2017-2018学年高一下期期末考试数学试题(含参考答案)

合集下载

XXX2017-2018学年高一下学期期末数学试卷 Word版含解析

XXX2017-2018学年高一下学期期末数学试卷 Word版含解析

XXX2017-2018学年高一下学期期末数学试卷 Word版含解析2017-2018学年XXX高一(下)期末数学试卷一、选择题(共12小题,每小题5分,共60分)1.已知sinα=1/2,并且α是第二象限的角,那么tanα的值等于()A。

-1/2 B。

-2 C。

1/2 D。

22.某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查。

这种抽样方法是()A。

简单随机抽样法 B。

抽签法 C。

随机数表法 D。

分层抽样法3.已知变量x,y满足约束条件x+y=1,则z=x+2y的最小值为()A。

3 B。

1 C。

-5 D。

-64.为积极倡导“学生每天锻炼一小时”的活动,某学校举办了一次以班级为单位的广播操比赛,9位评委给高三.1班打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是()A。

2 B。

3 C。

4 D。

55.执行如图所示的程序框图,若输入n的值为6,则输出s的值为()A。

105 B。

16 C。

15 D。

16.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A。

1/2 B。

1/4 C。

3/4 D。

1/37.为了得到函数y=sin(2x-π/2)的图象,可以将函数y=cos2x的图象()A。

向右平移π/4个单位长度 B。

向右平移π/2个单位长度 C。

向左平移π/4个单位长度 D。

向左平移π/2个单位长度8.a11 B。

0<q<1 C。

q<0 D。

q<19.函数y=|x-2|+|x+1|的图象大致为()A。

图略 B。

图略 C。

图略 D。

图略10.在矩形ABCD中,AB=2,AD=1,点P为矩形ABCD内一点,则使得AP/BP=CP/DP的点P的坐标为()A。

河南省郑州市2017-2018学年高一下学期期末考试数学试题有答案

河南省郑州市2017-2018学年高一下学期期末考试数学试题有答案

2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.0sin 585的值为( ) A .22 B .22- C .32- D .322.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向 3.下列各式中,值为32的是( ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++•+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( ) A . B . C. D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( ) A .34 B .537C.253737 D .537378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,标准差是2,则xy = .15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 . 16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin 3cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5:BABCB 6-10:BDADC 11、12:CB 二、填空题 13.113 14.60 15.16 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()24cos (32)()a a b bb b θ-⋅===-+-⨯- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元. 20.解:(1)EFEC CF ,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ,所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DFmDC (0)m ,则(1)CF m DC ,1122AEABBC ABAD , (1)(1)BF CF BC m DC BC m AB AD ,又0AB AD ⋅=,所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m ABAD 9(1)82m , 解得13m,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人. 记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =.22.解:(1)()211cos2ωx 1sin 21sin(2)22226f x x xcos x sin x x πωωωωω-=+==-+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。

2017-2018年高一下学期期末考试数学试题及答案

2017-2018年高一下学期期末考试数学试题及答案

,-
1 7
,1 9
,������






式an

A.(-1)n 2n1+1
B.(-1)n+12n1-1
C.(-1)n 2n1-3
4.已知向量a,b 满足|a|=1,a⊥(2a+b),则a������b=
D.(-1)n+12n1+3
A.2
B.0
C.-2
D.-4
5.在等差数列{an}中,a1+2a3+a5=12,则3a4-a6 的值为
算 步 骤 .)
19.(本 小 题 满 分 13 分 )
已 知 向 量a= (3,-1),b= (1 2 ,23).
(Ⅰ)求‹a,b›;
(Ⅱ)求(a+b)������b 的值;
(Ⅲ )求|2a+3b|的 值 .
20.(本 小 题 满 分 13 分 )
在△ABC 中,角 A,B,C 的对边分别为a,b,c,且满足2caos-Bb=cocsC.
2 分 ,有 选 错 的 得 0 分 .)
1.在平行四边形 ABCD 中,A→B+D→A-C→B等于
A.B→C
B.D→C
C.B→A
D.A→C
2.设 0<a<b<1,c∈R,则 下 列 不 等 式 成 立 的 是
A.a3>b3
B.a1 <b1
C.ac>bc
D.(a-b)c2≤0
3.数

1,-
1 3
,1 5
(Ⅰ)求角 C 的值;
(Ⅱ)若
sin(θ+C)=
4(π 56
<θ<23π),求
cosθ
的值

高 一 数 学 试 题 第 3 页 (共 4 页 )

2017-2018学年高一下学期期末考试数学试卷_(含答案)

2017-2018学年高一下学期期末考试数学试卷_(含答案)

