠CND=90°-α,∴∠DCN=2α,∴∠NCB=90°-2α,∵CN=CD=CB,∴∠CNB=∠CBN=12(180°-∠NCB)=12(180°-90°+2α)=45°+α,∵∠CNE=180°-∠CND=180°-(90°-α)=90°+α,∴∠FNB=90°+α-(45°+α)=45°,∴△BFN是等腰直角三角形,∴BF=NF,在△CNF和△CBF中,CN CB CF CF NF BF ⎧⎪⎨⎪⎩===,∴△CNF ≌△CBF (SSS ),∴∠NFC=∠BFC=12∠BFD=45°, ∴△DFH 是等腰直角三角形,∴FH=2DF ,DF=DH ,∵∠ADC=∠HDE=90°,∴∠ADF=∠CDH ,在△ADF 和△CDH 中,AD CD ADF CDH DF DH ⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△CDH (SAS ),∴CH=AF ,∴FH=CH+CF=AF+CF ,∴AF+CF=2DF ;③当F 在DC 的上方时,连接BE ,作HD ⊥DF ,交AF 于H ,如图⑥所示:由(2)得:△BEF 是等腰直角三角形,EF=BF ,在△ABF 和△AEF 中,AB AE AF AF BF EF ⎧⎪⎨⎪⎩===,∴△ABF ≌△AEF (SSS ),∴∠EFA=∠BFA=12∠BFE=45°, ∴△HDF 是等腰直角三角形,∴2,DH=DF ,∵∠ADC=∠HDF=90°,∴∠ADH=∠CDF ,在△ADC 和△HDF 中,AD CD ADH CDF DH DF ⎧⎪∠∠⎨⎪⎩===,∴△ADC ≌△HDF (SAS ),∴AH=CF ,∴HF=AF-AH=AF-CF ,∴AF-CF=2DF ;④当F 在AD 左侧时,作HD ⊥DF 交AF 的延长线于H ,连接BE ,设AD 交BF 于P ,如图⑦所示:∵AB=AE=AD ,∴∠AED=∠ADE ,∵∠PFD=∠PAB=90°,∠FPD=∠BPA ,∴∠ABP=∠FDP ,∴∠FEA=∠FBA ,∵AB=AE ,∴∠AEB=∠ABE ,∴∠FEB=∠FBE ,∴△BFE 是等腰直角三角形,∴EF=BF ,在△ABF 和△AEF 中, AB AE AF AF BF EF ⎧⎪⎨⎪⎩===,∴△ABF ≌△AEF (SSS ),∴∠EFA=∠BFA=12∠BFE=45°, ∴∠DFH=∠EFA=45°,∴△HDF 是等腰直角三角形,∴DH=DF ,DF ,∵∠HDF=∠CDA=90°,∴∠HDA=∠FDC ,在△HDA 和△FDC 中,DH DF HDA FDC AD CD ⎧⎪∠∠⎨⎪⎩===,∴△HDA ≌△FDC (SAS ),∴AF=CF ,∴AH-AF=CF-AF=HF ,∴DF ,综上所述,线段AF 、CF 、DF 三者之间的数量关系:DF 或DF , 故答案为:DF 或DF .【点睛】本题是四边形综合题,主要考查了正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形内角和定理、等腰三角形的性质等知识;熟练掌握全等三角形的判定与性质和等腰直角三角形的判定与性质是解题的关键.2.(1)见解析;(2)24;(3)5AI =.【分析】(1)证∠BDA =∠CEA =90°,∠CAE =∠ABD ,由AAS 证明△ABD ≌△CAE 即可; (2)连接CE ,交AF 于O ,由菱形的性质得∠COA =∠ADB =90°,同(1)得△ABD ≌△CAO (AAS ),得OC =AD =3,OA =BD =4,由三角形面积公式求出S △AOC =6,即可得出答案;(3)过E 作EM ⊥HI 的延长线于M ,过点G 作GN ⊥HI 于N ,同(1)得△ACH ≌△EAM (AAS ),△ABH ≌△GAN (AAS ),得EM =AH =GN ,证△EMI ≌△GNI (AAS ),得EI =GI ,证∠EAG =90°,由勾股定理求出EG =10,再由直角三角形的性质即可得出答案.【详解】(1)证明:∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△CAE (AAS );(2)解:连接CE ,交AF 于O ,如图②所示:∵四边形AEFC 是菱形,∴CE ⊥AF ,∴∠COA =∠ADB =90°,同(1)得:△ABD ≌△CAO (AAS ),∴OC =AD =3,OA =BD =4,∴S △AOC =12OA •OC =12×4×3=6, ∴S 菱形AEFC =4S △AOC =4×6=24,故答案为:24;(3)解:过E 作EM ⊥HI 的延长线于M ,过点G 作GN ⊥HI 于N ,如图③所示: ∴∠EMI =∠GNI =90°,∵四边形ACDE 和四边形ABFG 都是正方形,∴∠CAE =∠BAG =90°,AC =AE =8,AB =AG =6,同(1)得:△ACH ≌△EAM (AAS ),△ABH ≌△GAN (AAS ),∴EM =AH =GN ,在△EMI 和△GNI 中,EIM GIH EMI GNI EM GN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点,∵∠CAE =∠BAG =∠BAC =90°,∴∠EAG =90°,在Rt △EAG 中, EG10,∵I 是EG 的中点,∴AI =12EG =12×10=5.【点睛】本题是四边形综合题目,考查了正方形的性质、菱形的性质、等腰直角三角形的性质、全等三角形的判定与性质、直角三角形斜边上的中线性质、勾股定理、三角形面积等知识;本题综合性强,熟练掌握正方形的性质和菱形的性质,证明三角形全等是解题的关键.3.(1)50°;(2)见解析;(3)见解析【分析】(1)由平行四边形的性质和平行线的判定和性质得出答案即可;(2)由平行四边形的性质得出AD=BC,AD∥BC;证明BC是△EFG的中位线,得出BC∥FG,BC=12FG,证出AD∥FH,AD∥FH,由平行四边形的判定方法即可得出结论;(3)连接EH,CH,根据三角形的中位线定理以及平行四边形的判定和性质即可得到结论.【详解】明:(1)∵四边形ABCD是平行四边形,∴∠BAE=∠BCD=70°,AD∥BC,∵∠DCE=20°,∵AB∥CD,∴∠CDE=180°﹣∠BAE=110°,∴∠DEC=180°﹣∠DCE﹣∠CDE=50°;(2)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAE=∠BCD,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=12 FG,∵H为FG的中点,∴FH=12 FG,∴BC∥FH,BC=FH,∴AD∥FH,AD∥FH,∴四边形AFHD是平行四边形;(3)连接EH,CH,∵CE=CG,FH=HG,∴CH=12EF,CH∥EF,∵EB=BF=12 EF,∴BE=CH,∴四边形EBHC是平行四边形,∴OB=OC,OE=OH,∵OC=OH,∴OE=OB=OC=12 BC,∴△BCE是直角三角形,∴∠FEG=90°,∴EF⊥EG.【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、等腰三角形的性质以及三角形内角和定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.4.(1)四边形AGFP是菱形,理由见解析;(2)四边形AGFP的周长为:252【分析】(1)根据矩形的性质和菱形的判定解答即可;(2)根据全等三角形的判定和性质,以及利用勾股定理解答即可.【详解】解:(1)四边形AGFP是菱形,理由如下:∵四边形ABCD是矩形,∴∠BAP=90°,∵PF⊥BD,PA=PF,∴∠PBA=∠PBF,∵AE ⊥BD ,∴∠PBF+∠BGE =90°,∵∠BAP =90°,∴∠PBA+∠APB =90°,∴∠APB =∠BGE ,∵∠AGP =∠BGE ,∴∠APB =∠AGP ,∴AP =AG ,∵PA =PF ,∴AG =PF ,∵AE ⊥BD ,PF ⊥BD ,∴AE ∥PF ,∴四边形AGFP 是平行四边形,∵PA =PF ,∴平行四边形AGFP 是菱形;(2)在Rt △ABP 和Rt △FBP 中,∵PB =PB ,PA =PF ,∴Rt △ABP ≌Rt △FBP (HL ),∴AB =FB =1,∵四边形ABCD 是矩形,∴AD =BC =2,∴BD =设PA =x ,则PF =x ,PD =2﹣x ,PF 1,在Rt △DPF 中,DF 2+PF 2=PD 2,∴2221)(2)x x +=-解得:x =12,∴四边形AGFP 的周长为:4x =42=. 【点睛】此题考查矩形的性质,菱形的判定,全等三角形的判定和性质和勾股定理,解题的关键是熟练掌握所学的知识定理进行解题.5.(1)见解析;(2)①见解析;②+2【分析】(1)根据矩形的性质,结合角平分线的定义可证明△ABE ≌△AFD (AAS ),进而证得结论;(2)①通过求解∴∠EFG=∠AED=67.5°,∠DFG=∠FDG=22.5°,进而可得EG=FG=DG ;②AB=x ,则x ,DF=AF=x ,x-x ,利用勾股定理可求解x 值,再根据矩形ABCD的面积=△AED 面积的2倍可求解.【详解】解:(1)证明:∵四边形ABCD 为矩形,∴AD ∥BC ,∠DAB=∠ABE=90°,∴∠DAE=∠AEB ,∵AE 平分∠BAD ,∴∠BAE=∠DAE=45°,∴∠BAE=∠AEB=45°,∴AB=EB ,∵DF ⊥AC∴∠AFD=90°,∴∠ABE=∠AFD=90°,∵AE=AD ,∴△ABE ≌△AFD (AAS ),∴AB=AF ;(2)①证明:∵AE=AD ,∠EAD=45°,∴∠AED=∠ADE=67.5°,∴∠FDG=22.5°,∵AB=AF ,∠BAF=45°,∴∠AFB=67.5°,∴∠EFG=67.5°,∴∠EFG=∠AED ,∴FG=EG ,∠DFG=22.5°,∴∠DFG=∠FDG ,∴FG=DG ,∴EG=DG ;②∵EG=1,∴DG=2,设AB=x ,则x ,DF=AF=x ,∴x-x ,x-x )2+x 2=22,解得x 2,∴矩形ABCD 的面积=2×12×AE×DF x 2. 【点睛】本题主要考查勾股定理,矩形的性质,全等三角形的性质与判定,角平分线的定义,等腰三角形的性质与判定,灵活运用定理是解题的关键.6.(1)详见解析;(2)DE EF =,理由详见解析;(3)DE EF =,理由详见解析【分析】(1)根据90,90AED FEB ADE AED ∠+∠=︒∠+∠=︒,等量代换即可证明;(2)DE=EF ,连接NE ,在DA 边上截取DN=EB ,证出△DNE ≌△EBF 即可得出答案;(3)在DA 边上截取DN EB =,连接NE ,证出()DNE EBF ASA ≌即可得出答案.【详解】(1)证明:∵90DAB DEF ∠=∠=︒,∴90,90AED FEB ADE AED ∠+∠=︒∠+∠=︒,∴ADE FEM ∠=∠;(2) ;DE EF =理由如下:如图,取AD 的中点N ,连接NE ,∵四边形ABCD 为正方形,∴AD AB = ,∵,N E 分别为,AD AB 中点 ∴11,22AN DN AD AE EB AB ====, ∴,DN BE AN AE == 又∵90A ∠=︒∴45ANE ∠=︒∴180135DNE ANE ∠=︒-∠=︒,又∵90CBM ∠=︒,BF 平分CBM ∠∴45,135CBF EBF ∠=︒∠=︒.∴DNE EBF ∠=∠在DNE △和EBF △中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩()DNE EBF ASA ≌,∴DE EF =(3) DE EF =.理由如下:如图,在DA 边上截取DN EB =,连接NE ,∵四边形ABCD 是正方形, DN EB =,∴AN AE =,∴AEN △为等腰直角三角形,∵45ANE ∠=︒∴18045135DNE ∠=︒-︒=︒,∵BF 平分CBM ∠, AN AE =,∴9045135EBF ∠=︒+︒=︒,∴DNE EBF ∠=∠,在DNE △和EBF △中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DNE EBF ASA ≌,∴DE EF =.【点睛】此题主要考查了正方形的性质以及全等三角形的判定与性质等知识,解决本题的关键就是求证△DNE ≌△EBF .7.(1)见解析;(2)928;(3)4或6 【分析】(1)由折叠的性质得ACB ACE ∠=∠,BC EC =,由平行四边形的性质得AD BC =,//AD BC .则EC AD =,ACB CAD ∠=∠,得ACE CAD ∠=∠,证出OA OC =,则OD OE =,由等腰三角形的性质得ODE OED ∠=∠,证出CAD ACE OED ODE ∠=∠=∠=∠,即可得出结论;(2)证四边形ABCD 是矩形,则90CDO ∠=︒,3==CD AB 6AD BC ==OA OC x ==,则6OD x ,在Rt OCD ∆中,由勾股定理得出方程,求出36OA =,由三角形面积公式即可得出答案;(3)分两种情况:90EAD ∠=︒或90AED ∠=︒,需要画出图形分类讨论,根据含30角的直角三角形的性质,即可得到BC 的长.【详解】解:(1)证明:由折叠的性质得:ABC ∆≅△AEC ∆,ACB ACE ∴∠=∠,BC EC =,四边形ABCD 是平行四边形,AD BC ∴=,//AD BC .EC AD ∴=,ACB CAD ∠=∠,ACE CAD ∴∠=∠,OA OC ∴=,OD OE ∴=,ODE OED ∴∠=∠,AOC DOE ∠=∠,CAD ACE OED ODE ∴∠=∠=∠=∠,//AC DE ∴;(2)平行四边形ABCD 中,90B ∠=︒, ∴四边形ABCD 是矩形,90CDO ∴∠=︒,==CD AB AD BC ==由(1)得:OA OC =,设OA OC x ==,则OD x =,在Rt OCD ∆中,由勾股定理得:222)x x +=,解得:4x =,OA ∴=,OAC ∴∆的面积1122OA CD =⨯=; (3)分两种情况:①如图3,当90EAD ∠=︒时,延长EA 交BC 于G , AD BC =,BC EC =,AD EC ∴=,//AD BC ,90EAD ∠=︒,90EGC ∴∠=︒,30B ∠=︒,AB =30AEC ∴∠=︒,1122GC EC BC ∴==, G ∴是BC 的中点,在Rt ABG ∆中,3BG AB ==, 26BC BG ∴==;②如图4,当90AED ∠=︒时AD BC =,BC EC =,AD EC ∴=,由折叠的性质得:AE AB =,AE CD ∴=,在ACE ∆和CAD ∆中,AE CD CE AD AC CA =⎧⎪=⎨⎪=⎩,()ACE CAD SSS ∴∆≅∆,ECA DAC ∴∠=∠,OA OC ∴=,OE OD ∴=,OED ODE ∴∠=∠,AED CDE ∴∠=∠,90AED ∠=︒,90CDE ,//AE CD ∴,又//AB CD ,B ∴,A ,E 在同一直线上,90BAC EAC ∴∠=∠=︒,Rt ABC ∆中,30B ∠=︒,23AB =,32AC AB ∴==,24BC AC ==; 综上所述,当AED ∆是直角三角形时,BC 的长为4或6.【点睛】本题是四边形综合题目,考查了翻折变换的性质、平行四边形的性质、平行线的判定与性质、矩形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、勾股定理、直角三角形的性质等知识;本题综合性强,熟练掌握翻折变换的性质和平行四边形的性质是解题的关键.8.(1)见解析;(2)不变,见解析;(3)能,12x =-或12+ 【分析】(1)由折叠的性质得到BE=EP ,BF=PF ,得到BE=BF ,根据菱形的性质得到AB ∥CD ∥FG ,BC ∥EH ∥AD ,于是得到结论;(2)由菱形的性质得到BE=BF ,AE=FC ,推出△ABC 是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;(3)记AC 与BD 交于点O ,得到∠ABD=30°,解直角三角形得到AO=1,S 四边形ABCD AEFCHG 时,得到S △BEF +S △DGH GH 与BD 交于点M ,求得GM=12x ,根据三角形的面积列方程即可得到结论. 【详解】解:()1折叠后B 落在BD 上, ,BE EP ∴=BF PF = BD 平分,ABC ∠BE BF ∴=,∴四边形BEPF 为菱形,同理四边形GDHP 为菱形,////,// //,AB CD FG BC EH AD ∴∴四边形AEPG 为平行四边形,AG EP BE ∴==.()2不变.理由如下:由()1得.AG BE =四边形BEPF 为菱形,,.BE BF AE FC ∴==60,BAC ABC ∠=︒为等边三角60B D ∴∠=∠=︒,,,EF BE GH DG ∴==36AEFCHG C AE EF FC CH GH AG AB ∴=+++++==六边形为定值.()3记AC 与BD 交于点O .2,60,AB BAC =∠=30,ABD ∴∠=1,AO ∴=3,BO =12332ABC S ∴=⨯=23ABCD S ∴=四边形当六边形AEFCHG 534 53233344DEF DGH S S +==由()1得BE AG =AE DG ∴=DG x =2BE x ∴=-记GH 与BD 交于点,M12GM x ∴=,3DM x = 23DHG S x ∴= 同理()223323344BEF Sx x x =-=+ 223333334x x x +=化简得22410,x x -+= 解得121x =-221x = ∴当212x =-或212+时,六边形AEPCHG 534 【点睛】此题是四边形的综合题,主要考查了菱形的性质,等边三角形的判定和性质,三角形的面积公式,菱形的面积公式,解本题的关键是用x 表示出相关的线段,是一道基础题目.9.(1)32)见详解.【分析】(1)根据所给的60°,判断出等边三角形,得出BE=6,根据所给比例关系,求出CE ,然后求出三角形面积;(2)利用已知条件能够求出ABF ≌ADH ,之后需要构造全等图形,使所求的BG+GD 转化在同一直线上,然后根据含有30°的特殊直角三角形的关系,即可证明出结果.【详解】解:(1) 如图:过A 点作AN ⊥BE ,交BE 于N .∵60ABC ∠=︒,6AB AE ==∴△ABE 为等边三角形,∴AB=BE=AE=6即:AN=33∵:5:2BC CE =∴:5:3BC BE =∵BE=6∴BC=10∴EC=4 ∴113346322ACE S AN EC ==⨯=即:ACE △的面积为3.(2)如图:延长GD 至P 使DP=BG ,连接AP ,∵AH=AF ,∴∠AFH=∠AHF即:∠AFB=∠AHD ,又∵AF=AH ,BF=DH ,∴ABF ≌ADH∴AB=AD又∵180ABG ADG ∠+∠=︒,180ADP ADG ∠+∠=︒,∴∠ABG=∠ADP∵BG=DP ,∴ABG ≌ADP △∴AG=AP ,∠BAG=∠DAP∵∠ABC=60°∴∠BAD=120°即:∠GAP=120°∴∠AGP=∠APG=60°,又∵AM ⊥GD∴3,∵BG=GP∴BG+GD=GD+DP=GP即:3.【点睛】本题重点考察在平行四边形中利用平行四边形的性质证明图形面积,以及构造全等图形求多边之间的关系,构造全等三角形是本题的解题关键.10.(1)见解析;(2)①43t =;②12a b += 【分析】(1)先证明四边形AFCE 为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;(2)①分情况讨论可知,当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;②分三种情况讨论可知a 与b 满足的数量关系式.【详解】(1)证明:∵四边形ABCD 是矩形,∴AD BC ∥∴,CAD ACB AEF CEF ∠=∠∠=∠,∵EF 垂直平分AC ,垂足为O ,∴OA OC =,∴AOE COF △≌△,∴OE OF =,∴四边形AFCE 为平行四边形,又∵EF OF ⊥∴四边形AFCE 为菱形,(2)①43t =秒. 显然当P 点在AF 上时,Q 点在CD 上,此时AC P Q 、、、四点不可能构成平行四边形;同理P 点在AB 上时,Q 点在DE 或CE 上,也不能构成平行四边形.因此只有当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形.∴以AC P Q 、、、四点为顶点的四边形是平行四边形时,PC QA = ∴点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,∴5,4124PC t QA CD AD t t ==+-=-,∴5124t t =-,解得43t = ∴以AC P Q 、、、四点为顶点的四边形是平行四边形时,43t =秒. ②a 与b 满足的数量关系式是12a b +=, 由题意得,以AC P Q 、、、四点为顶点的四边形是平行四边形时, 点P Q 、在互相平行的对应边上,分三种情况:i )如图1,当P 点在AF 上、Q 点在CE 上时,AP CP =,即12a b =-,得12a b +=.ii )如图2,当P 点在B 上、Q 点在DE 上时,AQ CP =,即12b a -=,得12a b +=. iii )如图3,当P 点在AB 上、Q 点在CD 上时,AQ CP =,即12a b -=,得12a b +=.综上所述,a 与b 满足的数量关系式是()120a b ab +=≠.【点睛】此题考查线段垂直平分线的性质,菱形的判定及性质,勾股定理,全等三角形的判定及性质,平行四边形的判定及性质,解题中注意分类讨论的思想.。

人教版平行四边形单元 易错题提高题学能测试试卷

人教版平行四边形单元 易错题提高题学能测试试卷

人教版平行四边形单元 易错题提高题学能测试试卷一、选择题1.如图,已知平行四边形ABCD ,6AB =,9BC =,120A ∠=︒,点P 是边AB 上一动点,作PE BC ⊥于点E ,作120EPF ∠=︒(PF 在PE 右边)且始终保持33PE PF +=,连接CF 、DF ,设m CF DF =+,则m 满足( )A .313m ≥B .63m ≥C .313937m <+≤D .3337379m +<<+2.如图,ABCD □中,4,60AB BC A ==∠=︒,连接BD ,将BCD 绕点B 旋转,当BD (即BD ')与AD 交于一点E ,BC (即BC ')与CD 交于一点F 时,给出以下结论:①AE DF =;②60BEF ∠=︒;③DEB DFB ∠=∠;④DEF 的周长的最小值是423+.其中正确的是( )A .①②③B .①②④C .②③④D .①③④3.在菱形ABCD 中,60ADC ∠=︒,点E 为AB 边的中点,点P 与点A 关于DE 对称,连接DP 、BP 、CP ,下列结论:①DP CD =;②222AP BP CD +=;③75DCP ∠=︒;④150CPA ∠=︒,其中正确的是( )A .①②B .①②③C .①②④D .①②③④4.如图,已知△ABC 中,∠ACB =90°,AC =BC =2,将直角边AC 绕A 点逆时针旋转至AC ′,连接BC ′,E 为BC ′的中点,连接CE ,则CE 的最大值为( ).A .5B .21+C .212+D .512+ 5.如图,点E 在正方形ABCD 外,连接AE BE DE ,,,过点A 作AE 的垂线交DE 于F ,若210AE AF BF ===,,则下列结论不正确的是( )A .AFD AEB ∆≅∆B .点B 到直线AE 的距离为2C .EB ED ⊥ D .16AFD AFB S S ∆∆+=+6.下列命题:①一组对边平行且另一组对边相等的四边形是平行四边形;②一组邻角相等的平行四边形是矩形;③顺次连结矩形四边中点得到的四边形是菱形;④如果一个菱形的对角线相等,那么它一定是正方形.其中真命题个数是( )A .4个B .3个C .2个D .1个7.如图,在矩形ABCD 中,P 是边AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,如果3, 4AB AD ==,那么( )A .125PE PF += B .121355PE PF <+< C .5PE PF += D .34PE PF <+< 8.正方形ABCD ,CEFG 按如图放置,点B ,C ,E 在同一条直线上,点P 在BC 边上,PA PF =,且APF 90∠=︒,连接AF 交CD 于点M ,有下列结论:EC BP =①;BAP GFP ∠∠=②;2221AB CE AF 2+=③;APF ABCD CEFG S S 2S +=正方形正方形④.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 9. 如图,平行四边形ABCD 对角线AC 、BD 交于点O ,∠ADB=20°,∠ACB=50°,过点O 的直线交AD 于点E ,交BC 于点F 当点E 从点A 向点D 移动过程中(点E 与点A 、点D 不重合),四边形AFCE 的形状变化依次是( )A .平行四边形→矩形→平行四边形→菱形→平行四边形B .平行四边形→矩形→平行四边形→正方形→平行四边形C .平行四边形→菱形→平行四边形→矩形→平行四边形D .平行四边形→矩形→菱形→正方形→平行四边形10.已知,如图,在菱形ABCD 中.(1)分别以C ,D 为圆心,大于12CD 长为半径作弧,两弧分别交于点E ,F ;(2)作直线EF ,且直线EF 恰好经过点A ,且与边CD 交于点M ;(3)连接BM .根据以上作图过程及所作图形,判断下列结论中错误..的是( )A .∠ABC =60°B .如果AB =2,那么BM =4C .BC =2CMD .2ABM ADM S S =△△二、填空题11.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段DB 上一动点,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.12.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.,顶点D坐标为13.如图,菱形ABCD的BC边在x轴上,顶点C坐标为(3,0)(0,4),点E在y轴上,线段//EF x轴,且点F坐标为(8,6),若菱形ABCD沿x轴左右运动,连接AE、DF,则运动过程中,四边形ADFE周长的最小值是_______.14.如图,在Rt△ABC中,∠BAC=90°,AB=5,AC=12,P为边BC上一动点(P不与B、C 重合),PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的取值范围是__.15.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为_____.16.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有_____.17.如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC为一边作正方形BDEC设正方形的对称中心为O,连接AO,则AO=_____.18.如图,已知在△ABC中,AB=AC=13,BC=10,点M是AC边上任意一点,连接MB,以MB、MC为邻边作平行四边形MCNB,连接MN,则MN的最小值是______19.如图,矩形纸片ABCD,AB=5,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O,F,且OP=OF,则AF的值为______.20.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D为平面内动点,且满足AD =4,连接BD,取BD的中点E,连接CE,则CE的最大值为_____.三、解答题∆沿21.如图,在矩形ABCD中,点E是AD上的一点(不与点A,D重合),ABEBE折叠,得BEF,点A的对称点为点F.=时,点F会落在CE上吗?请说明理由.(1)当AB AD(2)设()01AB m m AD=<<,且点F 恰好落在CE 上. ①求证:CF DE =.②若AE n AD=,用等式表示m n ,的关系. 22.如图,矩形OBCD 中,OB =5,OD =3,以O 为原点建立平面直角坐标系,点B ,点D 分别在x 轴,y 轴上,点C 在第一象限内,若平面内有一动点P ,且满足S △POB =13S 矩形OBCD ,问:(1)当点P 在矩形的对角线OC 上,求点P 的坐标;(2)当点P 到O ,B 两点的距离之和PO +PB 取最小值时,求点P 的坐标.23.如图正方形ABCD ,DE 与HG 相交于点O (O 不与D 、E 重合).(1)如图(1),当90GOD ∠=︒,①求证:DE GH =;②求证:2GD EH DE +>;(2)如图(2),当45GOD ∠=︒,边长4AB =,5HG =,求DE 的长.24.如图1,已知四边形ABCD 是正方形,E 是对角线BD 上的一点,连接AE ,CE .(1)求证:AE=CE;(2)如图2,点P是边CD上的一点,且PE⊥BD于E,连接BP,O为BP的中点,连接EO.若∠PBC=30°,求∠POE的度数;(3)在(2)的条件下,若OE=2,求CE的长.25.如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直、重合),另一直角边与角边经过点D,且直角顶点E在AB边上滑动(点E不与点A B∠的平分线BF相交于点F.CBM(1)求证: ADE FEM∠=∠;(2)如图(1),当点E在AB边的中点位置时,猜想DE与EF的数量关系,并证明你的猜想;(3)如图(2),当点E在AB边(除两端点)上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.26.如图,在平面直角坐标系中,已知▱OABC的顶点A(10,0)、C(2,4),点D是OA的中点,点P在BC上由点B向点C运动.(1)求点B的坐标;(2)若点P运动速度为每秒2个单位长度,点P运动的时间为t秒,当四边形PCDA是平行四边形时,求t的值;(3)当△ODP是等腰三角形时,直接写出点P的坐标.27.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明..)ABCD 中,AB BC ≠,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D . 结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形;结论2:'B D AC .试证明以上结论.(应用与探究)在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)28.如图1,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF .(1)求证:四边形BFEP 为菱形;(2)当E 在AD 边上移动时,折痕的端点P 、Q 也随着移动.①当点Q 与点C 重合时, (如图2),求菱形BFEP 的边长;②如果限定P 、Q 分别在线段BA 、BC 上移动,直接写出菱形BFEP 面积的变化范围.29.如图,在矩形ABCD 中,AD =nAB ,E ,F 分别在AB ,BC 上.(1)若n =1,AF ⊥DE .①如图1,求证:AE =BF ;②如图2,点G 为CB 延长线上一点,DE 的延长线交AG 于H ,若AH =AD ,求证:AE +BG =AG ;(2)如图3,若E 为AB 的中点,∠ADE =∠EDF .则CF BF的值是_____________(结果用含n 的式子表示).30.已知,矩形ABCD 中,4,8AB cm BC cm ==,AC 的垂直平分EF 线分别交AD BC 、于点E F 、,垂足为O .(1)如图1,连接AF CE 、,求证:四边形AFCE 为菱形;(2)如图2,动点P Q 、分别从A C 、两点同时出发,沿AFB △和CDE △各边匀速运动一周,即点P 自A F B A →→→停止,点O 自C D E C →→→停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A C P Q 、、、四点为顶点的四边形是平行四边形时,则t =____________.②若点P Q 、的运动路程分别为a b 、 (单位:,0cm ab ≠),已知AC P Q 、、、四点为顶点的四边形是平行四边形,则a 与b 满足的数量关系式为____________.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】设PE=x ,则PB=33x ,3,AP=6-33x ,由此先判断出AF PF ⊥,然后可分析出当点P 与点B 重合时,CF+DF 最小;当点P 与点A 重合时,CF+DF 最大.从而求出m 的取值范围.【详解】如上图:设PE=x ,则PB=233x ,PF=33x ,AP=6-233x ∵0030,120BPE EPF ∠=∠= ∴030APE ∠=由AP 、PF 的数量关系可知AF PF ⊥,060PAF ∠=如上图,作060BAM ∠=交BC 于M ,所以点F 在AM 上.当点P 与点B 重合时,CF+DF 最小.此时可求得33,37CF DF ==如上图,当点P 与点A 重合时,CF+DF 最大.此时可求得37,9CF DF == ∴3337379m +<<故选:D【点睛】此题考查几何图形动点问题,判断出AF PF ⊥,然后可分析出当点P 与点B 重合时,CF+DF 最小;当点P 与点A 重合时,CF+DF 最大是解题关键.2.B解析:B【解析】【分析】根据题意可证△ABE ≌△BDF ,可判断①②③,由△DEF 的周长=DE +DF +EF =AD +EF =4+EF ,则当EF 最小时△DEF 的周长最小,根据垂线段最短,可得BE ⊥AD 时,BE 最小,即EF 最小,即可求此时△BDE 周长最小值.【详解】解:∵AB=BC=CD=AD=4,∠A=∠C=60°∴△ABD,△BCD为等边三角形,∴∠A=∠BDC=60°,∵将△BCD绕点B旋转到△BC'D'位置,∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',∴△ABE≌△BFD,∴AE=DF,BE=BF,∠AEB=∠BFD,∴∠BED+∠BFD=180°,故①正确,③错误;∵∠ABD=60°,∠ABE=∠DBF,∴∠EBF=60°,故②正确∵△DEF的周长=DE+DF+EF=AD+EF=4+EF,∴当EF最小时,∵△DEF的周长最小.∵∠EBF=60°,BE=BF,∴△BEF是等边三角形,∴EF=BE,∴当BE⊥AD时,BE长度最小,即EF长度最小,∵AB=4,∠A=60°,BE⊥AD,∴EB=23,∴△DEF的周长最小值为4+23,故④正确,综上所述:①②④说法正确,故选:B.【点睛】本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.3.C解析:C【分析】如图,设DE交AP于0,根据菱形的性质、翻折不变性-判断即可解决问题;【详解】解:如图,设DE交AP于O.∵四边形ABCD 是菱形∴DA=DC=AB∵A.P 关于DE 对称,∴DE ⊥AP ,OA=OP∴DA=DP∴DP=CD ,故①正确∵AE=EB ,AO=OP∴OE//PB ,∴PB ⊥PA∴∠APB=90°∴2222PA PB AB CD +==,故②正确若∠DCP=75°,则∠CDP=30°∵LADC=60°∴DP 平分∠ADC ,显然不符合题意,故③错误;∵∠ADC=60°,DA=DP=DC∴∠DAP=∠DPA ,∠DCP=∠DPC ,∠CPA=(360°-60°)=150°,故④正确. 故选:C【点睛】本题考查菱形的性质、轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.B解析:B【分析】取AB 的中点M ,连接CM ,EM ,当CE =CM +EM 时,CE 的值最大,根据旋转的性质得到AC ′=AC =2,由三角形的中位线的性质得到EM 12=AC ′=1,根据勾股定理得到AB =,即可得到结论.【详解】取AB 的中点M ,连接CM ,EM ,∴当CE =CM +EM 时,CE 的值最大.∵将直角边AC 绕A 点逆时针旋转至AC ′,∴AC ′=AC =2.∵E 为BC ′的中点,∴EM 12=AC ′=1. ∵∠ACB =90°,AC =BC =2,∴AB =,∴CM 12=AB =CE =CM +EM 1=. 故选B .【点睛】本题考查了旋转的性质,直角三角形的性质,三角形的中位线的性质,正确的作出辅助线是解题的关键.5.B解析:B【分析】A 、首先利用已知条件根据边角边可以证明△APD ≌△AEB ;B 、利用全等三角形的性质和对顶角相等即可解答;C 、由(1)可得∠BEF =90°,故BE 不垂直于AE 过点B 作BP ⊥AE 延长线于P ,由①得∠AEB =135°所以∠PEB =45°,所以△EPB 是等腰Rt △,于是得到结论;D 、根据勾股定理和三角形的面积公式解答即可.【详解】解:在正方形ABCD 中,AB =AD ,∵AF ⊥AE ,∴∠BAE +∠BAF =90°,又∵∠DAF +∠BAF =∠BAD =90°,∴∠BAE =∠DAF ,在△AFD 和△AEB 中,AE AF BAE DAF AB AD =⎧⎪∠∠⎨⎪=⎩=∴△AFD ≌△AEB (SAS ),故A 正确;∵AE =AF ,AF ⊥AE ,∴△AEF 是等腰直角三角形,∴∠AEF =∠AFE =45°,∴∠AEB =∠AFD =180°−45°=135°,∴∠BEF =135°−45°=90°,∴EB ⊥ED ,故C 正确;∵AE =AF ,∴FE AE =2,在Rt △FBE 中,BE ==∴S △APD +S △APB =S △APE +S △BPE ,=11222⨯1=D 正确;过点B 作BP ⊥AE 交AE 的延长线于P ,∵∠BEP =180°−135°=45°,∴△BEP 是等腰直角三角形,∴BP =2=,即点B 到直线AE ,故B 错误,故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,综合性较强,难度较大,熟记性质并仔细分析图形,理清图中三角形与角的关系是解题的关键.6.B解析:B【分析】根据平行四边形的判定方法对①进行判断;根据矩形的判定方法对②进行判断即可;根据三角形中位线性质和菱形的判定方法对③进行判断;根据正方形的判定方法对④进行判断.【详解】解:①错误,反例为等腰梯形;②正确,理由一组邻角相等,且根据平行四边形的性质,可得它们都为直角,从而推得矩形;③正确,理由:得到的四边形的边长都等于矩形对角线的一半;④正确.故答案为B .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.判定一个命题的真假关键在于对基本知识的掌握.7.A解析:A【分析】设AC 、BD 交于点O ,连接OP ,根据矩形的性质及勾股定理求出OA=OD=2.5,再求出△AOD 的面积,根据面积关系即可求出答案.【详解】设AC 、BD 交于点O ,连接OP ,∵3, 4AB AD ==,∴BD=AC=5,∴OA=OD=2.5, ∵1134344AOD ABCD SS ==⨯⨯=矩形, ∴3AOP DOP S S +=,∵PE AC ⊥于E ,PF BD ⊥于F ,∴112.5 2.5322PE PF ⨯+⨯=, 15()322PE PF ⨯+=, ∴125PE PF +=, 故选:A.【点睛】此题考查矩形的性质,勾股定理,根据矩形的性质求出△AOD 的面积是解题的关键.8.D解析:D【分析】①由同角的余角相等可证出EPF BAP ≅,由此即可得出EF BP =,再根据正方形的性质即可得出①成立;②根据平行线的性质可得出GFP EPF ∠=∠,再由EPF BAP ∠=∠即可得出②成立;③在Rt ABP ∆中,利用勾股定理即可得出③成立;④结合③即可得出④成立.【详解】解:①90EPF APB ∠+∠=︒,90APB BAP ∠+∠=︒,EPF BAP ∴∠=∠,在EPF ∆和BAP ∆中,EPF BAP FEP PBA PA PF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()EPF BAP AAS ∴∆≅∆,EF BP ∴=,四边形CEFG 为正方形,EC EF BP ∴==,即①成立;②//FG EC ,GFP EPF ∴∠=∠,又EPF BAP ∠=∠,BAP GFP ∴∠=∠,即②成立;③由①可知EC BP =,在Rt ABP ∆中,222AB BP AP +=,PA PF =,且90APF ∠=︒,APF ∴∆为等腰直角三角形,22222AF AP FP AP ∴=+=,22222212AB BP AB CE AP AF ∴+=+==,即③成立; ④由③可知:222AB CE AP +=,2APF ABCD CGFE S S S ∆∴+=正方形正方形,即④成立.故成立的结论有①②③④.故选:D .【点睛】本题考查了正方形的性质、全等三角形的判定及性质、平行线的性质以及勾股定理,解题的关键是逐条分析五条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,通过证明三角形全等以及利用勾股定理等来验证题中各结论是否成立是关键.9.C解析:C【分析】先判断出点E 在移动过程中,四边形AECF 始终是平行四边形,当∠AFC=80°时,四边形AECF 是菱形,当∠AFC=90°时,四边形AECF 是矩形,即可求解.【详解】解:∵点O 是平行四边形ABCD 的对角线得交点,∴OA=OC ,AD ∥BC ,∴∠ACF=∠CAD ,∠ADB=∠DBC=20°∵∠COF=∠AOE ,OA=OC ,∠DAC=∠ACF∴△AOE≌△COF(ASA),∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵∠ADB=∠DBC=20°,∠ACB=50°,∴∠AFC>20°当∠AFC=80°时,∠FAC=180°-80°-50°=50°∴∠FAC=∠ACB=50°∴AF=FC∴平行四边形AECF是菱形当∠AFC=90°时,平行四边形AECF是矩形∴综上述,当点E从D点向A点移动过程中(点E与点D,A不重合),则四边形AFCE的变化是:平行四边形→菱形→平行四边形→矩形→平行四边形.故选:C.【点睛】本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力,题目比较好,难度适中.10.B解析:B【分析】连接AC,根据线段重直平分线的性质及菱形的性质即可判断A选项正确;根据线段垂直平分线的性质及菱形的性质求出∠BAM=90°,利用三角函数求出AM,即可利用勾股定理求出BM,由此判断B选项;根据线段垂直平分的性质和菱形的性质可得BC=2CM,由此判断C选项;利用同底等高的性质证明△ABM的面积=△ABC的面积=△ACD的面积,再利用线段垂直平分线的性质即可判断D选项.【详解】如图,连接AC,由题意知:EF垂直平分CD,∴AC=CD,∵四边形ABCD是菱形,∴AD=AB=BC=CD,∴AC=AD=CD=AB=BC,∴△ABC和△ACD都是等边三角形,∴∠BAC=∠CAD=∠ABC=60°,故A 正确;∵AM 垂直平分CD ,∴∠CAM=∠DAM=30°,∴∠BAM=90°,∴S △ABM =S △ABC =S △ABD =2S △ADM ,故D 项正确;∵AB=2,∴AC=CD=2,∴AM=AC ·cos30°=2×32=3, ∴BM=22AB AM +=()222+3=7,故B 项错误;由AM 垂直平分CD 可得CM=12CD , 又∵BC=CD , ∴CM=12BC ,即BC=2CM ,故C 项正确; 故选:B .【点睛】 本题考查线段垂直平分线的作图,线段垂直平分线的性质,等边三角形的判定及性质,菱形的性质,三角函数,勾股定理,是一道综合题,掌握知识点是解题关键.二、填空题11.22【解析】分析:过O 点作OE ⊥CA 于E ,OF ⊥BC 于F ,连接CO ,如图,易得四边形OECF 为矩形,由△AOP 为等腰直角三角形得到OA=OP ,∠AOP=90°,则可证明△OAE ≌△OPF ,所以AE=PF ,OE=OF ,根据角平分线的性质定理的逆定理得到CO 平分∠ACP ,从而可判断当P 从点D 出发运动至点B 停止时,点O 的运动路径为一条线段,接着证明CE=12(AC+CP ),然后分别计算P 点在D 点和B 点时OC 的长,从而计算它们的差即可得到P 从点D 出发运动至点B 停止时,点O 的运动路径长.详解:过O 点作OE ⊥CA 于E ,OF ⊥BC 于F ,连接CO ,如图,∵△AOP 为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=12(AC+CP),∴OC=2CE=22(AC+CP),当AC=2,CP=CD=1时,OC=22×(2+1)=322,当AC=2,CP=CB=5时,OC=22×(2+5)=722,∴当P从点D出发运动至点B停止时,点O的运动路径长=72-322=22.故答案为22.点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.12.42【分析】首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC 和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.【详解】解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,∵AB∥CD,AD∥BC,∴四边形ABCD 为平行四边形,∴∠ADF=∠ABE ,∵两纸条宽度相同,∴AF=AE ,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE ,∴AD=AB ,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD=22242AB AO -=故本题答案为:42【点睛】本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.13.18【分析】由题意可知AD 、EF 是定值,要使四边形ADFE 周长的最小,AE +DF 的和应是最小的,运用“将军饮马”模型作点E 关于AD 的对称点E 1,同时作DF ∥AF 1,此时AE +DF 的和即为E 1F 1,再求四边形ADFE 周长的最小值.【详解】在Rt △COD 中,OC =3,OD =4,CD =22OC +OD =5,∵ABCD 是菱形,∴AD =CD =5,∵F 坐标为(8,6),点E 在y 轴上,∴EF =8,作点E 关于AD 的对称点E 1,同时作DF ∥AF 1,则E 1(0,2),F 1(3,6),则E 1F 1即为所求线段和的最小值,在Rt △AE 1F 1中,E 1F 1=22211EE +EF =-+(8-5)=52(62), ∴四边形ADFE 周长的最小值=AD +EF +AE +DF = AD +EF + E 1F 1=5+8+5=18.【点睛】本题考查菱形的性质、“将军饮马”作对称点求线段和的最小值,比较综合,难度较大.14.3013≤AM<6 【分析】 由勾股定理得BC=13从而得到点A 到BC 的距离, M 为EF 中点,所以AM=12EF ,继而求得AM 的范围.【详解】因为∠BAC=90°,AB=5,AC=12,所以由勾股定理得BC=13,则点A 到BC 的距离为AC 512BC 13AB ⨯⨯==6013, 所以AM 的最小值为6013÷2=3013, 因为M 为EF 中点,所以AM=12EF , 当E 越接近A ,F 越接近C 时,EF 越大,所以EF <AC ,则AM <6,所以3013≤AM<6, 故答案为3013≤AM<6. 15.4【分析】根据三个角都是直角的四边形是矩形,得四边形AEPF 是矩形,根据矩形的对角线相等,得EF =AP ,则EF 的最小值即为AP 的最小值,根据垂线段最短,知:AP 的最小值即等于直角三角形ABC 斜边上的高.【详解】解:连接AP ,∵在△ABC 中,AB =3,AC =4,BC =5,∴AB 2+AC 2=BC 2,即∠BAC =90°.又∵PE ⊥AB 于E ,PF ⊥AC 于F ,∴四边形AEPF 是矩形,∴EF =AP ,∵AP 的最小值即为直角三角形ABC 斜边上的高,设斜边上的高为h ,则S △ABC =1122BC h AB AC ⋅=⋅ ∴1153422h ⨯⋅=⨯⨯ ∴h=2.4,∴EF 的最小值为2.4,故答案为:2.4.【点睛】本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.16.①②③④【分析】①根据角平分线的定义可得∠BAE =∠DAE =45°,可得出△ABE 是等腰直角三角形,根据等腰直角三角形的性质可得AE 2=,从而得到AE =AD ,然后利用“角角边”证明△ABE 和△AHD 全等,根据全等三角形对应边相等可得BE =DH ,再根据等腰三角形两底角相等求出∠ADE =∠AED =67.5°,根据平角等于180°求出∠CED =67.5°,从而判断出①正确; ②求出∠AHB =67.5°,∠DHO =∠ODH =22.5°,然后根据等角对等边可得OE =OD =OH ,判断出②正确;③求出∠EBH =∠OHD =22.5°,∠AEB =∠HDF =45°,然后利用“角边角”证明△BEH 和△HDF 全等,根据全等三角形对应边相等可得BH =HF ,判断出③正确;④根据全等三角形对应边相等可得DF =HE ,然后根据HE =AE ﹣AH =BC ﹣CD ,BC ﹣CF =BC ﹣(CD ﹣DF )=2HE ,判断出④正确;⑤判断出△ABH 不是等边三角形,从而得到AB ≠BH ,即AB ≠HF ,得到⑤错误.【详解】∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴△ABE 是等腰直角三角形,∴AE =. ∵AD =,∴AE =AD .在△ABE 和△AHD 中,∵90BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△AHD (AAS ),∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED 12=(180°﹣45°)=67.5°,∴∠CED =180°﹣45°﹣67.5°=67.5°,∴∠AED =∠CED ,故①正确;∵∠AHB 12=(180°﹣45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =∠AED ,∴OE =OH .∵∠DOH =90°﹣67.5°=22.5°,∠ODH =67.5°﹣45°=22.5°,∴∠DOH =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故②正确;∵∠EBH =90°﹣67.5°=22.5°,∴∠EBH =∠OHD .在△BEH 和△HDF 中,∵EBH OHD BE DH AEB HDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEH ≌△HDF (ASA ),∴BH =HF ,HE =DF ,故③正确;由上述①、②、③可得CD =BE 、DF =EH =CE ,CF =CD ﹣DF ,∴BC ﹣CF =(CD +HE )﹣(CD ﹣HE )=2HE ,所以④正确;∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB ≠HF ,故⑤错误;综上所述:结论正确的是①②③④.故答案为①②③④.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.17.【分析】连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,判定△AOC ≌△FOB (ASA ),即可得出AO=FO ,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计算即可.【详解】解:连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,∵O 是正方形DBCE 的对称中心,∴BO=CO ,∠BOC=90°,∵FO ⊥AO ,∴∠AOF=90°,∴∠BOC=∠AOF ,即∠AOC+∠BOA=∠FBO+∠BOA ,∴∠AOC=∠FBO ,∵∠BAC=90°,∴在四边形ABOC 中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO ,在△AOC 和△FOB 中,AOC FOB AO FOACO FBO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOC ≌△FOB (ASA ),∴AO=FO ,FB=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=14×22=2 故答案为2.【点睛】本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算. 18.12013【分析】设MN 与BC 交于点O ,连接AO ,过点O 作OH ⊥AC 于H 点,根据等腰三角形的性质和勾股定理可求AO 和OH 长,若MN 最小,则MO 最小即可,而O 点到AC 的最短距离为OH 长,所以MN 最小值是2OH .【详解】解:设MN 与BC 交于点O ,连接AO ,过点O 作OH ⊥AC 于H 点,∵四边形MCNB 是平行四边形,∴O 为BC 中点,MN =2MO .∵AB =AC =13,BC =10,∴AO ⊥BC .在Rt △AOC 中,利用勾股定理可得AO 2222135AC CO -=-12.利用面积法:AO ×CO =AC ×OH ,即12×5=13×OH ,解得OH =6013. 当MO 最小时,则MN 就最小,O 点到AC 的最短距离为OH 长, 所以当M 点与H 点重合时,MO 最小值为OH 长是6013. 所以此时MN 最小值为2OH =12013. 故答案为:12013. 【点睛】本题主要考查了平行四边形的性质、垂线段最短、勾股定理、等腰三角形的性质,解题的关键是分析出点到某线段的垂线段最短,由此进行转化线段,动中找静. 19.207【分析】根据折叠的性质可得出DC=DE 、CP=EP ,由“AAS”可证△OEF ≌△OBP ,可得出OE=OB 、EF=BP ,设EF=x ,则BP=x 、DF=5-x 、BF=PC=3-x ,进而可得出AF=2+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,即可得AF 的长.【详解】解:∵将△CDP 沿DP 折叠,点C 落在点E 处,∴DC =DE =5,CP =EP .在△OEF 和△OBP 中,90EOF BOP B E OP OF ∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∴△OEF ≌△OBP (AAS ),∴OE =OB ,EF =BP .设EF=x,则BP=x,DF=DE-EF=5-x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC-BP=3-x,∴AF=AB-BF=2+x.在Rt△DAF中,AF2+AD2=DF2,∴(2+x)2+32=(5-x)2,∴x=6 7∴AF=2+67=207故答案为:20 7【点睛】本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.20.【分析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后确定CM的范围.【详解】解:作AB的中点M,连接EM、CM.在Rt△ABC中,AB=22AC BC+=2286+=10,∵M是直角△ABC斜边AB上的中点,∴CM=12AB=5.∵E是BD的中点,M是AB的中点,∴ME=12AD=2.∴5﹣2≤CE≤5+2,即3≤CE≤7.∴最大值为7,故答案为:7.【点睛】本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.三、解答题21.(1)不会,理由见解析;(2)①见解析;②²²20m n n =+-【分析】(1)根据BEF BEA ≅得到BF BA =,根据三角形的三边关系得到BC BF BA >=,与已知矛盾;(2)①根据90BFC BFE ∠=∠=︒、DEC FCB ∠=∠和BF=CD ,利用AAS 证得BCF CED ≅,根据全等三角形的性质即可证明;②设1AD =,则可表示出AE 和AB ,然后根据等角对等边证得CE=CB ,然后在Rt CDE ∆中应用勾股定理即可求解.【详解】(1) 由折叠知BEF BEA ≅ ,所以90BF BA BFE A =∠=∠=︒, .若点F 在CE 上,则90BFC ∠=︒,BC BF BA >=,与AB AD =矛盾,所以点F 不会落在CE 上.(2)①因为()01AB m m AD=<<,则AB AD < , 因为点F 落在CE 上,所以90BFC BFE ∠=∠=︒ ,所以BF BA CD == .因为//AD BC ,所以DEC FCB ∠=∠ ,所以BCF CED ≅ ,所以CF DE =.②若AE n AD=,则AE nAD =. 设1AD =,则AE n AB m ==,.因为//AD BC ,所以BEA EBC ∠=∠ .因为BEF BEA ∠=∠ ,所以EBC BEC ∠=∠ ,所以1CE CB AD === .在Rt CDE ∆中,11DE n CE CD m ===一,, ,所以22211()n m -+= ,所以²²20m n n =+-.故答案为(1)不会,理由见解析;(2)①见解析;②²²20m n n =+-.【点睛】本题考查了三角形全等的性质和判定,和等边对等角,此题属于矩形的折叠问题类综合题,熟练掌握三角形全等的性质,和做出示意图是本题的关键.22.(1)P (103,2);(2)(52,2)或(﹣52,2) 【分析】(1)根据已知条件得到C (5,3),设直线OC 的解析式为y =kx ,求得直线OC 的解析式为y =35x ,设P (m ,35m ),根据S △POB =13S 矩形OBCD ,列方程即可得到结论; (2)设点P 的纵坐标为h ,得到点P 在直线y =2或y =﹣2的直线上,作B 关于直线y =2的对称点E ,则点E 的坐标为(5,4),连接OE 交直线y =2于P ,则此时PO +PB 的值最小,设直线OE 的解析式为y =nx ,于是得到结论.【详解】(1)如图:∵矩形OBCD 中,OB =5,OD =3,∴C (5,3),设直线OC 的解析式为y =kx ,∴3=5k ,∴k =35, ∴直线OC 的解析式为y =35x , ∵点P 在矩形的对角线OC 上,∴设P (m ,35m ),∵S△POB=13S矩形OBCD,∴12⨯5×35m=13⨯3×5,∴m=103,∴P(103,2);(2)∵S△POB=13S矩形OBCD,∴设点P的纵坐标为h,∴12h×5=133⨯⨯5,∴h=2,∴点P在直线y=2或y=﹣2上,作B关于直线y=2的对称点E,则点E的坐标为(5,4),连接OE交直线y=2于P,则此时PO+PB的值最小,设直线OE的解析式为y=nx,∴4=5n,∴n=45,∴直线OE的解析式为y=45 x,当y=2时,x=52,∴P(52,2),同理,点P在直线y=﹣2上,P(52,﹣2),∴点P的坐标为(52,2)或(﹣52,2).【点睛】本题考查了轴对称——最短路线问题,矩形的性质,待定系数法求函数的解析式,正确的找到点P 在位置是解题的关键.23.(1)①证明见解析;②证明见解析;(2)DE =. 【分析】(1)过点D 作//DM GH 交BC 延长线于点M ,连接EH ,①由正方形的性质可得//AD BC ,AD CD =,90A ADC DCM ∠=∠=∠=︒,即可证明四边形DGHM 是平行四边形,可得DM=GH ,由90GOD ∠=︒可得∠EDM=90°,根据直角三角形两锐角互余的性质可得12∠=∠,利用ASA 可证明△ADE≌△CDM,可得DE=DM ,即可证明DE=GH ;②由①得DM=DE ,根据勾股定理可得,利用三角形三边关系即可得结论; (2)过点D 作DN//GH 交BC 于点N ,作ADM CDN ∠=∠,DM 交BA 延长线于点M ,可证明四边形GHND 为平行四边形,可得DN HG =,GD HN =,根据勾股定理可求出CN 的长,利用AAS 可证明ADM CDN ∆∆≌,可得AM NC =,DM DN =,根据平行线的性质∠EDN=45°,根据角的和差故选可得∠MDE=∠EDN ,利用SAS 可证明MDE NDE ∆∆≌,即可证明AE CN EN +=,设AE x =,利用勾股定理可求出x 的值,进而利用勾股定理求出DE 的值即可得答案.【详解】(1)如图(1),过点D 作//DM GH 交BC 延长线于点M ,连接EH ,EM , ①∵四边形ABCD 为正方形,∴//AD BC ,AD CD =,90A ADC DCM ∠=∠=∠=︒∴四边形DGHM 为平行四边形,∴DM=GH ,GD HM =,∵90GOD ∠=︒,∴90EDM EOH ∠=∠=︒,∴290EDC ∠+∠=︒,∵90ADC ∠=︒,∴190EDC ∠+∠=︒,∴12∠=∠,在ADE ∆和CDM ∆中12A DCM AD DC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ADE CDM ∆∆≌,∴DE DM =,∴DE GH =.。

