6.3余角、补角和对顶角
七年级上册数学《6.3余角、补角、对顶角》
几何语言: ∵ ∠1+ ∠ 2=900 ∠ 3+ ∠ 4 = 900 又∵ ∠ 1 = ∠ 3
(同角的余角相等)
∴∠2 =∠4
(等角的余角相等)
思考:补角有类似的性质吗?说一说,写一写。
补角性质:
。
几何语言:
几何语言:
思考:补角有类似的性质吗?说一说,写一写。
余角性质:同角(或等角)的余角相等。 补角性质:
X=60 答:这个角是60o。
活动二: 知识提升
我叫∠ α,如果你们都是我 的余角,你们相等吗?
同角的余角相等
我叫∠ α
我叫∠ β
我们的余角有 可能相等吗?
∠ α=∠ β
等角的余角相等
归纳:
余角性质:同角(或等角)的余角相等。
几何语言: ∵ ∠1+ ∠ 2=900 ∠ 1+ ∠ 3 = 900 ∴ ∠2 = ∠3
∠BCD的大小关系是∠_A_=_∠_B_C_D,理由:同_角_的__余_角_相__等_.
BD
C
A
2.如图,∠1+∠2=180,0 ∠1+∠3=180,0∠2与
∠3的大小关系是_∠__2_=_∠__3__,理由:同_角__的__补__角__相_等_____.
1 23
3.如图,直线CD经过点O,且OC平分
补角性质: 同角(或等角)的补角相等。
几何语言:
∵ ∠1+ ∠ 2=1800 ∠ 1+ ∠ 3 = 1800
∴ ∠2 = ∠3 (同角的补角相等)
几何语言:
∵ ∠1+ ∠ 2=1800 ∠ 3+ ∠ 4 = 1800 又∵ ∠ 1 = ∠ 3
∴∠2 =∠4 (等角的补角相等)
6.3余角、补角、对顶角(1)
6.3余角、补角、对顶角(1)教学目标:1、在具体情景了解余角、补角,概念2、知道等角的余角相等,等角的补角相等3、经历观察—操作—说理,交流等过程,进一步发展宽间的观念教学重难点:1、余角、补角,概念2、同角(等角)的余角相等,同角(等角)的补角相等教学过程:一、情景创设:用一副三角尺,在实际操作中,演示课本中的图通过直观、形象演示,引导学生观察,引入余角、补角概念1、探索活动活动1:通过直观、形象演示,引导学生观察,引入余角、补角概念如果两个角的和是直角,这两个的角叫做互为余角如果两个角的和是平角,这两个的角叫做互为补角( 1 )摆动两个三角板位置,∠α+∠β=90°∠α+∠β=180°不变(2)两个角的和是90 °,或者平角180°是一种特殊关系,它们分别叫做互为余角,互为补角。
(3)前面研究的角都是一个角,而互为余角、互为补角指的是两个角的关系。
(4)互补,互余是一种特殊的数量关系,思考:同一块三角板上有两个锐角互余吗?(5)如果∠α+∠β=90°那么∠α与∠β互余反过来,如果∠α与∠β互余,那么∠α+∠β=90°或∠α=90°—2∠β或∠β=90°—2∠α如果∠α+∠β=180°那么∠α与∠β互补反过来∠α与∠β互补,那么,∠α+∠β=180°或∠α=180°—2∠β或∠β=180°—2∠α活动2:填表(投影)可知:∠α的余角为90°—n°(∠α= n°)∠α的补角=180°—n°做一做:书本上连线二、例题教学:探索余角补角的性质,让学生经历”观察-----猜想-----说理”的过程,例:如果∠1与∠2 互余,∠1与∠3互余,那么∠2与∠3 相等吗?为什么?解:∠2与∠3 相等因为∠1与∠2 互余,∠1与∠3互余所以∠2=90°—∠1 ,∠3=90°—∠1所以∠2=∠3引导学生交流得出结论,同角(或等角)的余角相等,同角(或等角)的补角相等。
七年级数学上册数学 6.3余角、补角、对顶角(三大题型)(解析版)
