不等式组应用题

合集下载

不等式组的应用题及答案

不等式组的应用题及答案

不等式组的应用题及答案
题目:某工厂生产两种产品A和B。

已知生产产品A每小时需要3个工人,生产产品B每小时需要2个工人。

工厂每天最多可以提供40个工人小时的劳动力。

同时,生产A每小时可以带来20元的利润,生产B每小时可以带来30元的利润。

工厂希望每天的利润不低于500元。

请确定工厂每天生产产品A和B的最大可能利润。

解答:
设工厂每天生产产品A的小时数为x,生产产品B的小时数为y。

根据题意,我们可以得到以下不等式组:
1. 3x + 2y ≤ 40 (劳动力限制)
2. 20x + 30y ≥ 500 (利润要求)
我们需要找到满足以上不等式组的x和y的最大可能利润。

首先,我们解第一个不等式,得到y的表达式:
y ≤ (40 - 3x) / 2
将y的表达式代入第二个不等式:
20x + 30 * ((40 - 3x) / 2) ≥ 500
化简得:
20x + 600 - 45x ≥ 500
整理得:
-25x ≥ -100
x ≤ 4
因为x和y都代表生产小时数,所以它们都必须是非负数,即:
x ≥ 0
y ≥ 0
结合y ≤ (40 - 3x) / 2,我们可以得到x和y的取值范围。

当x = 4时,y = (40 - 3 * 4) / 2 = 14。

所以,工厂每天生产产品A 4小时,生产产品B 14小时。

此时,最大可能利润为:
20 * 4 + 30 * 14 = 80 + 420 = 500元
答案:工厂每天生产产品A 4小时,生产产品B 14小时,最大可能利润为500元。

不等式组应用题及答案

不等式组应用题及答案

不等式组应用题及答案用“大于号”、“小于号”、“不等号”、“大于等于”或“小于等于”连接并具有大小关系的式子,叫做不等式。

几个不等式联立起来,叫做不等式组。

以下是小编整理的不等式组应用题及答案,希望对你有帮助。

题目:一、选择题1,下列各式中,是一元一次不等式的是()a.5+48b.2x-1c.2x≤5d.-3x≥02,已知aa.4a3,下列数中:76,73,79,80,74.9,75.1,90,60,是不等式x50的解的有()a.5个b.6个c.7个d.8个4,若t0,那么a+t与a的大小关系是()a.+tb.a+tac.a+t≥ad.无法确定5,(2008年永州)如图,a、b、c分别表示苹果、梨、桃子的质量.同类水果质量相等则下列关系正确的是( )a.acbb.bacc.abcd.cab6,若a0的解集是()a.xb.x-d.x7,不等式组的整数解的个数是()a.1个b.2个c.3个d.4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为()a1小时~2小时b2小时~3小时c3小时~4小时d2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是()a.5千米b.7千米c.8千米d.15千米10,在方程组中若未知数x、y满足x+y≥0,则m的取值范围在数轴上表示应是()二、填空题11,不等号填空:若a12,满足2n-11-3n的最小整数值是________.13,若不等式ax+b-1,则a、b应满足的条件有______.14,满足不等式组的整数x为__________.15,若|-5|=5-,则x的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g10g,表明了这罐八宝粥的净含量的范围是.17,小芳上午10时开始以每小时4km的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________.18,代数式x-1与x-2的值符号相同,则x的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)(3) (4)20,代数式的值不大于的值,求x的范围21,方程组的解为负数,求a的范围.22,已知,x满足化简:.23,已知│3a+5│+(a-2b+)2=0,求关于x的不等式3ax-(x+1)24,是否存在这样的整数m,使方程组的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案:一、选择题1,c;2,c;3,a;4,a.解:不等式t0利用不等式基本性质1,两边都加上a得a+ta.5,c.6,d.解:不等式ax+10,ax-1,∵a7,d.解:先求不等式组解集-8,d;9,c.10,d.解:①+②,得3x+3y=3-m,∴x+y=,∵x+y≥0,∴≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选d.二、填空题11,、、,再利用数轴找到最小整数n=1.13,a14,-2,-1,0,1解析:先求不等式组解集-315,x≤11解析:∵│a│=-a时a≤0,∴-5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10) 18,x2或x三、解答题19,(1)9-4(x-5).(2).解:,去分母3x-(x+8)(3)解:解不等式①得x,解不等式②得x≤4,∴不等式组的解集(4)解:解不等式①得x≥-,解不等式②得x1,∴不等式组的解集为x1.20,;21,a23,解:由已知可得代入不等式得-5x-(x+1)-1,∴最小非负整数解x=0.24,解:得∵x,y为非负数∴解得-≤m≤,∵m为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解的m,•从而建立关于m为未知数的一元一次不等式组,求解m的取值范围,选取整数解.25,设有x只猴子,则有(3x+59)只桃子,根据题意得:0。

