山东省德州市九年级上学期数学第一次月考试卷
2020-2021学年山东省德州九中九年级(上)第一次月考数学试卷(10月份)(附答案详解)
2020-2021学年山东省德州九中九年级(上)第一次月考数学试卷(10月份)一、选择题(本大题共12小题,共48.0分)1.下列方程中,是一元二次方程的是()A. ax2+2x=1B. x+1x−1=0C. 3(x+2)2=3x2−4x+1D. 3x2−12=x+232.下列抛物线中,与抛物线y=x2−2x+4具有相同对称轴的是()A. y=4x2+2x+1B. y=2x2−4x+1C. y=2x2−x+4D. y=x2−4x+23.若x=2是关于x的一元二次方程x2−mx+8=0的一个解.则m的值是()A. 6B. 5C. 2D. −64.用配方法解方程x2+10x+9=0,配方后可得()A. (x+5)2=16B. (x+5)2=1C. (x+10)2=91D. (x+10)2=1095.某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数共31.若设主干长出x个支干,则可列方程是()A. (1+x)2=31B. 1+x+x2=31C. (1+x)x=31D. 1+x+2x=316.已知点A(−3,y1),B(−1,y2),C(2,y3)在函数y=−x2−2x+b的图象上,则y1、y2、y3的大小关系为()A. y1<y3<y2B. y3<y1<y2C. y3<y2<y1D. y2<y1<y37.设a,b是方程x2+x−2020=0的两个实数根,则a2+2a+b的值是()A. 2021B. 2020C. 2019D. 20188.二次函数y=−2x2+4x+1的图象如何平移可得到y=−2x2的图象()A. 向左平移1个单位,向上平移3个单位B. 向右平移1个单位,向上平移3个单位C. 向左平移1个单位,向下平移3个单位D. 向右平移1个单位,向下平移3个单位9.在平面直角坐标系中,将抛物线y=x2−(m−1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限10.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()A. B.C. D.11.已知抛物线y=x2+bx+c的对称轴为x=1,且它与x轴交于A、B两点.若AB的长是6,则该抛物线的顶点坐标为()A. (1,9)B. (1,8)C. (1,−9)D. (1,−8)12.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(−1,0)和B,与y轴交于点C.下列结论:①abc<0,②2a+b<0,③4a−2b+c>0,④3a+c>0,其中正确的结论个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共24.0分)13.方程x2=2x的根为______.14.篮球联赛实行单循环赛制,即每两个球队之间进行一场比赛,计划一共打36场比赛,设一共有x个球队参赛,根据题意,所列方程为______.15.抛物线y=ax2+bx+c的部分图象如图所示,则当y>0时,x的取值范围是______16.若二次函数y=(k−2)x2+2x+1的图象与x轴有交点,则k的取值范围是______.17.抛物线y=12x2+mx+m+12经过定点的坐标是______18.平面直角坐标系中,将抛物线y=−x2平移得到抛物线C,如图所示,且抛物线C经过点A(−1,0)和B(0,3),点P是抛物线C上第一象限内一动点,过点P作x轴的垂线,垂足为Q,则OQ+PQ的最大值为______.三、解答题(本大题共7小题,共78.0分)19.解方程:(1)2x2+5x=−1;(2)2(x−3)2=x2−9.20.已知关于x的一元二次方程x2+(4m+1)x+2m−1=0,(1)求证:不论m任何实数,方程总有两个不相等的实数根;(2)若方程的两根为x1、x2且满足1x1+1x2=−12,求m的值.21.我市某楼盘原计划以每平方米5000元的均价对外销售,由于国家“限购”政策出台,购房者持币观望,房产商为了加快资金周转,对该楼盘价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求两次下调的平均百分率;(2)对开盘当天购房的客户,房产商在开盘均价的基础上,还给予以下两种优惠方案供选择:①打9.9折销售;②不打折,一次性送装修费每平方米40元,某客户在开盘当天购买了该楼盘的一套120平方米的商品房,试问该客户选择哪种方案购房更优惠一些?x2+bx+c经过点A(3√3,0)和点B(0,3),且这个抛物线的对称轴为22.抛物线y=−13直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,要设计一幅宽20cm,长30cm的图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:1,如果要使彩条所占的面积是图案面积的19,则竖彩条宽度为多少?7524.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加______件,每件商品盈利______元(用含x的代数式表示).(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?(3)在上述条件不变、销售正常情况下,商场日盈利可以达到2200元吗?如果可以,请求出x,如果不行,请说明理由.25.已知直线l:y=−2,抛物线C:y=ax2−1经过点(2,0)(1)求a的值;(2)如图①,点P是抛物线C上任意一点,过点P作直线l的垂线,垂足为Q.求证:PO=PQ;(3)请你参考(2)中的结论解决下列问题1.如图②,过原点作直线交抛物线C于A,B两点,过此两点作直线l的垂线,垂足分别为M,N,连接ON,OM,求证:OM⊥ON;2.如图③,点D(1,1),使探究在抛物线C上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标,若不存在,请说明理由.答案和解析1.【答案】D【解析】【分析】本题考查一元二次方程的概念,一元二次方程未知数的最高次数是2,为整式方程,并且二次项系数不为0.找到化简后未知数的最高次数是2,二次项系数不为0的整式方程的选项即可.【解答】解:A、a有可能为0,不符合题意;B、为分式方程,不符合题意;C、化简后为一元一次方程,不符合题意;D、未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;故选D.2.【答案】B【解析】解:抛物线y=x2−2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=−1,不符合题意;4B、y=2x2−4x+1的对称轴为x=1,符合题意;C、y=2x2−x+4的对称轴为x=1,不符合题意;4D、y=x2−4x+2的对称轴为x=2,不符合题意,故选B.根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.3.【答案】A【解析】【分析】本题考查了一元二次方程的解,此题比较简单,易于掌握.先把x的值代入方程即可得到一个关于m的方程,解一元一次方程即可.【解答】解:把x=2代入方程得:4−2m+8=0,解得m=6.故选:A.4.【答案】A【解析】解:方程x2+10x+9=0,整理得:x2+10x=−9,配方得:x2+10x+25=16,即(x+5)2=16,故选A.方程移项,利用完全平方公式化简得到结果即可.此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.5.【答案】B【解析】解:设主干长出x个支干,根据题意列方程得:x2+x+1=31.故选:B.由题意设主干长出x个支干,每个支干又长出x个小分支,则又长出x2个小分支,则共有x2+x+1个分支,即可列方程.此题考查了由实际问题抽象出一元二次方程,要根据题意分别表示主干、支干、小分支的数目,找到关键描述语,找到等量关系是解决问题的关键.6.【答案】B【解析】【分析】本题考查二次函数的性质,解题的关键是明确二次函数的性质,找出所求问题需要的条件.根据二次函数图象具有对称性和二次函数的增减性,可以判断y1、y2、y3的大小,从而可以解答本题.【解答】解:∵y=−x2−2x+b,∴函数y =−x 2−2x +b 的对称轴为直线x =−1,开口向下,当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小, ∵−1−(−3)=2,−1−(−1)=0,2−(−1)=3, ∴y 3<y 1<y 2, 故选B .7.【答案】C【解析】解:∵a ,b 是方程x 2+x −2020=0的两个实数根, ∴a 2+a =2020,a +b =−1,∴a 2+2a +b =(a 2+a)+(a +b)=2020−1=2019. 故选:C .根据一元二次方程的解及根与系数的关系可得出a 2+a =2020、a +b =−1,将其代入a 2+2a +b =(a 2+a)+(a +b)中即可求出结论.本题考查了根与系数的关系以及一元二次方程的解,根据一元二次方程的解及根与系数的关系找出a 2+a =2020、a +b =−1是解题的关键.8.【答案】C【解析】解:二次函数y =−2x 2+4x +1的顶点坐标为(1,3),y =−2x 2的顶点坐标为(0,0),只需将函数y =−2x 2+4x +1的图象向左移动1个单位,向下移动3个单位即可. 故选:C .根据配方法,可得顶点式解析式,根据右移减,上移加,可得答案.本题考查函数的图象变换,讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.9.【答案】D【解析】解:∵y =x 2−(m −1)x +m =(x −m−12)2+m −(m−1)24,∴该抛物线顶点坐标是(m−12,m −(m−1)24),∴将其沿y 轴向下平移3个单位后得到的抛物线的顶点坐标是(m−12,m −(m−1)24−3),∵m>1,∴m−1>0,∴m−12>0,∵m−(m−1)24−3=4m−(m2−2m+1)−124=−(m−3)2−44=−(m−3)24−1<0,∴点(m−12,m−(m−1)24−3)在第四象限;故选:D.根据平移规律得到平移后抛物线的顶点坐标,然后结合m的取值范围判断新抛物线的顶点所在的象限即可.本题考查了二次函数的图象与性质、平移的性质、抛物线的顶点坐标等知识;熟练掌握二次函数的图象和性质,求出抛物线的顶点坐标是解题的关键.10.【答案】C【解析】【分析】本题考查了二次函数的图象以及一次函数图象与系数的关系,根据a、b的正负确定一次函数图象经过的象限是解题的关键.根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【解答】解:A.二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故A错误;B.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,且与二次函数交于y轴负半轴的同一点,故B错误;C.二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故C 正确;∵D.二次函数图象开口向上,对称轴在y 轴右侧,∴a >0,b <0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y 轴负半轴的同一点, 故D 错误;故选C .11.【答案】C【解析】解:∵抛物线y =x 2+bx +c 的对称轴为x =1,且它与x 轴交于A 、B 两点.AB 的长是6,∴点A 的坐标为(−2,0),点B 的坐标为(4,0)或点A 的坐标为(4,0),点B 的坐标为(−2,0), ∴{−b 2×1=14−2b +c =0, 得{b =−2c =−8, ∴y =x 2−2x −8=(x −1)2−9,∴该抛物线的顶点坐标为(1,−9),故选:C .根据题意可以得到点A 和点B 的坐标,然后根据对称轴为x =1可以求得b 、c 的值,然后将函数解析式化为顶点式即可解答本题.本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.12.【答案】B【解析】解:①∵由抛物线的开口向上知a >0,∵对称轴位于y 轴的右侧,∴b <0.∵抛物线与y 轴交于负半轴,∴c <0,∴abc >0;故错误;<1,得2a>−b,即2a+b>0,②对称轴为x=−b2a故错误;③如图,当x=−2时,y>0,4a−2b+c>0,故正确;④∵当x=−1时,y=0,∴0=a−b+c<a+2a+c=3a+c,即3a+c>0.故正确.综上所述,有2个结论正确.故选:B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴求出2a与b的关系.本题主要考查抛物线与x轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.13.【答案】x1=0,x2=2【解析】解:x2=2x,x2−2x=0,x(x−2)=0,x=0,或x−2=0,x1=0,x2=2,故答案为:x1=0,x2=2.移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程−因式分解法,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.14.【答案】12x(x −1)=36【解析】解:设一共有x 个球队参赛,每个队都要赛(x −1)场,但两队之间只有一场比赛,由题意得:12x(x −1)=36,故答案为12x(x −1)=36.赛制为单循环形式(每两队之间都赛一场),x 个球队比赛总场数为x(x−1)2,即可列方程.本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.15.【答案】−1<x <3【解析】解:抛物线的对称轴为直线x =1,而抛物线与x 轴的一个交点坐标为(−1,0),所以抛物线与x 轴的另一个交点坐标为(3,0),所以当−1<x <3时,y >0.故答案为−1<x <3.利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(3,0),然后写出抛物线在x 轴上方所对应的自变量的范围即可.本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c(a,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化解.关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.16.【答案】k ≤3且k ≠2【解析】解:∵二次函数y =(k −2)x 2+2x +1的图象与x 轴有交点,∴一元二次方程(k −2)x 2+2x +1=0有解,∴{k −2≠0△=22−4(k −2)=12−4k ≥0, 解得:k ≤3且k ≠2.故答案为:k ≤3且k ≠2.根据二次函数图象与x 轴有交点可得出关于x 的一元二次方程有解,根据根的判别式结合二次项系数非零即可得出关于k 的一元一次不等式组,解不等式组即可得出结论. 本题考查了抛物线与x 轴的交点、根的判别式以及解一元一次不等式组,根据根的判别式△≥0结合二次项系数非零找出关于k 的一元一次不等式组是解题的关键.17.【答案】(−1,1)【解析】解:∵y =12x 2+(x +1)m +12,∵抛物线经过定点,∴x +1=0,∴x =−1,y =1,∴定点坐标为(−1,1),故答案为(−1,1)由y =12x 2+(x +1)m +12,抛物线经过定点,可得x +1=0,由此即可解决问题; 本题考查二次函数图象上的点的坐标特征,定点问题等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.18.【答案】214【解析】解:设平移后的解析式为y =−x 2+bx +c ,∵抛物线C 经过点A(−1,0)和B(0,3),∴{−1−b +c =0c =3,解得{b =2c =3, ∴抛物线C 的解析式为y =−x 2+2x +3,设Q(x,0),则P(x,−x 2+2x +3),∵点P 是抛物线C 上第一象限内一动点,∴OQ +PQ =x +(−x 2+2x +3)=−x 2+3x +3=−(x −32)2+214,∴OQ +PQ 的最大值为214,故答案为214.求得抛物线C 的解析式,设Q(x,0),则P(x,−x 2+2x +3),即可得出OQ +PQ =x +(−x 2+2x +3)=−(x −32)2+214,根据二次函数的性质即可求得.本题考查了二次函数的性质,二次函数图象与几何变换,根据题意得出OQ +PQ =−x 2+3x +3是解题的关键.19.【答案】解:(1)2x 2+5x +1=0,∵a =2,b =5,c =1,∴b 2−4ac =52−4×2×1=17,∴x =−b±√b 2−4ac 2a=−5±√172,, ∴x 1=−5+√172,x 2=−5−√172;(2)2(x −3)2=x 2−9,2(x −3)2−(x −3)(x +3)=0,(x −3)(2x −6−x −3)=0,∴x −3=0或x −9=0,∴x 1=3,x 2=9.【解析】(1)先把方程化为一般式,然后利用公式法解方程;(2)先把方程变形为2(x −3)2−(x −3)(x +3)=0,然后利用因式分解法解方程. 本题考查了解一元二次方程−因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程.20.【答案】解:(1)证明:Δ=(4m +1)2−4(2m −1)=16m 2+8m +1−8m +4=16m 2+5>0,∴不论m 为任何实数,方程总有两个不相等的实数根;(2)∵1x 1+1x 2=−12,即x 1+x 2x 1x 2=−12, ∴由根与系数的关系可得−4m−12m−1=−12,解得 m =−12,经检验得出m =−12是原方程的根,即m的值为−12.