高中数学《幂函数》课件

合集下载

人教A版高中数学必修一课件 《幂函数》函数的概念与性质名师优秀课件

人教A版高中数学必修一课件 《幂函数》函数的概念与性质名师优秀课件

在下列四个图形中,y=x-12的图象大致是( ) 解析:选 D.函数 y=x-21的定义域为(0,+∞),是减函数.
若 y=mxα+(2n-4)是幂函数,则 m+n=________.
解析:因为 y=mxα+(2n-4)是幂函数, 所以 m=1,2n-4=0,即 m=1,n=2,所以 m+n=3. 答案:3
已知幂函数 y=x3m-9(m∈N*)的图象关于 y 轴对 称,且在 x∈(0,+∞)上为减函数,求满足不等式(a+1) -m3< (3a-2) -m3的实数 a 的取值范围.
解:若幂函数 y=x3m-9(m∈N*)的图象关于 y 轴对称,则为偶函 数,即 m 为奇数,又在 x∈(0,+∞)上为减函数,因而 3m-9 <0,即 m<3.又 m∈N*,从而 m=1.故不等式(a+1) -m3<(3a -2) -m3可化为(a+1) -31<(3a-2) -13. 函数 y=x-31的定义域为(-∞,0)∪(0,+∞),且在(-∞,0)与(0, +∞)上均为减函数,因而 a+1>3a-2>0,或 0>a+1>3a-2, 或 a+1<0<3a-2,解得 a 的取值范围为a|a<-1或23<a<32.
B.1
1 C.2
D.0
解析:选 A.因为 f(x)=ax2a+1-b+1 是幂函数,所以 a=1,-b
+1=0,
即 a=1,b=1,所以 a+b=2.
幂函数的图象及应用
已知幂函数 f(x)=xα的图象过点 P2,14,试画出 f(x)的 图象并指出该函数的定义域与单调区间.
【解】 因为 f(x)=xα 的图象过点 P2,14, 所以 f(2)=14,即 2α=14, 得 α=-2,即 f(x)=x-2,f(x)的图象如图所示,定义域为(-∞, 0)∪(0,+∞),单调减区间为(0,+∞),单调增区间为(-∞,0).

高中数学人教A版必修1第二章 基本初等函数——幂函数(共14张PPT)

高中数学人教A版必修1第二章 基本初等函数——幂函数(共14张PPT)

f(x 1 )f(x2 )x 1x2(x 1x x 2 1 )+ (x x 2 1+x2)
x1 x2 x1 + x2
方法技巧:分子有理化
因 x 1 x 2 , x 为 1 , x 2 [ 0 , + ) 所 ,x 1 x 2 以 0 ,x 1 + x 2 0 ,
所 f(x 以 1 )f(x2 )即 , 幂 f(x) 函 x在 [0 数 ,+)上 的 .
课堂小结
(1) 幂函数的定义; (2)五个基本幂函数的图像画法及特征; (3) 幂函数的性质。
作业:P79习题2.3: 1,2,3。
谢谢指导
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是欺骗不了的,一个人要生活得 象这杯浓酒,不经三番五次的提炼呵,就不会这样一来可口!生命不止需要长度,更需要宽度。时间就像一张网,你撒在哪里,你的收获就在哪里。世上最累人的事,莫过于 你感到痛苦时,就去学习点什么吧,学习可以使我们减缓痛苦。当世界都在说放弃的时候,轻轻的告诉自己:再试一次。过错是暂时的遗憾,而错过则是永远的遗憾!很多 结果,但是不努力却什么改变也没有。后悔是一种耗费精神的情绪后悔是比损失更大的损失,比错误更大的错误所以不要后悔。环境不会改变,解决之道在于改变自己。积 成功者的最基本要素。激情,这是鼓满船帆的风。风有时会把船帆吹断;但没有风,帆船就不能航行。即使道路坎坷不平,车轮也要前进;即使江河波涛汹涌,船只也航行 粹取出来的。浪费时间等于浪费生命。老要靠别人的鼓励才去奋斗的人不算强者;有别人的鼓励还不去奋斗的人简直就是懦夫。不要问别人为你做了什么,而要问你为别人 遥远的梦想和最朴素的生活,即使明天天寒地冻,金钱没有高贵,低贱之分。金钱在高尚人的手中,就会变得高尚;金钱在庸俗人手中,就会变得低级庸俗。涓涓细流一旦 大海也就终止了��

《幂函数》新教材PPT完美课件

《幂函数》新教材PPT完美课件

第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
பைடு நூலகம்
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)

高中数学《幂函数》课件

高中数学《幂函数》课件

课前预习
课堂互动
课堂反馈
规律方法 判断函数为幂函数的方法 (1)只有形如y=xα(其中α为任意实数,x为自变量)的函数才 是幂函数,否则就不是幂函数. (2)判断一个函数是否为幂函数的依据是该函数是否为y= xα(α为常数)的形式,函数的解析式为一个幂的形式,且: ①指数为常数,②底数为自变量,③底数系数为1.形如y= (3x)α,y=2xα,y=xα+5…形式的函数都不是幂函数.反过 来,若一个函数为幂函数,则该函数也必具有这一形式.
2 2
D. 2
课前预习
课堂互动
课堂反馈
解析 设幂函数为 y=xα,∵幂函数的图象经过点4,12,∴12=
4α,∴α=-12,∴y=x-12
1
,∴f(2)=2-2

22,故选 C.
答案 C
课前预习
课堂互动
课堂反馈
2.下列函数中,其定义域和值域不同的函数是( )
1
A.y=x3
1
B.y=x-2
5
C.y=x3
课前预习
课堂互动
课堂反馈
规律方法 解决幂函数图象问题应把握的两个原则 (1)依据图象高低判断幂指数大小,相关结论为: ①在(0,1)上,指数越大,幂函数图象越靠近 x 轴(简记为指大图 低);②在(1,+∞)上,指数越大,幂函数图象越远离 x 轴(简 记为指大图高). (2)依据图象确定幂指数 α 与 0,1 的大小关系,即根据幂函数在
D.-1,1,3
课前预习
课堂互动
课堂反馈
解析 当 a=-1 时,y=x-1 的定义域是{x|x≠0},且为奇函数;
当 a=1 时,函数 y=x 的定义域是 R 且为奇函数;当 a=12时,
1

高中数学课件-幂函数

高中数学课件-幂函数

奇偶性 奇函数
偶函数
奇函数
非奇非 偶函数
奇函数
x∈[0,+∞)
单调性 增
时,增 x∈(-∞,0]


时,减
x∈[0,+∞) 时,增 x∈(-∞,0] 时,减
主页
[难点正本 疑点清源] 1.在(0,1)上,幂函数中指数越大,函数图象越靠近 x 轴, 在(1,+∞)上幂函数中指数越大,函数图象越远离 x 轴.

n

b 2a
n
f (m) 0 b2 4ac 0 f (n) 0
f(x)min>0(x∈[m, n])
④f(x)=ax2+bx+c<0(a>0)

[m,
n]
上恒成立
f f
(m) 0 (n) 0
f(x)max<0(x∈[m, n])
幂函数的图像与性质
知识点梳理
1.幂函数的概念 一般地,我们把形如 y=xα 的函数称为幂函数,其中 x 是自变量,α 是常数.
变式训练 4
已知幂函数 f(x)= x(m2 m)1 (m∈N*)
(1)试确定该函数的定义域,并指明该函数在其定义域上的单 调性; (2)若该函数还经过点(2, 2),试确定 m 的值,并求满足条 件 f(2-a)>f(a-1)的实数 a 的取值范围.
解 (1)m2+m=m(m+1),m∈N*, 而 m 与 m+1 中必有一个为偶数, ∴m(m+1)为偶数.
∴m>-1+ 5.
[8 分]
由②得 Δ2=(-m)2-4<0,即-2<m<2.
[12 分]
综上可得 5-1<m<2.
[14 分]