人教版平行四边形单元 易错题难题自检题学能测试试题

人教版平行四边形单元 易错题难题自检题学能测试试题

人教版平行四边形单元 易错题难题自检题学能测试试题一、解答题1.如图,在Rt ABC 中,90ACB ∠=︒,过点C 的直线//MN AB ,D 为AB 边上一点,过点D 作DE BC ⊥,交直线MN 于E ,垂足为F ,连接CD 、BE(1)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由; (2)当D 为AB 中点时,A ∠等于 度时,四边形BECD 是正方形.2.如图,在ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别为OB 、OD 的中点,延长AE 至G ,使EG AE =,连接CG .(1)求证:AOE COF ∆≅∆;(2)四边形EGCF 是平行四边形吗?请说明理由;(3)若四边形EGCF 是矩形,则线段AB 、AC 的数量关系是______.3.如图,在Rt ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动.同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是ts (0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF .(1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,DEF 为直角三角形?请说明理由.4.如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A D 、不重合),射线PE 与BC 的延长线交于点Q .(1)求证:PDE QCE ∆≅∆;(2)若PB PQ =,点F 是BP 的中点,连结EF AF 、,①求证:四边形AFEP 是平行四边形;②求PE 的长.5.感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =;拓展:在图①中,若G 在AD ,且45GCE ∠︒=,则GE BE GD +=成立吗?为什么? 运用:如图②在四边形ABCD 中,()//AD BC BC AD >,90A B ∠∠︒==,16AB BC ==,E 是AB 上一点,且45DCE ∠︒=,4BE =,求DE 的长.6.在平面直角坐标中,四边形OCNM 为矩形,如图1,M 点坐标为(m ,0),C 点坐标为(0,n ),已知m ,n 满足550n m -+-=.(1)求m ,n 的值;(2)①如图1,P ,Q 分别为OM ,MN 上一点,若∠PCQ =45°,求证:PQ =OP+NQ ; ②如图2,S ,G ,R ,H 分别为OC ,OM ,MN ,NC 上一点,SR ,HG 交于点D .若∠SDG =135°,55HG =,则RS =______; (3)如图3,在矩形OABC 中,OA =5,OC =3,点F 在边BC 上且OF =OA ,连接AF ,动点P 在线段OF 是(动点P 与O ,F 不重合),动点Q 在线段OA 的延长线上,且AQ =FP ,连接PQ 交AF 于点N ,作PM ⊥AF 于M .试问:当P ,Q 在移动过程中,线段MN 的长度是否发生变化?若不变求出线段MN 的长度;若变化,请说明理由.7.如图1,在正方形ABCD (正方形四边相等,四个角均为直角)中,AB =8,P 为线段BC 上一点,连接AP ,过点B 作BQ ⊥AP ,交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC ′,延长QC ′交AD 于点N .(1)求证:BP =CQ ;(2)若BP=13PC ,求AN 的长; (3)如图2,延长QN 交BA 的延长线于点M ,若BP =x (0<x <8),△BMC '的面积为S ,求S 与x 之间的函数关系式.8.如图,四边形ABCD 是边长为3的正方形,点E 在边AD 所在的直线上,连接CE ,以CE 为边,作正方形CEFG (点C 、E 、F 、G 按逆时针排列),连接BF.(1)如图1,当点E 与点D 重合时,BF 的长为 ;(2)如图2,当点E 在线段AD 上时,若AE=1,求BF 的长;(提示:过点F 作BC 的垂线,交BC 的延长线于点M ,交AD 的延长线于点N.)(3)当点E 在直线AD 上时,若AE=4,请直接写出BF 的长.9.在正方形AMFN 中,以AM 为BC 边上的高作等边三角形ABC ,将AB 绕点A 逆时针旋转90°至点D ,D 点恰好落在NF 上,连接BD ,AC 与BD 交于点E ,连接CD ,(1)如图1,求证:△AMC ≌△AND ;(2)如图1,若3,求AE 的长;(3)如图2,将△CDF 绕点D 顺时针旋转α(090α<<),点C,F 的对应点分别为1C 、1F ,连接1AF 、1BC ,点G 是1BC 的中点,连接AG ,试探索1AG AF 是否为定值,若是定值,则求出该值;若不是,请说明理由.10.阅读下列材料,并解决问题:如图1,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点D 为AC 边上的动点(不与A 、C 重合),以AD ,BD 为边构造ADBE ,求对角线DE 的最小值及此时AD AC的值是多少.在解决这个问题时,小红画出了一个以AD ,BD 为边的ADBE (如图2),设平行四边形对角线的交点为O ,则有AO BO =.于是得出当OD AC ⊥时,OD 最短,此时DE 取最小值,得出DE 的最小值为6.参考小红的做法,解决以下问题:(1)继续完成阅读材料中的问题:当DE 的长度最小时,AD AC=_______; (2)如图3,延长DA 到点F ,使AF DA =.以DF ,DB 为边作FDBE ,求对角线DE 的最小值及此时AD AC的值.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)四边形BECD 是菱形,理由见解析;(2)45︒【分析】(1)先证明//AC DE ,得出四边形BECD 是平行四边形,再“根据直角三角形斜边上的中线等于斜边的一半”证出CD BD =,得出四边形BECD 是菱形;(2)先求出45ABC ∠=︒,再根据菱形的性质求出90DBE ∠=︒,即可证出结论.【详解】解:当点D 是AB 的中点时,四边形BECD 是菱形;理由如下:∵DE BC ⊥,90DFE ∴∠=︒,∵90ACB ∠=︒,ACB DFB ∴∠=∠,//AC DE ∴,∵//MN AB ,即//CE AD ,∴四边形ADEC 是平行四边形,CE AD ∴=; D 为AB 中点,AD BD ∴=,BD CE ∴=,∵//BD CE ,∴四边形BECD 是平行四边形,∵90ACB ∠=︒,D 为AB 中点,12CD AB BD ∴==, ∴四边形BECD 是菱形;(2)当45A ∠=︒时,四边形BECD 是正方形;理由如下:∵90ACB ∠=︒,45A ∠=︒,45ABC ∴∠=︒,∵四边形BECD 是菱形,12ABC DBE ∴∠=∠, 90DBE ∴∠=︒,∴四边形BECD 是正方形.故答案为:45︒.【点睛】本题考查了平行四边形的判定、正方形的判定以及直角三角形的性质;根据题意证明线段相等和直角是解决问题的关键.2.(1)见解析;(2)四边形EGCF 为平行四边形,理由见解析;(3)AC=2AB .【分析】(1)根据平行四边形的性质得到OE=OF 即可证得结论;(2)利用AOE COF ∆≅∆得到∠EAO=∠FCO ,AE=CF ,由此推出AE ∥CF ,EG=CF 即可证得四边形EGCF 是平行四边形;(3)AC=2AB ,根据平行四边形的性质推出AB=AO ,利用点E 是OB 的中点,得到AG ⊥OB ,即可得到四边形EGCF 是矩形.【详解】(1)四边形ABCD 为平行四边形,OA OC ∴=,OB OD =,点E 、F 分别为OB 、OD 的中点,12OE OB ∴=,12OF OD =, 则OE OF =,在AOE ∆与COF ∆中OA OC AOE COF OE OF =⎧⎪∠=∠⎨⎪=⎩AOE COF ∴∆≅∆;(2)AOE COF ∆≅∆,EAO FCO ∴∠=∠,AE CF =,//AE CF ∴,又GE AE =,GE CF ∴=,∴四边形EGCF 为平行四边形;(3)当AC=2AB 时,四边形EGCF 是矩形.∵AC=2AB,AC=2AO,∴AB=AO,∵点E是OB的中点,∴AG⊥OB,∴∠GEF=90°,∴四边形EGCF是矩形.故答案为:AC=2AB.【点睛】此题考查了平行四边形的判定及性质,三角形全等的判定及性质,矩形的判定定理,等腰三角形的三线合一的性质,熟练掌握各知识点并运用解题是关键.3.(1)证明见解析;(2)能,10;(3)152,理由见解析;【分析】(1)利用题中所给的关系式,列出CD,DF,AE的式子,即可证明.(2)由题意知,四边形AEFD是平行四边形,令AD=DF,求解即可得出t值.(3)由题意可知,当DE∥BC时,△DEF为直角三角形,利用AD+CD=AC的等量关系,代入式子求值即可.【详解】(1)由题意知:三角形CFD是直角三角形∵∠B=90°,∠A=60°∴∠C=30°,CD=2DF,又∵由题意知CD=4t,AE=2t,∴CD=2AE∴AE=DF.(2)能,理由如下;由(1)知AE=DF又∵DF⊥BC,∠B=90°∴AE∥DF∴四边形AEFD是平行四边形.当AD=DF时,平行四边形AEFD是菱形∵AC=60cm,DF=12CD,CD=4t,∴AD=60-4t,DF=2t,∴60-4t=2t∴t=10.(3)当t为152时,△DEF为直角三角形,理由如下;由题意知:四边形AEFD是平行四边形,DF⊥BC,AE∥DF,∴当DE∥BC时,DF⊥DE∴∠FDE=∠DEA=90°在△AED 中,∵∠DEA=90°,∠A =60°,AE=2t∴AD=4t ,又∵AC =60cm ,CD=4t ,∴AD+CD=AC ,8t=60,∴t=152. 即t=152时,∠FDE=∠DEA=90°,△DEF 为直角三角形. 【点睛】 本题主要考查了三角形、平行四边形及菱形的性质,正确掌握三角形、平行四边形及菱形的性质是解题的关键.4.(1)见解析;(2)①见解析;②PE =【分析】(1)由四边形ABCD 是正方形知∠D=∠ECQ=90°,由E 是CD 的中点知DE=CE ,结合∠DEP=∠CEQ 即可得证;(2)①由PB=PQ 知∠PBQ=∠Q ,结合AD ∥BC 得∠APB=∠PBQ=∠Q=∠EPD ,由△PDE ≌△QCE 知PE=QE ,再由EF ∥BQ 知PF=BF ,根据Rt △PAB 中AF=PF=BF 知∠APF=∠PAF ,从而得∠PAF=∠EPD ,据此即可证得PE ∥AF ,从而得证;②设AP x =,则1PD x =-,1CQ x =-,2BQ x =-,利用三角形中位线定理得到()122EF x =-,由EF AP =,构造方程即可求得23x =,在Rt PDE ∆中,利用勾股定理即可求解.【详解】(1)∵四边形ABCD 是正方形,∴∠D=∠ECQ=90°,∵E 是CD 的中点,∴DE=CE ,又∵∠DEP=∠CEQ ,∴△PDE ≌△QCE (ASA );(2)①∵PB=PQ ,∴∠PBQ=∠Q ,∵AD ∥BC ,∴∠APB=∠PBQ=∠Q=∠EPD ,∵△PDE ≌△QCE ,∴PE=QE ,∵PF=BF ,∴EF 是PBQ ∆的中位线,∴EF ∥BQ ,∴在Rt △PAB 中,AF=PF=BF ,∴∠APF=∠PAF ,∴∠PAF=∠EPD ,∴PE ∥AF ,∵EF ∥BQ ∥AD ,∴四边形AFEP 是平行四边形;②设AP x =,则1PD x =-,∴1CQ x =-,∴2BQ x =-,∵EF 是PBQ ∆的中位线, ∴()122EF x =-, ∵EFAP =, ∴()122x x -=, ∴23x =, 在Rt PDE ∆中,222PD DE PE +=,即22221(1)()32PE -+=,∴6PE =. 【点睛】本题考查了正方形的性质、全等三角形的判定与性质、三角形中位线定理、平行四边形的判定和性质以及勾股定理等知识点.掌握全等三角形的判定定理和性质定理、正方形的性质是解题的关键.5.(1)见解析;(2)GE=BE+GD 成立,理由见解析;(3)685【分析】(1)利用已知条件,可证出△BCE ≌△DCF (SAS ),即可得到CE=CF ;(2)借助(1)的结论得出∠BCE =∠DCF ,再通过角的计算得出∠GCF =∠GCE ,由SAS 可得△ECG ≌△FCG ,则EG=GF ,从而得出GE=DF+GD=BE+GD ;(3)过C 作CG ⊥AD ,交AD 延长线于G ,先证四边形ABCG 是正方形(有一组邻边相等的矩形是正方形),再设DE =x ,利用(1)、(2)的结论,在Rt △AED 中利用勾股定理构造方程即可求出DE .【详解】(1)证明:如图①,在正方形ABCD 中,BC=CD ,∠B =∠ADC =90°,∴∠CDF=90°,即∠B =∠CDF =90°,在△BCE 和△DCF 中,BC DC B CDF BE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF (SAS ),∴CE=CF ;(2)解:如图①,GE=BE+GD 成立,理由如下: 由(1)得△BCE ≌△DCF ,∴∠BCE=∠DCF ,∴∠ECD +∠ECB=∠ECD +∠FCD ,即∠ECF =∠BCD =90°,又∵∠GCE =45°,∴∠GCF =∠ECF −∠ECG =45°,则∠GCF=∠GCE , 在△GEC 和△GFC 中,CE CF GCE GCF GC GC =⎧⎪∠=∠⎨⎪=⎩,∴△GEC ≌△GFC (SAS ),∴EG=GF ,∴GE=DF+GD=BE+GD ;(3)解:如图②,过C 作CG ⊥AD 于G ,∴∠CGA=90°,在四边形ABCD 中,AD ∥BC ,∠A =∠B =90°,∴四边形ABCG 为矩形,又∵AB=BC ,∴四边形ABCG 为正方形,∴AG =BC=AB =16,∵∠DCE =45°,由(1)和(2)的结论可得:ED=BE+DG , 设DE=x ,∵4BE =,∴AE =12,DG=x −4,∴AD =AG −DG =20−x在Rt △AED 中,由勾股定理得:DE 2=AD 2+AE 2,即x 2=(20−x )2+122 解得:685=x , 即685=DE . 【点睛】本题是一道几何综合题,内容主要涉及全等三角形的判定与性质和勾股定理的应用,重点考查学生的数学学习能力,是一道好题.6.(1)m =5,n=5;(2)①证明见解析;②510;(3)MN 的长度不会发生变化,它的长度为102. 【分析】 (1)利用非负数的性质即可解决问题.(2)①作辅助线,构建两个三角形全等,证明△COE ≌△CNQ 和△ECP ≌△QCP ,由PE =PQ =OE+OP ,得出结论;②作辅助线,构建平行四边形和全等三角形,可得▱CSRE 和▱CFGH ,则CE =SR ,CF =GH ,证明△CEN ≌△CE′O 和△E′CF ≌△ECF ,得EF =E′F ,设EN =x ,在Rt △MEF 中,根据勾股定理列方程求出EN 的长,再利用勾股定理求CE ,则SR 与CE 相等,所以SR =5103 ; (3)在(1)的条件下,当P 、Q 在移动过程中线段MN 的长度不会发生变化,求出MN 的长即可;如图4,过P 作PD ∥OQ ,证明△PDF 是等腰三角形,由三线合一得:DM =12FD ,证明△PND ≌△QNA ,得DN =12AD ,则MN =12AF ,求出AF 的长即可解决问题. 【详解】解:(1)∵5|5|0n m -+-= , 又∵5n -≥0,|5﹣m|≥0,∴n ﹣5=0,5﹣m =0,∴m =5,n=5.(2)①如图1中,在PO 的延长线上取一点E ,使NQ =OE ,∵CN=OM=OC=MN,∠COM=90°,∴四边形OMNC是正方形,∴CO=CN,∵∠EOC=∠N=90°,∴△COE≌△CNQ(SAS),∴CQ=CE,∠ECO=∠QCN,∵∠PCQ=45°,∴∠QCN+∠OCP=90°﹣45°=45°,∴∠ECP=∠ECO+∠OCP=45°,∴∠ECP=∠PCQ,∵CP=CP,∴△ECP≌△QCP(SAS),∴EP=PQ,∵EP=EO+OP=NQ+OP,∴PQ=OP+NQ.②如图2中,过C作CE∥SR,在x轴负半轴上取一点E′,使OE′=EN,得▱CSRE,且△CEN≌△CE′O,则CE=SR,过C作CF∥GH交OM于F,连接FE,得▱CFGH,则CF=GH=55,∵∠SDG=135°,∴∠SDH=180°﹣135°=45°,∴∠FCE=∠SDH=45°,∴∠NCE+∠OCF=45°,∵△CEN≌△CE′O,∴∠E′CO=∠ECN,CE=CE′,∴∠E′CF=∠E′CO+∠OCF=45°,∴∠E′CF=∠FCE,∵CF=CF,∴△E′CF≌△ECF(SAS),∴E′F=EF在Rt△COF中,OC=5,FC=52,由勾股定理得:OF=225552⎛⎫-⎪⎪⎝⎭=52,∴FM=5﹣52=52,设EN=x,则EM=5﹣x,FE=E′F=x+52,则(x+52)2=(52)2+(5﹣x)2,解得:x=53,∴EN=53,由勾股定理得:CE=2222553CN EN⎛⎫+=+ ⎪⎝⎭=5103,∴SR=CE=5103.故答案为510.(3)当P、Q在移动过程中线段MN的长度不会发生变化.理由:如图3中,过P作PD∥OQ,交AF于D.∵OF=OA,∴∠OFA=∠OAF=∠PDF,∴PF=PD,∵PF=AQ,∴PD=AQ,∵PM⊥AF,∴DM=12FD,∵PD∥OQ,∴∠DPN=∠PQA,∵∠PND=∠QNA,∴△PND≌△QNA(AAS),∴DN =AN ,∴DN =12AD , ∴MN =DM+DN =12DF+12AD =12AF , ∵OF =OA =5,OC =3, ∴CF4=,∴BF =BC ﹣CF =5﹣4=1,∴AF=,∴MN =12AF=2, ∴当P 、Q 在移动过程中线段MN的长度不会发生变化,它的长度为2. 【点睛】本题是四边形与动点问题的综合题,考查了矩形、正方形、全等三角形等图形的性质与判定,灵活运用所学知识是解答本题的关键.7.(1)见解析;(2)4.8;(3)1282x x- 【分析】(1)证明△ABP ≌△BCQ 即可得到结论;(2)证明Rt △ABN ≌△Rt △C 'BN 求出DQ ,设AN =NC '=a ,则DN =8﹣a ,利用勾股定理即可求出a ;(3)过Q 点作QG ⊥BM 于G ,设MQ =BM =y ,则MG =y ﹣x ,利用勾股定理求出MQ ,再根据面积相减得到答案.【详解】解:(1)证明:∵∠ABC =90°∴∠BAP +∠APB =90°∵BQ ⊥AP∴∠APB +∠QBC =90°,∴∠QBC =∠BAP ,在△ABP 于△BCQ 中, ABP BCQ AB BCBAP QBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABP ≌△BCQ (ASA ),∴BP =CQ ,(2)由翻折可知,AB =BC ',连接BN ,在Rt △ABN 和Rt △C 'BN 中,AB =BC ',BN =BN ,∴Rt△ABN≌△Rt△C'BN(HL),∴AN=NC',∵BP=13PC,AB=8,∴BP=2=CQ,CP=DQ=6,设AN=NC'=a,则DN=8﹣a,∴在Rt△NDQ中,(8﹣a)2+62=(a+2)2解得:a=4.8,即AN=4.8.(3)解:过Q点作QG⊥BM于G,由(1)知BP=CQ=BG=x,BM=MQ.设MQ=BM=y,则MG=y﹣x,∴在Rt△MQG中,y2=82+(y﹣x)2,∴322xyx=+.∴S△BMC′=S△BMQ﹣S△BC'Q=1122BM QG BC QC''⋅-⋅,=1321()88 222xxx+⨯-⨯,=1282x x-.【点睛】此题考查正方形的性质,三角形全等的判定及性质,勾股定理,正确理解题意画出图形辅助做题是解题的关键.8.(1)35;(2)41;(3)53101或【分析】(1)利用勾股定理即可求出.(2)过点F 作FH ⊥AD 交AD 于的延长线于点H ,作FM ⊥AB 于点M ,证出ECD FEH ∆∆≌,进而求得MF ,BM 的长,再利用勾股定理,即可求得.(3)分两种情况讨论,同(2)证得三角形全等,再利用勾股定理即可求得.【详解】(1)由勾股定理得:22223635BF AB AF =+=+=(2)过点F 作FH ⊥AD 交AD 于的延长线于点H ,作FM ⊥AB 于点M ,如图2所示:则FM=AH ,AM=FH∵四边形CEFG 是正方形 ∴EC=EF,∠FEC=90° ∴∠DEC+∠FEH=90°,又∵四边形ABCD 是正方形 ∴∠ADC=90° ∴∠DEC+∠ECD=90°,∴∠ECD=∠FEH 又∵∠EDC=∠FHE=90°,∴ECD FEH ∆∆≌ ∴FH=ED EH=CD=3∵AD=3,AE=1,ED=AD-AE=3-1=2,∴FH=ED=2∴MF=AH=1+3=4,MB=FH+CD=2+3=5在Rt △BFM 中,BF=22225441BM MF +=+=(3)分两种情况:①当点E 在边AD 的左侧时,过点F 作FM ⊥BC 交BC 的反向延长线于点M ,交DE 于点N.如图3所示:同(2)得:ENF DEC ∆≅∆∴EN=CD=3,FN=ED=7∵AE=4∴AN=AE-EN=4-3=1∴MB=AN=1 FM=FN+NM=7+3=10在Rt FMB ∆中 由勾股定理得:2222101101FB FM MB =+=+= ②当点E 在边AD 的右侧时,过点F 作FN ⊥AD 交AD 的延长线于点N ,交BC 延长线于M ,如图4所示:同理得: CDE EFN ∆≅∆∴NF=DE=1,EN=CD=3∴FM=3-1=2,CM=DN=DE+EN=1+3=4∴BM=CB+CM=3+4=7在Rt FMB ∆中 由勾股定理得:22222753FB FM MB =+=+=故BF 53101或【点睛】本题为考查三角形全等和勾股定理的综合题,难点在于根据E 点位置的变化,画出图形,注意(3)分情况讨论,难度较大,属压轴题,熟练掌握三角形全等的性质和判定以及勾股定理的运用是解题关键.9.(1)见解析;(2)AE =33)(3)12AG AF =. 【分析】(1)运用四边形AMFN 是正方形得到判断△AMC,△AND 是Rt △,进一步说明△ABC 是等边三角形,在结合旋转的性质,即可证明.(2)过E 作EG ⊥AB 于G,在BC 找一点H ,连接DH,使BH=HD ,设AG =x ,则AE=2x 3x ,得到△GBE 是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt △AMC ≌Rt △AND ,最后通过计算求得AE 的长;(3)延长F 1G 到M,延长BA 交11F C 的延长线于N,使得1GM FG =,可得GMB ∆≌11GFC ∆,从而得到111BM FC DF == 1BMG GFN ∠=,可知BM ∥1F N , 再根据题意证明ABM ∆≌1ADF ∆,进一步说明1AMF ∆是等腰直角三角形,然后再使用勾股定理求解即可.【详解】(1)证明:∵四边形AMFN是正方形,∴AM=AN ∠AMC=∠N=90°∴△AMC,△AND是Rt△∵△ABC是等边三角形∴AB=AC∵旋转后AB=AD∴AC=AD∴Rt△AMC≌Rt△AND(HL)(2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,设AG=x则AE=2x3x易得△GBE是等腰直角三角形∴BG=EG3x∴AB=BC=31)x易得∠DHF=30°∴HD=2DF=3,HF=3∴BF=BH+HF=233∵Rt△AMC≌Rt△AND(HL)∴易得3=+∴BC=BF-CF=233333x=∴(31)33∴3x=x=∴AE=223(3)122AG AF =; 理由:如图2中,延长F 1G 到M,延长BA 交11F C 的延长线于N,使得1GM FG =,则GMB ∆≌11GFC ∆,∴111BM FC DF == 1BMG GFN ∠=, ∴BM ∥1F N ,∴MBA N ∠=∠∵0190NAO OF D ∠=∠= 1AON DOF ∠=∠∴1N ADF ∠=∠∴1ABM ADF ∠=∠,∵AB AD =∴ABM ∆≌1ADF ∆(SAS )∴1AM AF = 1MAB DAF ∠=∠∴0190MAF BAD ∠=∠=∴1AMF ∆是等腰直角三角形∴1AG MF ⊥ 1AG GF = ∴12AF∴12AG AF =【点睛】本题考查正方形的性质、三角形全等、以及勾股定理等知识点,综合性强,难度较大,但解答的关键是正确做出辅助线.10.(1)12;(2)13AD AC =. 【分析】(1)易证四边形CDEB 是矩形,由条件“四边形ADBE 是平行四边形可得AD =EB =DC ,从而得到AD AC 的值. (2)由题可知当DE AC ⊥时,DE 最短,可以证到四边形DCBE 是矩形.从而可以得到各边关系从而求出AD AC 的值. 【详解】解:(1)∵四边形ADBE 是平行四边形,∴AD ∥BE ,AD =BE .∵DE ⊥AC ,∠ACB =90°,∴∠ADE =∠C =90°.∴DE ∥BC .∵DC ∥BE ,DE ∥BC ,∠C =90°,∴四边形DCBE 是矩形.∴EB =DC .∴AD =DC .∴AD AC==12. 故答案为:12.(2)如图,由题可知当DE AC ⊥时,DE 最短.最小值是6.∵四边形FDBE 是平行四边形,∴//DF BE ,DF BE =.∵DE AC ⊥,90C ∠=︒,∴90ADE C ∠=∠=︒.∴//DE BC .∴四边形CDEB 是平行四边形,又∵90C ∠=︒,∴四边形CDEB 是矩形.∴BE CD =,6DE BC ==.∴DF CD =.∵AF AD =,∴2DC DF AD ==.∴3AC AD DC AD =+=. ∴13AD AC =. 【点睛】 本题考查了平行线之间的距离、平行线的判定、矩形的判定与性质、平行四边形的性质等知识,具有一定的综合性;本题还考查了阅读能力,体现了自主探究与合作交流相结合的新课程理念,是一道好题.。