【解析】本题考查一元二次方程根与系数的关系,熟练掌握一元二次方程的根的情况与判别式Δ的符号的关系,把求未知系数的范围问题转化为解不等式的问题,体现了转化的数学思想.(1)要证明方程总有两个不相等的实数根,那么只要证明Δ>0即可;(2)因为1x1+1x2=x1+x2x1x2=−12,所以由根与系数的关系可得−4m−12m−1=−12,解方程可得m的值.21.【答案】解:(1)设两次下调的平均百分率为x,根据题意得:5000(1−x)2=4050,解得:x1=0.1=10%,x2=1.9(舍去),答:两次下调的平均百分率为10%.(2)∵方案①可优惠4050×120×(1−0.99)=4860(元),方案②可优惠400×120=4800(元),且4860>4800,∴方案①更优惠.【解析】(1)根据每次的均价等于上一次的价格乘以(1−x)(x为平均每次下调的百分率),可列出一个一元二次方程,解此方程可得平均每次下调的百分率;(2)根据优惠方案先分别求出方案①和方案②的优惠钱数,再进行比较即可得出答案.本题主要考查一元二次方程在实际中的应用:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.【答案】解:(1)∵抛物线y=−13x2+bx+c经过A(3√3,0)、B(0,3),∴{−9+3√3b+c=0 c=3由上两式解得b=2√33,∴抛物线的解析式为:y=−13x2+2√33x+3;(2)由(1)抛物线对称轴为直线x=√3,把x=√3代入,y=−13x2+2√33x+3得y=4,则点C坐标为(√3,4),设线段AB所在直线为:y=kx+b,解得AB解析式为:y=−√33x+3,∵线段AB所在直线经过点A(3√3,0)、B(0,3),抛物线的对称轴l与直线AB交于点D,∴设点D的坐标为D(√3,m),将点D(√3,m)代入y=−√33x+3,解得m=2,∴点D坐标为(√3,2),∴CD=CE−DE=2过点B作BF⊥l于点F,∴BF=OE=√3,∵BF+AE=OE+AE=OA=3√3,∴S△ABC=S△BCD+S△ACD=12CD⋅BF+12CD⋅AE,∴S△ABC=12CD(BF+AE)=12×2×3√3=3√3.【解析】本题考查的是待定系数法求二次函数的解析式、待定系数法求一次函数的解析式,用割补法求三角形面积,二次函数的图象和性质,解答时注意数形结合.(1)利用待定系数法求抛物线解析式;(2)利用割补法求ABC的面积.23.【答案】解:设竖彩条的宽为xcm,则横彩条的宽为2xcm,则(30−2x)(20−4x)=30×20×(1−1975),整理得:x2−20x+19=0,解得:x1=1,x2=19(不合题意,舍去).答:竖彩条的宽度为1cm.【解析】可设竖彩条的宽是xcm,则横彩条的宽是2xcm,根据彩条所占面积是图案面积的19,可列方程求解.75本题考查的是一元二次方程的应用,设出横竖条的宽,以面积做为等量关系列方程求解.24.【答案】2x(50−x)【解析】解:(1)商场日销售量增加2x件,每件商品盈利(50−x)元,故答案为:2x、(50−x);(2)根据题意可得(30+2x)(50−x)=2100,解得:x=15或x=20,∵该商场为了尽快减少库存,∴降的越多,越吸引顾客,∴选x=20,答:每件商品降价20元,商场日盈利可达2100元.(3)根据题意可得(30+2x)(50−x)=2200,整理得到:x2−35x+350=0.由于△=b2−4ac=1225−1400=−175<0,所以该方程无解.故商场日盈利不可以达到2200元.(1)降价1元,可多售出2件,降价x元,可多售出2x件,盈利的钱数=原来的盈利−降低的钱数;(2)(3)根据日盈利=每件商品盈利的钱数×(原来每天销售的商品件数30+2×降价的钱数),列出方程求解即可.此题主要考查了一元二次方程的应用;得到日盈利的等量关系是解决本题的关键.25.【答案】解:(1)∵抛物线C:y=ax2−1经过点(2,0),∴0=4a−1,∴a=14;(2)∵a=14,∴抛物线解析式:y=14x2−1,设点P(a,14a2−1),∴PO=√(a−0)2+(14a2−1) 2=14a2+1,PQ=14a2−1−(−2)=14a2+1,∴PO=PQ;(3)1.由(2)可得OA=AM,OB=BN,∴∠BON=∠BNO,∠AOM=∠AMO,∵AM⊥MN,BN⊥MN,∴AM//BN,∴∠ABN+∠BAM=180°,∵∠ABN+∠BON+∠BNO=180°,∠AOM+∠AMO+∠BAM=180°,∴∠ABN+∠BON+∠BNO+∠AOM+∠AMO+∠BAM=360°,∴∠BON+∠AOM=90°,∴∠MON=90°,∴OM⊥ON;2.如图:过点F作EF⊥直线l,由(2)可得OF=EF,∵OF+DF=EF+DF,∴当点D,点F,点E三点共线时,OF+DF的值最小.即此时DE⊥直线l,∴OF+DF的最小值为DE=1+2=3.【解析】本题考查了二次函数综合题,待定系数法求解析式,两点距离公式,三角形内角和定理,最短路径问题,利用数形思想解决问题是本题的关键.(1)利用待定系数法可求a的值;a2−1),根据两点距离公式可求PQ,PO的长度,即可证PQ=PO;(2)设点P(a,14(3)1.由(2)可得OB=BN,AM=AO,即可求∠BON=∠BNO,∠AOM=∠AMO,根据三角形内角和定理可求OM⊥ON;2.过点F作EF⊥直线l,由(2)得OF=EF,当点D,点F,点E三点共线时,OF+DF的值最小,此时DE⊥直线l,即可求FD+FO的最小值.。
2024-2025 学年九年级数学上学期第一次月考卷及答案
2024-2025学年九年级数学上学期第一次月考卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版九年级上册21.1-22.1。
6.难度系数:0.8。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则x2﹣x=()A.﹣2B.6或﹣2C.6D.32.方程中x(x﹣1)=0的根是()A.x1=0,x2=﹣1B.x1=0,x2=1C.x1=x2=0D.x1=x2=13.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为()A.B.C.D.4.若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是()A.B.C.且k≠0D.5.若方程x 2﹣4x ﹣2=0的两根为x 1,x 2,则+的值为()A .2B .﹣2C .D .6.俗语有云:“一天不练手脚慢,两天不练丢一半,三天不练门外汉,四天不练瞪眼看.”其意思是知识和技艺在学习后,如果不及时复习,那么学习过的东西就会被遗忘.假设每天“遗忘”的百分比是一样的,根据“两天不练丢一半”,则每天“遗忘”的百分比约为(参考数据:)()A .20.3%B .25.2%C .29.3%D .50%7.下列有关函数y =(x ﹣1)2+2的说法不正确的是()A .开口向上B .对称轴是直线x =1C .顶点坐标是(﹣1,2)D .函数图象中,当x <0时,y 随x 增大而减小8.若x =2是方程x 2﹣x +c =0的一个根,则c 的值为()A .1B .﹣1C .2D .﹣29.二次函数y =a (x ﹣t )2+3,当x >1时,y 随x 的增大而减小,则实数a 和t 满足()A .a >0,t ≤1B .a <0,t ≤1C .a >0,t ≥1D .a <0,t ≥110.在解一元二次方程时,小马同学粗心地将x 2项的系数与常数项对换了,使得方程也变了.他正确地解2,另一根等于原方程的一个根.则原方程两根的平方和是()A .B .C .D .第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。
2023-2024学年山东省德州五中九年级(上)第一次月考数学试卷+答案解析
2023-2024学年山东省德州五中九年级(上)第一次月考数学试卷一、选择题:本题共12小题,每小题4分,共48分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.抛物线的顶点坐标是()A. B. C. D.2.抛物线先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A. B. C. D.3.把二次函数化成的形式是()A. B. C. D.4.若点,,在抛物线上,则下列结论正确的是()A. B. C. D.5.如图是抛物线的大致图象,则一元二次方程()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定6.在同一坐标系中,一次函数与二次函数的图象可能是()A. B. C. D.7.已知二次函数,当时,y随x的增大而增大,则a取值范围是()A. B. C. D.8.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降,水面宽度增加()A.1mB.2mC.3mD.6m9.若函数的图象与坐标轴有三个交点,则b的取值范围是()A. B. C. D.且10.二次函数当时,y的最大值和最小值分别是()A.0;B.0;C.:D.0;011.如图,在中,,,,动点P从A开始沿AB向B以的速度运动不与点B重合,动点Q从点B开始沿边BC向点C以的速度运动不与点C重合如果点P,Q分别从点A,B同时出发,那么四边形APQC的面积最小时,运动的时间是()A.1sB.2sC.3sD.4s12.二次函数的图象如图所示,对称轴为,给出下列结论:①;②;③;④,其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本题共6小题,每小题4分,共24分。
13.函数是抛物线,则______.14.抛物线与x轴有交点,则k的取值范围是______.15.抛物线的对称轴是直线,则b的值为______.16.如图,正方形的边长为4,以正方形中心为原点建立平面直角坐标系,作出函数与的图象,则阴影部分的面积是______.17.如图,是抛物线的一部分,已知抛物线的对称轴为,与x轴的一个交点是,则方程的两根是______.18.竖直向上抛的小球离地高度是它运动的时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后秒时到达相同的最大离地面高度.第一个小球抛出t秒时在空中与第二个小球的离地高度相同,则________.三、计算题:本大题共1小题,共10分。
人教版九年级(上)数学第一次月考试卷(5)
人教版九年级(上)数学第一次月考试卷(5)一、选择题1.下列函数中,是二次函数的有()①y=3(x﹣1)2+1;②y=x+;③y=8x2+1;④y=3x3+2x2.A.1个B.2个C.3个D.4个2.对于二次函数y=3(x+4)2,其图象的顶点坐标为()A.(0,4)B.(0,﹣4)C.(4,0)D.(﹣4,0)3.将抛物线y=﹣(x﹣2)2向右平移1个单位,再向下平移2个单位后,得到的抛物线解析式为()A.y=﹣(x﹣1)2+2B.y=﹣(x﹣1)2﹣2C.y=﹣(x﹣3)2+2D.y=﹣(x﹣3)2﹣24.如图,二次函数y=ax2+bx+c的图象与x轴交于A(﹣4,0)和原点,且顶点在第二象限.下列说法正确的是()A.a>0B.当x>﹣1时,y的值随x值的增大而减小C.b2﹣4ac<0D.函数值有最小值4a﹣2b+c5.如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,则当水面宽8米时,水面下降了()A.米B.2米C.米D.米6.某种品牌的服装进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查:每件服装每降价2元,每天可多卖出1件.在确保盈利的前提下,若设每件服装降价x元,每天售出服装的利润为y元,则y与x的函数关系式为()A.y=﹣x2+10x+1200(0<x<60)B.y=﹣x2﹣10x+1250(0<x<60)C.y=﹣x2+10x+1250(0<x<60)D.y=﹣x2+10x+1250(x≤60)7.已知抛物线y=﹣x2+2x+c,若点(0,y1)(1,y2)(3,y3)都在该抛物线上,则y1、y2、y3的大小关系是()A.y3>y1>y2B.y3<y2<y1C.y3>y2>y1D.y3<y1<y2 8.二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3),则b,c的值分别是()A.2,4B.2,﹣4C.﹣2,4D.﹣2,﹣49.如图,正方形ABCD的边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为y,AE为x,则y关于x的函数图象大致是()A.B.C.D.10.二次函数y=﹣x2+bx+c的图象如图所示,下列几个结论:①对称轴为直线x=2;②当y≥0时,x<0或x>4;③函数表达式为y=﹣x2+4x;④当x≤0时,y随x的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本题有6小题,每小题4分,共24分)11.二次函数y=a(x﹣m)2的图象如图,已知a=,OA=OC,则该抛物线的解析式为.(用顶点式表示)12.点P(a,9)在函数y=4x2﹣3的图象上,则代数式的值等于.13.已知y关于x的二次函数y=﹣x2+(m﹣1)x+m,无论m取何值,函数图象恒过定点A,则点A的坐标为.14.在同一直角坐标系中,已知函数,y2=kx+2(k为不等于零的常数).若函数y2的图象经过y1的图象的顶点,则k,c之间的数量关系为.15.如图所示的是卡塔尔世界杯足球比赛中某一时刻的鹰眼系统预测画面(图1)和截面示意图(图2),足球的飞行轨迹可看成抛物线,足球离地面的高度h(m)与足球被踢出后经过的时间t(s)之间的关系的部分数据如表:则该运动员踢出的足球在第s落地.t/s0123…h/m0…16.如图,在平面直角坐标系中,二次函数y=x2+2x﹣3的图象与坐标轴相交于A,B,C 三点,连接AC,BC.已知点E坐标为,点D在线段AC上,且.则四边形BCDE面积的大小为.三、解答题17.计算:(1);(2)x(x+6)=8(x+3).18.如图1是某公园人工湖上的一座拱桥的示意图,其截面形状可以看作是抛物线的一部分.经测量拱桥的跨度AB为12米,拱桥顶面最高处到水面的距离CD为4米.(1)在边长为1的正方形网格中建立适当的平面直角坐标系,根据已知数据描出点A,B,C,并用平滑曲线连接;(2)结合(1)中所画图象,求出该抛物线的表达式;(3)现有一游船(截面为矩形)宽度为4米,顶棚到水面的高度为2.8米.当游船从拱桥正下方通过时,为保证安全,要求顶棚到拱桥顶面的距离应大于0.5米,请判断该游船能否安全通过此拱桥.19.供销社作为国家实施“乡村振兴”战略的中坚力量,可以帮助农民分配协调农产品,推动全国统一大市场尽快构建完成,给老百姓带来真正的实惠.某供销社指导农民生产和销售当地特产,对该特产的产量与市场需求,成本与售价进行了一系列分析,发现该特产产量y产量(单位:吨)是关于售价x(单位:元/千克)的一次函数,即y产量=200x﹣100;而市场需求量y需求(单位:吨)是关于售价x(单位:元/千克)的二次函数,部分对应值如表.…2345…售价x(元/千克)…10201020980900…需求量y需求(吨)同时还发现该特产售价x(单位:元/千克),成本z(单位:元/千克)随着时间t(月份)的变化而变化,其函数解析式分别为x=t+1,.(1)直接写出市场需求量y需求关于售价x的函数解析式(不要求写出自变量取值范围);(2)哪个月份出售这种特产每千克获利最大?最大值是多少?(3)供销社发挥职能作用,避免浪费,指导农民生产,若该特产的产量与市场需求量刚好相等,求此时出售全部特产获得的总利润.20.如图,抛物线y=﹣x2+2x+c与x轴交于A、B两点,若直线y=kx+b(k≠0)与抛物线交于A、C两点,已知A(﹣1,0),C(2,m).(1)求直线AC的函数表达式;(2)若将直线AC沿y轴的正方向向上平移n个单位长度后,与抛物线只有一个公共点,求此时n的值.21.[回归教材](1)已知一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的两个实数解为x1,x2,则有x1+x2=﹣,x1•x2=.这个结论课本上称为一元二次方程根与系数的关系,因为是法国数学家韦达发现的,人们又称它为“韦达定理”.请你证明这个定理.[夯实基础](2)若一元二次方程3x2﹣9x﹣8=0的两个实数解为x1、x2,求3+9x2+5的值.[拓展应用](3)若关于x的一元二次方程x2﹣(2a+1)x+a2+1=0的两个实数解为x1、x2,求+的最小值.22.为研究某种化学试剂的挥发情况,某研究团队在两种不同的场景下做对比实验,收集了该试剂挥发过程中剩余质量y(克)随时间x(分钟)变化的数据(0≤x≤20),并分别绘制在直角坐标系中,如图所示.(1)从y=ax+21(a≠0),y=(k≠0),y=﹣0.04x2+bx+c中,选择适当的函数模型分别模拟两种场景下y随x变化的函数关系,并求出相应的函数表达式;(2)查阅文献可知,该化学试剂发挥作用的最低质量为3克.在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?23.【阅读理解】:关于x的函数y=mx﹣2m﹣3(m为常数,且m≠0),经过某个定点,请求出定点的坐标.方法一:先将等式化为(x﹣2)m=y+3的形式,再根据0m=0时有m无数多个解,求得定点的坐标为(2,﹣3);方法二:当m=1时,y=x﹣5;当m=2时,y=2x﹣7;解方程组解得,∴求得定点的坐标为(2,﹣3)【模仿练习】关于x的二次函数y=mx2+(2m+1)x+1(为常数,且m≠0),是否经过定点,如果是,请选择一种方法求出定点的坐标;如果不是,请说明理由.【尝试应用】某“数学兴趣小组”根据学习函数的经验,对函数y=﹣(x﹣1)(|x|﹣3)的图象和性质进行了探究,探究过程如下,请补充完整:(1)计算x与y的几组对应值,其中m=;列表如下:x…﹣4﹣3﹣2﹣101234…y…50﹣3m﹣3010﹣3…(2)如图,在直角坐标系中用描点法画出了函数y=﹣(x﹣1)(|x|﹣3)这个图象;(3)若直线y=tx﹣2t+2与函数y=﹣(x﹣1)(|x|﹣3)(2<x≤4)的图象只有一个交点,请结合函数图象,求出t的取值范围.24.“距离”是数学研究的重要对象,如我们所熟悉的两点间的距离.现在我们定义一种新的距离:已知P(a,b),Q(c,d)是平面直角坐标系内的两点,我们将|a﹣c|+|b﹣d|称作P,Q间的“L型距离”,记作L(P,Q),即L(P,Q)=|a﹣c|+|b﹣d|.已知二次函数y1的图象经过平面直角坐标系内的A,B,C三点,其中A,B两点的坐标为A(﹣1,0),B(0,3),点C在直线x=2上运动,且满足L(B,C)≤BC.(1)求L(A,B);(2)求抛物线y1的表达式;(3)已知y2=2tx+1是该坐标系内的一个一次函数.①若D,E是y2=2tx+1图象上的两个动点,且DE=5,求△CDE面积的最大值;②当t≤x≤t+3时,若函数y=y1+y2的最大值与最小值之和为8,求实数t的值.。
