Electrodeposition of aluminum and aluminum-magnesium alloys at room temperature

合集下载

ElectronicPropertiesofMaterials材料的电子学性质

ElectronicPropertiesofMaterials材料的电子学性质

《Electronic Properties of Materials》(材料的电子学性质)简介一、出版与作者情况《材料的电子学性质》(Electronic Properties of Materials)是由世界著名的科技出版社德国施普林格(Springer-Verlag)出版公司出版的。

本书是第二版,并配有252处注释。

全书共有404页。

南开大学图书馆馆藏版本为1993年版本,为第二版。

本书是由美国佛罗里达大学材料科学与工程学院教授Rolf E.Hummel在第一版的基础上进行修改和扩充完成。

在第一版的基础上,作者增加了高温超导体和光电技术的进展两章节内容。

同时作者在半导体器件制备、场效应管(JFET, MOSFET)、量子半导体器件,电学储存(D-RAM,S-RAM)、逻辑电路等其他第一版已有章节基础上增加了许多新的内容。

Rolf E.Hummel是佛罗里达大学材料科学的教授,他于1963年在德国的斯图加特大学获得博士学位,同时期在德国的马克思-普朗克材料研发中心做过研究。

他过去出版的书有:Optical Properties of Metals and Alloys(1971);Electro- and Thermotransport in Metals and Alloys(1977) 二、本书内容简介作者对材料的各种特性作了经典的概括,为从事此方向研究的科学工作者提供了重要的参考资料。

第一章介绍综合性的电子学基本知识,从最基本的薛定谔方程出发引出晶体的能带理论与晶体中的电子行为。

第二章介绍各种材料中的电学性质。

包括各种常见的金属、半导体、绝缘体中电子的行为。

第三章转向材料的光学性质,其中在本章中作者提到了很多关于应用方面的知识,包括各种激光器和集成光电子学(波导、EOW、光学调制和开关等)。

第四章从各种磁学现象出发引出对磁畤的解释,本章同时还介绍了磁学的许多应用方面知识。

例如磁性材料,储存介质等。

吉林省个体工商户雇工工伤保险办法

吉林省个体工商户雇工工伤保险办法
006. C. C. Yang and I. Okada, 1987, “Internal Cation Mobilities in the molten binary system (K-Rb)NO3”, Z. Naturforsch. 42a, 1017. (SCI)
007. C. C. Yang, M. Nomura, M. Okamoto and I. Okada, 1988, “Isotope effect of Li-ions in countercurrent electromigration of molten LiOH”, Z. Naturforsch. 43a, 91. (SCI)
023. C. C. Yang, S. H. Wu and K. S. Shen, 2000, “The electrodeposition of tungsten in the low melting molten carbamide electrolyte”, J. of Science and Technology, 9, 31.(EI)
015. C. C. Yang and B. Lee, 1993, “Internal cation mobilities in the molten binary systems (Li, Na)Cl and (Na, K)Cl”, Z. Naturforsch. 48a. (SCI)
016. C. C.Yang, 1994, “The mechanism of ionic transport in some molten alkali chloride electrolytes”, J. of Yunlin Institute of Technology, 3, 111. (EI)