列不等式组解决实际问题

列不等式组解决实际问题

列一元一次不等式组解应用题的一般步 骤是: (1):审题,分析题目中已知什么,求 什么,明确各数量之间的关系 (2):设适当的未知数 (3):找出题目中的所有不等关系 (4):列不等式组 (5):求出不等式组的解集 (6):写出符合题意的答案 答:审、设、找、列、解、答。
某工人在生产中, 例1 某工人在生产中,经过第一次改进技 每天所做的零件的个数比原来多10个 术,每天所做的零件的个数比原来多 个, 因而他在8天内做完的零件就超过 因而他在 天内做完的零件就超过200个, 个 天内做完的零件就超过 后来,又经过第二次技术的改进, 后来,又经过第二次技术的改进,每天又多 个零件, 做37个零件,这样他只做 天,所做的零件 个零件 这样他只做4天 的个数就超过前8天的个数 天的个数, 的个数就超过前 天的个数,问这位工人原 先每天可做零件多少个? 先每天可做零件多少个?
例2、某中学为八年级寄宿学生安 排宿舍,如果每间4人,那么有20 人无法安排,如果每间8人,那么 有一间不空也不满,求宿舍间数 和寄宿学生人数。
例3、 某校为了奖励在数学竞赛中获奖 、 的学生,买了若干本课外读物准备送给他 的学生 买了若干本课外读物准备送给他 们. 如果每人送3本 则还余 则还余8本 如果前面每 如果每人送 本,则还余 本;如果前面每 人送5本 最后一人得到的课外读物不足 最后一人得到的课外读物不足3 人送 本,最后一人得到的课外读物不足 设该校买了m本课外读物 本.设该校买了 本课外读物 有x名学生 设该校买了 本课外读物,有 名学生 获奖,请解答下列问题 请解答下列问题: 获奖 请解答下列问题 (1)用含 的代数式表示 用含x的代数式表示 用含 的代数式表示m; (2)求出该校的获奖人数及所买课外读物 求出该校的获奖人数及所买课外读物 的本数. 的本数

不等式组应用题

不等式组应用题

• 7、学校6名教师和234名学生集体外出活动, 准备租用45座的大车或30座的小车,若租 用1辆大车2车费1100元
• (1)求每辆大、小车的租车费各是多少?
• (2)若每辆车上至少要有一名教师,且总 租车费不超过2300元,求最省钱的租车方 案。
• (2)设A地运往C地的震灾物资为吨x(x为 整数),若要B地运往C的震灾物资数量大 于A地运往D地的震灾物资数量的2倍,且要 求B地运往D地的震灾物资的数量不超过63 吨,则A,B两地的震灾物资运往C,D两地的方 案有几种?
• (1)一套课桌凳和一套办公桌椅的价格分 别是多少?
• (2)求出课桌凳和办公桌椅的购买方案?
• 9、为支持抗震救灾,我市A,B两地的震灾 物资100吨和180吨需全部运往总灾区C,D两 地,根据灾区的情况,这批震灾物资运往C 的数量比运往D的数量的2倍少80吨
• (1)求这批震灾物资运往C,D两地的数量 各是多少吨?
• 8、为了解决农民工子女就近入学问题,某 市第一小学,计划2012年秋学期扩大办学 规模,学校决定开支8万元全部用于购买课 桌凳,办公座椅和电脑,要求购买的课桌 凳与办公桌椅的数量比为20:1,购买电脑 的资金不低于16000元,但不超过24000元, 已知一套办公桌椅比一套课桌凳贵80元, 用2000元恰好可以买到10套课桌凳和4套办 公桌椅(课桌凳和办公桌椅均成套购进)
• (2)设生产A,B两种产品获总利润为y元,其中一 种的生产件数为x,试写出y与x之间的关系,并说 明哪种生产方案获总利润最大,最大利润是多少?
6、火车站有某公司待运的甲种货物1530吨, 乙种货物1150吨,现计划用50节A、B两 种型号的车厢将这批货物运至北京,已知
每节A型货厢的运费是0.5万元,每节B节货 厢的运费是0.8万元;甲种货物35吨和乙种 货物15吨可装满一节A型货厢,甲种货物25 吨和乙种货物35吨可装满一节B型货厢,按 此要求安排A、B两种货厢的节数,共有哪几 种方案?请你设计出来;并说明哪种方案的运 费最少?