九年级数学第一次月考卷01(全解析)【九年级上册第二十一章~第二十二章】人教版-初中上学期第一次月考
2024-2025学年九年级数学上学期第一次月考卷01(人教版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版九年级上册第二十一章~第二十二章。
5.难度系数:0.8。
一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,属于一元二次方程的是()A.x―2y=1B.x2―2x+1=0C.x2―2y+4=0D.x2+3=2x2.将方程x2―8x=10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A.―8,―10B.―8,10C.8,―10D.8,10【答案】A【详解】将x2―8x=10化为一般形式为:x2―8x―10=0,∴一次项系数、常数项分别是-8,-10.故选A.3.对于二次函数y=3(x+4)2,其图象的顶点坐标为()A.(0,4)B.(0,―4)C.(4,0)D.(―4,0)【答案】D【详解】解:因为二次函数y=3(x+4)2,所以其图象的顶点坐标为(―4,0).故选:D.4.一元二次方程x2―2x+3=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.只有一个实数根【答案】C【详解】∵Δ=(―2)2―4×1×3=―8<0,∴一元二次方程没有实数根.故选:C.5.淄博烧烤火爆出圈,各地游客纷纷“进淄赶烤”.某烧烤店5月1日收入约为5万元,之后两天的收入按相同的增长率增长,5月3日收入约为9.8万元,若设每天的增长率为x,则x满足的方程是()A.5(1+x)=9.8B.5(1+2x)=9.8C.5(1―x)2=9.8D.5(1+x)2=9.86.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是ℎ=30t―5t2.小球运动到最高点所需的时间是( )A.2s B.3s C.4s D.5s【答案】B【详解】解:ℎ=30t―5t2=―5(t―3)2+45,∵―5<0,∴当t=3时,ℎ有最大值,最大值为45.故选:B.7.中秋节当天,某微信群里的每两个成员之间都互发一条祝福信息,共发出72条信息,设这个微信群的人数为x,则根据题意列出的方程是()A .x(x ―1)=72B .12x(x +1)=72 C .x(x +1)=72D .12x(x ―1)=72【答案】A【详解】解:根据题意可得x (x ―1)=72,故选:A .8.如果三点P 1(1,y 1),P 2(3,y 2)和P 3(4,y 3)在抛物线y =―x 2+6x +c 的图象上,那么y 1,y 2与y 3之间的大小关系是( )A .y 1<y 3<y 2B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 1<y 2<y 3【答案】A【详解】解:∵y =-x 2+6x +c =-(x -3)2+9+c ,∴图象的开口向下,对称轴是直线x =3,P 1(1,y 1)关于对称轴的对称点为(5,y 1),∵3<4<5,∴y 2>y 3>y 1,故选:A .9.对于二次函数y =(x ―1)2―2的图象,下列说法正确的是( )A .开口向下B .对称轴是直线x =―110.如图是抛物线y =a(x +1)2+2的一部分,该抛物线在y 轴右侧部分与x 轴的交点坐标是( )A.(1,0)B.(1,0)C.(2,0)D.(3,0)211.二次函数y=x―+3的图象(1≤x≤3)如图所示,则该函数在所给自变量的取值范围内,函数值y4的取值范围是()A.y≥1B.1≤y≤3C.3≤y≤3D.0≤y≤3412.定义新运算“a⊗b”:对于任意实数a,b,都有a⊗b=(a﹣b)2﹣b,其中等式右边是通常的加法、减法和乘法运算,如3⊗2=(3﹣2)2﹣2=﹣1.若x⊗k=0(k为实数)是关于x的方程,且x=2是这个方程的一个根,则k的值是( )A.4B.﹣1或4C.0或4D.1或4【答案】D【详解】解:∵a⊗b=(a﹣b)2﹣b,∴关于x的方程x⊗k=0(k为实数)化为(x―k)2―k=0,∵x=2是这个方程的一个根,∴4-4k+k2-k=0,解得:k1=4,k2=1,故选:D.二、填空题(本题共6小题,每小题2分,共12分.)13.把方程x2=2x―3化为一般形式是.【答案】x2―2x+3=0【详解】解:由x2=2x―3得:x2―2x+3=0,故答案为:x2―2x+3=0.14.已知x=1是方程x2+bx―2=0的一个根,则b的值为.15.若x1,x2是一元二次方程x2+2x―5=0的两个根,则x1+x2=.【答案】―2【详解】解:∵x1,x2是一元二次方程x2+2x―5=0的两个根,方程中二次项系数a=1,一次项系数b=2,常数项c=―5,∴x1+x2=―2.故答案为:―2.16.若抛物线y=(m―1)x m2―2―mx有最小值,则常数m的值为.【答案】2【详解】解:∵抛物线y=(m―1)x m2―2―mx有最小值,∴m―1>0(开口向上),m2―2=2,解得m>1,m=±2,即m=2,故答案为:2.17.已知等腰三角形的底边长为7,腰长是x2―8x+15=0的一个根,则这个三角形周长为.【答案】17【详解】解:x2―8x+15=0,(x―5)(x―3)=0,x―5=0,x―3=0,x1=5,x2=3,即①等腰三角形的三边为7,5,5,此时符合三角形三边关系定理,三角形的周长是5+5+7=17;②等腰三角形的三边为3,3,7,此时不符合三角形三边关系定理,故答案为:17.18.已知二次函数y=ax2+bx+c的图象如图所示,若方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围是.故答案为k<5.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)x(2x+1)=2x+1;(2)4x2﹣3x=x+1.20.(6分)已知关于x的方程x2+ax+a―2=0.(1)若该方程的一个根为2,求a的值及该方程的另一根.(2)求证:不论a取何实数,该方程都有两个不相等的实数根.△=a2―4×1×(a―2)=a2―4a+8=(a―2)2+4,(4分)∵(a―2)2≥0,∴(a―2)2+4≥4,∴不论a取何实数,该方程都有两个不相等的实数根;(6分)21.(10分)已知二次函数y=―x2+2x+3;(1)把该二次函数化成y=a(x+m)2+k的形式为______;(2)当x______时,y随x的增大而增大;(3)若该二次函数的图像与x轴交于点A、B,与y轴交于点C,求△ABC的面积.22.(10分)如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m,另三边用竹篱笆围成,篱笆总长35m,围成长方形的养鸡场四周不能有空隙.(1)要围成养鸡场的面积为150m2,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到200m2?请说明理由.【详解】解:(1)设养鸡场的宽为x m,根据题意得:x(35﹣2x)=150,(2分)解得:x1=10,x2=7.5,当x1=10时,35﹣2x=15<18,当x2=7.5时35﹣2x=20>18,(舍去),则养鸡场的宽是10m,长为15m.(5分)(2)设养鸡场的宽为x m,根据题意得:x(35﹣2x)=200,(7分)整理得:2x2﹣35x+200=0,△=(﹣35)2﹣4×2×200=1225﹣1600=﹣375<0,因为方程没有实数根,所以围成养鸡场的面积不能达到200m2.(10分)23.(10分)为了加强安全教育,某校对学生进行“防溺水知识应知应答”测评.该校随机选取了八年级300名学生中的20名学生在10月份测评的成绩,数据如下:收集数据:9791899590999097919890909188989795909688整理、描述数据:数据分析:样本数据的平均数、众数、中位数和极差如表:平均数中位数众数极差93b c d(1)a=______,b=______,c=______,d=______;(2)该校决定授予在10月份测评成绩优秀(96分及以上)的八年级的学生“防溺水小卫士”荣誉称号,请估计评选该荣誉称号的人数.(3)若被选取的20名学生在11月份测评的成绩的平均数、众数、中位数和极差如表:平均数中位数众数极差95939410结合相关数据,从一个方面评价10月份到11月份开展的“防溺水知识应知应答”测评活动的效果.24.(10分)杭州亚运会的三个吉祥物“琮琮”“宸宸”“莲莲”组合名为“江南忆”,出自唐朝诗人白居易的名句“江南忆,最忆是杭州”,它融合了杭州的历史人文、自然生态和创新基因.吉祥物一开售,就深受大家的喜爱.某商店以每件35元的价格购进某款亚运会吉祥物,以每件58的价格出售.经统计,4月份的销售量为256件,6月份的销售量为400件.(1)求该款吉祥物4月份到6月份销售量的月平均增长率;(2)经市场预测,7月份的销售量将与6月份持平,现商场为了减少库存,采用降价促销方式,调查发现,该吉祥物每降价1元,月销售量就会增加20件.当该吉祥物售价为多少元时,月销售利润达8400元?【详解】(1)设该款吉祥物4月份到6月份销售量的月平均增长率为m,则6月份的销售量为256(1+m)2,根据题意得:256(1+m)2=400,解得:m1=0.25=25%,m2=―2.25(不符合题意,舍去),答:该款吉祥物4月份到6月份销售量的月平均增长率为25%;(4分)(2)设该吉祥物售价为y元,则每件的销售利润为(y―35)元,月销售量为400+20(58―y)=(1560―20y)(件),根据题意得:(y―35)(1560―20y)=8400,(7分)整理得:y2―113y+3150=0,解得:y1=50,y2=63(不符合题意,舍去),答:该款吉祥物售价为50元时,月销售利润达8400元.(10分)25.(10分)如图,点E,F,G,H分别在边长为6的正方形ABCD的四条边上运动,四边形EFGH也是正方形.(1)求证:△AEH≌△BFE;(2)设AE的长为x,正方形EFGH的面积为y,求y关于x的函数解析式;(3)在(2)的条件下,当AE的长为多少时,正方形EFGH的面积最小?最小值是多少?26.(10分)如图,在平面直角坐标系xOy中,抛物线y=―x2+bx+c交x轴于C(1,0),D(―3,0)两点,交y轴于点E,连接DE.(1)求抛物线的解析式及顶点坐标;(2)在线段DE上,是否存在一点P,使得△DCP是等腰直角三角形,如果存在,求出点P的坐标;如果不存在,请说明理由;(3)点A(―3,5),B(0,5),连接AB,若二次函数y=―x2+bx+c的图象向上平移m(m>0)个单位时,与线段AB有一个公共点,结合函数图象,直接写出m的取值范围.∠PCM=45°,时,5=―9+6+3+m,解得m=5,∴当m=1,或2<m≤5时,函数图象与线段AB有一个公共点.(10分)。
2023-2024学年九年级(上)第一次月考数学试卷-(含答案)
2023-2024学年九年级(上)第一次月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x 2﹣3x ﹣1=0,配方正确的是()A .(x ﹣)2=B .(x ﹣)2=C .(x ﹣)2=D .(x ﹣)2=2.(3分)下列说法不正确的是()A .一组同旁内角相等的平行四边形是矩形B .一组邻边相等的菱形是正方形C .有三个角是直角的四边形是矩形D .对角线相等的菱形是正方形3.(3分)若关于x 的一元二次方程x 2﹣2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是()A .B .C .D .4.(3分)如图,在菱形ABCD 中,CE ⊥AB 于点E ,E 点恰好为AB 的中点,则菱形ABCD 的较大内角度数为()A .100°B .120°C .135°D .150°5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x ,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2022年产量为100吨,则2023年蔬菜产量为100(1+x)吨,2024年蔬菜产量为100(1+x)(1+x)吨,预计2024年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.=S△AOE+S△DOE,【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD 即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴S△AOD∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠FAH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴S菱形ABCD∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB ′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程2﹣3+2=0,解得x1=1,x2=2,然后分别把x=1和x=2代入元二次方程(﹣1)2++﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程2﹣3+=0变形为方程2﹣3+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(﹣1)2++﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(﹣1)2++﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。
山东省德州市第十中学2024-2025学年九年级上学期10月月考数学试卷
