第2章 金属的结构
第2章 金属与合金的晶体结构和相图--定稿
信息商务学院
2、晶体缺陷
信息商务学院
3)面缺陷(晶界和亚晶界)
晶界 :位向不同的相邻晶粒之间的接触界面,属于 面缺陷。
亚晶粒:每个晶粒可分为若干个位向相差很小(一般
θ<1~3o)的亚晶粒。
亚晶界:亚晶粒之间的边界叫亚晶界。
信息商务学院
3)面缺陷:
a)在常温下,晶界对滑移起阻碍作用,即表现为 晶界强度高。
信息商务学院
第2章 金属晶体结构和二元合金相图
金属材料有纯金属和合金两种。纯金属是由一种元素 组成的(如Fe、Cu、Al等);合金则是以一种金属元素 作为基础,加入其它金属元素或非金属元素,经过熔合 而获得具有金属特性的材料(如碳钢、铜合金等)。因 为合金比纯金属有更好的力学性能和工艺性能,且成本 低,故常用于工业生产。
C(石墨)、Mg、Zn 等
信息商务学院
晶格常数
底面边长a 底面间距c 侧面间角120 侧面与底面夹角90
(3)密排六方晶格 hcp
信息商务学院
晶胞中的原子个数? 致密度?
晶格常数:c/a≈1.633; 原子半径:r=1/2a
?
原子个数:12X1/6+2X1/2+3=6 致 密 度:0.74
二、多晶体结构与晶体缺陷
不同的纯金属与合金,由于其内部组织结构不同,性能 也不一样。为了了解金属和合金的性能,就必须了解其内 部构造。
本章要点: ➢ 金属的晶体结构
信息商务学院
➢ 铁和碳的合金称为铁碳合金,钢和铸铁都是 铁碳合金。 ➢ 要掌握各种钢和铸铁加工方法,必须首先了 解铁碳合金中化学成分、组织与性能之间的关 系。
b)容易满足固态相变所需的能量起伏,新相往往 在晶界处形核。
第二章 1.2.3金属的结构和结晶
2.1 合金中的相
● ● ● 一、组元与相的概念 二、固溶体 三、金属化合物
一、组元与相的概念
组元 组成合金最基本的、独立存在的物质称为组元。 合金最基本的 组成合金最基本的、独立存在的物质称为组元。 例如:元素、稳定化合物。 Fe- 合金中,Fe、 例如:元素、稳定化合物。如,Fe-C合金中,Fe、C均为组元
式中的x 、 即为相图中线段xx 式中的 2-x、x2-x1、x-x1即为相图中线段 2 (ob)、x1x2 (ab)、 、 、 x1x(ao)的长度。 的长度。 的长度
2.3 2.3 匀晶相图
● ● ● 相图分析 合金的结晶过程 合金凝固时的成分过冷
一、相图分析
匀晶系:两组元在液态和固态都无限固溶的合金系 匀晶相图:匀晶系合金的相图 匀晶转变:合金凝固时,从液相中结晶出单相的固溶体, 合金凝固时,从液相中结晶出单相的固溶体,
机械工程材料
主讲人:
工学院
第2章 二元合金的相图及结晶 章
2.1合金中的相 2.1合金中的相 2.2二元合金相图的建立 2.2二元合金相图的建立 2.3匀晶相图 2.3匀晶相图 2.4共晶相图 2.4共晶相图 2.5包晶相图 2.5包晶相图 2.6组员间形成稳定化合物的相图 2.6组员间形成稳定化合物的相图 2.7由二元相图判断合金性能 2.7由二元相图判断合金性能
热 分 析 法
温 度
相图的测定
温 度
A 90 70 50
30
B
温 度
L a L + S S
A
ab : 液相线 ab : 固相线 L : 液相区 S : 固相区 L+S:液固共存区 液固共存区 b
B
温 度
三、相图应用
第2章 金属及合金相的晶体结构
1. 面心立方结构
面心立方结构金属:γ-Fe, Al, Cu, Ni, Au, Ag和Pt等。
结构符号A1,Pearson符号cF4。 每个晶胞含4个原子。
面心原子shared by 2 cells: 6 x 1/2 = 3 顶角原子shared by 8 cells: 8 x 1/8 = 1
略受压缩的八面体间隙; 八面体间隙中心位于棱边中心和面心 八面体间隙半径: r=1/2(a-2R)
r≈0.155 R 晶胞含6 (6×1/2+12×1/4 )个八面体间隙。 平均1个原子3有个八面体间隙。
非正四面体间隙。 四面体间隙半径: r= (a√5/4-R)
r≈0.291 R 晶胞含12 (4 ×6 ×1/2)个四面体间隙。 平均1个原子含6个四面体间隙。
ZA, ZB 为A、B组元价电子数, VB为B组元摩尔分数。
1933年,Bernal 建议称之为电子化合物。 Massalski认为称其为电子相更恰当。
§2.12正常价化合物
