2018年广东省中考数学试卷(附答案解析)

合集下载

【中考数学】有理数解答题训练经典题目(附答案)

【中考数学】有理数解答题训练经典题目(附答案)

【中考数学】有理数解答题训练经典题目(附答案)一、解答题1.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.(2)若点A到原点的距离为3,B为AC的中点.①用b的代数式表示c;②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.2.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.3.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.4.如图,点、、是数轴上三点,点表示的数为,, .(1)写出数轴上点、表示的数:________,________.(2)动点,同时从,出发,点以每秒个单位长度的速度沿数轴向右匀速运动,点以个单位长度的速度沿数向左匀速运动,设运动时间为秒.①求数轴上点,表示的数(用含的式子表示);② 为何值时,点,相距个单位长度.5.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,求a-b=________,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当a=﹣4,b=8,点M在A,B之间,且AM=3BM时,求m的值.②当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值.6.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=________.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.7.观察下列等式,,,以上三个等式两边分别相加得:(1)猜想并写出: ________(2)计算: ________(3)探究并计算:8.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.9.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5 (1)求b的值(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.10.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=-4,则a的值为________.(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.11.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.12.阅读材料:如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是________;②若E是线段AC的中点,求点E表示的数________.(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是________(填写符合要求的序号);(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2②直接用含m、n的代数式表示点P表示的数________.13.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请真接与出a=________,b=________;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值: (3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.14.我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离。

2018年广东省深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷(含答案解析版)12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= .14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a= ,b= .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2018年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6 B.−16 C.16D.6【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】27 :图表型.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【考点】W5:众数;W6:极差.【专题】1 :常规题型.【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab【考点】35:合并同类项;46:同底数幂的乘法;48:同底数幂的除法;78:二次根式的加减法.【专题】1 :常规题型.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、√a+√b无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480 B .{x +y =706x +8y =480 C .{x +y =4806x +8y =70D .{x +y =4808x +6y =70【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x 个,小房间有y 个,由题意得:{x +y =708x +6y =480,故选:A .【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√3【考点】MC :切线的性质.【专题】1 :常规题型;55A :与圆有关的位置关系.【分析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3√3,∴光盘的直径为6√3,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】53:函数及其图象.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】由点P 是动点,进而判断出①错误,设出点P 的坐标,进而得出AP ,BP ,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P 是动点,∴BP 与AP 不一定相等,∴△BOP 与△AOP 不一定全等,故①不正确;设P (m ,n ),∴BP ∥y 轴,∴B (m ,12m), ∴BP=|12m ﹣n|,∴S △BOP =12|12m ﹣n|×m=12|12﹣mn|∵PA ∥x 轴,∴A (12n ,n ),∴AP=|12n ﹣m|,∴S △AOP =12|12n ﹣m|×n=12|12﹣mn|,∴S △AOP =S △BOP ,故②正确;如图,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴S △AOP =12OA ×PF ,S △BOP =12OB ×PE ,∵S △AOP =S △BOP ,∴OB ×PE=OA ×PE ,∵OA=OB ,∴PE=PF ,∵PE ⊥OB ,PF ⊥OA ,∴OP 是∠AOB 的平分线,故③正确;如图1,延长BP 交x 轴于N ,延长AP 交y 轴于M ,∴AM ⊥y 轴,BN ⊥x 轴,∴四边形OMPN 是矩形,∵点A ,B 在双曲线y=12x上,∴S △AMO =S △BNO =6, ∵S △BOP =4,∴S △PMO =S △PNO =2,∴S 矩形OMPN =4,∴mn=4, ∴m=4n, ∴BP=|12m﹣n|=|3n ﹣n|=2|n|,AP=|12n﹣m|=8|n|,∴S △APB=12AP ×BP=12×2|n|×8|n|=8,故④错误;∴正确的有②③,故选:B .【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= (a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:12.【考点】X4:概率公式.【专题】17 :推理填空题.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:3 6=1 2,故答案为:1 2.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8 .【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质得到AC=AF ,∠CAF=90°,证明△CAE ≌△AFB ,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF 是正方形,∴AC=AF ,∠CAF=90°,∴∠EAC+∠FAB=90°, ∵∠ABF=90°, ∴∠AFB+∠FAB=90°, ∴∠EAC=∠AFB , 在△CAE 和△AFB 中,{∠CAE =∠AFB∠AEC =∠FBA AC =AF ,∴△CAE ≌△AFB ,∴EC=AB=4,∴阴影部分的面积=12×AB ×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)(2018•深圳)在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,BE 平分∠ABC ,AD 、BE 相交于点F ,且AF=4,EF=√2,则AC= 8√105.【考点】IJ :角平分线的定义;KQ :勾股定理;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE ,最后判断出△AEF ∽△AFC ,即可得出结论.【解答】解:如图,∵AD ,BE 是分别是∠BAC 和∠ABC 的平分线,∴∠1=∠2,∠3=∠4, ∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E 作EG ⊥AD 于G ,在Rt △EFG 中,EF=√2,∴FG=EG=1,∵AF=4,∴AG=AF ﹣FG=3,根据勾股定理得,AE=√AG 2+EG 2=√10,连接CF ,∵AD 平分∠CAB ,BE 平分∠ABC , ∴CF 是∠ACB 的平分线,∴∠ACF=45°=∠AFE ,∵∠CAF=∠FAE ,∴△AEF ∽△AFC , ∴AE AF =AF AC, ∴AC=AF 2AE =√10=8√105,故答案为8√105.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE 是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×√22+√2+1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.【考点】6D:分式的化简求值.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=x−x+1x−1⋅(x+1)(x−1)(x+1)2=1x+1把x=2代入得:原式=1 3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100 人,a= 0.25 ,b= 15 .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【考点】V5:用样本估计总体;V7:频数(率)分布表;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【考点】N3:作图—复杂作图;S9:相似三角形的判定与性质;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上,∴四边形ACDB 为△FEC 的亲密菱形;(2)解:设菱形ACDB 的边长为x ,∵四边形ABCD 是菱形,∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E ,△EAB ∽△FCE则:FA FC =AB CE ,即x 12=6−x 6,解得:x=4,过A 点作AH ⊥CD 于H 点,∵在Rt △ACH 中,∠ACH=45°,∴AH =AC√2=2√2,∴四边形ACDB 的面积为:4×2√2=8√2.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD 是菱形是解此题的关键.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】34 :方程思想;522:分式方程及应用;524:一元一次不等式(组)及应用.【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•1600x=6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=12BC=1,∵cosB=BMAB=√1010,在Rt△AMB中,BM=1,∴AB=BMcosB=√10;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴AC AD =AE AC,∴AD•AE=AC 2=10;(3)在BD 上取一点N ,使得BN=CD ,在△ABN 和△ACD 中{AB =AC∠3=∠1BN =CD,∴△ABN ≌△ACD (SAS ),∴AN=AD ,∵AN=AD ,AH ⊥BD , ∴NH=HD ,∵BN=CD ,NH=HD ,∴BN+NH=CD+HD=BH .【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)(2018•深圳)已知顶点为A 抛物线y =a(x −12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若∠OPM=∠MAF ,求△POE 的面积;(3)如图2,点Q 是折线A ﹣B ﹣C 上一点,过点Q 作QN ∥y 轴,过点E 作EN ∥x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将△QEN 沿QE 翻折得到△QEN 1,若点N 1落在x 轴上,请直接写出Q 点的坐标.【考点】HF :二次函数综合题.【专题】15 :综合题;537:函数的综合应用.【分析】(1)将点B 坐标代入解析式求得a 的值即可得;(2)由∠OPM=∠MAF 知OP ∥AF ,据此证△OPE ∽△FAE 得OP FA=OE FE=134=43,即OP=43FA ,设点P (t ,﹣2t ﹣1),列出关于t 的方程解之可得;(3)分点Q 在AB 上运动、点Q 在BC 上运动且Q 在y 轴左侧、点Q 在BC 上运动且点Q 在y 轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点B(−32,2)代入y =a(x −12)2−2,解得:a=1,∴抛物线的解析式为:y =(x −12)2−2;(2)由y =(x −12)2−2知A (12,﹣2),设直线AB 解析式为:y=kx+b ,代入点A ,B 的坐标,得:{−2=12k +b 2=−32k +b,解得:{k =−2b =−1,∴直线AB 的解析式为:y=﹣2x ﹣1,易求E (0,1),F(0,−74),M(−12,0),若∠OPM=∠MAF , ∴OP ∥AF ,∴△OPE ∽△FAE ,∴OP FA =OE FE =134=43,∴OP =43FA =43√(12−6)2+(−2+74)2=√53,设点P (t ,﹣2t ﹣1),则:√t 2+(−2t −1)2=√53解得t 1=−215,t 2=−23,由对称性知;当t 1=−215时,也满足∠OPM=∠MAF ,∴t 1=−215,t 2=−23都满足条件,∵△POE 的面积=12OE ⋅|l|,∴△POE 的面积为115或13.(3)若点Q 在AB 上运动,如图1,设Q (a ,﹣2a ﹣1),则NE=﹣a 、QN=﹣2a ,由翻折知QN′=QN=﹣2a 、N′E=NE=﹣a ,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴QR N′S =RN′ES =QN′EN′,即QR 1=−2a−1ES =−2a −a=2,∴QR=2、ES=−2a−12,由NE+ES=NS=QR 可得﹣a+−2a−12=2,解得:a=﹣54,∴Q (﹣54,32);若点Q 在BC 上运动,且Q 在y 轴左侧,如图2,设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2,解得:a=3√55,∴Q (﹣3√55,2);若点Q 在BC 上运动,且点Q 在y 轴右侧,如图3,第31页(共31页)设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2, 解得:a=3√55, ∴Q (3√55,2).综上,点Q 的坐标为(﹣54,32)或(﹣3√55,2)或(3√55,2). 【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。

2018年中考数学试卷(有答案)

2018年中考数学试卷(有答案)

2018年中考数学试卷(有答案)2018年中考数学试卷(有答案)全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程 x^2-4=0 的解是()A。

x=2B。

x=-2C。

x1=2,x2=-2D。

x1=-2,x2=22.二次三项式 x^2-4x+3 配方的结果是()A。

(x-2)^2+7B。

(x-2)^2-1C。

(x+2)^2+7D。

(x+2)^2-13.XXX从上面观察下图所示的两个物体,看到的是(删除该段)4.人离窗子越远,向外眺望时此人的盲区是()A。

变小B。

变大C。

不变D。

以上都有可能5.函数 y=kx 的图象经过 (1,-1),则函数 y=kx-2 的图象是(删除该段)6.在直角三角形 ABC 中,∠C=90°,a=4,b=3,则 sinA 的值是()A。

5/4B。

4/5C。

3/5D。

4/37.下列性质中正方形具有而矩形没有的是()A。

对角线互相平分B。

对角线相等C。

对角线互相垂直D。

四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(删除该段)二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算tan60°=√3.10.已知函数 y=(m-1)x^(m-2) 是反比例函数,则 m 的值为3.11.若反比例函数 y=k/x^2 的图象经过点 (3,-4),则此函数在每一个象限内 y 随 x 的增大而减小。

12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是“如果两条直角边的平方和不等于斜边的平方,则三角形不是直角三角形”。

13.有两组扑克牌各三张,牌面数字分别为 2,3,4,随意从每组中牌中抽取一张,数字和是 6 的概率是 1/9.14.依次连接矩形各边中点所得到的四边形是长方形。

15.如图,在△ABC中,BC=8 cm,AB 的垂直平分线交AB 于点 D,交边 AC 于点 E,△BCE 的周长等于 18 cm,则AC 的长等于 10 cm。

2018年宜宾市中考数学试卷(含解析)

2018年宜宾市中考数学试卷(含解析)

2018年四川省宜宾市中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)1.(3分)3的相反数是()A.B.3 C.﹣3 D.±2.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×1043.(3分)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.球4.(3分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.05.(3分)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%7.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C .D .8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P 在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A .B .C.34 D.10二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)9.(3分)分解因式:2a3b﹣4a2b2+2ab3=.10.(3分)不等式组1<x﹣2≤2的所有整数解的和为.11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分.甲乙丙教师成绩笔试80分82分78分面试76分74分78分12.(3分)已知点A是直线y=x+1上一点,其横坐标为﹣,若点B与点A关于y轴对称,则点B的坐标为.13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S=.(结果保留根号)14.(3分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=﹣上,则m2+n2的值为15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G,若=,则=.16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)计算:sin30°+(2018﹣)0﹣2﹣1+|﹣4|;(2)化简:(1﹣)÷.18.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)该班共有学生人;(2)请将条形统计图补充完整;(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)22.(10分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.23.(10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.2018年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)1.(3分)3的相反数是()A.B.3 C.﹣3 D.±【考点】14:相反数.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:3的相反数是﹣3,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:65000=6.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.球【考点】U3:由三视图判断几何体.【分析】综合该物体的三种视图,分析得出该立体图形是圆柱体.【解答】解:A、圆柱的三视图分别是长方形,长方形,圆,正确;B、圆锥体的三视图分别是等腰三角形,等腰三角形,圆及一点,错误;C、长方体的三视图都是矩形,错误;D、球的三视图都是圆形,错误;故选:A.【点评】本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力.4.(3分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.0【考点】AB:根与系数的关系.【分析】根据根与系数的关系可得出x1x2=0,此题得解.【解答】解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴x1x2=0.故选:D.【点评】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.5.(3分)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【考点】L5:平行四边形的性质.【分析】想办法证明∠E=90°即可判断.【解答】解:如图,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD+∠ADC=180°,∵∠EAD=∠BAD,∠ADE=∠ADC,∴∠EAD+∠ADE=(∠BAD+∠ADC)=90°,∴∠E=90°,∴△ADE是直角三角形,故选:B.【点评】本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%【考点】AD:一元二次方程的应用.【分析】设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C.D.【考点】Q2:平移的性质.【分析】由S△ABC =9、S△A′EF=4且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知()2=,据此求解可得.【解答】解:如图,∵S△ABC =9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE =S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P 在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A. B.C.34 D.10【考点】M8:点与圆的位置关系;LB:矩形的性质.【分析】设点M为DE的中点,点N为FG的中点,连接MN,则MN、PM的长度是定值,利用三角形的三边关系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出结论.【解答】解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.∵DE=4,四边形DEFG为矩形,∴GF=DE,MN=EF,∴MP=FN=DE=2,∴NP=MN﹣MP=EF﹣MP=1,∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.故选:D.【点评】本题考查了点与圆的位置关系、矩形的性质以及三角形三变形关系,利用三角形三边关系找出PN的最小值是解题的关键.二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)9.(3分)分解因式:2a3b﹣4a2b2+2ab3=2ab(a﹣b)2.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2ab,再对余下的多项式利用完全平方公式继续分解.【解答】解:2a3b﹣4a2b2+2ab3,=2ab(a2﹣2ab+b2),=2ab(a﹣b)2.【点评】本题考查提公因式法,公式法分解因式,难点在于提取公因式后要继续进行二次分解因式.10.(3分)不等式组1<x﹣2≤2的所有整数解的和为15.【考点】CC:一元一次不等式组的整数解.【分析】先解不等式组得到6<x≤8,再找出此范围内的整数,然后求这些整数的和即可.【解答】解:由题意可得,解不等式①,得:x>6,解不等式②,得:x≤8,则不等式组的解集为6<x≤8,所以不等式组的所有整数解的和为7+8=15,故答案为:15.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分78.8分.甲乙丙教师成绩笔试80分82分78分面试76分74分78分【考点】W2:加权平均数.【分析】根据题意先算出甲、乙、丙三人的加权平均数,再进行比较,即可得出答案.【解答】解:∵甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∴被录取的教师为乙,其综合成绩为78.8分,故答案为:78.8分.【点评】本题考查了加权平均数的计算公式,注意,计算平均数时按60%和40%进行计算.12.(3分)已知点A是直线y=x+1上一点,其横坐标为﹣,若点B与点A关于y轴对称,则点B的坐标为(,).【考点】F8:一次函数图象上点的坐标特征;P5:关于x轴、y轴对称的点的坐标.【分析】利用待定系数法求出点A坐标,再利用轴对称的性质求出点B坐标即可;【解答】解:由题意A(﹣,),∵A、B关于y轴对称,∴B(,),故答案为(,).【点评】本题考查一次函数的应用、轴对称的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S= 2.(结果保留根号)【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO为等边三角形,根据等边三角形的性质结合OM的长度可求出AB的长度,再利用三角形的面积公式即可求出S的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,=6×××1=2.∴S=6S△ABO故答案为:2.【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.14.(3分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=﹣上,则m2+n2的值为6【考点】G6:反比例函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征.【分析】直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值,再利用完全平方公式将原式变形得出答案.【解答】解:∵点P(m,n)在直线y=﹣x+2上,∴n+m=2,∵点P(m,n)在双曲线y=﹣上,∴mn=﹣1,∴m2+n2=(n+m)2﹣2mn=4+2=6.故答案为:6.【点评】此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征,正确得出m,n之间关系是解题关键.15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G,若=,则=.【考点】S9:相似三角形的判定与性质;M2:垂径定理.【分析】由AB是直径,推出∠ADG=∠GCB=90°,因为∠AGD=∠CGB,推出cos ∠CGB=cos∠AGD,可得=,设EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,想办法求出DG、AG即可解决问题;【解答】解:连接AD,BC.∵AB是半圆的直径,∴∠ADB=90°,又DE⊥AB,∴∠ADE=∠ABD,∵D是的中点,∴∠DAC=∠ABD,∴∠ADE=∠DAC,∴FA=FD;∵∠ADE=∠DBC,∠ADE+∠EDB=90°,∠DBC+∠CGB=90°,∴∠EDB=∠CGB,又∠DGF=∠CGB,∴∠EDB=∠DGF,∴FA=FG,∵=,设EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,在Rt△ADE中,AD==4k,∵AB是直径,∴∠ADG=∠GCB=90°,∵∠AGD=∠CGB,∴cos∠CGB=cos∠AGD,∴=,在Rt△ADG中,DG==2k,∴==,故答案为:.【点评】本题考查的是圆的有关性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,学会利用参数解决问题,属于中考常考题型.16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是①②③(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.【考点】PB:翻折变换(折叠问题);KB:全等三角形的判定;LB:矩形的性质.【分析】分两种情形分别求解即可解决问题;【解答】解:如图1中,当AE=EB时,∵AE=EB=EF,∴∠EAF=∠EFA,∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,∴∠BEC=∠EAF,∴AF∥EC,故①正确,作EM⊥AF,则AM=FM,在Rt△ECB中,EC==,∵∠AME=∠B=90°,∠EAM=∠CEB,∴△CEB∽△EAM,∴=,∴=,∴AM=,∴AF=2AM=,故②正确,如图2中,当A、F、C共线时,设AE=x.则EB=EF=3﹣x,AF=﹣2,在Rt△AEF中,∵AE2=AF2+EF2,∴x2=(﹣2)2+(3﹣x)2,∴x=,∴AE=,故③正确,如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,故答案为①②③.【点评】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)计算:sin30°+(2018﹣)0﹣2﹣1+|﹣4|;(2)化简:(1﹣)÷.【考点】6C:分式的混合运算;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)利用特殊角的三角函数值、零指数幂和负整数指数的意义计算;(2)先把括号内通分,再把除法运算化为乘以运算,然后把x2﹣1分解因式后约分即可.【解答】解:(1)原式=+1﹣+4=5;(2)原式=•=x+1.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.18.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【考点】KD:全等三角形的判定与性质.【分析】由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.【解答】证明:如图,∵∠1=∠2,∴∠ACB=∠ACD.在△ABC与△ADC中,,∴△ABC≌△ADC(AAS),∴CB=CD.【点评】考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)该班共有学生人;(2)请将条形统计图补充完整;(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.【解答】解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:化学生物政治历史地理化学生物、化学政治、化学历史、化学地理、化学生物化学、生物政治、生物历史、生物地理、生物政治化学、政治生物、政治历史、政治地理、政治历史化学、历史生物、历史政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.【考点】B7:分式方程的应用.【分析】设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据工作时间=工作总量÷工作效率结合提前5个月完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:﹣=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E 间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作CH⊥AB于H,得到BD=CH,设CD=x米,根据正切的定义分别用x 表示出HC、ED,根据正切的定义列出方程,解方程即可.【解答】解:作CH⊥AB于H,则四边形HBDC为矩形,∴BD=CH,由题意得,∠ACH=30°,∠CED=30°,设CD=x米,则AH=(30﹣x)米,在Rt△AHC中,HC==(30﹣x),则BD=CH=(30﹣x),∴ED=(30﹣x)﹣10,在Rt△CDE中,=tan∠CED,即=,解得,x=15﹣,答:立柱CD的高为(15﹣)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握锐角三角函数的概念、仰角俯角的定义是解题的关键.22.(10分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法,将点的坐标分别代入两个函数的表达式中求出待定系数,可得答案;(2)利用△AOP的面积减去△AOQ的面积.【解答】解:(1)反比例函数y=(m≠0)的图象经过点(1,4),∴,解得m=4,故反比例函数的表达式为,一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),∴,解得,∴一次函数的表达式y=﹣x﹣5;(2)由,解得或,∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OPA﹣S△OAQ==7.5.【点评】本题考查了反比例函数图象与一次函数图象的交点坐标问题,(1)用待定系数法求出函数表达式是解题的关键,(2)转化思想是解题关键,将三角形的面积转化成两个三角形的面积的差.23.(10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.【考点】ME:切线的判定与性质;M5:圆周角定理;T7:解直角三角形.【分析】(1)说明OC是△BDA的中位线,利用中位线的性质,得到∠OCE=∠CED=90°,从而得到CE是圆O的切线.(2)利用直径上的圆周角,得到△PEF是直角三角形,利用角相等,可得到△PEF∽△PEA、△PCF∽△PAC,从而得到PC=PE=5.然后求出sin∠PEF的值.【解答】解:(1)证明:∵CE⊥AD于点E∴∠DEC=90°,∵BC=CD,∴C是BD的中点,又∵O是AB的中点,∴OC是△BDA的中位线,∴OC∥AD∴∠OCE=∠CED=90°∴OC⊥CE,又∵点C在圆上,∴CE是圆O的切线.(2)连接AC∵AB是直径,点F在圆上∴∠AFB=∠PFE=90°=∠CEA∵∠EPF=∠EPA∴△PEF∽△PEA∴PE2=PF×PA∵∠FBC=∠PCF=∠CAF又∵∠CPF=∠CPA∴△PCF∽△PAC∴PC2=PF×PA∴PE=PC在直角△PEF中,sin∠PEF==.【点评】本题考查了切线的判定、三角形的中位线定理、相似三角形的性质和判定等知识点.利用三角形相似,说明PE=PC是解决本题的难点和关键.24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【考点】HF:二次函数综合题.【分析】(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x﹣2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1﹣﹣y0)m2﹣(2﹣2x0﹣2y0)m+x02+y02﹣2y0﹣3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.【解答】解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x﹣2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=,∴抛物线的解析式为y=(x﹣2)2=x2﹣x+1.(2)联立直线AB与抛物线解析式成方程组,得:,解得:,,∴点A的坐标为(1,),点B的坐标为(4,1).作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).∵点B(4,1),直线l为y=﹣1,∴点B′的坐标为(4,﹣3).设直线AB′的解析式为y=kx+b(k≠0),将A(1,)、B′(4,﹣3)代入y=kx+b,得:,解得:,∴直线AB′的解析式为y=﹣x+,当y=﹣1时,有﹣x+=﹣1,解得:x=,∴点P的坐标为(,﹣1).(3)∵点M到直线l的距离与点M到点F的距离总是相等,∴(m﹣x0)2+(n﹣y0)2=(n+1)2,∴m2﹣2x0m+x02﹣2y0n+y02=2n+1.∵M(m,n)为抛物线上一动点,∴n=m2﹣m+1,∴m2﹣2x0m+x02﹣2y0(m2﹣m+1)+y02=2(m2﹣m+1)+1,整理得:(1﹣﹣y0)m2﹣(2﹣2x0﹣2y0)m+x02+y02﹣2y0﹣3=0.∵m为任意值,∴,∴,∴定点F的坐标为(2,1).【点评】本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组.。