人教版平行四边形单元 易错题难题专项训练学能测试

人教版平行四边形单元 易错题难题专项训练学能测试

人教版平行四边形单元 易错题难题专项训练学能测试一、选择题1.如图,菱形ABCD 的边长为4,60,A E ∠=是边AD 的中点,F 是边AB 上的一个动点,将线段EF 绕着E 逆时针旋转60,得到EG ,连接EG CG 、,则BG CG +的最小值为( )A .33B .27C .43D .223+ 2.如图,正方形ABCD 的边长为4,点E 在边AB 上,AE =1,若点P 为对角线BD 上的一个动点,则△PAE 周长的最小值是( )A .3B .4C .5D .63.点E 是正方形ABCD 对角线AC 上,且EC=2AE ,Rt △FEG 的两条直角边EF 、EG 分别交BC 、DC 于M 、N 两点,若正方形ABCD 的边长为a ,则四边形EMCN 的面积( )A .23a 2B .14a 2C .59a 2D .49a 2 4.将个边长都为1cm 的正方形按如图所示的方法摆放,点分别是正方形对角线的交点,则2019个正方形重叠形成的重叠部分的面积和为( )A .B .C .D .5.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且CD=3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论: ①△ABG ≌△AFG ;②BG=GC ;③AG ∥CF ;④S △FGC =28.8. 其中正确结论的个数是( )A .4B .3C .2D .1 6.如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点且AE CF =,下列说法中正确的是( ) ①BE DF =;②//BE DF ;③AB DE =;④四边形EBFD 为平行四边形;⑤ADE ABE S S ∆∆=;⑥AF CE =.A .①⑥B .①②④⑥C .①②③④D .①②④⑤⑥7.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CE 平分DCB ∠交BD 于点F ,且60ABC ∠=︒,2AB BC =,连接OE ,下列结论:①30ACD ∠=︒;②·ABCD S AC BC =;③:1:4OE AC =.其中正确的有( )A .0个B .1个C .2个D .3个8.线段AB 上有一动点C (不与A ,B 重合),分别以AC ,BC 为边向上作等边△ACM 和等边△BCN ,点D 是MN 的中点,连结AD ,BD ,在点C 的运动过程中,有下列结论:①△ABD 可能为直角三角形;②△ABD 可能为等腰三角形;③△CMN 可能为等边三角形;④若AB=6,则AD+BD 的最小值为37. 其中正确的是( )A .②③B .①②③④C .①③④D .②③④9.如图,矩形ABCD 中,AB =10,AD =4,点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的左上方作正方形AEFG ,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当点F 落在直线MN 上,设运动的时间为t ,则t 的值为( )A .1B .103C .4D .14310.如图,在菱形ABCD 中,若E 为对角线AC 上一点,且CE CD =,连接DE ,若5,8AB AC ==,则DE AD=( )A .104B .10C .35D .45二、填空题11.如图,在△ABC 中,∠BAC =90°,点D 是BC 的中点,点E 、F 分别是直线AB 、AC 上的动点,∠EDF =90°,M 、N 分别是EF 、AC 的中点,连结AM 、MN ,若AC =6,AB =5,则AM -MN 的最大值为________.12.在平行四边形ABCD 中,30,3,2A AD BD ∠=︒==,则平行四边形ABCD 的面积等于_____.13.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,若27CDF ∠=︒,则DAB ∠的度数为____________.14.如图,直线1l ,2l 分别经过点(1,0)和(4,0)且平行于y 轴.OABC 的顶点A ,C 分别在直线1l 和2l 上,O 是坐标原点,则对角线OB 长的最小值为_________.15.如图,▱ABCD 中,∠DAB =30°,AB =6,BC =2,P 为边CD 上的一动点,则2PB+ PD 的最小值等于______.16.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.17.如图,菱形OABC 的两个顶点坐标为()0,0O ,()4,4B ,若将菱形绕点O 以每秒45︒的速度逆时针旋转,则第2019秒时,菱形两对角线交点D 的坐标为__________.18.已知:如图,在ABC 中,AD BC ⊥,垂足为点D ,BE AC ⊥,垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED ,设4AB =,30DAC ∠=︒则EM =______;EDM 的面积为______,19.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.20.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.三、解答题21.已知:在ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BD 与CF 的位置关系为__________;CF 、BC 、CD 三条线段之间的数量关系____________________.(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,请你写出CF 、BC 、CD 三条线段之间的数量关系并加以证明;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系.②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.22.如图,点P 是正方形ABCD 内的一点,连接,CP 将线段CP 绕点C 顺时针旋转90,︒得到线段,CQ 连接,BP DQ .()1如图甲,求证:CBP CDQ ∠=∠;()2如图乙,延长BP 交直线DQ 于点E .求证:BE DQ ⊥;()3如图丙,若BCP 为等边三角形,探索线段,PD PE 之间的数量关系,并说明理由.23.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.24.如图所示,四边形ABCD 是正方形, M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A B 、重合),另一直角边与CBM ∠的平分线BF 相交于点F .(1)求证: ADE FEM ∠=∠;(2)如图(1),当点E 在AB 边的中点位置时,猜想DE 与EF 的数量关系,并证明你的猜想;(3)如图(2),当点E 在AB 边(除两端点)上的任意位置时,猜想此时DE 与EF 有怎样的数量关系,并证明你的猜想.25.猜想与证明:如图①摆放矩形纸片ABCD 与矩形纸片ECGF ,使B ,C ,G 三点在一条直线上,CE 在边CD 上.连结AF ,若M 为AF 的中点,连结DM ,ME ,试猜想DM 与ME 的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为__________________;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]① ②26.已知,如图,在三角形ABC ∆中,20AB AC cm ==,BD AC ⊥于D ,且16BD cm =.点M 从点A 出发,沿AC 方向匀速运动,速度为4/cm s ;同时点P 由B 点出发,沿BA 方向匀速运动,速度为1/cm s ,过点P 的动直线//PQ AC ,交BC 于点Q ,连结PM ,设运动时间为()t s ()05t <<,解答下列问题:(1)线段AD =_________cm ;(2)求证:PB PQ =;(3)当t 为何值时,以P Q D M 、、、为顶点的四边形为平行四边形?27.感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =;拓展:在图①中,若G 在AD ,且45GCE ∠︒=,则GE BE GD +=成立吗?为什么? 运用:如图②在四边形ABCD 中,()//AD BC BC AD >,90A B ∠∠︒==,16AB BC ==,E 是AB 上一点,且45DCE ∠︒=,4BE =,求DE 的长.28.问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点. 如图1,四边形ABCD 中,BC 是一条对角线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满足180A D +=︒∠∠,则点A 与点D 关于BC 互为勾股顶针点.初步思考(1)如图2,在ABC 中,AB AC =,30ABC ∠=︒,D 、E 为ABC 外两点,EB EC =,45EBC ∠=︒,DBC △为等边三角形.①点A 与点______关于BC 互为顶针点;②点D 与点______关于BC 互为勾股顶针点,并说明理由.实践操作(2)在长方形ABCD 中,8AB =,10AD =.①如图3,点E 在AB 边上,点F 在AD 边上,请用圆规和无刻度的直尺作出点E 、F ,使得点E 与点C 关于BF 互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点E 是直线AB 上的动点,点P 是平面内一点,点E 与点C 关于BP 互为勾股顶针点,直线CP 与直线AD 交于点F .在点E 运动过程中,线段BE 与线段AF 的长度是否会相等?若相等,请直接写出AE 的长;若不相等,请说明理由.29.如图,ABC ∆是边长为3的等边三角形,点D 是射线BC 上的一个动点(点D 不与点B 、C 重合),ADE ∆是以AD 为边的等边三角形,过点E 作BC 的平行线,交直线AC 于点F ,连接BE .(1)判断四边形BCFE 的形状,并说明理由;(2)当DE AB ⊥时,求四边形BCFE 的周长;(3)四边形BCFE 能否是菱形?若可为菱形,请求出BD 的长,若不可能为菱形,请说明理由.30.如图,已知正方形ABCD与正方形CEFG如图放置,连接AG,AE.(1)求证:AG AE=(2)过点F作FP AE⊥于P,交AB、AD于M、N,交AE、AG于P、Q,交BC于H,.求证:NH=FM【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;先证明E点与E'点重合,再在Rt△EBC中,EB=23,BC=4,求EC的长.【详解】取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;∵MN∥AD,∴HM=12 AE,∵HB⊥HM,AB=4,∠A=60°,∴MB=2,∠HMB=60°,∴HM=1,∴AE'=2,∴E点与E'点重合,∵∠AEB=∠MHB=90°,∴∠CBE=90°,在Rt△EBC中,EB=23,BC=4,∴EC=27,故选A.【点睛】本题考查菱形的性质,直角三角形的性质;确定G点的运动轨迹,是找到对称轴的关键.2.D解析:D【分析】连接AC、CE,CE交BD于P,此时AP+PE的值最小,求出CE长,即可求出答案.【详解】解:连接AC、CE,CE交BD于P,连接AP、PE,∵四边形ABCD是正方形,∴OA=OC,AC⊥BD,即A和C关于BD对称,∴AP=CP,即AP+PE=CE,此时AP+PE的值最小,所以此时△PAE周长的值最小,∵正方形ABCD的边长为4,点E在边AB上,AE=1,∴∠ABC=90°,BE=4﹣1=3,由勾股定理得:CE=5,∴△PAE的周长的最小值是AP+PE+AE=CE+AE=5+1=6,故选D.【点睛】本题考查了正方形的性质与轴对称——最短路径问题,知识点比较综合,属于较难题型. 3.D解析:D【解析】【分析】根据题意过E作EK垂直于直线CD,垂足为K,再过E作EL垂直于直线BC,垂足为L ,只要证明ENK ELM ∆≅∆,则可计算EKCL ENCM S S =四边形.【详解】 解:根据题意过E 作EK 垂直于直线CD ,垂足为K ,再过E 作EL 垂直于直线BC ,垂足为L.四边形ABCD 为正方形∴EL=EK,EK CD EL BC ⊥⊥∴90ELM EKN ︒∠=∠=90BCD ︒∠=90KEL ︒∴∠= FEG 为直角三角形90KEM LEM KEM NEK ︒∴∠+∠=∠+∠=LEM NEK ∴∠=∠ENK ELM ∴∆≅∆2224()39EKCL ENCM S Sa a ∴===四边形 故选D.【点睛】本题主要考查正方形的性质,关键在于根据题意做辅助线. 4.B解析:B【解析】【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n 个这样的正方形重叠部分即为n-1阴影部分的和.由此即可解答.【详解】由题意可得一个阴影部分面积等于正方形面积的 , 即一个阴影部分的面积为如图,5个这样的正方形重叠部分(阴影部分)的面积和为×4,∴n个这样的正方形重叠部分(阴影部分)的面积和为×(n-1),∴2019个正方形重叠形成的重叠部分的面积和为×(2019-1)=.故选B.【点睛】本题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.5.B解析:B【分析】由正方形的性质和折叠的性质得出AB=AF,∠AFG=90°,由HL证明Rt△ABG≌Rt△AFG,得出①正确;设BG=FG=x,则CG=12﹣x.由勾股定理得出方程,解方程求出BG,得出GC,即可得出②正确;由全等三角形的性质和三角形内角和定理得出∠AGB=∠GCF,得出AG∥CF,即可得出③正确;通过计算三角形的面积得出④错误;即可得出结果.【详解】①正确.理由如下:∵四边形ABCD是正方形,∴AB=BC=CD=AD=12,∠B=∠GCE=∠D=90°,由折叠的性质得:AF=AD,∠AFE=∠D=90°,∴∠AFG=90°,AB=AF.在Rt△ABG和Rt△AFG中,AG AGAB AF=⎧⎨=⎩,∴Rt△ABG≌Rt△AFG(HL);②正确.理由如下:由题意得:EF=DE=13CD=4,设BG=FG=x,则CG=12﹣x.在直角△ECG中,根据勾股定理,得(12﹣x)2+82=(x+4)2,解得:x=6,∴BG=6,∴GC=12﹣6=6,∴BG=GC;③正确.理由如下:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GC F=2∠GFC=2∠GCF,∴∠AGB=∠GCF,∴AG∥CF;④错误.理由如下:∵S△GCE=12GC•CE=12×6×8=24.∵GF=6,EF=4,△GFC和△FCE等高,∴S△GFC:S△FCE=3:2,∴S△GFC=35×24=725≠28.8.故④不正确,∴正确的有①②③.故选B .【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识;本题综合性强,有一定的难度.6.D解析:D【分析】先根据全等三角形进行证明,即可判断①和②,然后作辅助线,推出OD=OF ,得出四边形BEDF 是平行四边形,求出BM=DM 即可判断④和⑤,最后根据AE=CF ,即可判断⑥.【详解】①∵四边形ABCD 是平行四边形,∴AB ∥DC,AB=DC,∴∠BAC=∠ADC,在△ABE 和△DFC 中BAC ADC AB A F C E D C ∠=∠=⎧=⎪⎨⎪⎩∴△ABE≌△DFC(SAS ),∴BE=DF,故①正确.②∵△ABE≌△DFC,∴∠AEB=∠DFC,∴∠BEF=∠DF E,∴BE∥DF,故②正确.③根据已知的条件不能推AB=DE ,故③错误.④连接BD 交AC 于O ,过D 作DM⊥AC 于M ,过B 作BN⊥AC 于N,∵四边形ABCD 是平行四边形,∴DO=BO,OA=OC,∵AE=CF,∴OE=OF,∴四边形BEDF 是平行四边形,故④正确.⑤∵BN⊥AC,DM⊥AC,∴∠BNO=∠DMO=90°,在△BNO 和△DMO 中∠BNO=∠DMO ∠BON=∠DOM OB=OD ⎧⎪⎨⎪⎩△ADE △ABE ∴△BNO ≌△DMO (AAS )∴BN=DM11∵S =AE DM ,S =AE BN 22⨯⨯⨯⨯∴△ADE △ABE S =S ,故⑤正确.⑥∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,故⑥正确.故答案是D.【点睛】本题主要考查了全等三角形的判定和平行四边形的判定以及性质,熟练掌握相关的性质是解题的关键.7.C解析:C【分析】由四边形ABCD 是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE 是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC ⊥BC ,得到S ▱ABCD =AC •BC ,故②正确,根据直角三角形的性质得到AC =,根据三角形的中位线的性质得到OE=12BC ,于是得到OE :∶6;故③错误;【详解】解:∵四边形ABCD 是平行四边形, 60ABC ADC ∴∠=∠=︒,120BCD ∠=︒∵CE 平分BCD ∠交AB 于点E ,∴60DCE BCE ∠=∠=︒,∴CBE △是等边三角形,∴BE BC CE ==.∵2AB BC =,∴AE BE CE ==,∴90ACB ∠=︒,∴30ACD CAB ∠=∠=︒,故①正确;∵AC BC ⊥,∴ABCD S AC BC =⋅,故②正确;在Rt ACB △中,90ACB ∠=︒,30CAB ∠=︒, ∴3AC BC =.AO OC =,AE BE =,∴1OE BC 2=, 1::33:62OE AC BC BC ∴==,故③错误. 故选:C .【点睛】此题考查了平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE 是等边三角形,OE 是△ABC 的中位线是关键.8.D解析:D【分析】根据题意并结合图形,我们可以得出当C 为AB 的中点时,可判断所给结论正确与否.【详解】解:当C 为AB 中点时,有图如下,∵ACM 与BCN 为等边三角形,∵C 为AB 中点,∴AM=AC=MC=NC=BC=NB,MD=ND ,∵MCN 60∠=︒∴CMN CNM 60∠∠==︒∴CMN 为等边三角形,③正确;∵AMD BND 120∠∠==︒∴AMD BND ≅∴AD=BD,△ABD 此时为等腰三角形,②正确;当C为AB中点时,AD+BD值最小,∵D为MN的中点,∴CD为MN的垂直平分线,∴1MD4AB=,∵AB=6,∴22333 CD32⎛⎫=-=⎪⎝⎭∴223337 AD322⎛⎫=+=⎪⎪⎝⎭∵AD=BD∴AD+BD=37,④正确;若△ABD可能为直角三角形,则ADB90∠=︒,∴CD为AB的垂直平分线∴ADC45∠=︒∴AC=CD,与所求结论不符,①错误.故选:D.【点睛】本题考查的知识点是等边三角形的性质以及全等三角形的判定定理及性质,弄清题意,画出当C为AB中点时的图形是解题的关键.9.D解析:D【分析】过点F作FH⊥CD,交直线CD于点Q,则∠EHF=90°,易证∠ADE=∠EHF,由正方形的性质得出∠AEF=90°,AE=EF,证得∠AED=∠EFH,由AAS证得△ADE≌△EHF得出AD=EH=4,则t+2t=4+10,即可得出结果.【详解】过点F作FH⊥CD,交直线CD于点Q,则∠EHF=90°,如图所示:∵四边形ABCD为矩形,∴∠ADE=90°,∴∠ADE=∠EHF,∵在正方形AEFG 中,∠AEF=90°,AE=EF ,∴∠AED+∠HEF=90°,∵∠HEF+∠EFH=90°,∴∠AED=∠EFH ,在△ADE 和△EHF 中,ADE EHF AED EFH AE EF ∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADE ≌△EHF (AAS ),∴AD=EH=4,由题意得:t+2t=4+10,解得:t=143, 故选D .【点睛】 本题考查了正方形的性质、矩形的性质、全等三角形的判定与性质等知识,熟练掌握正方形与矩形的性质,通过作辅助线证明三角形全等是解题的关键.10.B解析:B【分析】连接BD ,与AC 相交于点O ,则AC ⊥BD ,142AO AC ==,由5AD AB ==,根据勾股定理求出DO ,求出EO ,由勾股定理求出DE ,即可得到答案.【详解】解:连接BD ,与AC 相交于点O ,则AC ⊥BD ,在菱形ABCD 中,142AO AC ==, ∵5AD AB CD ===, 在Rt △AOD 中,由勾股定理,得:22543DO =-=,∵=5CE CD =,8AC =,∴853AE =-=,∴431OE =-=,在Rt △ODE 中,由勾股定理,得 223110DE =+=,∴105DE AD =. 故选:B.【点睛】本题考查了菱形的性质,勾股定理,以及线段的和差关系,解题的关键是正确作出辅助线,利用勾股定理求出DE 的长度.二、填空题11.52【分析】连接DM ,直角三角形斜边中线等于斜边一半,得AM=DM ,利用两边之差小于第三边得到AM MN DN -≤,又根据三角形中位线的性质即可求解.【详解】连接DM ,如下图所示,∵90BAC EDF ∠=∠=︒又∵M 为EF 中点∴AM=DM=12EF ∴AM MN DM MN DN -=-≤(当D 、M 、N 共线时,等号成立)∵D 、N 分别为BC 、AC 的中点,即DN 是△ABC 的中位线∴DN=12AB=52∴AM MN -的最大值为52 故答案为52. 【点睛】 本题考查了直角三角形斜边中线的性质,三角形的三边关系,关键是确定AM MN -的取值范围.12.43或23 【分析】分情况讨论作出图形,通过解直角三角形得到平行四边形的底和高的长度,根据平行四边形的面积公式即可得到结论.【详解】解:过D 作DE AB ⊥于E ,在Rt ADE △中,30A ∠=︒,23AD =, 132DE AD ∴==,332AE AD ==, 在Rt BDE △中,2BD =,22222(3)1BE BD DE ∴=-=-=,如图1,4AB ∴=,∴平行四边形ABCD 的面积4343AB DE ==⨯=,如图2,2AB =,∴平行四边形ABCD 的面积2323AB DE ==⨯=,如图3,过B 作BE AD ⊥于E ,在Rt ABE △中,设AE x =,则23DE x =,30A ∠=︒,33BE x =, 在Rt BDE △中,2BD =, 22232()(23)x ∴=+, 3x ∴=23x =1BE ∴=,∴平行四边形ABCD 的面积12323AD BE ==⨯=,如图4,当AD BD ⊥时,平行四边形ABCD 的面积43AD BD ==,故答案为:43或23.【点睛】本题考查了平行四边形的性质,平行四边形的面积公式的运用、30度角的直角三角形的性质,根据题意作出图形是解题的关键.13.102︒【分析】根据菱形的性质求出∠DAB=2∠DAC ,AD=CD ;再根据垂直平分线的性质得出AF=DF ,利用三角形内角和定理可以求得3∠CAD+∠CDF=180°,从而得到∠DAB 的度数.【详解】连接BD ,BF ,∵四边形ABCD 是菱形,∴AD=CD ,∴∠DAC=∠DCA .∵EF 垂直平分AB ,AC 垂直平分BD ,∴AF=BF ,BF=DF ,∴AF=DF ,∴∠FAD=∠FDA ,∴∠DAC+∠FDA+∠DCA+∠CDF=180°,即3∠DAC+∠CDF=180°,∵∠CDF=27°,∴3∠DAC+27°=180°,则∠DAC=51°,∴∠DAB=2∠DAC=102°.故答案为:102°.【点睛】本题主要考查了线段的垂直平分线的性质,三角形内角和定理的应用以及菱形的性质,有一定的难度,解答本题时注意先先连接BD ,BF ,这是解答本题的突破口.14.5【分析】过点B 作BD ⊥l 2,交直线l 2于点D ,过点B 作BE ⊥x 轴,交x 轴于点E .则OB=22OE BE +.由于四边形OABC 是平行四边形,所以OA=BC ,又由平行四边形的性质可推得∠OAF=∠BCD ,则可证明△OAF ≌△BCD ,所以OE 的长固定不变,当BE 最小时,OB 取得最小值,从而可求.【详解】解:过点B 作BD ⊥l 2,交直线x=4于点D ,过点B 作BE ⊥x 轴,交x 轴于点E ,直线l 1与OC 交于点M ,与x 轴交于点F ,直线l 2与AB 交于点N .∵四边形OABC 是平行四边形,∴∠OAB=∠BCO ,OC ∥AB ,OA=BC ,∵直线l 1与直线l 2均垂直于x 轴,∴AM ∥CN ,∴四边形ANCM 是平行四边形,∴∠MAN=∠NCM ,∴∠OAF=∠BCD ,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC ,在△OAF 和△BCD 中,FOA DBC OA BCOAF BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAF ≌△BCD (ASA ),∴BD=OF=1,∴OE=4+1=5,∴OB=22OE BE +.由于OE 的长不变,所以当BE 最小时(即B 点在x 轴上),OB 取得最小值,最小值为OB=OE=5.故答案为:5.【点睛】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质,以及勾股定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.15.6【分析】过点P作PE⊥AD交AD的延长线于点E,根据四边形ABCD是平行四边形,得到 AB∥CD,推出PE=12PD,由此得到当PB+PE最小时2PB+ PD有最小值,此时P、B、E三点在同一条直线上,利用∠DAB=30°,∠AEP=90°,AB=6求出PB+PE的最小值=12AB=3,得到2PB+PD的最小值等于6.【详解】过点P作PE⊥AD交AD的延长线于点E,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EDC=∠DAB=30°,∴PE=12 PD,∵2PB+ PD=2(PB+12PD)=2(PB+PE),∴当PB+PE最小时2PB+ PD有最小值,此时P、B、E三点在同一条直线上,∵∠DAB=30°,∠AEP=90°,AB=6,∴PB+PE的最小值=12AB=3,∴2PB+ PD的最小值等于6,故答案为:6.【点睛】此题考查平行四边形的性质,直角三角形含30°角的问题,动点问题,将线段2PB+PD转化为三点共线的形式是解题的关键.16.1或7.【分析】存在2种情况满足条件,一种是点P在BC上,只需要BP=CE即可得全等;另一种是点P 在AD上,只需要AP=CE即可得全等【详解】设点P 的运动时间为t 秒,当点P 在线段BC 上时,则2BP t =,∵四边形ABCD 为长方形,∴AB CD =,90B DCE ∠=∠=︒,此时有ABP DCE ∆∆≌,∴BP CE =,即22t =,解得1t =;当点P 在线段AD 上时,则2BC CD DP t ++=,∵4AB =,6AD =,∴6BC =,4CD =,∴()()6462162AP BC CD DA BC CD DP t t =++-++=++-=-,∴162AP t =-,此时有ABP CDE ∆∆≌,∴AP CE =,即1622t -=,解得7t =;综上可知当t 为1秒或7秒时,ABP ∆和CDE ∆全等.故答案为:1或7.【点睛】本题考查动点问题,解题关键是根据矩形的性质可得,要证三角形的全等,只需要还得到一条直角边相等即可17.(-,0)【分析】先计算得到点D 的坐标,根据旋转的性质依次求出点D 旋转后的点坐标,得到变化的规律即可得到答案.【详解】∵菱形OABC 的两个顶点坐标为()0,0O ,()4,4B ,∴对角线的交点D 的坐标是(2,2),∴OD ==将菱形绕点O 以每秒45︒的速度逆时针旋转,旋转1次后坐标是(0,),旋转2次后坐标是(-2,2),旋转3次后坐标是(-,0),旋转4次后坐标是(-2,-2),旋转5次后坐标是(0,-旋转6次后坐标是(2,-2),旋转7次后坐标是(,0),旋转8次后坐标是(2,2)旋转9次后坐标是(0,由此得到点D 旋转后的坐标是8次一个循环,∵201982523÷=,∴第2019秒时,菱形两对角线交点D 的坐标为(-,0)故答案为:(-0).【点睛】此题考查了菱形的性质,旋转的性质,勾股定理,直角坐标系中点坐标的变化规律,根据点D 的坐标依次求出旋转后的坐标得到变化规律是解题的关键.18.2【分析】根据EM 是Rt ABE △斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半即可求出EM 的长;根据已知条件推导出DME 是等边三角形,且边长为2,进一步计算即可得解.【详解】解:∵AD BC ⊥,M 为AB 边的中点,4AB =∴在Rt ABD △中,114222DM AM AB ===⨯= 同理,在Rt ABE △中,114222EM AM AB ===⨯= ∴MDA MAD ∠=∠,MEA MAE ∠=∠∵2BME MEA MAE MAE ∠=∠+∠=∠,2BMD MDA MAD MAD ∠=∠+∠=∠ ∴DME BME BMD ∠=∠-∠ 22MAE MAD =∠-∠()2MAE MAD =∠-∠2DAC =∠60=︒∵=DM EM∴DME 是等边三角形,且边长为2∴122EDM S =⨯=故答案是:2【点睛】本题考查了直角三角形斜边上的中线的性质、三角形的外角定理、角的和差以及等边三角形的判定和性质,熟练掌握相关知识点是进行推理论证的前提.19.2【分析】分别延长AE ,BF 交于点H ,易证四边形EPFH 为平行四边形,得出点G 为PH 的中点,则G 的运动轨迹为△HCD 的中位线MN ,再求出CD 的长度,运用中位线的性质求出MN 的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN=12CD=2,∴点G移动路径的长是2,故答案为:2.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.20.102【分析】根据平行四边形的性质、角平分线的性质证明AD=DE=3,再根据BAD BEC∠=∠证明BC=BE,由此根据三角形的三线合一及勾股定理求出BF,即可求出平行四边形的面积.【详解】过点B作BF CD⊥于点F,如图所示.∵AE是BAD∠的平分线,∴DAE BAE∠=∠.∵四边形ABCD 是平行四边形,∴53CD AB BC AD BAD BCE AB CD ====∠=∠,,,∥, ∴BAE DEA ∠=∠,∴DAE DEA ∠=∠,∴3DE AD ==,∴2CE CD DE =-=.∵BAD BEC ∠=∠,∴BCE BEC ∠=∠,∴BC=BE, ∴112CF EF CE ===,∴BF ===∴平行四边形ABCD 的面积为5BF CD ⋅==.故答案为:【点睛】此题考查平行四边形的性质:对边平行且相等,对角相等,等腰三角形的等角对等边的性质、三线合一的性质,勾股定理.三、解答题21.(1)BD ⊥CF ,CF=BC-CD ;(2)CF=BC+CD ,见解析;(3)①CF=CD−BC ,②等腰三角形,见解析【分析】(1)先说明△ABC 是等腰直角三角形,利用SAS 即可证明△BAD ≌△CAF ,从而证得CF ⊥BD 、CF=BD ,又 BD+CD=BC, CF=BC-CD ;(2)先利用SAS 即可证得△BAD ≌△CAF ,从而证得BD=CF ,即可得到CF-CD=BC ; (3)①与(2)同理可得BD=CF ,然后结合图形可得CF=CD-BC ;②先根据等腰直角三角形的性质得到∠ABC=∠ACB=45°,再根据邻补角的定义求出∠ABD=135°,再根据同角的余角相等求出∠BAD=∠CAF ,然后利用“边角边”证明△BAD ≌△CAF ,得∠ACF=∠ABD ,求出∠FCD=90°,然后根据直角三角形斜边上的中线等于斜边的一半求出OC=12DF ,再根据正方形的对角线相等求出OC=OA ,从而得到△AOC 是等腰三角形.【详解】(1)解:∵∠B4C=90°,AB=AC∴∠ABC=∠ACB=45°∵四边形ADEF 是正方形∴AD=AF ,∠DAF=90°∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°∴∠BAD=∠CAF在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴BD=CF,∠ABD=∠ACF=45°∴∠FCB=∠ACF+ ∠ACB=90°,即CF⊥BC ∵BD+CD=BC∴CF+CD=BC;故答案为:BD⊥CF,CF=BC-CD;(2)证明:∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=∠BAC+∠DAC,∠CAF=∠DAF+∠DAC,∴∠BAD=∠CAF,在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD=BC+CD,∴CF=BC+CD;(3)①与(2)同理可得,BD=CF,所以,CF=CD−BC;②∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,则∠ABD=180∘−45°=135°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAF+∠CAF=90°,∠DAF=∠BAD+∠BAF=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=180°−45°=135°,∴∠FCD=∠AC F−∠ACB=90°,则△FCD为直角三角形,∵正方形ADEF中,O为DF中点,∴OC=1DF,2∵在正方形ADEF中,OA=1AE,AE=DF,2∴OC=OA,∴△AOC是等腰三角形.【点睛】本题考查了四边形的综合题,正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、等腰三角形的判定以及同角的余角相等的性质,在(1)证明三角形全等得到思路并推广到(2)(3)是解答本题的关键.22.(1)证明见试题解析;(2)证明见试题解析;(3)△DEP为等腰直角三角形,理由见试题解析.【分析】(1)根据正方形性质得出BC=DC,根据旋转图形的性质得出CP=CQ以及∠PCB=∠QCD,从而得出三角形全等来得出结论;(2)由(1)知∠PBC=∠QBC,BE和CD交点为F,根据对顶角得出∠DFE=∠BFC,从而说明BE⊥QD;(3)根据等边三角形的性质得出PB=PC=BC,∠PBC=∠BPC=∠PCB=60°,则∠PCD=30°,根据BC=DC,CP=CQ得出△PCD为等腰三角形,然后根据△DCQ为等边三角形,从而得出∠DEP=90°,从而得出答案.【详解】(1)证明∵四边形ABCD是正方形,∴BC=DC,又∵将线段CP绕点C顺时针旋90°得到线段CQ,∴CP=CQ,∠PCQ=90°,∴∠PCD+∠QCD=90°,又∵∠PCB+∠PCD=90°,∴∠PCB=∠QCD在△BCP和△DCQ中,BC=DC,CP=CQ,∠PCB=∠QCD,∴△BCP≌△DCQ,∴∠CBP=∠CDQ;(2)证明:∵△BCP≌△DCQ,∴∠PBC=∠QDC,∴∠DFE=∠BFC,∠FED=∠FCB=90°,∴BE⊥QD;(3)△DEP为等腰直角三角形,理由如下:∵△BPC为等边三角形,∴PB=PC=BC,∠PBC=∠BPC=∠PCB=60°,∴∠PCD=90°-60°=30°,∴∠DCQ=90°-30°=60°,又∵BC=DC,CP=CQ,∴PC=DC,DC=CQ,∴△PCD是等腰三角形,△DCQ是等边三角形,∴∠CPD=∠CDP=75°,∠CDQ=60°,∴∠EPD=180°-75°-60°=45°,∠EDP=180°-75°-60°=45°,∴∠EPD=∠EDP,PE=DE,∴∠DEP=180°-45°-45°=90°,∴△DEP是等腰直角三形.【点睛】本题考查了正方形的性质、三角形全等的判定和性质以及旋转的性质,掌握正方形的四条边相等、四个角都是直角,旋转的性质证明三角形全等是解题的关键.23.(1)8-2t,8-t;(2)83或74【分析】(1)根据P、Q的运动速度以及AB和CD的长即可表示;(2)分PQ=PB、BP=BQ和QP=QB三种情况进行分析即可.【详解】解:(1)由题意可得:DP=2t,AQ=t,∴PC=8-2t,BQ=8-t,故答案为:8-2t,8-t;(2)当PQ=PB时,如图①,QH=BH,则t+2t=8,解得,t=83,当PQ=BQ时,(2t-t)2+62=(8-t)2,解得,t=74,当BP=BQ时,(8-2t)2+62=(8-t)2,方程无解;∴当t=83或74时,△BPQ为等腰三角形.【点睛】本题考查的是矩形的性质、等腰三角形的判定,掌握性质并灵活运用性质是解题的关键,注意分情况讨论思想的应用.24.(1)详见解析;(2)DE EF =,理由详见解析;(3)DE EF =,理由详见解析【分析】(1)根据90,90AED FEB ADE AED ∠+∠=︒∠+∠=︒,等量代换即可证明;(2)DE=EF ,连接NE ,在DA 边上截取DN=EB ,证出△DNE ≌△EBF 即可得出答案;(3)在DA 边上截取DN EB =,连接NE ,证出()DNE EBF ASA ≌即可得出答案.【详解】(1)证明:∵90DAB DEF ∠=∠=︒,∴90,90AED FEB ADE AED ∠+∠=︒∠+∠=︒,∴ADE FEM ∠=∠;(2) ;DE EF =理由如下:如图,取AD 的中点N ,连接NE ,∵四边形ABCD 为正方形,∴AD AB = ,∵,N E 分别为,AD AB 中点 ∴11,22AN DN AD AE EB AB ====, ∴,DN BE AN AE == 又∵90A ∠=︒∴45ANE ∠=︒∴180135DNE ANE ∠=︒-∠=︒,又∵90CBM ∠=︒,BF 平分CBM ∠∴45,135CBF EBF ∠=︒∠=︒.∴DNE EBF ∠=∠在DNE △和EBF △中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩()DNE EBF ASA ≌,∴DE EF =(3) DE EF =.理由如下:。