ElectroActa-2010-LiMei

ElectroActa-2010-LiMei

Electrochimica Acta 55 (2010) 3008–3014Contents lists available at ScienceDirectElectrochimicaActaj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /e l e c t a c taElectro-assisted preparation of dodecyltrimethoxysilane/TiO 2composite films for corrosion protection of AA2024-T3(aluminum alloy)Mei Li,Ya-Qin Yang,Liang Liu,Ji-Ming Hu ∗,Jian-Qing ZhangDepartment of Chemistry,Zhejiang University,Hangzhou 310027,PR Chinaa r t i c l e i n f o Article history:Received 28September 2009Received in revised form 29December 2009Accepted 29December 2009Available online 13 January 2010Keywords:Silane filmsNanoparticles incorporation TiO 2Electrodeposition Corrosion protectiona b s t r a c tThin films of organosilanes have been successfully used as the alternative to toxic chromate coatings for surface pretreatment of metals and alloys.To further improve their corrosion performance,in the present work nano-scaled TiO 2particles were added to the dodecyltrimethoxysilane (DTMS)films coated onto AA2024-T3substrates,by using either the dip-coating or the cathodically electro-assisted deposition process.The obtained composite films were investigated by scanning electron microscopy (SEM),atomic force microscopy (AFM),water contact angle measurements,Fourier transform reflection-absorption IR (FTRA-IR)and electrochemical impedance spectroscopy (EIS).The results show that these two techniques (nanoparticles incorporation and the electro-assisted deposition)both facilitate the deposition process of silane films,giving thicker deposit and higher coverage surface along with higher roughness and hydrophobicity,and thereby improve their corrosion resistance.Moreover,the corrosion performance of silane films is further improved by the combined use of nanoparticles modification and electro-assisted deposition.© 2010 Elsevier Ltd. All rights reserved.1.IntroductionThe AA2024-T3aluminum alloys are widely used in aerospace and automobile industries because of their high fracture toughness and fatigue resistance and high strength-to-weight ratio.How-ever,the existence of copper rich particles in these alloys sharply reduces their corrosion resistance.For this reason,before use these alloys are normally coated with protective organic coatings on pre-treated surface.Up to date,the pretreatment is most frequently based on the use of chromate conversion layer (CCL).This layer not only provides an excellent paint adhesion to topcoats,but also itself exhibits corrosion resistance for the purpose of short or long-term protection.However,the highly toxic Cr(VI)restricts the use of CCL in many countries for the environmental concerns.Silanization based on the use of alkoxysilanes was reported as an environmental compliant alternative of CCL in the last decade [1,2].The silane film is formed onto metal surface by the hydrolysis and condensation reactions of silane agents [3]:R–Si–OR +H 2O →R–Si–OH +R OH (1)2R–Si–OH →R–Si–O–Si–R +H 2O (2)M–OH +R–Si–OH →M–Si–O–R +H 2O(3)∗Corresponding author.Tel.:+8657187952318;fax:+8657187951895.E-mail address:kejmhu@ (J.-M.Hu).where R and R are functional group and methyl (or ethyl),respec-tively,and M stands for metal.The obtained thin film can provide desired adhesion both to metal substrate due to the formation of chemically adsorbed M–O–Si bond and to the top-coated organic coatings if the R group with proper structure is selected [4];mean-while,the film exhibits good corrosion performance due to the formation of highly dense –[Si–O–Si]–bone structure whose hydrophobicity depends on the selected R group.However,the corrosion performance of the conventionally pre-pared silane film is far from satisfactory.This is because the dip-coated silane film only has limited thickness (typically hun-dreds of nanometers [5,6])and low coverage at metal surface were reported,e.g.the non-uniformity of 10%for bis-sulfur silane films on stainless steel [5]and as high as 20%for bis-1,2-(triethoxysilyl)ethane (BTSE)films on aluminum surface [6].Nowadays,many efforts have been done to further improve the performance of such protective silane films.van Ooij’s group developed a so-called two-step dip-coating method to achieve both the good adhesion and films’protectiveness [2].Montemor and co-workers [7–9]exten-sively investigated the rare earth salts (REs)addition,e.g.Ce 3+and La 3+,into various silane films coated at a variety of metal or alloy substrates.The REs were found having “self-healing effect”,that is,they can protect the scribe or defects in the film [10].Non-active nanoparticles,such as SiO 2[11]and CeO 2[12],have also been added into silane films.These nano-scaled fillers could not only enhance film’s mechanical property but also facilitate the growth of silane films [11].0013-4686/$–see front matter © 2010 Elsevier Ltd. All rights reserved.doi:10.1016/j.electacta.2009.12.081M.Li et al./Electrochimica Acta55 (2010) 3008–30143009A bigger breakthrough in silanefilm’s preparation process occurred after Mandler’s group proposed an electrochemically assisted technique(EAT)[13].The cathodically generated OH−ions catalyze the condensation reactions among silanols themselves (reaction(2))and between silanols and metal substrate(reaction (3)),only in the small electrolyte volume near the electrode sur-face.The localized alkalization may overcome the shortcoming of a high pH bulk silane solution,where the hydrolysis rate is less and the condensation rate is high,leading to the insufficient generation of silanols and dramatic loss in solution stability.It was reported that[14,15]the silanefilms prepared by the EAT are thicker,less porous,better organized and more uniform,if compared to the dip-coatedfilms.As a result,thesefilms present better corrosion performance.Nevertheless,there are only few works[14–20]using EAT to prepare silanefilms for the purpose of corrosion protection.Our previous publication[21]might be thefirst work report-ing the combination of EAT and nanoparticles addition to prepare highly corrosion-resistive silanefilms.The results showed that both the nano-scaled silica incorporation and EAT can improve the formation of dodecyltrimethoxysilane(DTMS)films and their protectiveness.More importantly,the combined techniques can further improve the above-mentioned credits.In the present paper, we have prepared TiO2nanoparticles-incorporated DTMSfilms by the EAT,to further confirm the combined effect of these two tech-niques on the formation and protective properties of silanefilms. The work is focused on,apart from the corrosion performance,the physico-chemical properties evaluation of the incorporatedfilms, such as surface morphology,film thickness and the hydrophobicity.2.ExperimentalThe AA2024-T3aluminum alloy substrate(Southwest Alu-minum,Chongqing,China)was cut to coupons(3cm×6cm)and then mechanically polished with emery paper(600grit)prior tofilm deposition.After polishing,the samples were thoroughly rinsed with home-made surfactant-based low alkaline cleaner,and finally washed with deionized(DI)water and then blow-dried with warm air.All samples were kept in a desiccator for at least24h before use.The titanium dioxide nanoparticles(20±5nm,as mea-sured by the producer),with a purity≥99.9%,were purchased from Chemat Chemical(Xia’men,China).Silane agent(DTMS: CH3(CH2)11Si(OCH3)3,95%)was purchased from Zhejiang Chemi-cal Industry Research Institute(Hangzhou,China).The blank silane solution contains5vol.%silane agent dissolved in75/25(v/v) ethanol/water mixed solvent(pH4.5adjusted by acetic acid).Then, the obtained solution was pre-hydrolyzed at35◦C for48h form-ing a sol–gel precursor.The TiO2-containing silane solution was obtained by adding appropriate amount of nanoparticles(0,20,40, 70,100,150,200mg/L,respectively)into the blank solution,and the mixed solutions were further stirred for1h to make sure the nanoparticles dispersed well.The electrodeposition was performed by using three-electrode cell,with the saturated calomel electrode (SCE)as the reference and a platinum plate(2.0cm×2.0cm)as the counter.The silanefilms were deposited at the open-circuit potential(OCP,approximately−0.3V/SCE),corresponding to the dip-coating process,and at various cathodic potentials(i.e.−0.6,−0.8,−1.0,−1.2and−1.4V/SCE,respectively).The deposition was conducted for200s,after which samples were taken out and blow-dried with nitrogen to remove any excess liquid,finally cured at 100◦C for1h at air in an oven.The surface morphology of silanefilms wasfirst examined on a SIRIONfield emission scanning electron microscopy(SEM)pro-duced by FEI Co.Ltd.(USA),and then the3D images were obtained by an atomic force microscopy(AFM,SPI3800N,Seiko Instruments Inc.,Chiba,Japan).The thickness of the silanefilm was measured on a variable-angle spectroscopic ellipsometer(model VASE;J.A. Woollam Inc.,Lincoln,NE,USA)at incident angles of65◦,70◦and 75◦within a wavelength range of800–1100nm.To minimize the measuring error originated from the incompletely smooth sur-face of aluminum alloys,thefilms used for thickness measurement were deposited onto a commercial conductive mirror-like smooth silicon substrate(P-doped,(111)-oriented,8–12 cm resistivity, 0.525mm thickness)purchased from Ningbo QL Electronics Co., Ltd.(China).Detailed processes about the substrate pretreatment can refer to the reference[22].The thickness of the silanefilms was measured at three different areas,and was calculated from the ellipsometric parameters,,by which thefilm thickness and refractive index were automaticallyfitted using a Cauchy model. Thefilms’static water contact angles were measured in the air by JC2000X A static dropping contact angle measuring instrument (Shanghai,China)with high speed CCD camera for imagecapture.Fig.1.AFM scan(100␮m×100␮m)of un-modified(a and b)and TiO2nanoparti-cles(40mg/L)-modified(c and d)DTMSfilms.(a and c)Dip-coatedfilms;(b and d)films deposited at−0.8V.Left column:2D topgraph;right column:3D scans.3010M.Li et al./Electrochimica Acta55 (2010) 3008–3014DI water drops with the volume of∼15␮L were used.Contact angle was calculated by the average of measured angles at10randomly selected spots.Fourier transform reflection-absorption IR(FTRA-IR) was measured at silanefilms coated on AA2024-T3substrates.The measurement was carried out on a Nicolet470spectrophotometer (Thermo Nicolet,USA)with incidence angle of80◦normal to the surfaces of the specimens,spectral resolution of4cm−1,number of scans of32and un-treated bare aluminum alloy as the background.The corrosion performance of silanefilm-coated aluminum alloy electrodes was evaluated by electrochemical impedance spec-troscopy(EIS).The measurement was carried out at30◦C after the immersion of working electrode(∼3.0cm2of exposed area)into the corrosive solution for30min on a M273model potentiostat (Princeton Applied Research,USA)combined with a M5210model lock-in amplifier(Princeton Applied Research,USA).The measured frequency was selected from120kHz to0.01Hz with an ac exci-tation amplitude of10mV at open-circuit potential.The testing electrolyte was a3.5wt.%NaCl aqueous solution prepared with DI water.The same three-electrode cell was used as described above.3.Results and discussion3.1.Physico-chemical characterization offilmsThe AFM images clearly show the differences in morphol-ogy for various groups offilm.The dip-coated DTMS-onlyfilm cannot effectively cover the whole substrate area,which is evi-denced from the visible polishing scratches on the underlying aluminum alloy substrate(Fig.1a).After applying a cathodic poten-tial of−0.8V(SCE),these scratches are almost entirelyfilled by the electrodeposited material(Fig.1b),indicating the existence of electro-assisted base-catalyzed gelation.Modifying with a cer-tain amount of TiO2nanoparticles gives a nano-structured surface silanefilm(Fig.1c).This columnar-like structure becomes clearer when the compositefilm is obtained by cathodic electrodeposi-tion(Fig.1d).A similar columnar-like nano-structure has been reported in silica nanoparticles-doped Ce-silanefilms[23].The 3D views(right column of thefigure)provide further informa-tion of the surface roughness of the deposits.A homogenous and compact deposit is obtained for pure DTMSfilm prepared by elec-trodeposition(Fig.1b).These merits(high homogeneity and high compactness)of electrodeposited silanefilms have already been described in van Ooij and co-workers’[15]and our previous works [16,17].The nano-structured micro morphology is much more clearly seen from the3D views of nanoparticles-modifiedfilms (Fig.1c and d).Moreover,the better arranged nano-structure is obtained for electrodeposited compositefilms(Fig.1d).The root-mean-squared roughness(RMS)of the dip-coated pure DTMSfilm(RMS=65.5nm,Fig.1a)is slightly increased when applying a cathodic potential of−0.8V(RMS=89.7nm,Fig.1b), whereas the TiO2-modified deposits are significantly higher and continuously increases with the enhanced nanoparticles content therein(shown in Fig.2,RMS=131.3,154.0and313.6for dip-coated compositefilms obtained from precursors containing40, 100and150mg/L TiO2nanoparticles,respectively).Furthermore, the RMS of the compositefilms is in larger extent enhanced by the cathodic electrodeposition process(inset in Fig.2),as compared to un-modified deposits.The increased roughness of thefilms indicates the facilita-tion infilms growth.The TiO2nanoparticles seem to act as the nuclei for further growing of thefilm,resulting in significant increase in thefilm roughness.Shown in Fig.3are the mea-sured andfitted spectroscopic ellipsometry«spectra at some typical silanefilms.It is shown that thefilm thickness increases from427.3±16.8nm for the dip-coated pure DTMS deposit to 552.5±11.4nm when thefilm is deposited under a negative potential of−0.8V(vs.SCE),suggesting theelectro-generatedFig.2.Roughness recorded by wet mode AFM of thefilm as a function of TiO2content in precursors(dip-coating method)and of deposition potential(inserted plot,for compositefilms).M.Li et al./Electrochimica Acta 55 (2010) 3008–30143011Fig.3.Spectroscopic ellipsometry «spectra taken at 65◦(1),70◦(2)and 75◦(3)for DTMS film loaded with 100mg/L TiO 2.Dashed green lines:experimental data;solid red lines:fitted results.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of the article.)base-catalyzed gelation for the electrodeposited films [14].The thickness of the films can also be increased by adding proper amount of TiO 2nanoparticles (e.g.538.9±18.7nm for DTMS/TiO 2(100mg/L)),and further be significantly improved by cathodic elec-trodeposition (e.g.707.9±20.2nm for DTMS/TiO 2(100mg/L)film deposited at −0.8V).The improved growth of silane films by incor-porating proper amount of nanoparticles,e.g.silica,has already been reported in the previous reports [11,21].The improved effect on the gelation of silane films,by either the electrodeposition technique or the nanoparticles incorporation,is also evidenced by the Fourier transform reflection-absorption IR (FTRA-IR)measurements.Fig.4presents the FTRA-IR spectra of four different typical deposits on aluminum alloy substrates.The peaks at 2338and 2359cm −1are originated from O C O asymmetric stretching vibration,a result of the contamination of the atmo-sphere.The figure shows that the characteristic absorption of all the silane films under the investigation appears at ∼1145cm −1,which is attributed to the –Si–O asymmetric stretching in –Si–O–Si–[24],as a result of the condensation reactions (Eq.