正离子价电子数正好能使负离子具有稳定的电子层结构,即 AmBn化合物中,meC=n(8-eA), 结合一般是离子键。 eA和eC分别是正和负离子在非电离状态下的价电子数。
§2.13 拓扑密堆积相(TCP相)
在很多化合物结构中,原子尺寸起主要作用,并倾向于紧密堆 垛,称为拓朴密堆相,包括间隙化合物、Laves、σ相等。
间隙化合物
由原子半径r比较大的过渡金属(M)与r比较小的H, B, C, N, O, 等非金属组成的化合物,非金属原子占据金属原子结构间隙。 具有金属光泽和导电性的高熔点、高硬度较脆的化合物。
§2.9间隙固溶体
面心立方结构
r=0.414R
r=0.225R
金属的晶体结构
面心立方晶胞特征: ①晶格常数:a=b=c,α=β=γ=90° ②晶胞原子数:
③原子半径
面心立方晶格示意图
具有面心立方晶格 的金属有铝、铜、镍、 金、银、γ-铁等。
④致密度:0.74(74%)
第一节 金属的晶体结构
(2)密排六方晶格(胞)
金属原子分布在立方体的八个角上和六个面的中心。 面中心的原子与该面四个角上的原子紧靠。
体心立方晶胞特征: ①晶格常数:a=b=c,α=β=γ=90° ②晶胞原子数:一个体心立方晶胞所 含的原子数为2个。
体心立方晶格示意图 具有体心立方晶格
的金属有钼、钨、钒、 α-铁等。
第一节 金属的晶体结构
(1)体心立方晶格(胞)
体心立方晶胞特征: ③原子半径:晶胞中相距最近的两个原子之间距离的一半,或晶胞中原子 密度最大的方向上相邻两原子之间距离的一半称为原子半径(r原子)。
1.增大金属的过冷度 原理:一定体积的液态金属中,若成核速率N越大,则结晶后的晶粒
越多,晶粒就越细小;晶体长大速度G越快,则晶粒越粗。 随着过冷度的增加,形核速率和长大速度均会增大。但当过冷度超
过一定值后,成核速率和长大速度都会下降。对于液体金属,一般不会 得到如此大的过冷度,通常处于曲线的左边上升部分。所以,随着过冷 度的增大,成核速率和长大速度都增大,但前者的增大更快,因而比值 N/G也增大,结果使晶粒细化。
二、纯金属的晶体结构
晶体中原子(离子或分子)规则排列的方式称为晶体结构。 通过金属原子(离子)的中心划出许多空间直线,这些直线将形成空间格架。 这种格架称为晶格。晶格的结点为金属原子(或离子)平衡中心的位置。
晶体
晶格
第一节 金属的晶体结构
二、纯金属的晶体结构
机械工程材料 第二章 金属的晶体结构与结晶
均匀长大
树枝状长大
2-2
晶粒度
实际金属结晶后形成多晶体,晶粒的大小对力学性能影响很大。 晶粒细小金属强度、塑性、韧性好,且晶粒愈细小,性能愈好。
标准晶粒度共分八级, 一级最粗,八级最细。 通过100倍显微镜下的 晶粒大小与标准图对 照来评级。
2-2
• 影响晶粒度的因素
• (1)结晶过程中的形核速度N(形核率) • (2)长大速度G(长大率)
面心立方晶 格
912 °C α - Fe
体心立方晶 格
1600
温 度
1500 1400
1300
1200
1100
1000
900
800
700 600 500
1534℃ 1394℃
体心立方晶格
δ - Fe
γ - Fe
γ - Fe
912℃
纯铁的冷却曲线
α – Fe
体心立方晶 格
时间
由于纯铁具有同素异构转变的特性,因此,生产中才有可能通过 不同的热处理工艺来改变钢铁的组织和性能。
2-3
• 铁碳合金—碳钢+铸铁,是工业应用最广的合金。 含碳量为0.0218% ~2.11%的称钢 含碳量为 2.11%~ 6.69%的称铸铁。 Fe、C为组元,称为黑色金属。 Fe-C合金除Fe和C外,还含有少量Mn 、Si 、P 、 S 、 N 、O等元素,这些元素称为杂质。
2-3
• 铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC。 • 含碳量大于Fe3C成分(6.69%)时,合金太脆,已无实用价值。 • 实际所讨论的铁碳合金相图是Fe- Fe3C相图。
2-2
物质从液态到固态的转变过程称为凝固。 材料的凝固分为两种类型:
第2章 材料的结构-2.4
配位数:12 致密度:
4 3 4 4 2 a 4 rA 4 3 nv 0.74 3 K V a3 a3
3
原子密排面和密排方向
密排面:{111} 密排方向:<110>
原子堆垛方式
原子面的空隙是有三个原子所构成的,原子排 列较为紧密,原子堆垛方式为ABCABC…….