人教版八年级初二数学下学期平行四边形单元 易错题难题测试综合卷学能测试试题

人教版八年级初二数学下学期平行四边形单元 易错题难题测试综合卷学能测试试题

人教版八年级初二数学下学期平行四边形单元 易错题难题测试综合卷学能测试试题一、选择题1.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n .”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x ,再取最小整数n .甲:如图2,思路是当x 为矩形对角线长时就可移转过去;结果取13n =.乙:如图3,思路是当x 为矩形外接圆直径长时就可移转过去;结果取n =14. 丙:如图4,思路是当x 为矩形的长与宽之和的22倍时就可移转过去;结果取13n =. 下列正确的是( )A .甲的思路错,他的n 值对B .乙的思路和他的n 值都对C .甲和丙的n 值都对D .甲、乙的思路都错,而丙的思路对2.如图,正方形ABCD 中,点E F 、分别在边BC CD 、上,且AE EF FA ==,有下列结论:①ABE ADF ∆≅∆;②CE CF =;③75AEB ∠=︒;④BE DF EF +=;⑤A ABE DF CEF S S S ∆∆∆+=;其中正确的有( )个.A .2B .3C .4D .53.如图,在四边形ABCD 中,AB ∥CD ,∠BCD=90°,AB=AD=10cm ,BC=8cm ,点P 从点A 出发,以每秒3cm 的速度沿折线A-B-C-D 方向运动,点Q 从点D 出发,以每秒2cm 的速度沿线段DC 方向向点C 运动、已知动点P ,Q 同时出发,当点Q 运动到点C 时,点P ,Q 停止运动,设运动时间为t 秒,在这个运动过程中,若△BPQ 的面积为20cm 2 , 则满足条件的t 的值有( )A .1个B .2个C .3个D .4个4.如图所示,E 为正方形ABCD 的边BC 延长线上一点,且CE =AC ,AE 交CD 于点F ,那么∠AFC 的度数为( )A .112.5°B .125°C .135°D .150°5.如图,矩形ABCD 中,AB =2,对角线AC 、BD 交于点O ,∠AOD =120°,E 为BD 上任意点,P 为AE 中点,则PO +PB 的最小值为 ( )A .3B .13+C .7D .36. 如图,平行四边形ABCD 对角线AC 、BD 交于点O ,∠ADB=20°,∠ACB=50°,过点O 的直线交AD 于点E ,交BC 于点F 当点E 从点A 向点D 移动过程中(点E 与点A 、点D 不重合),四边形AFCE 的形状变化依次是( )A .平行四边形→矩形→平行四边形→菱形→平行四边形B .平行四边形→矩形→平行四边形→正方形→平行四边形C .平行四边形→菱形→平行四边形→矩形→平行四边形D .平行四边形→矩形→菱形→正方形→平行四边形7.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CE 平分DCB ∠交BD 于点F ,且60ABC ∠=︒,2AB BC =,连接OE ,下列结论:①30ACD ∠=︒;②·ABCD S AC BC =;③:1:4OE AC =.其中正确的有( )A .0个B .1个C .2个D .3个8.如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =4,D 是AB 上一动点,过点D 作DE ⊥AC 于点E ,DF ⊥BC 于点F ,连结EF ,则线段EF 的长的最小值是( )A .2.5B .2.4C .2.2D .29.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2 B.52C.332D.510.如图,在ABC中,AB=5,AC=12,BC=13,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.6013B.3013C.2413D.1213二、填空题11.已知:点B是线段AC上一点,分别以AB,BC为边在AC的同侧作等边ABD△和等边BCE,点M,N分别是AD,CE的中点,连接MN.若AC=6,设BC=2,则线段MN的长是__________.12.如图所示,菱形ABCD,在边AB上有一动点E,过菱形对角线交点O作射线EO与CD 边交于点F,线段EF的垂直平分线分别交BC、AD边于点G、H,得到四边形EGFH,点E 在运动过程中,有如下结论:①可以得到无数个平行四边形EGFH;②可以得到无数个矩形EGFH;③可以得到无数个菱形EGFH;④至少得到一个正方形EGFH.所有正确结论的序号是__.13.如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为_____.14.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.15.如图,Rt ABE ∆中,90,B AB BE ︒∠==, 将ABE ∆绕点A 逆时针旋转45︒,得到,AHD ∆过D 作DC BE ⊥交BE 的延长线于点C ,连接BH 并延长交DC 于点F ,连接DE 交BF 于点O .下列结论:①DE 平分HDC ∠;②DO OE =; ③CD HF =; ④2BC CF CE -=; ⑤H 是BF 的中点,其中正确的是___________16.菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (30),∠DOB =60°,点P 是对角线OC 上一个动点,E (0,-1),则EP 十BP 的最小值为__________.17.在ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则DEF的周长为______.18.如图,在矩形ABCD中,∠ACB=30°,BC=23,点E是边BC上一动点(点E不与B,C重合),连接AE,AE的中垂线FG分别交AE于点F,交AC于点G,连接DG,GE.设AG=a,则点G到BC边的距离为_____(用含a的代数式表示),ADG的面积的最小值为_____.19.如图,在平行四边形ABCD中,AC⊥AB,AC与BD相交于点O,在同一平面内将△ABC 沿AC翻折,得到△AB’C,若四边形ABCD的面积为24cm2,则翻折后重叠部分(即S△ACE) 的面积为________cm2.20.如图,长方形ABCD中AB=2,BC=4,正方形AEFG的边长为1.正方形AEFG绕点A 旋转的过程中,线段CF的长的最小值为_____.三、解答题,E,F分别在AB,BC上.21.如图,在矩形ABCD中,AD nAB(1)若1n =,①如图,AF DE ⊥,求证:AE BF =;②如图,点G 为点F 关于AB 的对称点,连结AG ,DE 的延长线交AG 于H ,若AH AD =,猜想AE 、BF 、AG 之间的数量关系,并证明你的猜想.(2)如图,若M 、N 分别为DC 、AD 上的点,则EM FN的最大值为_____(结果用含n 的式子表示);(3)如图,若E 为AB 的中点,ADE EDF ∠=∠.则CF BF的值为_______(结果用含n 的式子表示).22.如图,矩形OBCD 中,OB =5,OD =3,以O 为原点建立平面直角坐标系,点B ,点D 分别在x 轴,y 轴上,点C 在第一象限内,若平面内有一动点P ,且满足S △POB =13S 矩形OBCD ,问:(1)当点P 在矩形的对角线OC 上,求点P 的坐标;(2)当点P 到O ,B 两点的距离之和PO +PB 取最小值时,求点P 的坐标.23.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:如图1,90MON ∠=,点A 为边OM 上一定点,点B 为边ON 上一动点,以AB 为一边在∠MON 的内部作正方形ABCD ,过点C 作CF OM ⊥,垂足为点F (在点O 、A 之间),交BD 与点E ,试探究AEF ∆的周长与OA 的长度之间的等量关系该兴趣小组进行了如下探索:(动手操作,归纳发现)(1)通过测量图1、2、3中线段AE 、AF 、EF 和OA 的长,他们猜想AEF ∆的周长是OA 长的_____倍.请你完善这个猜想(推理探索,尝试证明)为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程:(2)如图4,过点C 作CG ON ⊥,垂足为点G则90CGB ∠=90GCB CBG ∴∠+∠= 又四边形ABCD 正方形,AB BC =,90ABC ∠=则90CBG ABO ∠+∠=GCB ABO ∴∠=∠在CBE ∆与ABE ∆中,(类比探究,拓展延伸)(3)如图5,当点F 在线段OA 的延长线上时,直接写出线段AE 、EF 、AF 与OA 长度之间的等量关系为 .24.如图①,已知正方形ABCD 中,E ,F 分别是边AD ,CD 上的点(点E ,F 不与端点重合),且AE=DF ,BE ,AF 交于点P ,过点C 作CH ⊥BE 交BE 于点H .(1)求证:AF ∥CH ;(2)若AB=23 ,AE=2,试求线段PH 的长;(3)如图②,连结CP 并延长交AD 于点Q ,若点H 是BP 的中点,试求 CP PQ的值. 25.矩形ABCD 中,AB =3,BC =4.点E ,F 在对角线AC 上,点M ,N 分别在边AD ,BC 上.(1)如图1,若AE =CF =1,M ,N 分别是AD ,BC 的中点.求证:四边形EMFN 为矩形. (2)如图2,若AE =CF =0.5,02AM CN x x ==<<(),且四边形EMFN 为矩形,求x 的值.26.如图,锐角ABC ∆,AB AC =,点D 是边BC 上的一点,以AD 为边作ADE ∆,使AE AD =,EAD BAC ∠=∠.(1)过点E 作//EF DC 交AB 于点F ,连接CF (如图①)①请直接写出EAB ∠与DAC ∠的数量关系;②试判断四边形CDEF 的形状,并证明;(2)若60BAC ∠=,过点C 作//CF DE 交AB 于点F ,连接EF (如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.27.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值.(3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由.28.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。

人教版平行四边形单元 易错题难题测试综合卷学能测试试卷

人教版平行四边形单元 易错题难题测试综合卷学能测试试卷

人教版平行四边形单元 易错题难题测试综合卷学能测试试卷一、选择题1.已知点A (4,0),B (0,﹣4),C (a ,2a )及点D 是一个平行四边形的四个顶点,则线段CD 的长的最小值为( )A .655B .1255C .32D .422.如图,在边长为5的正方形ABCD 中,以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形的个数为( )A .3B .4C .5D .63.如图,菱形ABCD 的边,8AB =,60B ∠=,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点'A .当'CA 的长度最小时,'C Q 的长为( )A .5B .7C .8D .1324.如图,在正方形ABCD 中,E ,F 分别为BC ,DC 的中点,P 为对角线AC 上的一个动点,则下列线段的长等于BP EP +最小值的是( )A .AB B .CEC .ACD .AF5.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且CD=3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论: ①△ABG ≌△AFG ;②BG=GC ;③AG ∥CF ;④S △FGC =28.8. 其中正确结论的个数是( )A .4B .3C .2D .16.如图,正方形纸片ABCD ,P 为正方形AD 边上的一点(不与点A ,点D 重合).将正方形纸片折叠,使点B 落在点P 处,点C 落在点G 处,PG 交DC 于点H ,折痕为EF ,连接,,BP BH BH 交EF 于点M ,连接PM .下列结论:①BE PE =;②BP EF =;③PB 平分APG ∠;④PH AP HC =+;⑤MH MF =,其中正确结论的个数是( )A .5B .4C .3D .27.如图,ABCD 的对角线,AC BD 交于点,O DE 平分ADC ∠交BC 于点,60,E BCD ∠=︒2,AD AB =连接OE .下列结论:ABCD S AB BD =⋅①;DB ②平分ADE ∠;AB DE =③;CDE BOC S S =④,其中正确的有( )A .1个B .2个C .3个D .4个 8.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .2C .2.4D .3.59.如图,己知正方形ABCD 的边长为4, P 是对角线BD 上一点,PE ⊥BC 于点E , PF ⊥CD 于点F ,连接AP , EF ,给出下列结论:①PD=2EC ;②四边形PECF 的周长为8;③△APD 一定是等腰三角形;④AP=EF ;⑤EF 的最小值为22;⑥AP ⊥EF ,其中正确结论的序号为( )A .①②④⑤⑥B .①②④⑤C .②④⑤D .②④10.如图,正方形ABCD 中,延长CB 至E 使2CB EB =,以EB 为边作正方形EFGB ,延长FG 交DC 于M ,连接AM ,AF ,H 为AD 的中点,连接FH 分别与AB ,AM 交于点,N K .则下列说法:①ANH GNF △≌△;②DAM NFG ∠=∠;③2FN NK =;④:2:7AFN DMKH S S =△四边形.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题11.如图,正方形ABCD 的边长为4,点E 为CD 边上的一个动点,以CE 为边向外作正方形ECFG ,连结BG ,点H 为BG 中点,连结EH ,则EH 的最小值为______12.在平行四边形ABCD 中,30,23,2A AD BD ∠=︒==,则平行四边形ABCD 的面积等于_____.13.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62,那么BC=______.14.如图,长方形纸片ABCD 中,AB =6 cm,BC =8 cm 点E 是BC 边上一点,连接AE 并将△AEB 沿AE 折叠, 得到△AEB′,以C ,E ,B′为顶点的三角形是直角三角形时,BE 的长为___________cm.15.如图,正方形ABCD 的边长为6,点E 、F 分别在边AD 、BC 上.将该纸片沿EF 折叠,使点A 的对应点G 落在边DC 上,折痕EF 与AG 交于点Q ,点K 为GH 的中点,则随着折痕EF 位置的变化,△GQK 周长的最小值为____.16.如图,在正方形ABCD 中,AC=62,点E 在AC 上,以AD 为对角线的所有平行四边形AEDF 中,EF 最小的值是_________.17.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).18.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.19.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.20.李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D 落在AB 边的点F 处,得折痕AE ,再折叠,使点C 落在AE 边的点G 处,此时折痕恰好经过点B ,如果AD=a ,那么AB 长是多少?”常明说;“简单,我会. AB 应该是_____”.常明回答完,又对李刚说:“你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B ,而是经过了AB 边上的M 点,如果AD=a ,测得EC=3BM ,那么AB 长是多少?”李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.三、解答题21.如图,在Rt ABC ∆中,90ABC ∠=︒,30C ∠=︒,12AC cm =,点E 从点A 出发沿AB 以每秒1cm 的速度向点B 运动,同时点D 从点C 出发沿CA 以每秒2cm 的速度向点A 运动,运动时间为t 秒(06t <<),过点D 作DF BC ⊥于点F .(1)试用含t 的式子表示AE 、AD 、DF 的长;(2)如图①,连接EF ,求证四边形AEFD 是平行四边形;(3)如图②,连接DE ,当t 为何值时,四边形EBFD 是矩形?并说明理由.22.已知,在△ABC 中,∠BAC =90°,∠ABC =45°,D 为直线BC 上一动点(不与点B ,C 重合),以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BC 与CF 的位置关系是 ,BC 、CF 、CD 三条线段之间的数量关系为 ;(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请猜想BC 与CF 的位置关系BC ,CD ,CF 三条线段之间的数量关系并证明;(3)如图3,当点D 在线段BC 的反向延长线上时,点A ,F 分别在直线BC 的两侧,其他条件不变.若正方形ADEF 的对角线AE ,DF 相交于点O ,OC =132,DB =5,则△ABC 的面积为 .(直接写出答案)23.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC 、CF 为邻边作平行四边形ECFG .(1)求证:四边形ECFG 是菱形;(2)连结BD 、CG ,若120ABC ∠=︒,则BDG ∆是等边三角形吗?为什么? (3)若90ABC ∠=︒,10AB =,24AD =,M 是EF 的中点,求DM 的长.24.已知如图1,四边形ABCD 是正方形,45EAF ︒∠= .()1如图1,若点,E F 分别在边BC CD 、上,延长线段CB 至G ,使得BG DF =,若3,2BE BG ==,求EF 的长;()2如图2,若点,E F 分别在边CB DC 、延长线上时,求证: .EF DF BE =-()3如图3,如果四边形ABCD 不是正方形,但满足,90,45,AB AD BAD BCD EAF ︒︒=∠=∠=∠=且7, 13,5BC DC CF ===,请你直接写出BE 的长.25.共顶点的正方形ABCD 与正方形AEFG 中,AB =13,AE 2.(1)如图1,求证:DG =BE ;(2)如图2,连结BF ,以BF 、BC 为一组邻边作平行四边形BCHF .①连结BH ,BG ,求BH BG的值; ②当四边形BCHF 为菱形时,直接写出BH 的长.26.如图,四边形ABCD 是边长为3的正方形,点E 在边AD 所在的直线上,连接CE ,以CE 为边,作正方形CEFG (点C 、E 、F 、G 按逆时针排列),连接BF.(1)如图1,当点E 与点D 重合时,BF 的长为 ;(2)如图2,当点E 在线段AD 上时,若AE=1,求BF 的长;(提示:过点F 作BC 的垂线,交BC 的延长线于点M ,交AD 的延长线于点N.)(3)当点E 在直线AD 上时,若AE=4,请直接写出BF 的长.27.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由;(2)求证:CP AE =;(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.28.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。

人教版平行四边形单元 易错题难题专项训练学能测试试卷

人教版平行四边形单元 易错题难题专项训练学能测试试卷

人教版平行四边形单元 易错题难题专项训练学能测试试卷一、选择题1.如图,矩形ABCD 中,AB=5,AD=4,M 是边CD 上一点,将△ADM 沿直线AM 对折,得△ANM ,连BN ,若DM=1,则△ABN 的面积是( )A .B .C .D .2.如图,已知△ABC 中,∠ACB =90°,AC =BC =2,将直角边AC 绕A 点逆时针旋转至AC ′,连接BC ′,E 为BC ′的中点,连接CE ,则CE 的最大值为( ).A .5B .21+C .21+D .51+ 3.如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点且AE CF =,下列说法中正确的是( )①BE DF =;②//BE DF ;③AB DE =;④四边形EBFD 为平行四边形;⑤ADE ABE S S ∆∆=;⑥AF CE =.A .①⑥B .①②④⑥C .①②③④D .①②④⑤⑥4.如图,在正方形ABCD 中,点E ,F 分别在BC 和CD 上,过点A 作GA AE ⊥,CD 的延长线交AG 于点G ,BE DF EF +=,若30DAF ∠=︒,则BAE ∠的度数为( )A .15°B .20°C .25°D .30°5.如图,矩形ABCD 中,5AD =,7AB =,点E 为DC 上一个动点,把ADE ∆沿AE 折叠,点D 的对应点为D ,若D 落在ABC ∠的平分线上时,DE 的长为( )A .53或2B .52或53C .52或35D .35或2 6.如图,在Rt ABC 中,90ACB ∠=︒,分别以AB ,AC ,BC 为边,在AB 的同侧作正方形ABHI ,ACFG ,BCED .若图中两块阴影部分的面积分别记为1S ,2S ,则对1S ,2S 的大小判断正确的是( )A .12S S >B .12S SC .12S S <D .无法确定7.矩形纸片ABCD 中,AB =5,AD =4,将纸片折叠,使点B 落在边CD 上的点B '处,折痕为AE .延长B E '交AB 的延长线于点M ,折痕AE 上有点P ,下列结论中:①M DAB '∠∠=;②PB PB '=;③AE =552;④MB CD '=;⑤若B P CD '⊥,则EB B P ''=.正确的有( )个A .2B .3C .4D .58.如图,点O (0,0),A (0,1)是正方形1OAA B 的两个顶点,以1OA 对角线为边作正方形121OA A B ,再以正方形的对角线2OA 作正方形121OA A B ,…,依此规律,则点8A 的坐标是( )A .(-8,0)B .(0,8)C .(0,82)D .(0,16)9.如图,矩形ABCD 的对角线AC 、BD 交于点O ,点P 在边AD 上从点A 到点D 运动,过点P 作PE ⊥AC 于点E ,作PF ⊥BD 于点F ,已知AB=3,AD=4,随着点P 的运动,关于PE+PF 的值,下面说法正确的是( )A .先增大,后减小B .先减小,后增大C .始终等于2.4D .始终等于310.如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC=EC ,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结HC .则以下四个结论中:①OH ∥BF ,②GH=14BC ,③BF=2OD ,④∠CHF=45°.正确结论的个数为( )A .4个B .3个C .2个D .1个二、填空题11.如图,正方形ABCD 的边长为4,点E 为CD 边上的一个动点,以CE 为边向外作正方形ECFG ,连结BG ,点H 为BG 中点,连结EH ,则EH 的最小值为______12.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDG FDG S S =,正确的有__________________.13.如图,在平行四边形ABCD 中,AD=2AB .F 是AD 的中点,作CE ⊥AB, 垂足E 在线段AB 上,连接EF 、CF ,则下列结论:(1)∠DCF+12∠D =90°;(2)∠AEF+∠ECF =90°;(3)BEC S =2CEF S ; (4)若∠B=80︒,则∠AEF=50°.其中一定成立的是______ (把所有正确结论的字号都填在横线上).14.如图,在平面直角坐标系中,直线112y x =+与x 轴、y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD ,则D 点坐标是_______;在y 轴上有一个动点M ,当MDC △的周长值最小时,则这个最小值是_______.15.如图,▱ABCD 中,∠DAB =30°,AB =6,BC =2,P 为边CD 上的一动点,则2PB+ PD 的最小值等于______.16.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.17.如图,已知在△ABC 中,AB=AC=13,BC=10,点M 是AC 边上任意一点,连接MB ,以MB 、MC 为邻边作平行四边形MCNB ,连接MN ,则MN 的最小值是______18.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.19.如图所示,在四边形ABCD 中,顺次连接四边中点E 、F 、G 、H ,构成一个新的四边形,请你对四边形ABCD 添加一个条件,使四边形EFGH 成一个菱形,这个条件是__________.20.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.三、解答题21.如图1所示,把一个含45°角的直角三角板ECF 和一个正方形ABCD 摆放在一起,使三角板的直角顶点和正方形的顶点C 重合,点E ,F 分别在正方形的边CB ,CD 上,连接AE 、AF .(1)求证:AE =AF ;(2)取AF 的中点M ,EF 的中点N ,连接MD ,MN .则MD ,MN 的数量关系是 ,MD 、MN 的位置关系是(3)将图2中的直角三角板ECF ,绕点C 旋转180°,如图3所示,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.22.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC 、CF 为邻边作平行四边形ECFG .(1)求证:四边形ECFG 是菱形;(2)连结BD 、CG ,若120ABC ∠=︒,则BDG ∆是等边三角形吗?为什么? (3)若90ABC ∠=︒,10AB =,24AD =,M 是EF 的中点,求DM 的长.23.已知:在ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BD 与CF 的位置关系为__________;CF 、BC 、CD 三条线段之间的数量关系____________________.(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,请你写出CF 、BC 、CD 三条线段之间的数量关系并加以证明;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系.②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.24.已知在ABC 和ADE 中, 180ACB AED ∠+∠=︒,CA CB =,EA ED =,3AB =.(1)如图1,若90ACB ∠=︒,B 、A 、D 三点共线,连接CE : ①若522CE =,求BD 长度; ②如图2,若点F 是BD 中点,连接CF ,EF ,求证:2CE EF =; (2)如图3,若点D 在线段BC 上,且2CAB EAD ∠=∠,试直接写出AED 面积的最小值.25.如图①,已知正方形ABCD 中,E ,F 分别是边AD ,CD 上的点(点E ,F 不与端点重合),且AE=DF ,BE ,AF 交于点P ,过点C 作CH ⊥BE 交BE 于点H .(1)求证:AF ∥CH ;(2)若AB=23 ,AE=2,试求线段PH 的长;(3)如图②,连结CP 并延长交AD 于点Q ,若点H 是BP 的中点,试求 CP PQ的值. 26.类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”.(1)已知:如图1,在“准等边四边形”ABCD 中,BC ≠AB ,BD ⊥CD ,AB =3,BD =4,求BC 的长;(2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;(3)如图2,在△ABC 中,AB =AC=2,∠BAC =90°.在AB 的垂直平分线上是否存在点P ,使得以A ,B ,C ,P 为顶点的四边形为“准等边四边形”. 若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.27.如图,在正方形ABCD 中,点E 、F 是正方形内两点,BE DF ∥,EF BE ,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接BD ,且BE DF =①求证:EF 与BD 互相平分;②求证:222()2BE DF EF AB ++=;(2)在图2中,当BE DF ≠,其它条件不变时,222()2BE DF EF AB ++=是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当4AB =,135DPB ∠=︒,2246B BP PD +=时,求PD 之长.28.阅读下列材料,并解决问题:如图1,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点D 为AC 边上的动点(不与A 、C 重合),以AD ,BD 为边构造ADBE ,求对角线DE 的最小值及此时AD AC的值是多少.在解决这个问题时,小红画出了一个以AD ,BD 为边的ADBE (如图2),设平行四边形对角线的交点为O ,则有AO BO =.于是得出当OD AC ⊥时,OD 最短,此时DE 取最小值,得出DE 的最小值为6.参考小红的做法,解决以下问题:(1)继续完成阅读材料中的问题:当DE 的长度最小时,AD AC =_______; (2)如图3,延长DA 到点F ,使AF DA =.以DF ,DB 为边作FDBE ,求对角线DE 的最小值及此时AD AC的值.29.在边长为5的正方形ABCD 中,点E 在边CD 所在直线上,连接BE ,以BE 为边,在BE 的下方作正方形BEFG ,并连接AG .(1)如图1,当点E 与点D 重合时,AG = ;(2)如图2,当点E 在线段CD 上时,DE =2,求AG 的长;(3)若AG 517DE 的长.30.如图,在矩形ABCD 中,AB a ,BC b =,点F 在DC 的延长线上,点E 在AD 上,且有12CBE ABF ∠=∠.(1)如图1,当a b =时,若60CBE ∠=︒,求证:BE BF =;(2)如图2,当32b a =时, ①请直接写出ABE ∠与BFC ∠的数量关系:_________; ②当点E 是AD 中点时,求证:2CF BF a +=;③在②的条件下,请直接写出:BCF ABCD S S ∆矩形的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】延长MN 交AB 延长线于点Q ,由矩形的性质得出∠DMA=∠MAQ ,由折叠性质得出∠DMA=∠AMQ ,AN=AD=4,MN=MD=1,得出∠MAQ=∠AMQ ,证出MQ=AQ ,设NQ=x ,则AQ=MQ=1+x ,证出∠ANQ=90°,在Rt △ANQ 中,由勾股定理得出方程,解方程求出NQ=7.5,AQ=8.5,即可求出△ABN 的面积.【详解】解:延长MN交AB延长线于点Q,∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=4,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=42+x2,解得:x=7.5,∴NQ=7.5,AQ=8.5,∵AB=5,AQ=8.5,∴S△NAB=S△NAQ=×AN•NQ=××4×7.5=;故选:D.【点睛】本题考查折叠的性质勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质是解题的关键.2.B解析:B【分析】取AB的中点M,连接CM,EM,当CE=CM+EM时,CE的值最大,根据旋转的性质得到AC′=AC=2,由三角形的中位线的性质得到EM12AC′=1,根据勾股定理得到AB=2,即可得到结论.【详解】取AB的中点M,连接CM,EM,∴当CE=CM+EM时,CE的值最大.∵将直角边AC绕A点逆时针旋转至AC′,∴AC′=AC=2.∵E 为BC ′的中点,∴EM 12=AC′=1. ∵∠ACB =90°,AC =BC =2,∴AB =22,∴CM 12=AB 2=,∴CE =CM +EM 21=+. 故选B .【点睛】本题考查了旋转的性质,直角三角形的性质,三角形的中位线的性质,正确的作出辅助线是解题的关键.3.D解析:D【分析】先根据全等三角形进行证明,即可判断①和②,然后作辅助线,推出OD=OF ,得出四边形BEDF 是平行四边形,求出BM=DM 即可判断④和⑤,最后根据AE=CF ,即可判断⑥.【详解】①∵四边形ABCD 是平行四边形,∴AB ∥DC,AB=DC,∴∠BAC=∠ADC,在△ABE 和△DFC 中BAC ADC AB A F C E D C ∠=∠=⎧=⎪⎨⎪⎩∴△ABE≌△DFC(SAS ),∴BE=DF,故①正确.②∵△ABE≌△DFC,∴∠AEB=∠DFC,∴∠BEF=∠DFE,∴BE∥DF,故②正确.③根据已知的条件不能推AB=DE ,故③错误.④连接BD 交AC 于O ,过D 作DM⊥AC 于M ,过B 作BN⊥AC 于N,∵四边形ABCD 是平行四边形,∴DO=BO,OA=OC,∵AE=CF,∴OE=OF,∴四边形BEDF 是平行四边形,故④正确.⑤∵BN⊥AC,DM⊥AC,∴∠BNO=∠DMO=90°,在△BNO 和△DMO 中∠BNO=∠DMO ∠BON=∠DOM OB=OD ⎧⎪⎨⎪⎩△ADE △ABE ∴△BNO ≌△DMO (AAS )∴BN=DM11∵S =AE DM ,S =AE BN 22⨯⨯⨯⨯∴△ADE △ABE S =S ,故⑤正确.⑥∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,故⑥正确.故答案是D.【点睛】本题主要考查了全等三角形的判定和平行四边形的判定以及性质,熟练掌握相关的性质是解题的关键.4.A解析:A【分析】根据已知条件先证明△ABE ≌△ADG ,得到AE=AG ,再证明△AEF ≌△AGF ,得到EAF GAF ∠=∠,根据30DAF ∠=︒,设BAE ∠=x,利用GA AE ⊥得到方程求出x 即可求解.【详解】在正方形ABCD 中,AB=AD,90ABE ADG BAD ∠=∠=∠=︒∵GA AE ⊥∴90EAD DAG ∠+∠=︒又90EAD BAE ∠+∠=︒∴DAG BAE ∠∠=∴△ABE ≌△ADG (ASA )∴AE=AG ,BE=DG,∵BE DF EF +=∴BE DF DG DF EF +=+=∴EF=GF∴△AEF ≌△AGF (SSS )∴EAF GAF ∠=∠∵30DAF ∠=︒,设BAE ∠=x,∴EAF GAF ∠=∠=x+30°∵GA AE ⊥∴90EAF GAF ∠+∠=︒故x+30°+ x+30°=90°解得x=15°故选A .【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知正方形的性质及全等三角形的判定定理.5.B解析:B【分析】连接BD′,过D′作MN ⊥AB ,交AB 于点M ,CD 于点N ,作D′P ⊥BC 交BC 于点P ,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE .【详解】如图,连接BD ′,过D ′作MN ⊥AB ,交AB 于点M ,CD 于点N ,作D ′P ⊥BC 交BC 于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB−BM=7−x,又折叠图形可得AD=AD′=5,∴x2+(7−x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7−3=4,D′N=5−3=2,EN=4−a,∴a2=22+(4−a)2,解得a=52,即DE=52,②当MD′=4时,AM=7−4=3,D′N=5−4=1,EN=3−a,∴a2=12+(3−a)2,解得a=53,即DE=53.故选B.【点睛】本题考查翻折变换(折叠问题), 矩形的性质,角平分线的性质,勾股定理与折叠问题.解决本题的关键是依据题意分别表示Rt△AMD′ 和Rt△END′的三边,利用勾股定理解直角三角形.6.B解析:B【分析】连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,根据已知条件易证△BHK≌△ABC,继而由全等三角形的性质得S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,再由全等三角形的判定可得△BCJ≌△HKL,进而可得S1=S△BHK=S△ABC,由正方形的性质和全等三角形的判定可知△ABC≌△AIG,继而可得S△ABC=S△AIG=S2,等量代换即可求解.【详解】解:连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,由题意可知:四边形BCED是正方形,四边形ACFG是正方形,四边形ABHI是正方形,∠ACB=90°∴∠CEH=∠ECK=90° ,CE=BC∵∠BKH=90°,∴四边形CEHK是矩形,∴ CE=HK又∠HBK+∠ABC=90°, ∠BAC+∠ABC=90°∴∠HBK=∠BAC∴△BHK≌△ABC(AAS)∴S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,∵∠ABC+∠CBJ=90°,∠BHK+∠KHL=90°∴∠CBJ=∠KHL∴△BCJ≌△HKL(ASA)∴S△BCJ=S△HKL,∴S1=S△BHK=S△ABC,∵四边形ACFG是正方形,四边形ABHI是正方形,∴AB=AI,AC=AG,∠G=∠ACB=90°∴△ABC≌△AIG(SAS)∴S△ABC=S△AIG=S2,即S1=S2故选:B【点睛】本题主要考查正方形的性质,全等三角形的判定及其性质,解题的关键是熟练掌握正方形的性质及全等三角形的判定方法.7.C解析:C【分析】①由翻折知∠ABE=∠AB'E=90º,再证∠M=∠CB'E=∠B'AD即可;②借助轴对称可知;③利用计算,勾股定理求B′D,构造方程,求EB,在构造勾股定理求MB′=52;④由相似CB':BM=CE:BE,BM=103,在计算B'M>5;⑤证△BEG≌△B′PG得BE=B′P,再证菱形即可.【详解】①由折叠性质知∠ABE=∠AB'E=90º,∴∠CB'E+∠AB'D=90º∵∠D=90º∴∠B'AD+∠AB'D=90º∴∠CB'E=∠B'AD,∵CD∥MB,∴∠M=∠CB'E=∠B'AD;②点P在对称轴上,则B'P=BP;③由翻折,AB=AB'=5,AD=4,由勾股定理DB'=3,∴CB'=5-3=2,设BE=x=B'E,CE=4-x,在Rt△B′CE中,∠C=90º,由勾股定理(4-x)2+22=x2,解得x=52,∴CE=4-52=32,在Rt△ABE中,∠ABE=90º,AE=22555+5=2⎛⎫⎪⎝⎭;④由BM∥CB′∴△ECB′∽△EBM,∴CB':BM=CE:BE,∴2:BM=32:52,∴BM=103, 则B'M=221020+4=33⎛⎫ ⎪⎝⎭>5=CD ; ⑤连接BB′,由对称性可知,BG=B′G ,EP ⊥BB′,BE ∥B′P ,∴△BEG ≌△B′PG ,∴BE=B′P ,∴四边形BPB′E 为平行四边形,又BE=EB′,所以四边形BPB′E 是菱形,所以PB′=B'E .故选择:C .【点睛】此题考查了矩形的性质、图形的翻折变换以及相似三角形的性质等知识的应用,此题的关键是能够发现△BEG ≌△B′PG .8.D 解析:D【分析】根据题意和图形可看出每经过一次变化,都顺时针旋转45°2,可求出从A 到A 3变化后的坐标,再求出A 1、A 2、A 3、A 4、A 5,继而得出A 8坐标即可.【详解】解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°2 ∵从A 到3A 经过了3次变化,∵45°×3=135°,1×32=2,∴点3A 所在的正方形的边长为2,点3A 位置在第四象限,∴点3A 的坐标是(2,-2),可得出:1A 点坐标为(1,1),2A 点坐标为(0,2),3A 点坐标为(2,-2),4A 点坐标为(0,-4),5A 点坐标为(-4,-4),6A (-8,0),A 7(-8,8),8A (0,16),故选D.【点睛】本题考查了规律题,点的坐标,观察出每一次的变化特征是解答本题的关键.9.C解析:C【分析】在矩形ABCD 中,由矩形边长,可得矩形面积是12,进而得134AOD ABCD S S ==矩形,由矩形对角线相等且互相平分得AO OC =,OB OD =,AC BD =,利用勾股定理可解得5AC =,则52OA OD ==,111()3222AOD AOP DOP S S S OA PE OD PF OA PE PF =+=+=+==,即可求出PE+PF 的值.【详解】解:连接PO ,如下图:∵在矩形ABCD 中,AB=3,AD=4,∴12ABCD S AB BC ==矩形,AO OC =,OB OD =,AC BD =,225AC AB +BC ,∴1112344AOD ABCD S S ==⨯=矩形, 52OA OD ==, 11115()()322222AOD AOP DOP S S S OA PE OD PF OA PE PF PE PF =+=+=+=⨯+=,∴12 2.45PE PF +==; 故选C .【点睛】本题主要考查了矩形的性质,利用等积法间接求三角形的高线长及用勾股定理求直角三角形的斜边;利用面积法求解,是本题的解题突破点.10.B解析:B【分析】①只要证明OH是△DBF的中位线即可得出结论;②根据OH是△BFD的中位线,得出GH=12CF,由GH<14BC,可得出结论;③易证得△ODH是等腰三角形,继而证得OD=12 BF;④根据四边形ABCD是正方形,BE是∠DBC的平分线可求出Rt△BCE≌Rt△DCF,再由∠EBC=22.5°即可求出结论.【详解】解:∵EC=CF,∠BCE=∠DCF,BC=DC,∴△BCE≌△DCF,∴∠CBE=∠CDF,∵∠CBE+∠BEC=90°,∠BEC=∠DEH,∴∠DEH+∠CDF=90°,∴∠BHD=∠BHF=90°,∵BH=BH,∠HBD=∠HBF,∴△BHD≌△BHF,∴DH=HF,∵OD=OB∴OH是△DBF的中位线∴OH∥BF;故①正确;∴OH=12BF,∠DOH=∠CBD=45°,∵OH是△BFD的中位线,∴DG=CG=12BC,GH=12CF,∵CE=CF,∴GH=12CF=12CE∵CE<CG=12 BC,∴GH<14BC,故②错误.∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF(SAS),∴∠EBC=∠CDF=22.5°,∴∠BFH=90°-∠CDF=90°-22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°-∠DCH=90°-22.5°=67.5°,∴∠CHF=180°-∠HCF-∠BFH=180°-67.5°-67.5°=45°,故④正确;∴∠ODH=∠BDC+∠CDF=67.5°,∴∠OHD=180°-∠ODH-∠DOH=67.5°,∴∠ODH=∠OHD,∴OD=OH=12BF;故③正确.故选:B.【点睛】此题考查了全等三角形的判定和性质、等腰三角形的判定与性质以及正方形的性质.解答此题的关键是作出辅助线,构造等腰直角三角形,利用等腰直角三角形的性质结合角平分线的性质逐步解答.二、填空题112【分析】过B点作HE的平行线交AC于O点,延长EG交AB于I点,得到BO=2HE,其中O点在线段AC上运动,再由点到直线的距离垂线段最短求出BO的长即可求解.【详解】解:过B点作HE的平行线交AC于O点,延长EG交AB于I点,如下图所示:∵H是BG的中点,且BO与HE平行,∴HE为△BOG的中位线,且BO=2HE,故要使得HE最短,只需要BO最短即可,当E点位于C点时,则O点与C点重合,当E点位于D点时,则O点与A点重合,故E点在CD上运动时,O点在AC上运动,由点到直线的距离垂线段最短可知,当BO⊥AC时,此时BO最短,∵四边形ABCD是正方形,∴△BOC为等腰直角三角形,且BC=4,、∴2222BO,∴122HE BO,2【点睛】本题考查了正方形的性质,等腰直角三角形的性质,点到直线的距离垂线段最短等知识点,本题的关键是要学会将要求的HE线段长转移到线段BO上.12.①③④【分析】由矩形的性质可得AB=CD,AD=BC,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD,由角平分线的性质和余角的性质可得∠F=∠FAD=45°,可得AD=DF=BC,可判断①;通过证明△DCG≌△BEG,可得∠BGE=∠DGC,BG=DG,即可判断②③;过点G作GH⊥CD于H,设AD=4x=DF,AB=3x,由勾股定理可求BD=5x,由等腰直角三角形的性质可得HG=CH=FH=12x,52,由三角形面积公式可求解,可判断④.【详解】解:∵四边形ABCD是矩形,∴AB=CD ,AD=BC ,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD ,∵AE 平分∠BAD ,∴∠BAE=∠DAE=45°,∴∠F=∠FAD ,∴AD=DF ,∴BC=DF ,故①正确;∵∠EAB=∠BEA=45°,∴AB=BE=CD ,∵∠CEF=∠AEB=45°,∠ECF=90°,∴△CEF 是等腰直角三角形,∵点G 为EF 的中点,∴CG=EG ,∠FCG=45°,CG ⊥AG ,∴∠BEG=∠DCG=135°,在△DCG 和△BEG 中,===BE CD BEG DCG CG EG ⎧⎪∠∠⎨⎪⎩,∴△DCG ≌△BEG (SAS ).∴∠BGE=∠DGC ,BG=DG ,∵∠BGE <∠AEB ,∴∠DGC=∠BGE <45°,∵∠CGF=90°,∴∠DGF <135°,故②错误;∵∠BGE=∠DGC ,∴∠BGE+∠DGA=∠DGC+∠DGA ,∴∠CGA=∠DGB=90°,∴BG ⊥DG ,故③正确;过点G 作GH ⊥CD 于H ,∵34AB AD =, ∴设AD=4x=DF ,AB=3x ,∴CF=CE=x,BD=22=5AB AD x+,∵△CFG,△GBD是等腰直角三角形,∴HG=CH=FH=12x,DG=GB=522x,∴S△DGF=12×DF×HG=x2,S△BDG=12DG×GB=254x2,∴254BDG FDGS S=,故④正确;故答案为:①③④.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等和等腰直角三角形是解决问题的关键.13.(1) (2) (4)【分析】由平行四边形的性质和等腰三角形的性质得出(1)正确;由ASA证明△AEF≌△DMF,得出EF=MF,∠AEF=∠M,由直角三角形斜边上的中线性质得出CF=12EM=EF,由等腰三角形的性质得出∠FEC=∠ECF,得出(2)正确;证出S△EFC=S△CFM,由MC>BE,得出S△BEC<2S△EFC,得出(3)错误;由平行线的性质和互余两角的关系得出(4)正确;即可得出结论.【详解】(1)∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD=AB,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∠BCD+∠D=180°,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,∴∠DCF+12∠D=90°,故(1)正确;(2)延长EF,交CD延长线于M,如图所示:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DMF 中,A FDM AF DF AFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△DMF(ASA),∴EF=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴CF=12EM=EF , ∴∠FEC=∠ECF , ∴∠AEF+∠ECF=∠AEF+∠FEC=∠AEC=90°,故(2)正确;(3)∵EF=FM ,∴S △EFC =S △CFM ,∵MC >BE ,∴S △BEC <2S △EFC ,故(3)错误;(4)∵∠B=80°,∴∠BCE=90°-80°=10°,∵AB ∥CD ,∴∠BCD=180°-80°=100°,∴∠BCF=12∠BCD=50°, ∴∠FEC=∠ECF=50°-10°=40°,∴∠AEF=90°-40°=50°,故(4)正确.故答案为:(1)(2)(4).【点睛】本题主要考查了平行四边形的性质、等腰三角形的性质和判定、全等三角形的判定与性质、直角三角形斜边上的中线性质等知识;本题综合性强,有一定难度,证明△AEF ≌△DMF 是解题关键.14.(3,2)-【分析】如图(见解析),先根据一次函数的解析式可得点A 、B 的坐标,从而可得OA 、OB 、AB的长,再根据正方形的性质可得90BAD ∠=︒,DA AB =,然后根据三角形全等的判定定理与性质可得,AE OB DE OA ==,由此即可得出点D 的坐标;同样的方法可求出点C 的坐标,再根据轴对称的性质可得点C '的坐标,然后根据轴对称的性质和两点之间线段最短得出MDC △的周长值最小时,点M 的位置,最后利用两点之间的距离公式、三角形的周长公式即可得.【详解】如图,过点D 作DE x ⊥轴于点E ,作点C 关于y 轴的对称点C ',交y 轴于点F ,连接C D ',交y 轴于点M ',连接C M ',则CF y ⊥轴 对于112y x =+ 当0y =时,1102x +=,解得2x =-,则点A 的坐标为(2,0)A - 当0x =时,1y =,则点B 的坐标为(0,1)B2,1,OA OB AB ∴====四边形ABCD 是正方形90BAD ∴∠=︒,CD DA AB ===90DAE OAB ABO OAB ∴∠+∠=∠+∠=︒DAE ABO ∴∠=∠在ADE 和BAO 中,90AED BOA DAE ABO DA AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ADE BAO AAS ∴≅1,2AE OB DE OA ∴====213OE OA AE ∴=+=+=则点D 的坐标为(3,2)D -同理可证:CBF BAO ≅1,2CF OB BF OA ∴====123OF OB BF ∴=+=+=则点C 的坐标为(1,3)C -由轴对称的性质得:点C '的坐标为(1,3)C ',且CM C M '=MDC ∴△的周长为CD DM CM DM C M '++=+由两点之间线段最短得:当点M 与点M '重合时,DM C M '+取得最小值DC ' (3,2),(1,3)D C '-DC '∴==则MDC △DC '=故答案为:(3,2)-,517+.【点睛】本题是一道较难的综合题,考查了正方形的性质、三角形全等的判定定理与性质、轴对称的性质等知识点,正确找出MDC △的周长最小时,点M 的位置是解题关键. 15.6【分析】过点P 作PE ⊥AD 交AD 的延长线于点E ,根据四边形ABCD 是平行四边形,得到 AB ∥CD ,推出PE=12PD ,由此得到当PB+PE 最小时2PB+ PD 有最小值,此时P 、B 、E 三点在同一条直线上,利用∠DAB =30°,∠AEP=90°,AB=6求出PB+PE 的最小值=12AB=3,得到2PB+ PD 的最小值等于6.【详解】过点P 作PE ⊥AD 交AD 的延长线于点E ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠EDC=∠DAB =30°,∴PE=12PD , ∵2PB+ PD=2(PB+12PD )=2(PB+PE), ∴当PB+PE 最小时2PB+ PD 有最小值,此时P 、B 、E 三点在同一条直线上,∵∠DAB =30°,∠AEP=90°,AB=6,∴PB+PE 的最小值=12AB=3, ∴2PB+ PD 的最小值等于6,故答案为:6.【点睛】此题考查平行四边形的性质,直角三角形含30°角的问题,动点问题,将线段2PB+PD转化为三点共线的形式是解题的关键.16.16或10【分析】等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C时,作辅助线,构建平行四边形AGHD和直角三角形EGB',计算EG和B'G的长,根据勾股定理可得B'D的长;【详解】∵四边形ABCD是矩形,∴DC=AB=16,AD=BC=18.分两种情况讨论:(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.∵四边形ABCD是矩形,∴AB∥CD,∠A=90°又GH∥AD,∴四边形AGHD是平行四边形,又∠A=90°,∴四边形AGHD是矩形,∴AG=DH,∠GHD=90°,即B'H⊥CD,又B'D=B'C,∴DH=HC=183CD=,AG=DH=8,∵AE=3,∴BE=EB'=AB-AE=16-3=13,EG=AG-AE=8-3=5,在Rt△EGB'中,由勾股定理得:GB′=2213512,∴B'H=GH×GB'=18-12=6,在Rt△B'HD中,由勾股定理得:B′D=226810+=综上,DB'的长为16或10.故答案为: 16或10【点睛】本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论.17.120 13【分析】设MN与BC交于点O,连接AO,过点O作OH⊥AC于H点,根据等腰三角形的性质和勾股定理可求AO和OH长,若MN最小,则MO最小即可,而O点到AC的最短距离为OH 长,所以MN最小值是2OH.【详解】解:设MN与BC交于点O,连接AO,过点O作OH⊥AC于H点,∵四边形MCNB是平行四边形,∴O为BC中点,MN=2MO.∵AB=AC=13,BC=10,∴AO⊥BC.在Rt△AOC中,利用勾股定理可得AO2222135AC CO-=-12.利用面积法:AO×CO=AC×OH,即12×5=13×OH,解得OH=60 13.当MO最小时,则MN就最小,O点到AC的最短距离为OH长,所以当M点与H点重合时,MO最小值为OH长是60 13.所以此时MN最小值为2OH=120 13.故答案为:120 13.【点睛】本题主要考查了平行四边形的性质、垂线段最短、勾股定理、等腰三角形的性质,解题的关键是分析出点到某线段的垂线段最短,由此进行转化线段,动中找静.18.2【分析】分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN=12CD=2,∴点G移动路径的长是2,故答案为:2.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.19.答案不唯一,例AC=BD 等【分析】连接AC、BD,先证明四边形ABCD是平行四边形,再根据菱形的特点添加条件即可.【详解】连接AC,∵点E、F分别是AB、BC的中点,∴EF是△ABC的中位线,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,连接BD,同理EH=FG,EF∥FG,当AC=BD时,四边形EFGH是平行四边形,故答案为:答案不唯一,例AC=BD 等.【点睛】此题考查三角形中位线性质,平行四边形的判定及性质,菱形的判定.20.102【分析】根据平行四边形的性质、角平分线的性质证明AD=DE=3,再根据BAD BEC∠=∠证明BC=BE,由此根据三角形的三线合一及勾股定理求出BF,即可求出平行四边形的面积.【详解】过点B作BF CD⊥于点F,如图所示.∵AE是BAD∠的平分线,∴DAE BAE∠=∠.∵四边形ABCD 是平行四边形,∴53CD AB BC AD BAD BCE AB CD ====∠=∠,,,∥, ∴BAE DEA ∠=∠,∴DAE DEA ∠=∠,∴3DE AD ==,∴2CE CD DE =-=.∵BAD BEC ∠=∠,∴BCE BEC ∠=∠,∴BC=BE, ∴112CF EF CE ===, ∴22223122BF BC CF =-=-=.∴平行四边形ABCD 的面积为225102BF CD ⋅=⨯=.故答案为:102.【点睛】此题考查平行四边形的性质:对边平行且相等,对角相等,等腰三角形的等角对等边的性质、三线合一的性质,勾股定理.三、解答题21.(1)见解析;(2)相等,垂直;(3)成立,理由见解析【分析】(1)由等腰直角△ECF 得到CE=CF ,再由正方形ABCD 进一步得到BE=DF ,最后证明△ABE ≌△ADF 即可求解;(2)MN 是△AEF 的中位线,得到AE=2MN ,又M 是直角三角形ADF 斜边上的中点,得到AF=2MD ,再由(1)中的AE=AF 即可得到MN=MD ;由∠DMF =∠DAF+∠ADM ,∠FMN =∠FAE ,∠DAF =∠BAE ,∠ADM =∠DAF =∠BAE ,由此得到∠DMN =∠BAD =90°;(3)连接AE ,同(1)中方法证明△ABE ≌△ADF ,进而得到AE=AF ,此时MN 是△AEF 中位线,MD 是直角△ADF 斜边上的中线,证明方法等同(2)中即可求解.【详解】解:(1)证明:如图1中,∵四边形ABCD 是正方形∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF.(2)如图2中,MD,MN的数量关系是相等,MD、MN的位置关系是垂直,理由如下:∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN是△AEF的中位线,∴AE=2MN,由(1)知:AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠BAD=90°,∴DM⊥MN,故答案为:相等,垂直;(3)如图3中,(2)中的两个结论还成立,理由如下:连接AE,交MD于点G,如下图所示,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=1AE,2由(1)同理可证,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=1AF,2∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.故答案为:仍成立.【点睛】本题考查了正方形的性质、三角形的中位线、直角三角形斜边上的中线等于斜边的一半,三角形全等几何知识,熟练掌握各图形的性质是解决本题的关键.22.(1)详见解析;(2)是,详见解析;(3)【分析】(1)平行四边形的性质可得AD∥BC,AB∥CD,再根据平行线的性质证明∠CEF=∠CFE,根据等角对等边可得CE=CF,再有条件四边形ECFG是平行四边形,可得四边形ECFG为菱形,即可解决问题;(2)先判断出∠BEG=120°=∠DCG,再判断出AB=BE,进而得出BE=CD,即可判断出△BEG≌△DCG(SAS),再判断出∠CGE=60°,进而得出△BDG是等边三角形,即可得出结论;(3)首先证明四边形ECFG为正方形,再证明△BME≌△DMC可得DM=BM,∠DMC=∠BME,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到△BDM是等腰直角三角形,由等腰直角三角形的性质即可得到结论.【详解】(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,。

