最新广东省揭阳市2018-2019学年度高中毕业班学业水平考试理科数学试题
2018届广东省揭阳市高三学业水平(期末)考试数学理试题Word版含答案
正视图 3侧视图810否 输出lg S是k =k +1 开始 结束 输入k =1,S =1 S =S ×k图2绝密★启用前2018届广东省揭阳市高三学业水平(期末)考试数学理试题数学(理科)本试卷共4页,满分150分.考试用时120分钟.第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.(1)已知}4,3,2,1{=A ,}2|{2xx x B ≥=,则=B A(A )}2{ (B )}3,2{ (C )}4,2{ (D )}4,3,2{ (2)已知复数(12)()z i a i =++(a 为实数,i 为虚数单位)的实部与虚部相等,则||z =(A )5(B )52(C )32(D )50(3)已知命题2:,10p x R x x ∀∈-+>;命题:q 若22lg lg a b <,则a b <,下列命题为假命题的是(A )p q ∨ (B )p q ∨⌝ (C ) p q ⌝∨(D )p q ⌝∨⌝ (4)已知sin24a π=,c o s24b π=,且a 、b 的夹角为12π,则=a b ⋅(A )116(B )18(C )38(D )14(5)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+-≤-1040x y x y x ,则y x z --=的最小值为(A )6- (B )4- (C )2-(D )0(6)函数()f x 的部分图象如图1示,则()f x 的解析式可以是(A )222()()f x x x π=- (B )()co s f x x x π=+(C )()sin f x x x= (D )2()c o s 1f x x x =+-图1 (7)图2程序框图是为了求出10099321⨯⨯⨯⨯⨯ 的常用对数值,那么在空白判断框中,应该填入(A )99≤k (B )100≤k (C )99≥k (D )100≥k(8)某几何体三视图如右图3示,则此几何体的体积为(A )π48640+(B )π176(C )π16640+ (D )704(9)已知10<<<b a ,则 (A )1ln ln <ba (B )bb aa ln ln >(C )b b a a ln ln < (D )bab a>(10)已知抛物线x y 42=,过其焦点F 的直线与抛物线相交于A 、B 两点,且|AB |=10,以线段AB 为直径的圆与y 轴相交于M 、N 两点,则|MN |=121o yxπ-πDCBAPE D CA (A )3 (B )4 (C )6 (D )8 (11)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知△ABC的面积为4153,2=a ,3=b ,则=Aa sin(A )364 (B )151516 (C )3154 (D )364或151516(12)已知函数()()f x x R ∈满足()(4)f x f x =-,若函数2|41|y x x =-+与()y f x =图象的交点为112233(,),(,),(,),,(,),n n x yx y x y x y 则1ni i x ==∑(A )0 (B)n (C) 2n (D)4n第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(23)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.(13)7)1(+ax 的展开式中3x 的系数为280-,则实数a 的值为________.(14)记函数2()2f x x x=+-的定义域为A ,在区间[-3,6]上随机取一个数x ,则x ∈A 的概率是 .(15)设函数()c o s ()3f x x π=-,则以下结论:①()f x 的一个周期为2π- ②()f x 的图象关于直线43x π=对称③()f x π+为偶函数 ④()f x 在(,)2ππ单调递减其中正确的是 .(请将你认为正确的结论的代号都填上) (16)已知双曲线1222=-by x 的离心率为25,左焦点为1F ,当点P 在双曲线右支上运动、点Q 在圆1)1(22=-+y x上运动时, ||||1PF PQ +的最小值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知等差数列}{n a 满足258,a a +=633a a -=. (Ⅰ)求数列}{n a 的前n 项和n S ; (Ⅱ)若2132n n nb S -=+⋅,求数列}{n b 的前n 项和n T .(18)(本小题满分12分)如图4(1)所示,平面多边形A B C D E 中, AE=ED ,AB=BD ,且5A B =,2A D =,2A E =,1C D =,A D C D ⊥,现沿直线A D 4(2)将A D E ∆折起,得到四棱锥P A B C D -,如图4(2)示. 图4(1)(Ⅰ)求证:P B A D ⊥;(Ⅱ)图4(2)中,若5P B =,求PD 与平面P A B 所成角的正弦值.(19)(本小题满分12分)从甲、乙两品种的棉花中各抽测了25根棉花的纤维 长度(单位:mm ), 得到如图5的茎叶图,整数位为茎, 图5 小数位为叶,如27.1mm 的茎为27,叶为1.(Ⅰ)试比较甲、乙两种棉花的纤维长度的平均值的 大小及方差的大小;(只需写出估计的结论,不需说明理由) (Ⅱ)将棉花按纤维长度的长短分成七个等级,分级标 准如下表:等 级 七 六 五 四 三 二 一 长度(mm) 小于26.0 [26.0,27.0) [27.0,28.0) [28.0,29.0) [29.0,30.0) [30.0,31.0) 不小于31.0试分别估计甲、乙两种棉花纤维长度等级为二级的概率;(Ⅲ)为进一步检验甲种棉花的其它质量指标,现从甲种棉花中随机抽取4根,记ξ为抽取的棉花纤维长度为二级的根数,求ξ的分布列和数学期望.(20)(本小题满分12分)在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段,垂足为A ,点Q 在线段A P 上,且2A P A Q =,当点P 在圆上运动时.(Ⅰ)求点Q 的轨迹C 的方程;(Ⅱ)设直线m kx y l +=:与上述轨迹C 相交于M 、N 两点,且MN 的中点在直线1=x 上,求实数k 的取值范围. (21)(本小题满分12分)已知函数1ln )1()(--+=ex x ax x f (a 为实数). (Ⅰ)若1--=ex y 是曲线)(x f 的条切线,求a 的值; (Ⅱ)当e a ≤<0时,试判断函数)(x f 的零点个数.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一个题目计分.(22)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系x O y 中,已知曲线1C 的参数方程为⎩⎨⎧==ααsin 2cos 2y x (α为参数,],0[πα∈);现以原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的方程为21s in 2c o s 2ρθθ=-+,(Ⅰ)求曲线1C 的极坐标方程;(Ⅱ)设1C 和2C 的交点为M 、N ,求M O N ∠的值. (23)(本小题满分10分)选修4-5:不等式选讲已知函数||||)(a x a x x f --+=,(Ⅰ)设3)2(>f ,求a 的取值范围;(Ⅱ)当1||<a 时,试比较)1(a f 与|)(|x f 的大小.揭阳市2017-2018学年度高中毕业班学业水平考试数学(理科)参考答案及评分说一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一、选择题题序 1 23 4 5 6 7 8 9 10 11 12 答案 DA CB AC A C B CD C解析(12)由()(4)f x f x =-知函数()y f x =的图象关于直线2x =对称,且函数2|41|y x x =-+的图象也关于直线2x =对称,则两个函数图象的交点两两关于直线2x =对称,故1ni i x ==∑2n .二、填空题题序 13 141516答案2-13①②④25解析(16)依题意可知1=a ,21=b ,设)1,0(B ,由12||||2P F P F -=得12||||=||||+2P Q P F P Q P F ++2||2F Q ≥+,问题转化为求点2F 到B 上点的最小值,即zyxODCBAPODCBA P2m in 231||||1122F Q F B =-=-=,故1m in 15(||||)222P Q P F +=+=.三、解答题(17)解:(Ⅰ)由633a a -=得数列}{n a 的公差6313a a d -==,---------------------------2分由258,a a +=得1258a d +=,解得132a = ------------------------------------------------4分∴1(1)(2)22n n n n n S n a d -+=+=;----------------------------------------------------------6分(Ⅱ)由(Ⅰ)可得1211(2)2nS n n n n ==-++; -------------------------------------------------7分∴n n b b b b T ++++= 3211111113(1)()()(122)32422n n n -=-+-++-+++++ -------------------8分 11111111321(1)()233412221nnnn n -=++++-++++++⨯++--------10分3113(21)2122nn n =--+⨯-++1113212n n n -=⋅--++.-----------------------------------------12分(18)证明:(Ⅰ)取A D 的中点O ,连O B 、O P ,---------1分∵B A B D =,E A E D =,即P A P D =,∴O B A D ⊥且O P A D ⊥,-----------------------------------3分 又O B O P O =,∴A D ⊥平面B O P ,------------------5分 而P B ⊂平面B O P ,∴P B A D ⊥;-----------------------------------------------------6分 (Ⅱ)解法1:在图4(2)中,∵OP=1,OB=2,2225O P O B P B +==,∴P O O B ⊥,-------------------------------------7分∴OP 、OB 、OD 两两互相垂直,以O 为坐标原点,OB 所在的直线为x 轴建立空间直角坐标系如图示, 则(010),(200)A B -,,,,,(010),(001)D P ,,,,,(0,11),(011)D P A P =-=,,,,(2,0,1)B P =-,设(,,)m a b c =为平面PAB 的一个法向量,则由00200A P m b c a cB Pm ⎧⋅=+=⎧⎪⇒⎨⎨-+=⋅=⎩⎪⎩ 令1,a =则得2,2c b ==-,∴(1,2,2)m =-,---------------------------10分 设PD 与平面P A B 所成角为θ,则|,cos |sin ><=m DPθ||||||m DP m DP⋅⋅=322324=⨯=,-------------------11分故22s in 3θ=,即PD 与平面P A B 所成角的正弦值为223.--------------------12分【解法2:在图4(2)中,∵OP=1,OB=2,2225O P O B P B +==,∴P O O B ⊥,-------------------7分又OP ⊥OD ,O B O D O =,∴OP ⊥平面ABD ,----------------------------------------------------------8分设点D 到平面PAB 的距离为h ,由D P A B P A B D V V --=得P A B A B D S h S P O ∆∆⋅=⋅, ∵12,2A B D S A D O B ∆=⋅=1135222A PB S A P ∆=⋅-=,∴214332h ⨯==,-----------------------------------------------------10分设PD 与平面P A B 所成角为θ,则422sin 332h P Dθ===⋅,即PD 与平面P A B 所成角的正弦值为223.----------------------------------------------------12分】(19)解:(Ⅰ)乙品种棉花的纤维长度的平均值较甲品种的大;乙品种棉花的纤维长度的方差较甲品种的小. -----------------------------------------2分 (Ⅱ)由所给的茎叶图知,甲、乙两种棉花纤维长度在[30.0,30.9](即二级)比率分别为:51255=,--------------3分; 30.1225=,---------------------------------------------------4分故估计甲、乙两种棉花纤维长度等级为二级的概率分别为15(或0.2)和325(或0.12).-----5分(Ⅲ)由(Ⅱ)知,从甲种棉花中任取1根,其纤维长度为二级的概率为15,不是二级的概率为14155-=,依题意知ξ的可能取值为:0,1,2,3,4. 又44256(0)()5625P ξ===(或0.4096),13414256(1)()55625P C ξ==⨯⨯=(或0.4096),22241496(2)()()55625P C ξ==⨯⨯=(或0.1536),3341416(3)=55625P C ξ==⨯⨯()(或0.0256), 411(4)=5625P ξ==()(或0.0016)---------------------------------------10分故ξ的分布列为:14455E ξ=⨯=(或0.8).-------------------------------------------------12分ξ1234()P ξ256625(或0.4096) 256625(或0.4096) 96625(或0.1536) 16625(或0.0256) 1625(或0.0016)(20)解:(Ⅰ)设00(,)P x y 0(2)x ≠±,(,)Q x y ,------------------------------------------1分由2A P A Q =得则00,2x x y y ==,--------------------------------------------------------------------------2分∵点P 在圆224x y +=上,即22004x y +=,∴22(2)4x y +=,即12422=+yx,∴点Q 的轨迹C 方程为12422=+yx(2±≠x ).--------------------------------------5分(Ⅱ)设),(11y x M ,),(22y x N ,若直线l 与x 轴平行,则MN 的中点在y 轴上,与已知矛盾,所以0≠k ,------------------------------------6分 把m kx y +=代入12422=+yx,得0424)12(222=-+++mkmx xk,-----7分则)42)(12(4162222-+-=∆mkmk )48(822m k-+=,由0>∆,得22)12(4m k>+,-------------------------------------------------------8分由11222221=+-=+kkm x x ,得1222+=-kkm ,---------------------------------9分所以222222)12(4)12(16+=>+kmk kk ,解得1142>k,所以k 的取值范围是),1414()1414,(∞+--∞ .