列不等式(组)解应用题专项练习

列不等式(组)解应用题专项练习

第三讲 列不等式(组)解应用题专项练习1.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人. ··································· 3分(2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, ······························· 6分 解这个不等式组,得111244y ≤≤. ∵y 取正整数,∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元. ································· 8分2.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?解:(1)设购买甲种鱼苗x 尾,则购买乙种鱼苗(6000)x -尾,由题意得:0.50.8(6000)3600x x +-= ………………………………………(1分)解这个方程,得:4000x =∴60002000x -=答:甲种鱼苗买4000尾,乙种鱼苗买2000尾. …………………(2分)(2)由题意得:0.50.8(6000)4200x x +-≤ ……………………………(3分) 解这个不等式,得: 2000x ≥即购买甲种鱼苗应不少于2000尾. ………………………………(4分)(3)设购买鱼苗的总费用为y ,则0.50.8(6000)0.34800y x x x =+-=-+ (5分)由题意,有909593(6000)6000100100100x x +-≥⨯………………………(6分) 解得: 2400x ≤…………………………………………………………(7分) 在0.34800y x =-+中 ∵0.30-<,∴y 随x 的增大而减少∴当2400x =时,4080y =最小.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低. (9)3.为支持玉树搞震救灾,某市A 、B 、C 三地现分别有赈灾物资100吨、100吨、80吨,需全部运往玉树重灾地区D 、E 两县,根据灾区情况,这批赈灾物资运往D 县的数量比运往E 县的数量的2倍少20吨。

不等式组应用题

不等式组应用题

1.某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B 两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?
2.为奖励在文艺汇演中表现突出的同学,班主任派生活委员小亮到文具店为获奖同学购买奖品.小亮发现,如果买1个笔记本和3支钢笔,则需要18元;如果买2个笔记本和5支钢笔,则需要31元.
(1)求购买每个笔记本和每支钢笔各多少元?
(2)班主任给小亮的班费是100元,需要奖励的同学是24名(每人奖励一件奖品),若购买的钢笔数不少于笔记本数,求小亮有哪几种购买方案?
3.有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.
(1)请写出其中一个三角形的第三边的长;
(2)设组中最多有n个三角形,求n的值;
(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.
4.某工厂生产A、B两种产品共50件,其生产成本与利润如下表:
A种产品B种产品
成本(万元/件) 0.6 0.9
利润(万元/件) 0.2 0.4
若该工厂计划投入资金不超过40万元,且希望获利超过16万元,问工厂有哪几种生产方案?哪种生产方案获利润最大?最大利润是多少?
5.校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.
(1)求大、小车每辆的租车费各是多少元?
(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.。

常考经典不等式应用题6道

常考经典不等式应用题6道

1、某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表,设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润。

甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大2、某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件.(1)完成下表甲(kg)已(kg)件数(件)A5x xB4(40-x)40-x(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.3、我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:湘莲品种A B C每辆汽车运载量(吨)12108每吨湘莲获利(万元)342设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案并求出最大利润的值。

4、为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220200200运往E县的费用(元/吨)250220210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少5、我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会.现有A型、B型、C型三种汽车可供选择.已知每种型号汽车可同时装运2种土特产,且每辆车必须装满.根据下表信息,解答问题.苦荞茶 青花椒 野生蘑菇每辆汽车运载量(吨)A 型2 2 B 型 4 2 C 型16(1)设A 型汽车安排x 辆,B 型汽车安排y 辆,求y 与x 之间的函数关系式.(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案并写出每种方案. (3)为节约运费,应采用(2)中哪种方案并求出最少运费.6、小明到一家批发兼零售的文具店给九年级学生购买考试用2B 铅笔,请根据下列情景解决问题。