6.3余角、补角、对顶角分层练习考察题型一余角、补角的概念1.下列图中,1∠和2∠互为邻补角的是()A.B.C.D.【详解】解:根据邻补角的定义可知:只有选项D中1∠互为邻补角.∠和2故本题选:D.2.A∠的补角为12512︒',则它的余角为()A.5418︒'B.3512︒'D.以上都不对︒'C.3548【详解】解:18012512,∠=︒-︒'A︒-∠=︒-︒-︒'=︒'-︒=︒'.A∴∠的余角为9090(18012512)12512903512A故本题选:B.3.如果一个角的补角是这个角余角的2.5倍,那么这个角的度数是()A.30︒B.60︒C.90︒D.120︒【详解】解:设这个角的度数为x,则它的余角为:90x︒-,︒-,补角为:180x由题意可得:180 2.5(90)x x︒-=︒-,解得:30x=︒.故本题选:A.4.如图,90∠的大小为()∠=︒,则BOCAOC BODAOD∠=∠=︒,126A.36︒B.44︒C.54︒D.63︒【详解】解:90AOC ∠=︒ ,126AOD ∠=︒,36COD AOD AOC ∴∠=∠-∠=︒,90BOD ∠=︒ ,BOC BOD COD ∴∠=∠-∠9036=︒-︒54=︒.故本题选:C .5.如果互补的两个角有一条公共边,那么这两个角的平分线所成的角是()A .一定是直角B .一定是锐角C .锐角或钝角D .直角或锐角【详解】解: 两角互补,∴两角之和为180度,如图,有两种情况:,∴互补的两个角的平分线所成的角可能为直角也可能为锐角.故本题选:D .6.已知α∠是锐角,α∠与β∠互补,α∠与γ∠互余,则βγ∠-∠的度数为()A .180︒B .90︒C .45︒D .无法确定【详解】解:α∠ 是锐角,α∠与β∠互补,α∠与γ∠互余,180αβ∴∠+∠=︒,90αγ∠+∠=︒,180βα∴∠=︒-∠,90γα∠=︒-∠,180(90)90βγαα∴∠-∠=︒-∠-︒-∠=︒.故本题选:B .7.如图,直线AB 和CD 相交于点O ,OB 平分DOE ∠,90EOF ∠=︒.若AOF α∠=,COF β∠=,则以下等式一定成立的是()A .290a β+=︒B .290a β+=︒C .45a β+=︒D .2180a β+=︒【详解】解:OB 平分DOE ∠,DOB EOB ∴∠=∠,又90EOF ∠=︒ ,180AOF EOF BOE ∠+∠+∠=︒,90AOF BOE ∴∠+∠=︒,AOF α∠= ,COF β∠=,90COE β∴∠=︒-,90BOE α∠=︒-,2180COE BOE COD ∠+∠=∠=︒ ,902(90)180βα∴︒-+︒-=︒,即290αβ+=︒.故本题选:A .8.下列说法中,错误的是()A .互余且相等的两个角各是45︒B .一个角的余角一定小于这个角的补角C .如果123∠+∠=∠,那么1∠的余角与2∠的余角的和等于3∠的余角D .如果123∠+∠=∠,那么1∠的余角与2∠的余角的和等于3∠的补角【详解】解: 互余的两个角的和为90︒,∴互余且相等的两个角各是45︒,故A 正确;设一个角为α,则其余角为90α︒-,补角为180α︒-,∴180(90)90αα︒--︒-=︒,∴一个角的余角一定小于这个角的补角,故B 正确;1∠ 的余角和2∠的余角分别为901︒-∠,90︒-∠2,且123∠+∠=∠,901902180(12)1803∴︒-∠+︒-∠=︒-∠+∠=︒-∠,那么如果123∠+∠=∠,那么1∠的余角与2∠的余角的和等于3∠的补角,故C 错误,D 正确.故本题选:C .9.如图,已知A ,O ,B 三点在同一直线上,且OC 平分BOD ∠,OE 平分AOD ∠,下列结论:①BOC ∠与AOE ∠互余;②BOE ∠与EOD ∠互补;③180AOD BOE EOD ∠+∠=∠+︒;④2AOC BOC EOD ∠-∠=∠.