山东省德州市第十中学2024-2025学年九年级上学期10月月考数学试卷一、单选题1.若方程2(1)90a x x +++=是关于x 的一元二次方程,则a 的取值范围是( ) A .1a > B .1a ≠- C .0a = D .1a ≥- 2.抛物线22y x =-+的对称轴是( )A.直线2x = B .直线2x =- C .直线x =D .y 轴3.与抛物线y=﹣x 2+1的顶点相同、形状相同且开口方向相反的抛物线所对应的函数表达式为( )A .y=﹣x 2B .y=x 2﹣1C .y=﹣x 2﹣1D .y=x 2+1 4.用配方法解一元二次方程28100x x -+=配方后得到的方程是( )A .()2854x +=B .()2854x -= C .()246x += D .()246x -= 5.著名数学家华罗庚说过:“数缺形时少直觉,形缺数时难入微.数形结合百般好,隔离分家万事非.”寥窖数语,把图形之妙趣说的淋漓尽致.如图是函数2y ax bx c =++的图象,那么无论x 为何值,函数值y 永远为负的条件是( )A .0a >,240b ac ->B .0a >,240b ac -<C .a<0,240b ac ->D .a<0,240b ac -<6.如表是一组二次函数2y x bx c =++的自变量和函数值的关系,那么方程20x bx c ++=的一个近似根是( )A .1.2B .2.3C .3.4D .4.57.已知点()14,A y -,()21,B y -,()35,C y 都在二次函数()2250y ax ax a =-+<的图象上,则1y ,2y ,3y 的大小关系用“<”表示为( )A .231y y y <<B .132y y y <<C .213y y y <<D .321y y y << 8.关于x 的方程2210x kx +-=的根的情况描述正确的是( )A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种9.已知二次函数23y x bx =++满足当1x <时,y 随x 的增大而减小,当1x >时,y 随x 的增大而增大,则当2x =时,y 的值为( )A .0B .3C .8D .1110.已知关于x 的一元二次方程260x x -=■,其中一次项系数被墨迹污染了.若这个方程的一个根为2-,则一次项系数为( )A .2-B .3-C .1-D .6-11.已知二次函数()2211y x x x t =--≤≤-,当=1x -时,函数取得最大值;当1x =时,函数取得最小值,则t 的取值范围是( )A .02t <≤B .04t <≤C .24t ≤≤D .2t ≥12.如图,已知抛物线2y ax bx c =++(a 、b 、c 为常数,且0a ≠)的对称轴为直线=1x -,且该抛物线与x 轴交于点()1,0A ,与y 轴的交点B 在()0,2-,()0,3-之间(不含端点),则下列结论正确的有多少个( )①0abc >;②930a b c -+≥; ③213a <<; ④若方程21ax bx c x +=++两根为(),m n m n <,则31m n -<<<.A .1B .2C .3D .4二、填空题13.将二次函数()234y x =-+-的图象先向右平移2个单位长度,再向上平移5个单位长度,侧平移后的二次函数解析式为.(写为顶点式即可)14.小明设计了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数a 2+2b-3.例如把(2,-5)放入其中就会得到22+2×(-5)-3=-9.现将实数对(m ,-3m )放入其中,得到实数4,则m =.15.如图是某停车场的平面示意图,停车场外围的长为30米,宽为18米.停车场内车道的宽都相等.停车位总占地面积为288平方米.设车道的宽为x 米,可列方程为.16.二次函数()20y ax bx c a =++≠图象经过点()1,2-,且图象对称轴为直线2x =,则方程()2200ax bx c a +++=≠的解为.17.若关于x 的一元二次方程2230x kx k -+-=的两个实数根分别是1x ,2x ,且满足()12122x x x x +=.则k 的值为.18.已知抛物线234y x x =--的图象如图①所示,先将抛物线在x 轴下方的部分沿x 轴翻折,图象其余部分不变,得到一个新图象如图②,当直线y x b =+与图象②恰有两个公共点时,则b 的取值范围为.三、解答题19.解方程:(1)()2321108x +=;(2)()3122x x x -=-;(3)29103x x +=;(4)()()2312x x --=.20.已知二次函数245y x x =--+.(1)用配方法求函数的顶点坐标;(2)补全表格,并在平面直角坐标系中用描点法画出该二次函数的图象.(3)根据图象回答下列问题:①当x ________时,y 随x 的增大而减小;②当x ________时,函数y 有最________值,是________;③当0y >时,x 的取值范围是________;④当5x 0-<<时,y 的取值范围是________.21.请阅读下列材料,并完成相应的任务.如果关于x 的一元二次方程()200ax bx c a ++=≠有一个根是1,那么我们称这个方程为“方正方程”.(1)判断一元二次方程23520x x -+=是否为“方正方程”,请说明理由.(2)已知关于x 的一元二次方程250x bx c -+=是“方正方程”,求22b c -的最小值.22.每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x 元,每天的销售利润为y 元.(1)求y 与x 的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅? 23.如图,在直角坐标系中,二次函数212y x bx c =++的图象与x 轴相交于点A −2,0 和点()6,0B ,与y 轴交于点C .(1)求b 、c 的值;(2)若点P 是抛物线BC 段上的一点,当PBC △的面积最大时求出点P 的坐标,并求出PBC △面积的最大值.。
2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)
2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1章~第3章(北师版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
山东省德州市禹城市齐鲁中学2023-2024学年九年级上学期第一次月考数学试题
山东省德州市禹城市齐鲁中学2023-2024学年九年级上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题..C .D ..如图,平面直角坐标系xOy 中,点A .B .D 都在边长为1的小正方形网格的格点上,过点M (1,﹣2)的抛物线y =mx 2+2mx +n (m >0)可能还经过(.点A B .点B .点C .定义新运算a b *,对于任意实数a ,b 满足()()b a b a b *=+--是通常的加法、减法、乘法运算,例如433)(43)171*=--=-=为实数)是关于x 的方程,则它的根的情况是().有一个实根B .有两个不相等的实数根.没有实数根12.如图,抛物线2y ax bx c =++(0a ≠)与x 轴交于点A 、B ,顶点为C .对称轴为直线1x =.给出下列结论:①0abc <;②240ac b -<;③()m am b b a +-<;④若点A 的坐标为(2,0)-,则30a c +<;⑤若点B 的坐标为(4,0),当0y >时,24-<<x ;⑥若()11,M x y ,()22,N x y 是抛物线上两点(121x x <<),则12y y >.其中正确结论的个数为()A .3B .4C .5D .6二、填空题三、计算题19.解方程:(1)2531x x x -=+(2)()()3222x x x -=-四、解答题20.已知关于x 的一元二次方程2220x mx m m +++=有实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为1x 、2x ,且221212x x +=,求m 的值.五、问答题21.如图,在平面直角坐标系中,二次函数23y x bx =+-的图象经过点()3-2,,与x 轴交于点A ,B (点A 在点B 左侧),与y 轴交于点C .(1)求二次函数的解析式及顶点坐标;(2)根据图象直接写出当3y >-时,自变量x 的取值范围.六、解答题售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?24.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC 分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2 25.如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P 的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.。
2024-2025学年初中九年级上学期第一次月考数学试题及答案(苏科版)
2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x+= 2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x += 4. 若关于x 一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上的三点,则123,,y y y 为的大小关系为( )A 123y y y >> B. 132y y y >> C. 321y y y >> D. 312y y y >> 7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >的.二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.14. 抛物线()232y x =−−−的顶点坐标是________ .15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 取值范围为__________16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.18. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子的正方形的最大边长为______米.三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 20. 解方程:(1)2(2x 1)9+=;(2)2x 2﹣4x =1(配方法);(3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−= 21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少?22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,____________.(2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点____________,与y 轴交于点____________.(写坐标)(5)在下面的坐标系中画出该抛物线的图象.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 25. 已知:二次函数()221y x m x m =−++−. (1)求证:该抛物线与x(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;是的2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x += 【答案】B【解析】【分析】本题主要考查了一元二次方程的识别.本题根据一元二次方程的定义解答.【详解】解:A 、当0a ≠时,20ax bx c ++=是一元二次方程,故本选项不符合题意; B 、22x x −=是一元二次方程,故本选项符合题意;C 、变形为22x =不是一元二次方程,故本选项不符合题意;D 、11x x+=含有分式,不是一元二次方程,故本选项不符合题意; 故选:B2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根【答案】D【解析】【分析】本题考查一元二次方程根的情况,涉及一元二次方程根的判别式,由题中一元二次方程得到判别式,即可判断答案,熟记一元二次方程根的情况与判别式符号关系是解决问题的关键.【详解】解:一元二次方程2310x x −−=, 3,1,1a b c ==−=−,()()21431∴∆−−××−112=+130=>,∴一元二次方程2310x x −−=的根的情况为有两个不相等的实数根,故选:D .3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x +=【答案】B【解析】【分析】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【详解】解:2430x x −+=,∴243x x −=−,∴24434x x −+=−+,即()221x −=.故选:B4. 若关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 【答案】D【解析】【分析】本题考查了一元二次方程的定义和一元二次方程根的判别式.根据一元二次方程根的判别式,即可求解.【详解】解:∵关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,∴()26490k ∆=−−×>,且0k ≠,解得:1k <且0k ≠,即k 的取值范围是1k <且0k ≠.故选:D5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 【答案】B【解析】【分析】本题考查函数图象的平移,解题的关键是要熟练掌握函数的平移规律:“左加右减,上加下减”,根据函数图象平移规律即可得到答案.【详解】解:将抛物线2y x =先向上平移2个单位长度,得到22y x =+,再向右平移3个单位长度,得到()232y x =−+, 故选:B .6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上三点,则123,,y y y 为的大小关系为( )A. 123y y y >>B. 132y y y >>C. 321y y y >>D. 312y y y >>【答案】B【解析】【分析】本题主要考查了二次函数的性质,掌握当抛物线开口方向向上时,离对称轴越远,函数值越大成为解题的关键.先确定抛物线的对称轴,再确定抛物线开口向上,此时离对称轴越远,函数值越大,据此即可解答.【详解】解:∵()221y x a =−+,∴抛物线的对称轴为直线1x =,开口向上,∴离对称轴越远,函数值越大,∵点()12,A y −离对称轴最远,点()21,B y 在对称轴上,∴132y y y >>.故选:B .7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 【答案】C【解析】【分析】本题主要考查了二次函数与一元二次方程之间的关系,二次函数的定义,二次函数与x 轴有两个交点,则与之对应的一元二次方程有两个不相等的实数根,据此利用判别式求出k 的取值范围,再结合二次项系数不为0即可得到答案.【详解】解:∵抛物线242y kx x =−−与x 轴有两个交点, 的∴()()2Δ44200k k =−−×−⋅> ≠ , ∴2k >−且0k ≠,故选:C .8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >【答案】C【解析】 【分析】本题主要考查了二次函数的性质,先求出二次函数的表达式,再根据与x 轴的交点即可求出0y <的x 的取值范围,解题的关键是求出二次函数2y ax bx c ++的表达式.【详解】解:由表格可知2y ax bx c ++经过()2,0−,()3,0,()0,6−,设解析式为()()23y a x x =+−∴()()02036a +−=−, 解得:1a =,∴抛物线解析式为()()2236y x x x x =+−=−−,∴抛物线图象开口向上,与x 轴的交点为()2,0−,()3,0,∴0y <时x 的取值范围是23x −<<,故选:C .二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 【答案】3【解析】【分析】本题考查一元二次方程的根的定义、代数式求值,根据一元二次方程的根的定义,将m 代入2520x x −−=,求出252m m −=,即可求出22101m m −−的值.【详解】解:∵m 是方程2520x x −−=的一个根,∴252m m −=,∴()2221012512213,m m m m −−=−−=×−=故答案为:3. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 【答案】1或3−【解析】【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()2Δ1410k =+−×=,然后解关于k 的方程即可. 【详解】解:由题意得:()2Δ1410k =+−×=,即:()214k +=,解得:1k =或3−,故答案为:1或3−. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 【答案】2−【解析】【分析】此题考查了一元二次方程的定义及方程的解的定义,将0x =代入方程求出2m =±,再根据一元二次方程的定义求出2m ≠,由此得到答案,正确理解一元二次方程的定义及方程的解的定义是解题的关键.【详解】解:将0x =代入()22240m x mx m −++−=,得240m −=, 解得2m =±,∵20m −≠,∴2m ≠,∴2m =−,故答案为2−.12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________ 【答案】22=302x x −【解析】【分析】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S ab =来解题的方法.本题可根据长方形的周长可以用x 表示另一边长的值,然后根据面积公式即可列出方程.【详解】解:一边长为 c m x ,则另一边长为22cm 2x −, 得22=302x x −. 故答案为:22=302x x −. 13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.【答案】30x −≤≤【解析】【分析】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象上方时,自变量x 的取值范围.根据图象,写出抛物线在直线上方部分的x 的取值范围即可.【详解】∵抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点, ∴由函数图象可得,不等式2ax bx c kx m ++≥+的解集是30x ≤≤﹣,故答案为:30x −≤≤.14. 抛物线()232y x =−−−的顶点坐标是________ . 【答案】()3,2− 【解析】【分析】本题考查了二次函数2()y a x h k =−+(a ,h ,k 为常数,0a ≠)性质,2()y a x h k =−+是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(,)h k ,对称轴是直线x h =. 【详解】解:物线()232y x =−−−的顶点坐标是()3,2−.故答案为:()3,2−.15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 的取值范围为__________ 【答案】35y −≤≤##53x ≥≥− 【解析】【分析】本题考查二次函数的图象与性质,根据题意得当1x >−时,y 随x 的增大而增大,求得当0x =时,=3y −;2x =时,5y =,即可求解.