广东省中考数学复习专题之反比例函数综合与应用

广东省中考数学复习专题之反比例函数综合与应用

广东省中考数学复习专题之反比例函数综合与应用姓名:________ 班级:________ 成绩:________一、浙教版2019中考数学复习专题之反比例函数综合与应用解答 (共40题;共109分)1. (3分)(2020·锦江模拟) 如图,直线y1=2x与双曲线y2=交于点A,点B,过点A作AC⊥y轴于点C,OC=2,延长AC至D,使CD=4AC,连接OD.(1)求k的值;(2)求∠AOD的大小;(3)直接写出当y1>y2时,x的取值范围.2. (3分)已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论.3. (3分) (2020九上·嘉兴月考) 如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.(1)求证:△DCE∽△DBC;(2)若CE= ,CD=2,求直径BC的长.4. (2分)(2016·崂山模拟) 模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙的解决了这问题如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.请你在下列的阅读、应用的过程中,完成解答.(1)理由:如图③,在直线L上另取任一点C′,连接AC′,BC′,B′C′,∵直线l是点B,B′的对称轴,点C,C′在l上∴CB=________,C′B=________∴AC+CB=AC+CB′=________.在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小归纳小结:本问题实际是利用轴对称变换的思想,把A、B在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.(2)模型应用如图④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点.求EF+FB的最小值分析:解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC对称,连结ED交AC 于F,则EF+FB的最小值就是线段________的长度,EF+FB的最小值是________.如图⑤,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是的中点,在直径CD上找一点P,使BP+AP 的值最小,则BP+AP的最小值是________;如图⑥,一次函数y=﹣2x+4的图象与x,y轴分别交于A,B两点,点O为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求:PC+PD的最小值,并写出取得最小值时P点坐标.5. (2分)(2018·遂宁) 如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y= (m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD= ,且点B的坐标为(n,-2).(1)求一次函数与反比例函数的解析式;(2) E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.6. (3分)(2020·镇平模拟) 反比例函数y1= (x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2)(1)求这两个函数解析式;(2)在y轴上求作一点P,使PA+PB的值最小,并直接写出此时点P的坐标.7. (3分) (2016九下·萧山开学考) 已知二次函数y=kx2+2(k﹣3)x+(k﹣3)的图象开口向上,且k为整数,且该抛物线与x轴有两个交点(a,0)和(b,0).一次函数y1=(k﹣2)x+m与反比例函数y2= 的图象都经过(a,b).(1)求k的值;(2)求一次函数和反比例函数的解析式,并直接写出y1>y2时,x的取值范围.8. (3分)若反比例函数与一次函数的图象都经过点A(a,2).(1)求反比例函数的表达式;(2)当反比例函数的值大于一次函数的值时,求自变量x的取值范围.9. (2分)已知矩形BEDG和矩形BNDQ中,BE=BN , DE=DN .(1)将两个矩形叠合成如上图,求证:四边形ABCD是菱形;(2)若菱形ABCD的周长为20,BE=3,求矩形BEDG的面积.10. (3分)如图(1)【问题背景】如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小明同学的方法是将△ABE绕点A逆时针旋转120°到△ADG的位置,然后再证明△AFE≌△AFG,从而得出结论:________.(2)【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(3)【结论应用】如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏东60°的A处,舰艇乙在指挥中心南偏西20°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正南方向以30海里/小时的速度前进,舰艇乙沿南偏东40°的方向以50海里/小时的速度前进,1小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O之间夹角∠EOF=70°,试求此时两舰艇之间的距离.直接写出结果.11. (3分) (2018九上·合肥期中) 如图,一次函数y=ax+b与反比例函数 (x>0)的图像交于点A(2,5)和点B(m,1).(1)确定这两个函数的表达式;(2)求出△OAB的面积;(3)结合图像,直接写出不等式的解集.12. (3分) (2019九上·桥东月考) 一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间成反比例函数关系,其图象如图所示.(1)求V与t之间的函数表达式;(2)若要2h排完水池中的水,那么每小时的排水量应该是多少?(3)如果每小时排水量不超过4000m3 ,那么水池中的水至少要多少小时才能排完?13. (3分) (2020九下·萧山月考) 在面积都相等的所有矩形中,当其中一个矩形的一边长为4时,它的另一边长为6。

【中考冲刺】2023年广东省中考数学模拟试卷(附答案)

【中考冲刺】2023年广东省中考数学模拟试卷(附答案)

2023年广东省中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.-2021的绝对值是( )A .2021-B .12021-C .2021D .12020 2.剪纸是我国古老的民间艺术,下列四个剪纸图案为轴对称图形的是( ) A . B .C .D .3.某几何体的三视图如图所示,则此几何体是( )A .圆锥B .圆柱C .长方体D .四棱柱 4.下列运算正确的是( )A .235a a a +=B .3412a a a ⋅=C .32a a a÷= D .()236236a b a b -= 5.关于x 的一元一次不等式58x x ≥+的解集在数轴上表示为( )A .B .C .D .6.如图,直线a ,b 被直线c 所截,若//a b ,170∠=︒,则2∠的度数是( )A .70°B .100°C .110°D .120°7.计算22111m m m m ----的结果是( ) A .1m + B .1m - C .2m - D .2m -- 8.如图,AB 是O 的直径,点E ,C 在O 上,点A 是EC 的中点,过点A 画O 的切线,交BC 的延长线于点D ,连接EC .若58.5ADB ∠=︒,则ACE ∠的度数为( )A .29.5︒B .31.5︒C .58.5︒D .63︒9.如图,O 是坐标原点,点B 在x 轴上,在OAB 中,AO =AB =5,OB =6,点A 在反比例函数y =k x(k ≠0)图象上,则k 的值( )A .﹣12B .﹣15C .﹣20D .﹣3010.如图,在Rt △ABC 中,△A =30°,△C =90°,AB =6,点P 是线段AC 上一动点,点M 在线段AB 上,当AM =13AB 时,PB +PM 的最小值为( )A.B.C.2D.3二、填空题11.因式分解:2728a-=________.12.解决全人类温饱问题是“世界杂交水稻之父”袁隆平先生的毕生追求.2020年中国粮食总产量达到657 000 000吨,已成为世界粮食第一大国.将657 000 000用科学记数法表示为________.13.不等式组51350xx-<⎧⎨-≥⎩的解集是__________.14.已知甲、乙两队员射击的成绩如图,设甲、乙两队员射击成绩的方差分别为2S甲、2 S 乙,则2S甲___2S乙.(填“>”、“=”、“<”)15.如图,花瓣图案中的正六边形ABCDEF的每个内角的度数是__.16.若实数x满足210x x--=,则3222021x x-+=__.17.如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M.若BQ:AQ=3:1,则AM=__________.三、解答题18.计算:(π﹣1)0+2|﹣(13)﹣1+tan60°.19.如图,在菱形ABCD中,点M、N分别在AB、CB上,且ADM CDN∠=∠,求证:BM BN=.20.端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?21.为庆祝建党100周年,某校开展“学党史•颂党恩”的作品征集活动,征集的作品分为四类:征文、书法、剪纸、绘画.学校随机抽取部分学生的作品进行整理,并根据结果绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)所抽取的学生作品的样本容量是多少?(2)补全条形统计图.(3)本次活动共征集作品1200件,估计绘画作品有多少件.22.某校数学社团开展“探索生活中的数学”研学活动,准备测量一栋大楼BC的高度.如图所示,其中观景平台斜坡DE的长是20米,坡角为37︒,斜坡DE底部D与大楼底端C的距离CD为74米,与地面CD垂直的路灯AE的高度是3米,从楼顶B测得路灯AE 项端A 处的俯角是42.6︒.试求大楼BC 的高度. (参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈,17sin 42.625︒≈,34cos 42.645︒≈,9tan 42.610︒≈)23.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y (桶)与每桶降价x (元)(020x <<)之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?24.如图,AB 是O 的直径,C 、D 是O 上两点,且BD CD =,过点D 的直线DE AC ⊥交AC 的延长线于点E ,交AB 的延长线于点F ,连接AD 、OE 交于点G . (1)求证:DE 是O 的切线;(2)若23DG AG =,O 的半径为2,求阴影部分的面积;(3)连结BE ,在(2)的条件下,求BE 的长.25.如图1,二次函数()()34y a x x =+-的图象交坐标轴于点A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数()()34y a x x =+-的表达式;(2)过点P 作PQ x ⊥轴分别交线段AB ,抛物线于点Q ,C ,连接AC .当1OP =时,求ACQ 的面积;(3)如图2,将线段PB 绕点P 逆时针旋转90得到线段PD .△当点D 在抛物线上时,求点D 的坐标;△点52,3E ⎛⎫- ⎪⎝⎭在抛物线上,连接PE ,当PE 平分BPD ∠时,直接写出点P 的坐标.参考答案:1.C【解析】【分析】根据绝对值的定义即可得出正确选项.【详解】解:-2021的绝对值是2021故选:C.【点睛】本题考查求绝对值,掌握正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数是解题的关键.2.C【解析】【分析】过一个图形的一条直线,把这个图形分成可以完全重合的两个部分,这个图形就叫做轴对称图形;根据轴对称图形的概念求解即可.【详解】解:A、不是轴对称图形,本选项不符合题意;B、不是轴对称图形,本选项不符合题意;C、是轴对称图形,本选项符合题意;D、不是轴对称图形,本选项不符合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.B【解析】【详解】解:圆柱体的主视图、左视图、右视图,都是长方形(或正方形),俯视图是圆,故选:B.【点睛】本题考查三视图.4.C【解析】【分析】根据合并同类项的法则,同底数幂的乘法,同底数幂的除法,幂的乘方与积的乘方的性质逐项计算可判断求解.【详解】解:A.2a与3a不是同类项,不能合并,故A选项不符合题意;B.347a a a⋅=,故B选项不符合题意;C.32÷=,故C选项符合题意;a a aD.3262-=,故D选项不符合题意,(3)9a b a b故选:C.【点睛】本题考查了合并同类项的法则,同底数幂的乘法,同底数幂的除法,幂的乘方与积的乘方,掌握以上知识是解题的关键.5.B【解析】【分析】求出不等式的解集,并表示出数轴上即可.【详解】≥+x x58x≥解得2x≥表示在数轴上,如图将2故选B【点睛】本题考查了解一元一次不等式,并将不等式的解集表示在数轴上,数形结合是解题的关键.6.C【解析】【分析】由已知条件//a b ,可得1370==︒∠∠,由平角的性质可得23180∠+∠=︒代入计算即可得出答案.【详解】解:如图,//a b ,1370∴∠=∠=︒,23180∠+∠=︒,2180318070110∴∠=︒-∠=︒-︒=︒.故选:C .【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质进行求解是解决本题的关键. 7.B【解析】【分析】根据分式的减法法则可直接进行求解.【详解】 解:()2221212111111m m m m m m m m m m ---+-===-----; 故选B .【点睛】本题主要考查分式的减法运算,熟练掌握分式的减法运算是解题的关键.8.B【解析】【分析】根据切线的性质得到BA△AD,根据直角三角形的性质求出△B,根据圆周角定理得到△ACB=90°,进而求出△BAC,根据垂径定理得到BA△EC,进而得出答案.【详解】解:△AD是△O的切线,△BA△AD,△△ADB=58.5°,△△B=90°-△ADB=31.5°,△AB是△O的直径,△△ACB=90°,△△BAC=90°-△B=58.5°,△点A是弧EC的中点,△BA△EC,△△ACE=90°-△BAC=31.5°,故选:B.【点睛】本题考查的是切线的性质、圆周角定理、垂径定理,掌握圆的切线垂直于经过切点的半径是解题的关键.9.A【解析】【分析】过A点作AC△OB,利用等腰三角形的性质求出点A的坐标即可解决问题.【详解】解:过A点作AC△OB,△AO=AB,AC△OB,OB=6,△OC=BC=3,在Rt△AOC中,OA=5,△AC4,△A(﹣3,4),把A(﹣3,4)代入y=kx,可得k=﹣12故选:A.【点睛】本题考查反比例函数图象上的点的性质,等腰三角形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.B【解析】【分析】作B点关于AC的对称点B',连接B'M交AC于点P,则PB+PM的最小值为B'M的长,过点B'作B'H△AB交H点,在Rt△BB'H中,B'H=HB=3,可求MH=1,在Rt△MHB'中,B'M=PB+PM的最小值为【详解】解:作B点关于AC的对称点B',连接B'M交AC于点P,△BP=B'P,BC=B'C,△PB+PM=B'P+PM≥B'M,△PB+PM的最小值为B'M的长,过点B'作B'H△AB交H点,△△A =30°,△C =90°,△△CBA =60°,△AB =6,△BC =3,△BB '=BC +B 'C =6,在Rt △BB 'H 中,△B 'BH =60°,∴△BB 'H =30°,△BH =3,由勾股定理可得:'B H =△AH =AB -BH =3,△AM =13AB , △AM =2,△MH =AH -AM =1,在Rt △MHB '中,'B M =△PB +PM 的最小值为故选:B .【点睛】本题考查轴对称—最短路线问题,涉及到解直角三角形,解题的关键是做辅助线,找出PB +PM 的最小值为B 'M 的长.11.7(2)(2)a a +-【解析】【分析】先提取公因式7,然后再使用平方差公式求解即可.【详解】解:原式2=7(4)7(2)(2)a a a -=+-,故答案为:7(2)(2)a a +-.【点睛】本题考查了因式分解的方法,先提公因式,再看能否套平方差公式或完全平方式. 12.6.57×108【解析】【分析】由题意结合科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,且n 比原来的整数位数少1,据此进行分析即可.【详解】解:将657 000 000用科学记数法表示为6.57×108.故答案为:6.57×108.【点睛】本题主要考查用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.13.563x < 【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式51x -<,得:6x <,解不等式350x -,得:53x , 则不等式组的解集为563x <, 故答案为:563x <. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.>【解析】【分析】先计算两组数据的平均数,再计算它们的方差,即可得出答案.【详解】解:甲射击的成绩为:6,7,7,7,8,8,9,9,9,10,乙射击的成绩为:6,7,7,8,8,8,8,9,9,10,则x甲=110×(6+7×3+8×2+9×3+10)=8,x乙=110×(6+7×2+8×4+9×2+10)=8,△S甲2=110×[(6-8)2+3×(7-8)2+2×(8-8)2+3×(9-8)2+(10-8)2]=110×[4+3+3+4]=1.4;S乙2=110×[(6-8)2+2×(7-8)2+4×(8-8)2+2×(9-8)2+(10-8)2]=110×[4+2+2+4]=1.2;△1.4>1.2,△S甲2>S乙2,故答案为:>.【点睛】题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.120°【解析】【分析】多边形的内角和可以表示成(n ﹣2)•180°,因为所给多边形的每个内角均相等,可设这个正六边形的每一个内角的度数为x ,故又可表示成6x ,列方程可求解.【详解】解:设这个正六边形的每一个内角的度数为x ,则6x =(6﹣2)•180°,解得x =120°.故答案为:120°.【点睛】本题考查根据多边形的内角和计算公式及求正多边形的内角的度数,解答时要会根据公式进行正确运算、变形和数据处理.16.2020【解析】【分析】由等式性质可得21x x =+,21x x -=,再整体代入计算可求解.【详解】解:210--=x x ,21x x ∴=+,21x x -=,3222021x x -+2(1)22021x x x =+-+2222021x x x =+-+22021x x =-+12021=-+2020=.故答案为:2020.【点睛】本题主要考查因式分解的应用,将等式转化为21x x =+,21x x -=是解题的关键.17.25【解析】【分析】连接OQ ,OP ,利用HL 证明Rt △OAQ △Rt △ODQ ,得QA =DQ ,同理可证:CP =DP ,设CP =x ,则BP =3-x ,PQ =x +34,在Rt △BPQ 中,利用勾股定理列出方程求出x =95,再利用△AQM △△BQP 可求解.【详解】解:连接OQ ,OP ,△将正方形OABC 绕点O 逆时针旋转n °(0<n <90)得到正方形ODEF ,△OA =OD ,△OAQ =△ODQ =90°,在Rt △OAQ 和Rt △ODQ 中,OQ OQ OA OD=⎧⎨=⎩, △Rt △OAQ △Rt △ODQ (HL ),△QA =DQ ,同理可证:CP =DP ,△BQ :AQ =3:1,AB =3,△BQ =94,AQ =34, 设CP =x ,则BP =3-x ,PQ =x +34, 在Rt △BPQ 中,由勾股定理得:(3-x )2+(94)2=(x +34)2, 解得x =95, △BP =65, △△AQM =△BQP ,△BAM =△B ,△△AQM △△BQP ,△13AM AQ BP BQ ==, △1635AM =,△AM =25. 故答案为:25. 【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等知识,利用全等证明QA =DQ ,CP =DP 是解题的关键.18.0【解析】【分析】根据011(1)1,()223π--===60°角的正切值解题即可. 【详解】解:原式123=+0=.【点睛】本题考查实数的混合运算,涉及零指数幂、负整指数幂、绝对值、正切等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.见解析【解析】【分析】菱形ABCD 中,四边相等,对角相等,结合已知条件ADM CDN ∠=∠,可利用三角形全等进行证明,得到AM CN =,再线段之差相等即可得证.【详解】四边形ABCD 是菱形,,BA BC DA DC A C ∴==∠=∠在AMD 和CND △中A C DA DCADM CDN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AMD ≌CND △(ASA)AM CN ∴=BA BC =BA AM BC CN ∴-=-即BM BN =.【点睛】本题考查了三角形全等的证明,菱形的性质,根据题意找准三角形证明的条件,利用角边角进行三角形全等的证明是解题的关键.20.(1)乙种粽子的单价为4元,则甲种粽子的单价为8元;(2)最多购进87个甲种粽子【解析】【分析】(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,然后根据“购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个”可列方程求解;(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,然后根据(1)及题意可列不等式进行求解.【详解】解:(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,由题意得:1200800502x x+=, 解得:4x =,经检验4x =是原方程的解,答:乙种粽子的单价为4元,则甲种粽子的单价为8元.(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,由(1)及题意得: ()842001150m m +-≤,解得:87.5m ≤,△m 为正整数,△m 的最大值为87;答:最多购进87个甲种粽子.【点睛】本题主要考查分式及一元一次不等式的应用,熟练掌握分式方程的解法及一元一次不等式的解法是解题的关键.21.(1)120;(2)图形见解析;(3)360件【解析】【分析】(1)根据剪纸的人数除以所占百分比,得到抽取作品的总件数;(2)由总件数减去其他作品数,求出绘画作品的件数,补全条形统计图即可;(3)求出样本中绘画作品的百分比,乘以1200即可得到结果.【详解】解:(1)根据题意得:1210%120÷=(件),所抽取的学生作品的样本容量是120;(2)绘画作品为120(423012)36-++=(件),补全统计图,如图所示:(3)根据题意得:361200360120⨯=(件),则绘画作品约有360件.答:本次活动共征集作品1200件时,绘画作品约有360件.【点睛】本题主要考查了总体、个体、样本、样本容量,用样本估计总体,条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.96米【解析】【分析】延长AE 交CD 延长线于M ,过A 作AN△BC 于N ,则四边形AMCN 是矩形,得NC=AM ,AN=MC ,由锐角三角函数定义求出EM 、DM 的长,得出AN 的长,然后由锐角三角函数求出BN 的长,即可求解.【详解】延长AE 交CD 于点M ,过点A 作AN BC ⊥,交BC 于点N ,由题意得,90AMC NCM ANC ∠=∠=∠=︒,△四边形AMCN 为矩形,△NC AM =,NA CM =.在Rt EMD △中,90EMD ∠=︒, △sin EM EDM ED ∠=,cos DM EDM ED ∠=, △sin 3720EM ︒=,cos3720MD ︒=, △320sin 3720125EM =⋅≈⨯=︒, △420cos3720165DM =⋅︒≈⨯=. 在Rt BNA △中,90BNA ∠=︒, △tan BN BAN AN ∠=, △tan 42.67416BN ︒=+, △990tan 42.6908110BN =≈⨯=︒, △8131296BC BN AE EM =++=++=.答:大楼BC 的高度约为96米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,坡度坡角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(1)y =10x +100;(2)这种消毒液每桶实际售价43元【解析】【分析】(1)设y 与x 之间的函数表达式为y kx b =+,将点(1,110)、(3,130)代入一次函数表达式,即可求解;(2)根据利润等于每桶的利润乘以销售量得关于x 的一元二次方程,通过解方程即可求解.【详解】解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+,将点(1,110)、(3,130)代入一次函数表达式得:1101303k b k b =+⎧⎨=+⎩, 解得:10100k b =⎧⎨=⎩, 故函数的表达式为:10100y x =+;(2)由题意得:(10100)(5535)1760x x +⨯--=,整理,得210240x x --=.解得112x =,22x =-(舍去).所以5543x -=.答:这种消毒液每桶实际售价43元.【点睛】本题主要考查了一元二次方程的应用以及用待定系数法求一次函数解析式等知识,正确利用销量⨯每件的利润=总利润得出一元二次方程是解题关键.24.(1)见解析;(2)23π;(3【解析】【分析】(1)根据同圆中等弧所对的圆周角相等得到△CAD =△DAB ,根据等边对等角得到△DAB =△ODA ,则△CAD =△ODA ,即可判定OD △AE ,进而得到OD △DE ,据此即可得解;(2)连接BD ,根据相似三角形的性质求出AE =3,AD△DAB =30°,则△EAF =60°,△DOB =60°,DFS 阴影=S △DOF -S 扇形DOB 即可得解;(3)过点E 作EM △AB 于点M ,连接BE ,解直角三角形得到AM =32,EM MB =52,再根据勾股定理求解即可. 【详解】解:(1)证明:如图,连接OD ,BD CD =,CAD DAB ∴∠=∠,OA OD =,DAB ODA ∴∠=∠,CAD ODA ∴∠=∠,//OD AE ∴,DE AC ⊥,OD DE ∴⊥, OD 是O 的半径,DE ∴是O 的切线;(2)解://OD AE ,OGD EGA ∴∆∆∽, ∴DG OD AG AE=, 23DG AG =,O 的半径为2, ∴223AE=, 3AE ∴=,如图,连接BD ,AB 是O 的直径,DE AE ⊥,90AED ADB ∴∠=∠=︒,CAD DAB ∠=∠,AED ADB ∴∆∆∽, ∴AE AD AD AB=, 即34AD AD =,AD ∴=在Rt ADB ∆中,cos AD DAB AB ∠= 30DAB ∴∠=︒,60EAF ∴∠=︒,60DOB ∠=︒,30F ∴∠=︒,2OD =,2tan30DF ∴=︒216022223603DOF DOB S S S ππ∆⨯∴=-=⨯⨯=阴影扇形; (3)如图,过点E 作EM AB ⊥于点M ,连接BE ,在Rt AEM ∆中,13cos60322AM AE =⋅︒=⨯=,sin 60EM AE =⋅︒ 35422MB AB AM ∴=-=-=,BE ∴ 【点睛】此题是圆的综合题,考查了切线的判定与性质、扇形的面积、相似三角形的判定与性质、解直角三角形,熟练掌握切线的判定与性质、相似三角形的判定与性质并证明△OGD △△EGA 求出AE 是解题的关键.25.(1)211266y x x =--;(2)34;(3)△(3,1)D -或(8,10)-;△1(,0)3-或(2,0). 【解析】【分析】(1)根据B 点的坐标以及已知条件,将B 的坐标代入即可求得a 的值,进而求得抛物线的解析式;(2)依题意根据(1)的解析式求得A 的坐标,进而求得1tan 2OAB ∠=,据此求得PQ ,根据1OP =进而求得C 的坐标,根据12ACQ S QC AP =⋅⋅△即可求得ACQ 的面积;(3)△过D 作DF x ⊥轴,分D 点在x 轴上方和下方两种情况讨论,证明BOP PFD △≌△,设(,0)P a ,(2,)D a a +-将点D 的坐标代入(1)中抛物线解析式中即可求得D 点的坐标情形2,方法同情形1;△分当PE 不平行于y 轴和//PE y 轴两种情况讨论,当当PE 不平行于y 轴时,过点B 作BM BP ⊥交PE 于点M ,过点M 作MH OB ⊥于点H ,证明BOP MHB △≌△进而可得P 的坐标,当//PE y 轴时,结合已知条件即可求得P 的坐标.【详解】(1)二次函数()()34y a x x =+-的图象经过()0,2B -∴122a -=- 解得16a = ∴()()34y a x x =+-1(3)(4)6x x =+- ∴211266y x x =-- (2)由1(3)(4)6y x x =+-,令0y = 解得123,4x x =-=(4,0),4A OA ∴=21tan 42OB OAB OA ∠=== ∴当1OP =时,413PA OA OP =-=-=13tan 322PQ PA OAB =⋅∠=⨯= ∴1C x =,则()()1131426C y =+-=- 111332224ACQ S QC AP ∴=⋅⋅=⨯⨯=△; (3)如图,当点D 在x 轴下方时,过点D 作DF AP ⊥于点F ,由211266y x x =--,令0x =, 解得2y =-(0,2)B ,2OB =90FPD PDF ∴∠+∠=︒,将线段PB 绕点P 逆时针旋转90得到线段PD ,90BPD ∴∠=︒90OPB FPD ∴∠+∠=︒OPB PDF ∴∠=∠90,BOP PFD PB DP ∠=∠=︒=∴BOP PFD △≌△2BO PF ∴==,OP DF =,设(0)OP DF a a ==>,2OF OP PF a ∴=+=+(2,)D a a ∴+-D 点在抛物线上,∴()()123246a a a +++-=- 解得121,10a a ==-(舍)(3,1)D ∴-当点D 在x 轴上方时,如图,过点D 作DF AP ⊥于点F ,设OF a =(0)a >同理可得BOP PFD △≌△2,2BO PF DF OP a ∴====+(,2)D a a ∴-+ D 点在抛物线上, ∴()()13426a a a -+--=+ 解得128,3a a ==-(舍去),(8,10)D ∴-综上所述,(3,1)D -或(8,10)-;△当PE 不平行于y 轴时,过点B 作BM BP ⊥交PE 于点M ,过点M 作MH OB ⊥于点H ,如图,PE 平分BPD ∠,PD PB ⊥,45BPE ∴∠=︒,BP BM ⊥,90HBM PBO ∴∠+∠=︒,90,BOP BHM PB BM ∠=∠=︒=90HBM PBO ∴∠+∠=︒90BPO PBO ∠+∠=︒BPO HBM ∴∠=∠90,BOP BHM PB BM ∴∠=∠=︒=BOP MHB ∴△≌△2HM OB ∴==2M x ∴=∴当PE 不平行于y 轴时,,E M 重合,BOP MHB △≌△,52,3E ⎛⎫- ⎪⎝⎭ ∴51233OP BH OB OH ==-=-=- 1(,0)3P ∴- 当PE //y 轴时,如图,此时P E x x =则(2,0)P综上所述,当PE平方BPD∠时,点P的坐标为1(,0)3-或(2,0).【点睛】本题考查了待定系数法求二次函数解析式,二次函数与坐标轴交点,正切的定义,三角形全等的性质与判定,分类讨论是解题的关键.。