(2))among silanols.This absorption peak is found to obviously increase either after the cathodic deposition (if compare curve 2with 1for the pure DTMS films,or curve 4with 3for DTMS/TiO 2composite films)or after the nanoparticles modification (if compare curve 3withFig.4.FTRA-IR spectra of dip-coated (1and 3)and electrodeposited (2and 4)DTMS-only (1and 2)and DTMS/TiO 2composite (3and 4)films.Electrodeposition potential:−0.8V;TiO 2content in the precursor:100mg/L.1for dip-coated films,or curve 4with 2for electrodeposited films).This phenomenon clearly suggests the improved growth of silane film by both the electrodeposition and the nanoparticles incorpo-ration.It is also interesting to observe that an additional absorption peak at ∼1070cm −1is appeared at the electrodeposited pure DTMS film (curve 2)or TiO 2-doped composite films (curves 3and 4).This broaden peak was considered as the formation of metal–O–Si bonds in the metal/silane film interfacial layer [25],further indicating the positive effect of these two techniques on the formation of more protective silane films.The ease of organosilane films formation under electrodeposition and (or)nanoparticles incorporation may also be evidenced from the different peak absorption intensities at 1460cm −1,which is assigned to the ␦(CH 3)/␦(CH 2)vibrations [26]originated from the dodecyl group in DTMS molecule.The intensity of this absorption peak is significantly increased by either apply-ing cathodic potential (see curves 2and 4with respect to curves 1and 3,respectively)or doping the nanoparticles (see curves 3and 4with respect to curves 1and 2,respectively).Nevertheless,loading an excessive amount of nanoparticles gives a heterogeneous film surface (see Fig.5b for dip-coated DTMS/150mg/L TiO 2film).A large number of white agglomerates with their sizes ranged from 300to 600nm,which are identified by EDS as Ti-and oxygen-rich,are appeared on the top of film.These agglomerates cannot be entirely covered by silane deposits (Fig.5b),but the smaller agglomerates in the composite deposits with lower content of TiO 2nanoparticles are completely involved into the silane films (Fig.5a for dip-coated DTMS/100mg/L TiO 2film).On the other hand,as already reported in our previous pub-lications [16,17],the excessive negative potentials may lead to the intensive generation of hydrogen bubbles at electrode surface via water decomposition,and thereby leave a large number of pores and cracks in the films (see Fig.5c for DTMS/100mg/L TiO 2film deposited at −1.2V).The hydrophobic nature of the silane films is characterized by the contact angle measurements.The contact angle does not change much for the various films under investigation,because its value is mainly determined by the chemistry of the functional group in the silane films (dodecyl group in the present work).Nevertheless,the small but noticeable differences can still be found among these var-ious films.Fig.6shows that the hydrophobicity of DTMS films can be improved by loading a proper amount of TiO 2nanoparticles,in spite of the hydrophilic property of the nanoparticles them-selves.As the TiO 2content increases,the contact angle of the films increases firstly and then decreases.The improved hydrophobic-ity after doping a proper amount of nanoparticles agrees well with the characteristic morphologies,as well as the testing results of ellipsometry and IR of the composite deposits as mentioned above,that is they are more uniform,thicker,and in larger coverage.In addition,the nano-structured surface (see Fig.1c and d)of the nanoparticles-modified DTMS films may be more hydrophobic.The reduced hydrophobicity of heavily TiO 2-loaded composite films (e.g.150mg/L TiO 2)can be attributed to the exposed hydrophilic TiO 2agglomerates on the film surface due to the serious aggre-gation of nanoparticles (see Fig.5b).Inset in the figure indicates that the films hydrophobicity can be improved via electrodeposi-tion process at the proper cathodic potentials,which could also be explained by the higher uniformity,larger thickness and cov-erage of the electrodeposited films.The defects,such as pores and cracks,in the electrodeposited films obtained at excessively nega-tive potentials provide channels for water absorption,and thereby decrease the films hydrophobicity.3.2.Protective performance of silane filmsElectrochemical impedance spectroscopy (EIS)has been com-monly used to evaluate the corrosion performance of protective3012M.Li et al./Electrochimica Acta55 (2010) 3008–3014Fig.5.SEM images of dip-coated DTMS/(100mg/L)TiO 2(a)and DTMS/(150mg/L)TiO 2(b)films and electrodeposited DTMS/(100mg/L)TiO 2film (c).Electrodeposition potential:−1.2V.On the right bottom:EDS analysis on the whole surface and white dot-only area of image b,respectively.silane films on cold rolled steel [27,28],galvanized steel [28,29]and aluminum alloy [28,30]substrates.Fig.7shows the Bode plots of dip-coated DTMS/TiO 2composite films-treated 2024-T3panels in NaCl solution.The curves of bare 2024-T3are also presented in the figure as the reference.Only one broad time constant,which is a result of the over-lapping of two electrochemical processes occurred in the inner and outer oxide layers [31],is observed at the bare alloy (Fig.7b).According to Lee and Pyun [32,33],who have investigated the corrosion behaviors of pure aluminum in Cl −ion-contained aqueous solution,the high-frequency relaxation cor-responds to the Cl −ion-incorporated oxide layer which is formed during the induction time for pit initiation;while the intermediate-frequency relaxation is a result of inner oxide layer.After treated with silane films,significantly higher phase angles are exhibited in the high-frequency range (Fig.7b),due to the presence of protec-tive thin films.Moreover,the high-frequency phase angles increase when the films are modified with TiO 2nanoparticles (Fig.7b).The impedance modulus plots also show that comparing to that of the un-treated bare alloy the impedance of silane-coated samples is significantly increased (Fig.7a),suggesting that the silanefilmsFig.6.Contact angle of DTMS/TiO 2composite films.(a)Influence of TiO 2nanoparticles concentration in the sol solution on the dip-coated films;(b)influence of deposition potential on electrodeposited films.M.Li et al./Electrochimica Acta55 (2010) 3008–30143013Fig.7.Bode plots in3.5wt.%NaCl solution of bare2024-T3(square)and the alloy electrodes dip-coated with DTMSfilms loaded with0mg/L(circle),40mg/L(left-triangle),100mg/L(up-triangle),150mg/L(down-triangle)and200mg/L(diamond) TiO2nanoparticles.play an important role for corrosion protection of aluminum alloys. Fig.7a also shows that modifying with various content of TiO2 nanoparticles basically improves the protectiveness of DTMSfilms, as indicated from the increased impedance values.The highest impedance values are found at100mg/L of nanoparticles incor-poration.Detailed discussion on impedance data analysis on the basis of equivalent electric circuit(ECC)is beyond the range of the present work.One canfind intensive information in numeric datafitting of silanefilm-coated systems by selecting proper ECCs in our[18] and other group’s[4,25,34,35]previous publications.For the pur-pose of simplicity,the low-frequency impedance module(|Z|lf) is used here to quantitatively evaluate the protectiveness of un-doped and nanoparticles-doped silanefilms.|Z|lf reflects the sum of resistance of the resistive elements in the electric circuit if the frequency is selected as small as possible(theoretical value is0Hz). For silanefilm-treated metal or alloy system,|Z|lf commonly com-prises the solution resistance(R s),film resistance(R f)and charge transfer resistance(R ct)occurring at the substrate/electrolyte inter-face.Fig.8a clearly shows that the impedance value increases and then decreases when the content of doped nanoparticles increases. |Z|lf reaches the highest value at100mg/L TiO2concentration,sug-gesting the highest corrosion resistance of DTMS/TiO2composite film with this specific content.This is in good agreement with the result of contact angle measurement(Fig.6),and also is con-sistent with the morphology and thickness characterizations.As mentioned above,the nanoparticles incorporation results in an improved growth of silanefilms(Figs.1and2,and thickness data by elliposometry).But the excessive amount of TiO2doping gives seri-ous aggregation among nanoparticles(Fig.5b).These hydrophilic clusters cannot be entirely covered by DTMS deposits,and thereby exposes to thefilm surface.In this sense,the corrosion perfor-mance of DTMSfilms cannot be further enhanced by excessively incorporating nanoparticles.After applying cathodic deposition potentials onto TiO2-modified DTMSfilms,the corrosion resistance is further improved. Fig.8b shows the deposition potential-dependent|Z|lf of DTMS/TiO2(100mg/L)compositefilms as measured in NaCl solu-tion.The impedance values of electrodeposited pure DTMSfilms are also provided in thefigure as a reference.The corrosion perfor-mance of DTMSfilms shows a bell shape as a function of deposition potential,reaching the maximum at the deposition potential of −0.8V.Similar result has already been reported and discussed in our previous works[16,17],where some other silanefilms,e.g.bis-1,2-[triethoxysilyl]ethane(BTSE),vinyltrimethoxysilane(VTMS) and methyltrimethoxysilane(MTMS)films,all perform the high-est corrosion resistance when electrodeposited at this“critical potential”(−0.8V).The enhanced performance below the critical potential was believed as a result of base-catalyzed gelation due to the alkalization of electrolyte near the electrode surface under the cathodic polarization,whereas,the decreased corrosion resis-tance up the critical potential can be explained by the decreased compactness of obtainedfilms(e.g.pores and cracks)probably due to the attacking of formedfilms by tiny hydrogen bubbles at excessively negative potentials.Although the hydrogenbubblingFig.8.Low-frequency impedance modules(|Z|lf)of silanefilm deposited aluminum alloys in3.5%NaCl solution.(a)Dip-coated compositefilms as a function of TiO2 nanoparticles concentration in precursors.(b)Electrodeposited pure DTMSfilms and100mg/L TiO2-doped DTMSfilms as a function of deposition potential.|Z|lf is read at 0.01Hz.3014M.Li et al./Electrochimica Acta55 (2010) 3008–3014is hard to be visible due to very low current densities during the deposition(typically in the order of magnitude of micro-amperes), the cathodic voltammetric curves did suggest the occurrence of hydrogen evolving when the deposition potential is negative than −1.06V/SCE[16,17].Fig.8b clearly shows that the protective prop-erties of the electrodeposited compositefilms are obviously better than those of electrodeposited pure DTMSfilms,although their change trends with the variation of deposition potential are similar. The merit of the combined use of nanoparticles incorporation and cathodic electrodeposition in silanefilm’s preparation mainly lies on the facilitated effect onfilms growth by the individual factor as presented from the morphology,thickness and chemical character-ization.We have reported the similar results on electrodeposited silica-doped DTMSfilms[21].But up to date,it is still unclear why the nanoparticles incorporation can benefit the growth of silane films.Further work needs to be considered to understand better the above-mentioned issue.4.ConclusionsWe have prepared composite DTMS/TiO2films by the electro-chemically assisted technique(EAT)for corrosion protection of AA2024-T3alloys.Results show that incorporating the nano-scaled particles and applying the EAT both can obtain silane deposits with higher thickness and higher coverage and roughness surface.The obtainedfilms present higher hydrophobicity and better perfor-mance for corrosion protection.The above-mentioned credits can be further improved by the combined use of these two techniques (nanoparticles modification and electro-assisted deposition).AcknowledgementsThis work was supported by the National Natural Science Foundation of China(No.50871101)and the Chinese Universi-ties Scientific Fund.The authors also gratefully acknowledge the financial support from the State Key Laboratory for Corrosion and Protection.References[1]W.J.van Ooij,T.Child,Chemtech28(1998)26.[2]V.Subramanian,W.J.van Ooij,Corros54(1998)204.[3]G.Tesoro,Y.Wu,in:K.L.Mittal(Ed.),Silanes and Other Coupling Agents,VSP,Utrecht,NL,1992,p.215.[4]D.Zhu,W.J.van Ooij,Corros.Sci.45(2003)2177.[5]D.Zhu,W.J.van Ooij,Electrochim.Acta49(2004)1113.[6]A.Franquet,H.Terryn,J.Vereecken,Surf.Interface Anal.36(2004)681.[7]M.E.Montemor,M.G.S.Ferreira,Electrochim.Acta52(2007)6976.[8]M.G.S.Ferreira,R.G.Duarte,M.F.Montemor,A.M.P.Simoes,Electrochim.Acta49(2004)2927.[9]M.G.S.Ferreira,A.M.Cabral,W.Trabelsi,R.Serra,M.F.Montemor,M.L.Zhelud-kevich,Corros.Sci.48(2006)3740.[10]M.L.Zheludkevich,R.Serra,M.F.Montemor,M.G.S.Ferreira,-mun.7(2005)836.[11]Vignesh Palanivel,Danqing Zhu,W.J.van Ooij,.Coat.47(2003)384.[12]M.F.Montemor,R.Pinto,M.G.S.Ferreira,Electrochim.Acta54(2009)5179.[13]R.Shacham,D.Avnir,D.Mandler,Adv.Mater.11(1999)384.[14]M.Sheffer,A.Groysman,D.Mandler,Corros.Sci.45(2003)2893.[15]J.S.Gandhi,W.J.van Ooij,J.Mater.Eng.Perform.13(2004)475.[16]J.M.Hu,L.Liu,J.Q.Zhang,C.N.Cao,Electrochim.Acta51(2006)3944.[17]J.M.Hu,L.Liu,J.Q.Zhang,C.N.Cao,.Coat.58(2007)265.[18]J.M.Hu,L.Liu,J.Q.Zhang,C.N.Cao,Chem.J.Chin.Univ.(Chin.Ed.)27(2006)1121.[19]W.M.Zhang,J.M.Hu,Acta Metall.Sin.(Chin.Ed.)42(2006)295.[20]S.Z.Ding,L.Liu,J.M.Hu,J.Q.Zhang,C.N.Cao,Scripta Mater.59(2008)297.[21]L.Liu,J.M.Hu,J.Q.Zhang,C.N.Cao,Electrochim.Acta52(2006)538.[22]X.Gong,H.Yang,L.L.Han,C.Y.Gao,Langmuir24(2008)13925.[23]L.M.Palomino,P.H.Suegama,I.V.Aoki,M.F.Montemor,H.G.De Melo,Corros.Sci.51(2009)1238.[24]D.Q.Zhu,W.J.van Ooij,.Coat.49(2004)42.[25]W.J.van Ooij,D.Zhu,Corrosion57(2001)413.[26]Y.S.Li,Y.Wang,T.Tran,A.Perkins,Spectrochim.Acta Part A61(2005)3032.[27]L.Fedrizzi,F.J.Rodriguez,S.Rossi,F.Deflorian,R.D.Magi,Electrochim.Acta46(2001)3715.[28]G.P.Sundararajan,W.J.van Ooij,Surf.Eng.16(2000)315.[29]W.Trabelsi,L.Dhouibi,E.Triki,M.G.S.Ferreira,M.F.Montemor,Surf.Coat.Technol.192(2005)284.[30]M.Khobaib,L.B.Reynolds,M.S.Donley,Surf.Coat.Technol.140(2001)16.[31]I.V.Aoki,M.C.Bernard,S.I.C.d.Torresi,C.Deslouis,H.G.d.Melo,S.Joiret,B.Tribollet,Electrochim.Acta46(2001)1871.[32]W.J.Lee,S.I.Pyun,Electrochim.Acta45(2000)1901.[33]W.J.Lee,S.I.Pyun,Electrochim.Acta44(1999)4041.[34]A.Franquet,C.L.Pen,H.Terryn,J.Vereecken,Electrochim.Acta48(2003)1245.[35]A.Cabral,R.G.Duarte,M.F.Montemor,M.L.Zheludkevich,M.G.S.Ferreira,Cor-ros.Sci.47(2005)869.。