18.(本题满分12分) (I )解:因为∠ABC=90°,AB=4,BC=3, 所以34 cos ,sin 55 CC= =,AC=5, 又因为AD=4DC ,所以AD=4,DC=1. 在△BCD 中,由余弦定理, 得222 2cos BD BC CD BC CD C =+-? 22332 3123155 = +-???=, 所以410 5 BD = .……………………6分 (II )在△BCD 中,由正弦定理,得 sin sin CD BD CBD C = ∠, 所以410 154sin 5 CBD =∠, 所以10 sin CDB ∠=.……………………12分 19.(本题满分12分)
D . 4个 二.填空题:(本题共4个小题,每小题5分,共20分) 13.以两点A (-3,-1)和B (5,5)为直径端点的圆的方程是________. 14.如图,三棱锥C ADB -中,2CA CD AB BD ====,23AD =, 1BC =,则二面角C -AD -B 的平面角为________. 15.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3 吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原 料不超过18吨.那么该企业可获得最大利润是________万元. 16. 设数列{a n }为等比数列,则下面四个数列:①{a 3 n };②{pa n }(p 为非零常数);③{a n ·a n +1};④{a n +a n +1}.其中是等比数列的序号为________.(填上所有正确的序 号) 三、解答题:本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17. (本题满分10分) 若不等式ax 2+bx -1>0的解集是{x |1<x <2}. (1)试求a 、b 的值; (2)求不等式ax +1 bx -1 ≥0的解集. 18.(本题满分12分) 如图,在△ABC 中,∠ABC=90°,AB=4,BC=3,点D 在直线AC 上,且AD=4DC. (I )求BD 的长; (II )求sin ∠CBD 的值.

2017-2018高一下学期期末考试数学试题及答案

2017-2018高一下学期期末考试数学试题及答案

机密★启用前广东省惠州市2017—2018学年第二学期期末考试高一数学试题和参考答案全卷满分150分,时间120分钟;本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生注意:1. 答题前,考生务必将自己的姓名、县区、学校、班级、试室、座位号填写在答题卡上. 2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.第Ⅰ卷一.选择题:本大题共12小题,每小题5分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}{11M x x =-<<,{}22=<N x x ,则( )(A)MN=N (B)N M ⊆ (C){}0MN = (D)MN N =2.若,0<<b a 下列不等式成立的是( )(A) 22b a < (B) ab a <2(C)1<a b (D) ba 11< 3.已知两条直线,m n ,两个平面,αβ,给出下面四个命题:①//,////m n m n αα⇒ ②//,//,m n m n αβαβ⊥⇒⊥ ③//,m n m n αα⊥⇒⊥ ④,//m m αβαβ⊥⇒⊥ 其中正确命题的序号是( )(A) ①③ (B) ②④ (C) ①④ (D) ②③ 4.一个几何体的三视图如图所示, 则该几何体的体积是( ) (A) 12(B) 2(C) 4 (D) 65.在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,15,10,60===︒a b A ,则cos B 等于 ( )(A) 3-(B) 3(C) (D)6.正方体1111ABCD A B C D -中,异面直线1B C 与1DC 所成角的大小为( )(A) 30︒ (B) 45︒ (C) 60︒ (D)90︒7.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A)172 (B) 192(C) 10 (D) 12 8.直线10--+=kx y k 与圆422=+y x 的位置关系是( )(A) 相交 (B) 相切 (C) 相离 (D) 不确定 9.已知点(sin ,cos )θθ到直线:cos sin 10x y ++=θθ的距离为d , 则d 的取值范围是 ( )(A )[1,1]- (B )[0,2] (C )(2,2]- (D )1[0,]210.已知0>a ,0>b ,2=+b a ,则ba y 41+=的最小值是 ( ) (A) 29 (B) 5 (C) 27(D) 411.已知球O 的半径为R ,,,A B C 三点在球O 的球面上,球心O 到平面ABC 的距离为12R ,2AB AC ==,120BAC ︒∠=, 则球O 的表面积为 ( ) (A) 169π (B) 163π (C) 649π (D) 643π 12.已知圆1C :22(2)(3)1x y -+-=,圆2C :22(3)(4)9x y -+-=,M 、N 分别是圆1C 、2C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为 ( ) (A) 425- (B) 117- (C) 226- (D) 17第Ⅱ卷注意事项:第II 卷须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.二.填空题:本大题共4小题,每小题5分。

2017-2018第二学期高一数学期末试卷(含答案)

2017-2018第二学期高一数学期末试卷(含答案)
2 2 2 2
3 1 2 2 a c a, 4 2 2
b2 c 2 c2 2 14 14 4 sin c 2 R sin 则有: cos ( R 为 ABD 外接圆半径) b 4 4 2 2 c 2
则有: 2 R
c 2 2 R 2 ( R 为 BDC 外接圆半径). ……12 分 sin C


Байду номын сангаас

13 ;
……4 分
k 3) k (Ⅱ) a kc (4 k 3, k 2), 2 b a ( 5, 2),因为平行,所以 5( k 2) 2(4
(18)(本小题满分 12 分) 解:(Ⅰ) S9 9 a5 126 a5 14 , a1 a3 a 5 a 7 4 a 4 48 a4 12 ,故 d 2 ,
第 1页 共 3 页
(19)(本小题满分 12 分)
解:(Ⅰ) b
( 1) ( 1) 0 1 ( 2) ( 1) 1 ( 2) 2 3 7 7 , a 22 10 15, 2 2 2 2 2 1 0 2 1 2 10 10 7 所以 y x 15 ; ……6 分 10
所以, 原式
当 n ≥ 3 时: an 1 a 2019 a 2020 1 2 二、填空题 (13) 60 (14) 2
n 1
(15) 33.75
(16) 30
(16)解析: b cos A acos B 2 3 b sin B cos A cos B sin A 2 3 sinB c 2 3 b .
(Ⅱ) y
7 15 15 25.5 . 10