七年级不等式组应用题(一)

七年级不等式组应用题(一)

七年级不等式组应用题(一)七年级不等式组应用题题目一:购买手机壳小明想要购买手机壳,他在某网店上看到了两款手机壳的价格。

壳A的价格是x元,壳B的价格是y元。

已知小明手里的钱不超过80元,且他至少要购买一款手机壳。

请问他可选购的手机壳有哪些价格组合?题目二:运动场馆租用某运动场馆的运营商希望通过租用来增加收益。

经过调研,他们发现,七年级的学生每小时支付15元租金,而八年级的学生每小时支付20元租金。

运营商希望每小时租金收入不少于120元。

如果这两个年级的学生数量分别是a和b,且a和b的和不少于10,则运营商能够满足要求吗?题目三:汽车出租某汽车出租公司的价格策略如下:运行不超过10公里收费10元,超过10公里但不超过20公里每公里加收1元,超过20公里但不超过30公里每公里加收2元,以此类推。

小明租车行驶了x公里,其中超出10公里的部分小明需要支付多少钱?题目四:学生成绩某班级有70名学生,他们的期末考试成绩都在60分以上。

已知及格学生人数加上不及格学生人数的和为70人,及格学生的人数是不及格学生人数的3倍。

请问及格学生的人数是多少?题目五:购买书籍小红想要购买一些书籍,已经了解到所要购买的书籍一共有n本,每本书的价格为p元。

她手里最多只有100元,且必须购买至少一本书。

请问小红最多能购买几本书?题目六:制作纸盒根据规定,一个纸盒的制作需要占用2张A3纸和4张A4纸。

甲工厂每天最多可以使用A3纸240张,A4纸600张。

已知甲工厂每天最多能制作纸盒x个,且每个纸盒的售价为y元。

请问甲工厂每天最多能获得多少收益?以上是七年级不等式组的一些应用题,它们可以帮助学生深入理解和应用不等式概念。

希望这些题目能够帮助大家更好地掌握不等式组的解题方法。

题目七:聚会费用分摊小明和他的朋友们打算举办一次聚会,共有x人参加。

聚会的费用要平摊到每个人身上,已知如果参加人数不超过10人,每人需要支付10元;如果参加人数超过10人但不超过20人,则超出的每人需要支付5元;如果参加人数超过20人,则超出的每人需要支付3元。

不等式组应用题,经典类型全

不等式组应用题,经典类型全

一元一次不等式组解决实际问题分配问题:1.把若干颗花生分给若干只猴子。

如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。

问猴子有多少只,花生有多少颗?2. 2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?3. 某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?5. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。

如果有x间宿舍,那么可以列出关于x的不等式组:可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1 爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。

已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。

不等式组应用题

不等式组应用题

1某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本. 问组建的中型图书角和小型图书角各有多少个?解:(1)设组建中型图书角x个,则组建小型图书角为(30-x)个.由题意,得80x+30(30-x)≤1900 50x+60(30-x)≤1620,解这个不等式组,得18≤x≤20.由于x 只能取整数,∴x的取值是18,19,20.当x=18时,30-x=12;当x=19时,30-x=11;当x=20时,30-x=10. 故有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个. (2)方案一的费用是:860×18+570×12=22320(元); 方案二的费用是:860×19+570×11=22610(元); 方案三的费用是:860×20+570×10=22900(元). 故方案一费用最低,最低费用是22320元.2时间还有5小时,经了解汽车又秭归茅坪港驶往宜昌三峡机场的平均速度是50千米/时。

途中有三峡工程和西陵峡口等著名的旅游景点,若顺便参观三峡工程需多用时2小时,到西陵峡口游玩需再多用1小时。

请问夏老师游玩者两个景点后,会影响赶到赶到三峡机场登机吗?老师从茅坪直达三峡机场所用时间为:70÷50=1.4(小时) 老师游玩两个景点后再抵达机场,共需时间为:1.4+1+2=4.4(小时) 因为4.4<5,所以张老师游玩两个景点后,不会影响赶到三峡机场登机. 答:张老师游玩两个景点后,不会影响赶到三峡机场登机.。