其中正确的有()A .1个B .2个C .3个D .4个【详解】解:OC 平分BOD ∠,OE 平分AOD ∠,12BOC DOC BOD ∴∠=∠=∠,12AOE DOE AOD ∠=∠=∠,180BOC AOE ∠+∠=︒ ,90BOC AOE ∴∠+∠=︒,180BOE EOD ∠+∠=︒,BOC ∴∠与AOE ∠互余,BOE ∠与EOD ∠互补,故①②正确;180AOD BOE BOE AOE EOD EOD ∴∠+∠=∠+∠+∠=∠+︒,故③正确;2AOC BOC AOC COD AOD EOD ∴∠-∠=∠-∠=∠=,故④正确.故本题选:D .考察题型二余角、补角的性质1.下列结论:①互补且相等的两个角都是45︒;②同角的余角相等;③若123180∠+∠+∠=︒,则1∠,2∠,3∠互为补角;④锐角的补角是钝角;⑤锐角的补角比其余角大80︒.其中正确的个数为()A .2个B .3个C .4个D .5个【详解】解:①互补且相等的两个角都是90︒,原说法错误;②同角的余角相等,原说法正确;③如果两个角的和等于180︒,就说这两个角互为补角,即其中一个角是另一个角的补角,顾互为补角是指两个角之间的关系,原说法错误;④锐角的补角是钝角,原说法正确;⑤锐角的补角比其余角大90︒,原说法错误;综上,正确的有2个,故A 正确.故本题选:A .2.下列推理错误的是()A .因为12180∠+∠=︒,13∠=∠,所以23180∠+∠=︒B .因为1290∠+∠=︒,2390∠+∠=︒,所以13∠=∠C .因为12180∠+∠=︒,23180∠+∠=︒,所以13∠=∠D .因为1290∠+∠=︒,所以1245∠=∠=︒【详解】解:A .A .12180∠+∠=︒,13∠=∠,由等量代换可得:23180∠+∠=︒,正确;B .1290∠+∠=︒,2390∠+∠=︒,由等角的余角相等可得:13∠=∠,正确;C .12180∠+∠=︒,23180∠+∠=︒,由等角的补角相等可得:13∠=∠,正确;D .1∠与2∠不一定相等,由1290∠+∠=︒,不能推出1245∠=∠=︒,故错误.故本题选:D .3.如图,一副三角尺按不同的位置摆放,下列摆放方式中α∠与β∠一定相等的是()A .①②B .①③C .②④D .③④【详解】解:图①,由“同角的余角相等”可得:αβ∠=∠;图②,135α∠=︒,120β∠=︒;图③,由“等角的补角相等”可得:αβ∠=∠;图④,1809090αβ∠+∠=︒-︒=︒,互余;综上,α∠与β∠一定相等的是图①和图③.故本题选:B .4.如图,90AOB COD EOF ∠=∠=∠=︒,则1∠,2∠,3∠之间的数量关系为()A .12390∠+∠+∠=︒B .12390∠+∠-∠=︒C .23190∠+∠-∠=︒D .12390∠-∠+∠=︒【详解】解:390BOC DOB BOC ∠+∠=∠+∠=︒ ,3BOD ∴∠=∠,190EOD ∠+∠=︒ ,2190BOD ∴∠-∠+∠=︒,32190∴∠-∠+∠=︒,故本题选:D .5.如图,已知12∠=∠,34∠=∠,1902BOD AOB ∠=∠=︒.下列判断:①射线OF 是BOE ∠的角平分线;②BOC ∠是DOE ∠的补角;③AOC ∠的余角只有COD ∠;④DOE ∠的余角有BOE ∠和COD ∠;⑤COD BOE ∠=∠.其中正确的有()A .5个B .4个C .3个D .2个【详解】解: 12∠=∠,∴射线OF 是BOE ∠的角平分线,故①说法正确;34∠=∠,BOC ∠是4∠的补角,∴BOC ∠是DOE ∠的补角,故②说法正确;34∠=∠,1902BOD AOB ∠=∠=︒,∴COD BOE ∠=∠,故⑤说法正确;AOC ∠的余角有COD ∠和BOE ∠,故③说法错误;DOE ∠的余角有BOE ∠和COD ∠,故④说法正确;综上,正确的有4个.故本题选:B .6.如图,O 是直线AB 上一点,OE 平分AOB ∠,90COD ∠=︒.