阴极等离子体电解氧化表面改性新方法探索

阴极等离子体电解氧化表面改性新方法探索

第52卷第6期表面技术2023年6月SURFACE TECHNOLOGY·1·专题——液相等离子体电解新技术阴极等离子体电解氧化表面改性新方法探索薛文斌1,2,金小越2,李惠1,2,徐驰1,2,杜建成1,2,周茜1,2,陈虎1,2(1.北京师范大学 核科学与技术学院 射线束技术教育部重点实验室,北京 100875;2.北京市科学技术研究院 辐射技术研究所,北京 100875)摘要:阴极等离子电解氧化(CPEO)打破等离子体电解领域传统认识,利用液相放电现象,使钢铁及钛基材料阴极表面快速氧化,是一种氧化膜制备新方法,提高了材料的耐磨、耐蚀性能。

与微弧氧化或阳极等离子电解氧化技术相比,CPEO技术的氧化膜生长速率显著提高,并适用于各种钢铁材料表面改性。

介绍了CPEO技术的基本原理,包括液相放电现象和电压电流的演变过程、气膜形成与击穿过程、阴极内部近表面温度随电压变化规律和快速氧化过程,并对比分析了CPEO与阳极等离子体电解氧化和电解渗技术原理的共性与差异。

介绍了光发射谱测量和等离子体参数的计算结果,分析阴极等离子体放电环境中阴极等离子体电解氧化机制。

进一步总结了碳钢、不锈钢、Mo、TiAl合金表面CPEO膜的形貌、组织结构和性能特点,分析电解液中悬浮的碳粉特性,探讨放电过程中类金刚石(DLC)成分合成的可行性,并初步制备出含DLC 成分的CPEO复合氧化膜。

最后总结并展望了CPEO技术的发展方向以及应用前景。

关键词:阴极等离子电解氧化;原理;氧化膜;液相等离子体;铁基合金;钛铝合金中图分类号:TG156.8 文献标识码:A 文章编号:1001-3660(2023)06-0001-12DOI:10.16490/ki.issn.1001-3660.2023.06.001Novel Surface Modification Method of CathodicPlasma Electrolytic OxidationXUE Wen-bin1,2, JIN Xiao-yue2, LI Hui1,2, XU Chi1,2,DU Jian-cheng1,2, ZHOU Qian1,2, CHEN Hu1,2(1. Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology,Beijing Normal University, Beijing 100875, China; 2. Institute of Radiation Technology, BeijingAcademy of Science and Technology, Beijing 100875, China)ABSTRACT: Cathodic plasma electrolytic oxidation (CPEO) is a novel oxide coating fabrication technology developed on the basis of plasma electrolysis in liquid. The Fe-based and Ti-based metal cathodes can be quickly oxidized under liquid phase discharge, which improves their wear resistance and corrosion resistance. It is believed that the CPEO technology is a breakdown for conventional knowledge in the plasma electrolysis field. Compared with anodic plasma electrolytic oxidation, namely microarc oxidation, the CPEO technique has much high growth rate of oxide coating and meanwhile it may be also收稿日期:2023–04–06;修订日期:2023–05–18Received:2023-04-06;Revised:2023-05-18基金项目:国家自然科学基金项目(51671032)Fund:National Natural Science Foundation of China (51671032)作者简介:薛文斌(1968—),男,博士,教授,主要研究方向为金属材料表面改性。

锂离子电池正极片的力学性能及影响因素

锂离子电池正极片的力学性能及影响因素

第49卷第3期电池Vol.49,No.3 2019年6月BATTERY BIMONTHLY Jun.,2019•技术交流•DOI:10.19535/j.1001_1579.2019.03.009锂离子电池正极片的力学性能及影响因素蒋茂林,余伟(北京科技大学工程技术研究院,北京100083)摘要:采用小型拉伸试验机、SEM、X射线能谱仪(EDS)和激光共聚焦显微镜等,对正极集流体(压延铝箔)以及对应正极极片的表面形貌、力学性能、集流体表面粗糙度等进行分析。

正极片的涂覆层物质呈粒状,粒径分布于1.4-6.6jxm。

涂覆颗粒表面及颗粒间有类似絮状的黏结剂,颗粒间有空隙。

集流体铝箔的抗拉强度为113MPa,延伸率为2.6%;正极片抗拉强度为19MPa,延伸率为1.6%。

极片上涂覆物的弹性模量为2GPa,黏结剂柔性较差。

棍压密实后,铝箔集流体的表面粗糙度降低。

关键词:锂离子电池;正极片;集流体;柔性;弹性模量中图分类号:TM912.9文献标志码:A文章编号:1001-1579(2019)03-0217-04Mechanical properties and influence factors of positive plates for Li-ion batteryJIANG Mao-lin,YU Wei(Engineering Research Institute,University of Science and Technology,Beijing100083,China)Abstract:The surface morphology,mechanical properties and roughness of aluminum foil and corresponding electrode were analyzed by a small tensile test machine,SEM,energy dispersive spectrometer(EDS)and laser confocal microscopy.The coating of the positive plates were granular and the particle size was mainly in the distribution of1.4-6.6pum.There were flocs like adhesive binder on the surface of coated particles or between the particles.There were some gaps between the particles.For the aluminum foil, the tensile strength was113MPa,the elongation was 2.6%.For the positive plates,the tensile strength was19MPa and the elongation ratio was only1.6%.The elasticity modulus of the coating binder was2GPa and the binder flexibility was poor.After rolling compaction,the surface roughness of the aluminum foil collector was greatly reduced.Key words:Li-ion battery;positive plates;current collector;锂离子电池的正、负极由能实现可逆脱嵌LT的活性材料涂覆在金属箔片上制成。

一种铝电解阳极优化方法,专利

一种铝电解阳极优化方法,专利

一种铝电解阳极优化方法,专利英文回答:An optimized method for aluminum electrolytic anode isa patented technique that enhances the performance and efficiency of the anode in the aluminum electrolysis process. This method involves several key steps that contribute to the overall improvement of the anode.Firstly, the composition of the anode material is carefully selected and optimized. Different additives and alloying elements are incorporated into the aluminum matrix to enhance its mechanical strength, electrical conductivity, and resistance to corrosion. For example, the addition of small amounts of titanium or zirconium can significantly improve the anode's resistance to oxidation and increaseits lifespan.Secondly, the surface treatment of the anode is crucial for its performance. A special coating or treatment isapplied to the anode surface to enhance its resistance to corrosion and improve its current distribution characteristics. This surface treatment can be a combination of chemical processes, such as anodizing or electroplating, and physical processes, such as shot peening or laser texturing. By modifying the surface properties, the anode can achieve better electrolyte penetration and reduce the formation of unwanted by-products, leading to improved efficiency and longevity.Furthermore, the design of the anode structure plays a significant role in its optimization. The shape, size, and distribution of the anode's current-carrying elements are carefully designed to ensure uniform current distribution and minimize electrical resistance. This can be achieved by using a combination of conductive materials, such as graphite or carbon-based materials, and optimizing the arrangement of these elements within the anode structure. By improving the current distribution, the anode can operate at higher current densities without compromisingits performance.In addition to the material composition, surface treatment, and structural design, the operational parameters of the aluminum electrolysis process are also optimized to maximize the performance of the anode. Factors such as the applied voltage, current density, electrolyte composition, and temperature are carefully controlled to ensure optimal conditions for the anode. By fine-tuning these parameters, the anode can operate at its peak performance and achieve higher energy efficiency.Overall, the optimized method for aluminum electrolytic anode involves a combination of material selection, surface treatment, structural design, and operational parameter optimization. By implementing these steps, the anode's performance, efficiency, and lifespan can be significantly improved, leading to enhanced productivity and cost-effectiveness in the aluminum electrolysis process.中文回答:一种优化的铝电解阳极方法是一种通过改进铝电解过程中阳极的性能和效率的专利技术。

低温铝电解的物理化学过程

低温铝电解的物理化学过程

2003 年 8 月 中国有色金属学会第五届学术年会论文集 Aug . 2003 收稿日期:2003-07-14 低温铝电解的物理化学过程 邱竹贤,王兆文,高炳亮,于旭光 (东北大学材料与冶金学院,辽宁 沈阳 110004) 摘 要:为达到降低铝电解的温度的目的,对低温度下(800~900℃)电解冰晶石-氧化铝体系电解质制取金属铝的物理化学过程进行了实验研究。

主要研究内容包括:用透明电解槽观测低温铝电解中进行的物理化学过程 ;低温电解质的组成和物理化学性质;低温电解中的能量消耗;铝在低温电解质中的溶解和电流效率;氧化铝在低温电解质中的溶解;低温电解质中NaF/AlF3摩尔比的检测方法;低温电解的电极过程;惰性电极在低温电解过程中的应用。

 关键词:铝电解;低温;物理化学过程;能耗;研究成果 Physical and Chemical Processes of Aluminum Electrolysis Under a Low Temperature Qiu Zhu-xian, Wang Zhao-wen, Gao Bing-liang, Yu Xu-guang (Faculty of Materials and Metallurgy, Northeast University, Shenyang, Liaoning 110004) Abstract: In order to lower the temperature for aluminum electrolysis, an experimental study was made on the physical and chemical processes of producing metallic aluminum from the electrolyzed cryolite-alumina electrolyte under a low temperature( 800 ̄900℃). The research involved the following: observation of the physical and chemical processes, using a transparent electrolytic tank, during aluminum electrolysis under a low temperature; compositions of the low temperature electrolyte along with their physical and chemical properties; consumption of energy in the electrolysis under low temperature; dissolution of aluminum in low temperature electrolyte and current efficiency; dissolution of alumina in low temperature electrolyte; testing methods of NaF/AlF3 molar ratio in the low temperature electrolyte; anode and cathode processes with electrolysis under a low temperature; and application of inert electrodes in the low temperature electrolysis process. Key Words: Aluminum electrolysis, Low temperature, Physical and chemical process, Energy consumption, Research results 1 概 述 东北大学从1959年开始研究低温铝电解。

非晶卤化物电解质

非晶卤化物电解质

非晶卤化物电解质【中英文实用版】Title: Amorphous Halide Electrolytes任务标题:非晶卤化物电解质Amorphous halide electrolytes have garnered significant attention as a promising candidate for next-generation battery technology.Their unique properties, such as high ionic conductivity and good chemical stability, make them highly suitable for use in energy storage devices.非晶卤化物电解质作为下一代电池技术的有力候选者,已经引起了广泛关注。

它们独特的性质,如高离子导电性和良好的化学稳定性,使其非常适合用于储能设备。

Research has shown that amorphous halide electrolytes can exhibit superior ionic conductivity compared to traditional crystalline electrolytes.This is due to the absence of a regular lattice structure in amorphous materials, which allows for more efficient ion movement.研究表明,与传统的晶体电解质相比,非晶卤化物电解质可以展现出更优越的离子导电性。

这是因为非晶材料中缺乏规则的晶格结构,从而使得离子运动更加高效。

Furthermore, the flexibility of the halide anions in amorphous electrolytes contributes to their high thermal stability.This is crucial for battery applications, as it ensures that the electrolyte remains stable over a wide range of temperatures.此外,非晶电解质中卤素阴离子的灵活性为其提供了较高的热稳定性。

材料科学与工程11-20专业英语翻译

材料科学与工程11-20专业英语翻译

材料科学与工程专业英语参考翻译(11-20)专业:材料物理姓名:43110103刘伟吉林大学材料科学科学与工程材料物理 154223585711微结构、加工过程和应用之间的联系微结构、加工过程和应用之间的联系材料科学与工程领域经常是根据四大方面—合成与加工,结构与组成, 性质和性能之间的相互联系来定义的。

为了理解任意材料的行为(性能表现)与性质,有必要去了解它的结构.结构可以从几个水平层次来考虑,这些都会影响材料的最终行为(性能表现).能够对材料的颜色、电导性和磁性产生影响的电子构型是材料的最精细的水平。