专题概率 2018年中考数学试题分项版解析汇编(解析版)

专题概率 2018年中考数学试题分项版解析汇编(解析版)

专题6.3 概率一、单选题1.在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.9【来源】2018年海南省中考数学试卷【答案】A【解析】【分析】此题涉及的知识点是概率,根据概率公式=,利用比例性质得到n的值.【详解】根据题意得: =,所以n=6.故选A.【点睛】本题重点考查学生对于概率公式的理解,熟练掌握这一规律是解题的关键.2.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1[【来源】四川省南充市2018届中考数学试卷【答案】A【解析】【分析】利用调查的方式,概率的意义以及实际生活常识分析得出即可.【详解】A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;C、天气预报说明天的降水概率为,意味着明天下雨可能性较大,此选项错误;D、小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1,此选项错误;故选:A.【点睛】此题主要考查了调查的方式,随机事件的定义和概率的意义,正确把握相关定义是解题关键.3.下列成语中,表示不可能事件的是( )A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地【来源】2018年黑龙江省齐齐哈尔市中考数学试卷【答案】A【解析】【分析】不可能事件,就是一定不会发生的事件,必然事件是一定会发生的事件.【详解】缘木求鱼,是不可能事件,符合题意;杀鸡取卵,是必然事件,不符合题意;探囊取物,是必然事件,不符合题意;日月经天,江河行地,是必然事件,不符合题意.故答案为:A.【点睛】本题考查的知识点是可能事件与不可能事件的判断,解题关键是熟记可能时间和不可能事件的定义.4.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【来源】【市级联考】湖南省衡阳市2019届中考数学试卷【答案】A【解析】【分析】根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【详解】A.连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B.连续抛一均匀硬币10次都可能正面朝上,是一个有机事件,有可能发生,故此选项正确;C.大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;D.通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.故选A.【点睛】本题考查了概率的意义,解题的关键是弄清随机事件和必然事件的概念的区别.5.甲袋中装有2个相同的小球,分别写有数字1和2;乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.B.C.D.【来源】2018年广东省广州市中考数学试卷【答案】C【解析】【分析】用画树状图法求出所有情况,再计算概率.【详解】如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的两个小球上都写有数字2的概率是:.故选:C【点睛】本题考核知识点:概率. 解题关键点:用画树状图法得到所有情况.6.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形【来源】2018年内蒙古包头市中考数学试题【答案】C【解析】【分析】直接利用随机事件以及确定事件的定义分析得出答案.【详解】A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故答案选C.【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.7.有A,B两只不透明口袋,每只品袋里装有两只相同的球,A袋中的两只球上分别写了“细”、“致”的字样,B袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A.B.C.D.【来源】2010年高级中等学校招生全国统一考试数学卷(河北)【答案】B【解析】共有4种情况,刚好能组成“细心”字样的情况有一种,所以概率是,故选B.8.为备战中考,同学们积极投入复习,李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,从中任意抽出一张试卷,恰好是数学试卷的概率是()A.B.C.D.【答案】D【解析】:由李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,可得一共有9种等可能的结果,又由数学试卷2张,根据概率公式即可求得答案.9.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【来源】福建省2018年中考数学试题(b卷)【答案】D【解析】【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【详解】A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选D.【点睛】此题主要考查了随机事件,关键是掌握随机事件定义.10.下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.—组数据的方差越大,则这组数据的波动也越大【来源】【全国市级联考】四川省德阳市2018届中考数学试卷【答案】D【解析】【分析】根据概率的意义,事件发生可能性的大小,可得答案.【详解】A、明天降雨的概率是50%表示明天有可能降雨,此选项错误;B、了解全国快递包裹产生的包装垃圾数量适合采用抽样调查方式,此选项错误;C、掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是随机事件,此选项错误;D、一组数据的方差越大,则这组数据的波动也越大,此选项正确;故选:D.【点睛】本题考查了概率的意义、随机事件,利用概率的意义,事件发生可能性的大小是解题关键.11.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.【来源】四川省泸州市2016年中考数学试题【答案】C【解析】【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小【详解】根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.12.“若是实数,则≥0”这一事件是()A.必然事件B.不可能事件C.不确定事件D.随机事件【来源】四川省广元市2018年中考数学【答案】A【解析】【分析】根据必然事件、不可能事件、随机事件的概念和绝对值的定义进行解答即可.【详解】因为数轴上表示数a的点与原点的距离叫做数a的绝对值,因为a是实数,所以|a|≥0,故选A.【点睛】本题主要考查了必然事件概念以及绝对值的性质,用到的知识点为:必然事件指在一定条件下一定发生的事件.13.用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是,当宇宙中一块陨石落在地球上,则落在陆地上的概率是A.B.C.D.【来源】青海省2018年中考数学试卷【答案】D【解析】【分析】根据扇形统计图可以得出“陆地”部分占地球总面积的比例,根据这个比例即可求出落在陆地的概率.【详解】“陆地”部分对应的圆心角是,“陆地”部分占地球总面积的比例为:,宇宙中一块陨石落在地球上,落在陆地的概率是,故选D.【点睛】本题考查了简单的概率计算以及扇形统计图.用到的知识点为:概率=相应的面积与总面积之比.二、填空题14.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.【来源】四川省甘孜州2018年中考数学试题【答案】20【解析】【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,经检验x=20是原方程的根.故答案为:20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.15.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能够构成三角形的概率是_____.【来源】2018年四川省绵阳市中考数学试卷【答案】【解析】【分析】先列举出从1,2,3,4,5的木条中任取3根的所有等可能结果,再根据三角形三边间的关系从中找到能组成三角形的结果数,利用概率公式计算可得.【详解】从1,2,3,4,5的木条中任取3根有如下10种等可能结果:3、4、5;2、4、5;2、3、5;2、3、4;1、4、5;1、3、5;1、3、4;1、2、5;1、2、4;1、2、3;其中能构成三角形的有3、4、5;2、4、5;2、3、4这三种结果,所以从这5根木条中任取3根,能构成三角形的概率是,故答案是:.【点睛】考查列表法与树状图法,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.16.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是______.【来源】2018年宁夏中考数学试卷【答案】【解析】【分析】由在不透明的袋中装有1个黄球、4个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率【详解】∵在不透明的袋中装有1个黄球、4个红球、5个白球,共10个球且它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是=.故答案为:.【点睛】本题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.17.在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是______.【来源】湖南省岳阳市2018年中考数学试卷【答案】.【解析】【分析】一共有5个数,其中负数有2个,根据概率公式计算即可得.【详解】在﹣2,1,4,﹣3,0这5个数字中,负数有-2、-3共2个,所以任取一个数是负数的概率是,故答案为:.【点睛】本题考查了简单的概率计算,熟练掌握概率的计算公式是解题的关键.18.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_____.【来源】湖南省永州市2018年中考数学试卷【答案】100.【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,=0.03,解得,n=100,故估计n大约是100,故答案为:100.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题19.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.【来源】2018年山东省青岛市中考数学试卷【答案】这个游戏不公平.理由见解析.【解析】【分析】首先根据题意列表,然后根据表求得所有等可能的结果与和为奇数、偶数的情况,再利用概率公式求解即可.【详解】不公平,列表如下:4 5 64 8 9 105 9 10 116 10 11 12由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平.【点睛】此题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.20.一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.【来源】2018年吉林省中考数学试卷【答案】.【解析】依据题意画树状图(或列表)法分析所有可能的出现结果即可解答.【详解】解:列表得:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种,所以该同学两次摸出的小球所标字母相同的概率==.故答案为:.【点睛】本题主要考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.21.“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:成绩/分78910人数/人2544(1)这组数据的众数是多少,中位数是多少.(2)已知获得2018年四川省南充市的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.【来源】四川省南充市2018届中考数学试卷【答案】(1)众数为2018年四川省南充市,中位数为2018年四川省南充市;(2)恰好抽到八年级两名领操员的概率为.【分析】(1)根据众数和中位数的定义求解可得;(2)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.【详解】(1)由于2018年四川省南充市出现次数最多,所以众数为2018年四川省南充市,中位数为第8个数,即中位数为2018年四川省南充市,故答案为:2018年四川省南充市、2018年四川省南充市;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中恰好抽到八年级两名领操员的有2种结果,所以恰好抽到八年级两名领操员的概率为=.【点睛】本题主要考查众数、中位数及列表法与树状图法,解题的关键是掌握众数和中位数的定义,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.22.将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).【来源】2018年江苏省常州市中考数学试卷【答案】(1);(2).【解析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【详解】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是型矩形纸片的概率为;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为.【点睛】考查了列表法或树状图法求概率.用到的知识点为:概率所求情况数与总情况数之比.23.密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××小张同学要破解其密码:(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是.(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.【来源】广西百色市2018年中考数学试卷【答案】(1)1或2(2)(3)30种【解析】【分析】(1)根据每个月分为上旬、中旬、下旬,分别是:上旬:1日﹣10日中旬:11日﹣20日下旬:21日到月底,由此即可解决问题;(2)利用列举法即可解决问题;(3)小张同学是6月份出生,6月份只有30天,推出第一个转轮设置的数字是6,第三个转轮设置的数字可能是0,1,2,3;第二个转轮设置的数字可能,0,1,2,…9;由此即可解决问题;【详解】(1)∵小黄同学是9月份中旬出生,∴第一个转轮设置的数字是9,第二个转轮设置的数字可能是1,2.故答案为:1或2;(2)所有可能的密码是:911,912,913,914,915,916,917,918,919,920;能被3整除的有912,915,918;密码数能被3整除的概率.(3)小张同学是6月份出生,6月份只有30天,∴第一个转轮设置的数字是6,第二个转轮设置的数字可能是0,1,2,3;第三个转轮设置的数字可能,0,1,2,…9(第二个转轮设置的数字是0时,第三个转轮的数字不能是0;第二个转轮设置的数字是3时,第三个转轮的数字只能是0),∴一共有9+10+10+1=30,∴小张生日设置的密码的所有可能个数为30种.【点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.24.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.【来源】期末检测卷2018-2019学年九年级上学期数学教材【答案】(1)(2)详见解析【解析】【分析】(1)根据三张卡片的正面分别写有数字2,5,5,再根据概率公式即可求出答案。