则图中互余的角、互补的角各有()对.A .3,3B .4,7C .4,4D .4,5【详解】解:OE 平分AOB ∠,90AOE BOE ∴∠=∠=︒,90COD ∠=︒,∴互余的角有AOC ∠和COE ∠,AOC ∠和BOD ∠,COE ∠和DOE ∠,DOE ∠和BOD ∠共4对, 由“等角的补角相等”可得:AOC ∠=DOE ∠,COE ∠=BOD ∠,∴互补的角有AOC ∠和BOC ∠,DOE ∠和BOC ∠,COE ∠和AOD ∠,BOD ∠和AOD ∠,AOE ∠和BOE ∠,AOE ∠和COD ∠,COD ∠和BOE ∠共7对.故本题选:B .考察题型三对顶角1.泰勒斯被誉为古希腊及西方第一个自然科学家和哲学家,据说“两条直线相交,对顶角相等”就是泰勒斯首次发现并论证的.论证“对顶角相等”使用的依据是()A .同角的余角相等B .同角的补角相等C .等角的余角相等D .等角的补角相等【详解】解:论证“对顶角相等”使用的依据是:同角的补角相等.故本题选:B .2.如图,1∠和2∠是对顶角的是()A .B .C .D .【详解】解:A .1∠与2∠的两边不是互为反向延长线,不是对顶角;B .1∠与2∠没有公共顶点,且两边不是互为反向延长线,不是对顶角;C .1∠与2∠的两边互为反向延长线,且有公共顶点,是对顶角;D .1∠与2∠的两边不是互为反向延长线,不是对顶角.故本题选:C .3.如图,直线AB ,CD 相交于点O ,若AOD ∠减少2618'︒,则(BOC ∠)A .减少2618'︒B .增大15342'︒C .不变D .增大2618'︒【详解】解:由“两直线相交,对顶角相等”可知:AOD BOC ∠=∠,∴若AOD ∠减少2618'︒,则BOC ∠减少2618︒'.故本题选:A .4.如图,已知直线AB 和CD 相交于点O ,COE ∠是直角,OF 平分AOE ∠,34COF ∠=︒,则BOD ∠的度数为()A .22︒B .34︒C .56︒D .72︒【详解】解:COE ∠ 是直角,34COF ∠=︒,903456EOF ∴∠=︒-︒=︒,OF 平分AOE ∠,56AOF EOF ∴∠=∠=︒,563422AOC ∴∠=︒-︒=︒,22BOD AOC ∴∠=∠=︒.故本题选:A .5.如图,直线AB 、CD 、EF 相交,若15180∠+∠=︒,图中与1∠相等的角有()A.1个B.2个C.3个D.4个【详解】解:15180∠+∠=︒,∠+∠=︒,65180∴∠=∠,16∠=∠,68∴∠=∠,18又13,∠=∠∠相等的角有3个.∴图中与1故本题选:C.6.如图,直线AB、CD相交于点O,90∠=∠=︒.AOE COF(1)DOE∠的余角是(填写所有符合要求的角).(2)若70∠的度数.∠=︒,求BOFDOE(3)若DOE BOD∠的度数.∠=∠,求EOC【详解】解:(1)90,AOE∠=︒∴∠=︒,90EOB∠互余,∴∠与DOBDOE∠=∠,AOC DOB∠互余,∴∠与EODAOC,∠=︒COF90∴∠=︒,DOF90∠余角,DOE∴∠与EOF∴DOE ∠的余角是BOD ∠、EOF ∠、AOC ∠,故本题答案为:BOD ∠、EOF ∠、AOC ∠;(2)70DOE ∠=︒ ,DOE ∠与DOB ∠互余,20DOB ∴∠=︒,2090110BOF BOD FOD ∴∠=∠+∠=︒+︒=︒;(3)90EOB ∠=︒ ,DOE BOD ∠=∠,45BOD ∴∠=︒,45AOC ∴∠=︒,9045135EOC ∴∠=︒+︒=︒.1.已知AOB ∠与BOC ∠互为补角,OD 平分BOC ∠.(1)如图①,若80AOB ∠=︒,则BOC ∠=︒,AOD ∠=︒;(2)如图②,若140AOB ∠=︒,求AOD ∠的度数;(3)若AOB n ∠=︒,直接写出AOD ∠的度数(用含n 的代数式表示),及相应的n 的取值范围.。
苏科版数学七年级上册6.3 余角、补角、对顶角课件
4. 一个角的余角(或补角)可以有多个,但它们的度数是相等 的, 互余、互补是指具有一定数量关系的两个角 .