人教A版高中数学必修第一册第三章幂函数课件

人教A版高中数学必修第一册第三章幂函数课件

=(x1-x2)+2(xx21-x2x1)=(x1-x2)(1-x12x2) =(x1-x2)x1xx12x-2 2.
∵00<<xx12<≤
2, 2,
∴0<x1x2<2,
返回导航 上页 下页
/人A数学/ 必修 第一册
返回导航 上页 下页
∴x1x2-2<0,x1-x2<0,x1x2>0, ∴f(x1)-f(x2)=(x1-x2)x1xx12x-2 2>0, 即 f(x1)>f(x2),∴f(x)在(0, 2 ]上单调递减.
/人A数学/ 必修 第一册
返回导航 上页 下页
作幂函数图象的步骤
第一步:画第一象限的部分.幂函数在第一象限内的图象以下列三个函
数图象为代表:

α<0
时,以
y=x-1
的图象为代表;当
0<α<1
时,以
1
y=x2的图象为代表;
当 α>1 时,以 y=x2 的图象为代表.
/人A数学/ 必修 第一册
返回导航 上页 下页
/人A数学/ 必修 第一册
返回导航 上页 下页
(1)[解] ①因为幂函数 y=x0.5 在(0,+∞)上是单调递增的,
又25>13,所以(25)0.5>(13)0.5. ②因为幂函数 y=x-1 在(-∞,0)上是单调递减的,
又-23<-35,所以(-23)-1>(-35)-1. ③因为 y=x13在(0,+∞)上是单调递增的,所以(32)13>131=1, 又 y=x41在(0,+∞)上是单调递增的,所以(13)41<141=1,所以(32)13>(13)14.

高中数学一轮复习课件幂函数的图像和性质

高中数学一轮复习课件幂函数的图像和性质

总结归纳
及时总结归纳学习过程中 的重点和难点,形成自己 的学习笔记和心得体会, 便于回顾和复习。
保持良好作息和心态,积极备战高考
合理安排时间
保证充足的睡眠和合理的饮食, 保持良好的身体状态和精神状态

调整心态
保持积极乐观的心态,相信自己 能够通过努力取得好成绩。遇到 困难时,及时调整情绪,寻求帮
助和支持。
高中数学一轮复习课件 幂函数的图像和性质
汇报人:XXX 2024-01-22
目录
• 幂函数基本概念与性质 • 幂函数图像特征与绘制方法 • 幂函数在解决实际问题中应用 • 幂函数与其他类型函数关系研究 • 高考真题回顾与解题技巧总结 • 复习策略与备考建议
幂函数基本概念与
01
性质
幂函数定义及表达式
加强练习和反思总结是提高解题能力的关键。通过大量的练习可以加深对知识点的 理解和记忆;通过反思总结可以发现自己的不足之处并加以改进。
复习策略与备考建
06

制定个性化复习计划,明确目标
分析自身情况
根据自己的数学基础、学习能力 和时间安排,制定适合自己的复
习计划。
明确复习目标
确定自己在幂函数的图像和性质方 面的学习目标,例如掌握基本概念 、理解图像特征、熟练运用性质等 。
03
幂函数与一次、二次函数的比较
虽然幂函数、一次函数和二次函数在形式上有所不同,但它们之间有着
密切的联系。在解决某些问题时,可以通过转化思想将它们相互转化,
从而简化问题的求解过程。
幂函数与指数、对数函数关系探讨
幂函数与指数函数
指数函数的底数a可以看作是幂函数的指数n,而指数函数的指数x则可以看作是幂函数的 自变量。因此,指数函数和幂函数在形式上具有一定的相似性。