2020年广东省中考数学试卷附答案

2020年广东省中考数学试卷附答案

92020 年广东省中考数学试卷一、选择题(本大题 10 小题,每小题 3 分,共 30 分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3 分)9 的相反数是( )1 A .﹣9B .9C .92.(3 分)一组数据 2,4,3,5,2 的中位数是()D .− 1A .5B .3.5C .3D .2.53.(3 分)在平面直角坐标系中,点(3,2)关于 x 轴对称的点的坐标为( )A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)4.(3 分)若一个多边形的内角和是 540°,则该多边形的边数为( ) A .4B .5C .6D .75.(3 分)若式子√2x − 4在实数范围内有意义,则 x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x ≠﹣26.(3 分)已知△ABC 的周长为 16,点 D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B .2√2C .16D .47.(3 分)把函数 y =(x ﹣1)2+2 图象向右平移 1 个单位长度,平移后图象的的数解析式为()A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2﹣38.(3 分)不等式组{2 − 3x ≥ −1,的解集为( )x − 1 ≥ −2(x + 2) A .无解B .x ≤1C .x ≥﹣1D .﹣1≤x ≤19.(3 分)如图,在正方形 ABCD 中,AB =3,点 E ,F 分别在边 AB ,CD 上,∠EFD =60°.若将四边形 EBCF 沿 EF 折叠,点 B 恰好落在 AD 边上,则 BE 的长度为( )A .1B .√2C .√3D .210.(3 分)如图,抛物线 y =ax 2+bx +c 的对称轴是 x =1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4 个B.3 个C.2 个D.1 个二、填空题(本大题7 小题,每小题4 分,共28 分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4 分)分解因式:xy﹣x=.12.(4 分)如果单项式3x m y 与﹣5x3y n 是同类项,那么m+n=.13.(4 分)若√a− 2 +|b+1|=0,则(a+b)2020=.14.(4 分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy 的值为.115.(4 分)如图,在菱形ABCD 中,∠A=30°,取大于AB 的长为半径,分别以点A,B2为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD 的度数为.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.17.(4 分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N 分别在射线BA,BC 上,MN 长度始终保持与 不变,MN =4,E 为 MN 的中点,点 D 到 BA ,BC 的距离分别为 4 和 2.在此滑动过程中,猫与老鼠的距离 DE的最小值为.三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分)18.(6 分)先化简,再求值:(x +y )2+(x +y )(x ﹣y )﹣2x 2,其中 x = √2,y = √3. 19.(6 分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了 120 名学生的有效问卷,数据整理如下:(1) 求 x 的值;(2) 若该校有学生 1800 人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6 分)如图,在△ABC 中,点 D ,E 分别是 AB 、AC 边上的点,BD =CE ,∠ABE =∠ACD ,BE 与 CD 相交于点 F .求证:△ABC 是等腰三角形.四、解答题(二)(本大题 3 小题,每小题 8 分,共 24 分)21.(8 分)已知关于 x ,y 的方程组{ax + 2√3y = −10√3, { x + y = 4x − y = 2,的解相同. x + by = 15(1) 求 a ,b 的值;(2) 若一个三角形的一条边的长为 2√6,另外两条边的长是关于 x 的方程 x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.等级 非常了解 比较了解 基本了解 不太了解人数(人) 247218xx 22.(8 分)如图 1,在四边形 ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1) 求证:直线 CD 与⊙O 相切;(2) 如图 2,记(1)中的切点为 E ,P 为优弧A E 上一点,AD =1,BC =2.求 tan ∠APE 的值.23.(8 分)某社区拟建 A ,B 两类摊位以搞活“地摊经济”,每个 A 类摊位的占地面积比每个 B 类摊位的占地面积多 2 平方米.建 A 类摊位每平方米的费用为 40 元,建 B 类摊位每平方米的费用为 30 元.用 60 平方米建 A 类摊位的个数恰好是用同样面积建 B 类摊位 3个数的 .5(1) 求每个 A ,B 类摊位占地面积各为多少平方米?(2) 该社区拟建 A ,B 两类摊位共 90 个,且 B 类摊位的数量不少于 A 类摊位数量的 3倍.求建造这 90 个摊位的最大费用.五、解答题(三)(本大题 2 小题,每小题 10 分,共 20 分)24.(10 分)如图,点 B 是反比例函数 y = 8(x >0)图象上一点,过点 B 分别向坐标轴作垂线,垂足为 A ,C .反比例函数 y =kx >0)的图象经过 OB 的中点 M ,与 AB ,BC 分x( 别相交于点 D ,E .连接 DE 并延长交 x 轴于点 F ,点 G 与点 O 关于点 C 对称,连接 BF , BG .(1)填空:k =;(2) 求△BDF 的面积;(3) 求证:四边形 BDFG 为平行四边形.625.(10 分)如图,抛物线 y =3+√3x 2+bx +c 与 x 轴交于 A ,B 两点,点 A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点 B 的直线与 y 轴正半轴和抛物线的交点分别为 C ,D , BC = √3CD .(1) 求 b ,c 的值;(2) 求直线 BD 的函数解析式;(3) 点 P 在抛物线的对称轴上且在 x 轴下方,点 Q 在射线 BA 上.当△ABD 与△BPQ相似时,请直接写出所有满足条件的点 Q 的坐标.92020 年广东省中考数学试卷参考答案与试题解析一、选择题(本大题 10 小题,每小题 3 分,共 30 分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3 分)9 的相反数是( )1 A .﹣9B .9C .9D .− 1【解答】解:9 的相反数是﹣9,故选:A .2.(3 分)一组数据 2,4,3,5,2 的中位数是()A .5B .3.5C .3D .2.5【解答】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是 3,∴这组数据的中位数是 3.故选:C .3.(3 分)在平面直角坐标系中,点(3,2)关于 x 轴对称的点的坐标为()A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)【解答】解:点(3,2)关于 x 轴对称的点的坐标为(3,﹣2).故选:D .4.(3 分)若一个多边形的内角和是 540°,则该多边形的边数为()A .4B .5C .6D .7【解答】解:设多边形的边数是 n ,则(n ﹣2)•180°=540°,解得 n =5. 故选:B .5.(3 分)若式子√2x − 4在实数范围内有意义,则 x 的取值范围是( ) A .x ≠2B .x ≥2C .x ≤2D .x ≠﹣2【解答】解:∵√2x − 4在实数范围内有意义, ∴2x ﹣4≥0,解得:x ≥2,∴x 的取值范围是:x ≥2.故选:B .6.(3 分)已知△ABC 的周长为 16,点 D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B .2√2C .16D .4【解答】解:∵D 、E 、F 分别为△ABC 三边的中点,∴DE 、DF 、EF 都是△ABC 的中位线, ∴DF = 1AC ,DE = 1BC ,EF = 1AC ,222故△DEF 的周长=DE +DF +EF = 1(BC +AB +AC )= 1×16=8.22故选:A .7.(3 分)把函数 y =(x ﹣1)2+2 图象向右平移 1 个单位长度,平移后图象的的数解析式为()A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2﹣3【解答】解:二次函数 y =(x ﹣1)2+2 的图象的顶点坐标为(1,2), ∴向右平移 1 个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为 y =(x ﹣2)2+2.故选:C .8.(3 分)不等式组{2 − 3x ≥ −1, 的解集为()x − 1 ≥ −2(x + 2) A .无解B .x ≤1C .x ≥﹣1D .﹣1≤x ≤1【解答】解:解不等式 2﹣3x ≥﹣1,得:x ≤1,解不等式 x ﹣1≥﹣2(x +2),得:x ≥﹣1, 则不等式组的解集为﹣1≤x ≤1,故选:D .9.(3 分)如图,在正方形 ABCD 中,AB =3,点 E ,F 分别在边 AB ,CD 上,∠EFD =60°.若将四边形 EBCF 沿 EF 折叠,点 B 恰好落在 AD 边上,则 BE 的长度为()A.1 B.√2 C.√3 D.2【解答】解:∵四边形ABCD 是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.10.(3 分)如图,抛物线y=ax2+bx+c 的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4 个B.3 个C.2 个D.1 个【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y 轴右边可得:a,b 异号,所以b>0,根据抛物线与y 轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x 轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1 是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b=1,可得b=﹣2a,2a由图象可知,当x=﹣2 时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2 时,y=4a+2b+c>0;当x=﹣1 时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3 个,故选:B.二、填空题(本大题7 小题,每小题4 分,共28 分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4 分)分解因式:xy﹣x=x(y﹣1).【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).12.(4 分)如果单项式3x m y 与﹣5x3y n 是同类项,那么m+n= 4 .【解答】解:∵单项式3x m y 与﹣5x3y n 是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.13.(4 分)若√a− 2 +|b+1|=0,则(a+b)2020= 1 .【解答】解:∵√a− 2 +|b+1|=0,∴a﹣2=0 且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.14.(4 分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy 的值为7 .【解答】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2 时,原式=3(x+y)﹣4xy2 =3×5﹣4×2=15﹣8=7,故答案为:7.115.(4 分)如图,在菱形 ABCD 中,∠A =30°,取大于 AB 的长为半径,分别以点 A ,B2 为圆心作弧相交于两点,过此两点的直线交 AD 边于点 E (作图痕迹如图所示),连接 BE , BD .则∠EBD 的度数为 45° .【解答】解:∵四边形 ABCD 是菱形,∴AD =AB ,∴∠ABD =∠ADB = 1(180°﹣∠A )=75°,由作图可知,EA =EB , ∴∠ABE =∠A =30°,∴∠EBD =∠ABD ﹣∠ABE =75°﹣30°=45°,故答案为 45°.16.(4 分)如图,从一块半径为 1m 的圆形铁皮上剪出一个圆周角为 120°的扇形 ABC ,如 1果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m .3【解答】解:由题意得,阴影扇形的半径为 1m ,圆心角的度数为 120°,120π×1则扇形的弧长为:,180而扇形的弧长相当于围成圆锥的底面周长,因此有:318022πr =120π×1,解得,r = 1, 1故答案为: .3 17.(4 分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点 M ,N 分别在射线 BA ,BC 上,MN 长度始终保持不变,MN =4,E 为 MN 的中点,点 D 到 BA ,BC 的距离分别为 4 和 2.在此滑动过程中,猫与老鼠的距离 DE 的最小值为 2√5 −2 .【解答】解:如图,连接 BE ,BD .由题意 BD = √22 + 42 =2√5, ∵∠MBN =90°,MN =4,EM =NE , ∴BE = 1MN =2, ∴点 E 的运动轨迹是以 B 为圆心,2 为半径的圆,∴当点 E 落在线段 BD 上时,DE 的值最小,∴DE 的最小值为 2√5 −2.故答案为 2√5 −2.三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分)18.(6 分)先化简,再求值:(x +y )2+(x +y )(x ﹣y )﹣2x 2,其中 x = √2,y = √3. 【解答】解:(x +y )2+(x +y )(x ﹣y )﹣2x 2,120 =x 2+2xy +y 2+x 2﹣y 2﹣2x 2 =2xy ,当 x = √2,y = √3时,原式=2× √2 × √3 =2√6.19.(6 分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了 120 名学生的有效问卷,数据整理如下:(1) 求 x 的值;(2) 若该校有学生 1800 人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【解答】解:(1)x =120﹣(24+72+18)=6; (2)1800× 24+72=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440 人.20.(6 分)如图,在△ABC 中,点 D ,E 分别是 AB 、AC 边上的点,BD =CE ,∠ABE =∠ACD ,BE 与 CD 相交于点 F .求证:△ABC 是等腰三角形.【解答】证明:∵∠ABE =∠ACD ,∴∠DBF =∠ECF ,∠DBF = ∠ECF在△BDF 和△CEF 中,{∠BFD = ∠CFE ,BD = CE ∴△BDF ≌△CEF (AAS ),∴BF =CF ,DF =EF ,等级 非常了解 比较了解 基本了解 不太了解人数(人)247218x与 {x − y = 2 ∴BF +EF =CF +DF ,即 BE =CD ,∠ABE = ∠ACD在△ABE 和△ACD 中,{∠A = ∠A,BE = CD ∴△ABE ≌△ACD (AAS ),∴AB =AC ,∴△ABC 是等腰三角形.四、解答题(二)(本大题 3 小题,每小题 8 分,共 24 分)21.(8 分)已知关于 x ,y 的方程组{ax + 2√3y = −10√3, { x + y = 4x − y = 2,的解相同. x + by = 15(1) 求 a ,b 的值;(2) 若一个三角形的一条边的长为 2√6,另外两条边的长是关于 x 的方程 x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.【解答】解:(1)由题意得,关于 x ,y 的方程组的相同解,就是程组 x + y = 4的解,x = 3{y = 1,代入原方程组得,a =﹣4√3,b =12;(2)当 a =﹣4√3,b =12 时,关于 x 的方程 x 2+ax +b =0 就变为 x 2﹣4√3x +12=0,解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以 2√3、2√3、2√6为边的三角形是等腰直角三角形.22.(8 分)如图 1,在四边形 ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1) 求证:直线 CD 与⊙O 相切;(2) 如图 2,记(1)中的切点为 E ,P 为优弧A E 上一点,AD =1,BC =2.求 tan ∠APE 的值.解得,【解答】(1)证明:作OE⊥CD 于E,如图1 所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO 平分∠BCD,∴∠OCE=∠OCB,∠OEC = ∠OBC在△OCE 和△OCB 中,{∠OCE = ∠OCB,OC = OC∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD 与⊙O 相切;(2)解:作DF⊥BC 于F,连接BE,如图所示:则四边形ABFD 是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC 是⊙O 的切线,由(1)得:CD 是⊙O 的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF= √CD2 −CF2 = √32 − 12 =2√2,∴AB=DF=2√2,∴OB= √2,∵CO 平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH =OB= √2BC 2 .23.(8 分)某社区拟建A,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2 平方米.建A 类摊位每平方米的费用为40 元,建B 类摊位每平方米的费用为30 元.用60 平方米建A 类摊位的个数恰好是用同样面积建B 类摊位3个数的.5(1)求每个A,B 类摊位占地面积各为多少平方米?(2)该社区拟建A,B 两类摊位共90 个,且B 类摊位的数量不少于A 类摊位数量的3 倍.求建造这90 个摊位的最大费用.【解答】解:(1)设每个B 类摊位的占地面积为x 平方米,则每个A 类摊位占地面积为(x+2)平方米,60根据题意得:=x+260 3 x⋅5,解得:x=3,经检验x=3 是原方程的解,所以3+2=5,答:每个A 类摊位占地面积为5 平方米,每个B 类摊位的占地面积为3 平方米;x (2)设建 A 摊位 a 个,则建 B 摊位(90﹣a )个,由题意得:90﹣a ≥3a , 解得 a ≤22.5,∵建 A 类摊位每平方米的费用为 40 元,建 B 类摊位每平方米的费用为 30 元,∴要想使建造这 90 个摊位有最大费用,所以要多建造 A 类摊位,即 a 取最大值 22 时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这 90 个摊位的最大费用是 10520 元.五、解答题(三)(本大题 2 小题,每小题 10 分,共 20 分)24.(10 分)如图,点 B 是反比例函数 y = 8(x >0)图象上一点,过点 B 分别向坐标轴作垂线,垂足为 A ,C .反比例函数 y =kx >0)的图象经过 OB 的中点 M ,与 AB ,BC 分x( 别相交于点 D ,E .连接 DE 并延长交 x 轴于点 F ,点 G 与点 O 关于点 C 对称,连接 BF , BG .(1)填空:k = 2 ;(2) 求△BDF 的面积;(3) 求证:四边形 BDFG 为平行四边形.1 1【解答】解:(1)设点 B (s ,t ),st =8,则点 M ( s , t ), 22则 k = 1s 1= 1st =2,2• t 4 2 故答案为 2;(2) △BDF 的面积=△OBD 的面积=S △BOA ﹣S △OAD = 1 ×8− 1×2=3;2 22 (3) 设点 D (m , 2),则点 B (4m , ),m m2m6∵点 G 与点 O 关于点 C 对称,故点 G (8m ,0), 1 则点 E (4m ,),2m2= ms + n 设直线 DE 的表达式为:y =sx +n ,将点 D 、E 的坐标代入上式得{m1= 4ms + n ,解得 k = − 12{ 2m , 5 b = 2m故直线 DE 的表达式为:y = −12 x +5,令 y =0,则 x =5m ,故点 F (5m ,0),2m2m故 FG =8m ﹣5m =3m ,而 BD =4m ﹣m =3m =FG ,则 FG ∥BD ,故四边形 BDFG 为平行四边形. 25.(10 分)如图,抛物线 y = 3+√3x 2+bx +c 与 x 轴交于 A ,B 两点,点 A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点 B 的直线与 y 轴正半轴和抛物线的交点分别为 C ,D , BC = √3CD .(1) 求 b ,c 的值;(2) 求直线 BD 的函数解析式;(3) 点 P 在抛物线的对称轴上且在 x 轴下方,点 Q 在射线 BA 上.当△ABD 与△BPQ相似时,请直接写出所有满足条件的点 Q 的坐标.【解答】解:(1)∵BO =3AO =3,∴点 B (3,0),点 A (﹣1,0),∴抛物线解析式为:y =3+√3(x +1)(x ﹣3)=3+√3x 2 3+√3x 3+√3, 6∴b =3+√3,c =3+√3;6 3 232(2)如图 1,过点 D 作 DE ⊥AB 于 E ,OE 3 3∴CO ∥DE , BC ∴CDBO =OE,∵BC = √3CD ,BO =3, ∴√3 = 3,∴OE = √3,∴点 D 横坐标为−√3,∴点 D 坐标(−√3,√3 +1), 设直线 BD 的函数解析式为:y =kx +b ,由题意可得:{√3 + 1 = −√3k + b ,0 = 3k + bk √3解得:{ 3 ,b = √3∴直线 BD 的函数解析式为 y = − √3x +√3;(3)∵点 B (3,0),点 A (﹣1,0),点 D (−√3,√3 +1),∴AB =4,AD =2√2,BD =2√3 +2,对称轴为直线 x =1,∵直线 BD :y = − √3x +√3与 y 轴交于点 C ,∴点 C (0,√3), ∴OC = √3,∵tan ∠COB =CO = √3,BO3∴∠COB =30°,如图 2,过点 A 作 AK ⊥BD 于 K ,23 ,3∴AK = 1AB =2,∴DK = √AD 2 − AK 2 = √8 − 4 =2, ∴DK =AK ,∴∠ADB =45°,如图,设对称轴与 x 轴的交点为 N ,即点 N (1,0),若∠CBO =∠PBO =30°,∴BN = √3PN =2,BP =2PN ,∴PN = 2√3 BP =4√3 3 ,当△BAD ∽△BPQ , BP ∴BABQ=BD ,4√3×(2√3+2)2√3∴BQ =34=2+ 3 ,∴点 Q (1− 2√3,0);当△BAD ∽△BQP , BP ∴BDBQ = AB,第 21 页(共 21 页) 3 4√3×4 ∴BQ = 3 =4− 2√3+24√3, 3 ∴点 Q (﹣1+ 4√3,0);若∠PBO =∠ADB =45°,∴BN =PN =2,BP = √2BN =2√2,当△BAD ∽△BPQ , BP ∴BQ= , AD 2√2 ∴ BD BQ = , 2√2 2√3+2∴BQ =2√3 +2∴点 Q (1﹣2√3,0);当△BAD ∽△PQB , BP ∴BD BQ= AD ,∴BQ = 2√2×2√2 =2√3 −2, 2√3+2 ∴点 Q (5﹣2√3,0); 综上所述:满足条件的点 Q 的坐标为(1− 2√30)或(﹣1+ 4√3,0)或(1﹣2√3,0)或(5﹣2√3,0). 3 , 3。

2018-2019学年广东省广州市越秀区九年级(上)期末数学试卷--附答案解析

2018-2019学年广东省广州市越秀区九年级(上)期末数学试卷--附答案解析

故选:C .
【点评】此题是相似三角形的判定和性质,主要考查了平行四边形的性质,同高的三角形的
面积比是底的比,用相似三角形的性质得出 , 是解本 S∆ABF = 2S∆BEF = 2 S∆ADF = 4S∆BEF = 4
题的关键.
10.(3 分)(2018 秋•越秀区期末)若关于 x 的方程 x2 − 2x + m −1 = 0 有两个实根 x1 、 x2 ,
.A 3
.B 4
.C 5
.D 6
【考点】S9:相似三角形的判定与性质; L5:平行四边形的性质
【专题】55D :图形的相似
【分析】首先证明 AD = 2BE ,BE / / AD ,进而得出 ∽ ∆BEF ∆DAF ,即可得出 ∆ABF ,∆ABD ,
第 4 页(共 23 页)
的面积,用面积的和差即可得出结论. 【解答】解:Q四边形 ABCD 是平行四边形, , ∴ AD / /BC , ∴∠DAE = ∠AEB 平分 , Q AE ∠DAB , ∴∠DAE = ∠BAE , ∴∠BAE = ∠AEB , ∴ BA = BE , Q BC = 2AB , , ∴ AD = BC = 2BE BE / / AD ∽ , ∴∆BEF ∆DAF
, ∴ EF = BE = 1 AF AD 2
, ∴ S∆BEF = ( BE )2 = 1
S∆ADF AD
4
Q∆BEF 的面积为 1,
, , ∴ S∆ABF = 2S∆BEF = 2 S∆ADF = 4S∆BEF = 4
, ∴ S∆ABD = S∆ABF + S∆ADF = 6
, 四边形 ∴ S
DCEF = S∆BCD − S∆BEF = S∆ABD − S∆BEF = 5

2018年广东省中考数学试卷(含答案解析版)

2018年广东省中考数学试卷(含答案解析版)

2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)(2018•广东)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.22.(3分)(2018•广东)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×1083.(3分)(2018•广东)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)(2018•广东)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)(2018•广东)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)(2018•广东)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)(2018•广东)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE 与△ABC的面积之比为()A.B.C.D.8.(3分)(2018•广东)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)(2018•广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)(2018•广东)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2018•广东)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)(2018•广东)分解因式:x2﹣2x+1=.13.(3分)(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=.14.(3分)(2018•广东)已知+|b﹣1|=0,则a+1=.15.(3分)(2018•广东)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)(2018•广东)如图,已知等边△OA1B1,顶点A1在双曲线y=(x >0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)(2018•广东)计算:|﹣2|﹣20180+()﹣118.(6分)(2018•广东)先化简,再求值:•,其中a=.19.(6分)(2018•广东)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)(2018•广东)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)(2018•广东)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)(2018•广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)(2018•广东)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a ≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)(2018•广东)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)(2018•广东)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)(2018•广东)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【考点】2A:实数大小比较.【专题】1 :常规题型.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)(2018•广东)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×108【考点】1I:科学记数法—表示较大的数.【专题】2B :探究型.【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)(2018•广东)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)(2018•广东)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【考点】W4:中位数.【专题】542:统计的应用.【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2018•广东)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【考点】R5:中心对称图形;P3:轴对称图形.【专题】1 :常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)(2018•广东)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【考点】C6:解一元一次不等式.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)(2018•广东)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE 与△ABC的面积之比为()A.B.C.D.【考点】S9:相似三角形的判定与性质;KX:三角形中位线定理.【专题】55D:图形的相似.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)(2018•广东)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)(2018•广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【考点】AA:根的判别式.【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)(2018•广东)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【考点】E7:动点问题的函数图象.【专题】31 :数形结合.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD 上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2018•广东)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【考点】M5:圆周角定理.【专题】11 :计算题.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)(2018•广东)分解因式:x2﹣2x+1=(x﹣1)2.【考点】54:因式分解﹣运用公式法.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=2.【考点】21:平方根.【专题】11 :计算题;511:实数.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)(2018•广东)已知+|b﹣1|=0,则a+1=2.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【专题】1 :常规题型.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a +1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a ,b 的值是解题关键.15.(3分)(2018•广东)如图,矩形ABCD 中,BC=4,CD=2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 π .(结果保留π)【考点】MC :切线的性质;LB :矩形的性质;MO :扇形面积的计算.【专题】11 :计算题.【分析】连接OE ,如图,利用切线的性质得OD=2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD ﹣S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD=2,OE ⊥BC ,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)(2018•广东)如图,已知等边△OA1B1,顶点A1在双曲线y=(x >0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【考点】G6:反比例函数图象上点的坐标特征;KK:等边三角形的性质.【专题】1 :常规题型.【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.三、解答题(一)17.(6分)(2018•广东)计算:|﹣2|﹣20180+()﹣1【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】1 :常规题型.【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)(2018•广东)先化简,再求值:•,其中a=.【考点】6D:分式的化简求值.【专题】11 :计算题;513:分式.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)(2018•广东)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;L8:菱形的性质.【专题】555:多边形与平行四边形.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)(2018•广东)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【考点】B7:分式方程的应用.【专题】34 :方程思想;521:一次方程(组)及应用;522:分式方程及应用.【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)(2018•广东)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)(2018•广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【考点】PB:翻折变换(折叠问题);KD:全等三角形的判定与性质;LB:矩形的性质.【专题】14 :证明题.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)(2018•广东)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a ≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】53:函数及其图象.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)(2018•广东)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【考点】MR:圆的综合题.【专题】15 :综合题;55A:与圆有关的位置关系.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD 中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)(2018•广东)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=60°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?【考点】RB:几何变换综合题.【专题】152:几何综合题.【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,=•OA•AB=×2×2=2,∴S△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,=•OM•NE=×1.5x×x,∴S△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G...MN=12﹣2.5x ,OG=AB=2, ∴y=•MN•OG=12﹣x ,当x=4时,y 有最大值,最大值=2,综上所述,y 有最大值,最大值为. 【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