原子中的电子排布方式影响它是如何与其他原子结合的。

这(结合方式)反过来又对晶体结构有着重大影响;结晶陶瓷具有非常规则的原子排列,然而,这种长程有序的排列在非晶体和无定型陶瓷中却不存在,尽管在局部我们可以看到相似的多面体结构。

这种材料相对于它们的晶体经常表现出不同的行为。

我们不仅要考虑具有完美晶格和理想结构的情况,也要顾及到材料中不可避免的结构缺陷的存在,甚至是无定型的,这类缺陷例如杂质原子和位错。

多晶陶瓷的结构由许多晶粒组成。

晶粒的尺寸,形状和位向在这些材料的许多微观性质中扮演者重要的角色,例如力学强度。

在大多数陶瓷中,多相共存,每一相都有自己独特的结构、组成和性质。

对材料中的这些相的类型、尺寸、分布和总量的控制为控制性质提供了一种方式。

陶瓷的微观结构通常情况下是它所经历的加工过程的结果。

例如,热压处理的陶瓷一般情况下只有极少数孔隙,烧结材料很少有这种现象。

通过这篇课文,结构、加工过程和性质之间的相互联系将会很明显地显示出来.但这里用5个例子来说明。

1。

根据霍尔派奇方程,多晶陶瓷的强度取决于晶粒尺寸。

一般来说,晶粒尺寸降低时,强度升高。

晶粒尺寸是由初始粉体颗粒的大小和它们的凝结方式所决定的。

多晶陶瓷中的境界也很重要.强度自然取决于材料是否纯净、是否包含第二相或孔隙,抑或晶界处的玻璃态。

对于纳米陶瓷来说,这些关系却并非总是非常明显的。

NEUI铝电解槽阴极铝钢直焊技术开发及应用

NEUI铝电解槽阴极铝钢直焊技术开发及应用

7冶金冶炼M etallurgical smeltingNEUI 铝电解槽阴极铝钢直焊技术开发及应用景 伟1,刘剑飞1,董 振1,宋 滨1,班允刚2,刘 靖21.云南宏合新型材料有限公司,云南 红河 652400;2.东北大学设计研究院(有限公司),辽宁 沈阳 110166摘 要:节能降耗不仅仅是企业的经济性问题,而且是关系到企业生存和发展的关键问题。

针对铝电解槽传统焊接工艺技术压接接触压降和焊接焊口压降偏高的缺点,开发了NEUI铝电解槽阴极铝钢直焊焊接工艺技术,与传统焊接工艺技术相比,可将阴极钢棒与铝软带之间的压降降低约10mV左右,按照600kA电流计算,单槽年节约电量约为5.25×104kW·h。

该技术已在多家铝厂得到推广应用。

关键词:铝电解槽;铝刚直焊;节能降耗;压降中图分类号:TF821 文献标识码:A 文章编号:1002-5065(2024)01-0007-3Development and application of NEUI aluminum electrolytic cell cathode aluminum steel direct welding technologyJING Wei 1, LIU Jian-fei 1, DONG Zhen 1, SONG Bin 1, BAN Yun-gang 2, LIU Jing 21.Yunnan Honghe New Material Co. , Ltd. ,Honghe 652400, China;2.Northeastern University Engineering & Research Institute Co. , Ltd., Shenyang 110166, ChinaAbstract: Energy saving and consumption reduction is not only an economic issue of enterprises, but also a key issue related to the survival and development of enterprises. Aiming at the disadvantages of high pressure drop and high pressure drop of the welding joint of the traditional welding technology of aluminum electrolytic cell, the NEUI cathode aluminum steel direct welding technology was developed. Compared with the traditional welding technology, the pressure drop between the cathode steel rod and the aluminum soft strip could be reduced by about 10mV. The annual power saving of a single tank is about 5.25×104kW·h. This technology has been popularized and applied in many aluminum plants.Keywords: aluminum electrolytic cell; Aluminum steel direct welding; Energy saving and consumption reduction; Pressure drop收稿日期:2023-11作者简介:景伟,男,生于1978年,山东泰安人,工程师,本科,研究方向:电解铝技术研发、项目建设和生产管理。

涂层电极的40年

涂层电极的40年
印刷电路基板制造过程中的透孔镀等镀铜工序, 其阳极是含磷铜球。由于要获得均匀及高速溶解的
含磷铜球并不容易, 因此提出铜原料使用氧化亚铜, 阳极使用 DSA的工艺 (已获得实用 ) 。近年来欧洲开 发了水平移动型印刷电路基板电镀用阳极 DSA。 4. 4 铝箔液供电用 D SA
1983年, DSA 开始 在铝 箔液供 电 中获 得应 用。 过去阳极化处理铝箔生产线中使用的是供电滚筒, 但 是存在由于发生火花而使铝箔熔断、因此不能提高处 理速度的问题。现在采用复极式供电槽和 DSA, 非接 触式向铝箔 供电, 因而可大 幅度提高 处理速度。而 且, 该工艺不和铝箔直接接触, 安全且能通电, 不但可 随时调整处理速度, 且能连续处理。该工艺所用的电 解液是含有缓冲作用的中性盐溶液, DSA 的电流密度 为 500~ 750 A /m 2。 4. 5 铜板镀锌用 DSA
ቤተ መጻሕፍቲ ባይዱ
trends was p resen ted.
K eywo rds: t itan ium anode; DSA; ch loro alk ali indu stry;
ch lorin e evolut ion electro lys is; oxygen evolu tion electrolysis
du stry for forty years w as summarized. Coat ing componen ts o f
variou s typ es of D SA app lied to ch lorine evo lu tion e lectroly
sis and its characteristic were exp la ined. DSA app lied to the