不等式组应用题

不等式组应用题

1.有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?
2.某宾馆底层客房比二楼少5间,某旅游团有48人,若全安排在底层,每间4人,则房间不够;若每间5人,则有房间没有住满5人;若全安排在二楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人,求该宾馆底层有客房多少间?
3.把若干个糖果分给几只猴子,若每只猴子分3个,则余8个;若每只猴子分5个,则最后一个猴子分得的糖果数不足3个,问共有多少只猴子,多少个糖果?
4.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

5.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?
6.一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2.求x的取值范围.
7.4个男生和6个女生到图书馆参加装订杂志义务劳动,管理员要求每个人必须独立装订,而且每个男生的装订数是每个女生的2倍,在装订过程中发现,女生们的装订总数肯定会超过30本,男,女生们的装订总数肯定不到98本.问:男,女生平均每人各装订多少本?。

不等式组应用题

不等式组应用题

1.某商场计划拨款9万元从厂家购买50台电视机,已知该厂家生产三种不同型号的电视机的出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,商场销售一台甲种电视机可获利150元,销售乙种电视机每台可获利200元,销售丙种电视机每台可获利250元.(1)若同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)经市场调查这三种型号的电视机是最受欢迎的,且销售量乙种是丙种的3倍.商场要求成本不能超过计划拨款数额,利润不能少于8500元的前提,购进这三种型号的电视机共50台,请你设计这三种不同型号的电视机各进多少台?2.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品,共50件.已知生产一件A 种产品,需用甲种原料9千克,乙种原料3千克;生产一件B 种产品,需用甲种原料4千克,乙种原料10千克.1)据现有条件安排A 、B 两种产品的生产件数,有哪几种方案,请你设计出来.2)若甲种原料每千克80元,乙种原料每千克120元,怎样设计成本最低.3.若不等式组⎩⎨⎧->-->63332a x x x 的正整数解只有2,求a 的整数值.2012 22.(10分)某校八年级举行英语演讲比赛,拍了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A 、B 两种笔记本的价格分别是12元和8元,他们准备购买者两种笔记本共30本.(1) 如果他们计划用300元购买奖品,那么能卖这两种笔记本各多少本?(2) 两位老师根据演讲比赛的设奖情况,决定所购买的A 种笔记本的数量要少于B 种笔记本数量的32,但又不少于B 种笔记本数量的31,如果设他们买A 种笔记本n 本,买这两种笔记本共花费w 元.① 请写出w (元)关于n (本)的函数关系式,并求出自变量n 的取值范围;② 请你帮助他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?4.已知关于x 、y 的方程组⎩⎨⎧=-=+my x y x 212.(1)求这个方程组的解;(2)当m 取何值时,这个方程组的解中,x 大于1,y 不小于-1.21.(2012•河南)某中学计划购买A 型和B 型课桌凳共200套.经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过2/3 B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?5.艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?6.某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下.如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?7. 某旅行杜拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m≤100 100<m≤200 m>200 收费标准(元/人) 90 85 75 甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费10 800元,若两校联合组团只需花赞18 000元.(1)两所学校报名参加旅游的学生人数之和赳过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?8. 根据对话的内容,试求出饼干和牛奶的标价各是多少元?9.某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 0.5 元交费.①该厂某户居民 2月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表示)?②下表是这户居民 3 月、4 月的用电情况和交费情况:根据上表数据,求电厂规定A 度为多少?10.艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?11.近几年我省高速公路的建设有了较大的发展,有力地促进了我省的经济建设,正在修建的某段高速公路要招标,现有甲、乙两个工程队,若甲、乙两队合作24天可以完成,需费用120万元,若甲单独做20天后,剩下的工程由乙做,还需40天才能完成,这样需费用110万元.问:(1)甲、乙两队单独完成此项工程,各需要多少天?(2)甲、乙两队单独完成此项工程,各需要费用多少万元?。