【3套试卷】中考数学免费试题及答案

【3套试卷】中考数学免费试题及答案

中考一模数学试卷及答案一、选择题(共10 题,每小题3分,共30分)1. 由5a=6b(a≠0,b≠0),可得比例式( )A.B.C.D.2.若△ABC∽△DEF,相似比为3∶2,则对应面积的比为( )A.3∶2 B.3∶5 C.4∶9 D.9∶43.如图是由几个大小相同的小立方块所搭成的几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )A.B.C.D.4.如图,下列条件中,可以判定△ACD和△ABC相似的是( )A.B.C.AC2=AD·AB D.CD2=AD·BD 5.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于( )A.B.C.D.6.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=500米,∠BDE=55°,使A、C、E在一条直线上,那么点E与D的距离是( )A.500cos55°米B.500cos35°米C.500sin55°米D.500tan55°米7.已知反比例函数,则下列结论中不正确的是( )A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小8.小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为( )A.210x+90(18-x)<2.1B.210x+90(18-x)≥2100C.210x+90(18-x)≤2100D.210x+90(18-x)≥2.19.如图所示,河堤横断面迎水坡AB的坡比是1∶,堤高BC=5 m,则坡面AB的长是( )A.10 m B.m C.15 m D.m10.已知二次函数的图象如图所示,则反比例函数与一次函数的图象可能是( )A.B.C.D.二、填空题(共6 题,每小题3分,共18分)11. 已知反比例函数的图像经过点(-3,-1),则k= .12.已知,将如图的三角板的直角顶点放置在直线AB上的点O处,使斜边CD∥AB.则∠α的余弦值为.13.如图,路灯距离地面8 m,身高1.6 m的小明站在距离灯的底部(点O)20 m的A处,则小明的影子AM的长为 m.14.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.15.已知一个圆锥的三视图如图所示,则这个圆锥的侧面积为.16.如图,平行于x轴的直线与函数(k1>0,x>0),(k2>0,x>0)的图象分别交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1-k2的值为.三、解答题(共9 题,72分)17.(4分)计算:.18.(4分)如图已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2∶1.19.(4分)如图,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长.20.(6分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气球内的气压大于140 kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01 m3)21.(8分)如图:直线y=x与反比例函数(k>0)的图象在第一象限内交于点A(2,m).(1)求m、k的值;(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式.22.(10 分)如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连接AG,作DE⊥AG于点E,BF⊥AG于点F,设.(1)求证:AE=BF;(2)连接BE,DF,设∠EDF=α,∠EBF=β.求证:23.(10 分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若,求tan∠BDC的值.24.(12 分)已知:A(a,y1),B(2a,y2)是反比例函数(k>0)图象上的两点.(1)比较y1与y2的大小关系;(2)若A、B两点在一次函数第一象限的图象上(如图所示),分别过A、B两点作x轴的垂线,垂足分别为C、D,连接OA、OB,且,求a的值;(3)在(2)的条件下,如果3m=﹣4x+24,,求使得m>n的x的取值范围.25.(14 分)在平面直角坐标系中,点A(m,m+1)在反比例函数的图象上.(1)求点A的坐标;(2)若直角∠NAM绕点A旋转,射线AN分别交x轴、y轴于点B、N,射线AM交x轴于点M,连接MN.①当点B和点N分别在x轴的负半轴和y轴的正半轴时,若△BAM∽△MON,求点N的坐标;②在直角∠NAM绕点A旋转的过程中,∠AMN的大小是否会发生变化?请说明理由.答案:1-5 BDCCB6-10 ADBAC11.312.13.514. 915.16.817.解:原式.18.解:(1)如图所示,点C1的坐标是(2,﹣2);(2)如图所示.19.解:∵AD⊥BC于点D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∵AB=8,∠ABD=30°,∴,.在Rt△ADC中,∵∠CAD=45°,∠ADC=90°,∴∠ACD=∠CAD=45°∴DC=AD=4,∴.20.解:(1)设,由题意知,所以k=96,故该函数的解析式为;(2)当P=140 kPa时,(m3).所以为了安全起见,气体的体积应不少于0.69 m3.21.解:(1)∵直线y=x经过点A(2,m),∴m=2,∴A(2,2),∵A在的图象上,∴k=4.(2)设B(0,n),由题意:,∴n=﹣2,∴B(0,﹣2),设AB所在直线的解析式为y=k′x+b,则有,∴,∴AB所在直线的解析式为y=2x﹣2.22.解:(1)∵四边形ABCD是正方形,∴∠BAF+∠EAD=90°,又∵DE⊥AG,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,又∵BF⊥AG,∴∠DEA=∠AFB=90°,又∵AD=AB∴Rt△DAE≌Rt△ABF,∴AE=BF(2)易知Rt△BFG∽Rt△DEA,所以,在Rt△DEF和Rt△BEF中,,∴∴23.(1)证明:∵DC是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠OAC=∠ACO,∴∠DAC=∠CAO,∴AC平分∠DAB.(2)解:设线段AD与⊙O相交于点M如图,连接BM、OC交于点N.∵AB是直径,∴∠AMB=90°,由(1)知AD∥OC,∴∠ONB=∠AMB=90°=∠CNB,由垂径定理可知MN=BN∵OC=OB,∴∠OCB=∠OBC,∴,设BN=4k,BC=5k,则CN=3k,∵∠CDM=∠DMN=∠DCN=90°,∴四边形DMNC是矩形,∴DM=CN=3k,MN=BN=4k,CD∥BM,∴∠CDB=∠DBM,∴.24.解:(1)∵A、B是反比例函数(k>0)图象上的两点,∴a≠0,当a>0时,A、B在第一象限,由a<2a可知,y1>y2,同理,a<0时,y1<y2;(2)∵A(a,y1)、B(2a,y2)在反比例函数(k>0)的图象上,∴,,∴y1=2y2.又∵点A(a,y1)、B(2a,y2)在一次函数的图象上,∴,,∴,∴b=4a,∵又∵∴∴,∴a2=4,∵a>0,∴a=2.(3)由(2)得,A(2,),B(4,),将A,B两点代入得解得∴一次函数的解析式为,反比例函数的解析式为:,A、B两点的横坐标分别为2、4,∵3m=﹣4x+24,,∴、,因此使得m>n的x的取值范围就是反比例函数的图象在一次函数图象下方的点中横坐标的取值范围,从图象可以看出2<x<4或x<0.25.解:(1)∵点A(m,m+1)在反比例函数的图象上.∴;解得m1=3,m2=-4∵m>0,∴m=3,∴点A的坐标是(3,4).(2)①如图,过点A作AC⊥y轴于C,作AD⊥x轴于D,则AC=3,AD=4,∠ACN=∠ADM=90°,设ON=x,则CN=4﹣x,∵△BAM∽△MON,∴∠ABM=∠NMO∴NB=NM,∵NO⊥BM,∴OB=OM=OA=5∵CA∥BO,∴△CAN∽△OBN,∴∴,解得∴点N的坐标为(0,);②在直角∠NAM绕点A旋转的过程中,∠AMN的大小不会发生变化.理由:当点B和点N分别在x轴的负半轴和y轴的正半轴时,∵∠CAD=∠NAM=90°,∴∠CAN=∠DAM,∴△CAN∽△DAM,∴∴∴∠AMN的大小不会发生变化.当点B和点N分别在x轴的非负半轴和y轴的非正半轴时,同理可证∠AMN的大小不会发生变化.中考第一次模拟考试数学试卷姓名:得分:日期:一、选择题(本大题共10 小题,共40 分)1、(4分) 点关于原点对称的点的坐标是()A. B. C. D.2、(4分) 下列事件中,属于随机事件的是()B.某篮球运动员投篮一次,命中.A.掷一枚质地均匀的正方体骰子,向上的一面点数小于7C.在只装了红球的袋子中摸到黑球D.在三张分别标有数字2,4,6,的卡片中摸两球,数字和是偶数3、(4分) 如图,点E在四边形ABCD的边BC的延长线上,则下列两个角是同位角的是()A.和B.C.D.4、(4分) 下列事件中,最适合采用全面调查的是()A.对某班全体学生出生日期的调查B.对全国中小学生节水意识的调查C.对某批次的灯泡使用寿命的调查.D.对厦门市初中学生每天阅读时间的调查5、(4分) 对于的图象,下列叙述正确的是()B.开口向下A.顶点坐标为C.当,y随x的增大而增大D.对称轴是直线6、(4分) 青山村种的水稻2010年平均每公顷产7200kg,设水稻每公顷产量的年平均增长率为x,则2012年平均每公顷比2011年增加的产量是()A. B. C. D.7、(4分) 如图,正六边形中,分别是的中点,绕正六边形的中心经逆时针旋转后与重合,则旋转角度是()A.60°B.90°C.120°D.180°8、(4分) 已知两个不同的一元二次方程的判别式互为相反数,下列判断正确的是()A.两个方程一定都有解B.两个方程一定没有解C.两个方程一定有公共解D.两个方程至少一个方程有解.9、(4分) 某创意工作室6位员工的月工资如图所示,因业务需要,现决定招聘一名新员工,若新员工的工资为元,则下列关于现在7位员工工资的平均数和方差的说法正确的是()A.平均数不变,方差变大B.平均数不变,方差变小C.平均数不变,方差不变D.平均数变小,方差不变10、(4分) 已知(其中为常数,且),乐老师在用描点法画其的图象时,列出如下表格,根据该表格,下列判断中不正确的是()A. B.一元二次方程没有实数根C.当时D.一元二次方程有一根比3大二、填空题(本大题共 6 小题,共24 分)11、(4分) 计算:=12、(4分) 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为13、(4分) 方程的根是14、(4分) 一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是15、(4分) 已知,计算16、(4分) 如图,在菱形中,分别是边的中点,于点P,,则的度数是三、解答题(本大题共9 小题,共86 分)17、(8分) (1)不等式组的解集.(2)先化简,再求值:其中18、(8分) 画出函数的图象19、(8分) 在两个不透明的袋子中分别装入一些相同的纸牌,甲袋内的4张牌分别标记数字1、2、3、4:乙袋内的3张牌分别标记数字2、3、4.从甲、乙两个袋子里分别随机摸出一张牌,求两张牌上的标数相同的概率.20、(8分) 如图,在,以为直径的分别交于点,点F在的延长线上,且.(1)求证:直线是的切线。

【中考真题】2021年广东省中考数学试卷(附答案)

【中考真题】2021年广东省中考数学试卷(附答案)
参考答案
1.A
【分析】
直接根据实数的大小比较法则比较数的大小即可.
【详解】
解: , , ,
∴ ,
故选:A.
【点睛】
本题考查了实数的大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.
2.D
【分析】
根据科学记数法的表示形式 ,其中 ,n为整数,一定要将题目中的“51085.8万”转化为数字510858000,即可将题目中的数据用科学记数法表示出来.
17.在 中, .点D为平面上一个动点, ,则线段 长度的最小值为_____.
三、解答题
18.解不等式组 .
19.某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:
(1)求这20名学生成绩的众数,中位数和平均数;
(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.
(1)求证: ;
(2)求证:以 为直径的圆与 相切;
(3)若 ,求 的面积.
25.已知二次函数 的图象过点 ,且对任意实数x,都有 .
(1)求该二次函数的解析式;
(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.
故CH的最大值为 ,
故选:A.
【点睛】
本题考查了二次函数的性质,圆的相关知识等,本题的关键是求出AB与y轴交点的纵坐标始终为1,结合 ,由此确定点E的轨迹为圆进而求解.
11.

2018年中考数学真题知识分类练习试卷:方程(含答案)

2018年中考数学真题知识分类练习试卷:方程(含答案)

方程一、单选题1.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】A2.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A. B. C. D.【来源】浙江省温州市2018年中考数学试卷【答案】A3.方程组的解是()A. B. C. D.【来源】天津市2018年中考数学试题【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.4.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【来源】山东省泰安市2018年中考数学试题5.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A. -2B. 2C. -4D. 4【来源】江苏省盐城市2018年中考数学试题【答案】B【解析】分析:根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选:B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.已知关于的一元二次方程有两个不相等的实数根,若,则的值是( )A. 2B. -1C. 2或-1D. 不存在【来源】山东省潍坊市2018年中考数学试题【答案】A7.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A. 2%B. 4.4%C. 20%D. 44%【来源】四川省宜宾市2018年中考数学试题【答案】C8.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A. ﹣2B. 1C. 2D. 0【来源】四川省宜宾市2018年中考数学试题【答案】D【解析】分析:根据根与系数的关系可得出x1x2=0,此题得解.详解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,故选D.点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.学科#网9.关于的一元二次方程的根的情况是()A. 有两不相等实数根B. 有两相等实数根C. 无实数根D. 不能确定【来源】湖南省娄底市2018年中考数学试题【答案】A【解析】【分析】根据一元二次方程的根的判别式进行判断即可.【详解】,△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.10.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】C11.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A. 的长B. 的长C. 的长D. 的长【来源】2018年浙江省舟山市中考数学试题12.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【来源】安徽省2018年中考数学试题【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a 的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【来源】山东省泰安市2018年中考数学试题【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.14.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【来源】山东省淄博市2018年中考数学试题15.分式方程的解是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】A【解析】分析:观察可得最简公分母是x(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.详解:,去分母,方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2),x2-x-2+x=x2-2x,x=1,经检验,x=1是原分式方程的解,故选A.点睛:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.学科#网16.分式方程的解为()A. B. C. D. 无解【来源】山东省德州市2018年中考数学试题【答案】D17.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题18.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.19.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。

2022学年广东省中考数学一模试卷2份含答案解析

2022学年广东省中考数学一模试卷2份含答案解析
8.世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输 兆数据,依题意,可列方程是( )
A. B.
C. D.
【8题答案】
∵S矩形ABOF=S平行四边形ABCD,
∴S矩形ABOF=6,
∴|k|=6,
∵在第一象限,
∴k=6,
故选:C.
【点睛】本题考查了平行四边形的性质及反比例函数中k的几何意义:过反比例函数上任一点作x轴和y轴的垂线,则两个垂足、原点及该点所围成的矩形面积等于反比例函数的|k|.
10.如图所示,正方形ABCD中,对角线AC、BD相交于点O,分别交BC、BD于E、F,下列结论:①△ABF∽△ACE;②BD=AD+BE;③ ;④若△ABF的面积为1,则正方形ABCD的面积为 .其中正确的结论的个数是()
A. B.3C.6D.12
【9题答案】
【答案】C
【解析】
【分析】作AF⊥x轴于F,得到S平行四边形ABCD=2S△BCD=6,再根据矩形ABOF与平行四边形ABCD面积相等即可求出|k|=6进而求解.
【详解】解:作AF⊥x轴于F,如下图所示:
∵S△BCD=3,
∴S平行四边形ABCD=2S△BCD=6,
故选:C
【点睛】本题考查了完全平方公式、同底数幂的除法、幂的乘方,熟练掌握运算法则是解题关键.
5.一副直角三角板如图放置,点C在FD的延长线上,AB CF,∠F=∠ACB=90°,∠A=60°,∠E=45°,则∠DBC的度数为( )
A.10°B.15°C.18°D.30°

【中考冲刺】2023年广东省中考数学模拟试卷(附答案) (3)

【中考冲刺】2023年广东省中考数学模拟试卷(附答案) (3)