例1 如图 6.3 - 3,点O为直线AB上一点,∠ AOC=∠ DOE=90°.
解题秘方:由已知条件,结合互为 余角、互为补角的定义 解答 .
方法点拨 从图形中找互余或互补的角,可从两个方面进行: 一个方面从角的度数入手,和为90°互余,和为180°互
(2)图中互补的角有几对?各是哪些?
解:由已知得,∠ 1+ ∠ BOD=180°,∠ 4+ ∠ AOE=180°, 由(1)易知,∠ 1= ∠ 3,∠ 2= ∠ 4, 所以∠ 3+ ∠ BOD=180°,∠ 2+ ∠ AOE=180°. 又因为∠ AOC+ ∠ BOC=180°,∠ AOC+ ∠ DOE=180°, ∠ DOE+ ∠ BOC=180°,
课堂小结
归纳新知
6.3 余角、补角、对顶角
数量关系 两个角
位置关系
互余和 互补
对顶角
同角(等角) 的余角(补角) 相等
对顶角相等
特别提醒 (1)如果互补的两个角相等,那么这两个角都是直角. (2)“同角” 指同一个角,“等角”指度数相等的角. (3)余角、补角的性质是说明两个角相等的重要依据.
例2 如图 6.3 - 4,直线 AB 与∠ COD 的两边 OC, OD 分别相交于点 E, F,∠ 1+ ∠ 2=180° . 找出图中与∠ 2 相等的角,并说明理由 .
解:由对顶角相等,得∠ 2= ∠ 3=25°, 因为 OC 平分∠ AOB,所以∠ 1= ∠ 2=25° .
方法技巧 进行角的计算时, “对顶角相等”这个结论常常被用
6.3余角、补角、对顶角教学设计
(二)讲授新知
在这一环节,教师将系统地讲授余角、补角、对顶角的定义、性质和应用。
1.余角:讲解余角的定义,即两个角的和为90度时,这两个角互为余角。通过具体例子,让学生理解余角的概念。
2.补角:介绍补角的定义,即两个角的和为180度时,这两个角互为补角。结合生活实例,解释补角的意义。
-针对学生空间想象力、逻辑推理能力的差异,设计不同难度的教学任务,使每个学生都能在原有基础上得到提高。
-对基础薄弱的学生,进行个别辅导,的学生,提供拓展性学习资源,引导他们进行更深入的探讨和研究。
3.突破重难点,强化训练
-针对重难点内容,设计具有针对性的例题和练习,帮助学生巩固所学知识。
1.学生在空间想象力方面的发展水平不一,部分学生对图形的认识和角度的把握可能不够准确。教师应针对这一情况,设计丰富的教学活动,帮助学生建立清晰的空间概念。
2.学生在逻辑推理能力方面存在差异,对几何证明的掌握程度不同。教师应关注学生的个体差异,提供适当的引导和提示,帮助学生逐步掌握证明方法。
3.学生在解决实际问题时,可能难以将所学知识灵活运用。教师应结合生活实例,引导学生发现生活中的几何问题,培养学生学以致用的能力。
6.3余角、补角、对顶角教学设计
一、教学目标
(一)知识与技能
1.理解余角、补角、对顶角的定义,能够识别并正确标记图形中的余角、补角和对顶角。
2.学会运用余角、补角和对顶角的性质进行相关角度的计算,解决实际问题。
3.能够运用余角、补角和对顶角的性质,推导和证明几何图形中的相关结论。
4.能够运用所学的角度知识,解决生活中的实际问题,提高解决问题的能力。
(五)总结归纳
七年级数学上册 6.3 余角、补角、对顶角 什么叫余角、补角?它们的性质是什么?素材 苏科版(20
七年级数学上册6.3 余角、补角、对顶角什么叫余角、补角?它们的性质是什么?素材(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册6.3 余角、补角、对顶角什么叫余角、补角?它们的性质是什么?素材(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册6.3 余角、补角、对顶角什么叫余角、补角?它们的性质是什么?素材(新版)苏科版的全部内容。