不等式组应用题

不等式组应用题
答案:每个小组原先每天生产16件产 小组原先每天生产16 答案:每个小组原先每天生产16件产 品。
一本英语书共98 98页 8、一本英语书共98页,张力读了 一周( 还没读完, 一周(7天)还没读完,而李永不 到一周就已读完。 到一周就已读完。李永平均每天 比张力多读3 比张力多读3页,张力平均每天读 多少页(答案取整数)? 多少页(答案取整数)?
11、 11、A、B两车间各有若干名工人生产同 一种零件, 车间有一人每天只生产6 一种零件,A车间有一人每天只生产6件, 其余的每人生产11 11件 其余的每人生产11件;B车间有一人每 天只生产7 其余每人每天生产10 10件 天只生产7件,其余每人每天生产10件。 已知两车间每天生产零件的总数相等, 已知两车间每天生产零件的总数相等, 且每个车间每天生产的零件总数不少于 100件 也不超过200 200件 100件,也不超过200件,求A、B车间各 有多少人
每分钟可抽1.1吨水的A 1.1吨水的 5、用每分钟可抽1.1吨水的A型抽 水机来抽池水,半小时可以抽完; 水机来抽池水,半小时可以抽完; 如果用B型抽水机,估计20 20分钟到 如果用B型抽水机,估计20分钟到 22分钟可以抽完 分钟可以抽完。 型抽水机比A 22分钟可以抽完。B型抽水机比A型 抽水机每分钟约多抽多少吨水? 抽水机每分钟约多抽多少吨水?
如果甲、 (2)如果甲、乙两种汽车每辆的 租车费用分别为2000 2000元 1800元 租车费用分别为2000元、1800元, 请你选择最省钱的一种租车方案
答案:(1)甲种租3辆,乙种租5辆 乙种租5 答案:(1 甲种租3 :( 甲种租4 乙种租4 甲种租4辆,乙种租4辆 甲种租5 乙种租3 甲种租5辆,乙种租3辆 甲种租6 乙种租2 甲种租6辆,乙种租2辆 甲种租3 乙种租5 (2)甲种租3辆,乙种租5辆,一共是 15000元 15000元

不等式(组)应用题(一)(人教版)(含答案)

不等式(组)应用题(一)(人教版)(含答案)

不等式(组)应用题(一)(人教版)一、单选题(共6道,每道16分)1.为改善城市生态环境,实现城市生活垃圾减量化、资源化、无害化的目标,某市决定从3月1日起,在全市部分社区试点实施生活垃圾分类处理.某街道计划建造垃圾初级处理点20个,解决垃圾投放问题.A,B两种类型处理点的占地面积、可供居民使用幢数及造价见下表:已知可供建造垃圾初级处理点占地面积不超过,该街道共有490幢居民楼.设建造A类型处理点x个.(1)满足条件的建造方案共有几种?根据题意,所列方程(组)或不等式(组)正确的是( ) A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:不等式(组)应用题2.(上接第1题)(2)设建造垃圾处理点的总费用为w万元,则w可用含x的代数式表示为__________;当x=________时,费用最少.横线处依次所填正确的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:不等式(组)应用题3.《中华人民共和国个人所得税法》中规定:公民月工资所得不超过3500元部分不必纳税,超过3500元的部分为全月应纳税所得额,即全月应纳税所得额=当月工资-3500元.个人所得税款按下表累加计算:例如:某人某月工资为5500元,需交个人所得税为:(5500-3500-1500)×10%+1500×3%.(1)若某人月工资为4200元,则他应缴纳的个人所得税款为( )A.21元B.315元C.420元D.700元答案:A解题思路:试题难度:三颗星知识点:分段计费4.(上接第3题)(2)若小明今年4月份的工资应缴纳个人所得税款不低于145元,则他今年4月份工资至少为( )A.2500元B.4950元C.6000元D.6450元答案:C解题思路:试题难度:三颗星知识点:分段计费5.在某市开展城乡综合治理的活动中,需要将A,B,C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D,E两地进行处理.已知运往D地的数量为90立方米,运往E的数量为50立方米.(1)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地的数量不超过12立方米,则A,C两地运往D,E两地共有( )种方案.A.4B.3C.2D.1答案:C解题思路:试题难度:三颗星知识点:一元一次不等式组的应用6.(上接第5题)(2)已知从A,B,C三地把垃圾运往D,E两地处理所需费用如下表:在(1)的条件下,最少费用是( )元.A.2870B.2873C.2876D.2879答案:B解题思路:试题难度:三颗星知识点:一元一次不等式组的应用。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式组应用题专题一、解答题1、随着生活水平的逐步提高,某单位的私家小轿车越来越多,为确保有序停车,单位决定筹集资金维修和新建一批停车棚.该单位共有42辆小轿车,准备维修和新建的停(3)为确保工程顺利完成,单位最少需要出资多少万元2、为创建丹阳生态城市,实现城市生活垃圾减量化、资源化、无害化的目标,我市决定在全市部分社区试点实施生活垃圾分类处理. 某街道计划建造垃圾初级处理点20个,解决垃圾投放问题. 有A、B两种类型处理点的占地面积、可供使用居民楼幢数及造价见下表:(1)满足条件的建造方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱,最少需要多少万元.3、随着人们节能环保意识的增强,绿色交通工具越来越受到人们的青睐,电动摩托成为人们首选的交通工具,某商场计划用不超过140000元购进A、B两种不同品牌的电动摩托40辆,预计这批电动摩托全部销售后可获得不少于29000元的利润,A 、B两种品牌电动摩托的进价和售价如下表所示:设该商场计划进A品牌电动摩托x辆,两种品牌电动摩托全部销售后可获利润y元.⑴写出y与x之间的函数关系式;⑵该商场购进A品牌电动摩托多少辆时?获利最大,最大利润是多少?4、某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据:每千克饮料甲乙果汁含量果汁A0.5千克0.2千克B0.3千克0.4千克请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?5、为极大地满足人民生活的需求,丰富市场供应,我市淮上区温棚种植面积在不断扩大.在耕地上培成一行一行的长方形土埂,按顺序间隔种植不同农作物的方法叫分垄间隔套种。