幂函数人教版高中数学必修一PPT课件

幂函数人教版高中数学必修一PPT课件


所以当x∈[0,3]时,函数f(x)的值域为[0,27].
39
幂函数 图象
定义域
y=x R
y=x2 R
y=x3 R
3
知识点聚焦:
二、幂函数的图象与性质
4
知识点聚焦:
5
幂函数人教版高中数学必修一PPT课件
探究一 幂函数的概念
• 【例】函数f(x)=(m2-m-1)xm2+m-3是幂函数,且当x∈(0,+∞)时,f(x)是增函数,求 f(x)的解析式.
幂函数人教版高中数学必修一PPT课件

3
(1)y=x5 ;
2
(2)y=x5 ;
8
(3)y=x5 ;
(4)y=x−45.
幂函数人教版高中数学必修一PPT课件
13
幂函数人教版高中数学必修一PPT课件
解析:
幂函数人教版高中数学必修一PPT课件
14
解析:
15
解析:
16
解析:
17
方法归纳:
• 作幂函数f(x)=xα图象的步骤: • (1)判断f(x)在(0,+∞)的单调性,并作出f(x)在(0,+∞)上的简图, •
7
幂函数人教版高中数学必修一PPT课件
方法归纳:
• (1)判断幂函数的依据: • 形如y=xα的函数叫幂函数,它具有三个特点: • ①系数为1. ②指数为一常数(也可以为0).③后面不加任何项. • (2)幂函数y=xα与指数函数y=ax(a>0且a≠1)的区别:
函数名称 幂函数 指数函数
函数解析式 y=xα
• (2)把f(x)=xα转化为无理根式,确定定义域. • (3)若f(x)的定义域不关于原点对称,则f(x)是非奇非偶函数,若f(x)的定义域关于原

高中数学人教版必修一 3.5幂函数的定义和性质(共19张PPT)

高中数学人教版必修一 3.5幂函数的定义和性质(共19张PPT)

奇偶性 奇
偶 奇 非奇非偶 奇
单调性

[0,+∞)↗
(- ∞,0) ↘

(0,+∞) ↘ ↗ (- ∞,0)↘
公共点
(1,1) (0,0)
(1)所有的幂函数y x 均在(0, )上有定义, 过 公 共 点(1, 1)
(2)当 0时,y x的图象过原点(0, 0), 当 0时,y x的图象不过原点;
【解析】(1)若 f(x)为正比例函数,
则mm22+ +m2m-≠1=0 1, ⇒m=1.
(2)若 f(x)为反比例函数,
则mm22+ +m2m-≠1=0 -1, ⇒m=-1.
(3)若 f(x)为二次函数,
则mm22+ +m2m-≠1=0 2,
⇒m=-1±2
13 .
(4)若 f(x)为幂函数,则 m2+2m=1,∴m=-1± 2.
y y x3
x
O
二、基础知识讲解
y
1
y x2
x
012
3
0 x0.5 1 1.414 1.732
x 456
x0.5 2 2.236 2.45
1
y x2
x
定义域:__[_0_,____)_____ 值 域:__[_0_,____)_____
奇偶性: 既__不__是__奇__函___数__也 不 是 偶 函 数
二、基础知识讲解
关于幂函数,主要学习下列几种函数的图象与性质.
(1) y x
1
(4) y x 2
(2) y x2 (5) y x1
(3) y x3
二、基础知识讲解
y
yx
O
定义域:____R________ 值 域:____R________ 奇偶性:___奇__函__数_________ 单调性:__在__R__上__是__增___函__数__

人教A版高中数学必修第一册3.3幂函数【课件】

人教A版高中数学必修第一册3.3幂函数【课件】

α


∴f(2)=,∴2 =,解得 α=-2,
∴f(x)=x-2.
f(x)的图象如图所示.
f(x)的定义域为(-∞,0)∪(0,+∞),单调递减区间为(0,+∞),单调递
增区间为(-∞,0).
反思感悟
1.幂函数的图象一定出现在第一象限内,一定不会出现在第四
象限内,图象最多只能同时出现在两个象限内,至于是否在第