2023年广东省(省考卷)中考数学模拟考试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个数中,比1-小的数是( )A .2-B .12-C .0D .12.在如图所示标志中,既是轴对称图形,又是中心对称图形的是( ) A . B . C . D . 3.我国稀土储量约4400万吨,居世界第一,用科学记数法表示44000000为( )A .44×106B .4.4×107C .4.4×108D .0.44×109 4.对于一组统计数据3,3,6,5,3.下列说法正确的是( )A .中位数是6B .平均数是5C .方差是1.7D .众数是3 5.下列计算正确的是( )A .642ab a b -=B .2242(3)6a b a b -=C .22(1)1a a -=-D .2233a b b a ÷=6.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A . B .C .D . 7.计算3311x x x -++的结果为( ) A .3 B .3- C .331x x -+ D .331x x -+ 8.如图,Rt ABC ∆中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 为长的半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于点G ,若1CG =,P 为AB 上一动点,则GP 的最小值为( )A.无法确定B.12C.1D.29.函数kyx=与()20y kx k k=-+≠在同一直角坐标系中的大致图象可能是()A.B.C.D.10.如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC 于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:⊥⊥AED+⊥EAC+⊥EDB=90°,⊥AP=FP,⊥AE,⊥若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⊥CE•EF=EQ•DE.其中正确的结论有()A.5个B.4个C.3个D.2个二、填空题11.分解因式:34x x-=______.12.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.13.不透明袋子中装有12个球,其中有3个红球、4个黄球和5个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________. 14.如图,直线a ⊥b ,三角板的直角顶点A 落在直线a 上,两条直线分别交直线b 于B 、C 两点.若⊥1=42°,则⊥2的度数是_____.15.关于x 的一元二次方程220x x a -+=有两不等实根,则a 的取值范围是________.16.已知圆锥的高是4,cm 圆锥的底面半径是3,cm 则该圆锥的侧面积是______2cm .17.如图,在平面直角坐标系中,点(2,0)A -,直线: l y x =x 轴交于点B ,以AB 为边作等边1ABA △,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A △,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A △,以此类推……,则点2021A 的纵坐标是__________.三、解答题18.计算:)101tan 6012-⎛⎫-︒+ ⎪⎝⎭ 19.把形状、大小、质地完全相同的4张卡片分别标上数字﹣1、﹣4、0、2,将这4张卡片放入不透明的盒子中搅匀.求下列事件的概率:(1)从中随机抽取一张卡片,卡片上的数字是负数;(2)先从盒子中随机抽取一张卡片不放回,再随机抽取一张,两张卡片上的数字之积为0(用列表法或树形图).20.如图,,A B 两地之间有一座山,汽车原来从A 地到B 地需经C 地沿折线A C B --行驶,全长39km .现开通隧道后,汽车直接沿直线AB 行驶,已知30,53∠=︒∠=︒,求隧道开通后,汽车从A地到B地的路程(结果精确到A B0.1km).参考数据:sin530.8,tan53 1.73︒=︒≈.21.黄桥初中用随机抽样的方法在九年级开展了“你是否喜欢网课”的调查,并将得到的数据整理成了以下统计图(不完整).(1)此次共调查了名学生;(2)请将条形统计图补充完整;(3)若黄桥初中九年级共有1200名学生,请你估计其中“非常喜欢”网课的人数.22.为美化小区,物业公司计划对面积为23000m的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队的1.5倍,如果要独立完成面积为2300m区域的绿化,甲队比乙队少用1天.()1求甲、乙两工程队每天能完成绿化的面积分别是多少2m?()2若物业公司每天需付给甲队的绿化费用为0.5万元,需付给乙队的费用为0.4万元,要使这次的绿化总费用不超过11万元,至少应安排甲队工作多少天?23.如图,AB是⊥O的直径,点C是⊥O上一点(与点A,B不重合),过点C作直线PQ,使得⊥ACQ=⊥ABC.(1)求证:直线PQ是⊥O的切线.(2)过点A 作AD ⊥PQ 于点D ,交⊥O 于点E ,若⊥O 的半径为2,sin⊥DAC =12,求图中阴影部分的面积.24.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积1S ,2S ,3S 之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt ABC 中,BC 为斜边,分别以,,AB AC BC 为斜边向外侧作Rt ABD △,Rt ACE △,Rt BCF ,若123∠=∠=∠,则面积1S ,2S ,3S 之间的关系式为 ;推广验证(2)如图3,在Rt ABC 中,BC 为斜边,分别以,,AB AC BC 为边向外侧作任意ABD △,ACE ,BCF △,满足123∠=∠=∠,D E F ∠=∠=∠,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE 中,105A E C ∠=∠=∠=,90ABC ∠=,AB =2DE =,点P 在AE 上,30ABP ∠=,PE =,求五边形ABCDE 的面积.25.如图,在平面直角坐标系中,抛物线2y x bx c =++与x 轴交于A ,B 两点,与y 轴交于点C ,已知(3,0)B ,(0,3)C -,连接BC ,点P 是抛物线上的一个动点,点N 是对称轴上的一个动点.(1)求该抛物线的函数解析式.(2)当PAB ∆的面积为8时,求点P 的坐标.(3)若点P 在直线BC 的下方,当点P 到直线BC 的距离最大时,在抛物线上是否存在点Q,使得以点P,C,N,Q为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案:1.A【解析】【分析】有理数大小比较的法则:⊥正数都大于0;⊥负数都小于0;⊥正数大于一切负数;⊥两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得-2<-1,0>-1,12->-1,1>-1,⊥四个数中,比-1小的数是-2.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:⊥正数都大于0;⊥负数都小于0;⊥正数大于一切负数;⊥两个负数,绝对值大的其值反而小.2.B【解析】【详解】解:A、是轴对称图形,不是中心对称图形,此项不符题意;B、既是轴对称图形,又是中心对称图形,此项符合题意;C、不是轴对称图形,是中心对称图形,此项不符题意;D、既不是轴对称图形,又不是中心对称图形,此项不符题意;故选:B.【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转180︒,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.3.B【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解: 744000000 4.410=⨯故选B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义. 4.D【解析】【分析】根据中位数、众数、平均数、方差的定义和公式分别进行计算即可.【详解】解:A.将这组数据小到大的顺序排列为:3,3,3,5,6,最中间的数是3,则中位数为3,故此选项错误;B.平均数是(3+3+6+5+3)÷5=4,故此选项错误;C.方差是:S 2=()()()()()22222343464543.5416-+-+-+-+-=,故此选项错误;D.因为3出现了3次,出现的次数最多,所以众数是3,故此选项正确;故选:D .【点睛】本题考查了众数、平均数、中位数、方差、平均数.其中,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);平均数表示一组数据的平均程度;方差是用来衡量一组数据波动大小的量;众数表示出现次数最多的数.5.D【解析】【分析】直接利用积的乘方运算法则以及合并同类项法则、完全平方公式分别化简得出答案.【详解】解:A .6ab ﹣4a ,无法合并,故选项错误,不符合题意;B .(﹣3a 2b )2=9a 4b 2,故选项错误,不符合题意;C .(a ﹣1)2=a 2﹣2a +1,故选项错误,不符合题意;D .3a 2b ÷b =3a 2,故选项正确,符合题意.故选:D .【点睛】此题主要考查了积的乘方运算以及合并同类项、完全平方公式,正确掌握相关运算法则是解题关键.6.D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式⊥得,x >-1;解不等式⊥得,x ≤1;⊥不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.7.C【解析】【分析】根据同分母分式相加减的运算法则即可求出答案.【详解】333-3=111-+++x x x x x , 故选:C .【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 8.C【解析】【分析】当GP⊥AB 时,GP 的值最小,根据尺规作图的方法可知,GB 是⊥ABC 的角平分线,再根据角平分线的性质可知,当GP⊥AB 时,GP=CG=1.【详解】解:由题意可知,当GP⊥AB 时,GP 的值最小,根据尺规作图的方法可知,GB 是⊥ABC 的角平分线,⊥⊥C=90°,⊥当GP⊥AB 时,GP=CG=1,故答案为:C .【点睛】本题考查了角平分线的尺规作图以及角平分线的性质,难度不大,解题的关键是根据题意得到GB 是⊥ABC 的角平分线,并熟悉角平分线的性质定理.9.B【解析】【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【详解】解:由解析式y =-kx 2+k 可得:抛物线对称轴x =0;A 、由双曲线的两支分别位于二、四象限,可得k <0,则-k >0,抛物线开口方向向上、抛物线与y 轴的交点为y 轴的负半轴上,而不是交于y 轴正半轴,故选项A 错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故选项B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,而不是y轴的负半轴,本图象不符合题意,故选项C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,而不是开口向上,本图象不符合同意,故选项D错误.故选B.【点睛】本题考查二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.10.B【解析】【分析】⊥正确:证明⊥EOB=⊥EOC=45°,再利用三角形的外角的性质即可得出答案;⊥正确:利用四点共圆证明⊥AFP=⊥ABP=45°即可;⊥正确:设BE=EC=a,求出AE,OA即可解决问题;⊥错误:通过计算正方形ABCD的面积为48;⊥正确:利用相似三角形的性质证明即可.【详解】⊥正确:如图,连接OE,⊥四边形ABCD是正方形,⊥AC⊥BD,OA=OC=OB=OD,⊥⊥BOC =90°,⊥BE =EC ,⊥⊥EOB =⊥EOC =45°,⊥⊥EOB =⊥EDB +⊥OED ,⊥EOC =⊥EAC +⊥AEO ,⊥⊥AED +⊥EAC +⊥EDO =⊥EAC +⊥AEO +⊥OED +⊥EDB =90°,故⊥正确;⊥正确:如图,连接AF ,⊥PF⊥AE ,⊥⊥APF =⊥ABF =90°,⊥A ,P ,B ,F 四点共圆,⊥⊥AFP =⊥ABP =45°,⊥⊥PAF =⊥PFA =45°,⊥PA =PF ,故⊥正确;⊥正确:设BE =EC =a ,则AE ,OA =OC =OB =OD ,⊥AE AO AE ,故⊥正确; ⊥错误:根据对称性可知,OPE OQE △△,⊥OEQ S △=12OPEQ S 四边形=2,⊥OB =OD ,BE =EC ,⊥CD =2OE ,OE⊥CD ,⊥ EQ OE 1==DQ CD 2, OEQ CDQ △△, ⊥ODQ S =4△, CDQ S =8△,⊥CDO S =12△,⊥ABCD S =48正方形,故⊥错误;⊥正确:⊥⊥EPF =⊥DCE =90°,⊥PEF =⊥DEC ,⊥EPF ECD △△, ⊥EF PE =ED EC, ⊥EQ =PE ,⊥CE•EF =EQ•DE ,故⊥正确;综上所诉一共有4个正确,故选:B .【点睛】本题主要考查了三角形外角性质、四点共圆问题、全等与相似三角形的综合运用,熟练掌握相关概念与方法是解题关键.11.x (x +2)(x ﹣2).【解析】【详解】解:34x x -=2(4)x x -=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).12.9【解析】【详解】试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.⊥正多边形的一个内角是140°,⊥它的外角是:180°-140°=40°,360°÷40°=9.故答案为9.考点:多边形内角与外角.13.14【解析】用红球的个数除以总球的个数即可得出答案.【详解】解:不透明袋子中装有12个球,3个红球,⊥从袋子中随机取出1个球,则它是红球的概率是31= 124;故答案为:14.【点睛】本题考查了概率公式.用到的知识点为:概率=所求情况数与总情况数之比.14.48°.【解析】【详解】试题分析:已知⊥BAC=90°,⊥1=42°,根据平角的定义可得⊥3=180°﹣90°﹣⊥1=90°﹣42°=48°.再由平行线的性质即可得⊥2=⊥3=48°.考点:平行线的性质.15.1a<【解析】【分析】根据根的判别式得到⊥=4-4a>0,然后解不等式即可.【详解】根据题意得⊥=4−4a>0,解得a<1.故答案为a<1.【点睛】本题考查了根的判别式,解题的关键是熟练的掌握根的判别式的相关知识点. 16.15π【解析】由已知中圆锥的底面半径和高,求出圆锥的母线长,代入圆锥侧面积公式,可得答案.【详解】解:由勾股定理得:圆锥的母线长5cm圆锥的底面周长为2236,r cm πππ=⨯=∴圆锥的侧面展开扇形的弧长为6,cm π ∴圆锥的侧面积为:21 65 15.2cm ππ⨯⨯= 故答案为: 15π.【点睛】此题考查圆锥的计算,熟练掌握各种旋转体的几何特征是解答的关键.17【解析】【分析】先根据解析式求得B 的坐标,即可求得AB =1,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A 1A 2A 3,进而得到An 2021A 的纵坐标. 【详解】解:⊥直线:l y x =+与x 轴交于点B , ⊥B (-1,0),⊥OB =1,⊥A (-2,0),⊥OA =2,⊥AB =1,⊥⊥ABA 1是等边三角形,⊥A 1(32-,把y =代入y =,求得x =12,⊥B 1(12,⊥A 1B 1=2,⊥A 2(12-2+),即A 2(12-,把y =y x =72,⊥B 2(72, ⊥A 2B 2=4,⊥A 3(324),即A 3(32, ……,An⊥点2021A【点睛】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得An 18.3【解析】【分析】由负整数指数幂、零指数幂、绝对值的意义、特殊角的三角函数进行化简,即可得到答案.解:)101tan 6012-⎛⎫-︒+ ⎪⎝⎭=21=3.【点睛】 本题考查了负整数指数幂、零指数幂、绝对值的意义、特殊角的三角函数,解题的关键是熟练掌握运算法则进行解题.19.(1)12;(2)12.【解析】【分析】(1)找出四张卡片中负数的个数,即可求出所求概率;(2)列表得出所有等可能的情况数,找出数字之积为0的情况数,即可求出所求的概率.【详解】(1)设抽到卡片上的数字是负数记为事件A ,则P (A )=2142=; (2)依题意列表如下:得到所有等可能结果有12种,其中两张卡片上的数字之积是0的结果有6种,设两张卡片上的数字之积是0为事件B ,则P (B )=61122=.【解析】【分析】过点C 作CD AB ⊥,垂足为点D ,在Rt ACD 中,30A ∠=︒,可得2AC CD =;在Rt BCD 中,可得sin 53CD BC =︒,可求得12CD ≈.在Rt ACD △中,求得AD =Rt BCD 中,求得12013BD =;由此即可求得汽车从A 地到B 地的路程约30.0km . 【详解】 过点C 作CD AB ⊥,垂足为点D ,在Rt ACD 中,30A ∠=︒,2AC CD ∴=.在Rt BCD 中,53,sin CD B B BC∠=︒=, sin sin 53CD CD BC B ∴==︒. 39AC BC +=,239sin 53CD CD ∴+=︒. 2 1.2539CD CD ∴+≈.12CD ∴≈.在Rt ACD △中,30,tan CD A A AD︒∠==,tan tan 30CD CD AD A ∴==≈︒ 在Rt BCD 中,53,tan CD B B BD∠=︒=, 120tan tan 5313CD CD BD B ∴==≈︒. 12029.9930.013AB AD BD ∴=+≈≈≈.答:汽车从A地到B地的路程约30.0km.【点睛】本题主要考查了解直角三角形的实际应用,正确作出辅助线,构造直角三角形模型是解题的关键.21.(1)50;(2)见解析;(3)624人.【解析】【分析】(1)由不喜欢的人数及其所占百分比可求得总人数;(2)先求出喜欢的人数,在补全图即可;(3)先求出非常喜欢的人所占百分比,在求解即可;【详解】(1)此次共调查了510%50÷=(人);(2)喜欢的人数为50726512---=(人),补全图形如图:(3)由图可知,非常喜欢的人所占百分比为:26 50,⊥1200名学生中非常喜欢的人数为:26120062450⨯=(人).【点睛】本题主要考查了条形统计图,扇形统计图,用样本估计总体,准确分析计算是解题的关键.22.()1甲150,乙100;()210【解析】【分析】(1)设乙工程队每天能完成绿化的面积为2xm,则甲工程队每天能完成绿化的面积为21.5xm ,根据“在独立完成面积为300m 2区域的绿化时,甲队比乙队少用1天”,即可得出关于x 的分式方程,解之并检验后,即可得出结论;(2)设安排甲工程队工作a 天,则乙工程队工作3000150(30 1.5)100a a -=-天,根据总费用=需付给甲队总费用+需付给乙队总费用,结合这次的绿化总费用不超过11万元,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,取其内的最小正整数即可.【详解】(1)设乙工程队每天能完成绿化的面积为2xm ,则甲工程队每天能完成绿化的面积为21.5xm 根据题意得:30030011.5x x -= 解得:=100x经检验,=100x 是原方程的解⊥1.5=150x答:甲工程队每天能完成绿化的面积为2150m ,乙工程队每天能完成绿化的面积为2100m ; (2)设安排甲工程队工作a 天,则乙工程队工作3000150(30 1.5)100a a -=-天 根据题意得:0.50.4(30 1.5)11a a +-≤解得:10a ≥答:至少应安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,列出相应的分式方程;(2)根据总费用=需付给甲队总费用+需付给乙队总费用,结合这次的绿化总费用不超过11万元,列出关于a 的一元一次不等式.23.(1)见解析;(2)23π 【解析】【分析】(1)连接OC ,由直径所对的圆周角为直角,可得⊥ACB =90°;利用等腰三角形的性质及已知条件⊥ACQ =⊥ABC ,可求得⊥OCQ =90°,按照切线的判定定理可得结论. (2)由sin⊥DAC =12,可得⊥DAC =30°,从而可得⊥ACD 的 度数,进而判定⊥AEO 为等边三角形,则⊥AOE 的度数可得;利用S 阴影=S 扇形﹣S △AEO ,可求得答案.【详解】解:(1)证明:如图,连接OC ,⊥AB 是⊥O 的直径,⊥⊥ACB =90°,⊥OA =OC ,⊥⊥CAB =⊥ACO .⊥⊥ACQ =⊥ABC ,⊥⊥CAB +⊥ABC =⊥ACO +⊥ACQ =⊥OCQ =90°,即OC ⊥PQ ,⊥直线PQ 是⊥O 的切线.(2)连接OE ,⊥sin⊥DAC =12,AD ⊥PQ , ⊥⊥DAC =30°,⊥ACD =⊥ABC=60°.⊥⊥BAC=30°,⊥⊥BAD=⊥DAC+⊥BAC=60°,又⊥OA =OE ,⊥⊥AEO 为等边三角形,⊥⊥AOE =60°.⊥S 阴影=S 扇形﹣S △AEO=S 扇形﹣12OA •OE •sin60°=26012223602π⨯-⨯⨯=23π ⊥图中阴影部分的面积为23π 【点睛】本题考查了切线的判定和性质,求弓形的面积和扇形的面积,等腰三角形的性质,等边三角形的判定和性质,以及三角函数,解题的关键是熟练掌握所学的知识进行解题. 24.(1)312S S S =+;(2)结论成立,证明看解析;(3)【解析】【分析】(1)由题目已知⊥ABD 、⊥ACE 、⊥BCF 、⊥ABC 均为直角三角形,又因为123∠=∠=∠,则有Rt ABD △⊥Rt ACE △⊥Rt BCF ,利用相似三角形的面积比为边长平方的比,列出等式,找到从而找到面积之间的关系;(2)在⊥ABD 、⊥ACE 、⊥BCF 中,123∠=∠=∠,D E F ∠=∠=∠,可以得到ABD △⊥ACE ⊥BCF △,利用相似三角形的面积比为边长平方的比,列出等式,从而找到面积之间的关系;(3)将不规则四边形借助辅助线转换为熟悉的三角形,过点A 作AH ⊥BP 于点H ,连接PD ,BD,由此可知AP =3BP BH PH =+=+ABP S △,根据⊥ABP ⊥⊥EDP ⊥⊥CBD,从而有2PED ABP S S =⋅△△,由(2)结论有,BCD ABP EPD S S S =+△△△最后即可计算出四边形ABCD 的面积.【详解】(1)⊥⊥ABC 是直角三角形,⊥222AB AC BC +=,⊥⊥ABD 、⊥ACE 、⊥BCF 均为直角三角形,且123∠=∠=∠,⊥Rt ABD △⊥Rt ACE △⊥Rt BCF , ⊥2123S AB S BC =,2223S AC S BC =, ⊥22222121222223331S S S S AC AB AC AB BC S S S BC BC BC BC +++==+=== ⊥312S S S =+得证.(2)成立,理由如下:⊥⊥ABC 是直角三角形,⊥222AB AC BC +=,⊥在⊥ABD 、⊥ACE 、⊥BCF 中,123∠=∠=∠,D E F ∠=∠=∠,⊥ABD △⊥ACE ⊥BCF △, ⊥2123S AB S BC =,2223S AC S BC =, ⊥22222121222223331S S S S AC AB AC AB BC S S S BC BC BC BC+++==+=== ⊥312S S S =+得证.(3)过点A 作AH ⊥BP 于点H ,连接PD ,BD ,⊥30ABH ∠=,AB =⊥AH 3BH =,60BAH ∠=⊥105BAP ∠=,⊥45HAP ∠=,⊥PH =AH⊥AP3BP BH PH =+=⊥2ABP BP AH S ⋅===△⊥PE =,ED=2,⊥PE AP ==,ED AB ==, ⊥PE ED AP AB =, ⊥105E BAP ∠=∠=,⊥⊥ABP ⊥⊥EDP ,⊥45EPD APB ∠=∠=,PD PE BP AP = ⊥90BPD ∠=,1PD =⊥213PED ABP S S =⋅==△△,32BPD BP PD S ⋅===+△⊥tan PD PBD BP ∠== ⊥30PBD ∠=⊥90ABC ∠=,30ABP ∠=⊥30DBC ∠=⊥105C ∠=⊥⊥ABP ⊥⊥EDP ⊥⊥CBD⊥2BCD ABP EPD S S S =+==+△△△(2(37BCD ABP EPD BPD ABCD S S S S S =+++=+++=△△△△四边形故最后答案为7.【点睛】(1)(2)主要考查了相似三角形的性质,若两三角形相似,则有面积的比值为边长的平方,根据此性质找到面积与边长的关系即可;(3)主要考查了不规则四边形面积的计算以及(2)的结论,其中合理正确利用前面得出的结论是解题的关键.25.(1)223y x x =--;(2)点P 坐标为1,4)或(1-,4)或(1,4)-;(3)存在;5(2,7)4-或1(2-,7)4-或115,24⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)利用待定系数法可求解析式;(2)设点P (p ,p 2-2p-3),由三角形的面积公式可求解;(3)当BCP S ∆有最大值时,点P 到直线BC 的距离最大,据此先求点P 坐标;然后分三种情况讨论:若CP 为边,CN 为边时,则CQ 与NP 互相平分;若CP 为边,CQ 为边时,则CN 与PQ 互相平分;若CP 为对角线,则CP 与NQ 互相平分.利用平行四边形对角线互相平分的性质可求解.【详解】解:(1)抛物线2y x bx c =++经过点(3,0)B ,(0,3)C -,∴3093c b c =-⎧⎨=++⎩, 解得:23b c =-⎧⎨=-⎩, ∴抛物线的解析式为223y x x =--;(2)抛物线223y x x =--与x 轴交于A ,B 两点,2023x x ∴=--,11x ∴=-,23x =,∴点(1,0)A -,4AB ∴=,设点2(,23)P p p p --,PAB ∆的面积为8, ∴214|23|82p p ⨯⨯--=,2234p p ∴--=或2234p p --=-,11p ∴=,21p =-,31p =, ∴点P 坐标为1,4)或(1-,4)或(1,4)-;(3)如图1,过点P 作PE x ⊥轴,交BC 于E ,点(3,0)B ,(0,3)C -,∴直线BC 的解析式为3y x =-,设点2(,23)P a a a --,则点(,3)E a a -,223(23)3PE a a a a a ∴=----=-+,2213327(3)3()2228BCP S a a a ∆∴=⨯-+⨯=--+, ∴当32a =时,BCP S ∆有最大值,即点P 到直线BC 的距离最大, 此时点3(2P ,15)4, 设点(1,)N n ,点2(,23)Q m m m --,若CP 为边,CN 为边时,则CQ 与NP 互相平分, ∴310222m ++=, 52m ∴=, ∴点5(2Q ,7)4-,若CP 为边,CQ 为边时,则CN 与PQ 互相平分, ∴301222m ++=,12m ∴=-, ∴点1(2Q -,7)4-, 若CP 为对角线,则CP 与NQ 互相平分, ∴301222m ++=,12m ∴=, ∴点115(,)24Q -, 综上所述:点Q 坐标为5(2,7)4-或1(2-,7)4-或115(,)24-. 【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,平行四边形的性质,三角形的面积公式等知识,利用分类讨论思想解决问题是本题的关键.。