氧化铝模板电沉积功能纳米材料研究进展_李祥子

氧化铝模板电沉积功能纳米材料研究进展_李祥子

第17卷第2期化 学 研 究V o.l17 N o.2 2006年6月CHE M I CAL RESEARC H J un.2006氧化铝模板电沉积功能纳米材料研究进展李祥子1,2,魏先文1*(1.安徽师范大学化学与材料科学学院安徽省功能性分子固体重点实验室,安徽芜湖241000;2.皖南医学院化学教研室,安徽芜湖241000)摘 要:近年来氧化铝模板电沉积功能纳米材料的技术得到了较快的发展.综述了氧化铝模板电沉积功能纳米材料的最新研究方法,介绍了国内外氧化铝模板电沉积法在制备功能纳米材料上的应用.关键词:氧化铝;模板;电沉积;纳米材料;综述中图分类号:TQ050.4文献标识码:A文章编号:1008-1011(2006)02-0097-05Rece nt Advances i n Electrodeposition of FunctionalNano m ateri als on A l u m ina Te mplateLI X i a ng-zi1,2,W E I X ian-w en1*(1.Colle g e of Che m ist ry and M a teri a ls S cie nce,AnhuiK e y Labora tory of F unctiona lM olec u l ar S olids,Anhu iN or m al Universit y,W uhu241000,Anhu i,Ch i na;2.De part men t of Che m istry,W annan M e d ical Colle g e,W uhu241000,Anhui,Ch i na)Abstract:Recently,the techn ique o f eletr odeposition o f functi o na l nano m ateri a ls on the te m p late of a-l u m ina is deve l o ped qu ickly.I n this article,the recent develop m ents and applicati o ns o f e l e trodepos-iti o n of functi o na l nano m ateri a ls on the te m plate o f alum i n a are rev i e w ed.Keywords:alum i n a;te m plate;e l e ctrodeposition;nano m aterials;rev i e w纳米材料独特的量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道效应和介电限域效应,使其表现出优良的热、磁、光、电等物理性能和吸附、团聚、黏性等化学性能,特别是高度取向高密度的低维纳米材料更是引起人们的强烈兴趣.合成低维纳米材料的化学方法一般包括化学聚合、溶胶-凝胶、化学气相沉积以及模板法等,其中模板法具有独特的优点而一直成为科学界的一个研究热点.模板可分为软模板和硬模板,软模板以液晶为主,硬模板有云母晶片模板、多孔硅模板、径迹刻蚀聚合物模板(track-etch)、多孔氧化铝模板(AAO)等,其中多孔氧化铝模板的孔洞具有取向性好、密度高、阵列性强、长径比大以及可控性好等优点,是合成低维纳米材料的优良基底.电化学沉积是制备纳米材料的一种常用方法,其操作过程简单,沉积物种丰富,能获得许多金属、合金、半导体、氧化物以及其他复合纳米材料.模板技术和电沉积技术的组合是目前人们合成功能纳米线、纳米管、纳米棒以及纳米电缆等材料最具有代表性的一种方法.多孔氧化铝模板电沉积功能纳米材料虽有过一系列报道,但在控制合成特定物种、形貌及性能的纳米材料方面仍具有很大研究空间,作者就最近几年氧化铝模板电沉积功能纳米材料的研究方法进行了综述,并介绍了国内外氧化铝模板电沉积法在制备功能纳米材料上的应用.1 氧化铝模板电沉积法1.1 模板鉴于模板孔洞阵列的限域效应和取向作用,氧化铝模板已经被广泛用作电沉积的阴极基底.多孔氧化收稿日期:2006-01-07.基金项目:教育部 优秀青年教师资助计划 项目;留学回国人员科研启动基金项目;安徽省优秀青年科技基金项目(04046065);安徽省教育厅重点项目(2001K J115Z D);安徽师范大学博士启动基金项目.作者简介:李祥子(1977-),男,助教,硕士生,从事纳米功能性材料的电化学合成研究.E-ma i:l l-i x i ang-z@i163.co m.*通讯联系人.化 学 研 究2006年98铝模板可以通过二次阳极氧化的方法制得,也可以直接购买(W athm an公司等),研究发现模板的前处理在功能纳米材料的制备上尤为重要.1.1.1 模板的电极化作为阴极基底的模板必需具有导电功能,需进行电极化处理,目前有四种方法:1)真空喷镀法,即先用化学或电化学方法除去氧化铝模板中的阻挡层和铝基底,使模板两面通畅,后在氧化铝模板的一面真空喷镀上一层极薄的Ag、Au等金属膜.此法镀上去的Ag、Au膜稳定性高、导电性强,适用于较多类型电解液,但必需有喷金仪等设备;2)残留铝层法,通过二次阳极氧化的方法获得氧化铝模板,以残留的金属铝为导电材料[1],这种基底的优点是铝层可以直接导电,且在后处理过程中容易被除去,便于检测且易于获得较纯净的纳米线、纳米棒或纳米管等,但这种氧化铝模板中存在具有半导体性能的阻挡层,不适合直流电沉积,适合交流电沉积.3)银胶涂膜法[2],即在两面通畅的模板一面涂上一层银胶,此法操作简单,实用方便,但可控性不是很好;4)模板复合法,就是将两面通畅的模板与其他金属电极进行复合,复合要紧密无缝隙,以防镀液从模板与电极间渗出.1.1.2 模板的修饰多孔氧化铝模板电极化后可以直接作为阴极进行电沉积,若先对模板进行修饰,则会大大改善沉积材料的性能.可以在模板制备过程中对模板的结构进行修饰,通过控制氧化过程的实验参数得到密度相同而孔径变化的氧化铝模板,可以获得不同直径的纳米阵列[3].如将氧化铝模板(AAO)与S i复合,则可以有效提高纳米阵列的长径比[4].在AAO与S i之间修饰一层Au,形成AAO/Au/Si的复合模板,可以避免AAO/S i模板在电沉积过程中产生S i O2而导致的高电阻,用这种模板得到的纳米材料具有很强的附着力[5].也可以对模板表面进行化学修饰,如将脱氧半胱胺为分子锚活化的金电极压紧在氧化铝模板上,利用半胱胺的氨基具有强大的亲和力,使金属更有利于在电极与模板之间沉积,避免了Au和Pt的纳米柱在溶去模板后出现塌陷现象[6].若将铝喷在涂有掺锡氧化铟(I TO)的玻璃基体上,再经氧化得到复合的多孔氧化铝模板,在沉积N i 时表现出更好的尺寸限定和晶向定位作用[7].也可以将氧化铝模板先进行硅烷化超声处理1m in,然后在氮气保护下加热到100 ,最后蒸镀金膜,用这种修饰后的模板可以制得钴的纳米管,使用未修饰的模板则制得纳米线[8].此外,对模板进行电化学修饰后,采用交流沉积法得到N-i Fe-Co三元合金纳米线[9].1.2 电沉积电沉积是通过在电解池阴极上金属离子的还原反应和电结晶过程在固体表面生成金属层的过程.该过程可以改变固体材料的表面性能或制备特定成分和性能的金属及复合材料.在模板电沉积中,电流、电位、浓度、络合剂、磁场等因素对沉积材料的形貌和性能都有着重要的影响.1.2.1 沉积电参数控制电沉积过程中,阴极的过电位和双电层结构都是影响电沉积材料质量、结构和性能的重要因素,电位的大小、电流密度以及电流波形对模板电沉积过程及沉积材料的性能有着很大影响.目前出现的电沉积方式有恒电流、恒电位、脉冲电流、周期换向电流、不对称交流和交直流叠加等.恒电流和恒电位法是模板电沉积中较简单的一种方式,可以沉积出许多单质金属以及Ag2S、CdTe、B i2 Te3等复合纳米材料.与此相比,交流沉积方法也不断得到应用,可以沉积出高纯单晶纳米B i[10]和A g纳米线[11].脉冲电流法具有更多的调节参数和较大的电流值,可以明显的增加阴极的电化学极化并降低浓差极化,使沉积出的金属更加细密,脉冲弛豫时间的存在可以促使单晶的形成,并可控制纳米线的直径,通过调节脉冲通电时间可以控制纳米线的生长取向.电沉积金属铋的研究表明,当通电时间t O N 30m s时纳米线朝着[110]面生长,而当t ON 30m s时则朝着[220]面生长[12].Y i n等[13]在二甲基亚砜(DM SO)中电沉积出直径50nm长50 m的N i、B i纳米线,该纳米线是六方紧密阵列,其中N i纳米线是在频率为10~750H z的交流电下沉积的,而B i纳米线则是在交直流叠加的情况下获得的,其交流频率介于10~100H z范围内,并指出方波交流电不利于沉积.1.2.2 电解液等因素的研究在模板电沉积的过程中,电解液的成分、p H值等因素对纳米材料的性能有很大影响.复合材料的异常共沉积和诱导共沉积,通常需要添加络合剂来调节共沉积电位.在电沉积钴时采用含磷电解液可以提高磁性钴的物质的量及其垂直剩磁率.电沉积镍时,p H值增加会使电流效率升高,但沉积质量和矫顽力均会下第2期李祥子等:氧化铝模板电沉积功能纳米材料研究进展99降,温度较低时矫顽力增大.此外,离子扩散过程也影响着沉积材料的性能,电沉积CdS纳米线时离子扩散速度随着模板孔径的变小而变小,而扩散层厚度却呈反向变化,稳定的离子扩散率是形成优质纳米单晶的关键[14].就溶剂而言,非水溶剂中离子的还原电位发生很大变化,对于在水溶液中难以沉积的金属,可以在非水溶剂中沉积.如在D M SO中可以沉积出Ag2T e,Ag7Te4等纳米半导体材料,通过调节电解液中的离子比可以控制合金成分[15].此外,在电沉积磁性材料的时候,还可以通过外加磁场来提高矩形比并改善纳米线的磁性结构,电沉积钴的研究表明,外加磁场可以控制纳米线的各向异性和晶体结构,当磁晶各向异性较弱时,形状各向异性占主导作用,外加磁场影响了钴晶C轴的取向,当易磁化C轴处于模板平面时,可以加强平面处的形状各向异性,但磁场强度加到5T时C轴不再垂直于纳米线的轴,纳米线的磁滞回线变陡[16].2 氧化铝模板电沉积功能材料的应用在氧化铝模板电沉积技术中,通过模板技术和电沉积技术的双重控制可以获得许多优良的功能性纳米材料,主要表现在光学、电学、磁性、增强性及耐磨性能等方面,广泛应用在催化剂、陶瓷、医用材料、磁性材料、防护材料、光电转化及传感器等领域.2.1 磁性材料磁性纳米线阵列是氧化铝模板电沉积得到的重要材料之一.这种材料具有良好的阵列性和较大的长径比,一般都具有独特的超顺磁性、饱和磁化强度、磁各向异性、矫顽力、居里温度和磁化率等方面的磁性能,主要应用于巨磁电阻材料和磁性记录材料等.2.1.1 巨磁电阻材料巨磁电阻效应是磁性金属材料在磁场下电阻急剧减小的现象,具有该性能的纳米材料可广泛应用在磁场传感器、微弱磁场探测器、高密度读出磁头、磁存储元件等方面.巨磁电阻纳米线的研究主要是铜系和银系,目的是要降低出现巨磁电阻效应的外加磁场强度,提高巨磁电阻率.目前,用氧化铝为模板电沉积巨磁电阻纳米线的报道还不多,Fedosyuk等[17]用氧化铝模板首次电沉积出以非磁性Ag为主导成分并具有很高的磁致电阻效应的AgCo和Ag45Co25Cu30磁性纳米线.2.1.2 磁性记录材料磁性纳米线阵列一般具有较大的磁晶各向异性、高矫顽力、高剩余磁化强度和高磁能积等,特别是在高分辨率、高密度的垂直磁记录介质等方面有着良好的应用前景.近几年利用氧化铝模板法合成了单组分磁性金属Fe、Co、N i晶态纳米线阵列和复合金属Fe-Co、Co-N i、C o-Pb、Co-Cu、Co-Pt、N-i Fe、N-i Cu、N-i Pt等磁性纳米线(管)阵列.这些复合金属磁性纳米线(管)阵列的密度很高,具有良好的形状各向异性和垂直矫顽力,退火对其矫顽力的影响很大,一般随着退火温度的升高,矫顽力先增大后减小,但温度太高(>550~600 )通常会破坏纳米线的磁性能.Q i n等[18]用局部成核模式解释了Fe x Co1-x合金阵列的磁性反转过程,发现Fe2+和Co2+在交流电沉积下的沉积速率相等,在直流情况下,Fe2+的沉积速率小于Co2+的沉积速率,且可以通过调剂溶液中两种离子的浓度来控制合金的成分.此外,沉积速度过快会使材料产生内应力,且出现较多的缺陷和紊乱的体心立方结构,溶液中钴浓度较低时,钴易形成六方结构.Ji等[19]对Co48Pb52纳米线阵列的退火进行了研究,发现700 以下的钴铅纳米线是一种亚稳相,700 以上退火会使该纳米线发生相分离,其垂直矫顽力也急剧增大.L i u等[20]研制出了直径170nm长1.6 m的N i P t分段异质磁性纳米棒,其中Pt 的总共长度为530n m,Pt和N i都是面心立方的多晶结构,该纳米线在室温下对甲醇具有电氧化的催化活性.2.2 半导体材料利用氧化铝为模板进行电沉积,可以使氧、硫、硒和锑等元素与其它金属发生共沉积,形成相应的氧化物(Cu2O、ZnO、T i O2等)和硫族化物(CdS、Ag2S、CdSe、ZnSe、CdTe、Ag2Te等)的半导体纳米线阵列,并发现它们在二极管、晶体管、光探测、光发射以及太阳能电池等器件方面具有潜在的应用前景.2.2.1 氧化物纳米材料氧化铝模板电沉积氧化物纳米线阵列方法有两种,一种是先在模板中沉积出单质金属,再进行高温加热氧化获得,另一种是通过调节溶液的p H值或直接在电解液中加入弱氧化剂(O2、H2O2等)一步电沉积得到. M e i等[21]将镀在硅片上的铝经两次氧化得到多孔氧化铝复合模板,在碱性溶液中通过脉冲沉积法得到以化 学 研 究2006年100Cu2O为主体且有良好径向优先生长取向的半导体纳米线,并解释了其机理.Liu等[1]在附有铝基底的氧化铝模板中利用脉冲电流得到高度规则的T i O2纳米线.利用氧化铝模板可以在D M SO中电沉积出ZnO的纳米线阵列[22],在DM SO中可避免Zn(OH)2和ZnO的竞争沉积,且晶化效果好、晶粒尺度大,ZnO纳米线为多晶结构,在紫外区383nm有个尖的发射峰,在可见区592n m也有个宽的发射峰.2.2.2硫族化物纳米材料利用氧化铝模板可以在水溶液中或非水溶剂中实现硫族元素与I B、II B族元素的共沉积,获得典型的半导体纳米线阵列.通过直流可以沉积出直径40nm长5 m的Ag2S纳米阵列[23]、直径200nm长度25 m 的CdSe立方晶型纳米棒[24]及长60nm的CdTe立方单晶纳米线[25].Pena等[2]分别沉积出直径为350nm 的Au-CdSe-Au和直径为70nm的N-i CdSe-N i两种光电导纳米材料,通过循环电压技术调节该光电导纳米材料中每个部分的长度.Chen等[26]在DM SO非水体系中得到直径一致的单斜Ag2T e纳米半导体材料,研究表明通过调节电解液中的离子比可以控制合金的原子比.最近,ZnSe的纳米线阵列也被研制出来[27].2.3 光电材料纳米材料具有宽频带吸收、蓝移红移现象、量子限域效应、发光等光学性质以及一些特殊的电学性能.通过氧化铝模板业已研制出具有良好热电性能或光学性能的一元金属(Ag、Au、B i等)和多元复合材料(B-i Sb、B-i Te、Sb-Te等).Zong等[11]通过交流电沉积获得Ag单晶纳米棒,研究其线性光学和三阶非线性光学性能表明,该纳米线的表面等离子体谐振性能与纳米线的形貌有关,电沉积时间增长,纳米线的长径比增大,则其横向偶极共振峰发生蓝移,蓝移在沉积初期明显,后期很弱.发现用角度为70 的偏振光照射模板时,模板中A g纳米线在长波处有强的纵向共振峰.W ang等[6]在研究Au的纳米线阵列时发现,使用微观修饰电极时,其离子扩散具有高的传导性,离子扩散可以很快达到稳定态,铂纳米柱阵列电极不同于抛光铂电极,它具有高的表面积,有望获得微传感器和微电子设备的高效率和高灵敏度.Prieto等[28]用氧化铝模板电沉积了高密度有序B i1-x Sb x纳米阵列,该合金的密度可达5 1010个/厘米,单个的纳米线是有高度取向性、直径为40nm、含Sb量为12~15%的晶体,是一种最好的n型低温热电材料(20K<T<220K).Ji n等[29]利用恒电流的方式得到了大面积高度取向生长的Sb2Te3单晶纳米线阵列,指出形成高质量纳米线阵列的重要因素有模板的预处理、成核速度及温度、模板结构、pH值、电参数等.如果模板的孔洞或表面不纯,则Sb2Te3会在杂质点成核和生长,导致异质成核和生长,很难形成高填充率高密度的纳米线;如果孔洞中有空气,则会阻碍离子扩散到金膜的表面,Sb2Te3只在模板表面而不在模板孔洞中沉积;为了避免成核和生长速度过快以及避免形成浓度梯度,可以通过降低HT e O+2和SbO+的浓度来减小成核和生长速率,慢的生长速率可以提高纳米线的晶化速率、填充率和成分的一致性.展望:模板技术和电沉积技术相结合是当今研究功能性纳米材料的热点课题,可以获得结构理想和大小适宜的纳米线、纳米棒及纳米管等功能性材料.至今人们的研究方向侧重于磁性能、半导体性能及光电性能的材料,随着模板种类的不断增多和电沉积技术的不断改进,在今后的研究中,有望向氧化物、碳(硅)化合物、氮(磷)化合物及稀土类复合材料等方向发展,材料的功能性也可以向光敏型、增强型、催化型、储氢型和润滑型等方面拓展,应用的范围也将逐渐扩大.因此,对模板电沉积制备功能性纳米材料的研究也必定会有更广阔的发展潜力和应用价值.参考文献:[1]L i u S Q,H uang K L.S traigh tfor w ard fabr i cation of high l y o rdered T i Onanow i re arrays i n AAM on a l u m i num substrate[J].So l2Ener M ater Sol C ells,2005,85:125-131.[2]Pena D J,M bindyo J K N,C arado A J,et al.T emp l ate gro w t h of pho toconducti ve m e ta-l CdSe-m eta l nanow ires[J].J Phy s Che mB,2002,106:7458-7462.[3]P ang Y T,M eng G W,Shan W J,et al.A rrays o f ordered A g nano w ires w it h different dia m eters i n d iffe rent areas embedded inone piece o f anodic a l u m i na m embrane[J].App l Phy s A,2003,77:717-720.[4]Shi ngba ra S,M or i m o to K,et al.A spect rati o dependence of hysteresi s property of h i gh dens i ty Co w ire array bur ied in po rous al u-m i na te m plate[J].J M agn M agn M ater,2004,272-276:1598-1599.[5]Y ang Y,Chen H L,M e iY F,et al.Anodic a l u m i na te mp late on A u/S i substrate and preparati on o f CdS nanow ires[J].S olid第2期李祥子等:氧化铝模板电沉积功能纳米材料研究进展101S t a te Comm un,2002,123(6-7):279-282.[6]W ang X Y,Zhong H,Y uan J H,et al.D i rect electrochem ical fab rica ti on of m eta llic nanop illar on Au electrode surface by thete m plate technique[J].Che m L ett,2004,33(8):982-983.[7]Chu S Z,W ada K,Inoue S,et al.Fabricati on and character istics of nanostructures on g lass by A l anodization and electrodepos-iti on[J].E lectrochi m A cta,2003,48:3147-3153.[8]Bao J C,X u Z,H ong JM,et al.F abricati on o f coba lt nanostruc t ures w ith d iffe rent shapes i n a l u m i na te m plate[J].Scr i p taM a-ter,2004,50:19-23.[9]Saedi A,GhorbaniM.E l ec trodepositi on o fN-i F e-Co a ll oy nano w ire i n m od ifi ed AAO te m plate[J].M a ter Che m P hys,2005,91:417-243.[10]P eng Y,Q i n D H,Zhou R J,et al.B i s m ut h quant um-w ires arrays fabricated by e l ectrodepositi on i n nanoporous anod ic alu m-inum ox ide and its structura l prope rties[J].M ater Sci Eng B,2000,77:246-249.[11]Zong R L,Zhou J,L iQ,et al.Synthes i s and optical prope rti es o f s il ve r nanow ire arrays e mbedded i n anod i c a l u m i na m e m brane[J].J P hy s Che m B,2004,108(43):16713-16716.[12]L i L,Zhang Y,L iG H.Synthe ti c contro l of l arge-area orde red bis muth nanow ire arrays[J].M ater Lett,2005,59:1223-1226.[13]Y i n A J,L i J,Jian W,et al.Fabricati on of h i ghly ordered m eta lli c nano w ire a rrays by e l ectrodepositi on[J].App l P hy s Lett,2001,79(7):1039-1041.[14]Xu D S,Xu Y J,Chen D P,et al.P reparati on and charac terization o f CdS nanow ire arrays by dc e l ectrodepositi on i n porous a-nod ic alu m inu m ox i de temp l a tes[J].Che m P hy s L ett,2000,325:340-344.[15]Chen R Z,X u D S,Guo G L,et al.E lectrodepos i tion o f thi n fil m s and si ng l e-crystalline nano w ires o f Ag7T e4[J].Che m Phy sLett,2003,377:205-209.[16]Chaure N B,Sta m enov P,R hen F M F,et al.O r i ented cobalt nanow ires prepared by electrodepo siti on i n a po rous m e m brane[J].J M agn M a gn M ater,2005,290-291:1210-1213.[17]Fedosyuk V M,K asyuti ch O I,Sch w arzacherW.G ranu l a r AgCo and A gCuCo nanow ires[J].J M agnM agnM ater,1999,198-199:246-247.[18]Q i n D H,P eng Y,C ao L,et al.A study o fm agne tic properti es:F ex Co1-xall oy nanow ire arrays[J].Che m P hys lett,2003,374(5-6):661-666.[19]Ji G B,T ang S L,G u B X,et al.O rdered Co48Pb52nanow ire arrays e l ec trodeposited in t he po rous anodie a l u mm i na ox i de te m-p l a te w it h enhanced coe rc i v ity[J].J Phys Che m B,2004,108(26):8862-8865.[20]L i u F,L ee J Y,Zhou W J.T e m plate prepa ration of m ultiseg m ent P t N i nanorods as m e t hano l e l ec tro-ox i dation cata l ysts w ithad j ustable bi m e tallic pa ir sites[J].J Phys Che m B,2004,108(46):17959-17963.[21]M eiY F,Siu G G,Y ang Y,et al.Cu ox i de nanow ire array g rown on S-i based Si O2nanoscale islands v ia nanochannels[J].A c-ta M a terialia,2004,52:5051-5055.[22]W ang Q T,W ang G Z,X u B,et a l.N on-aqueous cathod i c e lectrodeposition o f large-sca l e unifor m Zn O nanow ire array s e m-bedded i n anodic a l u m i na m e m brane[J].M ater Lett,2005,59:1378-1382.[23]Peng X S,M eng G W,Zhang J,et al.E lectrochem ica l fabricati on o f ordered A g2S nanow ire a rrays[J].M ater Res Bull,2002, 37:1369-1375.[24]Shen C M,Zhang X G,L iH L.DC e l ec tro che m i ca l depositi on o f CdSe nanorods array usi ng porous anod i c a l u m i num ox i de te m-p l a te[J].M ater Sci Eng A,2001,303:19-23.[25]Zhao A W,M eng G W,Zhang L D,et al.E lectro che m i ca l syn t hesis of ordered CdT e nanow ire arrays[J].App l Phy s A:M aterSci P ro c,2003,76(4):537-539.[26]Chen R Z,X u D S,Guo G L,et al.Sil ve r tell uride nano w ires prepared by dc electrodepositi on in po rous anodic a l u m i na te m-p l a tes[J].J M ater Che m,2002,12(8):2435-2438.[27]K osanov ic T,Bouroush i an M,Spyre lli s N.So ft grow th o f the ZnSe compound fro m al ka line se l enosulfite so l uti ons[J].M aterChe m Phys,2005,90:148-154.[28]P r i eto A L,M arti n-G onza lez M,K eyani J,et al.T he e l ectrodepositi on o f h i gh density o rdered a rrays of B i1-x Sbxnanow ires[J].J Am Che m Soc,2003,125(9):2388-2389.[29]Ji n C G,Zhang G Q,Q ian T,et al.L arg e-area Sb2T e3nanow ire arrays[J].J Phys Che m B,2005,109(4):1430-1432.。