【详解】解:由题意得,10a =>,对称轴1x =−, ∴当1x >−时,y 随x 增大而增大, ∵当0x =时,=3y −;2x =时,5y =,∴当02x ≤≤时,函数值y 的取值范围为35y −≤≤, 故答案为:35y −≤≤.16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来. 【答案】20 【解析】【分析】本题主要考查二次函数的应用,飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值,根据顶点坐标的实际意义可得答案. 【详解】∵()2260 1.5 1.520600s t t t =−=−−+, ∴当20t =时,s 取得最大值600, ∴飞机着陆后滑行20秒才停下来.的的故答案:20.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.【答案】1 【解析】【分析】本题主要考查二次函数图象的对称性,能够熟练运用对称轴求点的横坐标是解题关键.求出对称轴后根据对称性求点B 横坐标,再代入解析式即可解答. 【详解】解:∵()2221y x =−−, ∴抛物线对称轴为直线2x =, ∵2AB =,∴点B 横坐标为213+=,将3x =代入()2221y x =−−得1y =, ∴点B 的纵坐标为1. 故答案为:118. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为______米.【解析】为【分析】本题主要考查了二次函数的实际应用,先建立解析中坐标系,则()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,,利用待定系数法求出抛物线解析式为211633y x =−+,再把B 、C 坐标代入求解即可.【详解】解:建立如下平面直角坐标系,则点()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,、设抛物线的表达式为:()21603y ax a =+≠, 将点A 的坐标代入上式得:160163a =+,解得13a =−,∴抛物线的表达式为:213y x =− 将点B 、C 的坐标代入上式得:()2211623311633m m n m n =−+ =−++①②,由①得1228m m ==−,(舍去),解得:2m n = = 或2m n = =(舍去),米.. 三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 【答案】(1)()40x −,2x(2)每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; (3)不能,理由见解析 【解析】【分析】此题考查了一元二次方程的实际应用,解题的关键是正确分析题目中的等量关系. (1)设每套拖把降价x 元,根据题意列出代数式即可;(2)设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,根据题意列出一元二次方程求解即可;(3)设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,根据题意列出一元二次方程,然后依据判别式求解即可. 【小问1详解】解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套, 每套拖把盈利()1208040x x −−=−元.故答案为:()40x −,()202x +; 【小问2详解】解:设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,依题意得:()()402021242x x −+=, 整理得:2302210x x −+=,解得:121317x x ==,. 又∵需要尽快减少库存,∴17x =.答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; 【小问3详解】解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y −−+=, 整理得:2303000y y −+=. ∵()22Δ43041300300<0b ac =−=−−××=−, ∴此方程无实数解, 即不可能每天盈利1400元. 20. 解方程:(1)2(2x 1)9+=; (2)2x 2﹣4x =1(配方法); (3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−=【答案】(1)121,2x x ==−;(2)1211x x ;(3)12x x ;(4)1233,5x x == 【解析】【分析】(1)直接开平方法解方程即可;(2)先方程两边除以2,将二次项系数化为1,再在方程两边同时加上1,配方开平方即可解答; (3)确定a 、b 、c ,求出△值,当判断方程有解时,带入公式求解即可; (4)整理方程,利用因式分解法解方程即可. 【详解】(1)2(2x 1)9+= 开平方,得:2x 13+=±, 解得:121,2x x ==−; (2)22x 41x −=,二次项系数化为1,得:21x 22x −=, 配方,得:21x 2112x −+=+, 即23(x 1)2−=,开方,得:1x −=解得:1211x x (3)22x 5x 10−+= ∵a=2,b=﹣5,c=1,∴△=224(5)42117b ac −=−−××=﹥0,∴x =,解得:12x x =(4)()2(x 3)4x 3x 0−−−= ()2(x 3)4x 30x +−−=(3)(53)0x x −−=∴30x −=或530x −=,解得:1233,5x x ==. 【点睛】本题考查解一元二次方程的方法,熟练掌握一元二次方程的各种解法的步骤和注意点,灵活选用解法是解答的关键.21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少? 【答案】(1)6万座 (2)70% 【解析】【分析】本题考查有理数乘法的应用,一元二次方程的实际应用:(1)根据计划到今年底,全省5G 基站数是目前的4倍,列出算式计算即可;(2)设全省5G 基站数量的年平均增长率为x ,根据题意,列出一元二次方程,进行求解即可 【小问1详解】解:由题意得:1.546×=(万座); 答:计划在今年底,全省5G 基站数量是6万座. 【小问2详解】解:设全省5G 基站数量的年平均增长率为x ,由题意得:()26117.34x +=,解得:120.7, 2.7x x ==−(不符合题意,舍去); 答:全省5G 基站数量的年平均增长率为70%.22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由. 【答案】(1)当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈 (2)羊圈的面积不能达到2650m ,理由见解析 【解析】【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键. (1)设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解. 【小问1详解】解:设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -,根据题意,得()722640x x −=,化简,得2363200x x −+=,解方程,得116x =,220x =,当116x =时,72240x −=, 当220x =时,72232x −=.答:当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈. 【小问2详解】不能,理由如下:根据题意,得()722650x x −=, 化简,得2363250x x −+=,()22436432540b ac −=−×=−−< , ∴该方程没有实数根. ∴羊圈的面积不能达到2650m 23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,是____________. (2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点,与y 轴交于点____________.(写坐标) (5)在下面的坐标系中画出该抛物线的图象.【答案】(1)1;4 (2)1<(3)见解析 (4)(1,0)−和(3,0);(0,3) (5)见解析 【解析】【分析】本题考查了二次函数的性质、抛物线与x 轴的交点坐标、二次函数图象与几何变换以及二次函数的最值,熟练掌握二次函数的性质是解题的关键.(1)根据二次函数的顶点式找出抛物线的顶点坐标,再根据二次项系数为1−得出抛物线开口向下,由此即可得出结论;(2)根据抛物线开口方向结合抛物线的对称轴,即可找出单增区间;(3)找出函数2y x =−的顶点坐标,结合函数2(1)4y x =−−+的顶点坐标,即可找出平移的方法; (4)令0y =可得出关于x 的一元二次方程,解方程求出x 值,由此得出抛物线与x 轴的交点坐标;令0x =求出y 值,由此即可得出抛物线与y 轴的交点坐标;(5)列表,描点,连线即可画出该抛物线的图象. 【小问1详解】解: 函数解析式为2(1)4y x =−−+,∴抛物线的开口向下,顶点坐标为(1,4). ∴当1x =时,抛物线有最大值,是4.故答案为:1;4; 【小问2详解】解: 抛物线的开口向下,对称轴为1x =,∴当1x <时,y 随x 的增大而增大.故答案为:1<; 【小问3详解】解: 函数2y x =−的顶点坐标为(0,0),∴将函数2y x =−的图象先向右平移1个单位长度,再向上平移4个单位长度即可得出函数2(1)4y x =−−+的图象.【小问4详解】解:令0y =,则有2(1)40x −−+=, 解得:11x =−,23x =,∴该抛物线与x 轴的交点坐标为(1,0)−和(3,0).当0x =时,2(01)43y =−−+=, ∴该抛物线与y 轴的交点坐标为(0,3).故答案为:(1,0)−和(3,0);(0,3). 【小问5详解】 解:列表:x 1−0 1 2 3 y343描点,连线,该抛物线的图象如图:.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 【答案】()221y x =−−+ 【解析】【分析】本题主要考查了求二次函数解析式,先把解析式设顶点式,再利用待定系数法求解即可. 【详解】解:设此二次函数解析式为()()2210y a x a =−+≠,把()3,0代入()()2210y a x a =−+≠中得:()20321a =−+,解得1a =−,∴此二次函数解析式为()221y x =−−+. 25. 已知:二次函数()221y x m x m =−++−.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.【答案】(1)见解析 (2)2y x x 2−− 【解析】【分析】(1)根据()()22Δ2418m m m =+−−=+的符号,即可求解,为(2)由根与系数关系,列出()()2224A B A B A B AB x x x x x x =−=+−⋅,即可求解,本题考查了根的判别式,根据系数关系,解题的关键是:熟练掌握根的判别式,根据系数关系.【小问1详解】证明:()()22Δ2418m m m =+−−=+,20m ≥ ,2Δ880m ∴=+≥>,故抛物线与x 轴一定有两个交点,【小问2详解】解:令0y =,得()2210x m x m −++−=, 由(1)知Δ0>,2A B x x m ∴+=+,1A B x x m ⋅=−,()()()()22224241A B A B A B AB x x x x x x m m =−=+−⋅=+−−, ()()22419m m ∴+−−=,解得1m =±,A 在原点左边,B 在原点右边,10A B x x m ∴⋅=−<,1m ∴<,1m ∴=−,故抛物线的表达式为:2y x x 2−−.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;【答案】(1)245y x x =−−(2)当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − 【解析】【分析】本题考查二次函数的综合应用,熟练掌握的图像和性质是解题的关键. (1)利用待定系数法求函数解析式即可;(2)过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −,则25PQ x x =−+,然后根据ABPS PQ OB =⋅ 计算即可. 【小问1详解】解:当xx =0时,5y =−,∴点A 的坐标为()0,5−, 当0y =时,50x −=,解得5x =,∴点B 的坐标为()5,0,设抛物线的解析式为()()51y a x x =−+,代入()0,5−得:55a −=−,解得:1a =,∴二次函数的解析式为()()25145y x x x x =−+=−−; 【小问2详解】解:过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −, ∴225(45)5PQ x x x x x =−−−−=−+, ∴()2211551255522228ABP S PQ OB x x x =⋅=×−+×==−−+ , 当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − .。
九年级上册数学第一次月考试卷(含答案)
九年级月考(一)数学试题一.选择题(10×4)1.二次函数2(1)2y x =-+的最小值是( )A .2-B .2C .1-D .12.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为A. 0B. -1C. 1D. 23.二次函数22(1)3y x =-+的图象的顶点坐标是( ) A .(13),B .(13)-,C .(13)-,D .(13)--,4.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )5.将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大A. 7B. 6C. 5D. 4 6. 如图所示,A (1x ,1y )、B (2x ,2y )、C (3x ,3y )是函数xy 1=的图象在第一象限分支上的三个点,且1x <2x <3x ,过A 、B 、C 三点分别作坐标轴的垂线,得矩形ADOH 、BEON 、CFOP ,它们的面积分别为S 1、S 2、S 3,则下列结论中正确的是( ) A .S 1<S 2<S 3 B .S 3 <S 2< S 1C .S 2< S 3< S 1D .S 1=S 2=S 37.已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过 ( ) A (-a ,-b ) B (a ,-b ) C (-a ,b ) D (0,0)8.在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、 向右平移2个单位,那么在新坐标系下抛物线的解析式是A .y =2(x -2)2 + 2B .y =2(x + 2)2-2C .y =2(x -2)2-2D .y =2(x + 2)2 + 2y–1 33O xP1 xy C OA B9.如图,正方形ABOC 的边长为2,反比例函数ky x=过点A ,则k 的值是( ) A .2 B .2- C .4 D .4-10.一个函数的图象如图,给出以下结论: ①当0x =时,函数值最大;②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0.其中正确的结论是( ) A .①② B .①③C .②③D .①②③五、填空题(5×5)11.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.则他将铅球推出的距离是 m . 12.数学课本上,用“描点法”画二次函数2y ax bx c =++的图象时,列了如下表格:x… 2-1- 0 1 2 … y…162- 4-122- 2-122- …根据表格上的信息回答问题:该二次函数2y ax bx c =++在3x =时,y =13. 已知函数22y x x c =-++的部分图象如图所示,则c=______,当x______时,y 随x 的增大而减小. 14.如图,在反比例函数2y x=(x<0)的图象上,有点P 1(x 1,y 1),p 2(x 2,y 2)若x 1<x 2,则y 1___y 2 .15.如图,在平面直角坐标系中,函数ky x=(0x >,常数0k >)的图象经过点(12)A ,,()B m n ,,(1m >),过点B 作y 轴的垂线,垂足为C .若ABC △的面积为2,则点B 的坐标为 .(第10(第7题)ox13y OxC A (1,2)B (m ,n )三.解答题(85分)16.(8分)已知一次函数y =ax +b 的图像与反比例函数4y x=的图像交于A (2,2),B (-1,m ),求一次函数的解析式.17.(8分)已知二次函数y=x 2-2x-1。
山东省德州市乐陵市朱集镇朱集中学2024-2025学年九年级上学期第一次月考数学试题(无答案)
2024-2025学年第一学期9月份教学质量检测九年级数学试题考试时间120分钟 试卷满分150分注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版九年级上册21.1-22.1。