--------------------------------12分(21)解:(Ⅰ)函数)(x f 的定义域为),0(∞+,e xax x a x f -++=1ln )('e a xx a -++=1ln ,----------------------------------1分设切线与曲线)(x f 的切点为),(00y x P ,则切线的斜率为)('0x f , 即e e a x x a -=-++01ln ,化简得1)1(ln 00-=+x ax (*),-----------------2分又1ln )1(0000--+=ex x ax y 且100--=ex y ,得0ln )1(00=+x ax ,----------------------------------------------------------------------3分 ∴0ln 0=x 或010=+ax ,联立(*)式,解得1-=a ;---------------------------------------------------------------5分(Ⅱ)设e a xx a x f x g -++==1ln )(')(,由01)('2>-=xax x g 得ax 1>,∴)(x g 即)('x f 在),1(∞+a上单调递增,在)1,0(a上单调递减,得e a a a af x f -+-==2ln )1(')('min ,其中e a ≤<0,-------------------------6分 设e x x x x h -+-=2ln )((e x ≤<0),由01ln )('>+-=x x h ,得e x <<0,∴)(x h 在],0(e 上单调递增,得0)()(=≤e h x h ,∴0)('min ≤x f (仅当e a =时取“=”),-------------------------------------------------7分 ①当e a =时,0)('min =x f ,得0)('≥x f ,∴)(x f 在),0(∞+上单调递增,又011)(2=--+=e ae e f ,∴函数)(x f 仅有一个零点,为e ;--------------------------------------------------------8分 ②当e a <<0时,0)1(')('min <=af x f ,又0)('>+=-ae a ee a ef ,∴存在11x a>,使1'()0f x =,----------------------9分又0)1('=-++-=e a e a ef ,而ae 11<,∴当)1,0(e x ∈1(,)x +∞时,0)('>x f ,当11(,)x x e ∈时,0)('<x f , ∴函数)(x f 在)1,0(e和1(,)x +∞上单调递增,在11(,)x e上单调递减,-----10分又03)1(<--=ea e f ,01)(>-=ae ef a e,---------------------------------------11分∴函数)(x f 仅有一个零点,综上所述,函数)(x f 仅有一个零点.---------------------------------------------------12分选做题(22)解:(Ⅰ)由曲线1C 的参数方程知,1C 是以原点O 为圆心,2为半径的圆的上半圆,----2分 其极坐标方程为[]()20,ρθπ=∈;-----------------------------------------4分(Ⅱ)联立方程[]()20,ρθπ=∈,21s in 2c o s 2ρθθ=-+,得sin 2co s 20θθ-=,-----5分于是tan 21θ=,[]20,2θπ∈,--------------------------------------------------------6分 解得24πθ=或524πθ=,即M N θθ和的值为858ππ和------------------------8分所以2||πθθ=-=∠M N MON .--------------------------------------------------------10分(23)解:(Ⅰ)3|2||2|)2(>--+=a a f --------------------------------------------------------1分①当2-<a 时,得322>-+--a a ,无解;--------------------------------------------2分e1a1X 1xy)('x f)(x f②当22<≤-a 时,得322>-++a a ,解得23>a ,所以223<<a ;---------3分③当2≥a 时,得322>+-+a a ,恒成立;-----------------------------------------------4分 综上知,a 的取值范围为),23(∞+.------------------------------------------------------------5分(Ⅱ)|||1|||1|1||1|)1(22a a a a a aa aaf --+=--+=,---------------------------------------------6分当1||<a 时,012>-a,||2||2||1||1)1(222a a aa a a a af ==--+=,-------------------7分|2||)(||||||||)(|a a x a x a x a x x f =--+≤--+=,---------------------------------------9分所以|)(|)1(x f af ≥.------------------------------------------------------------------------------10分。
广东省2018-2019学年高三年级第一学期期末质量检测理科数学试题(含答案)
广东省2018—2019高三年级期末质量检测考试数 学(理)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
【1】已知集合}30|{≤≤=x x M ,}021|{≥-+=xx x N ,则=N M ( ) (A )}20|{≤≤x x (B )}20|{<≤x x (C )}01|{≤≤-x x (D )}32|{≤<x x【2】复数i)i21(5-在复平面内对应的点的坐标为( )(A ))12(,(B ))12(-,(C ))21(,(D ))21(,- 【3】若31sin -=α,且α为第四象限角,则)tan(απ-的值等于( ) (A )42(B )22-(C )22(D )42- 【4】已知左、右焦点分别为21,F F 的双曲线C :)0(1222>=-a y ax 过点)3615(-,,点P 在双曲线C 上,若31=PF ,则=2PF ( )(A )3(B )6(C )9(D )12【5】已知0>m ,下列函数中,在其定义域内是单调递增函数且图象关于原点对称的是( ) (A )x m y -=(B )mx y tan =(C )xm x m y -+=ln (D )mx y =【6】若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图。
该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图。
已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( )(A )6500元(B )7000元(C )7500元(D )8000元【7】已知向量)1,(t =与),4(t ==--+2a ( ) (A )235(B )240(C )245(D )255【8】拿破仑为人好学,是法兰西科学院院士,他对数学方面很感兴趣,在行军打仗的空闲时间,经常研究平面几何。
最新-广东省揭阳市2018届高三第一次模拟考试理科数学试题及 精品
揭阳市2018年高中毕业班高考第一次模拟考试数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{x y A ==,{}220x x x B =-<,则( )A .AB =∅ B .R A B =C .B ⊆AD .A ⊆B2.设复数z 满足()12i z i +=,其中i 为虚数单位,则z 的共轭复数z =( ) A .1i -+ B .1i -- C .1i + D .1i -4.()842xx --展开式中含2x项的系数是( )A .56-B .28-C .28D .56 5.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验,收集数据如右所示:根据右表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此可估计加工零件数为6时加工时间大约为( )A .63.6minB .65.5minC .67.7minD .72.0min 6.已知tan 24x π⎛⎫+= ⎪⎝⎭,则sin 2x =( )A .35-B .5C .35D .1 7.执行如图1的程序框图,则输出S 的值为( ) A .2 B .3- C .12-D .138.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线6x y +=下方的概率是( )A .718 B .13 C .16 D .5189.若x ,y 满足1x y +≤,则2z x y =-的取值范围是( )A .(],2-∞-B .[]2,2-C .[]1,1-D .[)1,+∞10.双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是1F ,2F ,过1F 作倾斜角为45的直线交双曲线右支于M 点,若2F M 垂直于x 轴,则双曲线的离心率为( )A B C .1 D .111.已知函数()sin f x x π=和函数()cos g x x π=在区间[]1,2-上的图象交于A 、B 、C 三点,则C ∆AB 的面积是( )A .2B .4CD .412.已知直线0x y k +-=(0k >)与圆224x y +=交于不同的两点A 、B ,O 为坐标原点,且有3OA +OB ≥AB ,则k 的取值范围是( )A .)+∞ B . C .)+∞D .第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知()1,2a =-,()0,2a b +=,则b = .14.已知函数()f x 是周期为2的奇函数,当[)0,1x ∈时,()()lg 1f x x =+,则2016lg185f ⎛⎫+= ⎪⎝⎭. 15.某组合体的三视图如图2所示,则该几何体的体积为 .16.已知C ∆AB 中,角A 、32B 、C 成等差数列,且C ∆AB 的面积为1C A 边的最小值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且满足22n S n n =-(n *∈N ).(I )求数列{}n a 的通项公式;(II )设()()()()22212211n a n n n n k b n k a a +⎧=-⎪==⎨⎪--⎩(k *∈N ),求数列{}n b 的前2n 项和2n T .18.(本小题满分12分)某公司做了用户对其产品满意度的问卷调查,随机抽取了20名用户的评分,得到图3所示茎叶图,对不低于75的评分,认为用户对产品满意,否则,认为不满意.(I )根据以上资料完成下面的22⨯列联表,若据此数据算得23.7781K ≈,则在犯错误的概率不超过5%的前提下,你是否认为“满意与否”与“性别”有关?(II )以此“满意”的频率作为概率,求在3人中恰有2人满意的概率;(III )从以上男性用户中抽取2人,女性用户中抽取1人,其中满意的人数为ξ,求ξ的分布列与数学期望.19.(本小题满分12分)如图4,已知四棱锥CD P -AB 中,PA ⊥平面CD AB ,底面CD AB 中,90∠A =,//CD AB ,1AB =,D CD 2A ==.(I )若二面角CD P --B 为45,求证:平面C BP ⊥平面D C P ; (II )在(I )的条件下,求点A 到平面C PB 的距离.20.(本小题满分12分)已知p ,0m >,抛物线:E 22x py =上一点(),2m M 到抛物线焦点F 的距离为52. (I )求p 和m 的值;(II )如图5所示,过F 作抛物线E 的两条弦C A 和D B (点A 、B 在第一象限),若CD 40k k AB +=,求证:直线AB 经过一个定点.21.(本小题满分12分)设函数()()2ln f x x a x =-,R a ∈.(I )若x e =是()y f x =的极值点,求实数a 的值;(II )若函数()24y f x e =-只有一个零点,求实数a 的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲如图6,圆O 的直径10AB =,P 是AB 延长线上一点,2BP =,割线CD P 交圆O 于点C ,D ,过点P 作AP 的垂线,交直线C A 于点E ,交直线D A 于点F .(I )当C 60∠PE =时,求DF ∠P 的度数; (II )求F PE ⋅P 的值.23.(本小题满分10分)选修4-4:坐标系与参数方程已知参数方程为0cos sin x x t y t θθ=+⎧⎨=⎩(t 为参数)的直线l 经过椭圆2213x y +=的左焦点1F ,且交y 轴正半轴于点C ,与椭圆交于两点A 、B (点A 位于点C 上方). (I )求点C 对应的参数C t (用θ表示);(II )若1F C B =A ,求直线l 的倾斜角θ的值.24.(本小题满分10分)选修4-5:不等式选讲 设R a ∈,()()1f x x a a x =-+-. (I )解关于a 的不等式()20f <;(II )如果()0f x ≥恒成立,求实数a 的取值范围.揭阳市2018年高中毕业班高考第一次模拟考试数学(理科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一、选择题:C D C A B C A D B C C B解析:11.由sin cos tan 1x x x πππ=⇒=,又[1,2]x ∈-得34x =-或14x =或54x =,即点315(,),(,),(,424242A B C --,故153[()][(24422ABC S ∆=⨯--⨯--=12. 2<, 【或由22220,22404.x y k x kx k x y +-=⎧⇒-+-=⎨+=⎩,因直线与圆有两个不同的交点, 所以2248(4)0k k ∆=-->,】由0k >得0k <<①如图,又由3||||OA OB AB +≥得|||OM BM ≥6MBO π⇒∠≥因||2OB =,所以||1OM ≥,1k ≥⇒≥② k ≤<二、填空题:;14.1;15. 32+8π;16.2.解析:14. 由函数()f x 是周期为2的奇函数得2016644()()()5555ff f f ==-=-()9lg 5=-5lg 9=,故20165()lg18lg lg18lg10159f +=+== 15. 依题意知,该几何体是上面长方体下接半圆柱的组合体,故其体积 为:21442+24=32+82ππ⨯⨯⨯⨯⨯. 16. ∵A 、32B 、C 成等差数列,∴3A C B +=,又A B C π++=,∴4B π=,由1sin 12ABC S ac B ∆==2(2ac =,∵2222cos b a c ac B =+-22a c =+,及222a c ac +≥,∴2(24b ac ≥=,2b ≥,∴b 的最小值为2.三、解答题:17.解:(Ⅰ)当2n ≥时,221222[(1)(1)]22n n n a S S n n n n n -=-=-----=---------2分1n a n=-(2n ≥),-------------------------------------------------------------3分当1n =时,由21211S =-得10a =,-----------------------------------------------4分 显然当1n =时上式也适合, ∴1n a n =-.--------------------------------------------------------------------5分 (Ⅱ)∵22211,(1)(1)(2)2n n a a n n n n +==---++------------------------------------6分21321242()()n n n T b b b b b b -=+++++++-------------------------------------7分0222111111(222)[()()()2446222n n n --=++++-+-++-+]---------------------9分11()11422214nn -=+-+----------------------------------------------------------11分11411().63422n n =-⋅-+-------------------------------------------------------12分18.解:(Ⅰ)-------------------------------2分 ∵23.7781K ≈<3.84 1,∴在犯错的概率不超过5%的前提下,不能认为“满意与否”与“性别”有关。