2017-2018学年高一下学期期末考试数学试题

2017-2018学年高一下学期期末考试数学试题

第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求,每小题选出答案后,请把答案填写在答题卡相应位置上...............。

1.下列各式中,值为-( ) A .22sin 75cos 75︒+︒ B .2sin 75cos 75︒︒ C .22sin 151︒- D .22cos 15sin 15︒-︒2.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件数应为( )A .10B .12C .18D .243.下列说法正确的是( )A .某厂一批产品的次品率为10%,则任意抽取其中10件产品一定会发现一件次品;B .气象部门预报明天下雨的概率是90﹪,说明明天该地区90﹪的地方要下雨,其余 10﹪的地方不会下雨;C .某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈;D .掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5.4.执行如右图所示的程序框图,若输出的值为21,则 判断框内应填 ( )A .5?n ≥B .6?n >C .5?n >D .6?n < 5.已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线3x ﹣y=0上,则()()3sin 3cos 2sin sin 2πθπθπθπθ⎛⎫++- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭( ) A .2 B .32 C .2- D .126.两个袋内,分别装着写有0,1,2,3,4,5六个数字的6张卡片,从每个袋中各任取一张卡片,则两数之和等于5的概率为( ) A .61B .81 C .91 D .121 7.某中学为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用 下面的条形图表示.根据条形图可得这50名学生这一天平均 每人的课外阅读时间为 ( )A .0.6小时B .0.8小时C .0.9小时D .1.1小时则实数m 的取值范围是 ( )A .⎝⎛⎭⎫12,+∞B .(-∞,-2)∪⎝⎛⎭⎫-2,12C .⎝⎛⎭⎫-2,23∪⎝⎛⎭⎫23,+∞D .⎝⎛⎭⎫-∞,12 10.某单位共有A 、B 、C 三个部门,三部门人员平均年龄分别为38岁、24岁、42岁,又已知A 和B 两部门人员平均年龄为30岁,B 和C 两部门人员平均年龄为34岁,则该单位全体人员的平均年龄为( )A .34 岁B .35 岁C .36岁D .37岁11.车流量被定义为单位时间内通过十字路口的车辆数,单位为辆/分,上班高峰期某十字路口的车流量由函数()603sin3tF t =+ (其中020t ≤≤)给出,()F t 的单位是辆/分,t 的单位是分,则在下列哪个时间段内车流量是增加的( )A . [15,20]B .[10,15]C .[5,10]D .[0,5] 12.通常,满分为100分的试卷,60分为及格线.若某次满分为100分的测试卷,100人参加测试,将这 100人的卷面分数按照[)[)[]96,84,,48,36,36,24 分组后绘制的频率分布直方图如图所示.由于及格 人数较少,某位老师准备将每位学生的卷面得分采 用“开方乘以10取整..” 的方法进行换算以提高 及格率(实数..a 的取整...等于不超过a 的最大整数), 如:某位学生卷面49分,则换算成70分作为他的 最终考试成绩,则按照这种方式求出的及格率与实际 及格率的差是( )A .0.45B .0.52C .0.60D .0.82第II 卷(非选择题,共90分)第12题图二、填空题 :本大题共4小题,每小题5分,共20分,请把答案填在答题卡的横线上.............。

2017-2018学年高一数学下学期期末考试试题(含解析)

2017-2018学年高一数学下学期期末考试试题(含解析)