人教版平行四边形单元 易错题难题综合模拟测评学能测试试题

人教版平行四边形单元 易错题难题综合模拟测评学能测试试题

人教版平行四边形单元 易错题难题综合模拟测评学能测试试题一、选择题1.在边长为2的正方形ABCD 中,P 为AB 上的一动点,E 为AD 中点,PE 交CD 延长线于Q ,过E 作EF PQ ⊥交BC 的延长线于F ,则下列结论:①APE DQE ∆≅∆;②PQ EF =;③当P 为AB 中点时,2CF =;④若H 为QC 的中点,当P 从A 移动到B 时,线段EH 扫过的面积为12,其中正确的是( )A .①②B .①②④C .②③④D .①②③2.如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形连接AC 交EF 于G ,下列结论: ①BE =DF ,②∠DAF =15°,③AC ⊥EF ,④BE+DF =EF ,⑤EC =FG ;其中正确结论有( )个A .2B .3C .4D .53.如图,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心1O ,再从中心1O 走到正方形1O GFH 的中点2O ,又从中心2O 走到正方形2O IHJ 的中心3O ,再从中心3O 走到正方形3O KJP 的中心4O ,一共走了312m ,则长方形花坛ABCD 的周长是( )A .36mB .48mC .96mD .60m4.如图,在Rt ABC 中,90ACB ∠=︒,若CD ,CM 分别是斜边AB 上的高和中线,则下列结论中错误的是( )A .MCB MCA ∠=∠B .MCB ACD ∠=∠C .B ACD ∠=∠ D .MCA BCD ∠=∠5.如图,在平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E 且AB =AE ,延长AB 与DE 的延长线相交于点F ,连接AC 、CF .下列结论:①△ABC ≌△EAD ;②△ABE 是等边三角形;③BF =AD ;④S △BEF =S △ABC ;⑤S △CEF =S △ABE ;其中正确的有( )A .2个B .3个C .4个D .5个6.如图,一张长方形纸片的长4=AD ,宽1AB =,点E 在边AD 上,点F 在边BC 上,将四边形ABFE 沿着EF 折叠后,点B 落在边AD 的中点G 处,则EG 等于( )A .3B .23C .178D .54 7.如图,菱形ABCD 中,过顶点C 作CE BC ⊥交对角线BD 于E 点,已知134A ∠=︒,则BEC ∠的大小为( )A .23︒B .28︒C .62︒D .67︒8.如图,点O (0,0),A (0,1)是正方形1OAA B 的两个顶点,以1OA 对角线为边作正方形121OA A B ,再以正方形的对角线2OA 作正方形121OA A B ,…,依此规律,则点8A 的坐标是( )A .(-8,0)B .(0,8)C .(0,82)D .(0,16)9.如图,ABCD 中,点E 是AD 上一点,BE ⊥AB ,△ABE 沿BE 对折得到△BEG ,过点D 作DF ∥EG 交BC 于点F ,△DFC 沿DF 对折,点C 恰好与点G 重合,则AB AD的值为( )A .12B .3C .22D .3 10.如图,矩形ABCD 中,,AC BD 相交于点O ,过点B 作BF AC ⊥交CD 于点F ,交AC 于点M ,过点D 作//DE BF 交AB 于点E ,交AC 于点N ,连接,FN EM .则下列结论:①DN BM =;②//EM FN ;③AE FC =;④当AO AD =时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题11.如图,某景区湖中有一段“九曲桥”连接湖岸A ,B 两点,“九曲桥”的每一段与AC 平行或BD 平行,若AB =100m ,∠A =∠B =60°,则此“九曲桥”的总长度为_____.12.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62,那么BC=______.13.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDG FDG S S =,正确的有__________________.14.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.15.如图,在平面直角坐标系中,直线112y x =+与x 轴、y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD ,则D 点坐标是_______;在y 轴上有一个动点M ,当MDC △的周长值最小时,则这个最小值是_______.16.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.17.如图,长方形ABCD 中,26AD =,12AB =,点Q 是BC 的中点,点P 在AD 边上运动,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为______,18.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.19.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.20.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.三、解答题21.如图,矩形OBCD 中,OB =5,OD =3,以O 为原点建立平面直角坐标系,点B ,点D 分别在x 轴,y 轴上,点C 在第一象限内,若平面内有一动点P ,且满足S △POB =13S 矩形OBCD ,问:(1)当点P 在矩形的对角线OC 上,求点P 的坐标;(2)当点P 到O ,B 两点的距离之和PO +PB 取最小值时,求点P 的坐标.22.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接,PG PC .(1)求证:,PG PC PG PC ⊥=.简析:由Р是线段DF 的中点,//DC CF ,不妨延长GP 交DC 于点M ,从而构造出一对全等的三角形,即_______≅________.由全等三角形的性质,易证CMG 是_______三角形,进而得出结论;(2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PG PC的值,写出你的猜想并加以证明;(3)当6,2AB BE ==时,菱形ABCD 和菱形BEFG 的顶点都按逆时针排列,且60ABC BEF ∠=∠=︒.若点A B E 、、在一条直线上,如图2,则CP =________;若点A B G 、、在一条直线上,如图3,则CP =________.23.已知:在ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BD 与CF 的位置关系为__________;CF 、BC 、CD 三条线段之间的数量关系____________________.(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,请你写出CF 、BC 、CD 三条线段之间的数量关系并加以证明;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系.②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.24.如图平行四边形ABCD ,E ,F 分别是AD ,BC 上的点,且AE =CF ,EF 与AC 交于点O . (1)如图①.求证:OE =OF ;(2)如图②,将平行四边形ABCD (纸片沿直线EF 折叠,点A 落在A 1处,点B 落在点B 1处,设FB 交CD 于点G .A 1B 分别交CD ,DE 于点H ,P .请在折叠后的图形中找一条线段,使它与EP 相等,并加以证明;(3)如图③,若△ABO 是等边三角形,AB =4,点F 在BC 边上,且BF =4.则CF OF= (直接填结果).25.已知如图1,四边形ABCD 是正方形,45EAF ︒∠= .()1如图1,若点,E F 分别在边BC CD 、上,延长线段CB 至G ,使得BG DF =,若3,2BE BG ==,求EF 的长;()2如图2,若点,E F 分别在边CB DC 、延长线上时,求证: .EF DF BE =-()3如图3,如果四边形ABCD 不是正方形,但满足,90,45,AB AD BAD BCD EAF ︒︒=∠=∠=∠=且7, 13,5BC DC CF ===,请你直接写出BE 的长.26.如图①,已知正方形ABCD 的边长为3,点Q 是AD 边上的一个动点,点A 关于直线BQ 的对称点是点P ,连接QP 、DP 、CP 、BP ,设AQ =x .(1)BP +DP 的最小值是_______,此时x 的值是_______;(2)如图②,若QP 的延长线交CD 边于点M ,并且∠CPD =90°.①求证:点M 是CD 的中点;②求x 的值.(3)若点Q 是射线AD 上的一个动点,请直接写出当△CDP 为等腰三角形时x 的值.27.如图,ABC ADC ∆≅∆,90,ABC ADC AB BC ︒∠=∠==,点F 在边AB 上,点E 在边AD 的延长线上,且,DE BF BG CF =⊥,垂足为H ,BH 的延长线交AC 于点G .(1)若10AB =,求四边形AECF 的面积;(2)若CG CB =,求证:2BG FH CE +=.28.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 以每分钟10个单位的速度运动,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值. (3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由.29.如图,四边形ABCD 为矩形,C 点在x 轴上,A 点在y 轴上,D(0,0),B(3,4),矩形ABCD 沿直线EF 折叠,点B 落在AD 边上的G 处,E 、F 分别在BC 、AB 边上且F(1,4).(1)求G 点坐标(2)求直线EF 解析式(3)点N 在坐标轴上,直线EF 上是否存在点M ,使以M 、N 、F 、G 为顶点的四边形是平行四边形?若存在,直接写出M 点坐标;若不存在,请说明理由30.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC 的外部作等腰Rt CED ,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用正方形的性质、全等三角形的性质、勾股定理等知识依次判断即可;【详解】解:①∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠A=∠B=90°,∵∠A=∠EDQ,∠AEP=∠QED,AE=ED,∴△AEP≌△DEQ,故①正确,②作PG⊥CD于G,EM⊥BC于M,∴∠PGQ=∠EMF=90°,∵EF⊥PQ,∴∠PEF=90°,∴∠PEN+∠NEF=90°,∵∠NPE+∠NEP=90°,∴∠NPE=∠NEF,∵PG=EM,∴△EFM≌△PQG,∴EF=PQ,故②正确,③连接QF .则QF=PF ,PB 2+BF 2=QC 2+CF 2,设CF=x ,则(2+x )2+12=32+x 2,∴x=1,故③错误,④当P 在A 点时,Q 与D 重合,QC 的中点H 在DC 的中点S 处,当P 运动到B 时,QC 的中点H 与D 重合,故EH 扫过的面积为△ESD 的面积=12,故④正确, 则正确的是①②④,故选B . 【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,难度较大.2.B解析:B【分析】根据已知条件易证△ABE ≌△ADF ,根据全等三角形的性质即可判定①②;由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,即可判定③;设EC=FC=x ,由勾股定理和三角函数计算后即可判定④⑤.【详解】∵四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF 等边三角形,∴AE=EF=AF ,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt △ABE 和Rt △ADF 中,AE AF AB AD ⎧⎨⎩== , Rt △ABE ≌Rt △ADF (HL ),∴BE=DF (故①正确).∠BAE=∠DAF ,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD ,∴BC-BE=CD-DF ,即CE=CF ,∵AE=AF ,∴AC 垂直平分EF .(故③正确).设EC=FC=x ,由勾股定理,得:,EF CG FG x ===, ∴EC ≠FG (⑤错误)在Rt △AEG 中,sin 60sin 602sin 602AG AE EF CG x ︒︒︒===⨯=,AC ∴=,AB ∴=,BE x ∴==,BE DF x ∴+=-≠,(故④错误),综上所述,正确的结论为①②③,共3个,故选B .【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,解答本题时运用勾股定理的性质解题的关键.3.C解析:C【解析】设正方形O 3KJP 的边长为a ,根据正方形的性质知:O 3O 4=2a ,正方形O 2IHJ 的边长为2a ,O 2O 3a ,正方形O 1GFH 的边长为4a ,O 1O 2a ,正方形OCDF 的边长为8a ,OO 1a ,∵AO=2OO1am ,∴2, 解得:a=2m ,∴FD=8a=16m ,∴长方形花坛ABCD 的周长是2×(2FD+CD )=6FD=96m ,故选C .【点睛】本题考查了正方形的性质,主要利用了正方形的对角线与边长的关系,正方形的倍,熟记性质是解题的关键.4.A解析:A【分析】根据三角形的内角和定理,直角三角形的性质及判定,等腰三角形的性质,等腰三角形的判定逐项判断即可.【详解】∠=∠,故本选项符合题意;解:A.不能推出MCB MCAB. ∵∠MCB=∠B=∠ACD,故本选项不符合题意;C.∵∠ACB=90°,CD是高,∴∠A+∠ACD=90°,∠A+∠B=90°,∴∠ACD=∠B,故本选项不符合题意;D. ∵∠ACB=90°,CM是斜边的中线,∴CM=BM,∴∠MCB=∠B=∠ACD,∴∠ACM=∠BCD,故本选项不符合题意;故选:A.【点睛】本题主要考查了对三角形的内角和定理,直角三角形的性质及判定,等腰三角形的性质,等腰三角形的判定等考点的理解.5.B解析:B【分析】根据平行四边形的性质可得AD//BC,AD=BC,根据平行线的性质可得∠BEA=∠EAD,根据等腰三角形的性质可得∠ABE=∠BEA,即可证明∠EAD=∠ABE,利用SAS可证明△ABC≌△EAD;可得①正确;由角平分线的定义可得∠BAE=∠EAD,即可证明∠ABE=∠BEA=∠BAE,可得AB=BE=AE,得出②正确;由S△AEC=S△DEC,S△ABE=S△CEF得出⑤正确;题中③和④不正确.综上即可得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠BEA=∠EAD,∵AB=AE,∴∠ABE=∠BEA,∴∠EAD=∠ABE,在△ABC和△EAD中,AB AEABE EAD BC AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△EAD(SAS);故①正确;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠ABE=∠BEA=∠BAE,∴∠BAE=∠BEA,∴AB=BE=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;⑤正确.若AD=BF,则BF=BC,题中未限定这一条件,∴③不一定正确;如图,过点E作EH⊥AB于H,过点A作AG⊥BC于G,∵△ABE是等边三角形,∴AG=EH,若S△BEF=S△ABC,则BF=BC,题中未限定这一条件,∴④不一定正确;综上所述:正确的有①②⑤.故选:B.【点睛】本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,熟练掌握等底、等高的三角形面积相等的性质是解题关键.6.D解析:D【分析】连接BE,根据折叠的性质证明△ABE≌△A GE',得到BE=EG,根据点G是AD的中点,AD=4得到AE=2-EG=2-BE ,再根据勾股定理即可求出BE 得到EG.【详解】连接BE ,由折叠得:AE A E '=,A A '∠=∠=90°,AB A G '=,∴△ABE ≌△A GE ',∴BE=EG,∵点G 是AD 的中点,AD=4,∴AG=2,即AE+EG=2,∴AE=2-EG=2-BE ,在Rt △ABE 中,222BE AE AB =+,∴ 222(2)1BE BE =-+,∴EG=5BE 4=, 故选:D.【点睛】此题考查折叠的性质,勾股定理,三角形全等的判定及性质,利用折叠证明三角形全等,目的是证得EG=BE ,由此利用勾股定理解题.7.D解析:D【分析】先说明ABD=∠ADC=∠CBD ,然后再利用三角形内角和180°求出即可∠CBD 度数,最后再用直角三角形的内角和定理解答即可.【详解】解:∵菱形ABCD∴AB=AD∴∠ABD=∠ADC∴∠ABD=∠CBD又∵134A ∠=︒∴∠CBD=∠BDC=∠ABD=∠ADB=12(180°-134°)=23° ∴BEC ∠=90°-23°=67°故答案为D.【点睛】本题主要考查了菱形的性质,解题的关键是掌握菱形的对角线平分每一组对角和三角形内角和定理.8.D解析:D【分析】根据题意和图形可看出每经过一次变化,都顺时针旋转45°,可求出从A 到A 3变化后的坐标,再求出A 1、A 2、A 3、A 4、A 5,继而得出A 8坐标即可.【详解】解:根据题意和图形可看出每经过一次变化,都顺时针旋转45° ∵从A 到3A 经过了3次变化,∵45°×3=135°,1×3=,∴点3A 所在的正方形的边长为,点3A 位置在第四象限,∴点3A 的坐标是(2,-2),可得出:1A 点坐标为(1,1),2A 点坐标为(0,2),3A 点坐标为(2,-2),4A 点坐标为(0,-4),5A 点坐标为(-4,-4),6A (-8,0),A 7(-8,8),8A (0,16),故选D.【点睛】本题考查了规律题,点的坐标,观察出每一次的变化特征是解答本题的关键.9.B解析:B【分析】根据平行线的性质和轴对称的性质,利用SAS 证明BEG DEG ≅,进而得到ADG 90∠=︒,设AB=x ,则AG=2x ,CD=x ,,即可求解.【详解】解:在ABCD 中∵DF ∥EG∴∠DEG=∠DFB∵△ABE 沿BE 对折得到△BEG∴∠DEG =2∠A∵∠DFB =∠C +∠CDF∠A=∠C∴∠CDF=∠A∵△DFC 沿DF 对折∴∠BGE=∠DGEBG=DGEG=EG∴BEG DEG≅∵BE⊥AB∴ADG90∠=︒设AB=x,则AG=2x,CD=x,=∴ABAD==故选:B.【点睛】此题主要考查平行线的性质、轴对称的性质、全等三角形的判断和性质、勾股定理,熟练运用平行线的性质和轴对称的性质证明BEG DEG≅是解题关键.10.D解析:D【分析】通过判断△AND≌△CMB即可证明①,再判断出△ANE≌△CMF证明出③,再证明出△NFM≌△MEN,得到∠FNM=∠EMN,进而判断出②,通过 DF与EB先证明出四边形为平行四边形,再通过三线合一以及内角和定理得到∠NDO=∠ABD=30°,进而得到DE=BE,即可知四边形为菱形.【详解】∵BF⊥AC∴∠BMC=90°又∵//DE BF∴∠EDO=∠MBO,DE⊥AC∴∠DNA=∠BMC=90°∵四边形ABCD为矩形∴AD=BC,AD∥BC,DC∥AB∴∠ADB=∠CBD∴∠ADB-∠EDO=∠CBD-∠MBO即∠AND=∠CBM在△AND与△CMB∵90DNA BMCAND CBMAD BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AND≌△CMB(AAS)∴AN=CM,DN=BM,故①正确.∵AB∥CD∴∠NAE=∠MCF又∵∠DNA=∠BMC=90°∴∠ANE=∠CMF=90°在△ANE 与△CMF 中∵90ANE CMF AN CM NAE MCF ∠=∠=⎧⎪=⎨⎪∠=∠⎩∴△ANE ≌△CMF (ASA )∴NE=FM ,AE=CF ,故③正确.在△NFM 与△MEN 中∵90FM NE FMN ENM MN MN =⎧⎪∠=∠=︒⎨⎪=⎩∴△NFM ≌△MEN (SAS )∴∠FNM=∠EMN∴NF ∥EM ,故②正确.∵AE=CF∴DC-FC=AB-AE ,即DF=EB又根据矩形性质可知DF ∥EB∴四边形DEBF 为平行四边根据矩形性质可知OD=AO ,当AO=AD 时,即三角形DAO 为等边三角形∴∠ADO=60°又∵DN ⊥AC根据三线合一可知∠NDO=30°又根据三角形内角和可知∠ABD=180°-∠DAB-∠ADB=30°故DE=EB∴四边形DEBF 为菱形,故④正确.故①②③④正确故选D .【点睛】本题矩形性质、全等三角形的性质与证明、菱形的判定,能够找对相对应的全等三角形是解题关键.二、填空题11.200m【分析】如图,延长AC 、BD 交于点E ,延长HK 交AE 于F ,延长NJ 交FH 于M ,则四边形EDHF ,四边形MNCF ,四边形MKGJ 是平行四边形,△ABC 是等边三角形,由此即可解决问题.【详解】如图,延长AC 、BD 交于点E ,延长HK 交AE 于F ,延长NJ 交FH 于M由题意可知,四边形EDHF ,四边形MNCF ,四边形MKGJ 是平行四边形∵∠A =∠B =60°∴18060E A B ∠=-∠-∠=∴△ABC 是等边三角形∴ED =FM+MK+KH =CN+JG+HK ,EC =EF+FC =JN+KG+DH∴“九曲桥”的总长度是AE+EB =2AB =200m故答案为:200m .【点睛】本题考查了平行四边形、等边三角形、三角形内角和的知识;解题的关键是熟练掌握平行四边形、等边三角形、三角形内角和的性质,从而完成求解.12.8【分析】通过作辅助线使得△CAO ≌△GBO ,证明△COG 为等腰直角三角形,利用勾股定理求出CG 后,即可求出BC 的长.【详解】如图,延长CB 到点G ,使BG=AC .∵根据题意,四边形ABED 为正方形,∴∠4=∠5=45°,∠EBA=90°,∴∠1+∠2=90°又∵三角形BCA 为直角三角形,AB 为斜边,∴∠2+∠3=90°∴∠1=∠3∴∠1+∠5=∠3+∠4,故∠CAO =∠GBO ,在△CAO 和△GBO 中,CA GB CAO GBO AO BO =⎧⎪∠=∠⎨⎪=⎩故△CAO ≌△GBO ,∴CO =GO=7=∠6,∵∠7+∠8=90°,∴∠6+∠8=90°,∴三角形COG 为等腰直角三角形,∴, ∵CG=CB+BG ,∴CB=CG -BG=12-4=8,故答案为8.【点睛】本题主要考查正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,根据题意建立正确的辅助线以及掌握正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质是解答本题的关键.13.①③④【分析】由矩形的性质可得AB=CD ,AD=BC ,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD ,由角平分线的性质和余角的性质可得∠F=∠FAD=45°,可得AD=DF=BC ,可判断①;通过证明△DCG ≌△BEG ,可得∠BGE=∠DGC ,BG=DG ,即可判断②③;过点G 作GH ⊥CD 于H ,设AD=4x=DF ,AB=3x ,由勾股定理可求BD=5x,由等腰直角三角形的性质可得HG=CH=FH=12x ,,由三角形面积公式可求解,可判断④. 【详解】解:∵四边形ABCD 是矩形,∴AB=CD ,AD=BC ,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD ,∵AE 平分∠BAD ,∴∠BAE=∠DAE=45°,∴∠F=∠FAD ,∴AD=DF ,∴BC=DF ,故①正确;∵∠EAB=∠BEA=45°,∴AB=BE=CD ,∵∠CEF=∠AEB=45°,∠ECF=90°,∴△CEF 是等腰直角三角形,∵点G 为EF 的中点,∴CG=EG ,∠FCG=45°,CG ⊥AG ,∴∠BEG=∠DCG=135°,在△DCG 和△BEG 中,===BE CD BEG DCG CG EG ⎧⎪∠∠⎨⎪⎩,∴△DCG ≌△BEG (SAS ).∴∠BGE=∠DGC ,BG=DG ,∵∠BGE <∠AEB ,∴∠DGC=∠BGE <45°,∵∠CGF=90°,∴∠DGF <135°,故②错误;∵∠BGE=∠DGC ,∴∠BGE+∠DGA=∠DGC+∠DGA ,∴∠CGA=∠DGB=90°,∴BG ⊥DG ,故③正确;过点G 作GH ⊥CD 于H ,∵34AB AD =, ∴设AD=4x=DF ,AB=3x ,∴CF=CE=x ,22AB AD x +,∵△CFG ,△GBD 是等腰直角三角形,∴HG=CH=FH=12x ,DG=GB=522x ,∴S △DGF =12×DF×HG=x 2,S △BDG =12DG×GB=254x 2, ∴254BDG FDG S S =,故④正确;故答案为:①③④.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等和等腰直角三角形是解决问题的关键.14.8或12【分析】根据平行四边形的性质得到BC=AD=5,∠BAE=∠DEA ,∠ABF=∠BFC ,根据角平分线的性质得到DE=AD=5,CF=BC=5,即可求出答案.【详解】在ABCD 中,AB ∥CD ,BC=AD=5,∴∠BAE=∠DEA ,∠ABF=∠BFC ,∵BAD ∠的平分线交CD 于点E ,∴∠BAE=∠DAE ,∴∠DAE=∠DEA ,∴DE=AD=5,同理:CF=BC=5,∴AB=CD=DE+CF-EF=5+5-2=8或AB=DE+CF+EF=5+5+2=12,故答案为:8或12.【点睛】此题考查平行四边形的性质,角平分线的性质,等腰三角形的等角对等边的判定,解题中注意分类思想的运用,避免漏解.15.(3,2)-517【分析】如图(见解析),先根据一次函数的解析式可得点A 、B 的坐标,从而可得OA 、OB 、AB 的长,再根据正方形的性质可得90BAD ∠=︒,DA AB =,然后根据三角形全等的判定定理与性质可得,AE OB DE OA ==,由此即可得出点D 的坐标;同样的方法可求出点C 的坐标,再根据轴对称的性质可得点C '的坐标,然后根据轴对称的性质和两点之间线段最短得出MDC △的周长值最小时,点M 的位置,最后利用两点之间的距离公式、三角形的周长公式即可得.【详解】如图,过点D 作DE x ⊥轴于点E ,作点C 关于y 轴的对称点C ',交y 轴于点F ,连接C D ',交y 轴于点M ',连接C M ',则CF y ⊥轴 对于112y x =+ 当0y =时,1102x +=,解得2x =-,则点A 的坐标为(2,0)A - 当0x =时,1y =,则点B 的坐标为(0,1)B2,1,OA OB AB ∴====四边形ABCD 是正方形90BAD ∴∠=︒,CD DA AB ===90DAE OAB ABO OAB ∴∠+∠=∠+∠=︒DAE ABO ∴∠=∠在ADE 和BAO 中,90AED BOA DAE ABO DA AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ADE BAO AAS ∴≅1,2AE OB DE OA ∴====213OE OA AE ∴=+=+=则点D 的坐标为(3,2)D -同理可证:CBF BAO ≅1,2CF OB BF OA ∴====123OF OB BF ∴=+=+=则点C 的坐标为(1,3)C -由轴对称的性质得:点C '的坐标为(1,3)C ',且CM C M '=MDC ∴△的周长为CD DM CM DM C M '++=+由两点之间线段最短得:当点M 与点M '重合时,DM C M '+取得最小值DC ' (3,2),(1,3)D C '-DC '∴==则MDC △DC '=故答案为:(3,2)-.【点睛】本题是一道较难的综合题,考查了正方形的性质、三角形全等的判定定理与性质、轴对称的性质等知识点,正确找出MDC △的周长最小时,点M 的位置是解题关键. 16.65【分析】先由正方形的性质得到∠ABF 的角度,从而得到∠AEB 的大小,再证△AEB ≌△AED ,得到∠AED 的大小【详解】∵四边形ABCD 是正方形∴∠ACB=∠ACD=∠BAC=∠CAD=45°,∠ABC=90°,AB=AD∵∠FBC=20°,∴ABF=70°∴在△ABE 中,∠AEB=65°在△ABE 与△ADE 中45AB AD BAE EAD AE AE =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△ADE∴∠AED=∠AEB=65°故答案为:65°【点睛】本题考查正方形的性质和三角形全等的证明,解题关键是利用正方形的性质,推导出∠AEB 的大小.17.6.5或8或18【分析】根据题意分BP QP =、BQ QP =两种情况分别讨论,再结合勾股定理求解即可.【详解】解:∵四边形ABCD 是矩形,26AD =,点Q 是BC 的中点∴13BQ =∴①当BP QP =时,过点P 作PM BQ ⊥交BQ 于点M ,如图,则 6.5BM MQ ==,且四边形ABMP 为矩形∴ 6.5AP BM ==②当BQ QP =时,以点Q 为圆心,BQ 为半径作圆,与AD 交于P '、P ''两点,如图,过Q 作QN P P '''⊥,交P P '''于点N ,则可知P N P N '''=∵在Rt P NQ ',13P Q '=,12NQ AB == ∴222213125P N P Q NQ ''=-=-=同理,在Rt P NQ ''中,5P N ''= ∴2655822AD P N P N AP '''----'===,85518AP AP P N P N ''''''=++=++= 即P '、P ''为满足条件的P 点的位置∴8AP =或18∴综上所述,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为6.5或8或18. 故答案是:6.5或8或18【点睛】本题考查了矩形的性质、等腰三角形的性质以及勾股定理等知识,根据等腰三角形的性质进行分类讨论是一个难点,也是解题的关键.18.7【分析】①若m n =,则AF EC =,先根据平行四边形的性质得出//,AD BC AD BC =,再根据平行四边形的判定(一组对边平行且相等或两组对边分别平行)即可得;②先根据平行四边形的性质与判定得出四边形ABEF 、四边形CDFE 都是平行四边形,从而可得11,44EFG ABEF EFH CDFE S S S S ∆∆==,再根据28ABCD ABEF CDFE S S S =+= 和1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆=+=+四边形即可得出答案.【详解】 四边形ABCD 是平行四边形//,AD BC AD BC ∴=,,AF EC n m BC BCm n === AF EC ∴=AD AF BC EC ∴-=-,即DF BE =∴四边形AECF 、四边形BEDF 都是平行四边形//,//AE CF BF DE ∴∴四边形EGFH 是平行四边形综上,图中共有4个平行四边形如图,连接EF1,,AF EC n m BC B n Cm ==+= AF EC BC AD ∴+==AF DF AD +=EC DF ∴=AF BE ∴=∴四边形ABEF 、四边形CDFE 都是平行四边形 11,44EFG ABEF EFH CDFE S S S S ∆∆∴== 28ABCD ABEF CDFE S S S =+=1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆∴=+=+四边形1()4ABEF CDFE S S =+12874=⨯= 故答案为:4;7.【点睛】本题考查了平行四边形的判定与性质,熟记平行四边形的判定与性质是解题关键.19.【分析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后确定CM的范围.【详解】解:作AB的中点M,连接EM、CM.在Rt△ABC中,AB=22AC BC+=2286+=10,∵M是直角△ABC斜边AB上的中点,∴CM=12AB=5.∵E是BD的中点,M是AB的中点,∴ME=12AD=2.∴5﹣2≤CE≤5+2,即3≤CE≤7.∴最大值为7,故答案为:7.【点睛】本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.20.2【分析】根据平行四边形的性质、角平分线的性质证明AD=DE=3,再根据BAD BEC∠=∠证明BC=BE,由此根据三角形的三线合一及勾股定理求出BF,即可求出平行四边形的面积.【详解】过点B 作BF CD ⊥于点F ,如图所示.∵AE 是BAD ∠的平分线,∴DAE BAE ∠=∠.∵四边形ABCD 是平行四边形,∴53CD AB BC AD BAD BCE AB CD ====∠=∠,,,∥, ∴BAE DEA ∠=∠,∴DAE DEA ∠=∠,∴3DE AD ==,∴2CE CD DE =-=.∵BAD BEC ∠=∠,∴BCE BEC ∠=∠,∴BC=BE, ∴112CF EF CE ===, ∴22223122BF BC CF =-=-=∴平行四边形ABCD 的面积为225102BF CD ⋅==. 故答案为:2【点睛】此题考查平行四边形的性质:对边平行且相等,对角相等,等腰三角形的等角对等边的性质、三线合一的性质,勾股定理.三、解答题21.(1)P (103,2);(2)(52,2)或(﹣52,2) 【分析】(1)根据已知条件得到C (5,3),设直线OC 的解析式为y =kx ,求得直线OC 的解析式为y =35x ,设P (m ,35m ),根据S △POB =13S 矩形OBCD ,列方程即可得到结论; (2)设点P 的纵坐标为h ,得到点P 在直线y =2或y =﹣2的直线上,作B 关于直线y =2的对称点E ,则点E 的坐标为(5,4),连接OE 交直线y =2于P ,则此时PO +PB 的值最小,设直线OE 的解析式为y =nx ,于是得到结论.【详解】(1)如图:∵矩形OBCD中,OB=5,OD=3,∴C(5,3),设直线OC的解析式为y=kx,∴3=5k,∴k=35,∴直线OC的解析式为y=35 x,∵点P在矩形的对角线OC上,∴设P(m,35 m),∵S△POB=13S矩形OBCD,∴12⨯5×35m=13⨯3×5,∴m=103,∴P(103,2);(2)∵S△POB=13S矩形OBCD,∴设点P的纵坐标为h,∴12h×5=133⨯⨯5,∴h=2,∴点P在直线y=2或y=﹣2上,作B关于直线y=2的对称点E,则点E的坐标为(5,4),连接OE交直线y=2于P,则此时PO+PB的值最小,设直线OE的解析式为y=nx,∴4=5n,∴n=45,∴直线OE的解析式为y=45 x,当y=2时,x=52,∴P(52,2),同理,点P在直线y=﹣2上,P(52,﹣2),∴点P的坐标为(52,2)或(﹣52,2).【点睛】本题考查了轴对称——最短路线问题,矩形的性质,待定系数法求函数的解析式,正确的找到点P在位置是解题的关键.22.(1)ΔDPM,ΔFPG;等腰直角;(2)线段PG与PC的位置关系是PG⊥PC;PG PC=3;(3)213【分析】(1)延长GP交DC于点M,由Р是线段DF的中点,//DC CF,可得∠MDP=∠GFP,DP=FP,利用ASA可证明△DPM≌△FPG;可得DM=GF,MP=GP,根据正方形的性质可得CM=CG,即可证明△CMG是等腰直角三角形,即可得答案;(2)如图,延长GP交DC于点H,利用ASA可证明△GFP≌△HDP,可得GP=HP,GF=HD,进而根据菱形的性质可证明△CHG是等腰三角形,根据等腰三角形“三线合一”的性质可得PG⊥PC,∠HCP=∠GCP,由∠ABC=60°可得∠HCG=120°,进而可得∠CGP=30°,根据含30°角的直角三角形的性质及勾股定理即可得答案;(3)利用线段的和差关系可求出图2中CG的长,由(2)可知∠CGP=30°,根据含30°角的直角三角形的性质即可求出CP的长;在图3中,延长GP到N,使GP=PN,连接DN、CN、CG,过N作NK⊥CD,交CD延长线于K,利用SAS可证明△FGP≌△DNP,可得GF=DN,∠GFP=∠NDP,根据角的和差关系可得∠CDN=120°,根据平角的定义可得∠GBC=120°,利用菱形的性质及等量代换可得DN=GB,利用SAS可证明△NDC≌△GBC,可得CN=CG,∠DCN=∠BCG,根据等腰三角形的性质可得PC⊥GN,根据角的和差关系可得∠NCG=120°,进而可得出∠CNP=30°,可得PC=12CG,根据平角的定义可得∠KDN=60°,即可得出∠KND=30°,根据含30°角的直角三角形的性质可得得出KD的长,利用勾股定理可求出KN的长,再利用勾股定理可求出CN的长,根据含30°角的直角三角形的性质即可得出PC的长.【详解】(1)如图,延长GP交DC于点M,∵Р是线段DF的中点,四边形ABCD、BEFG是正方形,点,,A B E在同一条直线上,∴//DC CF,DP=FP,CD=BC,FG=BG,在△DPM和△FPG中,MDP GFP DP FPDPM FPG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DPM≌△FPG,∴DM=FG,KP=GP,∴CD-DM=BC-BC,即CM=CG,∴△CMG是等腰直角三角形,∴PG⊥PC,PG=PC.故答案为:ΔDPM,ΔFPG;等腰直角(2)猜想:线段PG与PC的位置关系是PG⊥PC;PGPC3.如图,延长GP交DC于点H,∵P是线段DF的中点,∴FP=DP,∵四边形ABCD和四边形BEFG是菱形,∴CD//AB,CF//BE,CD=CB,GF=GB,∵点A B E、、在一条直线上,∴DC∥GF,∴∠GFP=∠HDP,在△GFP和△HDP中,GFP HDP FP DPGPF HPD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△GFP≌△HDP,∴GP=HP,GF=HD,∴CD-DH=CB-GB,即CG=CH,∴△CHG是等腰三角形.∴PG⊥PC,(三线合一),∠HCP=∠GCP,∵∠ABC=∠BEF=60°,∴∠HCG=120°,∴∠CGP=12(180°-120°)=30°,∴CG=2PC,∴PG=2222(2)3CG PC PC PC PC-=-=,∴PGPC=3.(3)如图2,∵AB=6,BE=2,∴CG=AB-BE=4,由(2)可知∠CGP=30°,PG⊥PC,∴PC=12CG=2,如图3,延长GP到N,使GP=PN,连接DN、CN、CG,过N作NK⊥CD,交CD延长线于K,在△DNP和△FGP中,DP FPNPD GPFPN PG=⎧⎪∠=∠⎨⎪=⎩,∴△DNP≌△FGP,∴DN=GF=BG=BE=2,∠NDP=∠GFP,∵四边形ABCD和四边形BEFG是菱形,∴CD//AB,EF//BC,∵点A、B、G在一条直线上,∴DC∥EF,。