广东省揭阳市2018-2019学年度高中毕业班学业水平考试理科数学试题(名师解析)
揭阳市2018-2019学年度高中毕业班学业水平考试数学(理科)本试卷共23题,共150分,共4页,考试结束后将本试卷和答题卡一并收回.注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题目的顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.复数的虚部是( )A. B. 2 C. D.【答案】C【解析】【分析】先用复数除法运算化简,由此求得其虚部.【详解】依题意,故虚部为.所以选C.【点睛】本小题主要考查复数除法的运算,考查复数虚部的概念,属于基础题.2.已知集合,,则( )A. B. C. D.【答案】C【解析】【分析】解分式不等式求得集合的取值范围,然后求两个集合的交集.【详解】对于集合,由得,解得,故,所以选C.【点睛】本小题主要考查一元二次不等式的解法,考查两个集合交集的概念及运算,属于基础题.3.已知命题若,则;命题、是直线,为平面,若//,,则//.下列命题为真命题的是( )A. B. C. D.【答案】B【解析】【分析】利用两边平分的方法判断命题是真命题,利用线面平行的性质判断命题是假命题,由此选出正确的选项. 【详解】对于命题,将两边平方,可得到,故命题为真命题.对于命题,直线,但是有可能是异面直线,故命题为假命题,为真命题.所以为真命题,故选B.【点睛】本小题主要考查不等式的性质,考查线面平行以及两条直线的位置关系,考查含有简单逻辑词命题真假性的判断,属于基础题.4.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确...的是( )A. 从2000年至2016年,该地区环境基础设施投资额逐年增加;B. 2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C. 2012年该地区基础设施的投资额比2004年的投资额翻了两番;D. 为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.【答案】D【解析】【分析】根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.5.函数的图象大致为( )A. B. C. D.【答案】A【解析】【分析】分别令,根据的函数值,对选项进行排除,由此得出正确选项.【详解】由四个选项的图像可知,令,,由此排除C选项.令,,由此排除B选项.由于,排除D选项.故本小题选A.【点睛】本小题主要考查函数图像的判断,考查利用特殊点排除的方法,属于基础题.6.若满足约束条件,则的最小值为( )A. 1B. 2C. -2D. -1【答案】D【解析】【分析】画出可行域,通过向下平移基准直线到可行域边界的位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知,目标函数在点处取得最小值,且最大值为.故选D.【点睛】本小题主要考查利用线性规划求线性目标函数的最大值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画图可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.7.若,,,则的大小关系为( )A. B.C. D.【答案】A【解析】【分析】首先利用对数运算比较的大小,同理利用对数运算比较的大小,由此得到大小关系.【详解】由于,即.由于,即.所以,故选A.【点睛】本小题主要考查对数的运算公式,考查比较大小的方法,属于属于基础题.8.若点在抛物线上,记抛物线的焦点为,直线与抛物线的另一交点为B,则( )A. B. C. D.【答案】D【解析】【分析】将点的坐标代入抛物线方程求得的值,由此求得焦点的坐标,由此求得的值,联立直线的方程与抛物线的方程求得点的坐标,由此求得的值,而的夹角为,最后利用数量积的运算求得的值【详解】依题意易得,,由抛物线的定义得,联立直线AF的方程与抛物线的方程消去y 得,得, 则,故 .故选D.【点睛】本小题主要考查抛物线标准方程的求法,考查直线和抛物线交点坐标的求法,考查了向量数量积的运算.属于基础题.9.某几何体示意图的三视图如图示,已知其主视图的周长为8,则该几何体侧面积的最大值为( )A. B. C. D.【答案】C 【解析】 【分析】有三视图得到几何体为圆锥,设出圆锥的底面半径和母线长,根据主视图的周长得到一个等量关系,然后利用基本不等式求得侧面积的最大值.【详解】由三视图知,该几何体为圆锥,设底面的半径为r ,母线的长为,则,又S侧=(当且仅当时“=”成立).故选C.【点睛】本小题主要考查由三视图还原为原图,考查圆锥的侧面积计算公式,考查利用基本不等式求最值,属于基础题. 10.已知在区间上,函数与函数的图象交于点P ,设点P 在x 轴上的射影为,的横坐标为,则的值为( )A. B. C. D.【答案】B 【解析】 【分析】利用两个函数图像相交,交点的坐标相同列方程,化简后求得的值,再利用正切的二倍角公式求得的值.【详解】依题意得,即..故选B.【点睛】本小题主要考查两个函数交点的性质,考查同角三角函数的基本关系式,考查正切的二倍角公式,属于基础题.11.已知双曲线C:的左、右焦点分别为,坐标原点O关于点的对称点为P,点P到双曲线的渐近线距离为,过的直线与双曲线C右支相交于M、N两点,若,的周长为10,则双曲线C的离心率为( )A. B. 2 C. D. 3【答案】B【解析】【分析】依题意得到点的坐标,利用点到渐近线的距离列方程,求得的值,根据双曲线的定义得周长的表达式,由此列方程求得,的值,进而求得双曲线的离心率.【详解】依题意得点P,,由双曲线的定义得周长为,由此得,,故.【点睛】本小题主要考查点和点对称的问题,考查点到直线距离公式,考查双曲线的定义以及双曲线离心率的求法,考查分析与求解的能力.属于中档题.双曲线的渐近线方程是.根据双曲线的定义,双曲线上任意一点到两个焦点的距离之差的绝对值为.12.如图,在三棱柱中,底面,∠ACB=90°,为上的动点,则的最小值为( )A. B. C. 5 D.【答案】C【解析】【分析】易得平面,故∠.将二面角沿展开成平面图形,此时的长度即的最小值,利用余弦定理求出这个最小值.【详解】由题设知△为等腰直角三角形,又平面,故∠=90°,将二面角沿展开成平面图形,得四边形如图示,由此,要取得最小值,当且仅当三点共线,由题设知∠,由余弦定理得.【点睛】本小题主要考查空间线面垂直关系的证明,考查空间两条线段长度和的最小值的求法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分.13.的展开式中的系数为_______;【答案】224【解析】【分析】先求得二项式展开式的通项公式,化简后求得的系数.【详解】二项式展开式的通项公式为,令,解得,故的系数为.【点睛】本小题主要考查二项式展开式的通项公式,考查二项式展开式指定项的系数,属于基础题.14.若向量、不共线,且,则_______;【答案】3【解析】【分析】先利用,求出的值,再求的值.【详解】由于,故,即,即,解得,当时,,两者共线,不符合题意.故.所以.【点睛】本小题主要考查平面向量垂直的表示,考查向量模的坐标表示,考查两个向量数量积的坐标表示.如果两个平面向量相互垂直,则它们的数量积为零.数量积运算有两种表示形式,一种是利用模和夹角来表示,即.另一种是用坐标来表示,即.15.已知函数,若,则实数的取值范围是_________;【答案】【解析】【分析】先判断函数是增函数且为奇函数,利用单调性和奇偶性将不等式转化为,解不等式求得的取值范围.【详解】因函数为增函数,且为奇函数,,,解得.【点睛】本小题主要考查函数的单调性,考查函数的奇偶性,考查利用单调性和奇偶性解抽象函数不等式,属于基础题.16.已知,则______.【答案】【解析】【分析】利用两角和的正弦、余弦公式,化简,由此求得函数的最小正周期,根据及函数的周期性,求得表达式的值.【详解】依题意可得,其最小正周期,且故【点睛】本小题主要考查三角函数恒等变换,考查两角和的正弦公式以及余弦公式,考查三角函数的周期性以及特殊角的三角函数值.两角和与差的正弦、余弦公式是有差别的,要记忆准确,不能记混.在求有关年份的题目时,往往是根据题目所给已知条件,找到周期,再根据周期性来求解.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.(一)必考题:共60分17.已知数列的前n项和为,且满足,.(1)求数列的通项公式;(2)若等差数列的前n项和为,且,,求数列的前项和.【答案】(1)(2)【解析】【分析】(1)令,求得的值,用求得的通项公式.(2)利用(1)的结论求得的值,利用基本元的思想求得的公差及通项公式,再利用裂项求和法求得前项和.【详解】解:(1)当时,,由得(),两式相减得,又,∴(),又,∴(),显然,,即数列是首项为3、公比为3的等比数列,∴;(2)设数列的公差为d,则有,由得,解得,∴,又∴.【点睛】本小题主要考查数列已知求的方法,考查利用基本元的思想求解等差数列的通项公式,考查裂项相消求和法.基本元的思想是在等差数列中有个基本量,利用等差数列的通项公式或前项和公式,结合已知条件列出方程组,通过解方程组即可求得数列18.如图,在三棱锥P-ABC中,正三角形PAC所在平面与等腰三角形ABC所在平面互相垂直,AB=BC,O是AC中点,OH⊥PC于H.(1)证明:PC⊥平面BOH;(2)若,求二面角A-BH-O的余弦值.【答案】(1)详见解析(2)【解析】【分析】(1)先证明平面,得到,结合已知,证得平面.(2)以为空间坐标原点建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【详解】解:(1)∵AB=BC,O是AC中点,∴ BO⊥AC,又平面PAC⊥平面ABC,且平面ABC,平面PAC∩平面ABC=AC,∴ BO⊥平面PAC,∴ BO⊥PC,又OH⊥PC,BO∩OH=O,∴ PC⊥平面BOH;(2)易知PO⊥AC,又BO⊥平面PAC,如图,以O为原点,OB所在的直线为x轴,建立空间直角坐标系O - xyz,由易知,OC=2,,,∴ ,,,,,,,设平面ABH的法向量为,则,∴,取x=2,得,由(1)知是平面BHO的法向量,易知,设二面角A-BH-O的大小为,显然为锐角,则,∴ 二面角A-BH-O的余弦值为.【点睛】本小题主要考查空间线面垂直的证明,考查利用空间向量法求二面角余弦值的方法,属于中档题. 19.某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训,甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表,其中第一、二周达标的员工评为优秀.(1)在甲组内任选两人,求恰有一人优秀的概率;(2)每个员工技能测试是否达标相互独立,以频率作为概率.(i)设公司员工在方式一、二下的受训时间分别为、,求、的分布列,若选平均受训时间少的,则公司应选哪种培训方式?(ii)按(i)中所选方式从公司任选两人,求恰有一人优秀的概率.【答案】(1)(2)(i)应选择培训方式一(ii)【解析】【分析】(1)甲组人中有人优秀,利用超几何分布概率计算公式,计算得“甲组内任选两人,求恰有一人优秀的概率”.(2)可能取值有,根据题目所给数据计算出每种取值对应的频率也即概率,由此得到分布列并其算出期望值.的所有可能取值为,根据题目所给数据计算出每种取值对应的频率也即概率,由此得到分布列并其算出期望值.根据两个期望值较小的即为选择.(3)先计算出从公司任选一人,优秀率为,再按照二项分布的概率计算公式计算得“从公司任选两人,求恰有一人优秀的概率”【详解】解:(1)甲组60人中有45人优秀,任选两人,恰有一人优秀的概率为;(2)(i)的分布列为,的分布列为,∵,∴公司应选培训方式一;(ii)按培训方式一,从公司任选一人,其优秀的概率为,则从公司任选两人,恰有一人优秀的概率为.【点睛】本小题主要考查利用超几何分布和二项分布计算概率,考查离散型随机变量分布列及其期望,属于中档题.20.已知椭圆:的上顶点为A,以A为圆心,椭圆的长半轴为半径的圆与y轴的交点分别为、.(1)求椭圆的方程;(2)设不经过点A的直线与椭圆交于P、Q两点,且,试探究直线是否过定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.【答案】(1)(2)直线过定点【解析】【分析】(1)根据圆的圆心和半径写出圆的标准方程,令求得圆与轴交点的坐标,由此列方程组求得的值,进而求得椭圆的标准方程.(1)根据,利用点斜式设出直线的方程,并分别代入椭圆方程解出两点的坐标,由此求得直线的方程,由此求得定点的坐标为.【详解】解:(1)依题意知点A的坐标为,则以点A圆心,以为半径的圆的方程为:,令得,由圆A与y轴的交点分别为、可得,解得,故所求椭圆的方程为.(2)由得,可知PA的斜率存在且不为0,设直线-① 则-②将①代入椭圆方程并整理得,可得,则,类似地可得,由直线方程的两点式可得:直线的方程为,即直线过定点,该定点的坐标为.【点睛】本小题主要考查圆的标准方程和几何性质,考查直线和椭圆的位置关系,考查直线方程的两点式以及直线过定点的问题.属于中档题.要求直线和椭圆的交点坐标,需要联立直线和椭圆的方程,解方程组求得,这里需要较强的运算能力.直线过定点的问题,往往是将含有参数的部分合并,由此求得直线所过的定点.21.已知函数(,).(1)讨论函数的单调性;(2)当时,,求k的取值范围.【答案】(1)详见解析(2)或【解析】【分析】(1)将函数求导并化简,对分成两种情况,讨论函数的单调性.(2)原不等式即(),当时,上述不等式显然成立.当时,将不等式变为,构造函数,利用导数研究函数的单调性,由此求得的取值范围.【详解】解:(1).①若,当时,,在上单调递增;当时,,在上单调递减.②若,当时,,在上单调递减;当时,,在上单调递增.∴当时,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.(2)(),当时,上不等式成立,满足题设条件;当时,,等价于,设,则,设(),则,∴在上单调递减,得.①当,即时,得,,∴在上单调递减,得,满足题设条件;②当,即时,,而,∴,,又单调递减,∴当,,得,∴在上单调递增,得,不满足题设条件;综上所述,或.【点睛】本小题主要考查利用导数求解函数参数的函数单调性问题,考查利用导数求解含有参数不等式恒成立问题.对函数求导后,由于导函数含有参数,故需要对参数进行分类讨论,分类讨论标准的制定,往往要根据导函数的情况来作出选择,目标是分类后可以画出导函数图像,进而得出导数取得正、负的区间,从而得到函数的单调区间.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.已知曲线C的参数方程为(t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,过极点的两射线、相互垂直,与曲线C分别相交于A、B两点(不同于点O),且的倾斜角为锐角.(1)求曲线C和射线的极坐标方程;(2)求△OAB的面积的最小值,并求此时的值.【答案】(1)C的极坐标方程为,[或];的极坐标方程为;(2)【解析】【分析】(1)消去参数,求得曲线的普通方程,再转为极坐标方程.射线过原点,根据角度直接写出的极坐标方程.(2)利用极坐标方程求得的表达式,求得三角形面积的表达式,利用三角函数的的最值求得三角形面积的最小值,同时求得的值.【详解】解:(1)由曲线C的参数方程,得普通方程为,由,,得,所以曲线C的极坐标方程为,[或]的极坐标方程为;(2)依题意设,则由(1)可得,同理得,即,∴∵∴,∴,△OAB的面积的最小值为16,此时,得,∴.【点睛】本小题主要考查参数方程转化为极坐标方程,考查利用极坐标求三角形的面积,考查三角函数求最值,属于中档题.23.已知函数.(1)当时,求不等式的解集;(2)当时,不等式恒成立,求的取值范围.【答案】(1)(2)【解析】【分析】(1)当时,利用零点分段法去绝对值,解一元一次不等式求得不等式的解集.(2)当时,对函数去绝对值后,构造一次函数,一次函数恒大于或等于零,则需区间端点的函数值为非负数,由此列不等式组,解不等式组求得的取值范围.【详解】解:(1)①当时,,解得,②当时,,解得,③当时,解得,综上知,不等式的解集为.(2)当时,,设,则,恒成立,只需,即,解得【点睛】本小题主要考查利用零点分段法解含有两个绝对值的不等式,考查化归与转化的数学思想方法,属于中档题.。
广东省揭阳市2018-2019学年第一学期高三期末统考理科数学试卷