h2017-2018 学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共 12 个小题,每小题 4 分,共 48 分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1.函数的最小正周期为( )A.B.C.D.【答案】C 【解析】函数的最小正周期为故选:C 2.某方便面生产线上每隔 15 分钟抽取一包进行检验,则该检验方法为①:从某中学的 40 名数学爱好者中抽取 5 人了解学习情况,则该抽样方法为②,那么①和②的抽样方法分别为 () A. 系统抽样,分层抽样 B. 系统抽样,简单随机抽样 C. 分层抽样,系统抽样 D. 分层抽样,简单随机抽样 【答案】B 【解析】 分析:利用系统抽样和简单随机抽样的定义直接求解. 详解:某方便面生产线上每隔 15 分钟抽取一包进行检验,则该检验方法为系统抽样; 从某中学的 40 名数学爱好者中抽取 5 人了解学习情况,则该抽样方法为简单随机抽样. 故选:B. 点睛:(1)简单随机抽样需满足:①被抽取的样本总体的个体数有限;②逐个抽取;③是不 放回抽取;④是等可能抽取. (2)系统抽样适用的条件是总体容量较大,样本容量也较大. 3. 样本中共有五个个体,其值分别为 a,0,1,2,3,若该样本的平均值为 1,则样本方差为( )A.B.C.D. 2【答案】D 【解析】h试题分析:由题意知 S2= 考点:方差与标准差.视频h , 解 得 a=-1 , ∴ 样 本 方 差 为 ,故选 D.4.下列函数中,最小正周期为 且图像关于原点对称的函数是 ( )A.B.C.D.【答案】B 【解析】 分析:求出函数的周期,函数的奇偶性,判断求解即可.详解:对 A,,是偶函数,其图象关于 轴对称,函数的周期为,不满足题意, 不正确;对 B,,是奇函数,其图象关于原点对称,函数的周期为,满足题意, 正确;对 C,,是偶函数,其图象关于 轴对称,函数的周期为,不满足题意, 不正确;对 D,,是非奇非偶函数,函数的周期为,不满足题意, 不正确; 故选:B. 点睛:本题考查三角函数的诱导公式的灵活应用、三角函数的奇偶性的判断以及函数的周期 的求法,是基础题.5.向量()A.B.C.D.【答案】A 【解析】hh 分析:利用向量的三角形法则即可得出.h详解:向量h .hh故选:A. 点睛:向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与 平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的 三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”.6.已知,则()A.B.C.D.【答案】A 【解析】分析:将 看作一个整体,观察 与的关系,利用诱导公式即可.详解:,,.故选:A. 点睛:熟练运用诱导公式,并确定相应三角函数值的符号是解题的关键.在三角函数式的求 值与化简中,要注意寻找式子中的角,函数式子的特点和联系对式子进行化简.7.已知单位向量 满足,则()A.B.C.D.【答案】D【解析】分析:由向量的数量积的性质:向量的平方即为模的平方,由条件可得,再由,代入计算即可得到所求值.详解:由,可得,即,,hh则.故选:D. 点睛:本题考查向量的模的求法,注意运用向量的数量积的性质:向量的平方即为模的平方, 考查化简整理的运算能力,属于中档题.8.若,则使不等式成立的 的取值范围是( )A.B.C.D.【答案】C 【解析】 分析:利用诱导公式以及辅助角公式化简整理可得.详解:,,即.又,.故选:C. 点睛:本题考查诱导公式、辅助角公式的应用,注意利用辅助角公式,asin x+bcos x 转 化时一定要严格对照和差公式,防止搞错辅助角.9.函数的部分图像大致是( )A.B.C.D.【答案】A 【解析】 分析:利用函数的奇偶性,排除选项,再由函数 在 结论.h内的函数值为正实数,从而得出h详解:,,为偶函数, 故排除 B、D,又当,函数值为正实数,故选:A.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.10.已知线性回归直线的斜率的估计值是 1.05,样本中心点为 ,则线性回归直线是()A.B.C.D.【答案】B【解析】分析:由已知中线性回归直线的斜率估计值是 1.05,我们可先用待定系数法,设出线性回归方程,进而样本中心点为 在线性回归方程上,代入即可得到线性回归直线方程.详解: 线性回归直线的斜率估计值是 1.05,设线性回归直线方程是,由回归直线经过样本中心点 .将 代入线性回归直线方程得.则.故选:B. 点睛:本题考查的知识点是线性回归直线方程,其中样本中心点在回归直线上,满足线性回 归方程,是解答此类问题的关键.hh11.已知,则()A.B.C.D.【答案】D 【解析】分析:由两角和与差的正弦公式可得,详解:,,从而可得答案.,解得,,又.故选:D. 点睛:三角函数的求值化简要结合式子特征,灵活运用或变形使用公式.12.如图:正方形中, 为 中点,若,则 的值为 ( )A. -3 B. 1 【答案】A 【解析】C. 2D. 3分析:利用平面向量的三角形法则,将 用 , 表示,再由平面向量基本定理得到的值. 详解:由题意,为 的中点,,,即,.hh . 故选:A. 点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行 向量的加、减或数乘运算. (2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表 示成向量的形式,再通过向量的运算来解决. 二、填空题:本大题共 4 小题,每小题 5 分,满分 20 分,将答案填在答题纸上 13.执行如图所示的程序框,则输出的 __________.【答案】 【解析】 分析:模拟执行程序框图即可.hh详解:模拟执行程序框图,可得: ,, ,不满足,, ,不满足,, ,不满足,…,,不满足,,,满足,退出循环,此时.故答案为: .点睛:在解决一些有规律的科学计算问题,尤其是累加、累乘等问题时,往往可以利用循环 结构来解决.在循环结构中,需要恰当设置累加、累乘变量和计数变量;执行循环结构首先 要分清是先执行循环体,再判断条件,还是先判断条件,再执行循环体.其次注意控制循环 的变量是什么,何时退出循环.最后要清楚循环体内的程序是什么,是如何变化的.14.已知向量,向量,若向量满足,则 __________.【答案】【解析】 分析:设出向量,利用向量的垂直与共线,列出方程求解即可.详解:设向量,则,向量满足,hh可得,解得,.故答案为: .