电子化合物以金属键为主,具有熔点高、硬度高、 脆性大的特点,是有色金属的重要强化相。
③ 间隙相与间隙化合物:由过渡族金属元素与C、N、 H、B等原子半径较小的非金属元素形成的化合物。
当r非/r金<0.59时,形成具有简单晶格的化合物, 称为间隙相。 间隙相可用化学式表示,并且一定化学式对应一 定晶体结构。如:M4X→FCC(Fe4N),M2X →HCP(Fe2N),MX →FCC(VC)、BCC(NbH)、 简单六方(WC),MX2 →FCC(TiH2)。 间隙相具有极高的硬度和熔点,是合金工具钢及 硬质合金的主要强化相。
配位数:12 致密度:
K 0.74
密排六方晶格参数
原子半径——晶胞中 原子密度最大的方向 [111]上相邻原子间平 衡距离的一半
1 rA a 2
密排六方晶格参数
原子密排面和密排方向
密排面:{0001}
密排方向:
112 0
原子堆垛方式
原子堆垛方式为ABAB……
FCC与HCP密排面堆垛方式比较
①
正常价化合物:符合一般化合物原子价规律, 成分固定并可用分子式表示,如AB、A2B、 AB2、A2B3,主要受电负性控制的一种中间相。 常见于陶瓷材料,多为离子化合物。 ⅣA、ⅤA、ⅥA族的一些元素按照化学上的 原子价规律所形成的化合物。
第二章 4.5.6.7金属的结构和结晶
包晶转变: 铂-银合金包晶相图
Ld + c e
T,C
T,C
L
f
Pt
L+
e
L
d L+
c
L+ L+
+
Ag%
g
Ag
+ Ⅱ
t
1)相图分析 单相区:L, ,β
L L+ L+ +
二相区:L+, L+, +
三相区:L++ (水平
线PDC)
(+ )
冷却曲线 t
X3合金结晶过程分析 (亚共晶合金) T,C
T,C L L+(+ )+
183
L+
c
L
d
1
L+
e
2
L+
(+ )+
+
Pb X3
(+ )+ + Ⅱ
Sn
t
标注了组织组成物的相图
2.5包晶相图
两组元液态无限互溶,固态有限互溶,并发生包晶 转变;这样的合金系相图称为包晶相图。
+
Sn%
共晶转变分析
T,C
Pb
L+
c
L
d
L+
e
共晶反应线 表示从c点到e点 范围的合金,在 该温度上都要发 生不同程度上的 共晶反应。
共晶点 表示d点成分的合 Sn 金冷却到此温度 上发生完全的共 晶转变。
+ Ld c
第二章 金属与合金的晶体结构与结晶
第二章 金属与合金的晶体结构与结晶第一节 金属的晶体结构自然界的固态物质,根据原子在内部的排列特征可分为晶体与非晶体两大类。
晶体与非晶体的区别表现在许多方面。
晶体物质的基本质点(原子等)在空间排列是有一定规律的,故有规则的外形,有固定的熔点。
此外,晶体物质在不同方向上具有不同的性质,表现出各向异性的特征。
在一般情况下的固态金属就是晶体。
一、晶体结构的基础知识(1)晶格与晶胞为了形象描述晶体内部原子排列的规律,将原子抽象为几何点,并用一些假想连线将几何点连接起来,这样构成的空间格子称为晶格(图2-1)晶体中原子排列具有周期性变化的特点,通常从晶格中选取一个能够完整反映晶格特征的最小几何单元称为晶胞(图2-1),它具有很高对称性。
(2)晶胞表示方法不同元素结构不同,晶胞的大小和形状也有差异。
结晶学中规定,晶胞大小以其各棱边尺寸a 、b 、c 表示,称为晶格常数。
晶胞各棱边之间的夹角分别以α、β、γ表示。
当棱边a b c ==,棱边夹角90αβγ===︒时,这种晶胞称为简单立方晶胞。
(3)致密度金属晶胞中原子本身所占有的体积百分数,它用来表示原子在晶格中排列的紧密程度。
二、三种典型的金属晶格1、体心立方晶格晶胞示意图见图2-2a。
它的晶胞是一个立方体,立方体的8个顶角和晶胞各有一个原子,其单位晶胞原子数为2个,其致密度为0.68。
属于该晶格类型的常见金属有Cr、W、Mo、V、α-Fe等。
2、面心立方晶格晶胞示意图见图2-2b。
它的晶胞也是一个立方体,立方体的8个顶角和立方体的6个面中心各有一个原子,其单位晶胞原子数为4个,其致密度为0.74(原子排列较紧密)。
属于该晶格类型的常见金属有Al、Cu、Pb、Au、γ-Fe等。
3、密排六方晶格它的晶胞是一个正六方柱体,原子排列在柱体的每个顶角和上、下底面的中心,另外三个原子排列在柱体内,晶胞示意图见图2-2c。
其单位晶胞原子数为6个,致密度也是0.74。
属于该晶格类型常见金属有Mg、Zn、Be、Cd、α-Ti等。
金属材料与热处理第二章 金属的晶体结构与结晶
或电磁振动等,使生长中的枝晶破碎,提高形核率,达到细化晶粒的 目的。
第三节 金属的同素异构转变
一、纯金属的冷却曲线和过冷现象
纯金属都有一个固定的结晶温度(或称凝固点 ),所以纯金属的结晶过程总是在一个恒定的温度下 进行的。
二、纯金属的结晶过程
纯金属的结晶过程是在冷却曲线上平台所经 历的这段时间内发生的,它是不断形成晶核和晶核 不断长大的过程,如图2-16所示。
图2-16 金属结晶过程示意图
图2-8 简单立方晶格中的晶向
五、金属的实际晶体结构
如果一个晶体内部其晶格位向(即原子排列的 方向)是完全一致的,则这种晶体称为单晶体,如图29a所示。
图2-9 单晶体和多晶体结构示意图 a)单晶体 b)多晶体
1.点缺陷 点缺陷是晶体中呈点状的缺陷,即在三维方向上的尺寸
都很小的晶体缺陷。
图2-10 空位和间隙原子示意图
同素异构转变是纯铁的一个重要特性,是钢 铁能够进行热处理的理论依据。金属的同素异 构转变过程与金属液的结晶过程很相似,实质上 它是一个重结晶过程,因此,同素异构转变同样遵 循结晶的一般规律:转变时需要过冷;有潜热产 生;转变过程也是在恒温下通过晶核的形成和长 大来完成的,如图2-20所示。但由于同素异构转
8.什么是过冷现象和过冷度?过冷度与冷却速度有什么关系? 它对铸件的晶粒大小有什么影响?
9.金属液结晶的必要条件是什么?试叙述纯金属的结晶过程 。
10.什么是晶粒与晶界?晶粒大小对金属力学性能有什么影 响?