什么叫余角、补角?它们的性质是什么?难易度:★★★★关键词:角答案:(1)余角:如果两个角的和等于90°(直角),就说这两个角互为余角。
即其中一个角是另一个角的余角。
(2)补角:如果两个角的和等于180°(平角),就说这两个角互为补角。
即其中一个角是另一个角的补角。
(3)性质:等角的补角相等。
等角的余角相等。
(4)余角和补角计算的应用,常常与等式的性质、等量代换相关联。
注意:余角(补角)与这两个角的位置没有关系。
不论这两个角在哪儿,只要度数之和满足了定义,则它们就具备相应的关系。
【举一反三】典例:已知一个角的补角比这个角的余角的3倍大10°,求这个角的度数.思路引导:主要考查了余角和补角的概念以及运用.互为余角的两角的和为90°,互为补角的两角之和为180度.解此题的关键是能准确的从图中找出角之间的数量关系,从而计算出结果.利用题中“一个角的补角比这个角的余角的3倍大10°"作为相等关系列方程求解即可.设这个角是x,则(180°-x)—3(90°-x)=10°,解得x=50°.故答案为50°.标准答案:50°。
七年级数学上册知识讲义-6.3认识余角、补角、对顶角-苏科版
初中数学认识余角、补角、对顶角精讲精练【考点精讲】1. 互为余角与互为补角(1)概念:若,则称、互为余角;若则称、互为补角。
(2)记法的余角记作;的补角记作。
2. 余角(补角)的性质同角或等角的余(补)角相等。
3. 对顶角:如下图中,我们把叫做对顶角,也是对顶角。
OADBC4. 对顶角的性质:对顶角相等。
【典例精析】例题1 如图所示,O是直线AB上的一点,,平分,平分,则图中互为补角的对数有()A. 6对B. 7对C. 8对D. 9对思路导航:是直线AB上的一点,,又,,平分,,,,。
答案:互补的角有:,,,,,共8对。
答案选C。
点评:本题涉及互补的角较多,根据题意计算有关角的度数,再根据互为补角的定义,按照一定的顺序来写,做到既不重复又不遗漏。
例题2 一个角的补角与它的余角的2倍的差是平角的,请你求出这个角的度数。
思路导航:可以直接设元(题中问什么就设什么,直接求出结果),也可以间接设元(先求出这个角,再求出它的余角),然后列方程求解。
答案:设这个角的度数为,则它的补角、余角分别为,(),根据题意得,解得,所以这个角的度数为60度。
点评:有关余角和补角的计算题目,常设未知数,根据题意列方程求解。
所设的未知数不同,所得到的方程也不同。
例题3 如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线。
D(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?思路导航:(1)根据邻补角的定义,即可求得∠2的度数,根据角平分线的定义和平角的定义即可求得∠3的度数;(2)根据OF分得∠AOD的两部分角的度数即可说明。
答案:(1)∵∠BOC+∠2=180°,∠BOC=80°,∴∠2=180°-80°=100°;∵OE是∠BOC的角平分线,∴∠1=40°。
∵∠1+∠2+∠3=180°,∴∠3=180°-∠1-∠2=180°-40°-100°=40°。
6.3 余角、补角、对顶角
七年级(上册)
6.3
余角、补角、对顶角
观察与思考
问:图中∠α与∠β的度数之间有怎样的关系?
α β
∠α+∠β=90°,
即∠α与∠β互为余角, ∠α的余角是∠β, ∠β的余角是∠α.
1.如果两个角的和是一个直角, 那么这两个角互为余角,简称互余.
其中的一个角叫做另一个角的余角.
观察与思考
问:图中∠α与∠β的度数之间有怎样的关系?
14.如图,点 A、O、B 在同一条直线上,OD 平分∠AOB,∠ COE=90o. (1)写出图中所有的直角. (2)∠AOC 与∠DOE 相等吗?请说明 理由. (3)写出图中与∠EOB 相等的角. (4)写出图中∠DOE 的所有余角. (5)写出图中∠BOE 的补角.