科学研究表明:在塑料温棚中分垄间隔套种高、矮不同的蔬菜和水果,可增加它们的光合作用,提高单位面积的产量和经济效益。

现有一个种植总面积为..........2540m 的长方形塑料温棚,分垄间隔套种草莓和西红柿.....................共.24垄,种植的草莓或西红柿单种.............农作物的总垄数不低于..........10垄,又不超过......14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:............................(1)若设草莓共种植了x 垄,通过计算说明共有几种种植方案?分别是哪几种?(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?6、冷饮店每天需配制甲、乙两种饮料共50瓶,已知甲饮料每瓶需糖14克,柠檬酸5克;乙饮料每瓶需糖6克,柠檬酸10克.现有糖500克,柠檬酸400克. (1)请计算有几种配制方案能满足冷饮店的要求?(2)冷饮店对两种饮料上月的销售情况作了统计,结果如下表.请你根据这些统计数两种饮料的日销量 甲 乙 10 40 12 38 14 36 16 34 21 29 25 25 30 20 38 12 40 10 50 0 天数 34448111227、某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下.如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?8、某房地产开发公司计划建A 、B 两种户型的住房共80套,已知该公司所筹集的资金不少于2090万元,但不超过2096万元,且所筹集资金全部用于建房,两种户型的建房户型AB成本(万元/套) 25 28 售价(万元/套)3034(1(2)试问该公司将如何建房,才能使获得的利润最大;(3)若根据市场调查,每套B 型住房的售价不会改变,每套A 型住房的售价将会提高a 万元(0 a ),且所建的两种住房可全部售出.试问该公司又将如何建房,才能使获得的利润最大。