(2)y= 的图象位于第一象限,因为函数为增函数,所以函数图




象是上升的,函数 y= -1 的图象可看作由 y= 的图象向下平


移 1 个单位长度得到(如选项 A 中的图象所示),将 y= -1 的图
象关于 x 轴对称后即为选项 B 中的图象.
答案:(1)B (2)B
探究二 幂函数的性质及其应用




对称,且在区间(0,+∞)内单调递减,求满足(2a-1) <(3-a) 的实
数 a 的取值范围.
解:∵函数 f(x)在区间(0,+∞)内单调递减,∴3m-9<0,解得 m<3.
又 m∈N*,∴m=1,2.
又函数图象关于 y 轴对称,∴3m-9 为偶数,故 m=1,Leabharlann -


-
-
∴有(2a-1) <(3-a) .∵y= 在区间(-∞,0),(0,+∞)内均单调递减,
【例2】 比较下列各组数的大小:
(1)1.13,1.23;
(2)4.8-3,4.9-3;
(3) -
-

, -
-

.
解:(1)设f(x)=x3,因为f(x)在区间(0,+∞)内单调递增,

高中数学必修一课件 3.3 幂 函 数

高中数学必修一课件 3.3 幂 函 数


2,

则 k+α=
()
A.12
B.1
C.32
D.2
解析:∵幂函数 f(x)=kxα(k∈R ,α∈R )的图象过点12,

2,

∴k=1,f 12=12α= 2,即 α=-12,∴k+α=12. 答案:A
3.若 y=ax a2+12 是幂函数,则该函数的值域是________. 解析:由已知 y=ax a2+12 是幂函数,得 a=1,所以
A.y=x+2
B.y=x2
C.y= x
D.y=x3
解析:设幂函数的解析式为 y=xα,当 x=2 时,y=4,
故 2α=4,即 α=2.
答案:B
知识点二 五个幂函数的图象与性质 (一)教材梳理填空
解析式 y=x
y=x2 y=x3
1
y=x 2
图象
y=1x
定义域 _R__
_R__
__R_ _[0_,___+__∞__) {_x_|_x_≠__0_}
[精准训练]
1.下列不等式在 a<b<0 的条件下不能成立的是 ( )
A.a-1>b-1
1
1
B.a 3 <b 3
C.b2<a2
-2
-2
D.a 3 >b 3
解析:分别构造函数
y=x-1,y=x
1 3
,y=x2,y=x -
2 3
,其
中函数 y=x-1,y=x2 在(-∞,0)上为减函数,故 A、C
成立.而
2.已知函数 f(x)=(a2-a-1)xa-1 2为幂函数,则 a=(
)
A.-1 或 2
B.-2 或 1
C.-1
D.1
解析:因为 f(x)=(a2-a-1)xa-1 2为幂函数,所以 a2-a -1=1,所以 a=2 或-1.又 a-2≠0,所以 a=-1. 答案:C