2024年广东省深圳市中考数学真题试卷附答案

2024年广东省深圳市中考数学真题试卷附答案

2024年深圳市中考数学真题试卷第一部分选择题一、选择题(本大题共8小题,每小题3分,共24分,每小题有四个选项,其中只有一个是正确的)1.下列用七巧板拼成的图案中,为中心对称图形的是()A.B.C.D.2.如图,实数a,b,c,d 在数轴上表示如下,则最小的实数为()A.aB.bC.cD.d3.下列运算正确的是()A.()523m m -=- B.23m n m m n ⋅=C.33mn m n-= D.()2211m m -=-4.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为()A.12B.112C.16D.145.如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为()A.40︒B.50︒C.60︒D.70︒6.在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是()A.①②B.①③C.②③D.只有①7.在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x 间,房客y 人,则可列方程组为()A.()7791x y x y +=⎧⎨-=⎩ B.()7791x y x y +=⎧⎨+=⎩C.()7791x y x y-=⎧⎨-=⎩ D.()7791x y x y+=⎧⎨+=⎩8.如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为()(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A.22.7mB.22.4mC.21.2mD.23.0m第二部分非选择题二、填空题(本大题共5小题,每小题3分,共15分)9.已知一元二次方程230x x m -+=的一个根为1,则m =______.10.如图所示,四边形ABCD ,DEFG ,GHIJ 均为正方形,且10ABCD S =正方形,1GHIJ S =正方形,则正方形DEFG 的边长可以是________.(写出一个答案即可)11.如图,在矩形ABCD 中,2BC =,O 为BC 中点,4OE AB ==,则扇形EOF 的面积为________.12.如图,在平面直角坐标系中,四边形AOCB 为菱形,4tan 3AOC ∠=,且点A 落在反比例函数3y x =上,点B 落在反比例函数()0k y k x=≠上,则k =________.13.如图,在ABC 中,AB BC =,5tan 12B ∠=,D 为BC 上一点,且满足85BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CEAC=________.三、解答题(本题共7小题,其中第14题5分,第15题7分,第16题8分,第17题8分,第18题9分,第19题12分,第20题12分,共61分)14.计算:()112cos 45 3.1414π-⎛⎫-⋅︒+-++ ⎪⎝⎭.15.先化简,再求值:2221111a a a a -+⎛⎫-÷⎪++⎝⎭,其中1a =+16.据了解,“i 深圳”体育场地一键预约平台是市委、市政府打造“民生幸福标杆”城市过程中,推动的惠民利民重要举措,在满足市民健身需求、激发全民健身热情、促进体育消费等方面具有重大意义.按照符合条件的学校体育场馆和社会体育场馆“应接尽接”原则,“i 深圳”体育场馆一键预约平台实现了“让想运动的人找到场地,已有的体育场地得到有效利用”.小明爸爸决定在周六上午预约一所学校的操场锻炼身体,现有A,B 两所学校适合,小明收集了这两所学校过去10周周六上午的预约人数:学校A:28,30,40,45,48,48,48,48,48,50,50学校B:(1)学校平均数众数中位数方差A ①________4883.299B48.4②________③________354.04(2)根据上述材料分析,小明爸爸应该预约哪所学校?请说明你的理由.17.背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的表达式;任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?18.如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE⊥(2)若AB =,5BE =,求O 的半径.19.为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y 轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD 的读数为x,CD 读数为y,抛物线的顶点为C .(1)(Ⅰ)列表:①②③④⑤⑥x 023456y 012.2546.259(Ⅱ)描点:请将表格中的(),x y 描在图2中(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y 与x 的关系式(2)如图3所示,在平面直角坐标系中,抛物线()2y a x h k =-+的顶点为C,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB ,竖直跨度为CD ,且AB m =,CD n =,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数()2y a x h k =-+平移,使得顶点C 与原点O 重合,此时抛物线解析式为2y ax =.①此时点B '的坐标为________②将点B '坐标代入2y ax =中,解得=a ________;(用含m,n 的式子表示)方案二:设C 点坐标为(),h k ①此时点B 的坐标为________②将点B 坐标代入()2y a x h k =-+中解得=a ________;(用含m,n 的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy 中有A,B 两点,4AB =,且AB x ∥轴,二次函数()211:2C y x h k =++和()222:C y a x h b =++都经过A,B 两点,且1C 和2C 的顶点P,Q 距线段AB 的距离之和为10,若AB x ∥轴且4AB =,求a 的值.20.垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.(1)如图1所示,四边形ABCD 为“垂中平行四边形”,AF =,2CE =,则AE =________;AB =________(2)如图2,若四边形ABCD 为“垂中平行四边形”,且AB BD =,猜想AF 与CD 的关系,并说明理由(3)①如图3所示,在ABC 中,5BE =,212CE AE ==,BE AC ⊥交AC 于点E ,请画出以BC 为边的垂中平行四边形,要求:点A 在垂中平行四边形的一条边上(温馨提示:不限作图工具)②若ABC 关于直线AC 对称得到AB C 'V ,连接CB ',作射线CB '交①中所画平行四边形的边于点P ,连接PE ,请直接写出PE 的值.2024年深圳市中考数学真题试卷解析一、选择题.题号12345678答案CABDBBAA8.【解析】解:如图:延长DC 交EM 于一点G∵90MEF EFB CDF ∠=∠=∠=︒∴四边形EFDG 是矩形∵90MEF EFB B ∠=∠=∠=︒∴四边形EFBM 是矩形同理得四边形CDBN 是矩形依题意,得 1.8m 1.5m EF MB CD ===,,4553AEM ACN ∠=︒∠=︒,∴()1.8 1.5m 0.3m CG =-=,5m FD EG ==∴0.3mCG MN ==∴设m GM x =,则()5mEM x =+在Rt tan AMAEM AEM EM∠= ,,∴1EM AM ⨯=即()5mAM x =+在Rt tan ANACN ACN CN∠= ,,∴4tan 533CN x AN ︒==即4m 3AN x =∴()450.33MN AN AM x x =-=-+=∴15.9mx =∴()15.9520.9m AM =+=∴()20.9 1.822.7m AB AM EF AM MB =+=+=+=故选:A.二、填空题.9.【答案】210.【答案】2(答案不唯一)11.【答案】4π12.【答案】813.【答案】2021【解析】解:如图,过点A 作AH CB ⊥垂足为H∵85BD DC =,AB BC =设13AB BC x ==∴85BD x DC x ==,∵5tan 12B ∠=,AH CB ⊥∴512AH BH =∵13AB BC x==∴2222169AH BH AB x +==解得512AH x BH x ==,,∴1284DH x x x =-=,54HC x x x=-=∴AD =,AC ==∴cos 41DH ADC AD ∠==过点C 作CM AD ⊥垂足为M∴cos 41DM CD ADC =⋅∠=,41AM AD DM =-=∵DE AD ⊥,CM AD⊥∴MC DE ∥∴2041204121214141x CE DM AC AM ===故答案为:2021.三、解答题.14.【答案】415.【答案】11a -,2216.【答案】(1)①48.3;②25;③47.5(2)小明爸爸应该预约学校A,理由见解析【小问1详解】解:①()1283040454848484848505048.310++++++++++=②数据中出现次数最多的是25,故众数为25③数据排序后,排在中间两位的数据为45,50,故中位数为:()1455047.52+=填表如下:学校平均数众数中位数方差A48.34883.299B 48.42547.5354.04【小问2详解】小明爸爸应该预约学校A,理由如下:学校A 的方差小,预约人数相对稳定,大概率会有位置更好的进行锻炼.17.【答案】任务1:()0.80.2L n m =+;任务2:一次性最多可以运输18台购物车;任务3:共有3种方案【解析】解:任务1:∵一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m∴()0.80.2L n m=+任务2:依题意,∵已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车令2.60.80.2n≥+解得:9n ≤∴一次性最多可以运输18台购物车任务3:设x 次扶手电梯,则()5x -次直梯由题意∵该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次可列方程为:()24185100x x +-≥解得:53x ≥方案一:直梯3次,扶梯2次方案二:直梯2次,扶梯3次:方案三:直梯1次,扶梯4次答:共有三种方案18.【答案】(1)见解析(2)【小问1详解】证明:连接BO 并延长,交AD 于点H ,连接OD∵AB BD =,OA OD=∴BO 垂直平分AD∴BH AD ⊥,AH DH=∵BE 为O 的切线∴HB BE⊥∵AC 为O 的直径∴90ADC ∠=︒∴四边形BHDE 为矩形∴DE BE⊥【小问2详解】由(1)知四边形BHDE 为矩形,BH AD ⊥,AH DH =∴5AH DH BE ===∴2255BH AB AH =-=设O 的半径为r ,则:,55OA OB r OH BH OB r ===-=-在Rt AOH △中,由勾股定理,得:()()22255r r =+解得:35r =即:O 的半径为35.19.【答案】(1)图见解析,214y x =;(2)方案一:①1,2m n ⎛⎫ ⎪⎝⎭;②24n m ;方案二:①1,2h m k n ⎛⎫++ ⎪⎝⎭;②24n m ;(3)a 的值为12或12-.【小问1详解】解:描点,连线,函数图象如图所示观察图象知,函数为二次函数设抛物线的解析式为2y ax bx c=++由题意得04211644c a b c a b c =⎧⎪++=⎨⎪++=⎩解得1400a b c ⎧=⎪⎪=⎨⎪=⎪⎩∴y 与x 的关系式为214y x =【小问2详解】解:方案一:①∵AB m =,CD n=∴12D B m ''=此时点B '的坐标为1,2m n ⎛⎫ ⎪⎝⎭故答案为:1,2m n ⎛⎫ ⎪⎝⎭②由题意得212m a n ⎛⎫= ⎪⎝⎭解得24na m =故答案为:24n m方案二:①∵C 点坐标为(),h k ,AB m =,CD n=∴12DB m =此时点B 的坐标为1,2h m k n ⎛⎫++ ⎪⎝⎭故答案为:1,2h m k n ⎛⎫++ ⎪⎝⎭②由题意得212k n a h m h k ⎛⎫+=+-+ ⎪⎝⎭解得24na m =故答案为:24n m 【小问3详解】解:根据题意1C 和2C 的对称轴为x h=-则()28A h k --+,,()28B h n -++,,1C 的顶点坐标为()P h k -,∴1C 顶点距线段AB 的距离为()88k k +-=∴2C 的顶点距线段AB 的距离为1082-=∴2C 的顶点坐标为()10Q h k -+,或()6Q h k -+,当2C 的顶点坐标为()10Q h k -+,时,()2210y a x h k =+++将()28A h k --+,代入得4108a k k ++=+,解得12a =-当2C 的顶点坐标为()6Q h k -+,时,()226y a x h k =+++将()28A h k --+,代入得468a k k ++=+,解得12a =综上,a 的值为12或12-.20.【答案】(1)1(2)AF =,理由见解析(3)①见解析;②3414PE =或3412.【小问1详解】解://AD BC ,F 为AD 的中点,AD BC =,AF =,2CE =AEF CEB ∴ ∽,2BC AD AF ===AF AEBC CE ∴=,2AE =,解得1AE =22222216BE BC CE ∴=-=-=AB ∴===故答案为【小问2详解】解:AF =,理由如下:根据题意,在垂中四边形ABCD 中,AF BD ⊥,且F 为BC 的中点∴2AD BC BF ==,90AEB ∠=︒又 AD BC∥AED FEB∴ ∽∴2AE AD DE EF BF EB===设BE a =,则2DE a= AB BD=∴23AB BD BE ED a a a==+=+=∴AE ===,EF =∴AF AE EF =+=+=AB CD=∴323AF AF CD AB a ===AF ∴=【小问3详解】解:①第一种情况:作BC 的平行线AD ,使AD BC =,连接CD则四边形ABCD 为平行四边形延长BE 交AD 于点FBC ADAEF CEB∴ ∽AF AE BC CE∴=AD BC = ,2CE AE =12AF AE BC CE ∴==,即1122AF BC AD ==∴F 为AD 的中点故如图1所示,四边形ABCD 即为所求的垂中平行四边形:第二种情况:作ABC ∠的平分线,取CH CB =交ABC ∠的平分线于点H ,延长CH 交BE 的延长线于点D ,在射线BA 上取AF AB =,连接DF故A 为BF 的中点同理可证明:12AB CD =则2BF AB AF AB CD=+==则四边形BCDF 是平行四边形;故如图2所示,四边形BCDF 即为所求的垂中平行四边形:第三种情况:作AD BC∥,交BE的延长线于点D,连接CD,作BC的垂直平分线在DA延长线上取点F,使AF AD=,连接BF则A为DF的中点同理可证明12AD BC=,从而DF BC=故四边形BCDF是平行四边形故如图3所示,四边形BCDF即为所求的垂中平行四边形:②若按照图1作图,由题意可知,ACB ACP∠=∠四边形ABCD是平行四边形ACB PAC∴∠=∠PAC PCA∴∠=∠PAC ∴△是等腰三角形过P 作PH AC ⊥于H,则AH HC= 5BE =,212CE AE ==5B E BE '∴==,6AE =111()(612)9222AH HC AC AE CE ∴===+=+=963EH AH AE ∴=-=-=PH AC ⊥ ,BE AC⊥CPH CB E'∴∽△△PH CH B E CE ∴=',即9515124CH B E PH CE '⋅⨯===∴3414PE ===若按照图2作图,延长CA ,DF 交于点G同理可得:PGC 是等腰三角形连接PAGF BC∥ GAF CAB∴ ∽1AF AG AB AC∴==AG AC∴=PA AC∴⊥同理,CPA CB E'∽△△6AE = ,12EC =,5B E BE '==B E CE PA AC '∴=,即51815122B E AC PA CE '⋅⨯===,3412PE ∴===若按照图3作图,则:没有交点,不存在PE (不符合题意)故答案为:4PE =或2.。