揭阳市2018-2019学年度高中毕业班学业水平考试(期末) 数学(理科)一、选择题:本题共12小题,每小题5分,共60分1.复数i iz ++-=211的虚部是( ) A.25 B.2 C.23 D.i 23 2.已知集合}013|{≤+-=x x x A ,}3,2,1,1{-=B ,则=B A ( ) A.}2,1{ B. }2,1,0{ C. }3,2,1{ D. }3,2,1,1{-3.已知命题:p 若a>b,则a 2>b 2;命题:q m 、n 是直线,α为平面,若m ∥α,n ⊂α,则m ∥n ,下列命题为真命题的是( )A.q p ∧B.q p ⌝∧C.q p ∧⌝D. q p ⌝∧⌝4.如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图,则下列结论中表述不正确的是( )A.从2000年至2016年,该地区环境基础设施投资额逐年增加B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多C.2012年该地区基础设施的投资额比2004年的投资额翻了两番D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立了投资额y 与时间变量t 的线性回归型t y5.1799ˆ+=根据该模型预测该地区2019年的环境基础设施投资额为5.256亿5.函数xx x f 1||ln )(+=的图象大致为( )A. B.C.D.6.若y x ,满足约束条件⎪⎩⎪⎨⎧≥≥+-≤--001201x y x y x ,则y x z +-=2的最小值为( ) A.4 B.2 C.2- D.1-7.若8log ,8log ,3log 542===c b a ,则c b a ,,大小关系是( )A.c b a >>B.b c a >>C.c a b >>D. a b c >>8.若A(2,22)在抛物线C; y 2=2x 上,记抛物线C 的焦点为F,直线AF 与抛物线的另一个交点为B ,则=⋅FB FA ( )A.10-B.32-C.3-D. 29- 9.某几何体示意图的三视图如图示,已知其主视图的周长为8则该几何体侧面积的最大值为( )A.πB.π2C.π4D.π1610.已知在区间],0[π上,函数2sin 3x y =与函数x y sin 1+=的图象交于点P 设点P 在x 轴上的射影为P',P'的横坐标为x 0,则tanx 0的值为( ) A.21 B.34 C.54 D.158 11.已知双曲线C 22a x −22by =1)0,0(>>b a 的左、右焦点分别为F 1、F 2,坐标原点O 关于点F 2的对称点为P,点P 到双曲线的渐近线距离为23,过F 2的直线与双曲线C 右支相交于M 、N 两点,若|MN|=3,△F 1MN 的周长为10,则双曲线C 的离心率为( ) A. 23 B.2 C. 25 D.3 12.如图,在三棱柱ABC-A 1B 1C 1, AA 1⊥底面A 1B 1C 1,∠ACB =90°与BC =CC 1=1,AC =32,P 为BC 1上的动点,则CP +PA 1的最小值为( ) A.52 B.231+ C.5 D.521+二、填空题:本题共4小题,每小题5分,共20分13.(x 2+21x )8的展开式中x 1的系数为__________. 14.向量a =(1,x),b =(−1,−2)不共线,且(a +b )⊥(a -b ),则a ·b =_________.15.已知函数x x x f 2)(3+=,若0)2()1(2≤+-a f a f ,则实数a 的取值范围是_______.16.已知)]1(3cos[3)]1(3sin[)(+-+=x x x f ππ,则=+++)2019()2()1(f f f ____.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤第17题-第21题为必考题,每个试题考生都必须做答,第22题第23题为选考题,考生根据要求做答17.(12分)已知数列{n a }的前n 项和为n S 且满足31=a ,132+=+n n a S(1)求数列{n a }的通项公式;(2)若等差数列{n b }的前n 项和为T n ,且T 1=1a ,T 3=3a ,求数列{11+n n b b }的前n 项和Q n .18.(12分)如图,在三棱锥P-ABC 中,正三角形PAC 所在平面与等腰三角形ABC 所在平面互相垂直,AB=BC,O 是AC 中点,OH ⊥PC 于H(1)证明:PC ⊥平面BOH ;(2)若OH =OB =3,求二面角A-BH-O 的余弦值.某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训,甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下(1)在甲组内任选两人,求恰有有一人优秀的概率;(2) 每个员工技能测试是否达标相互独立,以频率作为概率(i)设公司员工在方式一,二下的受训时间分别为21,ξξ,求21,ξξ的分布列,若选平均受训时间少的,则公司应选哪种培训方式?(ii)按(i)中所选方式从公司任选两人,求恰有一人优秀的概率.20.(12分)已如椭圆C: 22a x +22by =1 (a>b>0)的上顶点为A ,以A 为圆心,椭圆的长半轴为半径的圆与y 轴的交点分别为)31,0(),31,0(-+(1)求椭圆C 的方程;(2)设不经过点A 的直线l 与椭圆C 交于P 、Q 两点,且AP ·=O 试探究直线l 是否过定点? 若过定点,求出该定点的坐标,若不过定点,请说明理由.已知函数kxke kx x f 1)(-= (1)讨论函数f(x)的单调性; (2)当x ≥1时,x k xf ln )(≤,求k 的取值范围.(二)选考题:共10分请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分22.[选修4-4:坐标系与参数方程](10分)已知曲线C 的参数方程为⎩⎨⎧==22ty t x (t 为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,过极点的两射线1l 、2l 相互垂直,与曲线C 分别相交于A 、B 两点(不同于点O),且1l 的倾斜角为锐角α(1)求曲线C 和射线2l 的极坐标方程(2)求△OAB 的面积的最小值,并求此时α的值23.[选修4 -5:不等式选讲](10分)已知函数|2||2|)(+--=x a x x f(1)当2=a 时,求不等式)(x f <2的解集(2)当x ∈[−2,2]时不等式f (x )≥x 恒成立,求a 的取值范围。
揭阳市2018-2019学年度高二学业水平考试数学(理科)试题
绝密★启用前揭阳市2018—2019学年度高中二年级期末质量测试数学(理科)本试卷共23题,共150分,共4页,考试结束后将本试卷和答题卡一并收回. 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题目的顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|1}M x x =>-,{|2,}N y y x x M ==-∈,则M N =A .(1,)-+∞B .(2,)+∞C .(1,2)-D .(,2)-∞2.已知复数z 满足(1)1i z i +⋅=-,则z 的共轭复数z = A .iB .12iC .12i -D .i - 3.已知3cos tan 4θθ⋅=,则sin(2)2πθ-= AB.±C .12-D .18-4.函数()ln ||(ln ||1)f x x x =+的图象大致为5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于同一个常数.若第一个单音的频率为f,则第十个单音的频率为A.BCD揭阳市2018-2019学年度年高中二年级期末质量测试(理科)数学试题 第2页(共4页)6.已知两条不同直线a 、b ,两个不同平面αβ、,有如下命题: ①若//a α,b α⊂,则//a b ; ②若//a α,//b α,则//a b ;③若//αβ,a α⊂,则//a β; ④若//αβ,a α⊂,b β⊂,则//a b ; 以上命题正确的个数为 A .3 B .2 C .1D .07.若,x y 满足约束条件102103x y x y x -+≥⎧⎪--≤⎨⎪≤⎩,则2z y x =-的最大值为A . -2B .1C .2D . 48.已知112e,e 2,()23ab c ===,(e 为自然对数的底)则a ,b ,c 的大小关系为A. c a b >>B. c b a >>C. b a c >>D. a b c >>9.从分别标有1,2,…,9的9张卡片中有放回地随机抽取5次,每次抽取1张.则恰好有2次抽到奇数的概率是A .2354()()99B .223554()()99C C .2345()()99D .332554()()99C10.双曲线222:19x y C b -=的左、右焦点分别为12F F 、,P 在双曲线C 上,且12PF F ∆是等腰三角形,其周长为22,则双曲线C 的离心率为A .89B .149 C .83 D .14311.已知定义在R 上的奇函数()f x 满足(2)(2)f x f x +=-,当20x -≤<时,()1xf x a =- (0)a >,且(2)8f =-,则(2019)f = A .2 B .1 C .2- D .1-12.已知数列{}n a 的前n 项和为n S ,满足11a =,111n n n nS nS a n -=+++(2n ≥),若138m S >,则m 的最小值为A .6B .7C .8D .9二、填空题:本大题共4小题,每小题5分,共20分.13.已知两直线的方向向量分别为(,1)a m =,(4,)b m =,若两直线平行,则m =_________;14.曲线(13)xy a e =-在点()01,处的切线方程为 ; 15.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在抛物线24y x =上,则ABP △面积的最小值为 ;16.已知P 是底面为正三角形的直三棱柱111ABC A B C -的上底面111A B C ∆的中心,作平面BCD AP ⊥ 与棱1AA 交于点D .若122AA AB ==,则三棱锥D ABC -的体积为 .三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个试题考生都必须做答.第22题第23题为选考题,考生根据要求做答.(一)必考题:共60分17.(12分)在ABC △中,内角A ,B ,C 所对的边分别为,,,a b c 已知2,3a c ==,cos sin()6B B π=-. (1)求b 的值; (2)求cos()C B -的值.18.(12分)如图,在三棱锥P-ABC 中,AP =CP ,O 是AC 的中点, PO =1,OB =2, PB =(1)证明:平面P AC ⊥平面ABC ;(2)若AC ⊥BC,BC =D 是AB 的中点, 求二面角P CD B --的余弦值.19.(12分)已知某单位甲、乙、丙三个部门共有员工60人,为调查他们的睡眠情况,通过分层抽样获得部分员工每天睡眠的时间,数据如下表(单位:小时)(1)求该单位乙部门的员工人数?(2)从甲部门和乙部门抽出的员工中,各随机选取一人,甲部门选出的员工记为A ,乙部门选出的员工记为B ,假设所有员工睡眠的时间相互独立,求A 的睡眠时间不少于B 的睡眠时间的概率; (3)若将每天睡眠时间不少于7小时视为睡眠充足,现从丙部门抽出的员工中随机抽取3人做进一步的身体检查.用X 表示抽取的3人中睡眠充足的员工人数,求随机变量X 的分布列与数学期望. 20.(12分)已知椭圆2222:1x y C a b +=(0)a b >>与圆2225:()2M x y b ++=的一个公共点为1)-. (1)求椭圆C 的方程;(2)过点M 的直线l 与椭圆C 交于A 、B 两点,且A 是线段MB 的中点,求△OAB 的面积.21.(12分)已知函数()(ln 1)(1,0)f x ax x a x a =+->≠, (1)讨论函数()f x 的单调性; (2)当1x >时,2()()f x ax <,求证:21a e >.O CBAP揭阳市2018-2019学年度年高中二年级期末质量测试(理科)数学试题 第4页(共4页)(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4-4:坐标系与参数方程] (10分)在直角坐标系xOy 中,曲线C 的参数方程为2cos (3sin x y ααα=⎧⎨=⎩为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,点3(2,)4P π在直线:cos sin 0l m ρθρθ-+=上. (1)求曲线C 和直线l 的直角坐标方程;(2)若直线l 与曲线C 的相交于点A 、B ,求||||PA PB ⋅的值. 23. [选修4-5:不等式选讲] (10分)已知函数()2f x x a x a =+--. (1)若(1)2f >,求a 的取值范围;(2)x y R ∀∈、,()()6f x f y >-,求a 的取值范围.。
广东省揭阳市2018-2019学年高二下学期期末考试理科班数学试卷含有答案解析
广东省揭阳市2018-2019学年高二下学期期末考试理科班数学试卷一、选择题1、已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 没有公共点”是“平面α和平面β平行”的( )。
A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2、若集合,,则A .{1,2}B .{0,1,2}C .D .3、已知是虚数单位,若复数的实部与虚部相等,则的共轭复数=( )。
A .B .C .D .4、若,且,则( )A .B .C .D .5、已知抛物线的焦点是椭圆的一个焦点,则椭圆的离心率为( )A .B .C .D .6、在图的程序框图中,若输入的x 值为2,则输出的y 值为( )。
A .0B .C .D .………订…………○…7、已知向量,,则函数的最小正周期为()A.B.C.D.8、在区间上随机选取一个数,若的概率为,则实数的值为()A.B.2 C.4 D.59、某几何体的三视图如图所示,则该几何体的表面积是()A.B.C.D.10、在同一平面直角坐标系中,函数的图象与的图象关于直线对称,而函数的图象与的图象关于轴对称,若,则的值是()A.B.2 C.-2 D.11、已知直线:,点,. 若直线上存在点满足,则实数的取值范围为()A.B.C.D.12、已知函数=,若存在唯一的零点,且,则的取值范围为()A.B.C. D.二、填空题13、某次数学竞赛后,小军、小民和小乐分列前三名.老师猜测:“小军第一名,小民不是第一名,小乐不是第三名”.结果老师只猜对一个,由此推断:前三名依次为____________。
14、二项式的展开式中常数项为 。
15、已知实数满足不等式组,则的最小值为_____________。
16、在△ABC 中,角的对边分别为,已知是、的等差中项,且,则△面积的最大值为__________。
三、解答题17、已知等差数列满足;数列满足,,数列为等比数列。
广东省揭阳市2018届高三学业水平考试数学试卷(理)Word版含答案
广东省揭阳市2018届高三学业水平考试数学试卷(理)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效。
3.答案第Ⅱ卷时,将答案写在答题卡上,答在本试卷上无效。
4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,则(A)(B)(C)(D)2.复数的实部与虚部的和为(A)(B)(C)(D)3.在等差数列中,已知,则此数列的公差为(A)(B)(C)(D)4.如果双曲线经过点,且它的一条渐近线方程为,那么该双曲线的方程式(A)(B)(C)(D)5.利用计算机在区间(0,1)上产生随机数a,则不等式成立的概率是(A)(B)(C)(D)6.设是两个非零向量,则“”是“”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分又不必要条件7.已知奇函数的图像关于直线对称,且,则的值为(A)3 (B)0 (C)-3 (D)8.函数的最大值和最小正周期分别为(A)(B)(C)(D)9.某人以15万元买了一辆汽车,此汽车将以每年的速度折旧,图1是描述汽车价值变化的算法流程图,则当n=4时,最后输出的S的值为(A)9.6 (B)7.68(C)6.144 (D)4.915210.如图2,网格纸上小正方形是边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为(A)54 (B)162(C)(D)11.已知直线与圆心为C的圆相交于A,B两点,且,则实数a的值为(A)或(B)或(C)或(D)或12.若函数存在唯一的零点,则实数a的取值范围为(A)(B)(C)(D)第Ⅱ卷本卷包括必答题和选考题两部分,第13题~第21题为必答题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答。
_广东省揭阳市2018-2019学年高中毕业班理数学业水平考试试卷
()
D.