第二章(1)金属的结构与结晶
细化晶粒的途径
❖ 提高冷却速度、增大过冷度过冷度对N、G的影响
V冷
△T
N/G 晶粒细小
V 在铸造生产中,用金属型代替砂型,增 冷 大金属型的厚度,降低金属型的预热温度等
❖ 变质处理:加入一些细小变质剂,增大形核率,
减低长大速率。
❖ 机械振动、超声波振动、电磁搅拌等。
光学金相显示的纯铁晶界
多晶体示意图
晶体缺陷 ( crystal defect )
点缺陷
线缺陷 面缺陷
点缺陷(point defБайду номын сангаасct)
空位 (vacancy)
间隙原子 (gap atom)
置换原子 (substitutional atom)
a. 空位:晶格中某些缺排原 子的空结点。 b. 间隙原子:挤进晶格间隙 中的原子。可以是基体金属 原子,也可以是外来原子。
密排面 数量 密排方向 数量
体心立方晶格 {110} 6 <111> 4 面心立方晶格 {111} 4 <110> 6 密排六方晶格 六方底面 1 底面对角线 3
三种常见晶格的密排面和密排方向
密排面:﹛110﹜,数量: 6
体心立方晶格 密排方向:<111>,数量: 4
密排面:﹛111﹜,数量: 4
金
金
属 的
属 的
树
树
枝
枝
晶
晶
金 属 的 树 枝
冰 的 树 枝 晶
晶
(3)金属结晶后的晶粒大小
一般来说,细晶粒金属具有较高的强度 和韧性。为了提高金属的力学性能,希 望得到细晶组织。
3、决定晶粒度的因素
晶粒大小取决于形核的数目和长大的速度。 形核率(N):单位时间单位体积内形成晶核
2.2 固体结构--金属的晶体结构(07级)
第二章 固体结构
(1) 体心立方晶胞的晶格常数和原子半径 体心立方晶胞的晶格常数和原子半径
体心立方晶胞中原子沿立方体体对角线<111>晶 体心立方晶胞中原子沿立方体体对角线<111>晶 <111> 向上的原子彼此相切,紧密接触,相距最近。 向上的原子彼此相切,紧密接触,相距最近。设晶 格常数为a, a,则立方体对角线长度为 ,等于4个原子 等于4 格常数为a,则立方体对角线长度为 半径,所以体心立方晶胞中的原子半径r 半径,所以体心立方晶胞中的原子半径r:
二章 固体结构
原子线密度:单位长度上的原子数。如面心立方[110],原子数为2 原子线密度:单位长度上的原子数。如面心立方[110],原子数为2, [110] 线长度为a 则原子线密度2/a 2/a。 线长度为a,则原子线密度2/a。 通过计算不同晶向的原子线密度,可找出晶胞的原子最密排方向。 通过计算不同晶向的原子线密度,可找出晶胞的原子最密排方向。
第二章 固体结构
从以上可以得出: 从以上可以得出: • 体心立方晶胞的配位数为8 体心立方晶胞的配位数为8,致密度为 0.68; • 面心立方晶胞的配位数为12 面心立方晶胞的配位数为12 ,致密度为 0.74; 0.74; • 密排六方晶胞的配位数为12 密排六方晶胞的配位数为12 ,致密度为 0.74; 0.74; 面心立方晶胞和密排六方晶胞的配位数 和致密度完全相同, 和致密度完全相同,因此这两种晶胞是原子 排列最紧密的结构。 排列最紧密的结构。
第二章 固体结构
(3) 密排六方晶胞的配位数和致密度
以密排六方晶胞的底面中心原子为例,与之最近邻且是周 以密排六方晶胞的底面中心原子为例,与之最近邻且是周 围顶角上的六个原子,且与其上、 围顶角上的六个原子,且与其上、下相邻的晶胞内的三个原 子相互接触,可知其配位数为12 对六方晶系,致密度为: 12; 子相互接触,可知其配位数为12;对六方晶系,致密度为:
第2章金属学的基本知识
(1)点缺陷 空间三维尺寸都很小的缺陷。 最常见的点缺陷是空位和间隙原子。 点缺陷可提高材料的强度和硬度。
(2)线缺陷 线缺陷的特征是在两个方向的 尺寸很小,在另一个方向的尺寸相对很大。 晶体中的线缺陷实际上就是位错,也就是说 在晶体中有一列或若干列原子,发生了有规律的 错排现象。分为刃型位错和螺型位错。
(3)晶格常数 在三维空间中,晶胞的几何 特征即大小和形状常以晶胞的棱边长度a、b、c及 棱边夹角α、β、γ来描述,其中晶胞的棱边长 度a、b、c一般称为晶格常数。
3.金属常见的晶体结构 (1)体心立方晶格 体心立方晶格的晶胞是一 个立方体,在立方体的中心有一个原子,在立方体 的八个角上分别有一个与其他晶胞共有的原子。其 晶格常数a=b=c,棱边夹角α=β=γ=90°。属于 体心立方晶格的金属有α-Fe、Cr、W、Mo等。
2.2
金属与合金的结晶
结晶 金属与合金在液态转变为固态晶体的过 程中,其原子是由不规则排列的液体状态逐步过渡 到原子作规则排列的晶体状态,这一过程称为结晶。 一、纯金属的结晶 1.冷却曲线和过冷现象 纯金属都有一个固定的熔点(或结晶温度), 因此纯金属的结晶过程是在一个恒定的温度下进行 的,其结晶过程可以用冷却曲线来描述。