15.(1)如图①,∠AOB、∠COD 都是直角,试猜想∠AOD 与∠BOC 在数量上存在相等、互余还是互补关系.请叙 述你的理由. (2)当∠COD 绕着点 O 不停地旋转(如图②所示),(1)中的 猜想还成立吗?
6.如图,直线 AB、CD 相交于点 O,OF 平 分∠COD,∠AOE 比∠EOD 大 30o,∠ EOD 比∠BOD 大 30o. (1)求∠AOE 的度数. (2)写出图中所有的直角.
(3)写出∠BOD 所有的余角. (4)写出∠BOD 所有的补角.
10 (
. )
下
列
说
法
中
,
正
确
的
是
A.互补的两个角中,必有一个是钝角 B.一个角的补角一定比这个角大 C.互补的两个角中,至少有一个角大于或等于 90o D.互补的两个角相加等于 90o
11 . 若 ∠ a 的 余 角 度 数 是 35o46 ′ , 则 ∠ a 的 补 角 度 数 是 _____________. 12.若互补的两个角的度数之比为 3:2,则这两个角的度数分别 为______________.
6.3余角、补角、对顶角(1)
余角、补角、对顶角(1)
2 1
3
4
自主学习目标:
1.知道余角、补角的概念;
2.知道余角和补角的性质;
3.能够利用余角和补角的性质来解决
问题。
第一步:利用一张卡纸的一个角得到一个直角,
做 第二步:分别过这两个角的顶点任意画一条射线, 一 做
直角被分成的两个角记为∠1和∠2,平角
再用另一张卡纸的一条边得到一个平角;
被分成的两个角记为∠3和∠4;
第三步:分别沿画好的射线将直角和平角剪开.
2 1
4 3
余角的定义
如果两个角的和等于90°(直角),
那么两个角互为余角,简称互余即其中
每个角是另一个角的余角. 符号表示:如果∠1+∠2=90 °, 那么∠1与∠2互余; 反之:如果∠1与∠2互余,那么 ∠1+∠2=90 °,即∠2=90 °- ∠1.
互补, ∠AOD ∠BOD与_____互补.
C D A O B
探究余角的性质
∠1 与∠2互为余角,∠1 与∠3互为余 角 ,那么∠2与∠3相等吗?为什么?
余角性质
同角(等角)的余角相等
∠1 与∠2互为余角,∠1 与∠3互为余角 , 那么∠2与∠3相等吗?为什么? 解: ∠2与∠3相等。
因为∠1 与∠2互为余角,∠1 与∠3互为余角,
40° 2.若一个角的余角为50°,则这个角为__ __. 130°
若一个角的补角为50°,则这个角为 __ __. 90-x 3.若一个角为x度,则它的余角为___ _度,
180-__度. 补角为__
x
4.如图所示,O是直线AB上一点,∠COD=90 °,
∠BOD ∠BOC 则图中∠AOC与 ______互余,∠AOC与 _____
6.3余角、补角、对顶角优秀教学案例
3.利用多媒体手段:通过PPT展示生动形象的余角、补角和对顶角的图形,帮助学生直观理解概念,增强记忆。
(二)问题导向
1.设计层次化问题:提出由浅入深、循序渐进的问题,引导学生逐步深入学习,如先问“什么是余角?”再问“余角和补角之间有何关系?”;
2.强调重点难点:教师强调本节课的重点和难点,提醒学生注意;
3.总结数学与生活的联系:强调数学知识在实际生活中的应用,激发学生学习兴趣。
(五)作业小结
1.布置具有针对性的作业:布置一些有关余角、补角和对顶角的练习题,帮助学生巩固所学知识;
2.鼓励学生自主学习:鼓励学生自主完成作业,培养学生的自主学习能力;
四、教学内容与过程
(一)导入新课
1.生活实例导入:以一个简单的日常生活中的情景为例,如判断两个角的余角和补角关系,提出问题:“你们知道这两个角有什么特殊关系吗?”引发学生的思考和兴趣;
2.利用多媒体手段:通过PPT展示生动形象的余角、补角和对顶角的图形,帮助学生直观理解概念,为学习新知识做好铺垫。
(二)讲授新知
3.设置具有针对性的练习题,巩固所学知识,提高学生的解题能力;
4.鼓励学生自主学习,培养学生的探究精神和合作能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,树立自信心,激发学习动力;
2.培养学生勇于探究、积极思考的科学精神,以及面对困难时不轻言放弃的意志品质;
3.使学生认识到数学与生活的紧密联系,提高学生运用数学知识解决实际问题的能力;
2.自己的观点,培养学生的团队协作能力;