6. 已知命题 若
,则
列命题为真命题的是( )
;命题
A.
B.
C.
、 是直线, 为平面,若 // , D.
,则 // .下
答案第 2页,总 18页
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 姓名:____________班级:____________学号:___________
(2)求△OAB 的面积的最小值,并求此时 的值.
6. 已知函数
.
(1)当
时,求不等式
的解集;
(2)当
时,不等式
恒成立,求 的取值范围.
7. 已知数列 的前 n 项和为 ,且满足
,
.
(1)求数列 的通项公式;
(2)若等差数列 的前 n 项和为 ,且
,
,求数列
的前 项和 .
8. 如图,在三棱锥 P-ABC 中,正三角形 PAC 所在平面与等腰三角形 ABC 所在平面互相垂直,AB=BC,O
A . 从 2000 年至 2016 年,该地区环境基础设施投资额逐年增加; B . 2011 年该地区环境基础设施的投资额比 2000 年至 2004 年的投资总额还多; C . 2012 年该地区基础设施的投资额比 2004 年的投资额翻了两番 ; D . 为了预测该地区 2019 年的环境基础设施投资额,根据 2010 年至 2016 年的数据(时间变量 t 的值依
第 5页,总 18页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
2018届广东省揭阳市高三学业水平考试数学理(解析版)
广东省揭阳市2018届高三学业水平(期末)考试数学理一、选择题:共12题1. 已知==,则A.B.C.D.【答案】D所以=.故答案为:D. 2. 已知复数=为实数,为虚数单位)的实部与虚部相等,则A. B. C.D.【答案】B【解析】因为==的实部与虚部相等,所以,则, 所以, 则.故答案为:B. 3. 已知命题;命题若,则,下列命题为假命题的是A.B.C.D.【答案】C 【解析】因为=,所以命题p 是真命题,则命题是假命题; 若,则,但是,故命题q 是假命题,命题是真命题.所以命题是假命题,均为真命题,故选C. 4. 已知==,且的夹角为,则A.B. C.D.【答案】B【解析】因为==,且的夹角为, 所以=====.故答案为:B.5. 设x,y满足约束条件,则=的最小值为A. B. C. D. 0【答案】A【解析】作出不等式组所表示的平面区域,如图所示,由目标函数z与直线=在y轴上的截距之间的关系可知,平移直线=,当直线过点B(1,5)时,目标函数=取得最小值.故答案为:A.6. 函数的部分图象如图所示,则的解析式可以是A. B.C. D.【答案】C【解析】由函数的部分图象可知,该函数是偶函数,故排除B;当时,,故排除D;当x=1时,对于A选项,=,故排除A,因此选C.7. 如图程序框图是为了求出的常用对数值,那么在空白判断框中,应该填入A. B. C. D.【答案】A【解析】由题意,循环结构的功能是为了求出的值,当k=99时,此时S=,不满足结果,则继续循环,当k=100时,S=,满足结果,则循环结束,所以判断框中应该填入的条件为:.故答案为:A.8. 某几何体三视图如图所示,则此几何体的体积为A. B. C. D. 704【答案】C【解析】由三视图可知,该几何体是:上面是底面半径为4、高是3的圆锥,下面是底面为边长为8的正方形、高是10的长方体,所以该几何体的体积V==.故答案为:C.9. 已知,则A. B. C. D.【答案】B【解析】因为,所以,所以,故A错误;又,所以,所以,所以,B正确;又,所以的大小不确定,故C错误;由指数函数的单调性可知,由幂函数的单调性可知,所以的大小关系不确定,故D错误.则答案为B.点睛:这个题目考查的是比较指数和对数值的大小;一般比较大小的题目,常用的方法有:先估算一下每个数值,看能否根据估算值直接比大小;估算不行的话再找中间量,经常和0,1,-1比较;还可以构造函数,利用函数的单调性来比较大小。
广东省揭阳市2019届高三上学期期末学业水平考试理科数学试题
揭阳市2019届高三毕业班学业水平考试数学(理科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.复数的虚部是( )A. B. 2 C. D.【答案】C【解析】【分析】先用复数除法运算化简,由此求得其虚部.【详解】依题意,故虚部为.所以选C.【点睛】本小题主要考查复数除法的运算,考查复数虚部的概念,属于基础题.2.已知集合,,则( )A. B. C. D.【答案】C【解析】【分析】解分式不等式求得集合的取值范围,然后求两个集合的交集.【详解】对于集合,由得,解得,故,所以选C.【点睛】本小题主要考查一元二次不等式的解法,考查两个集合交集的概念及运算,属于基础题.3.已知命题若,则;命题、是直线,为平面,若//,,则//.下列命题为真命题的是( )A. B. C. D.【答案】B【解析】【分析】利用两边平方的方法判断命题是真命题,利用线面平行的性质判断命题是假命题,由此选出正确的选项.【详解】对于命题,将两边平方,可得到,故命题为真命题.对于命题,直线,但是有可能是异面直线,故命题为假命题,为真命题.所以为真命题,故选B. 【点睛】本小题主要考查不等式的性质,考查线面平行以及两条直线的位置关系,考查含有简单逻辑词命题真假性的判断,属于基础题.4.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确...的是( )A. 从2000年至2016年,该地区环境基础设施投资额逐年增加;B. 2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C. 2012年该地区基础设施的投资额比2004年的投资额翻了两番;D. 为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.【答案】D【解析】【分析】根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.5.函数的图象大致为( )A. B. C.D.【答案】A【解析】【分析】分别令,根据的函数值,对选项进行排除,由此得出正确选项.【详解】由四个选项的图像可知,令,,由此排除C选项.令,,由此排除B选项.由于,排除D选项.故本小题选A. 【点睛】本小题主要考查函数图像的判断,考查利用特殊点排除的方法,属于基础题.6.若满足约束条件,则的最小值为( )A. 1B. 2C. -2D. -1【答案】D【解析】【分析】画出可行域,通过向下平移基准直线到可行域边界的位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知,目标函数在点处取得最小值,且最大值为.故选D.【点睛】本小题主要考查利用线性规划求线性目标函数的最大值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画出可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.7.若,,,则的大小关系为( )A. B.C. D.【答案】A【解析】【分析】首先利用对数运算比较的大小,同理利用对数运算比较的大小,由此得到大小关系.【详解】由于,即.由于,即.所以,故选A.【点睛】本小题主要考查对数的运算公式,考查比较大小的方法,属于基础题.8.若点在抛物线上,记抛物线的焦点为,直线与抛物线的另一交点为B,则( )A. B. C. D.【答案】D【解析】【分析】将点的坐标代入抛物线方程求得的值,由此求得焦点的坐标,由此求得的值,联立直线的方程与抛物线的方程求得点的坐标,由此求得的值,而的夹角为,最后利用数量积的运算求得的值【详解】依题意易得,,由抛物线的定义得,联立直线AF的方程与抛物线的方程消去y得,得, 则,故.故选D.【点睛】本小题主要考查抛物线标准方程的求法,考查直线和抛物线交点坐标的求法,考查了向量数量积的运算.属于基础题.9.某几何体示意图的三视图如图示,已知其主视图的周长为8,则该几何体侧面积的最大值为( )A. B. C. D.【答案】C【解析】【分析】由三视图得到几何体为圆锥,设出圆锥的底面半径和母线长,根据主视图的周长得到一个等量关系,然后利用基本不等式求得侧面积的最大值.【详解】由三视图知,该几何体为圆锥,设底面的半径为r,母线的长为,则,又S侧=(当且仅当时“=”成立).故选C.【点睛】本小题主要考查由三视图还原为原图,考查圆锥的侧面积计算公式,考查利用基本不等式求最值,属于基础题.10.已知在区间上,函数与函数的图象交于点P,设点P在x轴上的射影为,的横坐标为,则的值为( )A. B. C. D.【答案】B【解析】【分析】利用两个函数图像相交,交点的坐标相同列方程,化简后求得的值,再利用正切的二倍角公式求得的值.【详解】依题意得,即.= .故选B.【点睛】本小题主要考查两个函数交点的性质,考查同角三角函数的基本关系式,考查正切的二倍角公式,属于基础题.11.已知双曲线C:的左、右焦点分别为,坐标原点O关于点的对称点为P,点P到双曲线的渐近线距离为,过的直线与双曲线C右支相交于M、N两点,若,的周长为10,则双曲线C的离心率为( )A. B. 2 C. D. 3【答案】B【解析】【分析】依题意得到点的坐标,利用点到渐近线的距离列方程,求得的值,根据双曲线的定义得周长的表达式,由此列方程求得,的值,进而求得双曲线的离心率.【详解】依题意得点P,,由双曲线的定义得周长为,由此得,,故.【点睛】本小题主要考查点和点对称的问题,考查点到直线距离公式,考查双曲线的定义以及双曲线离心率的求法,考查分析与求解的能力.属于中档题.双曲线的渐近线方程是.根据双曲线的定义,双曲线上任意一点到两个焦点的距离之差的绝对值为.12.如图,在三棱柱中,底面,∠ACB=90°,为上的动点,则的最小值为( )A. B. C. 5 D.【答案】C【解析】【分析】易得平面,故∠.将二面角沿展开成平面图形,此时的长度即的最小值,利用余弦定理求出这个最小值.【详解】由题设知△为等腰直角三角形,又平面,故∠=90°,将二面角沿展开成平面图形,得四边形如图示,由此,要取得最小值,当且仅当三点共线,由题设知∠,由余弦定理得.【点睛】本小题主要考查空间线面垂直关系的证明,考查空间两条线段长度和的最小值的求法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分.13.的展开式中的系数为_______;【答案】224【解析】【分析】先求得二项式展开式的通项公式,化简后求得的系数.【详解】二项式展开式的通项公式为,令,解得,故的系数为.【点睛】本小题主要考查二项式展开式的通项公式,考查二项式展开式指定项的系数,属于基础题.14.若向量、不共线,且,则_______;【答案】3【解析】【分析】先利用,求出的值,再求的值.【详解】由于,故,即,即,解得,当时,,两者共线,不符合题意.故.所以.【点睛】本小题主要考查平面向量垂直的表示,考查向量模的坐标表示,考查两个向量数量积的坐标表示.如果两个平面向量相互垂直,则它们的数量积为零.数量积运算有两种表示形式,一种是利用模和夹角来表示,即.另一种是用坐标来表示,即.15.已知函数,若,则实数的取值范围是_________;【答案】【解析】【分析】先判断函数是增函数且为奇函数,利用单调性和奇偶性将不等式转化为,解不等式求得的取值范围.【详解】因函数为增函数,且为奇函数,,,解得.【点睛】本小题主要考查函数的单调性,考查函数的奇偶性,考查利用单调性和奇偶性解抽象函数不等式,属于基础题.16.已知,则______.【答案】【解析】【分析】利用两角和的正弦、余弦公式,化简,由此求得函数的最小正周期,根据及函数的周期性,求得表达式的值.【详解】依题意可得,其最小正周期,且故【点睛】本小题主要考查三角函数恒等变换,考查两角和的正弦公式以及余弦公式,考查三角函数的周期性以及特殊角的三角函数值.两角和与差的正弦、余弦公式是有差别的,要记忆准确,不能记混.在求有关年份的题目时,往往是根据题目所给已知条件,找到周期,再根据周期性来求解.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.(一)必考题:共60分17.已知数列的前n项和为,且满足,.(1)求数列的通项公式;(2)若等差数列的前n项和为,且,,求数列的前项和.【答案】(1)(2)【解析】【分析】(1)令,求得的值,用求得的通项公式.(2)利用(1)的结论求得的值,利用基本元的思想求得的公差及通项公式,再利用裂项求和法求得前项和.【详解】解:(1)当时,,由得(),两式相减得,又,∴(),又,∴(),显然,,即数列是首项为3、公比为3的等比数列,∴;(2)设数列的公差为d,则有,由得,解得,∴,又∴.【点睛】本小题主要考查数列已知求的方法,考查利用基本元的思想求解等差数列的通项公式,考查裂项相消求和法. 基本元的思想是在等差数列中有个基本量,利用等差数列的通项公式或前项和公式,结合已知条件列出方程组,通过解方程组即可求得数列18.如图,在三棱锥P-ABC中,正三角形PAC所在平面与等腰三角形ABC所在平面互相垂直,AB=BC,O是AC中点,OH⊥PC于H.(1)证明:PC⊥平面BOH;(2)若,求二面角A-BH-O的余弦值.【答案】(1)详见解析(2)【解析】【分析】(1)先证明平面,得到,结合已知,证得平面.(2)以为空间坐标原点建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【详解】解:(1)∵AB=BC,O是AC中点,∴ BO⊥AC,又平面PAC⊥平面ABC,且平面ABC,平面PAC∩平面ABC=AC,∴ BO⊥平面PAC,∴ BO⊥PC,又OH⊥PC,BO∩OH=O,∴ PC⊥平面BOH;(2)易知PO⊥AC,又BO⊥平面PAC,如图,以O为原点,OB所在的直线为x轴,建立空间直角坐标系O - xyz,由易知,OC=2,,,∴ ,,,,,,,设平面ABH的法向量为,则, ∴,取x =2,得, 由(1)知是平面BHO 的法向量,易知,设二面角A-BH-O 的大小为,显然为锐角,则,∴ 二面角A-BH-O 的余弦值为.【点睛】本小题主要考查空间线面垂直的证明,考查利用空间向量法求二面角余弦值的方法,属于中档题.19.某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训,甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表,其中第一、二周达标的员工评为优秀.(1)在甲组内任选两人,求恰有一人优秀的概率;(2)每个员工技能测试是否达标相互独立,以频率作为概率.(i )设公司员工在方式一、二下的受训时间分别为、,求、的分布列,若选平均受训时间少的,则公司应选哪种培训方式?(ii )按(i )中所选方式从公司任选两人,求恰有一人优秀的概率. 【答案】(1)(2)(i )见解析(ii )【解析】 【分析】(1)甲组人中有人优秀,利用超几何分布概率计算公式,计算得“甲组内任选两人,求恰有一人优秀的概率”.(2)可能取值有,根据题目所给数据计算出每种取值对应的频率也即概率,由此得到分布列并其算出期望值.的所有可能取值为,根据题目所给数据计算出每种取值对应的频率也即概率,由此得到分布列并其算出期望值.根据两个期望值较小的即为选择.