臵换固溶体
②间隙固溶体 间隙固溶体是指溶质原子溶入 溶剂晶格的间隙而形成的固溶体。 由于溶剂晶格的间隙有限,因此间隙固溶体都 是有限固溶体。 形成间隙固溶体的条件是溶质原子与溶剂原子 的比值r溶质/r溶剂≤0.59。因此形成间隙固溶体的溶 质元素都是一些原子半径 小的非金属元素,如氢、 硼、碳、氮、氧等。
柱状晶区 由于模壁温度升高,结晶释放 出的潜热,使细晶区前沿液体的过冷度减小, 形核困难。加上模壁的定向散热,使已有的晶 体沿着与散热相反的方向生长而形成柱状晶区。
金属的晶体结构合金的晶体结构
2.1 合金的晶体结构
➢ 合金中的各种相是组成合金的基本单元,而合金 组织则是合金中各种相的综和体。
➢ 一种合金的力学性能不仅取决于它的化学成分, 更取决于它的显微组织。
➢ 金属通过热处理可以在不改变化学成分的前提下 获得不同的组织,从而获得不同的力学性能。
2.1 合金的晶体结构
二、合金晶体结构的类型
由于溶剂晶格的间隙有限,所以间隙固溶体只能 是有限溶解溶质原子。
2.1 合金的晶体结构
➢固溶体的性能
由于溶质原子的溶入,固溶体发生晶格畸变,变 形抗力增大,使金属的强度、硬度升高的现象称为固 溶强化。它是强化金属材料的重要途径之一。
2.1 合金的晶体结构
2、金属化合物 金属化合物是合金组元间发生相互作用而生
位错线的密度可用单位体积 内位错线的总长度表示。位 错密度愈大,塑性变形抗力 愈大。因此,目前通过塑性 变形,提高位错密度,是强 化金属的有效途径之一。
2.1 金属的结构
(3)面缺陷ቤተ መጻሕፍቲ ባይዱ
面缺陷即晶界和亚晶界。 ➢ 晶界:晶粒之间原子无规
则排列的过渡层,又称大角 度晶界。 ➢ 亚晶界:晶粒内部亚组织 之间的边界,一系列刃型 位错所形成的小角度晶界。
晶界和亚晶界处表现出有较高的强度和硬度。 晶粒越细小晶界和亚晶界越多,它对塑性变形的阻碍作用就越大, 金属的强度、硬度越高。
2.1 合金的晶体结构
一、基本概念
1、合金 是由两种或两种以上的金属元素或金属与非金属
组成的具有金属特性的物质。
例:碳钢是铁和碳组成的合金。
2、组元 组成合金的最基本的、独立的物质称为组元,简
第二章 金属的晶体结构与结晶
第一节 金属的结构 第二节 合金的晶体结构
第二章 金属学的基本知识
§ 2.1 金属与合金的晶体结构
合金中,具有同一化学成分且结构相同的均匀部分叫相。合金中相
与相之间有明显的界面。液态合金通常为单相液体。合金在固态下,
由一个固相组成时称为单相合金,由两个以上固相组成时称为多相合 金。
组成合金各相的成分、结构、形态、性能和各相的组合情况构成
了合金的组织。组织是合金的内部情景,还包括晶粒的大小、形状、 种类以及各种晶粒之间的相对数量和相对分布,可以用肉眼或借助各
固溶体,如图2-10(b)所示。
由于溶剂晶格的间隙有限,因此间隙固溶体都是有限固溶体。形成间 隙固溶体的条件是溶质原子与溶剂原子的比值r溶质/r溶剂≤0. 59。因此
形成间隙固溶体的溶质元素都是一些原子半径小的非金属元素,如氢、
硼、碳、氮、氧等。
上一页 下一页
§ 2.1 金属与合金的晶体结构
应当指出,所形成的固溶体虽然仍保持着溶剂金属的晶格类型, 但由于溶质与溶剂原子尺寸的差别,必然会造成晶格的畸变,如图 2-11。晶格畸变使合金的强度、硬度和电阻升高。这种通过溶人 溶质元素使固溶体的强度、硬度升高的现象称为固溶强化。固溶强 化是提高金属材料力学性能的重要途径之一。实践表明,适当控制
态的金属和合金。晶体具有一定的熔点,并具有各向异性的特征。
晶体中的原子排列情况如图2-1(a)所示。 2.晶体结构的基本知识 (1)晶格为了便于描述晶体中原子排列的规律及几何形状,人 为地将原子看作一个点,再用一些假想的线条,将原子的中心
下一页
§ 2.1 金属与合金的晶体结构
连接起来,使之构成一个空间格子,如图2-1 ( b)。这种抽象 的、用于描述原子在晶体中排列方式的空间格子叫做“晶格”。 晶格中的每个点叫做晶格结点。 (2)晶胞由于晶体中原子排列具有周期性特点,因此在研究晶 体结构时,为方便起见,通常只从晶格中选取一个能够完全反映 晶格特征的最小的几何单元来分析晶体中原子排列的规律,这个 最小的几何单元称为晶胞,如图2-1 (c)。实际上整个晶格就是 由许多大小、形状和位向相同的晶胞在空间重复堆积而成的。晶 胞的大小和形状常以晶胞的棱边长度a,b,c及棱边夹角α,β,γ来
第2章金属材料的组织结构
均匀长大
实际金属结晶主要以树枝状长
大。因为存在负温度梯度,且晶核
棱角处散热好,生长快,先形成一
次轴,一次轴产生二次轴…,树枝
间最后被填充。
负温度梯度
树枝状长大
树枝状长大的实际观察(定向凝固)
二、晶粒大小及其控制
1、晶粒度 表示晶粒大小的尺度