点睛:本题考查向量的共线与垂直的充要条件的应用,考查计算能力,利用向量垂直或平行 的条件构造方程或函数是求参数或最值问题常用的方法与技巧.15.已知函数的图像的两条相邻对称轴间的距离是 .若将函数 的图像向左平移 个单位长度,得到函数 的图像,则函数 的解析式为__________.【答案】 【解析】分析:由题意可得函数的周期为 ,求出 ,可得函数,将函数 的图像向左平移 个单位长度,得到函数 为,化简得到结果.详解:由题意可得函数的周期为 ,即,故,将函数 的图像向左平移 个单位长度,得到.故答案为:.点睛:本题主要考查三角函数的周期性,函数的图象变换规律,图象变换时的伸缩、平移总是针对自变量 x 而言,而不是看角 ωx+φ的变化,属于中档题.16.向面积为 20 的内任投一点 ,则使的面积小于 5 的概率是__________.【答案】【解析】分析:在内任投一点 ,要使的面积小于 5,根据几何关系求解出它们的比例即可.详解:记事件 {的面积大于 5},基本事件是的面积,如图:hh事件 A 的几何度量为图中阴影部分的面积(D、E 分别是三角形的边上的四等分点), ,且相似比为 ,,.的面积小于 5 的概率是.故答案为: .点睛:本题考查几何概型,解答此题的关键在于明确测度比是面积比,对于几何概型常见的 测度是长度之比、面积之比、体积之比、角度之比,要根据题意合理的判断和选择是哪一种 测度进行求解,属于中档题. 三、解答题 (本大题共 6 小题,共 52 分.解答应写出文字说明、证明过程或演算步骤.)17.已知点.设.(1)求;(2)当向量与平行时,求 的值.【答案】(1);(2) .【解析】分析:(1)由已知得,利用向量坐标运算性质即可得出;(2)根据两平面向量平行的充要条件即可得到答案.详解:∵由已知得.hh(1).(2),∵与平行,∴,∴.点睛:向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐 标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则. 18.从全校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布情况,将样本 分成 5 组,绘成频率分布直方图,图中从左到右各小组的小长方形的高之比为 1:3:6:4: 2,最右边一组频数是 6,请结合直方图提供的信息,解答下列问题: (1)样本的容量是多少? (2)列出频率分布表; (3)估计这次竞赛中,成绩高于 60 分的学生占总人数的百分比; (4)成绩落在哪个范围内的人数最多?并求出该小组的频数,频率.【答案】(1)48;(2)见解析;(3);(4)18, .【解析】分析:(1)根据最右边一组的频数是 6,而频率等于该组的面积再整个图形中的百分比,因此可得样本容量;(2)根据频率直方图进行分组,求出频率和频数,画出表格即可;(3)用样本估计总体,在样本中算出、、、这四个组占总数的百分比,就可以估计出成绩高于 60 分的学生占总人数的百分比;(4)根据图中矩形面积最大的一组就是人数最多的组,由此找出最高的矩形,在这一组,再用公式求出其频数、频率.hh详解:(1)样本容量为:(2)由(1)知样本容量为 48,∴第一组频数为,第二组频数为数为,第五组频数为.分组频数. ,第三组频数为 频率3918126,第四组频(3)估计成绩高于 60 分的学生占总人数的百分比为:;(4)成绩在内的人数最多,频数为 18,频率为 .点睛:本题考查了频率直方图的有关知识,属于基础题.频率直方图中,各个小长方体的面 积等于该组数据的频率,所有长方形的面积之和等于 1. 19.随机抽取某中学甲、乙两班各 10 名同学,测量他们的身高(单位:cm),获得身高数据的茎 叶图如图所示.(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差; (3)现从乙班这 10 名同学中随机抽取两名身高不低于 173 cm 的同学,求身高为 176 cm 的同 学被抽中的概率.hh【答案】(1)见解析;(2)见解析;(3) 【解析】 试题分析:(1)由茎叶图,获得所有身高数据,计算平均值可得;( 2)由方差公式计算方差;(3)由茎叶图知乙班这 名同学中身高不低于的同学有 人,可以把 5 人编号后,随便抽取 2 名同学这个事件含有的基本事件可以用列举法列举 出来(共 10 个),其中含有身高 176cm 基本事件有 4 个,由概率公式计算可得. 试题解析:(1)由茎叶图知:设样本中甲班 位同学身高为 ,乙班 位同学身高为 , 则.2 分.4 分∵,据此可以判断乙班同学的平均身高较高.设甲班的样本方差为 ,由(1)知.则, 8分由茎叶图可知:乙班这 名同学中身高不低于的同学有 人,身高分别为、、、、.这 名同学分别用字母 、 、 、 、 表示.则记“随机抽取两名身高不低于的同学”为事件 ,则 包含的基本事件有:、、、、、、、、、共 个基本事件. 10 分记“身高为的同学被抽中”为事件 ,则 包含的基本事件为:、、、共 个基本事件.由古典概型的概率计算公式可得:. 12 分hh考点:茎叶图,均值,方差,古典概型. 视频20.已知函数(Ⅰ)求 的值;(Ⅱ)设 、,(其中 ,)的最小正周期为 .,求的值.【答案】(Ⅰ);(Ⅱ) .【解析】试题分析:(1)由,得;(2)代入函数中,可得,代入函数中,可得,由此求得,,试题解析: (1)由. ,得 .(2)由得整理得∵,,∴,.∴.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系.hh【方法点晴】本题考查三角恒等变形、诱导公式、二倍角公式、同角三角函数关系.三角函数周期 ,由此可求得 .题目给定两个看起来复杂的条件,,但是,只要我们代入函数 的表达式,就能化简出 可以利用公式,这样我们就hh求出其三角函数值.21.已知函数.(1)求 的单调递减区间;(2)令,若函数 在区间 上的值域为,求 的值.【答案】(1);(2) 或 .【解析】分 析 :( 1 ) 利 用 三 角 函 数 恒 等 变 换 的 应 用 化 简 解 析 式 为,令即可得到答案;(2)由范围 组即可得解. 详解:(1),利用正弦函数的性质可求 在上的值域,分类讨论,解方程,令,解得,∴函数 的单调递减区间为;(2)当时,,∴,∴函数 在区间上的值域为 ,① 时,,hh② 时,,∴ 的值为 或 . 点睛:本题主要考查三角函数恒等变换的应用及正弦函数的图象和性质的应用,注意复合形 式的三角函数的单调区间的求法.函数 y=Asin(ωx+φ)(A>0,ω>0)的单调区间的确定,基 本思想是把 ωx+φ看做一个整体.若 ω<0,要先根据诱导公式进行转化.同时考查了方程思 想和转化思想的应用,属于中档题.资料仅供参考!!!资料仅供参考!!!h。