第Ⅰ卷一、选择题(本题共12小题,每小题4分,共48分)1、下列方程是一元二次方程的是( )A .B .C .D .2、对于任意实数m,下列函数一定是二次函数的是 ( )A. y=mx²+mx+1B. y=(m+1)x²C. y=(m-1)²x²+1D. y=(-m²-1)x²3. 如果将抛物线y =x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A. y =(x -1)2+2B. y =(x +1)2+2C. y =x 2+1D. y =x 2+34、已知关于的一元二次方程有一个根是,则另一个根是( )A. 1B.C. 2D. 5、抛物线y=x ²−4x+6的对称轴为( ).A. x=4B. x=2C. x= -4D. x= -26、用配方法解一元二次方程配方后得到的方程是( )20ax bx c ++=211x x +=()23x x x -=()20x x -=x 220x kx +-=2-1-2-28100x x -+=A. B. C. D. 7、“读万卷书,行万里路”我校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均课外阅读量从七年级的每年50万字增加到九年级的每年80万字.设该校七至九年级人均阅读量年均增长率为x ,则可列方程为( )A .B .C .D .8、点(-2,),(2,),(4,)均在二次函数的图象上则,,的大小关系是( )A .>>B .>=C .=>D .=>9、已知关于的一元二次方程有两个不相等的实数根,则的取值范围值是( )A. B. C. 且 D. 且10、关于二次函数,下列说法错误的是( )A. 图象与y 轴的交点坐标为(0,1)B. 图象的对称轴在y 轴的右侧C. 当x <0时,y 的值随x 的增大而减小D. y 的最小值为-311、在同一平面直角坐标系中,一次函数y =ax +b 和二次函数y =ax 2+bx +c 的图象可能为( )A. B. C. D.12、二次函数y =ax 2+bx +c (a ≠0)的图象如图所示.下列结论:①abc <0;②a ﹣b +c <0;③m 为任意实数,则a +b >am 2+bm ;④3a +c <0;⑤若ax12+bx1=ax22+bx2且x 1≠x 2,则x 1+x 2=4.其中正确结论的个数有()2854x +=()2854x -=()246x +=()246x -=250(1)80x +=250(1%)80x +=250(12)80x +=25050(1)50(1)80x x ++++=1P 1y 2P 2y 3P 3y c x x y ++-=221y 2y 3y 2y 3y 1y 2y 1y 3y 1y 3y 2y 1y 2y 3y x 2(1)220k x x --+=k 32k <32k ≤32k <1k ≠32k ≤1k ≠1422+-=x x y( )A .1个B .2个C .3个D .4个第Ⅱ卷二、填空题(本题共6小题,每小题4分,共24分)13、方程x 2=2x 的解是 .14、方程(a −1)x |a|+1−2x −7=0为一元二次方程,则a 的值为 .15、 将二次函数化为的形式,则.16、若m ,n 是一元二次方程的两个根,则的值是 .17、已知点在函数的图象上,则代数式的值等于 .18、如图所示的抛物线的图像,那么的值是 .三、解答题(共7小题,共78分,解答应写出文字说明、证明过程或演算步棸。
2021-2022学年-有答案-山东省德州市某校初三(上)1月月考数学试卷
2021-2022年山东省德州市某校初三(上)1月月考数学试卷一、选择题1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2. 如图所示的几何体,其俯视图是( )A. B.C. D.3. 已知a,b是方程x2+x−3=0的两个实数根,则a2−b+2019的值是( )A.2023B.2021C.2020D.20194. 关于x的一元二次方程x2+(k−3)x+1−k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定5. 下列说法正确的有( )个.①平分弦的直径垂直于弦,并且平分这条弦所对的弧;②三点确定一个圆;③确定性事件是一定会发生的事件;④弦相等所以弧相等;⑤到圆心的距离等于半径的直线是圆的切线;⑥同一条弦所对的圆周角都相等.A.0B.1C.2D.36. 平面直角坐标系内,函数y=ax2+bx+b(a≠0)与函数y=ax+b的图象可能是( )A. B.C. D.7. 某省加快新旧动能转换,促进企业创新发展,某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x,列出的方程是( )A.1000(1+x)2=3990B.1000+1000(1+x)+1000(1+x)2=3990C.1000(1+2x)=3990D.1000+1000(1+x)+1000(1+2x)=39908. 如图,点A在双曲线y=4x 上,点B在双曲线y=12x上,且AB // x轴,点C,D在x轴上,若四边形ABCD为矩形,则它的面积为( )A.4B.6C.8D.129. 如图,在△ABC中,点D,E分别是AB和AC上的点,DE//BC,AD=2BD,S△ABC=36,则四边形BCED的面积为( )A.12B.9C.16D.2010. 如图,AB为⊙O的直径,点C是弧BE的中点.过点C作CD⊥AB于点G,交⊙O于点D,若BE=8,BG=2,则⊙O的半径长是( )A.5B.6.5C.7.5D.811. 如图,平面直角坐标系中,△OA1B1是边长为2的等边三角形.作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此下去,则△B2n A2n+1 B2n+1 (n是正整数)的顶点A2n+1 的坐标是( )A.(4n−1,√3)B.(2n−1,√3)C.(4n+1,√3)D.(2n+1,√3)12. 如图,抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(−1,0);⑤当1<x<4时,有y2<y1,其中正确的有( )个.A.2B.3C.4D.5二、填空题如图,在Rt△AOB中,OB=2√3,∠A=30∘,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为________.三、解答题如图所示的正方形网格中,△ABC的顶点均在格点上,每个格点表示一个单位长度,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90∘得△AB1C1,画出△AB1C1;(2)作出△ABC关于坐标原点O成中心对称△A2B2C2;(3)△ABC旋转得到△AB1C1,线段AB旋转到AB1的过程中,线段AB扫过的面积为多少?为丰富学生们的课余生活,学校开展第二课堂,有四类课程可选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请根据图表信息回答问题:(1)本次被抽查的学生共有________名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为________度;(2)请你将条形统计图补全;(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C.社会实践类”的学生共有多少名?(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=k(k≠0)的图象交于A,B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段xCH的中点,AC=4√5,cos∠ACH=√5,点B的坐标为(4,n).5(1)求该反比例函数和一次函数的解析式;(2)求△ABH的面积;(3)观察图象,直接写出ax+b>k的x取值范围________.x如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30∘方向,同时测得岛礁P正东方向上的避风港M在北偏东60∘方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行多少小时即可到达.(结果保留根号)某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到15元之间(含10元,15元)浮动时,日均销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数表达式;(2)若规定该种饮料日均的销售量不低于400瓶,当销售单价为多少元时,所得日均毛利润(每瓶毛利润=每瓶售价−每瓶进价)最大,最大日均毛利润是多少?(3)老板决定从该种饮料所得的日均毛利润中提取50元,作为销售员小王当天的额外奖励,且又保证提取后日均毛利润不低于1150元,试确定该种饮料销售单价的范围.如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB交⊙O 于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠FAB;(2)求证:BC2=CE⋅CP;(3)当AB=√3且CFCP =34时,求弦BC与其所对的劣弧BĈ所组成的弓形面积.已知抛物线y=ax2+bx−4经过点A(2, 0)、B(−4, 0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.参考答案与试题解析2021-2022年山东省德州市某校初三(上)1月月考数学试卷一、选择题1.【答案】C【考点】轴对称图形中心对称图形【解析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A,不是中心对称图形,也不是轴对称图形,故A不符合题意;B,不是轴对称图形,是中心对称图形,故B不符合题意;C,是轴对称图形,也是中心对称图形,故C符合题意;D,是轴对称图形,但不是中心对称图形,故D不符合题意.故选C.2.【答案】A【考点】简单组合体的三视图【解析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选A.3.【答案】A【考点】根与系数的关系一元二次方程的解【解析】此题暂无解析【解答】解:因为a,b是方程x2+x−3=0的两个实数根,将x=b代入方程可得b2+b−3=0,即b=3−b2,由根与系数的关系可得a+b=−1,ab=−3,所以a2−b+2019=a2−(3−b2)+2019=a2−3+b2+2019=(a+b)2−2ab+2016=1+6+2016=2023.故选A.4.【答案】A【考点】根的判别式【解析】先计算判别式,再进行配方得到△=(k−1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.【解答】解:∵x2+(k−3)x+1−k=0,∴Δ=(k−3)2−4(1−k)=k2−6k+9−4+4k=k2−2k+5=(k−1)2+4.∵(k−1)2+4>0,即Δ>0,∴方程总有两个不相等的实数根.故选A.5.【答案】B【考点】垂径定理确定圆的条件确定事件切线的判定【解析】根据垂径定理的推理对①进行判断;根据确定圆的条件对②进行判断;根据确定事件定义对③进行判断;根据弦、弧和圆心角的关系对④进行判断;根据切线的判定对⑤进行判断.根据圆周角定理对⑥进行判断【解答】解:①当该弦为直径时,平分这条弦的直径并不一定垂直于这条线,故①错误;②不在同一直线上的三点确定一个圆,故②错误;③确定性事件包括必然事件和不可能事件,故③错误;④同圆或等圆中,弦相等所以弧相等,故④错误;⑤到圆心的距离等于半径的直线是圆的切线,满足圆的切线定义,故⑤正确;⑥当不同大小的圆上有一段相等的弧,那么它们所对的圆周角必然不相等,故⑥错误. 故选B.6.【答案】C【考点】一次函数的图象二次函数的图象【解析】根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【解答】解:A,二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故A错误;B,∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,且与二次函数交于y轴负半轴的同一点,故B错误;C,二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故C正确;D,∵二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故D错误.故选C.7.【答案】B【考点】由实际问题抽象出一元二次方程【解析】此题暂无解析【解答】解:设月平均增长的百分率是x,则该企业二月份的营业额为1000(1+x)万元,三月份的营业额为1000(1+x)2万元,依题意,得1000+1000(1+x)+1000(1+x)2=3990.故选B.8.【答案】C【考点】反比例函数系数k的几何意义矩形的性质【解析】根据双曲线上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S 的关系S=|k|即可判断.【解答】解:如图,延长BA交y轴于E,则BE⊥y轴,∵点A在双曲线y=4x上,∴四边形AEOD的面积为4.∵点B在双曲线线y=12x上,且AB // x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12−4=8.故选C.9.【答案】D【考点】相似三角形的性质与判定【解析】先求出ADAB,再求出△ADE和△ABC相似,然后根据相似三角形面积的比等于相似比的平方求出△ADE的面积,再求解即可.【解答】解:∵ AD=2BD,∴ADBD=2,∴ADAB =ADAD+BD=23.∵ DE//BC,∴ △ADE∼△ABC,∴S△ADES△ABC =(23)2=49 .∵S△ABC=36,∴S△ADE=36×49=16,∴S四边形BCED=S△ABC−S△ADE=36−16=20. 故选D.10.【答案】A【考点】勾股定理垂径定理圆心角、弧、弦的关系【解析】̂=BD̂,CG=DG,则BÊ=CD̂,连接OD,如图,设⊙O的半径为r,根据垂径定理得BOCD=4,利用勾股定理得到42+(r−2)2=r2,然后解所以CD=BE=8,则DG=12方程即可.【解答】解:连接OD,如图,设⊙O的半径为r,∵CD⊥AB,̂=BD̂,CG=DG.∴BC∵点C是弧BE的中点,̂=CB̂,∴CÊ=CD̂.∴BE∵CÊ+CB̂=BĈ+BD̂,即CD̂=BÊ,∴CD=BE=8,CD=4.∴DG=12在Rt△ODG中,∵OG=r−2,OD=r,∴42+(r−2)2=r2,解得r=5,即⊙O的半径为5.故选A.11.【答案】C【考点】中心对称坐标与图形性质规律型:点的坐标【解析】首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1, √3),B1的坐标为(2, 0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出A n的坐标的规律,求出A2n+1的坐标是多少即可.【解答】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,√3),B1的坐标为(2,0).∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称.∵2×2−1=3,2×0−√3=−√3,∴点A2的坐标是(3,−√3).∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称.∵2×4−3=5,2×0−(−√3)=√3,∴点A3的坐标是(5,√3).∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称.∵2×6−5=7,2×0−√3=−√3,∴点A4的坐标是(7,−√3),…,∵1=2×1−1,3=2×2−1,5=2×3−1,7=2×4−1,…,∴A n的横坐标是2n−1,A2n+1 的横坐标是2(2n+1)−1=4n+1.∵当n为奇数时,A n的纵坐标是√3,当n为偶数时,A n的纵坐标是−√3,∴顶点A2n+1 的纵坐标是√3,∴△B2n A2n+1 B2n+1 (n是正整数)的顶点A2n+1 的坐标是(4n+1,√3).故选C.12.【答案】B【考点】二次函数图象与系数的关系抛物线与x轴的交点【解析】根据二次函数的性质、方程与二次函数的关系一一判断即可得出答案.【解答】解:∵抛物线的顶点坐标A(1,3),=1,∴对称轴为x=−b2a∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=−2a>0.∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0),而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(−2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B(4,0),∴当1<x<4时,抛物线的图象在直线的上方,即y2<y1,所以⑤正确.故选B.二、填空题【答案】2√2【考点】切线的性质含30度角的直角三角形解直角三角形勾股定理【解析】连接OP、OQ,作OP′⊥AB于P′,根据切线的性质得到OQ⊥PQ,根据勾股定理得到PQ=√OP2−1,根据垂线段最短得到当OP⊥AB时,OP最小,根据直角三角形的性质、勾股定理计算即可.【解答】解:连接OP,OQ,作OP′⊥AB交AB于点P′,如图,∵PQ是⊙O的切线,∴OQ⊥PQ,∴PQ=√OP2−OQ2=√OP2−1,当OP最小时,线段PQ的长度最小,当OP⊥AB时,OP最小,即OP=OP′.在Rt△AOB中,∠A=30∘,=6.∴OA=OBtanA在Rt△AOP′中,∠A=30∘,OA=3,∴OP′=12∴线段PQ长度的最小值为:PQ min =√32−1=2√2.故答案为:2√2.三、解答题【答案】解:(1)如图所示,△AB 1C 1即为所求.(2)如图所示,△A 2B 2C 2即为所求.