高中数学必修一课件:幂函数

高中数学必修一课件:幂函数
3.3 幂函数
要点1 幂函数的概念
一般地,函数____y_=_x_α_____叫做幂函数,其中x是自变量,α是常数.
要点2 五个幂函数的图象与性质 1
(1)在同一平面直角坐标系内,函数①y=x;②y=x 2 ;③y=x2;④y=x-1; ⑤y=x3的图象如图.
(2)五个幂函数的性质
y=x
y=x2
(2)幂函ห้องสมุดไป่ตู้y=x2,y=x-1,y=x
1 3
y=x-
1 2
在第一象限内的图象依次是图中的曲
线( D )
A.C1,C2,C3,C4 B.C1,C4,C3,C2
C.C3,C2,C1,C4 D.C1,C4,C2,C3 【解析】 由于在第一象限内直线x=1的右侧,幂函数y=xα的图象从上到 下相应的指数α由大变小,即“指大图高”,故幂函数y=x2在第一象限内的图象
1 2
,则α=-1,f(x)=x-1,所以函数f(x)的单调递减区间
是(-∞,0),(0,+∞).
6.已知a=413,b=1212,c=(-8)13,则a,b,c的大小关系为__c_<_b_<_a __. 解析 413>113=1,0<1212<112=1,(-8)13<0,所以c<b<a.
1
解析 ∵y=f(x)和y=-f(x)的单调性相反,y=x 2 -1在[0,+∞)上单调递 增,∴对称后的函数在[0,+∞)上单调递减.故选B.
4.下列函数既是偶函数又是幂函数的是( B )
A.y=x
2
B.y=x3
1
C.y=x2
D.y=|x|
解析 对于A,函数是奇函数,不合题意;对于B,函数是偶函数且是幂函

《_幂函数》精品课件

《_幂函数》精品课件

谢 谢
例3
证明幂函数 f ( x) x 在[0,+∞)上是增函数.
复习用定义证明函数的单调性的步骤: (1). 设x1, x2是某个区间上任意二值,且x1<x2; (2). 作差 f(x1)-f(x2),变形 ; (3). 判断 f(x1)-f(x2) 的符号; (4). 下结论. 证明:任取
高中数学必修1
幂函数
-3 -2 -1
y
y = x3 y = x2 y=x
4 3 2 1 1 -1 -2 -3 2 3
1
y= x2 y=x
1
x
我国著名数学家华罗庚教授在其 《数学的用场与发展》中指出:
“宇宙之大,粒子 之微,火箭之速,化 工之巧,地球之变, 生物之谜,日用之 繁,无处不用数 学。”
问题 1 :如果张红购买了每千克 1 元的蔬菜 w千克, 这里p是w的函数 。 yx 那么她需要付的钱数p = w元, 问题2:如果正方形的边长为 a,那么正方形的面积 2 yx 是S = a², 这里S是a的函数。 问题3:如果立方体的边长为 a,那么立方体的体积 3 yx 是 V = a³ , 这里V是a的函数 。 问题 4: 如果正方形场地的面积为 S ,那么正方形的 1 边长aS = , 这里a是S的函数 。 y x2 问题5:如果某人t s内骑车行进了1km,那么他骑车 1 1 t 的平均速度v = km/s , 这里v是t的函数 。 y
R R
R
R [0,+∞) R [0,+∞)
[0,+∞)