总长度。
= S/V(cm/cm3或1/cm2)
金属的位错密度为104~1012/cm2;
位错对性能的影响:
金属的塑性变形主要由位错 运动引起,因此阻碍位错运动是 强化金属的主要途径。
减少或增加位错密度都可以
提高金属的强度。
金属晶须
退火态
(105-108/cm2)
加工硬化态
(1011-1012/cm2)
光学金相显示的纯铁晶界
多晶体示意图
⑵ 晶体缺陷
晶格的不完整部位称晶体缺陷。
实际金属中存在着大量的晶体缺陷,按形状可分三类,
即点、线、面缺陷。
① 点缺陷 :空间三维方向上尺寸都很小的缺陷。
空位:晶格中某些缺排原子的空结点。 间隙原子:挤进晶格间隙中的原子。可以是基体金属原子,
也可以是外来原子。 置换原子:取代原来原子位置的外来原子称置换原子。
中。因而高温下晶粒过大、过小都
不好。
的晶 关粒 系大
小 与 金 属 强 度
s= i+Kd-1/2
单晶叶片
2.1.3 金属的同素异构转变
物质在固态下晶体结构随温度变化的现象称同素异
构转变。 同素异构转变属于相变之一—
固态相变。
纯铁的同素异构转变
第二章金属与合金的晶体结构及铁碳相图
ቤተ መጻሕፍቲ ባይዱ.2 实际金属的晶体结构
2.2.2金属的结晶
1.结晶的基本概念 物质由液态转变为固态的过程称为凝固,如果通过凝固形成
晶体,则又称为结晶。晶体物质都有一个平衡结晶温度(熔 点),液体只有低于这一温度时才会结晶,固体高于这一温度 时才能发生熔化。在平衡结晶温度,液体与晶体同时共存, 处于平衡状态。而非晶体物质无固定的凝固温度,凝固总是 在某一温度范围逐渐完成。 纯金属的实际结晶过程可用冷却曲线来描述。冷却曲线是描 述温度随时间而变化的曲线,是用热分析法测绘的。从图26的冷却曲线可以看出,液态金属随时间冷却到某一温度时, 在曲线上出现了一个平台,这个平台所对应的温度就是
1.单晶体和多晶体 晶体内部的晶格位向完全一致的晶体称为单晶体,金属的单
晶体只能靠特殊的方法制得。实际使用的金属材料都是由许 多晶格位向不同的微小晶体组成的,每个小晶体都相当于一 个单晶体,内部的晶格位向是一致的,而小晶体之间的位向 却不相同。这种外形呈多面体颗粒状的小晶体称为晶粒;晶粒 与晶粒之间的界面称为晶界;由许多晶粒组成的晶体称为多 晶体,如图2-5所示,实际金属就是多晶体。 2.晶体缺陷 第一节介绍的金属晶体内部原子规则有序地排列是理想晶体 的状态。实际上金属由于结晶或其他加工等条件的影响,内 部原子排列并不是理想的,存在着大量的晶体缺陷(点缺陷、 线缺陷和面缺陷)。这些缺陷的存在,对金属性能会产生显著 的影响。
上一页
下一页 返回
2.2 实际金属的晶体结构
(2)晶核的长大 如图2-7所示,当第一批晶核形成后液体中的原子便不断
地向晶核沉积长大,与此同时又有新的晶核生成并长大, 形核与长大这两个过程是同时在进行着的,直至每个晶核 长大到互相接触,而每个长大了的晶核也就成为了一个晶 粒。
第02章金属的晶体结构与结晶
图2-11 热分析装置示意图
图2-12 纯金属的冷却曲线
2.4.1.3 合金的结晶
合金的结晶过程与纯金属有相似之处,结晶过程都有结 晶潜热放出。不同之处是纯金属的结晶过程总是在某一 恒定温度下进行的,而大多数合金是在某一温度范围内 进行结晶,在结晶过程中各相的成分还会发生变化。所 以二者的冷却曲线是不相同的。
2.4.1.2 纯金属的结晶
用热分析实验来分析纯金属的结晶过程和冷却曲线。
目前,人们多用热分析法配合X射线等手段来研究金属 的结晶过程。热分析实验装置如图2-11所示。用该装置 将纯金属熔化,然后缓慢冷却,在冷却过程中,每隔一 定时间测量一次温度,将记录下来的数据描绘在时间温度坐标图中,便得到纯金属的冷却曲线,如图2-12所 示。
2.3.2.3 面缺陷
面缺陷主要是指晶界和亚晶界,如图2-10(a)、(b)所示。
实际金属一般为多晶体,即由许多位向不同的晶粒组成。 因此在实际金属中有很多晶界存在。由于晶界处原子排 列不规律,偏离平衡位置较多,因此晶格畸变程度较大。 晶界处的抗腐蚀能力较差、熔点较低,且抗塑性变形能 力较强。
除晶界外,晶粒内部是由一些小晶块组成的,它们的晶 格位向有微小的差异,人们把这些小晶块叫做亚晶粒, 亚晶粒之间的界面称为亚晶界。亚晶界处的原子排列不 规则,也存在着晶格畸变。
2.4.1.5 金属的结晶过程 金属的结晶是由两个基本过程组成的,即生出微小的晶 体核心(简称生核)和晶核进行长大(简称为核长大)。 如图2-13所示为金属的结晶过程示意图。结晶开始时, 液体中某些部位的原子集团先后按一定的晶格类型排列 成微小的晶核,以后晶核向着不同位向按树枝生长的方 式长大,当成长的枝晶相互接触时,晶体就向着尚未凝 固的部位生长,直到枝晶间的金属液全部凝固为止,最 后形成了许多小晶粒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 六方晶系的晶面指数和 晶向指数 四指数方法表示晶面和晶向。 水平坐标轴选取互相成 120°夹角的三坐标轴a1、a2和 a3, 垂直轴为c 轴。 晶面表示为(hkil), 晶面族为{hkil}, 晶向表示为[uvtw], 晶向族为<uvtw>。