3.小组代表展示:各小组代表上台展示讨论成果,其他小组成员可进行补充和评价,提高学生的表达能力和批判性思维。
6.3余角、补角、对顶角(1)
§6.3余角、补角、对顶角(1)班级: 姓名:【学习目标】1. 在具体情境中了解余角、补角,知道余角、补角之间的数量关系;2. 经历观察、操作、说理、交流的过程,进一步发展空间观念,学习有条理的表达数学问题;3. 会运用互为余角、互为补角的性质来解决问题. 【学习过程】 一. 余角、补角的定义:①如果 ,这两个角叫做互为余角.简称互余.其中一个角叫做另一个角的余角. ②如果 ,这两个角叫做互为补角.简称互补.其中一个角叫做另一个角的补角. 巩固练习:1.小组合作,任意说出一个角,同桌说出它的余角和补角。
2.书本第159页 “做一做”,你能发现什么规律?如何说明? 3.已知∠α,请你用三角板画出它的余角和补角。
二、余角、补角的性质:余角性质: 。
补角性质: 。
BC DA图1DACB图2①如图1,∠A+∠B=90°,∠BCD+∠B=90°。
∠A 与∠BCD 有怎样的大小关系?为什么? ②如图2,直线CD 经过点O ,且OC 平分∠AOB 。
∠AOD 与∠BOD 有怎样的大小关系?为什么?αOA 学案编号:73三.例题讲解例1:已知一个角的补角是这个角的余角的4倍,求这个角的度数。
练习1:如果∠1的补角是∠1的3倍,求∠1的度数。
例2:如图,已知∠COE=∠COA=∠BOD=90°,(1)找出图中与∠3相等的角,并说明理由。
(2)图中还有其他相等的角吗?请写出来;(3)找出图中所有互余的角。
四.拓展提升如图,已知∠COE=∠COA=∠BOD=90°,找出图中所有互补的角。
§6.3余角、补角、对顶角(1)课外作业班级__________姓名__________1.填表:∠α的度数 20° 37° 84° 90° 105°31′ 138° n °(0°<n °<90°) ∠α的余角 ∠α的补角一个锐角的余角和补角之间的关系:2.下列说法中正确的是 ( ) A .平角就是一条直线B .一个锐角的余角一定比这个锐角大C .大于直角的角的补角比这个角大D .一个锐角的补角减去这个角的余角是一个直角3.下列说法正确的是 ( ) A .互补的两个角一定是一个锐角,一个钝角 B .互余的两个角一定都是锐角 C .没有一个角正好等于它的补角D .若∠A+∠B+∠C=180°,则∠A 、∠B 、∠C 三个角互补4.如果∠1=65°,∠2=35°∠3=115°∠4=55°,那么下列说法:①∠1与∠3互补;②∠2与∠4互余;③∠1、∠2、∠3、∠4的和等于3个直角。
七年级数学上册6.3余角、补角、对顶角什么是方向角?素材(新版)苏科版
七年级数学上册6.3余角、补角、对顶角什么是方向
角?素材(新版)苏科版
难易度:★★★
关键词:角
答案:
(1)方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向。
(2)用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西。
(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南。
)(3)画方位角:以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线。
【举一反三】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.2个B.3个C.4个D.6个
A.20°B.40°C.50°D.60°
A.B.C.D.
A.B.C.D.
2、相交线
(1)相交线的定义
两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).
【练习】
1(2006•河南)两条直线相交所成的四个角中,下列说法正确的是()A.一定有一个锐角B.一定有一个钝角
C.一定有一个直角D.一定有一个不是钝角
3(2011•柳州)如图,在所标识的角中,互为对顶角的两个角是()
A.∠2和∠3B.∠1和∠3C.∠1和∠4D.∠1和∠2
4(2009•南平)如图,某同学在课桌上随意将一块三角板的直角叠放在直尺上,则∠1+∠2的度数是()
A.45°B.60°C.90°D.180°。