非奇 非偶

单调性
在R 在(-∞,0]上减, 在R上 上增 在[0,+∞)上增, 增
在[0, 在(-∞,0)上减, +∞)上增, 在(0,+∞)上减

高中数学第1轮第2章第14讲幂函数课件文新课标江苏专用.ppt

高中数学第1轮第2章第14讲幂函数课件文新课标江苏专用.ppt

【解析】(1)因为 f(x)在(0,+∞)上是减函数, 所以 m2-2m-3<0,所以-1<m<3, 又因为 m∈Z,所以 m=0,1,2. 而 m=0,2 时,f(x)=x-3 不为偶函数;m=1 时,适合. 所以 m=1,f(x)=x-4.
(2)因为 φ(x)=xa2-bx3,所以 φ(-x)=xa2+bx3. 故①当 a=0,b=0 时,φ(x)既是奇函数又是偶函数; ②当 a=0,b≠0 时,φ(x)为奇函数; ③当 a≠0,b=0 时,φ(x)为偶函数; ④当 a≠0,b≠0 时,φ(x)既不是奇函数也不是偶函数.
22 当x(1,+)时,它的图象恒在直线y=x的下
方,则=____1_,_-__1_,__-__2_ __
2
3.幂 函 数 y= xm2- 2m- 3(mZ)的 图 象 关 于 y轴 对 称 , 且 当 x0时 , 函 数 是 减 函 数 , 则 m 的 值 为 _____1_________
【解析】由m2-2m-3<0,得-1<m<3. 又m∈Z,所以m=0,1,2. 因为m2-2m-3为偶数,经验证,m= 1符合.
幂函数的综合应用
【例4】 已知幂函数y=xm2-2m-3 (mN*)的图 象关于y轴对称,且在(0,+)上是减函 数,求满足(a+1)-m3 (3-2a)-m3的a 的取值范围.
【解析】因为函数在(0,+)上是减函数, 所以m2-2m-3 0,解得-1 m 3, 又mN*,所以m=1, 2, 又因为函数图象关于y轴对称, 所以m2-2m-3是偶数,所以m=1, 因为y=x-13在(-,0)和(0,+)均为减函数,
+( x 2-mx+1)0 的定义域为全体实数,求
实数m的取值范围;
2比较3a

高中数学幂函数 PPT课件 图文

高中数学幂函数 PPT课件 图文
幂函数
幂函 数
石河子第一中学 颜波
我们先看几个具体问题:
(1)如果张红购买了每千克1元的蔬菜 x 千克,那么她 需要支付 y x 元,这里 y 是 x 的函数; (2)如果正方形的边长为x ,那么正方形的面积 y x 2,这里y 是 x 的函数;
(3)如果正方体的边长为 x ,那么正方形的体积 y x 3 ,这里 y 是 x 的函数;
若 幂 函 数 为偶函数,则图象在 一、 二 象限且关于 y 轴对称; 定义域为 (0, ) 的幂函数为非奇非偶函数,则图象只在 第一 象限
y x3
y x2
2
y x3 3 x2
1
y x2 x
3.当 a 0 时,幂函数图象都经过 (0,0)和(1, 1)点,并且在 (0, ) 上为
(4)如果一个正方形场地的面积为 x ,那么这个正方形的边

y

x
1 2
,这里
y

x
的函数;
(5)如果某人 x s 内骑车行进了 1 km , 那么他骑车的平均 速度 y x 1 km/s,这里 y 是 x 的函数;
问题1:这五个函数
y x,y

x 2,y

x 3,y

x
1 2

y

x 1
3
(2) y x5
1
(3) y x 4
(4)y x3
y x6
3
y x5
1
y x4
y x3
例2、比较下列数的大小
(1)1.10.1与1.20.1,
解:取 f (x) x0.1 , 则 幂指数0.1>0,故f(x)为 0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


幂函数 □2 y=xα 的底数为自变量,指数是常数 ;指
数函数正好相反,指数函数
□3 y=ax 中,底数是常数,指数是自变量

3
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
3.在同一平面直角坐标系内作出幂函数 y=x,y=x2,
y=x3,y=x
1 2
,y=x-1
的图象(如图).
15
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
(2)∵y=(m2-m-1)xm2-2m-3 为幂函数, ∴m2-m-1=1,解得 m=2 或 m=-1. 当 m=2 时,m2-2m-3=-3,则 y=x-3,且有 x≠0; 故 m=-1 时,m2-2m-3=0,则 y=x0,且有 x≠0. 故所求幂函数的解析式为 y=x-3 或 y=x0,它们的定义 域都是{x|x≠0}.
解析 (1)∵y=x12=x-2,所以是幂函数;y=2x2 由于出 现系数 2,因此不是幂函数;y=x2+x 是两项和的形式,不 是幂函数;从 y=1=x0(x≠0)可以看出,常函数 y=1 的图象 比幂函数 y=x0 的图象多了一个点(0,1),所以常函数 y=1 不是幂函数.
19
课前自主预习
课堂互动探究
在第一象
限内的图象依次是图中的曲线( )
A.C2,C1,C3,C4
B.C1,C3,C2,C4
C.C3,C2,C1,C4
D.C1,C4,C2,C3
21
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
解析 由于在第一象限内直线 x=1 的右侧,幂函数 y =xα 的图象从上到下相应的指数 α 由大变小,即幂函数图象 在第一象限内直线 x=1 右侧的“高低”关系是“指大图 高”,故幂函数 y=x2 在第一象限内的图象为 C1,y=x-1 在
数学 ·必修1
第二章 基本初等函数(Ⅰ)
2.3 幂函数
1
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
课前自主预习
2
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
1.幂函数的定义
□1 一般地,函数 y=xα 叫做幂函数,其中 x 是自变量,
α 是常数