2017—2018学年度第二学期高一数学期末考试(含答案)

2017—2018学年度第二学期高一数学期末考试(含答案)

2017—2018学年度第二学期教学质量检查高一数学考生注意:本卷共三大题,22小题,满分150分,时间120分钟.不准使用计算器.参考公式:用最小二乘法求线性回归方程a x b yˆˆˆ+=的系数公式: ()()()∑∑∑∑====-⋅⋅-=---=n i i ni ii ni i ni i ixn x yx n yx x x y y x xb1221121ˆ,x b y aˆˆ-=. 一、选择题:本大题共12小题,每小题5分,共60分. 每小题各有四个选择支,仅有一个选择支正确.请把正确选择支号在答题卡中的相应位置涂黑. 1.︒135sin 的值是( ) A.22B.22-C.23-D.23 2.已知向量),4(),1,(x b x a ==ρρ,若5=⋅b a ρρ,则x 的值为( )A.1B.2C.1±D.53.若圆22240x y x y ++-=关于直线20x y a -+=对称,则a 的值为( ) A.3- B. 1- C. 0 D. 44.为了调查某班级的作业完成情况,将该班级的52名同学随机编号01~52,用系统抽样....的方法抽取一个容量为4的样本,已知05、18、44号同学在样本中,那么样本中还有一位同学的编号应该是( ) A.29 B.30 C.31 D.325.已知α是第四象限角,且tan 2α=-,则sin 2α=( ) A.25-B. 25C.45-D. 456.要得到曲线3sin(2)5y x π=-,只需把函数3sin 2y x =的图象( )A .向左平移5π个单位 B .向右平移5π个单位 C .向左平移10π个单位 D .向右平移10π个单位7.运行如右图所示的程序框图,则输出的结果S 为( ) A .1- B .0 C .21 D .23-7第题图否2019?n <8.从集合{2,3,4,5}中随机抽取一个数a ,从集合{4,6,8}中随机抽取一个数b ,则向量(,)m a b =u r与 向量(1,2)n =r平行的概率为( )A.16B.14C.13D.129.过原点的直线l 与圆4)2()1(22=-+-y x 相交所得的弦长为32,则直线l 的斜率为( )A. 2B. 1C.43 D.1210.如图,圆C 内切于扇形AOB ,3AOB π∠=,若在扇形AOB 内任取一点,则该点在圆C 外的概率为( ) A .14B.13C.23D.3411.已知0ω>,函数()sin()4f x x πω=+在42ππ(,)上单调递减,则ω的取值范围是( ) A . (0,2] B .1(0,]2 C .13[]22, D .5[1]2, 12.设2,1OA OB ==u u u r u u u r ,0OA OB ⋅=u u u v u u u v ,OP OA OB λμ=+u u u v u u u v u u u v,且1=+μλ,则向量OA 在OP u u u v 上的投影的取值范围( ) A.]2,552(-B.]2,552(C. ]2,554(-D. ]2,554( 二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上. 13.在空间直角坐标系中,点)4,3,2(P 到y 轴的距离为________.14.已知,a b r u r 为单位向量,且,a b r r 所成角为3π,则2a b +r r 为_________.15.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某天阅读时间及人数的数据,结果用条形图表示(如右图),根据条形图可知 这50名学生在这天平均每人的课外阅读时间为 小时.16.已知sin 2cos y θθ=+,且θπ∈(0,),则当y 取得最大值时sin θ= .0.511.5220151050小时人数第15题图第10题图三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效. 17.(本小题10分)已知平面向量)2,1(=a ,),1(k -=.(1)当k 为何值时,向量a 与b a ρρ+2垂直;(2)当1=k 时,设向量与的夹角为θ,求θtan 及θ2cos 的值.18.(本小题12分)近年来,我国许多省市雾霾天气频发,为增强市民的环境保护意识,某市面向全市征召n 名义务宣传志愿者,成立环境保护宣传组织.现把该组织的成员按年龄分成5组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示,已知第2组有70人.)(1)求该组织中志愿者人数;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,然后在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有一名志愿者被抽中的概率.19.(本小题12分)某企业为了对新研发的一批产品进行合理定价,将产品按事先拟定的价格进行试销,得到一组销售数据()(),1,2,6i i x y i =⋯,如表所示:已知80y =.(1)求表格中q 的值;(2)已知变量,x y 具有线性相关关系,试利用最小二乘法原理,求产品销量y 关于试销单价x 的线性回归方程ˆˆˆybx a =+ ( 参考数据:662113050,271i i i i i x y x ====∑∑);(3)用(2)中的回归方程得到与i x 对应的产品销量的估计值记为i yˆ)6,...,2,1(=i , 当ˆ1i i y y -≤时,称(),i i x y 为一个“理想数据”.试确定销售单价分别为6,5,4时有哪些是“理想数据”.20.(本小题12分)设函数()2π2sin 24f x x x ⎛⎫=+⎪⎝⎭.(1)请把函数)(x f 的表达式化成)2||,0,0()sin()(πϕωϕω<>>++=A b x A x f 的形式,并求)(x f 的最小正周期;(2)求函数)(x f 在]2,4[ππ∈x 时的值域.21.(本小题12分)在平面内,已知点(1,1)A ,圆C :22(3)(5)4x y -+-=,点P 是圆C 上的一个动点,记线段PA 的中点为Q . (1)求点Q 的轨迹方程;(2)若直线:2l y kx =+与Q 的轨迹交于M N ,两点,是否存在直线l ,使得10OM ON •=u u u u r u u u r(O为坐标原点),若存在,求出k 的值;若不存在,请说明理由.22.(本小题12分)已知1≥a ,1)cos (sin cos sin )(-++-=x x a x x x f . (1)求当1=a 时,)(x f 的值域; (2)若函数)(x f 在3[0,]4π内有且只有一个零点,求a 的取值范围.2017—2018学年度第二学期教学质量检查 高一数学参考答案及评分标准二、填空题(每小题5分,满分20分)13.52 14.7; 15.0.95; 16.5三、解答题 17.