(3)先计算出从公司任选一人,优秀率为,再按照二项分布的概率计算公式计算得“从公司任选两人,求恰有一人优秀的概率”【详解】解:(1)甲组60人中有45人优秀,任选两人,恰有一人优秀的概率为;(2)(i)的分布列为,的分布列为,∵,∴公司应选培训方式一;(ii)按培训方式一,从公司任选一人,其优秀的概率为,则从公司任选两人,恰有一人优秀的概率为.【点睛】本小题主要考查利用超几何分布和二项分布计算概率,考查离散型随机变量分布列及其期望,属于中档题.20.已知椭圆:的上顶点为A,以A为圆心,椭圆的长半轴为半径的圆与y 轴的交点分别为、.(1)求椭圆的方程;(2)设不经过点A的直线与椭圆交于P、Q两点,且,试探究直线是否过定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.【答案】(1)(2)直线过定点【解析】【分析】(1)根据圆的圆心和半径写出圆的标准方程,令求得圆与轴交点的坐标,由此列方程组求得的值,进而求得椭圆的标准方程.(1)根据,利用点斜式设出直线的方程,并分别代入椭圆方程解出两点的坐标,由此求得直线的方程,由此求得定点的坐标为.【详解】解:(1)依题意知点A的坐标为,则以点A圆心,以为半径的圆的方程为:,令得,由圆A与y轴的交点分别为、可得,解得,故所求椭圆的方程为.(2)由得,可知PA的斜率存在且不为0,设直线-① 则-②将①代入椭圆方程并整理得,可得,则,类似地可得,由直线方程的两点式可得:直线的方程为,即直线过定点,该定点的坐标为.【点睛】本小题主要考查圆的标准方程和几何性质,考查直线和椭圆的位置关系,考查直线方程的两点式以及直线过定点的问题.属于中档题.要求直线和椭圆的交点坐标,需要联立直线和椭圆的方程,解方程组求得,这里需要较强的运算能力.直线过定点的问题,往往是将含有参数的部分合并,由此求得直线所过的定点.21.已知函数(,).(1)讨论函数的单调性;(2)当时,,求k的取值范围.【答案】(1)详见解析(2)或【解析】【分析】(1)将函数求导并化简,对分成两种情况,讨论函数的单调性.(2)原不等式即(),当时,上述不等式显然成立.当时,将不等式变为,构造函数,利用导数研究函数的单调性,由此求得的取值范围.【详解】解:(1).①若,当时,,在上单调递增;当时,,在上单调递减.②若,当时,,在上单调递减;当时,,在上单调递增.∴当时,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.(2)(),当时,上不等式成立,满足题设条件;当时,,等价于,设,则,设(),则,∴在上单调递减,得.①当,即时,得,,∴在上单调递减,得,满足题设条件;②当,即时,,而,∴,,又单调递减,∴当,,得,∴在上单调递增,得,不满足题设条件;综上所述,或.【点睛】本小题主要考查利用导数求解函数参数的函数单调性问题,考查利用导数求解含有参数不等式恒成立问题.对函数求导后,由于导函数含有参数,故需要对参数进行分类讨论,分类讨论标准的制定,往往要根据导函数的情况来作出选择,目标是分类后可以画出导函数图像,进而得出导数取得正、负的区间,从而得到函数的单调区间.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.已知曲线C的参数方程为(t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,过极点的两射线、相互垂直,与曲线C分别相交于A、B两点(不同于点O),且的倾斜角为锐角.(1)求曲线C和射线的极坐标方程;(2)求△OAB的面积的最小值,并求此时的值.【答案】(1)C的极坐标方程为,[或];的极坐标方程为;(2)16,【解析】【分析】(1)消去参数,求得曲线的普通方程,再转为极坐标方程.射线过原点,根据角度直接写出的极坐标方程.(2)利用极坐标方程求得的表达式,求得三角形面积的表达式,利用三角函数的的最值求得三角形面积的最小值,同时求得的值.【详解】解:(1)由曲线C的参数方程,得普通方程为,由,,得,所以曲线C的极坐标方程为,[或]的极坐标方程为;(2)依题意设,则由(1)可得,同理得,即,∴∵∴,∴,△OAB的面积的最小值为16,此时,得,∴.【点睛】本小题主要考查参数方程转化为极坐标方程,考查利用极坐标求三角形的面积,考查三角函数求最值,属于中档题.23.已知函数.(1)当时,求不等式的解集;(2)当时,不等式恒成立,求的取值范围.【答案】(1)(2)【解析】【分析】(1)当时,利用零点分段法去绝对值,解一元一次不等式求得不等式的解集.(2)当时,对函数去绝对值后,构造一次函数,一次函数恒大于或等于零,则需区间端点的函数值为非负数,由此列不等式组,解不等式组求得的取值范围.【详解】解:(1)①当时,,解得,②当时,,解得,③当时,解得,综上知,不等式的解集为.(2)当时,,设,则,恒成立,只需,即,解得【点睛】本小题主要考查利用零点分段法解含有两个绝对值的不等式,考查化归与转化的数学思想方法,属于中档题.。
2018-2019学年广东省揭阳市高中毕业班学业水平考试数学(理)试题(解析版)
2018-2019学年广东省揭阳市高中毕业班学业水平考试数学(理)试题一、单选题1.复数的虚部是( )A.B.2 C.D.【答案】C【解析】先用复数除法运算化简,由此求得其虚部.【详解】依题意,故虚部为.所以选C.【点睛】本小题主要考查复数除法的运算,考查复数虚部的概念,属于基础题.2.已知集合,,则( )A.B.C.D.【答案】C【解析】解分式不等式求得集合的取值范围,然后求两个集合的交集.【详解】对于集合,由得,解得,故,所以选C.【点睛】本小题主要考查一元二次不等式的解法,考查两个集合交集的概念及运算,属于基础题.3.已知命题若,则;命题、是直线,为平面,若//,,则//.下列命题为真命题的是( )A.B.C.D.【解析】利用两边平方的方法判断命题是真命题,利用线面平行的性质判断命题是假命题,由此选出正确的选项.【详解】对于命题,将两边平方,可得到,故命题为真命题.对于命题,直线,但是有可能是异面直线,故命题为假命题,为真命题.所以为真命题,故选B.【点睛】本小题主要考查不等式的性质,考查线面平行以及两条直线的位置关系,考查含有简单逻辑词命题真假性的判断,属于基础题.4.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确的是( )A.从2000年至2016年,该地区环境基础设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.【答案】D【解析】根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额得亿元,故选项描述不正确.所以本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题. 5.函数的图象大致为( )A.B.C.D.【答案】A【解析】分别令,根据的函数值,对选项进行排除,由此得出正确选项.【详解】由四个选项的图像可知,令,,由此排除C选项.令,,由此排除B选项.由于,排除D选项.故本小题选A.【点睛】本小题主要考查函数图像的判断,考查利用特殊点排除的方法,属于基础题.6.若满足约束条件,则的最小值为( )A.1 B.2 C.-2 D.-1【答案】D目标函数的最小值.【详解】画出可行域如下图所示,由图可知,目标函数在点处取得最小值,且最大值为.故选D.【点睛】本小题主要考查利用线性规划求线性目标函数的最大值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画出可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.7.若,,,则的大小关系为( )A.B.C.D.【答案】A【解析】首先利用对数运算比较的大小,同理利用对数运算比较的大小,由此得到大小关系.【详解】由于,即.由于,即.所以,故选A.【点睛】8.若点在抛物线上,记抛物线的焦点为,直线与抛物线的另一交点为B,则( )A.B.C.D.【答案】D【解析】将点的坐标代入抛物线方程求得的值,由此求得焦点的坐标,由此求得的值,联立直线的方程与抛物线的方程求得点的坐标,由此求得的值,而的夹角为,最后利用数量积的运算求得的值【详解】依题意易得,,由抛物线的定义得,联立直线AF的方程与抛物线的方程消去y得,得, 则,故.故选D.【点睛】本小题主要考查抛物线标准方程的求法,考查直线和抛物线交点坐标的求法,考查了向量数量积的运算.属于基础题.9.某几何体示意图的三视图如图示,已知其主视图的周长为8,则该几何体侧面积的最大值为( )A.B.C.D.【答案】C【解析】由三视图得到几何体为圆锥,设出圆锥的底面半径和母线长,根据主视图的周长得到一个等量关系,然后利用基本不等式求得侧面积的最大值.【详解】又S侧=(当且仅当时“=”成立).故选C.【点睛】本小题主要考查由三视图还原为原图,考查圆锥的侧面积计算公式,考查利用基本不等式求最值,属于基础题.10.已知在区间上,函数与函数的图象交于点P,设点P在x 轴上的射影为,的横坐标为,则的值为( )A.B.C.D.【答案】B【解析】利用两个函数图像相交,交点的坐标相同列方程,化简后求得的值,再利用正切的二倍角公式求得的值.【详解】依题意得,即.= .故选B.【点睛】本小题主要考查两个函数交点的性质,考查同角三角函数的基本关系式,考查正切的二倍角公式,属于基础题.11.已知双曲线C:的左、右焦点分别为,坐标原点O关于交于M、N两点,若,的周长为10,则双曲线C的离心率为( )A.B.2 C.D.3【答案】B【解析】依题意得到点的坐标,利用点到渐近线的距离列方程,求得的值,根据双曲线的定义得周长的表达式,由此列方程求得,的值,进而求得双曲线的离心率.【详解】依题意得点P,,由双曲线的定义得周长为,由此得,,故.【点睛】本小题主要考查点和点对称的问题,考查点到直线距离公式,考查双曲线的定义以及双曲线离心率的求法,考查分析与求解的能力.属于中档题.双曲线的渐近线方程是.根据双曲线的定义,双曲线上任意一点到两个焦点的距离之差的绝对值为.12.如图,在三棱柱中,底面,∠ACB=90°,为上的动点,则的最小值为( )A.B.C.5D.【答案】C【解析】易得平面,故∠.将二面角沿展开成平由题设知△为等腰直角三角形,又平面,故∠=90°,将二面角沿展开成平面图形,得四边形如图示,由此,要取得最小值,当且仅当三点共线,由题设知∠,由余弦定理得.【点睛】本小题主要考查空间线面垂直关系的证明,考查空间两条线段长度和的最小值的求法,属于中档题.二、填空题13.的展开式中的系数为_______;【答案】224【解析】先求得二项式展开式的通项公式,化简后求得的系数.【详解】二项式展开式的通项公式为,令,解得,故的系数为.【点睛】本小题主要考查二项式展开式的通项公式,考查二项式展开式指定项的系数,属于基础题.14.若向量、不共线,且,则_______;【解析】先利用,求出的值,再求的值.【详解】由于,故,即,即,解得,当时,,两者共线,不符合题意.故.所以.【点睛】本小题主要考查平面向量垂直的表示,考查向量模的坐标表示,考查两个向量数量积的坐标表示.如果两个平面向量相互垂直,则它们的数量积为零.数量积运算有两种表示形式,一种是利用模和夹角来表示,即.另一种是用坐标来表示,即.15.已知函数,若,则实数的取值范围是_________;【答案】【解析】先判断函数是增函数且为奇函数,利用单调性和奇偶性将不等式转化为,解不等式求得的取值范围.【详解】因函数为增函数,且为奇函数,,,解得.【点睛】本小题主要考查函数的单调性,考查函数的奇偶性,考查利用单调性和奇偶性解抽象函数不等式,属于基础题.16.已知,则______.【答案】【解析】利用两角和的正弦、余弦公式,化简,由此求得函数的最小正周期,根据及函数的周期性,求得表达式的值.依题意可得,其最小正周期,且故【点睛】本小题主要考查三角函数恒等变换,考查两角和的正弦公式以及余弦公式,考查三角函数的周期性以及特殊角的三角函数值.两角和与差的正弦、余弦公式是有差别的,要记忆准确,不能记混.在求有关年份的题目时,往往是根据题目所给已知条件,找到周期,再根据周期性来求解.三、解答题17.已知数列的前n项和为,且满足,.(1)求数列的通项公式;(2)若等差数列的前n项和为,且,,求数列的前项和.【答案】(1)(2)【解析】(1)令,求得的值,用求得的通项公式.(2)利用(1)的结论求得的值,利用基本元的思想求得的公差及通项公式,再利用裂项求和法求得前项和.【详解】解:(1)当时,,由得(),两式相减得,又,∴(),又,∴(),显然,,即数列是首项为3、公比为3的等比数列,∴;∴,又∴.【点睛】本小题主要考查数列已知求的方法,考查利用基本元的思想求解等差数列的通项公式,考查裂项相消求和法.基本元的思想是在等差数列中有个基本量,利用等差数列的通项公式或前项和公式,结合已知条件列出方程组,通过解方程组即可求得数列18.如图,在三棱锥P-ABC中,正三角形PAC所在平面与等腰三角形ABC所在平面互相垂直,AB=BC,O是AC中点,OH⊥PC于H.(1)证明:PC⊥平面BOH;(2)若,求二面角A-BH-O的余弦值.【答案】(1)详见解析(2)【解析】(1)先证明平面,得到,结合已知,证得平面.(2)以为空间坐标原点建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【详解】解:(1)∵AB=BC,O是AC中点,∴ BO⊥AC,又平面PAC⊥平面ABC,且平面ABC,平面PAC∩平面ABC=AC,∴ BO⊥平面PAC,∴ BO⊥PC,又OH⊥PC,BO∩OH=O,∴ PC⊥平面BOH;(2)易知PO⊥AC,又BO⊥平面PAC,如图,以O为原点,OB所在的直线为x轴,建立空间直角坐标系O - xyz,由易知,OC=2,,,∴ ,,,,,,,设平面ABH的法向量为,则,∴,取x=2,得,由(1)知是平面BHO的法向量,易知,设二面角A-BH-O的大小为,显然为锐角,则,∴ 二面角A-BH-O的余弦值为.【点睛】本小题主要考查空间线面垂直的证明,考查利用空间向量法求二面角余弦值的方法,属于中档题.19.某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训,甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表,其中第一、二周达标的员工评为优秀.(1)在甲组内任选两人,求恰有一人优秀的概率;(2)每个员工技能测试是否达标相互独立,以频率作为概率.(i)设公司员工在方式一、二下的受训时间分别为、,求、的分布列,若选平均受训时间少的,则公司应选哪种培训方式?(ii)按(i)中所选方式从公司任选两人,求恰有一人优秀的概率.【答案】(1)(2)(i)见解析(ii)【解析】(1)甲组人中有人优秀,利用超几何分布概率计算公式,计算得“甲组内任选两人,求恰有一人优秀的概率”.(2)可能取值有,根据题目所给数据计算出每种取值对应的频率也即概率,由此得到分布列并其算出期望值.的所有可能取值为,根据题目所给数据计算出每种取值对应的频率也即概率,由此得到分布列并其算出期望值.根据两个期望值较小的即为选择.(3)先计算出从公司任选一人,优秀率为,再按照二项分布的概率计算公式计算得“从公司任选两人,求恰有一人优秀的概率”【详解】解:(1)甲组60人中有45人优秀,任选两人,恰有一人优秀的概率为;(2)(i)的分布列为,的分布列为,∵,∴公司应选培训方式一;(ii)按培训方式一,从公司任选一人,其优秀的概率为,则从公司任选两人,恰有一人优秀的概率为.【点睛】本小题主要考查利用超几何分布和二项分布计算概率,考查离散型随机变量分布列及其期望,属于中档题.20.