电化学脱合金的英文

电化学脱合金的英文

电化学脱合金的英文Electrochemical Dealloying: Principles, Applications, and Challenges.Introduction.Electrochemical dealloying is a process that involves the selective removal of one or more constituent metalsfrom a multicomponent metallic alloy by electrochemical means. This process, often referred to as "dealuminization" in the context of aluminum-based alloys, has found widespread applications in materials science, nanotechnology, and energy conversion and storage systems. The primary advantage of electrochemical dealloying lies in its ability to create nanostructured materials with unique physical and chemical properties, such as high surface area, porosity, and conductivity.Principles of Electrochemical Dealloying.The electrochemical dealloying process occurs when an alloy is immersed in an electrolyte solution and apotential is applied between the alloy and a counter-electrode. The applied potential drives the electrochemical reactions at the alloy surface, resulting in thedissolution of one or more constituent metals. The dissolution rate of each metal depends on its electrochemical properties, such as the redox potential and electrochemical activity in the given electrolyte.During the dealloying process, the alloy is typically the anode, and the counter-electrode is the cathode. The anode is connected to the positive terminal of the power source, while the cathode is connected to the negative terminal. When the potential is applied, the alloy begins to dissolve, and the dissolved metal ions migrate towards the cathode. At the cathode, the metal ions are reduced and deposited on the surface, forming a new metal layer.The rate of metal dissolution during electrochemical dealloying is controlled by several factors, including the electrolyte composition, applied potential, temperature,and alloy composition. By optimizing these parameters, researchers can precisely control the morphology, porosity, and composition of the resulting nanostructured materials.Applications of Electrochemical Dealloying.Electrochemical dealloying has found numerous applications in materials science and engineering. Some of the key applications are discussed below:1. Nanoporous Metals: Electrochemical dealloying is widely used to create nanoporous metals with high surface area and porosity. These materials exhibit unique physical and chemical properties that are beneficial in various applications, such as catalysis, sensors, and energy storage.2. Battery Materials: Nanoporous metals produced by electrochemical dealloying have been explored as anode materials for lithium-ion batteries. The high porosity and surface area of these materials enhance the lithium storage capacity and improve the battery's performance.3. Fuel Cells: Electrochemical dealloying has also been used to create nanostructured catalysts for fuel cells. These catalysts exhibit enhanced activity and durability, which are crucial for efficient fuel cell operation.4. Biomedical Applications: Nanoporous metals produced by electrochemical dealloying have potential applicationsin biomedicine, such as drug delivery, tissue engineering, and implant materials. The porous structure of these materials allows for controlled drug release and improved cell adhesion and growth.Challenges and Future Directions.Despite the significant progress made inelectrochemical dealloying, several challenges remain to be addressed. One of the primary challenges is the control of the dealloying process at the nanoscale, as it is crucialfor achieving the desired material properties. Additionally, the development of new electrolytes and optimization of dealloying parameters are ongoing research efforts.Future research in electrochemical dealloying could focus on exploring new alloy systems, optimizing the dealloying process for specific applications, and understanding the fundamental mechanisms underlying metal dissolution and nanostructure formation. Furthermore, the integration of electrochemical dealloying with other nanotechnology approaches, such as lithography and templating, could lead to the development of even more advanced materials with tailored properties.Conclusion.Electrochemical dealloying is a powerful technique for creating nanostructured materials with unique physical and chemical properties. Its applications span multiple fields, including materials science, energy conversion and storage, and biomedicine. While significant progress has been madein this field, there are still numerous challenges and opportunities for further research and development. With the advancement of nanotechnology and materials science, electrochemical dealloying holds promise for enabling thecreation of next-generation materials with improved performance and functionality.。