2023年广东省中考数学试卷附答案

2023年广东省中考数学试卷附答案

2023年广东省中考数学试卷附答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入5元记作+5元,那么支出5元记作()A.﹣5元B.0元C.+5元D.+10元2.(3分)下列出版社的商标图案中,是轴对称图形的为()A.B.C.D.3.(3分)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为()A.0.186×105B.1.86×105C.18.6×104D.186×103 4.(3分)如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=()A.43°B.53°C.107°D.137°5.(3分)计算的结果为()A.B.C.D.6.(3分)我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了()A.黄金分割数B.平均数C.众数D.中位数7.(3分)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为()A.B.C.D.8.(3分)一元一次不等式组的解集为()A.﹣1<x<4B.x<4C.x<3D.3<x<4 9.(3分)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()A.20°B.40°C.50°D.80°10.(3分)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣4二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)因式分解:x2﹣1=.12.(3分)计算:=.13.(3分)某蓄电池的电压为48V,使用此蓄电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为.当R=12Ω时,I的值为A.14.(3分)某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打折.15.(3分)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.三、解答题(一):本大题共3小题,第16题10分,第17、18题各7分,共24分.16.(10分)(1)计算:+|﹣5|+(﹣1)2023.(2)已知一次函数y=kx+b的图象经过点(0,1)与点(2,5),求该一次函数的表达式.17.(7分)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.18.(7分)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)如图,在▱ABCD中,∠DAB=30°.(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.20.(9分)综合与实践主题:制作无盖正方体形纸盒.素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的大小关系;(2)证明(1)中你发现的结论.21.(9分)小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)数据统计表实验序号12345678910A线路所用时间15321516341821143520B线路所用时间25292325272631283024根据以上信息解答下列问题:平均数中位数众数方差A线路所用时间22a1563.2B线路所用时间b26.5c 6.36(1)填空:a=;b=;c=;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.23.(12分)综合运用如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕点O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F.(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF的面积分别记为S1与S2.设S=S1﹣S2,AN=n,求S关于n的函数表达式.2023年广东省中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入5元记作+5元,那么支出5元记作()A.﹣5元B.0元C.+5元D.+10元【答案】A【分析】本题考查负数的概念问题,负数和正数是具有相反意义的量,收入和支出是一对具有相反意义的量,进而作答.【解答】解:把收入5元记作+5元,根据收入和支出是一对具有相反意义的量,支出5元就记作﹣5元.故答案为A.【点评】本题考查负数和正数是具有相反意义的量,收入和支出是一对具有相反意义的量,解题的关键是理解相反意义的含义,进而作答.2.(3分)下列出版社的商标图案中,是轴对称图形的为()A.B.C.D.【答案】A【分析】利用轴对称图形的定义进行分析即可.【解答】解:选项B,C,D中的图形都不能确定一条直线,使图形沿这条直线对折,直线两旁的部分能够完全重合,不是轴对称图形,选项A中的图形沿某条直线对折后两部分能完全重合,是轴对称图形,故选:A.【点评】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.3.(3分)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为()A.0.186×105B.1.86×105C.18.6×104D.186×103【答案】B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将186000用科学记数法表示为:1.86×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=()A.43°B.53°C.107°D.137°【答案】D【分析】由平行线的性质即可求解.【解答】解:∵AB∥CD,∴∠ABC=∠BCD=137°,故选:D.【点评】本题考查平行线的性质,熟练掌握性质解解题关键.5.(3分)计算的结果为()A.B.C.D.【答案】C【分析】本题考查同分母分式的加减法,分母不变,分子相加减.【解答】解:==.故本题选:C.【点评】本题考查同分母分式相加减,分母不变,分子相加减.解题的关键是类比同分母分数的相加减进行计算即可.6.(3分)我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了()A.黄金分割数B.平均数C.众数D.中位数【答案】A【分析】根据黄金分割的定义,即可解答.【解答】解:我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了黄金分割数,故选:A.【点评】本题考查了黄金分割,算术平均数,中位线,众数,统计量的选择,熟练掌握这些数学知识是解题的关键.7.(3分)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为()A.B.C.D.【答案】C【分析】直接利用概率公式可得答案.【解答】解:∵共有“种植”“烹饪”“陶艺”“木工”4门兴趣课程,∴明恰好选中“烹饪”的概率为.故选:C.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.8.(3分)一元一次不等式组的解集为()A.﹣1<x<4B.x<4C.x<3D.3<x<4【答案】D【分析】求出第一个不等式的解集,再求出其公共解集即可.【解答】解:,由不等式x﹣2>1得:x>3,∴不等式的解集为3<x<4.故选:D.【点评】本题考查了解一元一次不等式组,解题的关键是熟知解集的规律.9.(3分)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()A.20°B.40°C.50°D.80°【答案】B【分析】由AB是⊙O的直径,得∠ACB=90°,而∠BAC=50°,即得∠ABC=40°,故∠D=∠ABC=40°,【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∵∠BAC=50°,∴∠ABC=40°,∵=,∴∠D=∠ABC=40°,故选:B.【点评】本题考查圆周角定理的应用,解题的关键是掌握直径所对的圆周角是直角和同弧所对的圆周角相等.10.(3分)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣4【答案】B【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.【点评】本题考查了待定系数法求二次函数的解析式,根据图象得出抛物线经过的点的坐标是解题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)因式分解:x2﹣1=(x+1)(x﹣1).【答案】见试题解答内容【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(3分)计算:=6.【答案】6.【分析】本题考查二次根式的乘法计算,根据×=和=a(a>0)进行计算,【解答】解:方法一:×=×2=2×3=6.方法二:×===6.故答案为:6.【点评】本题考查二次根式的计算,考查的关键是准确运用×=和=a (a>0)进计算.13.(3分)某蓄电池的电压为48V,使用此蓄电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为.当R=12Ω时,I的值为4A.【答案】4.【分析】直接将R=12代入I=中可得I的值.【解答】解:当R=12Ω时,I==4(A).故答案为:4.【点评】此题考查的是反比例函数的应用,掌握反比例函数的点的坐标是解决此题的关键.14.(3分)某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打8.8折.【答案】8.8.【分析】利润率不能少于10%,意思是利润率大于或等于10%,相应的关系式为:(打折后的销售价﹣进价)÷进价≥10%,把相关数值代入即可求解.【解答】解:设这种商品最多可以按x折销售,则售价为5×0.1x,那么利润为5×0.1x﹣4,所以相应的关系式为5×0.1x﹣4≥4×10%,解得:x≥8.8.答:该商品最多可以8.8折,故答案为:8.8.【点评】此题主要考查了一元一次不等式的应用,解决本题的关键是得到利润率的相关关系式,注意“不能低于”用数学符号表示为“≥”;利润率是利润与进价的比值.15.(3分)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为15.【答案】15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.【点评】本题考查的是相似三角形的判定与性质,解决本题的关键是掌握相似三角形的对应边成比例.三、解答题(一):本大题共3小题,第16题10分,第17、18题各7分,共24分.16.(10分)(1)计算:+|﹣5|+(﹣1)2023.(2)已知一次函数y=kx+b的图象经过点(0,1)与点(2,5),求该一次函数的表达式.【答案】(1)6.(2)y=2x+1.【分析】(1)利用立方根的性质、绝对值的性质以及负数指数幂的性质进行化简计算即可.(2)将(0,1)与(2,5)代入y=kx+b解方程组即可.【解答】(1)解:原式=2+5﹣1=6.(2)解:将(0,1)与(2,5)代入y=kx+b得:,解得:,∴一次函数的表达式为:y=2x+1.【点评】本题考查了实数的运算,待定系数法求一次函数表达式,正确化简各数,将点的坐标代入后能正确解方程组是解题的关键.17.(7分)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.【答案】乙骑自行车的速度为0.2km/分.【分析】设乙步行的速度为xkm/分,则甲骑自行车的速度为1.2xkm/分,根据题意列方程即可得到结论.【解答】解:设乙步行的速度为xkm/分,则甲骑自行车的速度为1.2xkm/分,根据题意得﹣10=,解得x=.经检验,x=是原分式方程的解,答:乙骑自行车的速度为0.2km/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.(7分)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)【答案】A、B的距离大约是15.3m.【分析】连接AB,取AB中点D,连接CD,根据AC=BC,点D为AB中点,可得∠ACD =∠BCD=∠ACB=50°,在Rt△ACD中,sin50°=,解得AD=10×sin50°≈7.66(m),故AB=2AD≈15.3(m).【解答】解:连接AB,取AB中点D,连接CD,如图,∵AC=BC,点D为AB中点,∴中线CD为等腰三角形的角平分线(三线合一),AD=BD=AB,∴∠ACD=∠BCD=∠ACB=50°,在Rt△ACD中,sin∠ACD=,∴sin50°=,∴AD=10×sin50°≈7.66(m),∴AB=2AD=2×7.66=15.32≈15.3(m),答:A、B的距离大约是15.3m.【点评】本题考查解直角三角形的应用,解题的关键是掌握锐角三角函数的定义.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)如图,在▱ABCD中,∠DAB=30°.(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.【答案】(1)见作图;(2)6﹣2.【分析】(1)由基本作图即可解决问题;(2)由锐角的余弦求出AE的长,即可得到BE的长.【解答】解:(1)如图E即为所求作的点;(2)∵cos∠DAB=,∴AE=AD•cos30°=4×=2,∴BE=AB﹣AE=6﹣2.【点评】本题考查基本作图,平行四边形的性质,解直角三角形,关键是掌握基本作图,由锐角的余弦求出AE的长.20.(9分)综合与实践主题:制作无盖正方体形纸盒.素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的大小关系;(2)证明(1)中你发现的结论.【答案】(1)∠ABC=∠A1B1C1;(2)证明过程见解答.【分析】(1)根据等腰直角三角形的性质即可求解;(2)根据勾股定理和勾股定理的逆定理和正方形的性质即可求解.【解答】解:(1)∠ABC=∠A1B1C1;(2)∵A1C1为正方形对角线,∴∠A1B1C1=45°,设每个方格的边长为1,则AB ==,AC=BC ==,∵AC2+BC2=AB2,∴由勾股定理的逆定理得△ABC是等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠A1B1C1.【点评】本题考查了正方形的性质,勾股定理和勾股定理的逆定理,等腰直角三角形的判定与性质,得到△ABC是等腰直角三角形是解题的关键.21.(9分)小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)数据统计表12345678910实验序号A线路15321516341821143520所用时间B线路所用时间25292325272631283024根据以上信息解答下列问题:平均数中位数众数方差A线路所用时间22a1563.2B线路所用时间b26.5c6.36(1)填空:a=19;b=26.8;c=25;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.【答案】(1)19,26.8,25.(2)选择B路线更优.【分析】本题考查数据的分析,数据的集中和波动问题,(1)平均数,中位数,众数的计算.(2)方差的实际应用.【解答】解:(1)求中位数a首先要先排序,从小到大顺序为:14,15,15,16,18,20,21,32,34,35.共有10个数,中位数在第5和6个数为18和20,所以中位数为=19,求平均数b==26.8,众数c=25,故答案为:19,26.8,25.(2)小红统计的选择A线路平均数为22,选择B线路平均数为26.8,用时差不太多.而方差63.2>6.36,相比较B路线的波动性更小,所以选择B路线更优.【点评】本题考查数据的波动与集中程度,解题的关键是能够平均数,中位数,众数进行准确的计算,理解方差的意义,并进行作答.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.【答案】(1)证明过程详见解答;(2)①证明过程详见解答;②.【分析】(1)根据轴对称的性质可得AE=A′E,AA′⊥BD,根据四边形ABCD是矩形,得出OA=OC,从而OE∥A′C,从而得出AA′⊥CA′;(2)①设CD⊙O与CD切于点F,连接OF,并延长交AB于点G,可证得OG=OF=OE,从而得出∠EAO=∠GAO=∠GBO,进而得出∠EAO=30°,从而;②设⊙O切CA′于点H,连接OH,可推出AA′=2OH,CA′=2OE,从而AA′=CA′,进而得出∠A′AC=∠A′CA=45°,∠AOE=∠ACA′=45°,从而得出AE=OE,OD =OA=AE,设OA=OE=x,则OD=OA=,在Rt△ADE中,由勾股定理得出=1,从而求得x2=,进而得出⊙O的面积.【解答】(1)证明:∵点A关于BD的对称点为A′,∴AE=A′E,AA′⊥BD,∵四边形ABCD是矩形,∴OA=OC,∴OE∥A′C,∴AA′⊥CA′;(2)①证明:如图2,设CD⊙O与CD切于点F,连接OF,并延长交AB于点G,∴OF⊥CD,OF=OE,∵四边形ABCD是矩形,∴OB=OD=BD,AB∥CD,AC=BD,OA=AC,∴OG⊥AB,∠FDO=∠BOG,OA=OB,∴∠GAO=∠GBO,∵∠DOF=∠BOG,∴△DOF≌△BOG(ASA),∴OG=OF,∴OG=OE,由(1)知:AA′⊥BD,∴∠EAO=∠GAO,∵∠EAB+∠GBO=90°,∴∠EAO+∠GAO+∠GBO=90°,∴3∠EAO=90°,∴∠EAO=30°,由(1)知:AA′⊥CA′,∴tan∠EAO=,∴tan30°=,∴;②解:如图3,设⊙O切CA′于点H,连接OH,∴OH⊥CA′,由(1)知:AA′⊥CA′,AA′⊥CA′,OA=OC,∴OH∥AA′,OE∥CA′,∴△COH∽△CAA′,△AOE∽△ACA′,∴,∴AA′=2OH,CA′=2OE,∴AA′=CA′,∴∠A′AC=∠A′CA=45°,∴∠AOE=∠ACA′=45°,∴AE=OE,OD=OA=AE,设OA=OE=x,则OD=OA=,∴DE=OD﹣OE=()x,在Rt△ADE中,由勾股定理得,=1,∴x2=,∴S⊙O=π•OE2=.【点评】本题考查了圆的切线性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解决问题的关键是熟练掌握有关基础知识.23.(12分)综合运用如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕点O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F.(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF的面积分别记为S1与S2.设S=S1﹣S2,AN=n,求S关于n的函数表达式.【答案】(1)当旋转角为22.5°时,OE=OF;(2)FC的长为;(3)S关于n的函数表达式为.【分析】(1)如图2中,当OE=OF时,得到Rt△AOE≌Rt△COF,利用全等三角形的性质以及旋转的性质解决问题即可;(2)在图2中,过点A作AG⊥x轴于点G,利用三角形相似,可得结论;(3)过点N作直线PQ⊥BC于点P,交OA于点Q,利用四点共圆,得出三角形FON 是等腰直角三角形是解决问题的关键,结合三角形全等的判定和性质和三角形的面积公式解决问题.【解答】解:(1)当OE=OF时,在Rt△AOE和Rt△COF中,,∴Rt△AOE≌Rt△COF(HL),∴∠AOE=∠COF(即∠AOE=旋转角),∴2∠AOE=45°,∴∠COF=∠AOE=22.5°,∴当旋转角为22.5°时,OE=OF;(2)过点A作AG⊥x轴于点G,则有AG=3,OG=4,∴,∵四边形OABC是正方形,∴OC=OA=5,∠AOC=∠C=90°,又∵∠COF+∠FOA=90°,∠AOG+∠FOA=90°,∴∠COG=∠GOA,∴Rt△AOG∽Rt△FOC,∴,∴,∴FC的长为;(3)过点N作直线PQ⊥BC于点P,交OA于点Q,∵四边形OABC是正方形,∴∠BCA=∠OCA=45°,BC∥OA,又∠FON=45°,∴∠FCN=∠FON=45°,∴F、C、O、N四点共圆,∴∠OFN=∠OCA=45°,∴∠OFN=∠FON=45°,∴△FON是等腰直角三角形,∴FN=NO,∠FNO=90°,∴∠FNP+∠ONQ=90°,又∵∠NOQ+∠ONQ=90°,∴∠NOQ=∠FNP,∴△NOQ≌△FNP(AAS),∴NP=OQ,FP=NQ,∵四边形OQPC是矩形,∴CP=OQ,OC=PQ,∴,=,,=,=,=,∴,又∵△ANQ为等腰直角三角形,∴,∴,∴S关于n的函数表达式为.【点评】本题属于一次函数综合题,考查了正方形的性质,旋转的性质,全等三角形的判定和性质,相似角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷第2页(共20页) 绝密★启用前广东省2018年初中学业水平考试数学(考试时间100分钟,满分120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.四个实数0,13, 3.14-,2中,最小的数是()A.0B.13C. 3.14-D.22.据有关部门统计,2018年“五一”小长假期间,广东各大景点共接待游客约14 420 000人次,将数14 420 000用科学记数法表示为()A.71.44210⨯B.70.144210⨯C.81.44210⨯D.80.144210⨯3.如图,由5个相同正方体组合成的几何体,它的主视图是()A B C D(第3题)4.数据1,5,7,4,8的中位数是()A.4B.5C.6D.75.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.不等式313x x-+≥的解集是()A.4x≤B.4x≥C.2x≤D.2x≥7.在ABC△中,点D,E分别为边AB,AC的中点,则ADE△与ABC△的面积之比为,,()A.12B.13C.14D.168.如图,AB CD∥,且100DEC∠=o,40C∠=o,则B∠的大小是,,()A.30oB.40oC.50oD.60o(第8题)9.关于x的一元二次方程230x x m-+=有两个不相等的实数根,则实数m的取值范围为,,()A.94m<B.94m≤C.94m>D.94m≥10.如图,点P是菱形ABCD边上的一动点,它从点A出发沿A B C D→→→路径匀速运动到点D,设PAD△的面积为y,点P的运动时间为x,则y关于x的函数图象大致为,,( )A B C D(第10题)二、填空题(本大题共6小题,每小题4分,共24分)11.同圆中,已知»AB所对的圆心角是100o,则»AB所对的圆周角是o.12.分解因式:=+-122xx.13.一个正数的平方根分别是1x+和5x-,则x=.14.已知01=-+-bba,则=+1a.15.如图,在矩形ABCD中,2,4==CDBC,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)(第15题) (第16题)16.如图,已知等边三角形11OA B,顶点1A在双曲线3(0)y x=>上,点1B的坐标为(2,0).过点1B作121B A OA∥交双曲线于点2A,过点2A作2211A B A B∥交x轴于点2B,得到第二个等边三角形122B A B;过点2B作2312B A B A∥交双曲线于点3A,过点3A作3322A B A B∥交x轴于点3B,得到第三个等边三角形233B A B;……以此类推,则点6B 毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共20页)的坐标为.三、解答题(本大题共3小题,共18分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)计算:11 220182-⎛⎫--+ ⎪⎝⎭.18.(本小题满分6分)先化简,再求值:22221644a aa a a-+-g,其中a.19.(本小题满分6分)如图,BD是菱形ABCD的对角线,75CBD∠=o.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为点E,交AD于点F.(不要求写作法,但保留作图痕迹)(2)在(1)的条件下,连接BF,求DBF∠的度数.(第19题)四、解答题(本大题共3小题,共21分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分7分)某公司购买了一批A,B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3 120元购买A型芯片的条数与用4 200元购买B型芯片的条数相等.(1)求:该公司购买的A,B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求:购买了多少条A型芯片?21.(本小题满分7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为人.(2)把条形统计图补充完整.(3)若该企业有员工10000人,请估计该企业这周的工作量完成情况为“剩少量”的员工有多少人.(第21题)22.(本小题满分7分)如图,在矩形ABCD中,ADAB>,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:ADF CED△≌△.(2)求证:DEF△是等腰三角形.(第22题)数学试卷第3页(共20页)数学试卷第4页(共20页)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)五、解答题(本大题共3小题,共27分.解答应写出文字说明、证明过程或演算步骤) 23.(本小题满分9分)如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于,A B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值.(2)求函数2(0)y ax b a =+≠的解析式.(3)抛物线上是否存在点M ,使得15MCB ∠=o?若存在,请求出点M 的坐标;若不存在,请说明理由.(第23题)24.(本小题满分9分)如图,在四边形ABCD 中,AB AD CD ==,以AB 为直径的O e 经过点C ,连接,AC OD 交于点E .(1)求证:OD BC ∥.(2)若tan 2ABC ∠=,求证:DA 与O e 相切.(3)在(2)条件下,连接BD 交于O e 于点F ,连接EF ,若1BC =,求EF 的长.(第24题)25.(本小题满分9分)已知Rt OAB △,90OAB ∠=o ,30ABO ∠=o ,斜边4OB =,将Rt OAB △绕点O 顺时针旋转60o ,得Rt ODC △,如题1图,连接BC . (1)填空:OBC ∠=o;(2)如题1图,连接AC ,作OP AC ⊥,垂足为点P ,求OP 的长度.(3)如题2图,点,M N 同时从点O 出发,在OCB △边上运动,点M 沿O C B →→路径匀速运动,点N 沿O B C →→路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为每秒1.5个单位长度,点N 的运动速度为每秒1个单位长度,设运动时间为x s ,OMN △的面积为y .求:当x 为何值时y 取得最大值,最大值为多少?(结果分母可保留根号)(第25题)广东省2018年全国中考试卷精选数学答案解析一、选择题2.【答案】A-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)【解析】714420000 1.44210=⨯. 【考点】科学记数法. 3.【答案】B【解析】从正面看这个几何体,从左边起第一列有2层,第二列有1层,第三列有1层. 【考点】三视图中的主视图. 4.【答案】B【解析】将数据重新排列为1、4、5、7、8,则这组数据的中位数为5. 【考点】中位数. 5.【答案】D【解析】A 项,是轴对称图形,也是中心对称图形,故此选项错误; B 项,是轴对称图形,也是中心对称图形,故此选项错误; C 项,不是轴对称图形,是中心对称图形,故此选项错误; D 项,是轴对称图形,不是中心对称图形,故此选项正确. 故选:D .【考点】轴对称图形及中心对称图形的概念. 6.【答案】D【解析】移项,得:331x x +-≥, 合并同类项,得:24x ≥, 系数化为1,得:2x ≥, 故选:D .【考点】解不等式. 7.【答案】C【解析】∵点D 、E 分别为边AB 、AC 的中点, ∴DE 为ABC △的中位线, ∴DE BC ∥, ∴ADE ABC △∽△,∴21()4ADE ABC S DE S BC ==△△. 故选:C .【考点】三角形的中位线,三角形中位线的性质,相似三角形的性质. 8.【答案】B【解析】∵100DEC ∠=o ,40C ∠=o , ∴40D ∠=o , 又∵AB CD ∥, ∴40B D ∠=∠=o , 故选:B .【考点】平行四边形的性质,坐标与图形性质. 9.【答案】A【解析】∵关于x 的一元二次方程230x x m +=-有两个不相等的实数根, ∴224(3)410b ac m ∆=-=-⨯⨯->, ∴94m <. 故选:A .【考点】一元二次方程根的判别式. 10.【答案】B【解析】当点P 沿A B →路径匀速运动时,y 与x 成正比例关系,且y 随x 的增大而增大,运动到点B 时PAD △的面积最大;当点P 沿B C →路径匀速运动时,y 最大且保持不变;当点P 沿C D →路径匀速运动时,y 与x 成一次函数关系,且y 与x 的增大而减小.【考点】动点问题的函数图象. 二、填空题 11.【答案】50【解析】∵同圆中,同弧所对的圆周角的度数等于它所对的圆心角度数的一半,∴»AB 所对的圆周角是50o . 【考点】圆周角定理. 12.【答案】2(1)x -数学试卷 第9页(共20页) 数学试卷 第10页(共20页)【解析】由完全平方公式,得2221(1)x x x -+=-. 【考点】分解因式. 13.【答案】2【解析】根据题意知150x x ++-=, 解得:2x =, 故答案为:2.【考点】平方根的性质,相反数的性质. 14.【答案】2【解析】∵1|0|b -=, ∴10b -=,0a b -=, 解得:1b =,1a =, 故12a +=. 故答案为:2.【考点】二次根式的性质,绝对值的性质,解方程. 15.【答案】π【解析】连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E , ∴2OD =,OE BC ⊥, 易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积2290π224π360OECD EODS S ⋅⋅=-=-=-正方形扇形,∴阴影部分的面积124(4π)π2=⨯⨯--=.故答案为π.【考点】矩形的判定与性质,切线的性质,全等三角形的判定与性质,扇形的面积公式.16.【答案】【解析】如图,作2A C x ⊥轴于点C ,设1B C a =,则2A C =,112OC OB B C a =+=+,2(2)A a +.∵点2A在双曲线0)y x =>上,∴(2)a a +==g ,解得1a -,或1a =(舍去),∴211222OB OB B C =+=+= ∴点2B的坐标为;作3A D x ⊥轴于点D ,设2B D b =,则3A D b =,22OD OB B D b =+=,2(2,)A b b +.∵点3A在双曲线0)y x =>上,∴)b b =g ,解得b =,或b =,∴3222OB OB B D =+= ∴点3B的坐标为;同理可得点4B的坐标为即(4,0); …,∴点n B的坐标为,∴点6B的坐标为.故答案为.【考点】等边三角形的性质,解直角三角形,利用反比例函数的解析式求点的坐标.三、解答题数学试卷 第11页(共20页) 数学试卷 第12页(共20页)17.【答案】解:原式212=3=-+【解析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【考点】实数的运算.18.【答案】解:原式22(4)(4)4(4)=2a a a a a a a+-=+-g当a =时,原式2=.【解析】原式先因式分解,再约分即可化简,继而将a 的值代入计算. 【考点】分式的化简求值.19.【答案】解:(1)如图,EF 即为所求.(2)如图,∵BD 是菱形ABCD 的对角线,75CBD ∠=o ,∴75ABD CBD ∠=∠=o , ∴2150ABC CBD ∠=∠=o . ∵AD BC ∥,∴18030A ABC ∠=-∠=o o . ∵EF 是AB 的垂直平分线, ∴FA FB =, ∴30FBA A ∠=∠=o ,∴753045DBF ABD ABF ∠=∠-∠=-=o o o .【解析】(1)分别以A 、B 为圆心,大于12AB 长为半径画弧,过两弧的交点作直线即可;(2)根据DBF ABD ABF ∠=∠-∠计算即可.【考点】基本作图,线段垂直平分线的性质,菱形的性质. 四、解答题20.【答案】解:(1)设A 型芯片的单价为x 元,则B 型芯片的单价为(9)x +元,根据题意,得312042009x x =+, 解得26x =.经检验,26x =是原方程的解. ∴26935+=(元).∴A ,B 型芯片的单价分别是26元,35元.(2)设购买A 型芯片a 条,则购买B 型芯片(200)a -条, 根据题意,得2635(200)6280a a +-=,解得80a =.∴购买了80条A 型芯片.【解析】(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程. 【考点】分式方程的应用,一元一次方程的应用. 21.【答案】(1)800 (2)补全条形统计图如图.数学试卷 第13页(共20页) 数学试卷 第14页(共20页)(3)估计该企业这周的工作量完成情况为“剩少量”的员工有280100003500800⨯=(人). 【解析】1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可; (3)用总人数乘以样本中“剩少量”人数所占百分比可得. 【考点】条形统计图和扇形统计图的综合运用.22.【答案】证明:(1)∵四边形ABCD 是矩形,且矩形沿AC 折叠, ∴AD BC CE AE AB CD ====,,DAC ACB ECA ∠=∠=∠, EAC BAC DCA ∠=∠=∠.∴DAC EAC ECA DCA ∠-∠=∠-∠, 即DAE ECD ∠=∠, ∴(SAS)ADE CED △≌△.(2)由(1)知,ADE CED △≌△, ∴DEF EDF ∠=∠∴DF EF =. ∴DEF △是等腰三角形.【解析】(1)根据矩形的性质结合折叠的性质找出AD CE =、AE CD =; (2)利用全等三角形的性质找出DEF EDF ∠=∠.【考点】全等三角形的判定与性质,翻折变换,矩形的性质. 五、解答题23.【答案】解:(1)∵直线y x m =+过点(0,3)C -, ∴3m =-.(2)由(1)知,直线的解析式为3y x =-, ∴令3y =,得3x =.∴(3,0)B . ∵点(3,0)B ,(0,3)C -在抛物线上,90,3,a b b +=⎧∴⎨=-⎩解得1,33.a b ⎧=⎪⎨⎪=-⎩ ∴2133y x =-. (3)存在.当点M 在点B 上方时,设CM 交OB 于点D ,如图1.∵点(0,3)C -,(3,0)B , ∴3OB OC ==, ∴45OCB OBC ∠=∠=o . ∵15MCB ∠=o ,∴30tan OCD OD OC OCD ∠=∴=∠o g ,∴D .∴可得直线CD的解析式为3y =-.联立方程组23,13,3y y x ⎧=-⎪⎨=-⎪⎩解得12120,3, 6.x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩∴M .当点M 在点B 下方时,设CM 与x 轴交于点D ,如图2.数学试卷 第15页(共20页) 数学试卷 第16页(共20页)∵15,45MCB OCB ∠=∠=o o , ∴60OCD ∠=o ,∴tan OD OC OCD =∠=g∴D∴可得直线CD的解析式为3y x -.联立方程组23,313,3y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩解得12120,3, 2.x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩∴2)M -.综上所述,抛物线上存在点M ,使得15MCB ∠=o ,点M的坐标为M或2)M -.【解析】(1)把(0,3)C -代入直线y x m =+中解答即可;(2)把0y =代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可. 【考点】二次函数综合题.24.【答案】(1)证明:如图1,连接OC . ∵,,OA OC AD CD OD OD ===, ∴OAD OCD △≌△,∴ADO CDO ∠=∠. 又∵AD CD =, ∴,AE CE OD AC =⊥, ∴OE 是ABC △的中位线, ∴OD BC ∥.(2)证明:如图1,连接OC . ∵AB 为O e 的直径,∴90ACB ∠=o . ∵tan 2,2ACABC BC∠=∴=. 又由(1)知,OD BC ∥, ∴,tan 2AOD ABC AOD ∠=∠∴∠=. ∵2AD CD AB OA ===, ∴2,2,2AD AD CD AD ACOA OB OC OB BC==∴===, ∴DAC OBC △∽△. ∴ACD BCO ∠=∠.∵AB 是O e 的直径,∴90ACB ∠=o ,即90,90BCO OCA ACD OCA ∠+∠=∴∠+∠=o o , 即90OCD ∠=o .由(1)知,,90OAD OCD OAD OCD ∴∠=∠=o △≌△, ∴OA DA ⊥.又∵OA 为O e 的半径, ∴DA 与O e 相切.数学试卷 第17页(共20页) 数学试卷 第18页(共20页)(3)解:如图2,连接,OC AF .∵AB 是O e 的直径,∴90AFB ∠=o ,∴90AFD ∠=o . 由(1)知,90AED ∠=o ,∴点,,,A E F D 在以AD 为直径的圆上. 易知ABD △是等腰直角三角形, ∴AFD △是等腰直角三角形, ∴45DEF DAF ABD ∠=∠==∠o . ∵FDE ODB ∠=∠,∴FDE ODB △∽△,∴EF DEBO DB=. ∵1,tan 2BC ABC =∠=, ∴2,1AC AE EC =∴==.∴AB ==∴22OB DE =∴==.∴cos AB BD ABD ===∠∵,EF DE BO DB ==,解得EF =. 【解析】(1)连接OC ,证OAD OCD △≌△得ADO CDO ∠=∠,由AD CD =知DE AC ⊥,再由AB 为直径知BC AC ⊥,从而得OD BC ∥;(2)根据tan 2ABC ∠=可设BC a =、则2AC a =、AD AB ===,证OE 为中位线知12OE a =、12AE CE AC a ===,进一步求得2DE a ==,再AOD △中利用勾股定理逆定理证90OAD ∠=o 即可得;(3)先证AFD BAD △∽△得2DF BD AD =g ①,再证AED OAD △∽△得2OD DE AD =g ②,由①②得DF BD OD DE =g g ,即DF DEOD BD=,结合EDF BDO ∠=∠知EDF BDO △∽△,据此可得EF DEOB BD=,结合(2)可得相关线段的长,代入计算可得.【考点】与圆有关的位置关系,圆的综合题. 25.【答案】(1)60o(2)∵60,OBC OB OC ∠==o , ∴OBC △为等边三角形. ∴4OC BC OB ===.∵90ABC ABO OBC ∠=∠+∠=o , ∴ABC OAB ∠=∠, ∴AO BC ∥. 在Rt ABO △中, ∵30,4ABO OB ∠==o ,∴2AB AO ==.∴AC ==∴112AOC S AO AB AC OP ==g g △, ∴OP =(3)①当803x ≤≤时,过点N 作NE OC ⊥,交OC 于点E .则3,2NEOM x ==,∴21322y x x x =⨯=.数学试卷 第19页(共20页) 数学试卷 第20页(共20页)此时,该抛物线的对称轴为y 轴,当83x =时,y取得最大值,max y =.②当843x <<时,过点M 作MF OB ⊥,交OB 于点F,则3),2MF x ON x =-=,∴2138))222833y x x x =⨯⨯-=--+. 此时,该抛物线的对称轴为83x =.∵08-,∴当843x <<时,y 随x的增大而减小,∴3y <. ③当2445x ≤≤时,点,M N 均在线段BC 上,则5122MN x =-,∴15(12)22y x x =⨯-⨯-+∵0,∴y 随x 的增大而减小,∴当4x =时,y 取得最大值,max y =综上所述,当83x =时,y .【解析】(1)只要证明OBC △是等边三角形即可;(2)求出AOC △的面积,利用三角形的面积公式计算即可; (3)分三种情形讨论求解即可解决问题:①当803x ≤<时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .②当843x ≤<时,M 在BC 上运动,N 在OB 上运动.③当2445x <≤时,M 、N 都在BC 上运动,作OG BC ⊥于G . 【考点】几何变换综合题,30度的直角三角形的性质,等边三角形的判定和性质,三角形的面积.。

相关文档
最新文档