已知椭圆:的上顶点为A,以A为圆心,椭圆的长半轴为半径的圆与y轴的交点分别为、.(1)求椭圆的方程;(2)设不经过点A的直线与椭圆交于P、Q两点,且,试探究直线是否过定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.【答案】(1)(2)直线过定点【解析】(1)根据圆的圆心和半径写出圆的标准方程,令求得圆与轴交点的坐标,由此列方程组求得的值,进而求得椭圆的标准方程.(1)根据,利用点斜式设出直线的方程,并分别代入椭圆方程解出两点的坐标,由此求得直线的方程,由此求得定点的坐标为.【详解】解:(1)依题意知点A的坐标为,则以点A圆心,以为半径的圆的方程为:,令得,由圆A与y轴的交点分别为、可得,解得,故所求椭圆的方程为.(2)由得,可知PA的斜率存在且不为0,设直线-① 则-②将①代入椭圆方程并整理得,可得,则,类似地可得,由直线方程的两点式可得:直线的方程为,即直线过定点,该定点的坐标为.【点睛】本小题主要考查圆的标准方程和几何性质,考查直线和椭圆的位置关系,考查直线方程的两点式以及直线过定点的问题.属于中档题.要求直线和椭圆的交点坐标,需要联立直线和椭圆的方程,解方程组求得,这里需要较强的运算能力.直线过定点的问题,往往是将含有参数的部分合并,由此求得直线所过的定点.21.已知函数(,).(1)讨论函数的单调性;(2)当时,,求k的取值范围.【答案】(1)详见解析(2)或【解析】(1)将函数求导并化简,对分成两种情况,讨论函数的单调性.(2)原不等式即(),当时,上述不等式显然成立.当时,将不等式变为,构造函数,利用导数研究函数的单调性,由此求得的取值范围.【详解】解:(1).①若,当时,,在上单调递增;当时,,在上单调递减.②若,当时,,在上单调递减;当时,,在上单调递增.∴当时,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.(2)(),当时,上不等式成立,满足题设条件;当时,,等价于,设,则,设(),则,∴在上单调递减,得.①当,即时,得,,∴在上单调递减,得,满足题设条件;②当,即时,,而,∴,,又单调递减,∴当,,得,∴在上单调递增,得,不满足题设条件;综上所述,或.【点睛】本小题主要考查利用导数求解函数参数的函数单调性问题,考查利用导数求解含有参数不等式恒成立问题.对函数求导后,由于导函数含有参数,故需要对参数进行分类讨论,分类讨论标准的制定,往往要根据导函数的情况来作出选择,目标是分类后可以画出导函数图像,进而得出导数取得正、负的区间,从而得到函数的单调区间.22.已知曲线C的参数方程为(t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,过极点的两射线、相互垂直,与曲线C分别相交于A、B两点(不同于点O),且的倾斜角为锐角.(1)求曲线C和射线的极坐标方程;(2)求△OAB的面积的最小值,并求此时的值.【答案】(1)C的极坐标方程为,[或];的极坐标方程为;(2)16,【解析】(1)消去参数,求得曲线的普通方程,再转为极坐标方程.射线过原点,根据角度直接写出的极坐标方程.(2)利用极坐标方程求得的表达式,求得三角形面积的表达式,利用三角函数的的最值求得三角形面积的最小值,同时求得的值.【详解】解:(1)由曲线C的参数方程,得普通方程为,由,,得,所以曲线C的极坐标方程为,[或]的极坐标方程为;(2)依题意设,则由(1)可得,同理得,即,∴∵∴,∴,△OAB的面积的最小值为16,此时,得,∴.【点睛】本小题主要考查参数方程转化为极坐标方程,考查利用极坐标求三角形的面积,考查三角函数求最值,属于中档题.23.已知函数.(1)当时,求不等式的解集;(2)当时,不等式恒成立,求的取值范围.【答案】(1)(2)【解析】(1)当时,利用零点分段法去绝对值,解一元一次不等式求得不等式的解集.(2)当时,对函数去绝对值后,构造一次函数,一次函数恒大于或等于零,则需区间端点的函数值为非负数,由此列不等式组,解不等式组求得的取值范围.【详解】解:(1)①当时,,解得,②当时,,解得,③当时,解得,综上知,不等式的解集为.(2)当时,,设,则,恒成立,只需,即,解得【点睛】本小题主要考查利用零点分段法解含有两个绝对值的不等式,考查化归与转化的数学思想方法,属于中档题.。
广东省揭阳市2019届高三上学期期末学业水平调研数学(理)试题Word版含答案
绝密★启用前揭阳市2018-2019学年度高中毕业班学业水平考试数学(理科)本试卷共23题,共150分,共4页,考试结束后将本试卷和答题卡一并收回. 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题目的顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.复数121z i i =++-的虚部是 A .52 B .2 C . 32 D .32i2.已知集合3{|0}1x A x x -=≤+,{1,1,2,3}B =-,则A B = A .{1,2} B .{0,1,2} C .{1,2,3} D .{1,1,2,3}-3.已知命题:p 若||a b >,则22a b >;命题:q m 、n 是直线,α为平面,若m //α,n α⊂,则m //n .下列命题为真命题的是 A .p q ∧ B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝4.如图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.则下列结论中表述不正确...的是 A.从2000年至2016年,该地区环境基础 设施投资额逐年增加; B.2011年该地区环境基础设施的投资额比 2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立了投资额y 与时间变量t 的线性回归模型ˆ9917.5yt =+,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元. 5. 函数1()ln ||f x x x=+的图象大致为P B 1C 1A 1CB A6. 若,x y 满足约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩,则2x z y =-+的最小值为A . 1B .2C .-2D .-17.若2log 3a =,4log 8b =,5log 8c =,则,,a b c 的大小关系为A .a b c >>B .a c b >>C .b a c >>D .c b a >>8.若点A 在抛物线2:2C y px =上,记抛物线C 的焦点为F ,直线AF 与抛物线的另一交点为B ,则FA FB ⋅=A .10- B3 C .3- D .92-9.某几何体示意图的三视图如图示,已知其主视图的周长为8, 则该几何体侧面积的最大值为 A .πB .2πC .4πD .16π10.已知在区间[0,]π上,函数3sin2xy =与函数y =P ,设点P 在x 轴上的射影为'P ,'P 的横坐标为0x ,则0tan x 的值为A .12B .43 C .45 D .815 11.已知双曲线C :22221x y a b-=(0,0)a b >>的左、右焦点分别为12F F 、,坐标原点O 关于点2F 的对称点为P ,点P到双曲线的渐近线距离为2F 的直线与双曲线C 右支相交于M 、N 两点,若||3MN =,1F MN ∆的周长为10,则双曲线C 的离心率为A .32B .2C .52D .312. 如图,在三棱柱111ABC A B C -中,1AA ⊥底面111A B C ,∠ACB=90°,11BC CC ==,AC =P 为1BC 上的动点,则1CP PA +的最小值为A.B.1+C .5D.1+OHCAP二、填空题:本题共4小题,每小题5分,共20分.13.821)x 的展开式中1x的系数为_______;14.若向量(1,)a x =、(1,2)b =--不共线,且()()a b a b +⊥-,则a b ⋅=_______;15. 已知函数3()2f x x x =+,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 ; 16.已知()sin[(1)](1)]33f x x x ππ=++,则(1)(2)(2019)f f f +++= .三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.(一)必考题:共60分17.(12分)已知数列{}n a 的前n 项和为n S ,且满足13a =,123n n S a ++=. (1)求数列{}n a 的通项公式;(2)若等差数列{}n b 的前n 项和为n T ,且11T a =,33T a =,求数列11{}n n b b +的前n 项和n Q .18.(12分)如图,在三棱锥P-ABC 中,正三角形P AC 所在平面与等腰三角形 ABC 所在平面互相垂直,AB =BC ,O 是AC 中点,OH ⊥PC 于H . (1)证明:PC ⊥平面BOH ; (2)若OH OB ==,求二面角A-BH-O 的余弦值.19.(12分)某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训,甲组选方式一,乙组选方式二,并记录每周培训后测试达(1)在甲组内任选两人,求恰有一人优秀的概率;(2)每个员工技能测试是否达标相互独立,以频率作为概率.(i )设公司员工在方式一、二下的受训时间分别为1ξ、2ξ,求1ξ、2ξ的分布列,若选平均受训时间少的,则公司应选哪种培训方式?(ii )按(i )中所选方式从公司任选两人,求恰有一人优秀的概率. 20.(12分)已知椭圆C :22221(0)x y a b a b+=>>的上顶点为A,以A 为圆心,椭圆的长半轴为半径的圆与y 轴的交点分别为(0,1、(0,1. (1)求椭圆C 的方程;(2)设不经过点A 的直线l 与椭圆C 交于P 、Q 两点,且0AP AQ ⋅=,试探究直线l 是否过定点?若过定点,求出该定点的坐标,若不过定点,请说明理由. 21.(12分)已知函数1()kxkx f x ke-=(k R ∈,0k ≠). (1)讨论函数()f x 的单调性;(2)当1x ≥时,()ln x f x k≤,求k 的取值范围. (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4-4:坐标系与参数方程] (10分)已知曲线C 的参数方程为22x ty t=⎧⎨=⎩(t 为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,过极点的两射线1l 、2l 相互垂直,与曲线C 分别相交于A 、B 两点(不同于点O ),且1l 的倾斜角为锐角α.(1)求曲线C 和射线2l 的极坐标方程;(2)求△OAB 的面积的最小值,并求此时α的值. 23. [选修4-5:不等式选讲] (10分)已知函数()|2||2|f x x a x =--+, (1)当a =2时,求不等式()2f x <的解集;(2)当[2,2]x ∈-时不等式()f x x ≥恒成立,求a 的取值范围.揭阳市2018-2019学年度高中毕业班学业水平考试数学(理科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后3211PA 1C 1BC 续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一、选择题DC解析:8.依题意易得2p =,(1,0)F ,由抛物线的定义得||3FA =,联立直线AF 的方程与抛物线的方程消去y 得22520x x -+=,得121,2B B x x ==,则13||(1)22FB =--=,故FA FB ⋅=92-. 9. 由三视图知,该几何体为圆锥,设底面的半径为r ,母线的长为l ,则2284r l r l +=⇒+=,又S 侧=2()42r l rl πππ+≤=(当且仅当r l =时“=”成立) 10. 依题意得0003sin sin cos 222x x x ==+ 01tan 22x ⇒=04tan 3x ⇒=.11. 依题意得点P (2,0)c 2b b ==⇒=1F MN ∆周长为4610a +=,由此得1a =,2c =,故2e =.12. 由题设知△1CC B 为等腰直角三角形,又11AC ⊥平面11BCC B ,故∠11AC B =90°,将二面角11A BC C --沿1BC 展开成平面图形,得四边形11AC CB 如图示,由此,1CP PA +要取得最小值,当且 仅当1C P A 、、三点共线,由题设知∠1135CC A =,由余弦定理得22112cos135AC =+-⨯25=15AC ⇒=. 15.因函数()f x 为增函数,且为奇函数,22(1)(2)0(2)(1)(1)f a f a f a f a f a -+≤⇔≤--=-,2210a a ⇔+-≤,解得112a -≤≤.【学生填112a -≤≤或1[1,]2-或1{|1}2a a -≤≤都给满分】16. 依题意可得()2sin 3f x x π=,其最小正周期6T =,且(1)(2)(6)0,f f f +++=故(1)(2)(2019)f f f +++=(1)(2)(3)f f f ++=三、解答题AOHCB AP17.解:(1)当1n =时,29a =,----------------------------------------------------------------------------1分由123n n S a ++=得123n n S a -+=(2n ≥),两式相减得112()n n n n S S a a -+-=-,又1n n n S S a --=,∴13n n a a +=(2n ≥), ------------------------------------------------------------------------------3分又213a a =,∴13n n a a +=(*n N ∈), --------------------------------------------------------4分显然0n a ≠,13n na a +=,即数列{}n a 是首项为3、公比为3的等比数列, ∴1333n n n a -=⨯=; --------------------------------------------------------------------------------6分(2)设数列{}n b 的公差为d ,则有13b =,由33T a =得13327b d +=,解得6d =,--------8分∴36(1)3(21)n b n n =+-=-,--------------------------------------------------------------------9分 又111111()9(21)(21)182121n n b b n n n n +==--+-+--------------------------------------------10分∴111111[(1)()()]183352121n Q n n =-+-++--+ 11(1)1821n =-+9(21)n n =+.