电镀行业术语之欧阳总创编

电镀行业术语之欧阳总创编

常用名词1.化学腐蚀chemical corrosion金属在非电化学作用下的腐蚀(氧化)过程。

通常指在非电解质溶液及干燥气体中,纯化学作用引起的腐蚀。

2.双电层electric double layer电极与电解质溶液界面上存在的大小相等符号相反的电荷层。

3.双极性电极bipolar electrode一个不与外电源相连的,浸入阳极与阴极间电解液中的导体。

靠近阳极的那部分导体起着阴极的作用,而靠近阴极的部分起着阳极的作用。

4.分散能力throwing power在特定条件下,一定溶液使电极上(通常是阴极)镀层分布比初次电流分布所获得的结果更为均匀的能力。

此名词也可用于阳极过程,其定义与上述者类似。

5.分解电压decomposition voltage其定义与上述者类似。

能使电化学反应以明显速度持续进行的最小电压(溶液的欧姆电压降不包括在内)。

6.不溶性阳极(惰性阳极)inert anode在电流通过时,不发生阳极溶解反应的阳极。

7.电化学electrochemistry研究电子导体和离子导体的接触界面性质及其所发生变化的科学。

8.电化学极化(活化极化)activation polarization由于电化学反应在进行中遇到困难而引起的极化。

9.电化学腐蚀electrochemical corrosion在卑解质溶掖中或金属表面上的液膜中,服从于电化学反应规律的金属腐蚀(氧化)过程10.电化当量electrochemical equivalent在电极上通过单位电量(例如1安时,1库仑或1法拉第时),电极反应形成产物之理论重量。

通常以克/库仑或克/安时表示。

11 电导率(比电导)conductivity单位截面积和单位长度的导体之电导,通常以S/m表示。

12 电泳electrophoresis液体介质中带电的胶体微粒在外电场作用下相对液体的迁移现象。

13 电动势electromotive force原电池开路时两极间的电势差。

铝离子电池生产工艺流程

铝离子电池生产工艺流程

铝离子电池生产工艺流程英文回答:The production process of aluminum ion batteries involves several steps. Here is a general outline of the process:1. Raw material preparation: The first step is to prepare the raw materials required for the battery production. This includes aluminum foil, electrolyte solution, cathode and anode materials, and other additives.2. Electrode preparation: The next step is to prepare the electrodes. The cathode and anode materials are mixed with binders and coated onto aluminum foil. The coated foil is then dried and cut into desired sizes.3. Assembly: In this step, the prepared electrodes are assembled with a separator in between. The separator helps to prevent short circuits between the electrodes. Theassembled electrodes are then rolled or stacked together to form a compact structure.4. Electrolyte filling: The assembled electrodes are placed into a container, and the electrolyte solution is filled into the container. The electrolyte solution allows for the movement of aluminum ions between the cathode and anode during battery operation.5. Sealing: Once the electrolyte is filled, the container is sealed to prevent leakage and ensure the integrity of the battery. Sealing can be done using various methods, such as heat sealing or ultrasonic welding.6. Aging and testing: The sealed batteries are then subjected to an aging process, where they are stored under controlled conditions for a certain period of time. This helps to stabilize the battery's performance. After aging, the batteries are tested for their capacity, voltage, and other performance parameters.7. Final assembly: Once the batteries pass the testingphase, they are ready for final assembly. This may include adding terminals, connectors, and other components required for the battery to be used in specific applications.8. Quality control: Throughout the production process, quality control measures are implemented to ensure the batteries meet the required standards. This includes regular inspections, testing, and adherence to quality management systems.中文回答:铝离子电池的生产工艺流程包括以下几个步骤:1. 原材料准备,首先需要准备电池生产所需的原材料,包括铝箔、电解液、正极和负极材料以及其他添加剂。

铝电解技师技术总结范文

铝电解技师技术总结范文

铝电解技师技术总结范文英文回答:As an aluminum electrolysis technician, I have gained extensive knowledge and experience in the field. Through years of practice and continuous learning, I have developed a set of technical skills that are essential for this job.First and foremost, understanding the principles of aluminum electrolysis is crucial. This process involves the extraction of aluminum from alumina using an electrolytic cell. The cell consists of a carbon anode and a cathode, with alumina dissolved in a molten cryolite bath. By passing an electric current through the cell, aluminum is deposited at the cathode while oxygen is evolved at the anode. This knowledge allows me to troubleshoot any issues that may arise during the electrolysis process.In addition to theoretical knowledge, practical skills are equally important. One of the key tasks of an aluminumelectrolysis technician is to maintain the electrolytic cell. This involves monitoring the temperature, voltage,and current of the cell, as well as adjusting the operating parameters to ensure optimal performance. For example, ifthe current density is too high, it can lead to excessive energy consumption and poor aluminum quality. By making appropriate adjustments, such as reducing the current or increasing the bath temperature, these issues can be resolved.Furthermore, I have developed expertise in handling the equipment and materials used in aluminum electrolysis. This includes the carbon anodes, which play a crucial role inthe cell. Over time, anodes degrade and need to be replaced. By carefully inspecting the anodes and monitoring their consumption rate, I can determine the optimal time for replacement. This helps to prevent any disruptions in the electrolysis process and ensures the production of high-quality aluminum.Moreover, as a technician, I am responsible for troubleshooting and resolving any technical issues that mayarise. For example, if there is a sudden drop in cell voltage, it could indicate a problem with the anode. By conducting a thorough inspection and analysis, I canidentify the root cause of the issue and take appropriate measures to rectify it. This requires a combination of technical knowledge, problem-solving skills, and attentionto detail.In conclusion, as an aluminum electrolysis technician,I possess a range of technical skills that are essentialfor this job. From understanding the principles of aluminum electrolysis to maintaining the electrolytic cell and troubleshooting technical issues, I am well-equipped to handle the challenges of this field.中文回答:作为一名铝电解技师,我在这个领域积累了丰富的知识和经验。

铝合金化学导电氧化的关键工艺流程

铝合金化学导电氧化的关键工艺流程

铝合金化学导电氧化的关键工艺流程英文回答:The key process for the chemical conductive oxidation of aluminum alloy involves several steps. First, the aluminum alloy is prepared by cleaning and degreasing the surface to remove any impurities. This can be done using solvents or alkaline cleaners. After cleaning, the alloy is rinsed with water to remove any residue.Next, the alloy is etched to create a rough surfacethat will enhance the adhesion of the oxide layer. Etching can be done using acidic solutions such as chromic acid or phosphoric acid. The etching process removes a thin layer of the alloy, exposing a fresh surface.Once the alloy is etched, it is ready for the anodizing process. Anodizing involves immersing the alloy in an electrolyte solution and applying an electric current. The alloy acts as the anode, while a cathode is also placed inthe solution. The electric current causes oxygen ions from the electrolyte to combine with the aluminum atoms on the surface, forming a layer of aluminum oxide.The thickness and properties of the oxide layer can be controlled by adjusting the parameters of the anodizing process, such as the voltage, current density, and duration.A thicker oxide layer will provide better corrosion resistance and electrical conductivity.After anodizing, the alloy is rinsed with water to remove any residual electrolyte. It is then sealed to improve the corrosion resistance and enhance the appearance of the oxide layer. Sealing can be done using hot water or chemical sealants.中文回答:铝合金化学导电氧化的关键工艺流程包括几个步骤。

氧化铝生产课件.

氧化铝生产课件.

Na3AlF6-Al2O3二元系 简单共晶系; 共晶点在摩尔分 数为10~11.5% 或质量分数18.6 ~21.1%处; 962-960 ℃。
3.2 Electrolyte in Industrial Cells 工业铝电解质
冰晶石Na3AlF6可写作3NaF· AlF3,为中性。 在现代铝工业上,普遍采用酸性电解质 - 含 过量氟化铝。 游离AlF3含量越高,电解质酸度越大 酸性电解质的优点: •熔点较低,可降低电解温度; •铝在其中的溶解度较小,有利于提高电流效 率(但会降低氧化铝溶解度);电解质结壳酥 松好打。
3~7 4~5 4~5 2~3 3~5
4~5 3 3
965~97 5 945~95 5 940~95 0
工业电解质发展趋势:
继续降低铝电解质温度,以提高电流效率和 节能。这需要增加电解质中氟化铝的质量分 数,例如达到24-30%,温度降到850-900℃, 约高出铝熔点200-250℃。 采用连续添加氧化铝的装臵,以免产生不溶性 沉淀物。因为氧化铝的溶解度会由于氟化铝 质量分数增大而减小.
阳极反应比较复杂,因为碳阳极是一种 活泼材料,它参与阳极电化学反应。 铝电解中阳极主反应便是铝-氧-氟离子 中的O2-在炭阳极上放电,生成CO2的反应 : 3 O2- + 1.5C – 6e = 1.5CO2(气)
两极反应合并起来, 得到铝电解总反应式:
Al2O3 + 1.5C = 2Al(液) +1.5CO2(气) 炭阳极的理论消耗量是 1.5 ×12/54×100% =333 kg(C) /t (Al) 工业铝电解槽的阳极气体组成中CO2,CO的质 量分数分别为70-80%,20-30%。阳极实际消耗 约为400kg。其中存在多量CO主要是由于溶解 在电解质中的铝同一次气体CO2发生逆反应: 3CO2(气)+2Al(溶解的)= Al2O3(溶解的) +3CO(气)

ZAO透明导电纳米薄膜中Al元素分布对其性能的影响

ZAO透明导电纳米薄膜中Al元素分布对其性能的影响
图 4 Al 质量分数对 ZAO 薄膜透射率的影响 Fig. 4 Transmissivity of the ZAO film with different content of Al element
图 4 表明 ,Al 元素相对含量对 ZAO 薄膜在 可见光范围内的透射率影响不大 ,曲线的吸收边 向短波方向移动使其吸收限的紫外截止几乎处于 同一位置 ,这是由于当 Al 元素相对含量达一定程 度时 ,载流子浓度趋于饱和值 ,吸收边的移动也趋 于一个极值·
表 1 靶表面上的 Al 质量分数 Table 1 The content of Al element on the surface
of the target
距靶表面边缘处/ mm
60 120 180 240
w (Al) %
21004 21007 21002 21005
表 2 在靶不同深度的 Al 质量分数 Table 2 The content of Al element in the depth
content of Al element (a) —w (Al) = 11964 % ; (b) —w (Al) = 21122 % ;
(c) —w (Al) = 21256 %·
© 1995-2004 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
在制备 ZAO 薄膜过程中发现 ,Al 质量分数 的多少及均匀性等因素对 ZAO 薄膜的光 、电性 能 、组织结构等有非常明显的影响 ,因此 ,讨论 Al 元素在 ZAO 薄膜中的分布 (质量分数的多少 、均 匀性等) 及其与 ZAO 薄膜性能的相互关系具有重 要的现实意义·
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档