(3)AB =√12+22=√5,线段AB 扫过的面积为:90×π×(√5)2360=54π. 【考点】作图-旋转变换中心对称扇形面积的计算勾股定理【解析】(1)分别作出点B 、C 绕点A 顺时针旋转90∘得到的对应点,再与点A 首尾顺次连接即可;(2)分别作出三个顶点关于原点的对称点,再首尾顺次连接即可;(3)由勾股定理求出AB 的值,然后按照扇形面积的公式计算即可.【解答】解:(1)如图所示,△AB 1C 1即为所求.(2)如图所示,△A 2B 2C 2即为所求.(3)AB =√12+22=√5,线段AB 扫过的面积为:90×π×(√5)2360=54π. 【答案】50,72(2)B 类人数是:50−10−8−20=12(名),补全条形统计图如图所示:(3)850×600=96(名).答:估计该校学生选择“C .社会实践类”的学生共有96名.(4)列表如下:由表格可得:共有16种等可能的结果,其中王芳和小颖两名学生选择同一个项目的结果有4种,∴ 王芳和小颖两名学生选择同一个项目的概率P =416=14.【考点】扇形统计图条形统计图用样本估计总体列表法与树状图法【解析】(1)用条形统计图中D类的人数除以扇形统计图中D类所占百分比即可求出被抽查的总人数,用条形统计图中A类的人数除以总人数再乘以360∘即可求出扇形统计图中A类所占扇形的圆心角的度数;(2)用总人数减去其它三类人数即得B类人数,进而可补全条形统计图;(3)用C类人数除以总人数再乘以600即可求出结果;(4)先利用列表法求出所有等可能的结果数,再找出王芳和小颖两名学生选择同一个项目的结果数,然后根据概率公式计算即可.【解答】解:(1)本次被抽查的学生共有:20÷40%=50(名);扇形统计图中“A.书画类”所占扇形的圆心角的度数为1050×360∘=72∘.故答案为:50;72.(2)B类人数是:50−10−8−20=12(名),补全条形统计图如图所示:(3)850×600=96(名).答:估计该校学生选择“C.社会实践类”的学生共有96名.(4)列表如下:由表格可得:共有16种等可能的结果,其中王芳和小颖两名学生选择同一个项目的结果有4种,∴王芳和小颖两名学生选择同一个项目的概率P=416=14.【答案】解:(1)∵ AH ⊥x 轴于点H ,AC =4√5,cos∠ACH =√55, ∴ cos∠ACH =HC AC =4√5=√55, 解得HC =4.∵ 点O 是线段CH 的中点,∴ HO =CO =2,∴ AH =√AC 2−HC 2=√(4√5)2−42=8,∴ A(−2,8).将A(−2,8)代入反比例函数解析式得8=k−2,解得k =−16,∴ 反比例函数解析式为:y =−16x . 将x =4代入反比例函数解析式可得y =−164,解得y =−4,∴ B(4,−4).将A(−2,8),B(4,−4)两点代入一次函数解析式y =ax +b ,可得则{−2a +b =8,4a +b =−4,解得{a =−2,b =4,∴ 一次函数解析式为:y =−2x +4.(2)由(1)知:HC =4,A (−2,8),B (4,−4),∴ △BCH 的面积为: 12×4×4=8,△ACH 的面积为: 12×4×8=16, ∴ S △ABH =S ACH +S △BCH =16+8=24.x <−2或0<x <4【考点】反比例函数与一次函数的综合待定系数法求反比例函数解析式待定系数法求一次函数解析式三角形的面积【解析】(1)首先利用锐角三角函数关系得出HC 的长,再利用勾股定理得出AH 的长,即可得出A 点坐标,进而求出反比例函数解析式,再求出B 点坐标,即可得出一次函数解析式;(2)利用B 点坐标的纵坐标再利用HC 的长即可得出△BCH 的面积.【解答】解:(1)∵ AH ⊥x 轴于点H ,AC =4√5,cos∠ACH =√55, ∴ cos∠ACH =HC AC =4√5=√55,解得HC =4.∵ 点O 是线段CH 的中点,∴ HO =CO =2,∴ AH =√AC 2−HC 2=√(4√5)2−42=8,∴ A(−2,8).将A(−2,8)代入反比例函数解析式得8=k −2,解得k =−16,∴ 反比例函数解析式为:y =−16x . 将x =4代入反比例函数解析式可得y =−164,解得y =−4,∴ B(4,−4).将A(−2,8),B(4,−4)两点代入一次函数解析式y =ax +b ,可得则{−2a +b =8,4a +b =−4,解得{a =−2,b =4,∴ 一次函数解析式为:y =−2x +4.(2)由(1)知:HC =4,A (−2,8),B (4,−4),∴ △BCH 的面积为: 12×4×4=8,△ACH 的面积为: 12×4×8=16, ∴ S △ABH =S ACH +S △BCH =16+8=24.(3)由(1)知: A (−2,8),B (4,−4),当x <−2或0<x <4时,一次函数在反比例函数上方,∴ 一次函数值大于反比例函数值时x 的取值范围为: x <−2或0<x <4.故答案为: x <−2或0<x <4.【答案】解:过点P 作PQ ⊥AB 交AB 延长线于点Q ,过点M 作MN ⊥AB 交AB 延长线于点N ,如图,在Rt △AQP 中,∠PAQ =45∘,则AQ =PQ =60×1.5+BQ =90+BQ ,所以BQ =PQ −90.在Rt △BPQ 中,∠BPQ =30∘,则BQ =PQ ⋅tan30∘=√33PQ , 所以PQ −90=√33PQ ,解得PQ =45(3+√3) ,所以MN =PQ =45(3+√3),在Rt △BMN 中,∠MBN =30∘,所以BM =2MN =90(3+√3),所以90(3+√3)75=18+6√35(小时). 【考点】勾股定理的应用解直角三角形的应用-方向角问题【解析】如图,过点P 作PQ ⊥AB 交AB 延长线于点Q ,过点M 作MN ⊥AB 交AB 延长线于点N ,通过解直角△AQP 、直角△BPQ 求得PQ 的长度,即MN 的长度,然后通过解直角△BMN 求得BM 的长度,则易得所需时间.【解答】解:过点P 作PQ ⊥AB 交AB 延长线于点Q ,过点M 作MN ⊥AB 交AB 延长线于点N ,如图,在Rt △AQP 中,∠PAQ =45∘,则AQ =PQ =60×1.5+BQ =90+BQ ,所以BQ =PQ −90.在Rt △BPQ 中,∠BPQ =30∘,则BQ =PQ ⋅tan30∘=√33PQ , 所以PQ −90=√33PQ , 解得PQ =45(3+√3) ,所以MN =PQ =45(3+√3),在Rt △BMN 中,∠MBN =30∘,所以BM =2MN =90(3+√3),所以90(3+√3)75=18+6√35(小时). 【答案】解:(1)设y =kx +b ,由题意得{10k +b =560,15k +b =160,解得{k =−80,b =1360.∴ y 与x 之间的函数表达式为:y =−80x +1360(10≤x ≤15).(2)由题意得−80x +1360≥400,解得x ≤12,设毛利润为w ,则w =(x −9)⋅y =(x −9)×(−80x +1360)=−80x 2+2080x −12240=−80(x −13)2+1280.∵ −80<0,∴ 该二次函数开口向下,对称轴为x =13,∴ x ≤13时,w 随x 的增大而增大,∴ x =12时,w 取得最大值,最大值为w =−80×(12−13)2+1280=1200.答:当销售单价为12元时,日均毛利润最大,最大毛利润是1200元.(3)令−80(x −13)2+1280=1150+50,解得x 1=12,x 2=14,∴ 当 12≤x ≤14时,提取后日均毛利润不低于1150元.【考点】待定系数法求一次函数解析式二次函数的应用解一元一次不等式一元二次方程的解【解析】此题暂无解析【解答】解:(1)设y =kx +b ,由题意得{10k +b =560,15k +b =160,解得{k =−80,b =1360.∴ y 与x 之间的函数表达式为:y =−80x +1360(10≤x ≤15).(2)由题意得−80x +1360≥400,解得x ≤12,设毛利润为w ,则w =(x −9)⋅y =(x −9)×(−80x +1360)=−80x 2+2080x −12240=−80(x −13)2+1280.∵ −80<0,∴ 该二次函数开口向下,对称轴为x =13,∴ x ≤13时,w 随x 的增大而增大,∴ x =12时,w 取得最大值,最大值为w =−80×(12−13)2+1280=1200.答:当销售单价为12元时,日均毛利润最大,最大毛利润是1200元.(3)令−80(x −13)2+1280=1150+50,解得x 1=12,x 2=14,∴ 当 12≤x ≤14时,提取后日均毛利润不低于1150元.【答案】(1)证明:∵ PF 是⊙O 的切线,∴ OC ⊥PF .又∵ AF ⊥PF ,∴ AF//OC ,∴ ∠FAC=∠ACO.∵ OA=OC,∴ ∠OAC=∠ACO,∴ ∠FAC=∠CAB,即AC平分∠FAB.(2)证明:∵ OC=OB,∴ ∠OCB=∠OBC.∵ PF是⊙O的切线且EC⊥OB,∴ ∠OCP=∠CEB=90∘,∴ ∠PCB+∠OCB=90∘,∠BCE+∠OBC=90∘,∴ ∠BCE=∠PCB.∵ CD是直径,∴ ∠CBD=∠CBP=90∘,∴ △CBE∼△CPB,∴CBCP =CECB,∴ BC2=CE⋅CP.(3)作BM⊥PF交PF于点M,如图,∵CFCP =34,设CF=3a,∴ CE=CM=CF=3a,CP=4a,PM=a. ∵ ∠MCB+∠P=90∘,∠P+∠PBM=90∘,∴ ∠MCB=∠PBM.∵ CD是直径且BM⊥PC,∴ ∠CMB=∠BMP=90∘,∴ △BMC∼△PMB,∴BMPM =CMBM,∴ BM2=CM⋅PM=3a2,∴ BM=√3a,∴ tan∠BCM=BMCM =√3a3a=√33,∴ ∠BCM=30∘,∴ ∠OCB=∠OBC=∠BOC=60∘.∵ AB=4√3,∴ BC=OC=OB=2√3,OE=√3,由勾股定理可得CE=√CO2−OE2=3,∴ 弦BC与其所对的劣弧BĈ所组成的弓形面积为:S=60π×(2√3)2360−12×3×2√3=2π−3√3.【考点】切线的性质角平分线的定义相似三角形的判定圆周角定理相似三角形的性质锐角三角函数的定义【解析】(1)根据“平行+等腰”证角平分线;(2)结合已知条件证明△CBE∽△CPB,可得CBCP =CECB,即可解决问题;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题.【解答】(1)证明:∵ PF是⊙O的切线,∴ OC⊥PF.又∵ AF⊥PF,∴ AF//OC,∴ ∠FAC=∠ACO.∵ OA=OC,∴ ∠OAC=∠ACO,∴ ∠FAC=∠CAB,即AC平分∠FAB.(2)证明:∵ OC=OB,∴ ∠OCB=∠OBC.∵ PF是⊙O的切线且EC⊥OB,∴ ∠OCP=∠CEB=90∘,∴ ∠PCB+∠OCB=90∘,∠BCE+∠OBC=90∘,∴ ∠BCE=∠PCB.∵ CD是直径,∴ ∠CBD=∠CBP=90∘,∴ △CBE∼△CPB,∴CBCP =CECB,∴ BC2=CE⋅CP.(3)作BM⊥PF交PF于点M,如图,∵CFCP =34,设CF=3a,∴ CE=CM=CF=3a,CP=4a,PM=a. ∵ ∠MCB+∠P=90∘,∠P+∠PBM=90∘,∴ ∠MCB=∠PBM.∵ CD是直径且BM⊥PC,∴ ∠CMB=∠BMP=90∘,∴ △BMC∼△PMB,∴BMPM =CMBM,∴ BM2=CM⋅PM=3a2,∴ BM=√3a,∴ tan∠BCM=BMCM =√3a3a=√33,∴ ∠BCM=30∘,∴ ∠OCB=∠OBC=∠BOC=60∘.∵ AB=4√3,∴ BC=OC=OB=2√3,OE=√3,由勾股定理可得CE=√CO2−OE2=3,∴ 弦BC与其所对的劣弧BĈ所组成的弓形面积为:S=60π×(2√3)2360−12×3×2√3=2π−3√3.【答案】解:(1)∵抛物线y=ax2+bx−4经过点A(2, 0),B(−4, 0),∴{4a+2b−4=0,16a−4b−4=0,解得{a=12, b=1,∴抛物线解析式为y=12x2+x−4.(2)如图1,连接OP,设点P(x, 12x2+x−4),其中−4<x<0,四边形ABPC的面积为S,由题意得C(0, −4),∴S=S△AOC+S△OCP+S△OBP=12×2×4+12×4×(−x)+12×4×(−12x2−x+4),=4−2x−x2−2x+8,=−x2−4x+12,=−(x+2)2+16.∵−1<0,开口向下,S有最大值,∴当x=−2时,四边形ABPC的面积最大,此时,y=−4,即P(−2, −4).因此当四边形ABPC的面积最大时,点P的坐标为(−2, −4).(3)y=12x2+x−4=12(x+1)2−92,∴顶点M(−1, −92).如图2,连接AM交直线DE于点G,此时,△CMG的周长最小.设直线AM的解析式为y=kx+b,且过点A(2, 0),M(−1, −92),∴{2k+b=0,−k+b=−92,∴直线AM的解析式为y=32x−3.在Rt△AOC中,AC=√OA2+OC2=√22+42=2√5.∵D为AC的中点,∴AD=12AC=√5,∵△ADE∽△AOC,∴ADAO =AEAC,∴ √52=2√5 ∴ AE =5,∴ OE =AE −AO =5−2=3,∴ E(−3, 0),由图可知D(1, −2)设直线DE 的函数解析式为y =mx +n ,∴ {m +n =−2,−3m +n =0,解得:{m =−12,n =−32,∴ 直线DE 的解析式为y =−12x −32.∴ {y =−12x −32,y =32x −3,解得:{x =34,y =−158, ∴ G(34,−158).【考点】相似三角形的性质待定系数法求一次函数解析式二次函数综合题待定系数法求二次函数解析式二次函数的最值【解析】(1)把点A 、B 的坐标代入抛物线解析式,利用待定系数法求函二次数解析式解答;(2)连接OP ,由S =S △AOC +S △OCP +S △OBP ,可得出关于P 点横坐标的表达式,然后利用二次函数的最值问题求出点P 的坐标;(3)连接AM 交直线DE 于点G ,此时,△CMG 的周长最小.求出直线AM 的解析式,再由△ADE ∽△AOC ,求出点E 的坐标,求出直线DE 的解析式,则由AM 、DE 两直线的交点可求得G 点坐标.【解答】解:(1)∵ 抛物线y =ax 2+bx −4经过点A(2, 0),B(−4, 0),∴ {4a +2b −4=0,16a −4b −4=0,解得{a =12,b =1,∴ 抛物线解析式为y =12x 2+x −4.(2)如图1,连接OP,设点P(x, 12x2+x−4),其中−4<x<0,四边形ABPC的面积为S,由题意得C(0, −4),∴S=S△AOC+S△OCP+S△OBP=12×2×4+12×4×(−x)+12×4×(−12x2−x+4),=4−2x−x2−2x+8,=−x2−4x+12,=−(x+2)2+16.∵−1<0,开口向下,S有最大值,∴当x=−2时,四边形ABPC的面积最大,此时,y=−4,即P(−2, −4).因此当四边形ABPC的面积最大时,点P的坐标为(−2, −4).(3)y=12x2+x−4=12(x+1)2−92,∴顶点M(−1, −92).如图2,连接AM交直线DE于点G,此时,△CMG的周长最小.设直线AM的解析式为y=kx+b,且过点A(2, 0),M(−1, −92),∴{2k+b=0,−k+b=−92,∴直线AM的解析式为y=32x−3.在Rt△AOC中,AC=√OA2+OC2=√22+42=2√5.∵D为AC的中点,∴AD=12AC=√5,∵△ADE∽△AOC,∴ADAO =AEAC,∴ √52=2√5 ∴ AE =5,∴ OE =AE −AO =5−2=3, ∴ E(−3, 0),由图可知D(1, −2)设直线DE 的函数解析式为y =mx +n ,∴ {m +n =−2,−3m +n =0,解得:{m =−12,n =−32,∴ 直线DE 的解析式为y =−12x −32.∴ {y =−12x −32,y =32x −3,解得:{x =34,y =−158, ∴ G(34,−158).。
山东省德州市2024-2025学年九年级上学期10月月考数学试题