人教版平行四边形单元 易错题难题测试综合卷学能测试

人教版平行四边形单元 易错题难题测试综合卷学能测试

一、选择题1.在边长为2的正方形ABCD 中,P 为AB 上的一动点,E 为AD 中点,PE 交CD 延长线于Q ,过E 作EF PQ ⊥交BC 的延长线于F ,则下列结论:①APE DQE ∆≅∆;②PQ EF =;③当P 为AB 中点时,2CF =;④若H 为QC 的中点,当P 从A 移动到B 时,线段EH 扫过的面积为12,其中正确的是( )A .①②B .①②④C .②③④D .①②③2.如图,正方形ABCD 中,点E F 、分别在边BC CD 、上,且AE EF FA ==,有下列结论:①ABE ADF ∆≅∆;②CE CF =;③75AEB ∠=︒;④BE DF EF +=;⑤A ABE DF CEF S S S ∆∆∆+=;其中正确的有( )个.A .2B .3C .4D .53.如图,在正方形ABCD 中,点E 、F 、H 分别是AB 、BC 、CD 的中点,CE 、DF 交于点G,连接AG 、HG .下列结论:①CE ⊥DF ;②AG=DG;③∠CHG=∠DAG .其中,正确的结论有( )A .0个B .1个C .2个D .3个4.如图,111A B C ∆中,114A B =,115AC =,117B C =.点2A 、2B 、2C 分别是边11B C 、11A C 、11A B 的中点;点3A 、3B 、3C 分别是边22B C 、22A C 、22A B 的中点;;以此类推,则第2019个三角形的周长是( )A .201412B .201512 C .201612 D .2017125.如图,P 为ABCD 内一点,过点P 分别作AB ,AD 的平行线,交 ABCD 的四边于E 、F 、G 、H 四点,若BHPE 面积为6,GPFD 面积为4,则APC △的面积为( )A .23B .32C .1D .26.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO.若∠COB =60°,FO =FC ,则下列结论:①FB ⊥OC ,OM =CM ;②△EOB ≌△CMB ;③四边形EBFD 是菱形;④MB ∶OE =3∶2.其中正确结论的个数是( )A .1B .2C .3D .47.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.58.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是( )A .2B .52C .332D .5 9.如图,在ABCD 中,2,AB AD F =是CD 的中点,作BE AD ⊥于点E ,连接EF BF 、,下列结论:①CBF ABF ∠=∠;②FE FB =;③2EFB S S ∆=四边形DEBC ;④3BFE DEF ∠=∠;其中正确的个数是( )A .1B .2C .3D .410.如图,在边长为2的等边三角形ABC 中,D 为边BC 上一点,且12BD CD =.点E ,F 分别在边,AB AC 上,且90,EDF M ︒∠=为边EF 的中点,连接CM 交DF 于点N .若//DF AB ,则CM 的长为( )A 233B 334C 536D 3二、填空题11.在平行四边形ABCD 中, BC 边上的高为4 ,AB =5 ,25AC =,则平行四边形ABCD 的周长等于______________ .12.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .13.如图,在矩形ABCD 中,4AB =,2AD =,E 为边CD 的中点,点P 在线段AB 上运动,F 是CP 的中点,则CEF ∆的周长的最小值是____________.14.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62,那么BC=______.15.如图,动点E F 、分别在正方形ABCD 的边AD BC 、上,AE CF =,过点C 作CG EF ⊥,垂足为G ,连接BG ,若4AB =,则线段BG 长的最小值为_________.16.在锐角三角形ABC 中,AH 是边BC 的高,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连接CE ,BG 和EG ,EG 与HA 的延长线交于点M ,下列结论:①BG=CE ;②BG ⊥CE ;③AM 是△AEG 的中线;④∠EAM=∠ABC .其中正确的是_________.17.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.18.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).19.在平行四边形 ABCD 中,AE 平分∠BAD 交边 BC 于 E ,DF 平分∠ADC 交边 BC 于 F ,若 AD=11,EF=5,则 AB= ___.20.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.三、解答题21.如图,在ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别为OB 、OD 的中点,延长AE 至G ,使EG AE =,连接CG .(1)求证:AOE COF ∆≅∆;(2)四边形EGCF 是平行四边形吗?请说明理由;(3)若四边形EGCF 是矩形,则线段AB 、AC 的数量关系是______.22.如图正方形ABCD ,DE 与HG 相交于点O (O 不与D 、E 重合).(1)如图(1),当90GOD ∠=︒,①求证:DE GH =; ②求证:2GD EH DE +>;(2)如图(2),当45GOD ∠=︒,边长4AB =,5HG =,求DE 的长.23.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH DE ⊥交DG 的延长线于点H ,连接BH .(1)求证:GF GC =;(2)用等式表示线段BH 与AE 的数量关系,并证明.24.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.25.在正方形ABCD 中,点E 是CD 边上任意一点,连接,AE 过点B 作BF AE ⊥于F ,交AD 于H .()1如图1,过点D 作DG AE ⊥于G .求证:BF DG FG -=;()2如图2,点E 为CD 的中点,连接DF ,试判断,,DF FH EF 存在什么数量关系并说明理由;()3如图3,1AB =,连接EH ,点Р为EH 的中点,在点E 从点D 运动到点C 的过程中,点Р随之运动,请直接写出点Р运动的路径长.26.在平面直角坐标中,四边形OCNM 为矩形,如图1,M 点坐标为(m ,0),C 点坐标为(0,n ),已知m ,n 550n m --=.(1)求m ,n 的值;(2)①如图1,P ,Q 分别为OM ,MN 上一点,若∠PCQ =45°,求证:PQ =OP+NQ ; ②如图2,S ,G ,R ,H 分别为OC ,OM ,MN ,NC 上一点,SR ,HG 交于点D .若∠SDG =135°,55HG 2=,则RS =______; (3)如图3,在矩形OABC 中,OA =5,OC =3,点F 在边BC 上且OF =OA ,连接AF ,动点P 在线段OF 是(动点P 与O ,F 不重合),动点Q 在线段OA 的延长线上,且AQ =FP ,连接PQ 交AF 于点N ,作PM ⊥AF 于M .试问:当P ,Q 在移动过程中,线段MN 的长度是否发生变化?若不变求出线段MN 的长度;若变化,请说明理由.27.已知正方形ABCD 与正方形(点C 、E 、F 、G 按顺时针排列),是的中点,连接,.(1)如图1,点E 在上,点在的延长线上,求证:DM =ME ,DM ⊥.ME简析: 由是的中点,AD ∥EF ,不妨延长EM 交AD 于点N ,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE 是 三角形,进而得出结论. (2)如图2, 在DC 的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C 、E 、F 、G 按顺时针排列.若点E 在直线CD 上,则DM= ;若点E 在直线BC 上,则DM= .28.如图,等腰直角三角形OAB 的三个定点分别为(0,0)O 、(0,3)A 、(3,0)B -,过A 作y 轴的垂线1l .点C 在x 3D 在1l 上以每秒3322+的速度同时从点A 出发向右运动,当四边形ABCD 为平行四边形时C 、D 同时停止运动,设运动时间为t .当C 、D 停止运动时,将△OAB 沿y 轴向右翻折得到△1OAB ,1AB与CD相交于点E,P为x轴上另一动点.(1)求直线AB的解析式,并求出t的值.(2)当PE+PD取得最小值时,求222++⋅的值.PD PE PD PE(3)设P的运动速度为1,若P从B点出发向右运动,运动时间为x,请用含x的代数式表示△PAE的面积.29.在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC边上,且FE⊥AE.(1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.30.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC=cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用正方形的性质、全等三角形的性质、勾股定理等知识依次判断即可;【详解】解:①∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠A=∠B=90°,∵∠A=∠EDQ,∠AEP=∠QED,AE=ED,∴△AEP≌△DEQ,故①正确,②作PG⊥CD于G,EM⊥BC于M,∴∠PGQ=∠EMF=90°,∵EF⊥PQ,∴∠PEF=90°,∴∠PEN+∠NEF=90°,∵∠NPE+∠NEP=90°,∴∠NPE=∠NEF,∵PG=EM,∴△EFM≌△PQG,∴EF=PQ,故②正确,③连接QF.则QF=PF,PB2+BF2=QC2+CF2,设CF=x,则(2+x)2+12=32+x2,∴x=1,故③错误,④当P在A点时,Q与D重合,QC的中点H在DC的中点S处,当P运动到B时,QC的中点H与D重合,故EH扫过的面积为△ESD的面积=12,故④正确,则正确的是①②④,故选B.【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,难度较大.2.C解析:C【分析】由已知得AB AD =,AE AF =,利用“HL ”可证ABE ADF ∆≅∆,利用全等的性质判断①②③正确,在AD 上取一点G ,连接FG ,使AG GF =,由正方形,等边三角形的性质可知15DAF ∠=︒,从而得30DGF ∠=︒,设1DF =,则2AG GF ==,3DG =,分别表示AD ,CF ,EF 的长,判断④⑤的正确性.【详解】解:AB AD =,AE AF EF ==,()ABE ADF HL ∴∆≅∆,AEF ∆为等边三角形,BE DF ∴=,又BC CD =,CE CF ∴=,11()(9060)1522BAE BAD EAF ∴∠=∠-∠=︒-︒=︒,9075AEB BAE ∴∠=︒-∠=︒, ∴①②③正确,在AD 上取一点G ,连接FG ,使AG GF =,则15DAF GFA ∠=∠=︒,230DGF DAF ∴∠=∠=︒,设1DF =,则2AG GF ==,3DG =23AD CD ∴==+13CF CE CD DF ==-=226EF CF ∴==2BE DF +=,∴④错误,⑤12232ABE ADF S S AD DF ∆∆+=⨯⨯=1232CEF S CE CF ∆=⨯=∴⑤正确.∴正确的结论有:①②③⑤.故选C .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的运用.关键是利用全等三角形的性质,把条件集中到直角三角形中,运用勾股定理求解.3.C解析:C【分析】连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,容易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,容易证得CE⊥DF与AH⊥DF,故①正确;根据垂直平分线的性质,即可证得AG=AD,继而AG=DC,而DG≠DC,所以AG≠DG,故②错误;由直角三角形斜边上的中线等于斜边的一半,即可证得HG=12 DC,∠CHG=2∠GDC,根据等腰三角形的性质,即可得∠DAG=2∠DAH=2∠GDC.所以∠DAG=∠CHG,④正确,则问题得解.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E. F. H分别是AB、BC、CD的中点,∴BE=FC∴△BCE≌△CDF,∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;连接AH,同理可得:AH⊥DF,∵CE⊥DF,∴△CGD为直角三角形,∴HG=HD=12 CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD=DC,在Rt △CGD 中,DG≠DC ,∴AG≠DG ,故②错误;∵AG=AD, AH 垂直平分DG∴∠DAG=2∠DAH,根据①,同理可证△ADH ≌△DCF∴∠DAH=∠CDF ,∴∠DAG=2∠CDF,∵GH=DH ,∴∠HDG=∠HGD ,∴∠GHC=∠HDG+∠HGD=2∠CDF ,∴∠GHC=∠DAG ,故③正确,所以①和③正确选择C.【点睛】本题考查正方形的性质,全等三角形的判定与性质,利用边角边,容易证明△BCE ≌△CDF ,从而根据全等三角形的性质和等量代换即可证∠ECD+∠CDF=90°,从而①可证;证②时,可先证AG=DC ,而DG≠DC ,所以②错误;证明③时,可利用等腰三角形的性质,证明它们都等于2∠CDF 即可.4.A解析:A【分析】根据三角形的中位线可得,B 2C 2,A 2B 2,A 2C 2分别等于12B 1C 1,12A 1B 1,12A 1C 1,所以△A 2B 2C 2的周长等于△A 1B 1C 1周长的一半.进而推出第n 个三角形的周长【详解】 解:∵114A B =,115AC =,117B C =,∴△A 1B 1C 1的周长是16,∵点2A 、2B 、2C 分别是边11B C 、11A C 、11A B 的中点,∴B 2C 2,A 2B 2,A 2C 2分别等于12B 1C 1,12A 1B 1,12A 1C 1, 以此类推,则△A 4B 4C 4的周长是31×16=22 , ∴△A n B n C n 的周长是4n 122- , ∴当n=2019时,第2019个三角形的周长是=42018201421=22, 故选:A.【点睛】本题主要考查了三角形的中位线,解题的关键是找出题目的规律.5.C解析:C【分析】根据平行四边形的性质得到四个平行四边形,且S△ AEP=S△ AGP,S△PHC=S△ PFC,S△ABC= S△ADC,利用面积比较的关系即可求出答案.【详解】由题意知:四边形BHPE、四边形AEPG、四边形HCFP、四边形GPFD均为平行四边形,∴S△ AEP=S△ AGP,S△PHC=S△ PFC,S△ABC= S△ADC,又S△ABC=S△AEP+S四边形BHPE+S△PHC-S△APC①,S△ADC=S△AGP+S四边形GPFD+S△PFC+S△APC②,②-①得,0=S四边形BHPE -S四边形GPFD+2S△APC,即2S△APC=6-4=2,S△APC=1.故选:C.【点睛】此题考查平行四边形的性质,平行四边形一条对角线将平行四边形的面积平分.6.C解析:C【解析】连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,在△OBF与△CBF中,FO FC BF BF OB BC⎧⎪⎨⎪⎩===,∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错误.∴②错误,∵∠OMB=∠BOF=90°,∠OBF=30°,∴∵OE=OF,∴MB:OE=3:2,∴④正确;故选C.点睛:本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质以及三角函数等的知识,会综合运用这些知识点解决问题是解题的关键. 7.C解析:C【分析】首先证明四边形AEPF为矩形,可得AM=12AP,最后利用垂线段最短确定AP的位置,利用面积相等求出AP的长,即可得AM.【详解】在△ABC中,因为AB2+AC2=BC2,所以△ABC为直角三角形,∠A=90°,又因为PE⊥AB,PF⊥AC,故四边形AEPF为矩形,因为M 为 EF 中点,所以M 也是 AP中点,即AM=12 AP,故当AP⊥BC时,AP有最小值,此时AM最小,由1122ABCS AB AC BC AP=⨯⨯=⨯⨯,可得AP=125,AM=12AP=61.25=故本题正确答案为C.【点睛】本题考查了矩形的判定和性质,确定出AP⊥BC时AM最小是解题关键.8.D解析:D【分析】根据正方形的性质得到AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出∠ACF=90°,得到CH=12AF,根据勾股定理求出AF的长度即可得到答案.【详解】∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF-AB=3-1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=12 AF,在Rt△AMF中,由勾股定理得:AF=22224225AM MF+=+=,∴CH=5,故选:D.【点睛】此题考查了正方形的性质,勾股定理,直角三角形斜边上的中线等于斜边一半的性质,正确引出辅助线得到∠ACF=90°是解题的关键.9.C解析:C【分析】由平行四边形的性质结合AB=2AD ,CD=2CF 可得CF=CB ,从而可得∠CBF=∠CFB ,再根据CD ∥AB ,得∠CFB=∠ABF ,继而可得CBF ABF ∠=∠,可以判断①正确;延长EF 交BC 的延长线与M ,证明△DFE 与△CFM(AAS),继而得EF=FM=12EM ,证明∠CBE=∠AEB=90°,然后根据直角三角形斜边中线的性质即可判断②正确;由上可得S △BEF =S △BMF ,S △DFE =S △CFM ,继而可得S △EBF =S △BMF =S △EDF +S △FBC ,继而可得2EFB S S ∆=四边形DEBC ,可判断③正确;过点F 作FN ⊥BE ,垂足为N ,则∠FNE=90°,则可得AD//FN ,则有∠DEF=∠EFN ,根据等腰三角形的性质可得∠BFE=2∠EFN ,继而得∠BFE=2∠DEF ,判断④错误.【详解】∵四边形ABCD 是平行四边形,∴AD=BC ,AB=CD ,AD//BC ,∵AB=2AD ,CD=2CF ,∴CF=CB ,∴∠CBF=∠CFB ,∵CD ∥AB ,∴∠CFB=∠ABF ,∴CBF ABF ∠=∠,故①正确;延长EF 交BC 的延长线与M ,∵AD//BC ,∴∠DEF=∠M ,又∵∠DFE=∠CFM ,DF=CF ,∴△DFE 与△CFM(AAS),∴EF=FM=12EM , ∵BF ⊥AD ,∴∠AEB=90°,∵在平行四边形ABCD 中,AD ∥BC ,∴∠CBE=∠AEB=90°,∴BF=12EM , ∴BF=EF ,故②正确;∵EF=FM ,∴S △BEF =S △BMF ,∵△DFE ≌△CFM ,∴S △DFE =S △CFM ,∴S △EBF =S △BMF =S △EDF +S △FBC ,∴2EFB S S ∆=四边形DEBC ,故③正确;过点F 作FN ⊥BE ,垂足为N ,则∠FNE=90°,∴∠AEB=∠FEN ,∴AD//EF ,∴∠DEF=∠EFN ,又∵EF=FB ,∴∠BFE=2∠EFN ,∴∠BFE=2∠DEF ,故④错误,所以正确的有3个,故选C.【点睛】本题考查了平行四边形的性质,直角三角形斜边中线的性质,等腰三角形的判断与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.10.C解析:C【分析】根据等边三角形边长为2,在Rt BDE ∆中求得DE 的长,再根据CM 垂直平分DF ,在Rt CDN ∆中求得CN ,利用三角形中位线求得MN 的长,最后根据线段和可得CM 的长.【详解】 解:等边三角形边长为2,12BD CD =, ∴23BD =,43CD =, 等边三角形ABC 中,//DF AB ,60FDC B ∴∠=∠=︒,90EDF ∠=︒,30BDE ∴∠=︒,DE BE ∴⊥,1123BE BD ∴==,2222213()33DE BD BE ⎛⎫--= ⎪⎝⎭,如图,连接DM ,则Rt DEF ∆中,12DM EF FM ==,60FDC FCD ∠=∠=︒,CDF ∴∆是等边三角形,43CD CF ∴==, CM ∴垂直平分DF ,30DCN ∴∠=︒,Rt CDN ∴∆中,43DF =,32DN =,23CN =, ∵EM =FM ,DN =FN ,∴132MN ED ==, 23353CM CN MN ∴=+=+=. 故选:C .【点睛】本题主要考查了三角形的综合应用,解决问题的关键是掌握等边三角形的性质、勾股定理、平行线的性质、线段垂直平分线的判定等.熟练掌握这些性质是解题的关键.二、填空题11.12或20【分析】根据题意分别画出图形,BC 边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【详解】解:情况一:当BC 边上的高在平行四边形的内部时,如图1所示:在平行四边形ABCD 中,BC 边上的高为4,AB=5,AC=5在Rt△ACE中,由勾股定理可知:2222CE AC AE,(25)42在Rt△ABE中,由勾股定理可知:2222BE AB AE543=-=-=,∴BC=BE+CE=3+2=5,此时平行四边形ABCD的周长等于2×(AB+BC)=2×(5+5)=20;情况二:当BC边上的高在平行四边形的外部时,如图2所示:在平行四边形ABCD中,BC边上的高为AE=4,AB=5,AC=25在Rt△ACE中,由勾股定理可知:2222CE AC AE,(25)42在Rt△ABE中,由勾股定理可知:2222=-=-=,BE AB AE543∴BC=BE-CE=3-2=1,∴平行四边形ABCD的周长为2×(AB+BC)=2×(5+1)=12,综上所述,平行四边形ABCD的周长等于12或20.故答案为:12或20.【点睛】此题主要考查了平行四边形的性质以及勾股定理等知识,分高在平行四边形内部还是外部讨论是解题关键.12.25【详解】由于点B与点D关于AC对称,所以如果连接DE,交AC于点P,那PE+PB的值最小.在Rt△CDE中,由勾股定理先计算出DE的长度,即为PE+PB的最小值.连接DE,交AC于点P,连接BD.∵点B与点D关于AC对称,∴DE的长即为PE+PB的最小值,∵AB=4,E是BC的中点,∴CE=2,在Rt△CDE中, DE=25.考点:(1)、轴对称-最短路线问题;(3)、正方形的性质.13.222+【分析】由题意根据三角形的中位线的性质得到EF=12PD,得到C△CEF=CE+CF+EF=CE+12(CP+PD)=12(CD+PC+PD)=12C△CDP,当△CDP的周长最小时,△CEF的周长最小;即PC+PD的值最小时,△CEF的周长最小;并作D关于AB的对称点D′,连接CD′交AB于P,进而分析即可得到结论.【详解】解:∵E为CD中点,F为CP中点,∴EF=12 PD,∴C△CEF=CE+CF+EF=CE+12(CP+PD)=12(CD+PC+PD)=12C△CDP∴当△CDP的周长最小时,△CEF的周长最小;即PC+PD的值最小时,△CEF的周长最小;如图,作D关于AB的对称点T,连接CT,则PD=PT,∵AD=AT=BC=2,CD=4,∠CDT=90°,∴22224442CT CD DT++=∵△CDP的周长=CD+DP+PC=CD+PT+PC,∵PT+PC≥CT,∴PT+PC≥42∴PT+PC的最小值为2,∴△PDC的最小值为4+42∴C△CEF=12C△CDP=222.故答案为:222.【点睛】本题考查轴对称-最短距离问题以及三角形的周长的计算等知识,解题的关键是学会利用轴对称解决最值问题.14.8【分析】通过作辅助线使得△CAO ≌△GBO ,证明△COG 为等腰直角三角形,利用勾股定理求出CG 后,即可求出BC 的长.【详解】如图,延长CB 到点G ,使BG=AC .∵根据题意,四边形ABED 为正方形,∴∠4=∠5=45°,∠EBA=90°,∴∠1+∠2=90°又∵三角形BCA 为直角三角形,AB 为斜边,∴∠2+∠3=90°∴∠1=∠3∴∠1+∠5=∠3+∠4,故∠CAO =∠GBO ,在△CAO 和△GBO 中,CA GB CAO GBO AO BO =⎧⎪∠=∠⎨⎪=⎩故△CAO ≌△GBO ,∴CO =GO=627=∠6,∵∠7+∠8=90°,∴∠6+∠8=90°,∴三角形COG 为等腰直角三角形,∴()()2222=6262CO GO ++, ∵CG=CB+BG ,∴CB=CG -BG=12-4=8,故答案为8.【点睛】本题主要考查正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,根据题意建立正确的辅助线以及掌握正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质是解答本题的关键.15.102-【分析】连结AC,取OC中点M,连结 MB,MG,则MB,MG为定长,利用两点之间线段最短解决问题即可.【详解】连接AC,交EF于O,∵AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,∵AE=CF,∴△AEO≌△CFO(ASA),∴OA=OC,∴O是正方形的中心,∵AB=BC=4,∴AC=2OC=2,取OC中点M,连结 MB,MG,过点M作MH⊥BC于H,∵MC=12OC2,∴MH=CH=1,∴BH=4−1=3,由勾股定理可得MB2231+10在Rt△GOC中,M是OC的中点,则MG=12OC2∵BG≥BM−MG102,当B,M,G三点共线时,BG102,102.【点睛】本题主要考查了正方形的性质,根据正方形的性质得出当E,F运动到AD,BC的中点时,MG最小是解决本题的关键.16.①②③④【分析】根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP =GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.【详解】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG=CE,故①正确;设BG、CE相交于点N,AC、BG相交于点K,如图1,∵△ABG≌△AEC,∴∠ACE=∠AGB,∵∠AKG=∠NKC,∴∠CNG=∠CAG=90°,∴BG⊥CE,故②正确;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,∵AH⊥BC,∴∠ABH+∠BAH=90°,∵∠BAE =90°,∴∠EAP +∠BAH =90°,∴∠ABH =∠EAP ,即∠EAM =∠ABC ,故④正确;∵∠AHB =∠P =90°,AB =AE ,∴△ABH ≌△EAP (AAS ),∴EP =AH ,同理可得GQ =AH ,∴EP =GQ ,∵在△EPM 和△GQM 中,90P MQG EMP GMQ EP GQ ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△EPM ≌△GQM (AAS ),∴EM =GM ,∴AM 是△AEG 的中线,故③正确.综上所述,①②③④结论都正确.故答案为:①②③④.【点睛】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.17.83或4433- 【分析】 连接AC 交BD 于O ,由菱形的性质可得AB=BC=4,∠ABD=30°,AC ⊥BD ,BO=DO ,AO=CO ,可证四边形BEGF 是菱形,可得∠ABG=30°,可得点B ,点G ,点D 三点共线,由直角三角形性质可求BD=43,AC=4,分两种情况讨论,利用等腰三角形的性质可求解.【详解】如图,连接AC 交BD 于O ,∵菱形ABCD 的边长是4,∠ABC=60°,∴AB=BC=4,∠ABD=30°,AC ⊥BD ,BO=DO ,AO=CO ,∵EG ∥BC ,FG ∥AB ,∴四边形BEGF 是平行四边形,又∵BE=BF ,∴四边形BEGF 是菱形,∴∠ABG=30°,∴点B ,点G ,点D 三点共线,∵AC ⊥BD ,∠ABD=30°,∴AO=12AB=2,=∴BD=AC=4,同理可求BE ,即, 若AD=DG'=4时,∴BG'=BD-DG'=4,∴BE'43==-; 若AG''=G''D 时,过点G''作G''H ⊥AD 于H ,∴AH=HD=2,∵∠ADB=30°,G''H ⊥AD ,∴DG''=2HG'',∵222HD HG''DG''+=,解得:HG''=,DG''=2HG''=∴BG''=BD-DG''=-= ∴BE''=83,综上所述:BE 为83或4- 【点睛】本题考查了菱形的性质,含30度角的直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.18.②③【分析】根据菱形的性质可知AC ⊥BD ,所以在Rt △AFP 中,AF 一定大于AP ,从而判断①;设∠BAE=x ,然后根据等腰三角形两底角相等表示出∠ABE ,再根据菱形的邻角互补求出∠ABE ,根据三角形内角和定理列出方程,求出x 的值,求出∠BFE 和∠BE 的度数,从而判断②③.【详解】解:在菱形ABCD 中,AC ⊥BD ,∴在Rt△AFP中,AF一定大于AP,故①错误;∵四边形ABCD是菱形,∴AD∥BC,∴∠ABE+∠BAE+∠EAD=180°,设∠BAE=x°,则∠EAD=2x°,∠ABE=180°-x°-2x°,∵AB=AE,∠BAE=x°,∴∠ABE=∠AEB=180°-x°-2x°,由三角形内角和定理得:x+180-x-2x+180-x-2x=180,解得:x=36,即∠BAE=36°,∠BAE=180°-36°-2×36°=70°,∵四边形ABCD是菱形,∴∠BAD=∠CBD=12∠ABE=36°,∴∠BFE=∠ABD+∠BAE=36°+36°=72°,∴∠BEF=180°-36°-72°=72°,∴BE=BF=AF.故③正确∵∠AFD=∠BFE=72°,∠EAD=2x°=72°∴∠AFD=∠EAD∴AD=FD又∵AD=AB=AE∴AE=FD,故②正确∴正确的有②③故答案为:②③【点睛】本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.19.8或3【分析】根据AE和DF是否相交分类讨论,分别画出对应的图形,根据平行四边形的性质、平行线的性质、角平分线的定义和等角对等边即可得出结论.【详解】解:①当AE和DF相交时,如下图所示∵四边形ABCD为平行四边形,AD=11,EF=5,∴BC=AD=11,AD∥BC,AB=CD∴∠DAE=∠BEA,∠ADF=∠CFD∵AE 平分∠BAD,DF 平分∠ADC∴∠DAE=∠BAE,∠ADF=∠CDF∴∠BEA=∠BAE,∠CFD=∠CDF∴BE=AB,CF=CD∴BE=AB= CD= CF∵BE+CF=BC+EF∴2AB=11+5解得:AB=8;②当AE和DF不相交时,如下图所示∵四边形ABCD为平行四边形,AD=11,EF=5,∴BC=AD=11,AD∥BC,AB=CD∴∠DAE=∠BEA,∠ADF=∠CFD∵AE 平分∠BAD,DF 平分∠ADC∴∠DAE=∠BAE,∠ADF=∠CDF∴∠BEA=∠BAE,∠CFD=∠CDF∴BE=AB,CF=CD∴BE=AB= CD= CF∵BE+CF+EF =BC∴2AB+5=11解得:AB=3综上所述:AB=8或3故答案为:8或3.【点睛】此题考查的是平行四边形的性质、平行线的性质、角平分线的定义和等腰三角形的性质,掌握平行四边形的性质、平行线的性质、角平分线的定义和等角对等边是解决此题的关键.20.2【分析】分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN=12CD=2,∴点G移动路径的长是2,故答案为:2.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.三、解答题21.(1)见解析;(2)四边形EGCF为平行四边形,理由见解析;(3)AC=2AB.【分析】(1)根据平行四边形的性质得到OE=OF即可证得结论;(2)利用AOE COF∆≅∆得到∠EAO=∠FCO,AE=CF,由此推出AE∥CF,EG=CF即可证得四边形EGCF是平行四边形;(3)AC=2AB,根据平行四边形的性质推出AB=AO,利用点E是OB的中点,得到AG⊥OB,即可得到四边形EGCF是矩形.【详解】(1)四边形ABCD为平行四边形,OA OC∴=,OB OD=,点E 、F 分别为OB 、OD 的中点,12OE OB ∴=,12OF OD =, 则OE OF =,在AOE ∆与COF ∆中OA OC AOE COF OE OF =⎧⎪∠=∠⎨⎪=⎩AOE COF ∴∆≅∆;(2)AOE COF ∆≅∆,EAO FCO ∴∠=∠,AE CF =,//AE CF ∴,又GE AE =,GE CF ∴=,∴四边形EGCF 为平行四边形;(3)当AC=2AB 时,四边形EGCF 是矩形.∵AC=2AB ,AC=2AO ,∴AB=AO ,∵点E 是OB 的中点,∴AG ⊥OB ,∴∠GEF=90°,∴四边形EGCF 是矩形.故答案为:AC=2AB .【点睛】此题考查了平行四边形的判定及性质,三角形全等的判定及性质,矩形的判定定理,等腰三角形的三线合一的性质,熟练掌握各知识点并运用解题是关键.22.(1)①证明见解析;②证明见解析;(2)DE =. 【分析】(1)过点D 作//DM GH 交BC 延长线于点M ,连接EH ,①由正方形的性质可得//AD BC ,AD CD =,90A ADC DCM ∠=∠=∠=︒,即可证明四边形DGHM 是平行四边形,可得DM=GH ,由90GOD ∠=︒可得∠EDM=90°,根据直角三角形两锐角互余的性质可得12∠=∠,利用ASA 可证明△ADE≌△CDM,可得DE=DM ,即可证明DE=GH ;②由①得DM=DE ,根据勾股定理可得,利用三角形三边关系即可得结论; (2)过点D 作DN//GH 交BC 于点N ,作ADM CDN ∠=∠,DM 交BA 延长线于点M ,可证明四边形GHND 为平行四边形,可得DN HG =,GD HN =,根据勾股定理可求出CN 的长,利用AAS 可证明ADM CDN ∆∆≌,可得AM NC =,DM DN =,根据平行线的性质∠EDN=45°,根据角的和差故选可得∠MDE=∠EDN ,利用SAS 可证明MDE NDE ∆∆≌,即可证明AE CN EN +=,设AE x =,利用勾股定理可求出x 的值,进而利用勾股定理求出DE 的值即可得答案.【详解】(1)如图(1),过点D 作//DM GH 交BC 延长线于点M ,连接EH ,EM , ①∵四边形ABCD 为正方形,∴//AD BC ,AD CD =,90A ADC DCM ∠=∠=∠=︒∴四边形DGHM 为平行四边形,∴DM=GH ,GD HM =,∵90GOD ∠=︒,∴90EDM EOH ∠=∠=︒,∴290EDC ∠+∠=︒,∵90ADC ∠=︒,∴190EDC ∠+∠=︒,∴12∠=∠,在ADE ∆和CDM ∆中12A DCM AD DC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ADE CDM ∆∆≌,∴DE DM =,∴DE GH =.②在DEM ∆中,∠EDM=90°,∴222DE DM EM +=,∵DE DM =,∴222DE EM =, ∴2EM DE =,在EHM ∆中,HM EH EM +>,∵GD HM =, ∴2GD EH GH +≥.(2)如图(2),过点D 作DN//GH 交BC 于点N ,则四边形GHND 为平行四边形, ∴DN HG =,GD HN =,∵90C ∠=︒,4CD AB ==,25HG DN ==,∴222CN DN DC =-=,∴422BN BC CN =-=-=,作ADM CDN ∠=∠,DM 交BA 延长线于点M ,在ADM ∆和CDN ∆中90C MAD CDN ADM DC AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴ADM CDN ∆∆≌,∴AM NC =,DM DN =,∵45GOD EOH ∠=∠=︒,∴45EDN ∠=︒,∴45ADE CDN ∠+∠=︒,∴45ADE ADN MDE ∠+∠=︒=∠,在MDE ∆和NDE ∆中MD ND MDE EDN DE DE =⎧⎪∠=∠⎨⎪=⎩,∴MDE NDE ∆∆≌,∴EM EN =,即AE AM AE CN EN +=+=,设AE x =,则BE=4-x ,在Rt BEN ∆中,2222(2)x x +=+,解得:43x =, ∴22224410433DE AD AE ⎛⎫=+=+= ⎪⎝⎭.【点睛】本题考查正方形的性质、平行四边形的判定与性质、全等三角形的判定与性质、三角形的三边关系及勾股定理,熟练掌握相关性质及判定定理,并正确作出辅助线是解题关键.23.(1)详见解析;(2)2BH AE =,理由详见解析【分析】1)如图1,连接DF ,根据对称得:△ADE ≌△FDE ,再由HL 证明Rt △DFG ≌Rt △DCG ,可得结论;(2)如图2,作辅助线,构建AM=AE ,先证明∠EDG=45°,得DE=EH ,证明△DME ≌△EBH ,则EM=BH ,根据等腰直角△AEM 得:2EM AE =,得结论;【详解】证明:(1)如图1,连接DF ,∵四边形ABCD 是正方形,∴DA DC =,90A C ∠=∠=︒,∵点A 关于直线DE 的对称点为F ,∴ADE ∆≌FDE ∆,∴DA DF DC ==,90DFE A ∠=∠=︒,∴90DFG ∠=︒,在Rt DFG ∆和Rt DCG ∆中,∵DF DCDG DG =⎧⎨=⎩∴Rt DFG ∆≌Rt DCG ∆(HL ),∴GF GC =;(2)2BH AE =,理由是:如图2,在线段AD 上截取AM ,使AM AE =,∵AD AB =,∴DM BE =,由(1)知:12∠=∠,34∠=∠,∵90ADC ∠=︒,∴123490∠+∠+∠+∠=︒,∴222390∠+∠=︒,∴2345∠+∠=︒,即45EDG ∠=︒,∵EH DE ⊥,∴90DEH ∠=︒,DEH ∆是等腰直角三角形,∴190AED BEH AED ∠+∠=∠+∠=︒,DE EH =,∴1BEH ∠=∠,在DME ∆和EBH ∆中,1DM BE BEH DE EH =⎧⎪∠=∠⎨⎪=⎩∴DME ∆≌EBH ∆∴EM BH =,Rt AEM ∆中,90A ∠=︒,AM AE =,∴EM =,∴BH ; 【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,对称的性质,等腰直角三角形的性质等知识,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,作出辅助线也是解决本题的关键.24.(1)8-2t ,8-t ;(2)83或74【分析】(1)根据P 、Q 的运动速度以及AB 和CD 的长即可表示;(2)分PQ=PB 、BP=BQ 和QP=QB 三种情况进行分析即可.【详解】解:(1)由题意可得:DP=2t ,AQ=t ,∴PC=8-2t ,BQ=8-t ,故答案为:8-2t ,8-t ;(2)当PQ=PB 时,如图①,QH=BH ,则t+2t=8,。