2.幂函数 y=xα 与指数函数 y=ax(a>0,且 a≠1)的区
1
第一象限内的图象为 C4,y=x 3 在第一象限内的图象为 C2, y=x-12 在第一象限内的图象为 C3.
22
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
拓展提升 幂函数图象的特征
(1)在第一象限内,直线 x=1 的右侧,各幂函数图象对 应的指数逆时针增大;在第一象限内,直线 x=1 的左侧, 指数也呈逆时针增大.
7
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
2.做一做 (1)若 y=mxα 是幂函数,则 m=___1_____. (2)(教材改编 P79T1)已知幂函数 f(x)=xα 的图象经过点 (2,8),则 f(-2)=___-__8___. (3)若 y=axa 是幂函数,则该函数的值域是 _(_-__∞__,__+__∞_
随堂达标自测
课后课时精练
数学 ·必修1
它们的性质如下表.
5
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
6
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
1.判一判(正确的打“√”,错误的打“×”) (1)函数 y=x3+2 是幂函数.( × ) (2)幂函数的图象必过(0,0)和(1,1)这两点.( × ) (3)指数函数 y=ax(a>0,且 a≠1)的定义域为 R,与底数 a 无关,幂函数 y=xα 的定义域为 R,与指数也无关.( × )
8
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
课堂互动探究
9
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
『释疑解难』 (1)幂函数的图象大致分为下表中的几类:
10
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
11
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
12
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
(2)幂函数与指数函数的区别
13
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
探究1 幂函数的定义
例 1 (1)在函数①y=1x,②y=x2,③y=2x,④y=1, ⑤y=2x2,⑥y=x-12 中,是幂函数的是( )
A.①②④⑤ B.③④⑥
C.①②⑥
D.①②④⑤⑥
(2)已知幂函数 y=(m2-m-1)xm2-2m-3,求此幂函数的
解析式,并指出其定义域.
答案 (2)见解析
14
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
解析 (1)幂函数是形如 y=xα(α 为常数)的函数,①是 α =-1 的情形,②是 α=2 的情形,⑥是 α=-12的情形,所 以①②⑥都是幂函数;③是指数函数,不是幂函数;⑤中 x2 的系数是 2,所以不是幂函数;④是常函数,不是幂函数.所 以只有①②⑥是幂函数.
【跟踪训练 1】 (1)在函数 y=x12,y=2x2,y=x2+x, y=1 中,幂函数的个数为( )
A.0 B.1 C.2 D.3
1
(2)已知 y=(m2+2m-2)xm2-1 +2n-3 是幂函数,求 m, n 的值.
答案 (2)见解析
18
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
16
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
拓展提升 判断函数是幂函数的依据
判断一个函数是否为幂函数的依据是该函数是否为 y= xα(α 为常数)的形式,即满足:(1)指数为常数;(2)底数为自 变量;(3)系数为 1.
17
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
随堂达标自测
课后课时精练
数学 ·必修1
m2+2m-2=1,
(2)由题意得m2-1≠0, 2n-3=0,
所以 m=-3,n=32.
解得mn==32-,3,
20
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
探究2 幂函数的图象及应用
例2
幂函数
y=x2,y=x-1,y=x
1 3
,y=x-12
相关文档
最新文档