六方晶系主要晶面和晶向
4. 密排面和密排方向 不同晶体结构中不同晶面、不同晶向 上原子排列密度不一样。 密排面: 原子密度最大的晶面。 密排方向:原子密度最大的晶向。 ●在体心立方晶格中, 密排面为{110}。 密排方向为<111>。
不同晶体结构中原子排列的方式不同,
使它们中原子中心的平面叫做晶面; 通过原子中心的直线为原子列,代表的 方向叫做晶向。
晶面用晶面指数表达。 晶向用晶向指数表达。
1. 立方晶系的晶面表示方法 以晶面ABB’A’为例:
晶面指数的一般标记 为(hkl)。实际表示一组原 子排列相同的平行晶面。
2. 立方晶系的晶向表示方法 以晶向DA为例:
晶向OA : [100] 晶向OB : [110] 晶向OB’ : [111]
立方晶胞中的主要晶向
晶向指数一般标记为[uvw], 表示一组原子排列相同的平行晶向。
若两个晶向的全部指数数值相同而符 号相反, 则它们相互平行或为同一原子列, 但方向相反。 如[110]与 。 若只研究原子排列情况, 则晶向[110] 可用同一个指数[110]表示。
晶胞:能反映该晶格特征的最小组成单元。 棱边长a、b、c 棱边间夹角α、β、γ a、b、c 称为晶格常数。 金属的晶格常数一般为: 1×10-10 m~7×10-10 m (0.1nm~0.7nm)
晶胞
老师提示 :不同元素组成的金属晶体因晶格形 式及晶格常数的不同,表现出不同的物理、 化学和力学性能。金属的晶体结构可用X射线 结构分析技术进行测定。
与
晶向族
原子排列情况相同而在空间位向不 同的晶向组成晶向族。 晶向族用尖括号表示, 即<uvw>。
如: <100> = [100] + [010] + [001]
在立方晶系中, 一个晶面指数与 一个晶向指数数值和符号相同时, 则 该晶面与该晶向互相垂直。 如:(111)⊥[111]。
晶面与晶向互相垂直
●在面心立方晶格中, 密排面为{111}。 密排方向为<110>。
体心立方、面心立方晶格主要晶面的原子排列和密度
体心立方晶格 晶面 指数 晶面原子 排列示意图 晶面原子 密度 (原子数/面积) 面心立方晶格 晶面原子 排列示意图 晶面原子 密度 (原子数/面积)
{100}
{110}
{111}
体心立方、面心立方晶格主要晶向的原子排列和密度
(2)晶胞原子数 角上的原子属于8个相邻的晶胞,中心的原 子属于这个晶胞。 一个体心立方晶胞所含的原子数为2个。
(3)原子半径 晶胞中相距最近的两个原子之间距离的 一半称为原子半径(r原子)。
体心立方晶胞中原子半径与晶格常数a
之间的关系为:
(4)致密度 晶胞中原子占有的体积与该晶胞体积 之比称为致密度(也称密排系数)。 致密度越大,原子排列紧密程度越大。 体心立方晶胞的致密度为:
异类原子
老师提示:点缺陷造成局部晶格畸变, 使金属 的屈服强度、电阻率增加, 密度发生变化。
2. 线缺陷 指两维尺度很小而第三维尺度很大的缺陷, 叫位错。由晶体中原子平面的错动引起。
(1)刃型位错 晶体的一部分出现一个多余 的半原子面。如切入晶体的刀片, 刀片的刃口线即为位错线。这种 线缺陷称刃型位错。 半原子面在上面的称正刃型 位错, 半原子面在下面的称负刃 型位错。
一、三种常见的金属晶体结构
☆ 老师提示:重点内容
1. 体心立方晶格(胞) ( BCC 晶格) 8个原子处于立方体的角上,1个原子处于 立方体的中心, 角上8个原子与中心原子紧靠。 具有体心立方晶 格的金属有钼(Mo)、 钨(W)、钒(V)、α-铁 (α-Fe, <912 ℃)等。
体心立方晶胞特征: (1)晶格常数 a=b=c, α=β=γ=90°
体心立方晶格 晶向 指数 晶向原子 排列示意图 晶向原子 密度 (原子数/长度) 面心立方晶格 晶向原子 排列示意图 晶向原子 密度 (原子数/长度)
<100>
<110>
<111>
三、金属晶体的特性
1. 金属晶体具有确定的熔点 纯金属缓慢加热到一定温度, 固态金属熔 化成为液态金属。熔化过程中温度不变。 熔化温度(T0)称为熔点。
1Cr17不锈钢的多晶体
晶界原子排列 示意图
(2)亚晶界 晶粒由许多位向相差很小的 亚晶粒(嵌镶块)组成。亚晶粒之 间的位向差只有几秒、几分,最 多达1~2度。 亚晶界 亚晶粒之间的边界。 亚晶界由位错垂直排列成位错墙 构成。
亚晶界
老师提示 :晶界和亚晶界均可提高金属的强 度。晶界越多, 晶粒越细, 金属的塑性变形 能力越大, 塑性越好。