(注:利润=售价-成本)9、为节约用水,某市居民生活用水按阶梯式水价计量,将居民的每月生活用水水价分为三个等级:一级20立方米及以下,二级21~30立方米(含30立方米),三级31立方米及以上,以下是王聪家水费发票的部分信息:浙江省××市自来水总公司水费专用发票联计费日期:2011-07-01至2011-08-01 付款期限:上期抄见数本期抄见数加原表用水量(吨)本期用水量(吨)88992435自来水费(含水资源费)污水处理费用水量(吨)单价元(/吨)金额(元)用水量(吨)单价元(/吨)金额(元)阶梯一20 1.3026.00200.5010.00阶梯二1019.00100.50 5.00阶梯三515.0050.50 2.50本期实付金额(大写)柒拾柒元伍角整77.50(元)(注:居民生活用水水价=居民生活自来水费........+.居民生活污水处理费.........)(1)从以上信息可知,水费的收费标准(含污水处理费)......是:每月用水20吨及以内为元/吨,每月用水21~30吨(含30吨)为元/吨,31立方米及以上为元/吨.(2)随着气温的降低,王聪家的用水量也在逐步下降,已知2012年2月份王聪家所缴的水费为55.20元,请你计算王聪家该月份的用水量为多少吨.(3)2012年4月1日起,该市水价在现有的基础上上调了10%,为了节省开支,王聪家决定把每月水费控制在家庭月收入的1.5%以内,若王聪家的月收入为5428元,则王聪家每月的用水量最多只能用多少立方米(精确到1立方米).10、“五一”将至,某商场计划进A、B两种型号的衬衣共80件,商场用于买衬衣的资金不少于4288元,但不超过4300元。

两种型号的衬衣进价和售价如下表:(1)该商场对这种型号的衬衣有哪几种进货方案。

(2)该商场如何获得利润最大。

(3)现据商场测算,每件B型衬衣的售价不会改变,每件A型衬衣的售价将会提高m11、在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m 和乙种板材120002m 的任务(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m 或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材及能安置的人数如下表所示:问:这400间板房最多能安置多少灾民?12、今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环保意识,节约用水,某校数学教师编造了一道应用题:为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定: (1)若某用户六月份用水量为18吨,求其应缴纳的水费;(2)记该户六月份用水量为x 吨,缴纳水费y 元,试列出y 关于x 的函数式;(3)若该用户六月份用水量为40吨,缴纳消费y 元的取值范围为70≤y≤90,试求m 的取值范围。

13、为了更好地治理洋澜湖水质,保护环境,市治污公司决定购买10台,污水处理设备,现有A,B两种型号的设备,其中每台的价格,同处理污水量如下表:经调查:购买一台A型号设备比购买一台B型号设备多2万元,购买2台A型设备比购买3台B型号设备少6万元。

(1)求a ,b的值(2)经预算:使治污公司购买污水处理设备的资金不超过105万元,若每月要求处理洋澜湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案。

14、随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场。

一水果经销商购进了A,B两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售。

预计每箱水果的盈利情况如下表:方案一:甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱;方案二:按照甲、乙两店盈利相同配货,其中A种水果甲店_________箱,乙店__________箱;B种水果甲店_________箱,乙店__________箱.(1)如果按照方案一配货,请你计算出经销商能盈利多少元?(2)请你将方案二填写完整(只填写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多?(3)在甲、乙两店各配货10箱,且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?15、十一届全国人大常委会第二十次会议审议的个人所得税法自2011年9月1日起正式实施,新税法将个人所得税的起征点由原来每月2000元提高到3500元,并将9级超额累进税率修改为7级,新旧两种征税方法的1~5级税率情况见下表:税级原征税方法新征税方法月应纳税额x税率速算扣除数月应纳税额x税率速算扣除数1x≤5005%0x≤1 5003%02500<x≤200010%251500<x≤450010%▲32000<x≤500015%1254500<x≤900020%▲45000<x≤2000020%3759000<x≤3500025%1005 520000<x≤4000025%137535000<x≤55 00030%2755注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额.“速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按原个人所得税法的规定,某人去年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%十600×15%=265(元).方法二:用“月应纳税额x适用税率一速算扣除数”计算,即2600×15%一l25=265(元)。

(1)请把表中空缺的“速算扣除数”填写完整;(2)甲去年3月缴了个人所得税1060元,若按“新税法”计算,则他应缴税款多少元?(3)乙今年3月按“新税法”缴了个人所得税2千多元,比去年3月按“原税法”所缴个人所得税少了155元(今年与去年收入不变),那么乙今年3月所缴税款的具体数额为多少元?16、我市某县政府为了迎接“八一”建军节,加强军民共建活动,计划从花园里拿出1430盆甲种花卉和1220盆乙种花卉,搭配成A、B两种园艺造型共20个,在城区内摆放,以增加节日气氛,已知搭配A、B两种园艺造型各需甲、乙两种花卉数如表所示:(单位:盆)(1)某校某年级一班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮忙设计出来。

相关文档
最新文档