(本小题满分10分)解:(1)Θ与2+a b r r 垂直,得2+0a a b ⋅=r r r() 即22+=0a a b r r rg……………………2分 即10120k -+= ……………………3分解得92k =-. ……………………4分(2)依题意,10102521||||cos =⨯+-==b a θ, ……………………6分因为[0,]θπ∈ sin 10θ∴==……………………7分 sin tan 3cos θθθ∴== ……………………8分 54110121cos 22cos 2-=-⨯=-=∴θθ ……………………10分18.(本小题满分l2分)解: (1)由题意:第2组的人数:7050.07n =⨯⨯,得到:=200n , 故该组织有200人.……………………3分(2)第3组的人数为0.3200=60⨯, 第4组的人数为0.2200=40⨯,第5组的人数为0.1200=20⨯. ∵第3,4,5组共有120名志愿者,∴利用分层抽样的方法在120名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:606=3120⨯;第4组:406=2120⨯;第5组:206=1120⨯. ……………………5分 记第3组的3名志愿者为1A ,2A ,3A ,第4组的2名志愿者为1B ,2B , 第5组的1名志愿者为C .则从6名志愿者中抽取2名志愿者有:()12A A ,,()13A A ,,()11A B ,,()12A B ,,()1A C ,,()23A A ,,()21A B ,,()22A B ,,()2A C ,,()31A B ,,()32A B ,,()3A C ,,()12B B ,,()1B C ,,()2B C ,, 共有15种.……………………8分其中第3组的3名志愿者为1A ,2A ,3A ,至少有一名志愿者被抽中的有:()12A A ,,()13A A ,,()11A B ,,()12A B ,,()1A C ,,()23A A ,,()21A B ,,()22A B ,,()2A C ,,()31A B ,,()32A B ,,()3A C , 共有12种.……………………10分则第3组的为至少有一名志愿者被抽中的概率为124155P ==. ……………………12分 [用间接法求解亦可以给满分] 19. (本小题满分l2分) 解:(1)66880838490+++++=q y Θ,又80y =Q ,75=∴q . ……………………3分(2)4567891362x +++++==, ……………………4分2133050680241327162b ∧-⨯⨯∴==-⎛⎫- ⎪⎝⎭……………………6分 ()138041062a ∧∴=--⨯= ……………………7分 4106y x ∧∴=-+ ……………………8分(3)4106y x ∧=-+Q1111410690,909001y x y y ∧∧∴=-+=-=-=<,所以()()11,4,90x y =是“理想数据”;2222410686,=868421y x y y ∧∧=-+=--=>,所以()()22,5,84x y =不是“理想数据”; 3333410682,838211y x y y ∧∧=-+=-=-==,所以()()33,6,83x y =是“理想数据”.所以所求的“理想数据”为)90,4( ,)83,6(. ……………………12分20. (本小题满分l2分) 解: (1)()2ππ2sin 1cos 242f x x x x x ⎛⎫⎛⎫=+-=-+⎪ ⎪⎝⎭⎝⎭π1sin22sin 213x x x ⎛⎫=+=-+ ⎪⎝⎭, ……………………4分∴函数()f x 最小正周期为22T ππ== ……………………5分 (2) ππ,42x ⎡⎤∈⎢⎥⎣⎦Q∴ππ2π2,363x ⎡⎤-∈⎢⎥⎣⎦, ……………………7分 ∴π1sin 2[,1]32x ⎛⎫-∈ ⎪⎝⎭ ∴π2sin 2[1,2]3x ⎛⎫-∈ ⎪⎝⎭……………………10分 ∴()[2,3]f x ∈……………………11分 ∴函数()f x 的值域是[2,3]……………………12分21. (本小题满分l2分)(1)解:设点(),Q x y 、()00,P x y .Q 点P 在圆C 上,∴2200(3)(5)4x y -+-=. ① ……………………1分又Q PA 中点为点Q∴002121x x y y =+⎧⎨=+⎩………………… 3分可得021x x =-,021y y =-代入①得22(2)(3)1x y -+-=∴点Q 的轨迹方程为22(2)(3)1x y -+-= …………………… 4分 (2)假设存在直线l ,使得6=•OM ,设()11,M x y ,()22,N x y ,由222(2)(3)1y kx x y =+⎧⎨-+-=⎩ 得22(1)(24)40k x k x +-++= …………………… 6分因为直线与Q 的轨迹交于两点所以22=(24)16(1)0k k ∆+-+> 得403k <<② …………………… 7分 且121222244,11k x x x x k k ++==++ …………………… 8分又212121212(1)2()4OM ON x x y y k x x k x x +=+•++=+u u u u r u u u r222424(1)24=1011k k k k k+=+⨯+⨯+++ …………………… 9分∴2410k k +-= 解得2k =-± …………………… 10分因为2k =--②, …………………… 11分所以存在直线l :(22y x =-++,使得=10OM ON •u u u u r u u u r……………………12分22. (本小题满分l2分)解:(1)当1=a 时,1cos sin cos sin )(-++-=x x x x x f ,令x x t cos sin +=,则]2,2[-∈t ,21cos sin 2-=t x x ,22)1(21121)(--=-+--=t t t t g , 当1=t 时,0)(max =t g ,当2-=t 时,223)(min --=t g , 所以)(x f 的值域为]0,223[--……………………4分 (2)1)cos (sin cos sin )(-++-=x x a x x x f ,令sin cos t x x =+,则当3[0,]4x π∈时,t ∈,21sin cos 2t x x -=, 2221111()1()2222t h t at t a a -=-+-=--++, …………………… 5分)(x f 在3[0,]4π内有且只有一个零点等价于()h t 在[0,1)I 内有且只有一个零点,)2,1[无零点.因为1≥a , ……………………6分 ∴()h t 在[0,1)内为增函数,①若()h t 在[0,1)内有且只有一个零点,)2,1[无零点,故只需10(1)01(0)0020302a h h h ⎧⎪->⎧>⎪⎪-⎪≤⇒≤⎨⎨⎪⎪>⎩->得423>a ;……………………10分 ②若2为()h t 的零点,)2,1[内无零点,则0232=-a ,得423=a , 经检验,423=a 不符合题意. 综上,423>a . ……………………12分。