人教版八年级初二数学第二学期平行四边形单元 易错题提高题学能测试试卷

人教版八年级初二数学第二学期平行四边形单元 易错题提高题学能测试试卷

人教版八年级初二数学第二学期平行四边形单元 易错题提高题学能测试试卷一、选择题1.如图,在菱形ABCD 中,点F 为边AB 的中点,DF 与对角线AC 交于点G ,过点G 作GE AD ⊥于点E ,若2AB =,且12∠=∠,则下列结论不正确的是( )A .DF AB ⊥ B .2CG GA =C .CG DF GE =+D .31BFGC S =-四边形2.如图,ABCD 中,对角线,AC BD 交于点O ,2BD AD =,, , E F G 分别是,OC OD ,AB 的中点.下列结论正确的是( )①EG EF =;②EFG GBE ≌△△;③FB 平分EFG ;④EA 平分GEF ∠;⑤四边形BEFG 是菱形.A .③⑤B .①②④C .①②③④D .①②③④⑤3.如图,把正方形ABCD 沿对边中点所在的直线对折后展开,折痕为,MN 再过点B 折叠纸片,使点A 格在MN 上的点F 处,折痕为,BE 若AB 长为2,则EN 的长为(( )A .233-B .322-C .22D .234.如图,在矩形ABCD 中,P 是边AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,如果3, 4AB AD ==,那么( )A .125PE PF +=B .121355PE PF <+< C .5PE PF += D .34PE PF <+< 5. 如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP=EF ;②AP ⊥EF ;③△APD 一定是等腰三角形;④∠PFE=∠BAP ;⑤PD=2EC .其中正确结论的番号是( )A .①②④⑤B .①②③④⑤C .①②④D .①④6.如图,长方形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠得到△AFE ,且点F 在长方形ABCD 内,将AF 延长交边BC 于点G ,若BG=3CG ,则AD AB=( )A .54B .1C .5D .6 7.如图,在一张矩形纸片ABCD 中,4AB =,8BC =,点E ,F 分别在AD , BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分DCH ∠;③线段BF 的取值范围为34BF ≤≤;④当点H 与点A 重合时,25EF =.以上结论中,你认为正确的有( )个.A .1B .2C .3D .48.如图,90MON ∠=︒,矩形ABCD 在MON ∠的内部,顶点A ,B 分别在射线OM ,ON 上,4AB =,2BC =,则点D 到点O 的最大距离是( )A .222-B .222+C .252-D .22+9.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =185.其中正确结论的个数是( )A .1B .2C .3D .410.如图所示,四边形ABCD 是边长为1的正方形,E 为BC 边的中点,沿AP 折叠使D 点落在AE 上的点H 处,连接PH 并延长交BC 于点F ,则EF 的长为( )A .525-B .55-C .353-D .14二、填空题11.如图,某景区湖中有一段“九曲桥”连接湖岸A ,B 两点,“九曲桥”的每一段与AC 平行或BD 平行,若AB =100m ,∠A =∠B =60°,则此“九曲桥”的总长度为_____.12.如图,正方形ABCD 的对角线相交于点O ,对角线长为1cm ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_____.13.如图,正方形ABCD 中,DAC ∠的平分线交DC 于点E ,若P ,Q 分别是AD 和AE 上的动点,则DQ+PQ 能取得最小值4时,此正方形的边长为______________.14.如图,正方形ABCD 的边长为6,点E 、F 分别在边AD 、BC 上.将该纸片沿EF 折叠,使点A 的对应点G 落在边DC 上,折痕EF 与AG 交于点Q ,点K 为GH 的中点,则随着折痕EF 位置的变化,△GQK 周长的最小值为____.15.如图,Rt ABE ∆中,90,B AB BE ︒∠==, 将ABE ∆绕点A 逆时针旋转45︒,得到,AHD ∆过D 作DC BE ⊥交BE 的延长线于点C ,连接BH 并延长交DC 于点F ,连接DE 交BF 于点O .下列结论:①DE 平分HDC ∠;②DO OE =; ③CD HF =; ④2BC CF CE -=; ⑤H 是BF 的中点,其中正确的是___________16.在ABC 中,AB=12,AC=10,BC=9,AD 是BC 边上的高.将ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则DEF 的周长为______.17.如图,已知在△ABC 中,AB=AC=13,BC=10,点M 是AC 边上任意一点,连接MB ,以MB 、MC 为邻边作平行四边形MCNB ,连接MN ,则MN 的最小值是______18.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.19.如图,长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1.正方形AEFG 绕点A 旋转的过程中,线段CF 的长的最小值为_____.20.李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D 落在AB 边的点F 处,得折痕AE ,再折叠,使点C 落在AE 边的点G 处,此时折痕恰好经过点B ,如果AD=a ,那么AB 长是多少?”常明说;“简单,我会. AB 应该是_____”.常明回答完,又对李刚说:“你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B ,而是经过了AB 边上的M 点,如果AD=a ,测得EC=3BM ,那么AB 长是多少?”李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.三、解答题21.如图,在菱形ABCD 中,AB =2cm ,∠ADC =120°.动点E 、F 分别从点B 、D 同时出发,都以0.5cm/s 的速度向点A 、C 运动,连接AF 、CE ,分别取AF 、CE 的中点G 、H .设运动的时间为ts (0<t <4).(1)求证:AF ∥CE ;(2)当t 为何值时,△ADF 的面积为32cm 2; (3)连接GE 、FH .当t 为何值时,四边形EHFG 为菱形.22.如图正方形ABCD ,DE 与HG 相交于点O (O 不与D 、E 重合).(1)如图(1),当90GOD ∠=︒,①求证:DE GH =;②求证:2GD EH DE +>;(2)如图(2),当45GOD ∠=︒,边长4AB =,5HG =,求DE 的长.23.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH DE ⊥交DG 的延长线于点H ,连接BH .;(1)求证:GF GC(2)用等式表示线段BH与AE的数量关系,并证明.24.如图,在平行四边形ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=5,且BF=DF,求旋转角度α的大小.25.如图①,已知正方形ABCD的边长为3,点Q是AD边上的一个动点,点A关于直线BQ的对称点是点P,连接QP、DP、CP、BP,设AQ=x.(1)BP+DP的最小值是_______,此时x的值是_______;(2)如图②,若QP的延长线交CD边于点M,并且∠CPD=90°.①求证:点M是CD的中点;②求x的值.(3)若点Q是射线AD上的一个动点,请直接写出当△CDP为等腰三角形时x的值.26.(1)问题探究:如图①,在四边形ABCD中,AB∥CD,E是BC的中点,AE是∠BAD 的平分线,则线段AB,AD,DC之间的等量关系为;(2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论;(3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论.27.如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AC于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.(1)①求证:四边形BFDE是菱形;②求∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的数量关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.28.如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).(1)求G点坐标(2)求直线EF解析式(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由29.在直角梯形ABCD 中,AB ∥CD ,∠BCD =90°,AB =AD =10cm ,BC =8cm 。

人教版平行四边形单元 易错题难题综合模拟测评学能测试

人教版平行四边形单元 易错题难题综合模拟测评学能测试

一、选择题1.已知点A (4,0),B (0,﹣4),C (a ,2a )及点D 是一个平行四边形的四个顶点,则线段CD 的长的最小值为( )A .655B .1255C .32D .422.如图,菱形ABCD 中,∠ABC =60°,AB =4,对角线AC 、BD 交于点O ,E 是线段BO 上一动点,F 是射线DC 上一动点,若∠AEF =120°,则线段EF 的长度的整数值的个数有( )A .1个B .2个C .3个D .4个3.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,E 是AC 上的一点,且AB=AE ,过点A 作AF ⊥BE ,垂足为F ,交BD 于点G ,点H 在AD 上,且EH ∥AF.若正方形ABCD 的边长为2,下列结论:①OE=OG ;②EH=BE ;③AH=222-,其中正确的有( )A .0个B .1个C .2个D .3个4.如图,在正方形ABCD 中,E ,F 分别为BC ,DC 的中点,P 为对角线AC 上的一个动点,则下列线段的长等于BP EP +最小值的是( )A .AB B .CEC .ACD .AF5.如图,在正方形ABCD 中,点E ,F 分别在BC 和CD 上,过点A 作GA AE ⊥,CD 的延长线交AG 于点G ,BE DF EF +=,若30DAF ∠=︒,则BAE ∠的度数为( )A .15°B .20°C .25°D .30°6.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片,使AD 落在BC 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB ,AC 于点E 、G ,连结GF ,给出下列结论①∠AGD =110.5°;②S △AGD =S △OGD ;③四边形AEFG 是菱形;④BF =2OF ;⑤如果S △OGF =1,那么正方形ABCD 的面积是12+82,其中正确的有( )个.A .2个B .3个C .4个D .5个7.如图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将ADE 沿AE 对折至AFE ,延长交BC 于点G ,连接AG.则BG 的长( )A .1B .2C 3D .38.如图,四边形ABCD 为平行四边形,D ∠为锐角,BAD ∠的平分线AE 交CD 于点F ,交BC 的延长线于点E ,且AF FE =.若25AB =,ABCD 面积为300,则AF 的长度为( )A .30B .15C .40D .209.如图,ABCD 的对角线,AC BD 交于点,O DE 平分ADC ∠交BC 于点,60,E BCD ∠=︒2,AD AB =连接OE .下列结论:ABCD S AB BD =⋅①;DB ②平分ADE ∠;AB DE =③;CDE BOC S S =④,其中正确的有( )A .1个B .2个C .3个D .4个10.如图,在矩形ABCD 中,AB =8,BC =4.将矩形沿AC 折叠,CD ′与AB 交于点F ,则AF :BF 的值为( )A .2B .53C .54D .3二、填空题11.在平行四边形ABCD 中, BC 边上的高为4 ,AB =5 ,25AC = ,则平行四边形ABCD 的周长等于______________ .12.已知:点B 是线段AC 上一点,分别以AB ,BC 为边在AC 的同侧作等边ABD △和等边BCE ,点M ,N 分别是AD ,CE 的中点,连接MN .若AC=6,设BC=2,则线段MN 的长是__________.13.如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为_____.14.如图,在矩形ABCD 中,AD =2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF ,其中正确的有_____.15.如图,在矩形ABCD 中,∠ACB =30°,BC =23,点E 是边BC 上一动点(点E 不与B ,C 重合),连接AE ,AE 的中垂线FG 分别交AE 于点F ,交AC 于点G ,连接DG ,GE .设AG =a ,则点G 到BC 边的距离为_____(用含a 的代数式表示),ADG 的面积的最小值为_____.16.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.17.在平面直角坐标系xOy 中,点A 、B 分别在x 轴、y 轴的正半轴上运动,点M 为线段AB 的中点.点D 、E 分别在x 轴、y 轴的负半轴上运动,且DE =AB =10.以DE 为边在第三象限内作正方形DGFE ,则线段MG 长度的最大值为_____.18.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .19.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.20.如图所示,在四边形ABCD 中,顺次连接四边中点E 、F 、G 、H ,构成一个新的四边形,请你对四边形ABCD 添加一个条件,使四边形EFGH 成一个菱形,这个条件是__________.三、解答题21.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长;(3)在(2)的条件下,求四边形BEDF 的面积.22.已知:在ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BD 与CF 的位置关系为__________;CF 、BC 、CD 三条线段之间的数量关系____________________.(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,请你写出CF 、BC 、CD 三条线段之间的数量关系并加以证明;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系.②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.23.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.24.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN :①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).25.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由; (3)当02x <<时,六边形AEFCHG 的面积可能等于34吗?如果能,求此时x 的值;如果不能,请说明理由.26.探究:如图①,△ABC 是等边三角形,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、AN ,延长MC 交AN 于点P .(1)求证:△ACN ≌△CBM ;(2)∠CPN = °;(给出求解过程)(3)应用:将图①的△ABC 分别改为正方形ABCD 和正五边形ABCDE ,如图②、③,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、DN ,延长MC 交DN 于点P ,则图②中∠CPN = °;(直接写出答案)(4)图③中∠CPN = °;(直接写出答案)(5)拓展:若将图①的△ABC 改为正n 边形,其它条件不变,则∠CPN = °(用含n 的代数式表示,直接写出答案).27.在正方形AMFN中,以AM为BC边上的高作等边三角形ABC,将AB绕点A逆时针旋转90°至点D,D点恰好落在NF上,连接BD,AC与BD交于点E,连接CD,(1)如图1,求证:△AMC≌△AND;(2)如图1,若DF=3,求AE的长;(3)如图2,将△CDF绕点D顺时针旋转α(090α<<),点C,F的对应点分别为1C、1F,连接1AF、1BC,点G是1BC的中点,连接AG,试探索1AGAF是否为定值,若是定值,则求出该值;若不是,请说明理由.28.如图①,在等腰Rt ABC中,90BAC∠=,点E在AC上(且不与点A、C重合),在ABC的外部作等腰Rt CED,使90CED∠=,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.()1请直接写出线段AF,AE的数量关系;()2①将CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;②若25AB=,2CE=,在图②的基础上将CED绕点C继续逆时针旋转一周的过程中,当平行四边形ABFD为菱形时,直接写出线段AE的长度.29.在四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF ,GH 分别交边AB 、CD ,AD 、BC 于点E 、F 、G 、H .(1)观察发现:如图①,若四边形ABCD 是正方形,且EF ⊥GH ,易知S △BOE =S △AOG ,又因为S △AOB =14S 四边形ABCD ,所以S 四边形AEOG = S 正方形ABCD ; (2)类比探究:如图②,若四边形ABCD 是矩形,且S 四边形AEOG =14S 矩形ABCD ,若AB =a ,AD =b ,BE =m ,求AG 的长(用含a 、b 、m 的代数式表示); (3)拓展迁移:如图③,若四边形ABCD 是平行四边形,且S 四边形AEOG =14S ▱ABCD ,若AB =3,AD =5,BE =1,则AG = .30.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC CF 、为邻边作平行四边形ECFG 。

人教版平行四边形单元 易错题综合模拟测评学能测试试卷

人教版平行四边形单元 易错题综合模拟测评学能测试试卷

人教版平行四边形单元 易错题综合模拟测评学能测试试卷一、选择题1.在正方形 ABCD 中, P 为 AB 的中点,BE PD ⊥的延长线于点 E ,连接 AE 、 BE ,FA AE ⊥ 交 DP 于点 F ,连接 BF 、FC ,下列结论:① ABE ADF ≅ ;② FB = AB ;③ CF PD ⊥ ;④ FC = EF . 其中正确的是( )A .①②④B .①③④C .①②③D .①②③④2.如图,菱形ABCD 中,∠A 是锐角,E 为边AD 上一点,△ABE 沿着BE 折叠,使点A 的对应点F 恰好落在边CD 上,连接EF ,BF ,给出下列结论:①若∠A =70°,则∠ABE =35°;②若点F 是CD 的中点,则S △ABE 13=S 菱形ABCD 下列判断正确的是( )A .①,②都对B .①,②都错C .①对,②错D .①错,②对3.如图所示,正方形ABCD 中,E 为BC 边上一点,连接AE ,作AE 的垂直平分线交AB 于G ,交CD 于F ,若2DF =,4BG =,则AE 的长为( )A .7B .310C .10D .124.如图,在矩形ABCD 中,25,4,BC AB O ==为边AB 的中点,P 为矩形ABCD 外一动点,且90APC ∠=,则线段OP 的最大值为( )A .53+B .35+C .452-D .231+5.如图,点E 在正方形ABCD 外,连接AE BE DE ,,,过点A 作AE 的垂线交DE 于F ,若210AE AF BF ===,,则下列结论不正确的是( )A .AFD AEB ∆≅∆B .点B 到直线AE 的距离为2C .EB ED ⊥ D .16AFD AFB S S ∆∆+=+6.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CE 平分DCB ∠交BD 于点F ,且60ABC ∠=︒,2AB BC =,连接OE ,下列结论:①30ACD ∠=︒;②·ABCD S AC BC =;③:1:4OE AC =.其中正确的有( )A .0个B .1个C .2个D .3个7.已知四边形ABCD 中,对角线BD 被AC 平分,那么再加上下述中的条件( ) 可以得到结论: “四边形ABCD 是平行四边形”.A .AB =CD B .∠BAD=∠BCDC .∠ABC=∠ADCD .AC= BD8.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,依此下去,第n 个正方形的面积为( )A .(2)n ﹣1B .2n ﹣1C .(2)nD .2n9.如图,一个四边形花坛ABCD ,被两条线段MN , EF 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S 1、S 2、S 3、S 4,若MN ∥AB ∥DC ,EF ∥DA ∥CB ,则有( )A .S 1= S 4B .S 1 + S 4 = S 2 + S 3C .S 1 + S 3 = S 2 + S 4D .S 1·S 4 = S 2·S 310.如图,△ABC 中,AB =24,BC =26,CA =14.顺次连接△ABC 各边中点,得到△A 1B 1C 1;再顺次连接△A 1B 1C 1各边中点,得到△A 2B 2C 2…如此进行下去,得到n n n A B C ,则△A 8B 8C 8的周长为( )A .1B .12C .14D .18二、填空题11.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段DB 上一动点,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.12.如图,在矩形ABCD 中,4AB =,2AD =,E 为边CD 的中点,点P 在线段AB上运动,F 是CP 的中点,则CEF ∆的周长的最小值是____________.13.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62,那么BC=______.14.如图,在矩形ABCD 中,AD =2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF ,其中正确的有_____.15.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,若27CDF ∠=︒,则DAB ∠的度数为____________.16.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .17.菱形ABCD 的周长为24,∠ABC=60°,以AB 为腰在菱形外作底角为45°的等腰△ABE ,连结AC ,CE ,则△ACE 的面积为___________.18.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.19.如图,长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1.正方形AEFG 绕点A 旋转的过程中,线段CF 的长的最小值为_____.20.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.三、解答题21.在数学的学习中,有很多典型的基本图形.(1)如图①,ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为D 、E .试说明ABD CAE ≌;(2)如图②,ABC 中,90BAC ∠=︒,AB AC =,点D 、A 、F 在同一条直线上,BD DF ⊥,3AD =,4BD =.则菱形AEFC 面积为______.(3)如图③,分别以Rt ABC 的直角边AC 、AB 向外作正方形ACDE 和正方形ABFG ,连接EG ,AH 是ABC 的高,延长HA 交EG 于点I ,若6AB =,8AC =,求AI 的长度.22.正方形ABCD 中,对角线AC 与BD 交于点O ,点P 是正方形ABCD 对角线BD 上的一个动点(点P 不与点B ,O ,D 重合),连接CP 并延长,分别过点D ,B 向射线作垂线,垂足分别为点M ,N .(1)补全图形,并求证:DM =CN ;(2)连接OM ,ON ,判断OMN 的形状并证明.23.在矩形ABCD 中,连结AC ,点E 从点B 出发,以每秒1个单位的速度沿着B A →的路径运动,运动时间为t (秒).以BE 为边在矩形ABCD 的内部作正方形BEHG .(1)如图,当ABCD 为正方形且点H 在ABC ∆的内部,连结,AH CH ,求证:AH CH =;(2)经过点E 且把矩形ABCD 面积平分的直线有______条;(3)当9,12AB BC ==时,若直线AH 将矩形ABCD 的面积分成1:3两部分,求t 的值.24.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动.(1)求点B 的坐标;(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.25.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE以每秒2个单位长度的速度运动,Q为AP的中点,过点Q作QH⊥AB于点H,在射线AE的下方作平行四边形PQHM(点M在点H的右侧),设P点运动时间为t秒.(1)直接写出AQH的面积(用含t的代数式表示).(2)当点M落在BC边上时,求t的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t的值;若不存在请说明理由(不能添加辅助线).26.共顶点的正方形ABCD与正方形AEFG中,AB=13,AE=52.(1)如图1,求证:DG=BE;(2)如图2,连结BF,以BF、BC为一组邻边作平行四边形BCHF.①连结BH,BG,求BHBG的值;②当四边形BCHF为菱形时,直接写出BH的长.27.如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AC于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.(1)①求证:四边形BFDE是菱形;②求∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD ,H 为GD 的中点,连接FH ,并延长FH 交ED 于点J ,连接IJ ,IH ,IF ,IG .试探究线段IH 与FH 之间满足的数量关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图3,矩形ABCD 满足AB =AD 时,点E 是对角线AC 上一点,连接DE ,作EF ⊥DE ,垂足为点E ,交AB 于点F ,连接DF ,交AC 于点G .请直接写出线段AG ,GE ,EC 三者之间满足的数量关系.28.如图,在四边形OABC 是边长为4的正方形点P 为OA 边上任意一点(与点O A 、不重合),连接CP ,过点P 作PM CP ⊥,且PM CP =,过点M 作MN AO ∥,交BO 于点,N 联结BM CN 、,设OP x =.(1)当1x =时,点M的坐标为( ,)(2)设CNMB S y =四形边,求出y 与x 的函数关系式,写出函数的自变量的取值范围.(3)在x 轴正半轴上存在点Q ,使得QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用x 的式子表示)29.在正方形AMFN 中,以AM 为BC 边上的高作等边三角形ABC ,将AB 绕点A 逆时针旋转90°至点D ,D 点恰好落在NF 上,连接BD ,AC 与BD 交于点E ,连接CD ,(1)如图1,求证:△AMC ≌△AND ;(2)如图1,若DF=3,求AE 的长;(3)如图2,将△CDF 绕点D 顺时针旋转α(090α<<),点C,F 的对应点分别为1C 、1F ,连接1AF 、1BC ,点G 是1BC 的中点,连接AG ,试探索1AG AF 是否为定值,若是定值,则求出该值;若不是,请说明理由.30.如图,在矩形ABCD 中,AB a ,BC b =,点F 在DC 的延长线上,点E 在AD 上,且有12CBE ABF ∠=∠.(1)如图1,当a b =时,若60CBE ∠=︒,求证:BE BF =;(2)如图2,当32b a =时, ①请直接写出ABE ∠与BFC ∠的数量关系:_________; ②当点E 是AD 中点时,求证:2CF BF a +=;③在②的条件下,请直接写出:BCF ABCD S S ∆矩形的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据已知和正方形的性质推出∠EAB=∠DAF ,∠EBA=∠ADP ,AB=AD ,证△ABE ≌△ADF 即可;取EF 的中点M ,连接AM ,推出AM=MF=EM=DF ,证∠AMB=∠FMB ,BM=BM ,AM=MF ,推出△ABM ≌△FBM 即可;求出∠FDC=∠EBF ,推出△BEF ≌△DFC 即可.【详解】解:∵正方形ABCD ,BE ⊥ED ,EA ⊥FA ,∴AB=AD=CD=BC ,∠BAD=∠EAF=90°=∠BEF ,∵∠APD=∠EPB ,∴∠EAB=∠DAF ,∠EBA=∠ADP ,∵AB=AD ,∴△ABE ≌△ADF ,∴①正确;∴AE=AF ,BE=DF ,∴∠AEF=∠AFE=45°,取EF 的中点M ,连接AM ,∴AM ⊥EF ,AM=EM=FM ,∴BE ∥AM ,∵AP=BP ,∴AM=BE=DF ,∴∠EMB=∠EBM=45°,∴∠AMB=90°+45°=135°=∠FMB ,∵BM=BM ,AM=MF ,∴△ABM ≌△FBM ,∴AB=BF ,∴②正确;∴∠BAM=∠BFM ,∵∠BEF=90°,AM ⊥EF ,∴∠BAM+∠APM=90°,∠EBF+∠EFB=90°,∴∠APF=∠EBF ,∵AB ∥CD ,∴∠APD=∠FDC ,∴∠EBF=∠FDC ,∵BE=DF ,BF=CD ,∴△BEF ≌△DFC ,∴CF=EF ,∠DFC=∠FEB=90°,∴③正确;④正确;故选D .【点睛】本题主要考查对正方形的性质,等腰直角三角形,直角三角形斜边上的中线性质,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.2.A解析:A【解析】【分析】只要证明BF BC =,可得ABF BFC C 70∠∠∠===,即可得出ABE 35∠=;延长EF 交BC 的延长线于M ,只要证明DEF ≌CMF ,推出EF FM =,可得EMB BCDE S S =四边形,BEF MBE 1S S 2=,推出ABE ABCD 1S S 3菱形=. 【详解】 ①∵四边形ABCD 是菱形,∴AB ∥CD ,∠C=∠A=70°.∵BA=BF=BC ,∴∠BFC=∠C=70°,∴∠ABF=∠BFC=70°,∴∠ABE 12=∠ABF=35°,故①正确;②如图,延长EF 交BC 的延长线于M ,∵四边形ABCD 是菱形,F 是CD 中点,∴DF=CF ,∠D=∠FCM ,∠EFD=∠MFC ,∴△DEF ≌△CMF ,∴EF=FM ,∴S 四边形BCDE =S △EMB ,S △BEF 12=S △MBE ,∴S △BEF 12=S 四边形BCDE ,∴S △ABE 13=S 菱形ABCD .故②正确, 故选A .【点睛】 本题考查了菱形的性质、等腰三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.3.B解析:B【分析】如图,连接GE ,作GH ⊥CD 于H .则四边形AGHD 是矩形,设AG=DH=x ,则FH=x-2.首先证明△ABE ≌△GHF ,推出BE=FH=x-2,在Rt △BGE 中,根据GE 2=BG 2+BE 2,构建方程求出x 即可解决问题.【详解】如图,连接GE ,作GH ⊥CD 于H .则四边形AGHD 是矩形,设AG=DH=x ,则FH=x-2.∵GF 垂直平分AE ,四边形ABCD 是正方形,∴∠ABE=∠GHF=90°AB=AD=GH ,AG=GE=x ,∵∠BAE+∠AGF=90°,∠AGF+∠FGH=90°,∴∠BAE=∠FGH ,∴△ABE ≌△GHF ,∴BE=FH=x-2,在Rt △BGE 中,∵GE 2=BG 2+BE 2,∴x 2=42+(x-2)2,∴x=5,∴AB=9,BE=3,在Rt △ABE 中,AE=222293310AB BE +=+=,故选:B .【点睛】此题考查正方形的性质、全等三角形的判定和性质、勾股定理,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.4.B解析:B 【分析】连接AC ,取AC 的中点E ,根据矩形的性质求出AC ,OE ,再根据直角三角形斜边上的中线等于斜边的一半可得12PE AC =,然后根据三角形的任意两边之和大于第三边可得O 、E 、P 三点共线时OP 最大.【详解】 解:如图,连接AC ,取AC 的中点E ,∵矩形ABCD 中,25, 4BC AB ==,O 为AB 的中点,2216,52AC AB BC OE BC ∴=+=== ∵AP ⊥CP , 116322PE AC ∴==⨯=, 由三角形的三边关系得,O 、E 、P 三点共线时OP 最大,此时 53OP =最大故选:B .【点睛】本题考查了矩形的性质、三角形的三边关系、勾股定理、中位线定理.能正确构造辅助线,并根据三角形三边关系确定OP 最大值是解题关键.5.B解析:B【分析】A 、首先利用已知条件根据边角边可以证明△APD ≌△AEB ;B 、利用全等三角形的性质和对顶角相等即可解答;C 、由(1)可得∠BEF =90°,故BE 不垂直于AE 过点B 作BP ⊥AE 延长线于P ,由①得∠AEB =135°所以∠PEB =45°,所以△EPB 是等腰Rt △,于是得到结论;D 、根据勾股定理和三角形的面积公式解答即可.【详解】解:在正方形ABCD 中,AB =AD ,∵AF ⊥AE ,∴∠BAE +∠BAF =90°,又∵∠DAF +∠BAF =∠BAD =90°,∴∠BAE =∠DAF ,在△AFD 和△AEB 中,AE AF BAE DAF AB AD =⎧⎪∠∠⎨⎪=⎩=∴△AFD ≌△AEB (SAS ),故A 正确;∵AE =AF ,AF ⊥AE ,∴△AEF 是等腰直角三角形,∴∠AEF =∠AFE =45°,∴∠AEB =∠AFD =180°−45°=135°,∴∠BEF =135°−45°=90°,∴EB ⊥ED ,故C 正确;∵AE =AF 2,∴FE 2AE =2,在Rt △FBE 中,BE 221046FB FE -=-=∴S △APD +S △APB =S △APE +S △BPE ,=11222⨯1=D 正确;过点B 作BP ⊥AE 交AE 的延长线于P ,∵∠BEP =180°−135°=45°,∴△BEP 是等腰直角三角形,∴BP =2=,即点B 到直线AE ,故B 错误,故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,综合性较强,难度较大,熟记性质并仔细分析图形,理清图中三角形与角的关系是解题的关键.6.C解析:C【分析】由四边形ABCD 是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE 是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC ⊥BC ,得到S ▱ABCD =AC •BC ,故②正确,根据直角三角形的性质得到AC =,根据三角形的中位线的性质得到OE=12BC ,于是得到OE :∶6;故③错误;【详解】解:∵四边形ABCD 是平行四边形, 60ABC ADC ∴∠=∠=︒,120BCD ∠=︒∵CE 平分BCD ∠交AB 于点E ,∴60DCE BCE ∠=∠=︒,∴CBE △是等边三角形,∴BE BC CE ==.∵2AB BC =,∴AE BE CE ==,∴90ACB ∠=︒,∴30ACD CAB ∠=∠=︒,故①正确;∵AC BC ⊥,∴ABCD S AC BC =⋅,故②正确;在Rt ACB △中,90ACB ∠=︒,30CAB ∠=︒,∴3AC BC =.AO OC =,AE BE =,∴1OE BC 2=, 1::33:62OE AC BC BC ∴==,故③错误. 故选:C .【点睛】此题考查了平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE 是等边三角形,OE 是△ABC 的中位线是关键.7.B解析:B【分析】设BD 与AC 交于O 点,已知条件为BO=DO ,∠AOB=∠COD,结合选项条件应证出能判断平行四边形的条件,或举出反例证明不成立.【详解】解:A 、BO=DO ,∠AOB=∠COD, AB=CD 不能证出四边形ABCD 是平行四边形, 反例如图,故本选项错误;B 、如图,在直线AC 上任取一点C ´,使OA=OC ´,∵BO=DO ,∴四边形ABC ´D 是平行四边形,∴AD ∥BC ´,AB ∥C ´D,∴∠BC ´A=∠C ´AD, ∠AC ´D=∠BAC ´,∴∠BC ´A+∠AC ´D=∠C ´AD+∠BAC ´,即∠BC ´D=∠BAD,∵∠BAD=∠BCD∴∠BC ´D=∠BCD,∴点C 与点C ´重合,∴四边形ABCD 是平行四边形.故本选项正确;C、当BO=DO,∠ABC=∠ADC不能证出四边形ABCD是平行四边形, 反例如图,故本选项错误;D、当BO=DO,AC=BD, 不能证出四边形ABCD是平行四边形, 反例如图,故本选项错误.故选:B.【点睛】本题考查平行四边形的判定,根据已知条件证出判定平行四边形的条件及举出反例图形是解答此题的关键.8.B解析:B【解析】【分析】先求出第一个正方形面积、第二个正方形面积、第三个正方形面积,…探究规律后,即可解决问题.【详解】第一个正方形的面积为1=20,2)2=2=21,第三个正方形的边长为22,…第n个正方形的面积为2n﹣1,故选B.【点睛】本题考查了规律型:图形的变化类,正方形的性质,根据前后正方形边长之间的关系找到S n的规律是解题的关键.9.D解析:D【分析】由于在四边形中,MN∥AB∥DC,EF∥DA∥CB,因此MN、EF把一个平行四边形分割成四个小平行四边形.可设MN到DC的距离为h1,MN到AB的距离为h2,根据AB=CD,DE=AF,EC=FB及平行四边形的面积公式即可得出答案.【详解】解:∵MN∥AB∥DC,EF∥DA∥CB,∴四边形ABCD,四边形ADEF,四边形BCEF,红、紫、黄、白四边形都为平行四边形,∴AB=CD,DE=AF,EC=BF.设MN到DC的距离为h1,MN到AB的距离为h2,则S1=DE•h1,S2=AF•h2,S3=EC•h1,S4=FB•h2,因为DE,h1,FB,h2的关系不确定,所以S1与S4的关系无法确定,故A错误;S1+S4=DE•h1+FB•h2=AF•h1+FB•h2,S2+S3=AF•h2+EC•h1=AF•h2+FB•h1,故B错误;S1+S3=CD•h1,S2+S4=AB•h2,又AB=CD,而h1不一定与h2相等,故C错误;S1·S4=DE•h1•FB•h2=AF•h1•FB•h2,S2·S3=AF•h2•EC•h1=AF•h2•FB•h1,所以S1·S4=S2·S3,故D正确;故选:D.【点睛】本题考查平行四边形的判定与性质,注意掌握平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=a•h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.10.C解析:C【分析】根据三角形中位线定理求出△A1B1C1的周长,根据计算总结规律,根据规律解答.【详解】根据三角形中位线定理求出△A1B1C1的周长,根据计算结果总结规律,根据规律解答.解:∵A1、C1分别为AB、AC的中点,∴A1C1=BC=13,同理,A1B1=12AC=7,B1C1=12AB=12,∴△A1B1C1的周长=7+12+13=32,∴△A1B1C1的周长=△ABC的周长×12,则△A2B2C2的周长=△A1B1C1的周长×12=△ABC的周长×(12)2,……∴△A8B8C8的周长=△ABC的周长×(12)8=64×1256=14,故选:C.【点睛】本题考查三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题11.22【解析】分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P 从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=12(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=12(AC+CP),∴2CE=22(AC+CP),当AC=2,CP=CD=1时,OC=22×(2+1)=322,当AC=2,CP=CB=5时,OC=22×(2+5)=722,∴当P从点D出发运动至点B停止时,点O的运动路径长=722-322=22.故答案为22.点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.12.222+【分析】由题意根据三角形的中位线的性质得到EF=12PD,得到C△CEF=CE+CF+EF=CE+12(CP+PD)=12(CD+PC+PD)=12C△CDP,当△CDP的周长最小时,△CEF的周长最小;即PC+PD的值最小时,△CEF的周长最小;并作D关于AB的对称点D′,连接CD′交AB于P,进而分析即可得到结论.【详解】解:∵E为CD中点,F为CP中点,∴EF=12 PD,∴C△CEF=CE+CF+EF=CE+12(CP+PD)=12(CD+PC+PD)=12C△CDP∴当△CDP的周长最小时,△CEF的周长最小;即PC+PD的值最小时,△CEF的周长最小;如图,作D关于AB的对称点T,连接CT,则PD=PT,∵AD=AT=BC=2,CD=4,∠CDT=90°,∴22224442CT CD DT++=∵△CDP的周长=CD+DP+PC=CD+PT+PC,∵PT+PC≥CT,∴PT+PC≥42∴PT+PC的最小值为2,∴△PDC的最小值为4+42∴C△CEF=12C△CDP=222.故答案为:222+.【点睛】本题考查轴对称-最短距离问题以及三角形的周长的计算等知识,解题的关键是学会利用轴对称解决最值问题.13.8【分析】通过作辅助线使得△CAO ≌△GBO ,证明△COG 为等腰直角三角形,利用勾股定理求出CG 后,即可求出BC 的长.【详解】如图,延长CB 到点G ,使BG=AC .∵根据题意,四边形ABED 为正方形,∴∠4=∠5=45°,∠EBA=90°,∴∠1+∠2=90°又∵三角形BCA 为直角三角形,AB 为斜边,∴∠2+∠3=90°∴∠1=∠3∴∠1+∠5=∠3+∠4,故∠CAO =∠GBO ,在△CAO 和△GBO 中,CA GB CAO GBO AO BO =⎧⎪∠=∠⎨⎪=⎩故△CAO ≌△GBO ,∴CO =GO=627=∠6,∵∠7+∠8=90°,∴∠6+∠8=90°,∴三角形COG 为等腰直角三角形,∴, ∵CG=CB+BG , ∴CB=CG -BG=12-4=8,故答案为8.【点睛】本题主要考查正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,根据题意建立正确的辅助线以及掌握正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质是解答本题的关键.14.①②③④【分析】①根据角平分线的定义可得∠BAE =∠DAE =45°,可得出△ABE 是等腰直角三角形,根据等腰直角三角形的性质可得AE =,从而得到AE =AD ,然后利用“角角边”证明△ABE 和△AHD 全等,根据全等三角形对应边相等可得BE =DH ,再根据等腰三角形两底角相等求出∠ADE =∠AED =67.5°,根据平角等于180°求出∠CED =67.5°,从而判断出①正确; ②求出∠AHB =67.5°,∠DHO =∠ODH =22.5°,然后根据等角对等边可得OE =OD =OH ,判断出②正确;③求出∠EBH =∠OHD =22.5°,∠AEB =∠HDF =45°,然后利用“角边角”证明△BEH 和△HDF 全等,根据全等三角形对应边相等可得BH =HF ,判断出③正确;④根据全等三角形对应边相等可得DF =HE ,然后根据HE =AE ﹣AH =BC ﹣CD ,BC ﹣CF =BC ﹣(CD ﹣DF )=2HE ,判断出④正确;⑤判断出△ABH 不是等边三角形,从而得到AB ≠BH ,即AB ≠HF ,得到⑤错误.【详解】∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴△ABE 是等腰直角三角形,∴AE =. ∵AD =,∴AE =AD .在△ABE 和△AHD 中,∵90BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△AHD (AAS ),∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED 12=(180°﹣45°)=67.5°,∴∠CED =180°﹣45°﹣67.5°=67.5°,∴∠AED =∠CED ,故①正确;∵∠AHB 12=(180°﹣45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =∠AED ,∴OE =OH .∵∠DOH =90°﹣67.5°=22.5°,∠ODH =67.5°﹣45°=22.5°,∴∠DOH =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故②正确;∵∠EBH =90°﹣67.5°=22.5°,∴∠EBH =∠OHD .在△BEH和△HDF中,∵EBH OHDBE DHAEB HDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD﹣DF,∴BC﹣CF=(CD+HE)﹣(CD﹣HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述:结论正确的是①②③④.故答案为①②③④.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.15.102︒【分析】根据菱形的性质求出∠DAB=2∠DAC,AD=CD;再根据垂直平分线的性质得出AF=DF,利用三角形内角和定理可以求得3∠CAD+∠CDF=180°,从而得到∠DAB的度数.【详解】连接BD,BF,∵四边形ABCD是菱形,∴AD=CD,∴∠DAC=∠DCA.∵EF垂直平分AB,AC垂直平分BD,∴AF=BF,BF=DF,∴AF=DF,∴∠FAD=∠FDA,∴∠DAC+∠FDA+∠DCA+∠CDF=180°,即3∠DAC+∠CDF=180°,∵∠CDF=27°,∴3∠DAC+27°=180°,则∠DAC=51°,∴∠DAB=2∠DAC=102°.故答案为:102°.【点睛】本题主要考查了线段的垂直平分线的性质,三角形内角和定理的应用以及菱形的性质,有一定的难度,解答本题时注意先先连接BD ,BF ,这是解答本题的突破口.16.25【分析】作BE ⊥AD 于E ,BF ⊥CD 于F ,则四边形BEDF 是矩形,证明△ABE ≌△CBF (AAS ),得出BE=BF ,△ABE 的面积=△CBF 的面积,则四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,求出BE=10,即可求得BD 的长.【详解】解:作BE ⊥AD 交DA 延长线于E ,BF ⊥CD 于F ,如图所示:则∠BEA=∠BFC=90°,∵∠ADC=90°,∴四边形BEDF 是矩形,∴∠EBF=90°,∵∠ABC=90°,∴∠EBF=∠ABC=90°,∴∠ABE=∠CBF ,在△ABE 和△CBF 中,BEA BFC ABE CBF AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CBF (AAS ),∴BE=BF ,△ABE 的面积=△CBF 的面积,∴四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,∴BE=DE ,BE 2=10 cm 2,∴10(cm),∴25.故答案为:5【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、矩形的判定与性质等知识;熟练掌握正方形的判定与性质,证明三角形全等是解题的关键.17.9或31).【分析】分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.【详解】解:①如图1,延长EA交DC于点F,∵菱形ABCD的周长为24,∴AB=BC=6,∵∠ABC=60°,∴三角形ABC是等边三角形,∴∠BAC=60°,当EA⊥BA时,△ABE是等腰直角三角形,∴AE=AB=AC=6,∠EAC=90°+60°=150°,∴∠FAC=30°,∵∠ACD=60°,∴∠AFC=90°,∴CF=12AC=3,则△ACE的面积为:12AE×CF=12×6×3=9;②如图2,过点A作AF⊥EC于点F,由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,∵AB=BE=BC=6,∴∠BEC=∠BCE=15°,∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,∴AF=12AE,AF=CF=22AC=32∵AB=BE=6,∴AE=2∴2236AE AF-=∴EC=EF+FC=3632则△ACE的面积为:12EC×AF=1(3632)329(31)2⨯⨯=.故答案为:9或1).【点睛】本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.18.65【分析】先由正方形的性质得到∠ABF 的角度,从而得到∠AEB 的大小,再证△AEB ≌△AED ,得到∠AED 的大小【详解】∵四边形ABCD 是正方形∴∠ACB=∠ACD=∠BAC=∠CAD=45°,∠ABC=90°,AB=AD∵∠FBC=20°,∴ABF=70°∴在△ABE 中,∠AEB=65°在△ABE 与△ADE 中45AB AD BAE EAD AE AE =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△ADE∴∠AED=∠AEB=65°故答案为:65°【点睛】本题考查正方形的性质和三角形全等的证明,解题关键是利用正方形的性质,推导出∠AEB 的大小.19.【分析】连接AF ,CF ,AC ,利用勾股定理求出AC 、AF ,再根据三角形的三边关系得到当点A ,F ,C 在同一直线上时,CF 的长最小,最小值为.【详解】解:如图,连接AF ,CF ,AC ,∵长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1,∴AC =AF,∵AF +CF ≥AC ,∴CF ≥AC ﹣AF ,∴当点A ,F ,C 在同一直线上时,CF 的长最小,最小值为,故答案为:.【点睛】此题考查矩形的性质,正方形的性质,勾股定理,三角形的三边关系.202【解析】【分析】根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG即可.【详解】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=3,EB=AB-AD=1,∵四边形EFCB为矩形,∴FC=BE=1,∵AB∥FC,∴∠GFC=∠DAF=45°,∴GC=FC=1,∴22112FG GC FC=+=+=2.【点睛】本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置变化,对应边和对应角相等是解决此题的关键.三、解答题AI=.21.(1)见解析;(2)24;(3)5【分析】(1)证∠BDA=∠CEA=90°,∠CAE=∠ABD,由AAS证明△ABD≌△CAE即可;(2)连接CE,交AF于O,由菱形的性质得∠COA=∠ADB=90°,同(1)得△ABD≌△CAO(AAS),得OC=AD=3,OA=BD=4,由三角形面积公式求出S△AOC=6,即可得出答案;(3)过E作EM⊥HI的延长线于M,过点G作GN⊥HI于N,同(1)得△ACH≌△EAM (AAS),△ABH≌△GAN(AAS),得EM=AH=GN,证△EMI≌△GNI(AAS),得EI=GI ,证∠EAG =90°,由勾股定理求出EG =10,再由直角三角形的性质即可得出答案.【详解】(1)证明:∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△CAE (AAS );(2)解:连接CE ,交AF 于O ,如图②所示:∵四边形AEFC 是菱形,∴CE ⊥AF ,∴∠COA =∠ADB =90°,同(1)得:△ABD ≌△CAO (AAS ),∴OC =AD =3,OA =BD =4,∴S △AOC =12OA •OC =12×4×3=6, ∴S 菱形AEFC =4S △AOC =4×6=24,故答案为:24;(3)解:过E 作EM ⊥HI 的延长线于M ,过点G 作GN ⊥HI 于N ,如图③所示: ∴∠EMI =∠GNI =90°,∵四边形ACDE 和四边形ABFG 都是正方形,∴∠CAE =∠BAG =90°,AC =AE =8,AB =AG =6,同(1)得:△ACH ≌△EAM (AAS ),△ABH ≌△GAN (AAS ),∴EM =AH =GN ,在△EMI 和△GNI 中,EIM GIH EMI GNI EM GN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点,∵∠CAE =∠BAG =∠BAC =90°,∴∠EAG =90°,在Rt △EAG 中, EG =22AE AG +=2286+=10, ∵I 是EG 的中点,∴AI =12EG =12×10=5.【点睛】本题是四边形综合题目,考查了正方形的性质、菱形的性质、等腰直角三角形的性质、全等三角形的判定与性质、直角三角形斜边上的中线性质、勾股定理、三角形面积等知识;本题综合性强,熟练掌握正方形的性质和菱形的性质,证明三角形全等是解题的关键.22.(1)见解析;(2)MON 为等腰直角三角形,见解析【分析】(1)如图1,由正方形的性质得CB =CD ,∠BCD =90°,再证明∠BCN =∠CDM ,然后根据“AAS”证明△CDM ≌△CBN ,从而得到DM =CN ;(2)如图2,利用正方形的性质得OD =OC ,∠ODC =∠OCB =45°,∠DOC =90°,再利用∠BCN =∠CDM 得到∠OCN =∠ODM ,则根据“SAS”可判断△OCN ≌△ODM ,从而得到ON =OM ,∠CON =∠DOM ,所以∠MON =∠DOC =90°,于是可判断△MON 为等腰直角三角形.【详解】(1)证明:如图1,∵四边形ABCD 为正方形,∴CB =CD ,∠BCD =90°,∵DM ⊥CP ,BN ⊥CP ,∴∠DMC =90°,∠BNC =90°,∵∠CDM+∠DCM =90°,∠BCN+∠DCM =90°,∴∠BCN =∠CDM ,在△CDM 和△CBN 中DMC CNB CD CBCDM BCN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CDM ≌△CBN ,∴DM =CN ;(2)解:△OMN 为等腰直角三角形.理由如下:如图2,∵四边形ABCD 为正方形,∴OD =OC ,∠ODC =∠OCB =45°,∠DOC =90°,∵∠BCN =∠CDM ,∴∠BCN ﹣45°=∠CDM ﹣45°,即∠OCN =∠ODM ,在△OCN 和△ODM 中CN DM OCN ODM OC OD =⎧⎪∠=∠⎨⎪=⎩, ∴△OCN ≌△ODM ,∴ON =OM ,∠CON =∠DOM ,∴∠MON =∠DOC =90°, ∴MON 为等腰直角三角形.【点睛】本题考查正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质;两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.也考查全等三角形的判定与性质.23.(1)见解析;(2)1条;(3)7211t =或185t =【分析】(1)证△AEH ≌△CGH (SAS ),即可得出AH=CH ;(2)连接BD 交AC 于O ,作直线OE 即可;(3)分两种情况:①连接AH 交BC 于M ,证出BM=CM=12BC=6,由题意得BE=BG=EH=GH=t ,则AE=9-t ,GM=6-t ,由三角形面积关系得出方程,解方程即可; ②连接AH 交CD 于M ,交BC 的延长线于K ,证出DM=CM=12CD ,证△KCM ≌△ADM 得CK=DA=12,则BK=BC+CK=24,且BE=BG=EH=GH=t ,则AE=9-t ,GK=24-t ,由三角形面积关系得出方程,解方程即可.【详解】解:(1)四边形BEHG 是正方形, BE BG ∴=,90BEH BGH ∠=∠=︒,90AEH CGH ∠=∠=︒, 又AB BC =,AE CG ∴=,又EH HG =,()AEH CGH SAS ∴∆≅∆,AH CH ∴=.(2)解:连接BD 交AC 于O ,如图1所示:作直线OE ,则直线OE 矩形ABCD 面积平分,即经过点E 且把矩形ABCD 面积平分的直线有1条,故答案为:1;(3) 解:分两种情况:①如图2所示:连接AH 交BC 于M ,∵四边形ABCD 是矩形,∴△ABC 的面积=△ADC 的面积,∵直线AH 将矩形ABCD 的面积分成1:3两部分,∴△ABM 的面积=△ACM 的面积,。