山东省德州市2024-2025学年九年级上学期10月月考数学试题一、单选题1.下列方程中,属于一元二次方程的是( )A .22360x xy y --=B .287x x -=C .23120x x -+=D .2440x x -+=2.将一元二次方程()2x a b +=化成2850x x --=的形式,则a ,b 的值分别是( )A .4-,21B .4-,11C .4,21D .8-,69 3.已知二次函数()2325y x =-+,则关于该函数的下列说法正确的是( )A .该函数图象与y 轴的交点坐标是()0,5B .当2x >时,y 的值随x 值的增大而减小C .当x 取1和3时,所得到的y 的值相同D .将23y x =的图象先向左平移两个单位,再向上平移5个单位得到该函数图象 4.在同一平面直角坐标系中,一次函数1122y ax a =+与二次函数2y ax a =-的图象可能是( ) A . B . C .D .5.“读万卷书,行万里路”我校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均课外阅读量从七年级的每年50万字增加到九年级的每年80万字.设该校七至九年级人均阅读量年均增长率为x ,则可列方程为( )A .250(1)80x +=B .250(1%)80x +=C .250(12)80x +=D .25050(1)50(1)80x x ++++=6.二次函数2(1)3y x =-+向左平移2个单位,向上平移1个单位得到函数解析式是( ) A .2(3)4y x =-+B .2(1)2y x =++C .2(3)2y x =-+D .2(1)4y x =++7.已知抛物线2(1)y x =-+上的两点1(4,)A y -和2(3,)B y -,那么下列结论一定成立的是( ) A .210y y <<B .120y y <<C .120y y <<D .210y y <<8.已知m ,n 是方程2330x x --=的两根,则代数式22m m n mn -+-的值是( ) A .12- B .12 C .3 D .09.已知二次函数225y x mx =-+,当1x >-时,y 随x 的增大而增大,则实数m 的取值范围是( )A .1m <-B .1m ≥-C .1m >-D .1m ≤-10.二次函数()20y ax bx c a =++≠的部分图象如图所示,图象过点()1,0-,对称轴为直线2x =,抛物线与y 轴交点在()0,1A 和()0,2B 之间(不与AB 重合).下列结论:①0abc >;②93a c b +>;③40a b +=;④当0y >时,15x -<<;⑤a 的取值范围为2155x -<<-.其中正确结论有( )A .2个B .3个C .4个D .5个二、填空题11.若关于x 的一元二次方程2210mx x +-=有两个不相等的实数根,则m 的取值范围为. 12.已知方程210x x --=有一根为m ,则22017m m -+的值为.13.设1x ,2x 是关于x 的一元二次方程()222120x m x m -+++=的两个实数根,且()()12118x x ++=,则m 的值为.14.已知二次函数()214y x =+-,当02x ≤≤时,函数值y 的取值范围为15.已知关于x 的方程()21230a x x +-+=有实数根,则整数a 的最大值是. 16.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-,若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有1i i =,21i =-,()321i i i i i =⋅=-=-,()()224211i i ==-=.从而对任意正整数n ,我们可得到()4144nn n i i i i i i +=⋅=⋅=,同理可得42i 1n +=-,43i i n +=-,41n i =,那么,2342024i i i i i +++++L 的值为.三、解答题17.解下列方程:(1)2249856x x -=;(2)2699910x x --=.18.已知一个抛物线经过点()3,0,()1,0-和()2,6-.(1)求这个二次函数的解析式;(2)求这个二次函数图象的顶点坐标和对称轴;19.如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由. 20.已知关于x 的一元二次方程222(1)10+++-=x m x m .(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为1x ,2x ,且满足21212()162x x x x -=-,求实数m 的值. 21.某商店销售乌馒头,通过分析销售情况发现,乌馒头的日销售量y (单位:盒)是销售单价x (单位:元/盒)的一次函数,销售单价、日销售量的部分对应值如下表,已知销售单价不低于成本价且不高于20元,每天销售乌馒头的固定损耗为20元,且成本价为12元/盒,日销售量为200盒.(1)求乌馒头的日销售量y 与销售单价x 的函数解析式;(2)端午节期间,商店决定采用降价促销的方式回馈顾客,在顾客获得最大实惠的前提下,当乌馒头每盒降价多少元时,商店日销售纯利润为1480元;(3)当销售单价定为多少时,日销售纯利润最大,并求此日销售最大纯利润.22.如图,是某景区步行街修建的一个横断面为抛物线的拱形大门,点M 为顶点,其高为9米,宽OE 为18米,以点O 为原点,OE 所在直线为x 轴建立平面直角坐标系.矩形ABCD 是安装的一个“光带”,且点A ,D 在抛物线上,点B ,C 在OE 上.(1)求该抛物线的函数表达式. (2)求所需的三根“光带” AB ,AD ,DC 的长度之和的最大值,并写出此时OB 的长. 23.阅读下列材料:方程2310x x +-=两边同时除以()0x x ≠,得130x x +-=,即13x x -=-.因为222112x x x x ⎛⎫-=+- ⎪⎝⎭,所以22211211x x x x ⎛⎫+=-+= ⎪⎝⎭. 根据以上材料解答下列问题:(1)已知方程()24100x x x --=≠,则1x x -=_____;221x x+=_____. (2)若m 是方程22720x x -+=的根,求221m m +的值.24.如图,在∆ABC 中,∠B =90°,AB =5cm ,BC =7cm .动点P 、Q 分别从点A ,B 同时出发,点P 以1cm /s 的速度向点B 移动,点Q 以2cm /s 的速度向点C 移动.(不考虑起始位置,且点P ,Q 不与点A ,B 重合)(1)P 、Q 两点出发后第几秒时,∆PBQ 的面积为4cm 2?(2)P 、Q 两点出发后第几秒时,PQ 的长度为5cm ;(3)∆PBQ 的面积能否为7cm 2?说明理由.25.已知二次函数()20y x bx c a =++≠的图象与x 轴的交于A 、()1,0B 两点,与y 轴交于点()0,3C -.(1)求二次函数的表达式及A 点坐标;(2)D 是二次函数图象上位于第三象限内的点,求ACD V 面积的最大值及此时点D 的坐标;(3)M 是二次函数图象对称轴上的点,在二次函数图象上是否存在点N .使以M N B O 、、、为顶点的四边形是平行四边形?若有,请求出点N 的坐标.。
山东省德州市德城区第九中学2023-2024学年九年级上学期10月月考数学试题
山东省德州市德城区第九中学2023-2024学年九年级上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题...D.A .①②B .①②③C .①③④D .①②④二、填空题18.已知二次函数2()21y x a a =-++-(a 为常数)个“抛物线系”.如图分别是当a 取四个不同数值时此二次函数的图象.发现它们的顶点三、计算题19.计算(1)2420x x ++=(2)()()22311-=-x x 四、证明题20.已知关于x 的一元二次方程2(2)10x m x m +-+-=.(1)求证:方程总有两个实数根;(2)若0m <,且此方程的两个实数根的差为4,求m 的值.五、解答题21.2020年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2022年,家庭年人均纯收入达到了4900元.(1)求该贫困户2020年到2022年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2023年该贫困户的家庭年人均纯收入是否能达到6800元?22.如图是二次函数2()y x m k =++的图象,其顶点的坐标为4(1)M -,.(1)求出图象与x 轴的交点A B ,的坐标;六、应用题23.某运动品牌销售一款运动鞋,已知每双运动鞋的成本价为60元,当售价为100元时,平均每天能售出200双.经过一段时间销售发现,平均每天售出的运动鞋数量y (双)与降低价格x (元)之间存在如图所示的函数关系.(1)求出y 与x 的函数关系式:(2)公司希望平均每天获得的利润达到8910元,且优惠力度最大,则每双运动鞋的售价应该定为多少?七、解答题24.阅读材料:我们学习了完全平方式,并知道完全平方式具有非负性.我们可以利用完全平方式的知识,将一般的二次代数式,转化为完全平方式的形式,这个过程叫做“配方”.通过配方,我们可以求代数式的最大(小)值.例如:求代数式248y y ++的最小值.解:我们可以先将代数式配方:()2224844424y y y y y ++=+++=++再利用完全平方式的非负性:∵()220y +≥,∴()2244y ++≥,∴248y y ++的最小值是4.(1)求代数式24m m ++的最小值;(2)求代数式2412x x -++的最大值;(3)某居民小区要在一块两面靠墙(墙长无限)的空地上建一个长方形花园ABCD ,另两边用总长为20m 的栅栏围成.如图,设()AB x m =,请问:当x 取何值时,花园的面积最大?最大面积是多少?八、计算题(1)【观察探究】方程()211x --=-的解为:(2)【问题解决】若方程()21x a --=有四个实数根,分别为①a 的取值范围是___;②计算1234x x x x +++=___(3)【拓展延伸】①将函数()21y x =--的图象经过怎样的平移可得到函数画出平移后的图象并写出平移过程:②观察平移后的图像,当。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省德州市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共5题;共10分)1. (2分)(2017·武汉模拟) 为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/周)01234人数(单位:人)14622A . 中位数是2B . 平均数是2C . 众数是2D . 极差是22. (2分)(2018·重庆) 如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A . 21.7米B . 22.4米C . 27.4米D . 28.8米3. (2分) (2016九上·延庆期末) 如图所示,在正方形ABCD中,E是BC的中点,F是CD上的一点,AE⊥E F,下列结论:①∠BAE=30°;②CE2=AB CF;③CF= FD;④△ABE∽△AEF.其中正确的有()A . 1个B . 2个C . 3个D . 4个4. (2分)(2017·广安) 如图,AB是⊙O的直径,且经过弦CD的中点H,已知cos∠CDB= ,BD=5,则OH的长度为()A .B .C . 1D .5. (2分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴,y轴上,连OB,将纸片OABC沿OB折叠,使点A落在A′的位置,若OB=,tan∠BOC=,则点A′的坐标()A . (﹣,)B . (﹣,)C . (﹣,)D . (﹣,)二、填空题 (共10题;共10分)6. (1分) (2017八上·云南期中) 一元二次方程:3x2+8x-3=0的解是:________。
7. (1分)把多项式3x2-2xy-y2-x+3y-5分成两组,两个括号间用“-”号连接,并且使第一个括号内含x 项,因此,得________.8. (1分)已知x2+y2=6xy,其中x>y>0,则 =________.9. (1分) (2018九上·海原期中) 若方程(m﹣1)x|m|+1+2mx+3=0是关于x的一元二次方程,则m的值为________.10. (1分) (2019八下·锦江期中) 如图,在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b.已知不等式x△k≥1的解集在数轴上,则k的值是________.11. (1分)(2017·高安模拟) 定义新运算“※”,规则:a※b=ab﹣a﹣b,如1※2=1×2﹣1﹣2=﹣1,若x2+x ﹣1=0的两根为x1 , x2 ,则x1※x2=________.12. (1分) (2019九上·德清期末) 若质量抽检时任抽一件西服成品为合格品的概率为0.9,则200件西服中大约有________合格品.13. (1分) (2018九上·吴兴期末) 已知线段c是线段a、b的比例中项,且a=4,b=9,则线段c的长度为________ .14. (1分)如图,点P在△ABC的边AC上,请你添加一个条件,使得△ABP∽△ACB,这个条件可以是________ .15. (1分)(2018·苏州模拟) 如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为________米(结果保留根号).三、解答题 (共17题;共156分)16. (5分)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)17. (5分) (2018九上·渭滨期末) 某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?18. (10分) (2016八上·南宁期中) 某商店需要购进一批电视机和洗衣机共90台,根据市场调查,电视机与洗衣机的进价和售价如下表:类别电视机洗衣机进价(元/台)18001500售价(元/台)20001600(1)若商店最多可筹集资金144600元,则最多可以购进电视机多少台?(不考虑除进价之外的其它费用)(2)在(1)的条件下,若要求购进电视机的数量不少于洗衣机的一半,则有几种进货方案,哪种方案获利最大,最大利润是多少?(利润=售价-进价)19. (10分)(2017·迁安模拟) 小伟和小欣玩一种抽卡片游戏:将背面完全相同、正面分别写有1,2,3,4的四张卡片背面向上洗匀后,小伟和小欣各自随机抽取一张(不放回).将小伟的数字作为十位数字,小欣的数字作为个位数字,组成一个两位数.如果所组成的两位数为偶数,则小伟胜;否则小欣胜.(1)当小伟抽取的卡片数字为2时,问两人谁获胜的可能性大?(2)通过计算判断这个游戏对小伟和小欣是否公平.20. (5分) (2016九上·北京期中) 如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D′,则点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是多少?(结果保留π).21. (5分)如图,零件的外径为16cm,要求它的壁厚x,需要先求出内径AB,现用一个交叉钳(AD与BC相等)去量,若测得OA:OD=OB:OC=3:1,CD=5cm,你能求零件的壁厚x吗?22. (10分)(2019·武汉) 在△ABC中,∠ABC=90°,,M是BC上一点,连接AM(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q① 如图2,若n=1,求证:② 如图3,若M是BC的中点,直接写出tan∠BPQ的值(用含n的式子表示)23. (15分)(2018·香洲模拟) 如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA 交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若,求证:CD=DH.24. (15分) (2012九上·吉安竞赛) 如图,正方形ABCD的四个顶点分别在四条平行线、、、上,这四条直线中相邻两条之间的距离依次为、、(>0,>0,>0).(1)求证: = ;(2)设正方形ABCD的面积为S,求证:S= ;(3)若,当变化时,说明正方形ABCD的面积S随的变化情况.25. (10分)(2018·上海) 已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课 = .求证:EF=EP.26. (11分)(2017·西固模拟) 如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.27. (10分) (2020八上·南召期末) 如图1,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.(1)直接写出△BCD的面积为________(用含m的式子表示).(2)如图2,在一般的Rt△ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.(3)如图3,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD 的面积为________;若BC=m,则△BCD的面积为________(用含m的式子表示).28. (5分)(2017·营口) 先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0 , y= sin60°.29. (10分)解方程:x2+4x=5.30. (10分) (2018九上·镇海期末) 如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在处发现在北偏东方向距离为20海里的处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东的方向前往监视巡查,经过一段时间后,在处成功拦截不明船只.(1)求及的大小;(2)问不明船只从被发现到被拦截行驶了多少海里?此时海监执法船行驶了多少海里?(最后结果保留根号)(参考数据:,,)31. (10分) (2019八上·桦南期中) 如图(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是________(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF是∠BAD 的二分之一,上述结论是否仍然成立,并说明理由.(3)如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出三角形DEF的周长.32. (10分) (2017九上·赣州开学考) 如图,已知BD垂直平分线段AC,∠BCD=∠ADF,AF⊥AC(1)证明:四边形ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.参考答案一、单选题 (共5题;共10分)1-1、2-1、3-1、4-1、5-1、二、填空题 (共10题;共10分)6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共17题;共156分)16-1、17-1、18-1、18-2、19-1、19-2、20-1、21-1、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、29-1、30-1、30-2、31-1、31-2、31-3、32-1、32-2、。