具有这种晶格的金 属有镁(Mg)、镉(Cd)、 锌(Zn)、铍(Be)等。
密排六方晶胞特征:
(1)晶格常数 正六边形的边长a 两底面之间的距离c 相邻侧面夹角120° 侧面与底面夹角90° (2)晶胞原子数 6
(3)原子半径
(4)致密度
0.74 (74%)
(5)配位数
12
老师提示 :由于原子排列紧密程度不一样, 当金属从面心立方晶格向体心立方晶格转 变时, 体积会发生变化。 钢在淬火时因晶格转变发生体积变化。
(2)螺型位错 晶体右边的上部相对于下 部向后错动一个原子间距。晶 面发生错动。 错动区的原子用线连接起 来,成螺旋状。 这种线缺陷称螺型位错。
位错的形成: 在金属的结晶、塑性变形和相变等过 程中形成。
不锈钢中的位错线
位错的量:用位错线长度来表示。
位错密度:单位体积中位错线的总长度。
式中:ρ 为位错密度, 单位为m-2, ΣL 为位错线总长度, 单位为m, V为体积, 单位为m3。
面心立方晶胞的特征:
(1)晶格常数 a=b=c α=β=γ=90°
(2)晶胞原子数 (个) 4
(3)原子半径
(4)致密度
0.74 (74%)
(6)配位数
12
3. 密排六方晶格(胞) ( HCP 晶格) 12个金属原子分布在六方体的12个角上, 在 上下底面的中心各分布1个原子, 上下底面之间 均匀分布3个原子。
第2章 金属的结构与结晶
内容提要:
本章重点介绍纯金属的晶体结构、晶体缺 陷和合金的结构、金属材料的组织。
学习目标:
本章重点掌握金属的晶体结构、晶体缺陷 和合金的结构
2.1 金属材料的结构与组织
2.1.1 纯金属的晶体结构
晶体结构 晶体中原子(离子或分子)规 则排列的方式。 通过金属原子(离子)的中心划出许多直 线,形成空间格架,称为晶格。
立方晶胞中的主要晶面
如
晶面的截距可以为负数, 在指数上加负号, 。 若某个晶面 的指数都乘以-1,得到晶面 , 则晶面 与 属于一组平行晶面。
晶面族: 在立方晶系中, 原子排列相同但在空间方 向不同的晶面组成晶面族。 晶面族用大括号表示, 即{hkl}。
在立方晶胞中
组成{111}晶面族:
{111} 晶面族
(6)配位数 配位数为晶格中与任一个原子相距最近且 距离相等的原子数目。 配位数越大,原子排列紧密程度就越大。 体心立方晶格的配位数为8。
2. 面心立方晶格(胞) ( FCC 晶格)
金属原子分布在立方体的8个角上和6 个面的中心。面中心的原子与该面4个角上 的原子紧靠。 具有这种晶格的金 属有铝(Al)、铜(Cu)、 镍(Ni)、金(Au)、银 (Ag)、γ- 铁( γ-Fe, 912 ℃~1394 ℃)等。
位错对性能的影响: ●金属为理想晶体或含极少量位错时, 金属的屈服强度σs 很高。 ●当含有一定量的位错时, 强度降低。 ●退火金属中位错密度为 106~8 cm-2 , 强度最低。 ●形变加工时, 位错密度增加, σs 增高。
金属的强度与位错密度的关系
3. 面缺陷 二维尺度很大而第三维尺度很小的缺陷。 (1)晶界 实际金属为多晶体。每个晶 粒可视为单晶体。所有晶粒的结 构相同, 位向不同, 位向差为几 十分、几度或几十度。 晶界 晶粒与晶粒之间的接 触界面。 晶界在空间呈网状;晶界上 原子的排列规则性较差。
各向异性:晶体在不同的方向上的力学、 物理和化学等性能不一样。
各向同性:非晶体在各个方向上性能完 全相同,这种性质叫非晶体的各向同性。
实际使用的金属, 内部有许多晶粒组成, 每个晶粒在空间分布的位向不同,在宏观上 沿各个方向上的性能趋于相同,晶体的各向 异性显示不出来。
☆ 练习 写出体心立方晶格、面心立方晶格的 密排面和密排方向。
四、实际金属中的晶体缺陷
1. 点缺陷 在三维尺度上都很小的的缺陷。 (1)空位 晶格中某结点上没有原子。 有利于金属内部原子的扩散。
(2)间隙原子 位于晶格间隙之中的原子 叫间隙原子。
(3)异类原子 纯金属中存在的其它元素。 ●异类原子与金属原子的半径接近时, 占据 晶格的一些结点; ●异类原子的半径比金属原子的半径小得多, 位于晶格的空隙中。
非晶体材料在加 热时, 固态转变为液 态时, 温度变化。
晶体和非晶体的熔化曲线
2. 金属晶体具有各向异性
在晶体中, 不同晶面和晶向上原子排列 的方式和密度不同,它们之间的结合力的大 小也不相同,因而金属晶体不同方向上的性 能不同。这种性质叫做晶体的各向异性。
●单晶体铁在磁场中沿 <100> 方向磁化容 ●单晶体铁 (只含一个晶粒 )的弹性模量, ●锌在盐酸中溶解时,晶面的溶解速度 5 MPa, 易。制造变压器用的硅钢片的 <100>方向应平 <111> 方向上为 2.90 × 10 的次序从大到小是: 行于导磁方向,以降低变压器的铁损。 <100>方向上只有1.35×105 MPa。