河南省郑州市2017-2018学年高一下学期期末考试数学试题有答案

河南省郑州市2017-2018学年高一下学期期末考试数学试题有答案

2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.0sin 585的值为( )A .2 B .2- C .- 2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( ) A . B . C. D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .5378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)c o s2(21)s i n4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,则xy = .15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 . 16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5:BABCB 6-10:BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()23)(2)4cos 5a ab bb b θ-⋅+-⨯===-- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,.因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元. 20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-.(2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+, (1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m AB AD =-+9(1)82m =-+=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人. 记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =.22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x x x πωωωωω-=+==+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈,所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年下期期末考试高一数学试题卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.0sin585的值为( )A .22 B .22- C .32- D .322.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向 3.下列各式中,值为32的是( ) A .02sin15cos15 B .22cos 15sin 15- C .22sin 151- D .22sin 15cos 15+ 4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++•+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( ) A . B . C. D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537C.253737 D .537378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,标准差是2,则xy = .15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 . 16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin3cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式;(II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5:BABCB 6-10:BDADC 11、12:CB 二、填空题 13.113 14.60 15.16 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()244cos a a b bb b θ-⋅===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦..因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解..得.x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元. 20.解:(1)EFEC CF ,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CDAB , 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-.(2)设DF mDC (0)m ,则(1)CF m DC ,1122AE AB BC AB AD , (1)(1)BFCF BCm DC BCm AB AD ,又0AB AD ⋅=,所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m ABAD 9(1)82m , 解得13m ,所以DF 的长为1.21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人. 记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =.22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x x x πωωωωω-=+==+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈,所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。

相关文档
最新文档