人教版平行四边形单元 易错题难题专题强化试卷学能测试试题

人教版平行四边形单元 易错题难题专题强化试卷学能测试试题

一、选择题1.如图,将5个全等的阴影小正方形摆放得到边长为1的正方形ABCD ,中间小正方形的各边的中点恰好为另外4个小正方形的一个顶点,小正方形的边长为2a b-(a 、b 为正整数),则+a b 的值为( )A .10B .11C .12D .132.在边长为2的正方形ABCD 中,P 为AB 上的一动点,E 为AD 中点,PE 交CD 延长线于Q ,过E 作EF PQ ⊥交BC 的延长线于F ,则下列结论:①APE DQE ∆≅∆;②PQ EF =;③当P 为AB 中点时,2CF =;④若H 为QC 的中点,当P 从A 移动到B 时,线段EH 扫过的面积为12,其中正确的是( )A .①②B .①②④C .②③④D .①②③3.如图,正方形ABCD 的边长为4,点E 在边AB 上,AE =1,若点P 为对角线BD 上的一个动点,则△PAE 周长的最小值是( )A .3B .4C .5D .64.如图,菱形ABCD 的边,8AB =,60B ∠=,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点'A .当'CA 的长度最小时,'C Q 的长为( )A .5B .7C .8D .132 5.如图,在ABC ,90C ∠=︒,8AC =,6BC =,点P 为斜边AB 上一动点,过点P 作PE AC ⊥于点E ,PF BC ⊥于点F ,连结EF ,则线段EF 的最小值为( )A .1.2B .2.4C .2.5D .4.86.如图,矩形ABCD 中,5AD =,7AB =,点E 为DC 上一个动点,把ADE ∆沿AE 折叠,点D 的对应点为D ,若D 落在ABC ∠的平分线上时,DE 的长为( )A .53或2B .52或53C .52或35D .35或2 7.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO.若∠COB =60°,FO =FC ,则下列结论:①FB ⊥OC ,OM =CM ;②△EOB ≌△CMB ;③四边形EBFD 是菱形;④MB ∶OE =3∶2.其中正确结论的个数是( )A .1B .2C .3D .48.如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =4,D 是AB 上一动点,过点D 作DE ⊥AC 于点E ,DF ⊥BC 于点F ,连结EF ,则线段EF 的长的最小值是( )A .2.5B .2.4C .2.2D .2 9.如图,在ABC 中,ACB 90∠=︒,2AC BC ==,D 是AB 的中点,点E 在AC 上,点F 在BC 上,且AE CF =,给出以下四个结论:(1)DE DF =;(2)DEF 是等腰直角三角形;(3)四边形CEDF 面积ABC 1S 2=△;(4)2EF 的最小值为2.其中正确的有( ).A .4个B .3个C .2个D .1个10.如图,△ABC 中,AB =24,BC =26,CA =14.顺次连接△ABC 各边中点,得到△A 1B 1C 1;再顺次连接△A 1B 1C 1各边中点,得到△A 2B 2C 2…如此进行下去,得到n n n A B C ,则△A 8B 8C 8的周长为( )A .1B .12C .14D .18二、填空题11.如图,正方形ABCD 的对角线相交于点O ,对角线长为1cm ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_____.12.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则2020C =______.13.如图所示,菱形ABCD ,在边AB 上有一动点E ,过菱形对角线交点O 作射线EO 与CD 边交于点F ,线段EF 的垂直平分线分别交BC 、AD 边于点G 、H ,得到四边形EGFH ,点E 在运动过程中,有如下结论:①可以得到无数个平行四边形EGFH ;②可以得到无数个矩形EGFH ;③可以得到无数个菱形EGFH ;④至少得到一个正方形EGFH .所有正确结论的序号是__.14.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,若27CDF ∠=︒,则DAB ∠的度数为____________.15.如图,在矩形ABCD 中,AB =2,AD =3,E 为BC 边上一动点,作EF ⊥AE ,且EF =AE .连接DF ,AF .当DF ⊥EF 时,△ADF 的面积为_____.16.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.17.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.18.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .19.如图,正方形ABCD 的边长为4,点E 为AD 的延长线上一点,且DE =DC ,点P 为边AD 上一动点,且PC ⊥PG ,PG =PC ,点F 为EG 的中点.当点P 从D 点运动到A 点时,则CF 的最小值为___________20.如图,长方形ABCD 中,26AD =,12AB =,点Q 是BC 的中点,点P 在AD 边上运动,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为______,三、解答题21.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH DE ⊥交DG 的延长线于点H ,连接BH .(1)求证:GF GC =;(2)用等式表示线段BH 与AE 的数量关系,并证明.22.如图1,已知四边形ABCD是正方形,E是对角线BD上的一点,连接AE,CE.(1)求证:AE=CE;(2)如图2,点P是边CD上的一点,且PE⊥BD于E,连接BP,O为BP的中点,连接EO.若∠PBC=30°,求∠POE的度数;(3)在(2)的条件下,若OE=2,求CE的长.23.如图①,已知正方形ABCD中,E,F分别是边AD,CD上的点(点E,F不与端点重合),且AE=DF,BE,AF交于点P,过点C作CH⊥BE交BE于点H.(1)求证:AF∥CH;(2)若3,AE=2,试求线段PH的长;(3)如图②,连结CP并延长交AD于点Q,若点H是BP的中点,试求CPPQ的值.24.如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P为线段BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD于点N.(1)求证:BP=CQ;(2)若BP=13PC,求AN的长;(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.25.探究:如图①,△ABC是等边三角形,在边AB、BC的延长线上截取BM=CN,连结MC、AN,延长MC交AN于点P.(1)求证:△ACN≌△CBM;(2)∠CPN= °;(给出求解过程)(3)应用:将图①的△ABC分别改为正方形ABCD和正五边形ABCDE,如图②、③,在边AB、BC的延长线上截取BM=CN,连结MC、DN,延长MC交DN于点P,则图②中∠CPN= °;(直接写出答案)(4)图③中∠CPN= °;(直接写出答案)(5)拓展:若将图①的△ABC改为正n边形,其它条件不变,则∠CPN= °(用含n 的代数式表示,直接写出答案).26.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版平行四边形单元 易错题难题提高题学能测试试题一、解答题1.在数学的学习中,有很多典型的基本图形.(1)如图①,ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为D 、E .试说明ABD CAE ≌;(2)如图②,ABC 中,90BAC ∠=︒,AB AC =,点D 、A 、F 在同一条直线上,BD DF ⊥,3AD =,4BD =.则菱形AEFC 面积为______.(3)如图③,分别以Rt ABC 的直角边AC 、AB 向外作正方形ACDE 和正方形ABFG ,连接EG ,AH 是ABC 的高,延长HA 交EG 于点I ,若6AB =,8AC =,求AI 的长度.2.综合与探究如图1,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF ,解答下列问题:(1)研究发现:如果AB AC =,90BAC ∠=︒①如图2,当点D 在线段BC 上时(与点B 不重合),线段CF 、BD 之间的数量关系为______,位置关系为_______.②如图3,当点D 在线段BC 的延长线上时,①中的结论是否仍成立并说明理由. (2)拓展发现:如果AB AC ≠,点D 在线段BC 上,点F 在ABC ∆的外部,则当ACB =∠_______时,CF BD ⊥.3.如图,平行四边形ABCD 的对角线AC BD 、交于点O ,分别过点C D 、作//,//CF BD DF AC ,连接BF 交AC 于点E .(1)求证: FCE BOE ≌;(2)当ADC ∠等于多少度时,四边形OCFD 为菱形?请说明理由.4.(1)如图①,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求EAF ∠的度数;(2)如图②,在Rt ABD ∆中,90,BAD AD AB ︒∠==,点M ,N 是BD 边上的任意两点,且45MAN ︒∠=,将ABM ∆绕点A 逆时针旋转90度至ADH ∆位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由;(3)在图①中,连接BD 分别交AE ,AF 于点M ,N ,若正方形ABCD 的边长为12,GF=6,BM= 32,求EG ,MN 的长.5.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.6.矩形ABCD 中,AB =3,BC =4.点E ,F 在对角线AC 上,点M ,N 分别在边AD ,BC 上. (1)如图1,若AE =CF =1,M ,N 分别是AD ,BC 的中点.求证:四边形EMFN 为矩形. (2)如图2,若AE =CF =0.5,02AM CN x x ==<<(),且四边形EMFN 为矩形,求x 的值.7.猜想与证明:如图①摆放矩形纸片ABCD 与矩形纸片ECGF ,使B ,C ,G 三点在一条直线上,CE 在边CD 上.连结AF ,若M 为AF 的中点,连结DM ,ME ,试猜想DM 与ME 的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为__________________;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]① ②8.如图,锐角ABC ∆,AB AC =,点D 是边BC 上的一点,以AD 为边作ADE ∆,使AE AD =,EAD BAC ∠=∠.(1)过点E 作//EF DC 交AB 于点F ,连接CF (如图①)①请直接写出EAB ∠与DAC ∠的数量关系;②试判断四边形CDEF 的形状,并证明;(2)若60BAC ∠=,过点C 作//CF DE 交AB 于点F ,连接EF (如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.9.问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点. 如图1,四边形ABCD 中,BC 是一条对角线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满足180A D +=︒∠∠,则点A 与点D 关于BC 互为勾股顶针点.初步思考(1)如图2,在ABC 中,AB AC =,30ABC ∠=︒,D 、E 为ABC 外两点,EB EC =,45EBC ∠=︒,DBC △为等边三角形.①点A 与点______关于BC 互为顶针点;②点D 与点______关于BC 互为勾股顶针点,并说明理由.实践操作(2)在长方形ABCD 中,8AB =,10AD =.①如图3,点E 在AB 边上,点F 在AD 边上,请用圆规和无刻度的直尺作出点E 、F ,使得点E 与点C 关于BF 互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点E 是直线AB 上的动点,点P 是平面内一点,点E 与点C 关于BP 互为勾股顶针点,直线CP 与直线AD 交于点F .在点E 运动过程中,线段BE 与线段AF 的长度是否会相等?若相等,请直接写出AE 的长;若不相等,请说明理由.10.如图,在矩形ABCD 中,AD =nAB ,E ,F 分别在AB ,BC 上.(1)若n =1,AF ⊥DE .①如图1,求证:AE =BF ;②如图2,点G 为CB 延长线上一点,DE 的延长线交AG 于H ,若AH =AD ,求证:AE +BG =AG ;(2)如图3,若E 为AB 的中点,∠ADE =∠EDF.则CF BF的值是_____________(结果用含n 的式子表示).【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)见解析;(2)24;(3)5AI =.【分析】(1)证∠BDA =∠CEA =90°,∠CAE =∠ABD ,由AAS 证明△ABD ≌△CAE 即可; (2)连接CE ,交AF 于O ,由菱形的性质得∠COA =∠ADB =90°,同(1)得△ABD ≌△CAO (AAS ),得OC =AD =3,OA =BD =4,由三角形面积公式求出S △AOC =6,即可得出答案;(3)过E 作EM ⊥HI 的延长线于M ,过点G 作GN ⊥HI 于N ,同(1)得△ACH ≌△EAM (AAS ),△ABH ≌△GAN (AAS ),得EM =AH =GN ,证△EMI ≌△GNI (AAS ),得EI =GI ,证∠EAG =90°,由勾股定理求出EG =10,再由直角三角形的性质即可得出答案.【详解】(1)证明:∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△CAE (AAS );(2)解:连接CE ,交AF 于O ,如图②所示:∵四边形AEFC 是菱形,∴CE ⊥AF ,∴∠COA=∠ADB=90°,同(1)得:△ABD≌△CAO(AAS),∴OC=AD=3,OA=BD=4,∴S△AOC=12 OA•OC=12×4×3=6,∴S菱形AEFC=4S△AOC=4×6=24,故答案为:24;(3)解:过E作EM⊥HI的延长线于M,过点G作GN⊥HI于N,如图③所示:∴∠EMI=∠GNI=90°,∵四边形ACDE和四边形ABFG都是正方形,∴∠CAE=∠BAG=90°,AC=AE=8,AB=AG=6,同(1)得:△ACH≌△EAM(AAS),△ABH≌△GAN(AAS),∴EM=AH=GN,在△EMI和△GNI中,EIM GIHEMI GNIEM GN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EMI≌△GNI(AAS),∴EI=GI,∴I是EG的中点,∵∠CAE=∠BAG=∠BAC=90°,∴∠EAG=90°,在Rt△EAG中, EG=22AE AG+=2286+=10,∵I是EG的中点,∴AI=12EG=12×10=5.【点睛】本题是四边形综合题目,考查了正方形的性质、菱形的性质、等腰直角三角形的性质、全等三角形的判定与性质、直角三角形斜边上的中线性质、勾股定理、三角形面积等知识;本题综合性强,熟练掌握正方形的性质和菱形的性质,证明三角形全等是解题的关键.2.(1)①=CF BD ,CF BD ⊥;②当点D 在BC 的延长线上时①中结论仍成立,详见解析;(2)45︒【分析】(1)①结论:CF 与BD 位置关系是垂直、数量关系是相等; 只要证明△BAD ≌△CAF,即可解决问题;②当点D 在BC 的延长线上时①的结论仍成立.证明方法类似;(2)过点A 作AG ⊥AC 交BC 于点G,理由(1)中的结论即可解决问题.【详解】解:(1)①相等(或=CF BD ),互相重直(或CF BD ⊥)理由如下:∵AB=AC,∠BAC=90︒,∴∠ABC=∠ACB=45︒,∵∠BAC=∠DAF,∴∠BAD=∠CAF,在△BAD 和△CAF 中,BA CA BAD CAF DA FA ⎧⎪∠∠⎨⎪⎩=== , ∴△BAD ≌△CAF (SAS ),∴BD=CF,∠ABD=∠ACF=45︒,∵∠ACB=45︒,∴∠FCB=90︒,∴CF ⊥BD,CF=BD,故答案为CF ⊥BD,CF=BD .②当点D在BC的延长线上时①的结论仍成立.理由:由正方形ADEF得 AD=AF,∠DAF=90︒.∵∠BAC=90︒,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又AB=AC,∴△DAB≌△FAC(SAS),∴CF=BD,∠ACF=∠ABD,∵∠BAC=90︒,AB=AC,∴∠ABC=45︒,∴∠ACF=45︒,∴∠BCF=∠ACB+∠ACF=90︒.即 CF⊥BD.(2)结论:当∠ACB=45︒时,CF⊥BD.理由:过点A作AG⊥AC交BC于点G,∴AC=AG,由(1)可知:△GAD≌△CAF,∴∠ACF=∠AGD=45︒,∴∠BCF=∠ACB+∠ACF=90︒,即CF⊥BD.故答案为45︒.【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的性质、正方形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会添加辅助线,构造全等三角形解决问题,属于中考压轴题.3.(1)见解析;(2)当ADC 满足90ADC ∠=︒时,四边形OCFD 为菱形,证明详见解析【分析】(1)证明四边形OCFD 是平行四边形,得出OD=CF ,证出OB=CF ,再证明全等即可(2)证出四边形ABCD 是矩形,由矩形的性质得出OC=OD ,即可得出四边形OCFD 为菱形.【详解】(1)证明:∵//,//CF BD DF AC ,∴四边形OCFD 是平行四边形, OBE CFE ∠=∠,∴OD CF =,∵四边形ABCD 是平行四边形,∴OB OD =,∴OB CF =,在FCE △和BOE △中, OBE CFE BEO FEC OB CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()FCE BOE AAS ≌.(2)当ADC 满足90ADC ∠=︒时,四边形OCFD 为菱形.理由如下:∵90ADC ∠=︒,四边形ABCD 是平行四边形,∴四边形ABCD 是矩形∴,,,OA OC OB OD AC BD ===∴OC OD =,∴四边形OCFD 为菱形【点睛】本题考查全等三角形判定与性质,平行四边形和菱形的判定与性质等知识,熟练掌握平行四边形的判定和性质和菱形的判定是解题的关键.4.(1)见解析;(2)MN 2=ND 2+DH 2,理由见解析;(3)EG=4,MN=【分析】(1)根据高AG 与正方形的边长相等,证明三角形全等,进而证明角相等,从而求出解. (2)用三角形全等和正方形的对角线平分每一组对角的知识可证明结论.(3)设EG=BE=x ,根据正方形的边长得出CE ,CF ,EF ,在Rt △CEF 中利用勾股定理得到方程,求出EG 的长,设MN=a ,根据MN 2=ND 2+BM 2解出a 值即可.【详解】解:(1)在Rt △ABE 和Rt △AGE 中,AB=AG ,AE=AE ,∴Rt △ABE ≌Rt △AGE (HL ).∴∠BAE=∠GAE .同理,∠GAF=∠DAF .∴∠EAF =12∠BAD =45°;(2)MN 2=ND 2+DH 2.∵∠BAM=∠DAH ,∠BAM+∠DAN=45°, ∴∠HAN=∠DAH+∠DAN=45°. ∴∠HAN=∠MAN ,又∵AM=AH ,AN=AN ,∴△AMN ≌△AHN (SAS ). ∴MN=HN ,∵∠BAD=90°,AB=AD ,∴∠ABD=∠ADB=45°,∴∠HDN=∠HDA+∠ADB=90°, ∴NH 2=ND 2+DH 2,∴MN 2=ND 2+DH 2;(3)∵正方形ABCD 的边长为12, ∴AB=AG=12,由(1)知,BE=EG ,DF=FG . 设EG=BE=x ,则CE=12-x ,∵GF=6=DF ,∴CF=12-6=6,EF=EG+GF=x+6, 在Rt △CEF 中,∵CE 2+CF 2=EF 2,∴(12-x )2+62=(x+6)2,解得x=4,即EG=BE=4,在Rt △ABD 中, 22AB AD +2,在(2)中,MN 2=ND 2+DH 2,BM=DH , ∴MN 2=ND 2+BM 2.设MN=a ,则a 2=()(2212222a +, 即a 2=()(22232a +, ∴a=52MN =52【点睛】本题考查正方形的性质,四边相等,对角线平分每一组对角,以及全等三角形的判定和性质,勾股定理的知识点等.5.(1)8-2t,8-t;(2)83或74【分析】(1)根据P、Q的运动速度以及AB和CD的长即可表示;(2)分PQ=PB、BP=BQ和QP=QB三种情况进行分析即可.【详解】解:(1)由题意可得:DP=2t,AQ=t,∴PC=8-2t,BQ=8-t,故答案为:8-2t,8-t;(2)当PQ=PB时,如图①,QH=BH,则t+2t=8,解得,t=83,当PQ=BQ时,(2t-t)2+62=(8-t)2,解得,t=74,当BP=BQ时,(8-2t)2+62=(8-t)2,方程无解;∴当t=83或74时,△BPQ为等腰三角形.【点睛】本题考查的是矩形的性质、等腰三角形的判定,掌握性质并灵活运用性质是解题的关键,注意分情况讨论思想的应用.6.(1)见详解;(2)2x=【分析】(1)连接MN,由勾股定理求出AC=5,证出四边形ABNM是矩形,得MN=AB=3,证△AME≌△CNF(SAS),得出EM=FN,∠AEM=∠CFN,证EM∥FN,得四边形EMFN是平行四边形,求出MN=EF,即可得出结论;(2)连接MN,作MH⊥BC于H,则MH=AB=3,BH=AM=x,得HN=BC-BH-CN=4-2x,由矩形的性质得出MN=EF=AC-AE-CF=4,在Rt△MHN中,由勾股定理得出方程,解方程即可.【详解】(1)证明:连接MN,如图1所示:∵四边形ABCD 是矩形,∴AD ∥BC ,AD=BC ,∠B=90°,∴∠EAM=∠FCN ,AC=2222345AB BC +=+=,∵M ,N 分别是AD ,BC 的中点,∴AM=DM=BN=CN ,AM ∥BN ,∴四边形ABNM 是平行四边形,又∵∠B=90°,∴四边形ABNM 是矩形,∴MN=AB=3,在△AME 和△CNF 中,AM CN EAM FCN AE CF =⎧⎪∠=∠⎨⎪=⎩,∴△AME ≌△CNF (SAS ),∴EM=FN ,∠AEM=∠CFN ,∴∠MEF=∠NFE ,∴EM ∥FN ,∴四边形EMFN 是平行四边形,又∵AE=CF=1,∴EF=AC-AE-CF=3,∴MN=EF ,∴四边形EMFN 为矩形.(2)解:连接MN ,作MH ⊥BC 于H ,如图2所示:则四边形ABHM 是矩形,∴MH=AB=3,BH=AM=x ,∴HN=BC-BH-CN=4-2x,∵四边形EMFN为矩形,AE=CF=0.5,∴MN=EF=AC-AE-CF=4,在Rt△MHN中,由勾股定理得:32+(4-2x)2=42,解得:x=722±,∵0<x<2,∴x=72-.【点睛】本题考查了矩形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、平行线的判定、勾股定理等知识;熟练掌握矩形的判定与性质和勾股定理是解题的关键.7.猜想与证明:猜想DM与ME的数量关系是:DM=ME,证明见解析;拓展与延伸:(1)DM=ME,DM⊥ME;(2)证明见解析【分析】猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AC,AC和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,【详解】解:猜想与证明:猜想DM与ME的数量关系是:DM=ME.证明:如图①,延长EM交AD于点H.①∵四边形ABCD、四边形ECGF都是矩形,∴AD∥BG,EF∥BG,∠HDE=90°.∴AD∥EF.∴∠AHM=∠FEM.又∵AM=FM,∠AMH=∠FME,∴△AMH≌△FME.∴HM=EM.又∵∠HDE=90°,∴DM=12EH=ME;(1)∵四边形ABCD 和CEFG 是正方形,∴AD ∥EF ,∴∠EFM=∠HAM ,又∵∠FME=∠AMH ,FM=AM ,在△FME 和△AMH 中,EFM HAM FM AMFME AMH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FME ≌△AMH (ASA )∴HM=EM ,在RT △HDE 中,HM=EM ,∴DM=HM=ME ,∴DM=ME .∵四边形ABCD 和CEFG 是正方形,∴AD=CD ,CE=EF ,∵△FME ≌△AMH ,∴EF=AH ,∴DH=DE ,∴△DEH 是等腰直角三角形,又∵MH=ME ,故答案为:DM =ME ,DM ⊥ME ;(2)证明:如图②,连结AC.②∵四边形ABCD 、四边形ECGF 都是正方形,∴∠DCA =∠DCE =∠CFE =45°,∴点E 在AC 上.∴∠AEF =∠FEC =90°.又∵点M 是AF 的中点,∴ME =12AF. ∵∠ADC =90°,点M 是AF 的中点, ∴DM =12AF. ∴DM =ME. ∵ME =12AF =FM ,DM =12AF =FM ,∴∠DFM =12 (180°-∠DMF),∠MFE =12(180°-∠FME), ∴∠DFM +∠MFE =12 (180°-∠DMF)+ 12 (180°-∠FME) =180°-12 (∠DMF +∠FME) =180°-12∠DME. ∵∠DFM +∠MFE =180°-∠CFE =180°-45°=135°, ∴180°-12∠DME =135°. ∴∠DME =90°.∴DM ⊥ME.【点睛】本题主要考查四边形的综合题,解题的关键是利用正方形的性质及直角三角形的中线与斜边的关系找出相等的线段.8.(1)①EAB DAC ∠=∠; ② 平行四边形,证明见解析;(2)成立,证明见解析.【分析】(1)①根据EAD BAC ∠=∠,两角有公共角BAD ∠,可证EAB DAC ∠=∠;②连接EB ,证明△EAB ≌△DAC ,可得,ABE ACD EB CD ∠=∠=,再结合平行线的性质和等腰三角形的判定定理可得EF=DC ,由此可根据一组对边平行且相等的四边形是平行四边形证明四边形CDEF 为平行四边形.(2)根据60BAC ∠=︒,可证明△AED 和△ABC 为等边三角形,再根据ED ∥FC 结合等边三角形的性质,得出∠AFC=∠BDA ,求证△ABD ≌△CAF ,得出ED=CF ,进而求证四边形EDCF 是平行四边形.【详解】解:(1)①EAB DAC ∠=∠,理由如下:∵EAD BAC ∠=∠,EAD EAB BAD ∠=∠+∠,BAC BAD DAC ∠=∠+∠, ∴EAB BAD BAD DAC ∠+∠=∠+∠,∴EAB DAC ∠=∠;②证明:如下图,连接EB,在△EAB 和△DAC 中∵AE AD EAB DAC AB AC =⎧⎪∠=∠⎨⎪=⎩∴△EAB ≌△DAC (SAS )∴,ABE ACD EB CD ∠=∠=,∵AB AC =,∴ABC ACD ∠=∠,∴ABE ABC ∠=∠,∵//EF DC ,∴EFB ABC ∠=∠,∴ABE EFB ∠=∠,∴EB EF =,∴DC EF =∴四边形CDEF 为平行四边形;(2)成立;理由如下:理由如下:∵60BAC ∠=︒,∴=60EAD BAC ∠=∠︒,∵AE=AD ,AB=AC ,∴△AED 和△ABC 为等边三角形,∴∠B=60°,∠ADE=60°,AD=ED,∵ED ∥FC ,∴∠EDB=∠FCB ,∵∠AFC=∠B+∠BCF=60°+∠BCF ,∠BDA=∠ADE+∠EDB=60°+∠EDB ,∴∠AFC=∠BDA ,在△ABD 和△CAF 中,60BDA AFC B BAC AB CA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ABD ≌△CAF (AAS ),∴AD=FC ,∵AD=ED ,∴ED=CF ,又∵ED ∥CF ,∴四边形EDCF 是平行四边形.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质和判定,等边三角形的性质和判定,平行四边形的判定定理,平行线的性质.在做本题时可先以平行四边形的判定定理进行分析,在后两问中已知一组对边平行,所以只需证明这一组对边相等即可,一般证明线段相等就是证明相应的三角形全等.本题中是间接证明全等,在证明线段相等的过程中还应用到等腰三角形的判定定理(第(1)小题的第②问)和等边三角形的性质(第(2)小题),难度较大.9.(1)①D 、E ,②A ,理由见解析;(2)①作图见解析;②BE 与AF 可能相等,AE 的长度分别为43,367,2或18. 【分析】(1)根据互为顶点,互为勾股顶针点的定义即可判断.(2)①以C 为圆心,CB 为半径画弧交AD 于F ,连接CF ,作∠BCF 的角平分线交AB 于E ,点E ,点F 即为所求.②分四种情形:如图①中,当BE AF =时;如图②中,当BE AF =时;如图③中,当BE BC AF ==时,此时点F 与D 重合;如图④中,当BE CB AF ==时,点F 与点D 重合,分别求解即可解决问题.【详解】解:(1)根据互为顶点,互为勾股顶针点的定义可知:①点A 与点D 和E 关于BC 互为顶针点;②点D 与点A 关于BC 互为勾股顶针点,理由:如图2中,∵△BDC 是等边三角形,∴∠D =60°,∵AB =AC ,∠ABC =30°,∴∠ABC =∠ACB =30°,∴∠BAC =120°,∴∠A +∠D =180°,∴点D 与点A 关于BC 互为勾股顶针点,故答案为:D 和E ,A .(2)①如图,点E 、F 即为所求(本质就是点B 关于CE 的对称点为F ,相当于折叠).②BE 与AF 可能相等,情况如下:情况一:如图①,由上一问易知,,BE EP BC PC ==,当BE AF =时,设AE x =,连接EF ,∵,,90BE EP AF EF EF EAF FPE ===∠=∠=︒,∴()EAF FPE HL ∆∆≌,∴AE PF x ==,在Rt CDF ∆中,()1082DF AD AF x x =-=--=+,10CF PC PF x =-=-,∴2228(2)(10)x x ++=-, 解得43x =,即43AE =; 情况二:如图②当BE AF =时,设AE x =,同法可得PF AE x ==,则8BE AF x ==-,FP FG GP EG AG AE x =+=+==,则18DF x =-,10CF x =+,在Rt CDF ∆中,则有2228(18)(10)x x +-=+,解得:367x =; 情况三:如图③,当BE BC AF ==时,此时点D 与F 重合,可得1082AE BE AB =-=-=; 情况四:如图④,当BE CB AF ==时,此时点D 与F 重合,可得18AE AB BE AB BC =+=+=. 综上所述,BE 与AF 可能相等,AE 的长度分别为43,367,2或18. 【点睛】本题属于四边形综合题,考查了矩形的性质,等边三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.10.(1)①证明见解析;②证明见解析;(2)241n -.【分析】(1)①先根据1n =可得AD AB =,再根据矩形的性质可得90DAE ABF ∠=∠=︒,然后根据直角三角形的性质、垂直的定义可得DEA AFB ∠=∠,最后根据三角形全等的判定定理与性质即可得证;②如图(见解析),先根据(1)的结论可得AE BF =,再根据等腰三角形的三线合一可得HAF DAF ∠=∠,然后根据矩形的性质、平行线的性质可得AFG DAF ∠=∠,从而可得HAF AFG ∠=∠,最后根据等腰三角形的定义可得AG GF =,由此即可得证; (2)如图(见解析),先根据线段中点的定义可得AE BE =,再根据角平分线的性质可得,AE EM DM AD nAB ===,从而可得BE EM =,然后根据直角三角形全等的判定定理与性质可得BF MF =,设BF MF x ==,最后在Rt CDF 中,利用勾股定理求出x 的值,从而可得BF 、CF 的值,由此即可得出答案.【详解】(1)①当1n =时,AD AB =四边形ABCD 是矩形90DAE ABF ∴∠=∠=︒90BAF AFB ∴∠+∠=︒AF DE ⊥90BAF DEA ∴∠+∠=︒DEA AFB ∴∠=∠在ADE 和BAF △中,90DAE ABF DEA AFB AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ADE BAF AAS ∴≅AE BF ∴=;②如图,过点A 作AF DH ⊥,交BC 于点F 由(1)可知,AE BF =,AH AD AF DH =⊥HAF DAF ∴∠=∠(等腰三角形的三线合一) 四边形ABCD 是矩形//AD BC ∴AFG DAF ∴∠=∠HAF AFG ∴∠=∠AG GF ∴=又GF BF BG AE BG =+=+AE BG AG ∴+=;(2)如图,过点E 作EM DF ⊥于点M ,连接EF 四边形ABCD 是矩形,,90AD BC nAB AB CD A B C ∴===∠=∠=∠=︒ 点E 是AB 的中点12AE BE AB ∴== ,,ADE EDF EA AD EM DF ∠=∠⊥⊥,AE EM DM AD nAB ∴===BE EM ∴=在Rt BEF △和Rt MEF 中,BE ME EF EF =⎧⎨=⎩()Rt BEF Rt MEF HL ∴≅∴=BF MF设BF MF x ==,则CF BC BF nAB x =-=-,DF DM MF nAB x =+=+ 在Rt CDF 中,222+=CD CF DF ,即222()()AB nAB x nAB x +-=+ 解得14x AB n =14BF AB n ∴=,214144n CF nAB AB AB n n-=-= 则224144114n AB CF n n BF AB n-==- 故答案为:241n -.【点睛】本题考查了矩形的性质、等腰三角形的三线合一、三角形全等的判定定理与性质、勾股定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.。

相关文档
最新文档