--------------------------------------------------------------------12分18.解:(1)∵AB =BC ,O 是AC 中点,∴ BO ⊥AC ,---------------------------------------------1分 又平面P AC ⊥平面ABC ,且BO ⊂平面ABC ,平面P AC ∩平面ABC =AC , ∴ BO ⊥平面P AC ,-------------------------------------3分 ∴ BO ⊥PC ,又OH ⊥PC ,BO ∩OH =O ,∴ PC ⊥平面BOH ;------------------------------------5分 (2)易知PO ⊥AC ,又BO ⊥平面P AC ,如图,以O 为原点,OB 所在的直线为x 轴,建立空间直角坐标系O - xyz ,由OH =易知PO =OC =2,3cos302H y OH =︒=,sin 30H z OH =︒=, ∴ (0,2,0)A -,0,0)B,3(0,,2H ,)0,2,0(C ,)32,0,0(P ,(3,2,0)AB =,7(0,,2AH =, -----------------------------------7分 设平面ABH 的法向量为(,,)m x y z =, 则00AB m AH m ⎧⋅=⎪⎨⋅=⎪⎩,∴2070y y +=+=⎪⎩,取x =2,得(2,3,7)m =-,----------------------9分由(1)知PC是平面BHO 的法向量,易知(0,2,PC =-,------10分 设二面角A-BH-O 的大小为θ,显然θ为锐角, 则cos |cos ,|m PC θ=<>||||||m PC m PC⋅=⋅=7== ∴ 二面角A-BH-O 的余弦值为7.------------------------------------------------------------12分【其它解法请参照给分】 19.解:(1)甲组60人中有45人优秀,任选两人,恰有一人优秀的概率为1145152604515453059118C C C ⨯==⨯;--------------------------------------------3分(2)(i )1ξ的分布列为1()510152*********E ξ=⨯+⨯+⨯+⨯=,----------------------------------------------6分2241441164()481216415153151515E ξ=⨯+⨯+⨯+⨯=⨯=, ∵12()()E E ξξ<,∴公司应选培训方式一;----------------------------------------------------9分(ii )按培训方式一,从公司任选一人,其优秀的概率为1533124+=, 则从公司任选两人,恰有一人优秀的概率为12333(1)448C ⨯⨯-=.-------------------------12分20. 解:(1)依题意知点A 的坐标为(0,)b ,则以点A 圆心,以a 为半径的圆的方程为:222()x y b a +-=,------------------------------------------------------------------------------------1分令0x =得y b a =±,由圆A 与y轴的交点分别为(0,1、(0,1可得11b a b a ⎧+=⎪⎨-=⎪⎩,解得1,b a ==-------------------------------------------------------3分故所求椭圆C 的方程为2213x y +=.----------------------------------------------------------------4分(2)解法1:由0AP AQ ⋅=得AP AQ ⊥,可知PA 的斜率存在且不为0,设直线:1PA l y kx =+---------------① 则1:1QA l y x k=-+-------------②----------------------6分将①代入椭圆方程并整理得22(13)60k x kx ++=,可得2613P kx k =-+,则22113P y k=-+,-------------------------------------------------------------------------------------------------8分类似地可得2266,133Q Qk x y k k ==-++,----------------------------------------------------------9分由直线方程的两点式可得:直线l 的方程为 21142k y x k -=-,------------------------------11分即直线l 过定点,该定点的坐标为1(0,)2-.---------------------------------------------------------12分【解法2:若直线l 垂直于x 轴,则AP 不垂直于AQ ,不合题意,可知l 的斜率存在,又l 不过点(0,1),设l 的方程为y kx m =+(1)m ≠, 又设点1122(,)(,)P x y Q x y 、,则1122(,1),(,1)AP x y AQ x y =-=-,由0AP AQ ⋅=得121212()10x x y y y y +-++=,由2233y kx m x y =+⎧⎨+=⎩,消去y 得222(31)6330k x kmx m +++-=,----------------------------6分2212(31)k m ∆=-+,当0∆>即22310k m -+>时,122631kmx x k +=-+-------① 21223331m x x k -=+---------②-----------------------------------------7分又22121212()y y k x x mk x x m =+++,1212()2y y k x x m +=++,--------------------------8分于是有221212(1)()()210k x x mk k x x m m ++-++-+=,-----------③---------------------9分将①②代入③得22222336(1)()2103131m kmk mk k m m k k -+--+-+=++ 整理得:12m =-,--------------------------------------------------------------------------------------11分满足0∆>,这时直线l 的方程为12y kx =-,直线l 过定点1(0,)2-.------------------12分】 (21)解:(1)21(1)'()()kx kxkx ke kx kef x k e --=⋅2kx kx e -=2()kx k x k e--=.--------------------------1分①若0k >,当2(,)x k ∈-∞时,'()0f x >,()f x 在2(,)k-∞上单调递增; 当2(,)x k ∈+∞时,'()0f x <,()f x 在2(,)k+∞上单调递减.----------------------3分②若0k <,当2(,)x k ∈-∞时,'()0f x <,()f x 在2(,)k-∞上单调递减; 当2(,)x k ∈+∞时,'()0f x >,()f x 在2(,)k+∞上单调递增.∴当0k >时,()f x 在2(,)k -∞上单调递增,在2(,)k+∞上单调递减;当0k <时,()f x 在2(,)k -∞上单调递减,在2(,)k+∞上单调递增.-------------------5分(2)1()ln xx x f x k ke-=≤(1x ≥), 当0k <时,上不等式成立,满足题设条件;-----------------------------------------------------6分当0k >时,1()ln x x x f x k ke -=≤,等价于1ln 0xx k x e --≤, 设1()ln (1)x x g x k x x e -=-≥,则2'()x x k g x e x -=-22xxx x ke xe --=,设2()2x h x x x ke =--(1x ≥),则'()2(1)0x h x x ke =--<,∴()h x 在[1,)+∞上单调递减,得()(1)1h x h ke ≤=-.-------------------------------------9分①当10ke -≤,即1k e≥时,得()0h x ≤,'()0g x ≤, ∴()g x 在[1,)+∞上单调递减,得()(1)0g x g ≤=,满足题设条件;--------------------10分②当10ke ->,即10k e<<时,(1)0h >,而0)2(2<-=ke h , ∴0(1,2)x ∃∈,0()0h x =,又()h x 单调递减, ∴当0(1,)x x ∈,()0h x >,得'()0g x >,∴()g x 在0[1,)x 上单调递增,得()(1)0g x g ≥=,不满足题设条件; 综上所述,0k <或1k e≥.--------------------------------------------------------------------------12分22. 解:(1)由曲线C 的参数方程,得普通方程为24y x =,由cos x ρθ=,sin y ρθ=,得224sin cos ρθρθ=,所以曲线C 的极坐标方程为2cos 4sin ρθθ=,[或24sin cos θρθ=] ---------------------------3分2l 的极坐标方程为2πθα=+; --------------------------------------------------------------------5分(2)依题意设(,),(,)2A B A B πραρα+,则由(1)可得24sin cos A αρα=, 同理得24sin()2cos ()2B παρπα+=+,即24cos sin B αρα=,-------------------------------------------------7分 ∴11||||||22OAB A B S OA OB ρρ∆=⋅=⋅228|sin cos |cos sin αααα⋅=⋅ ∵02πα<<∴0απ<<,∴8cos sin OAB S αα∆=⋅16sin 2α=16≥, -----------------9分△OAB 的面积的最小值为16,此时sin 21α=, 得22πα=,∴4πα=. --------------------------------------------------------------------------10分23.解:(1)①当2x <-时,()22(2)62f x x x x =-+++=+<,解得4x <-,---------------------------------------------------------------------------------------------1分②当22x -≤<时,()22(2)322f x x x x =-+-+=--<, 解得423x -<<,----------------------------------------------------------------------------------------2分③当2x ≥时,()22(2)62f x x x x =--+=--<解得2x ≥,----------------------------------------------------------------------------------------------3分综上知,不等式()2f x <的解集为4(,4)(,)3-∞--+∞.-----------------------------------5分(2)解法1:当[2,2]x ∈-时,()2(2)(1)2(1)f x x a x a x a =--+=-++-,---------------6分设()()g x f x x =-,则[2,2]x ∀∈-,()(2)2(1)0g x a x a =-++-≥恒成立,只需(2)0(2)0g g -≥⎧⎨≥⎩, -------------------------------------------------------------------------------------8分 即60420a ≥⎧⎨--≥⎩,解得12a ≤-----------------------------------------------------------------------10分【解法2:当[2,2]x ∈-时,()2(2)f x x a x =--+,------------------------------------------------6分()f x x ≥,即2(2)x a x x --+≥,即(2)2(1)x a x +≤-----------------------------------7分①当2x =-时,上式恒成立,a R ∈;-----------------------------------------------------------8分②当(2,2]x ∈-时,得2(1)2x a x -≤+622x =-++恒成立, 只需min 61(2)22a x ≤-+=-+, 综上知,12a ≤-. --------------------------------------------------------------------------------10分】。
2018-2019学年广东省揭阳市高二下学期期末考试数学(理)试题Word版含解析
2018-2019学年广东省揭阳市高二下学期期末考试数学(理)试题一、单选题1.已知集合{}|1M x x =>-,2,{}|N y y x x M ==-∈,则M N =( )A .()1,-+∞B .()2,+∞C .()1,2-D .(),2-∞【答案】C【解析】由集合M ={x |x >﹣1},得N ={y |y =﹣2x ,x ∈M }={x |x <2},由此能求出M ∩N . 【详解】∵集合M ={x |x >﹣1},∴N ={y |y =﹣2x ,x ∈M }={x |x <2}, 则M ∩N ={x |﹣1<x <2}=(﹣1,2). 故选:C . 【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.已知复数z 满足(1)1i z i +⋅=-,则z 的共轭复数z =( ) A .i B .12i C .12i -D .i -【答案】A【解析】由条件求出z ,可得复数z 的共轭复数. 【详解】∵z (1+i )=1﹣i ,∴z ()()21(1)111i i i i i --===-++-i , ∴z 的共轭复数为i , 故选:A . 【点睛】本题主要考查共轭复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.已知3cos tan 4θθ⋅=,则sin 22πθ⎛⎫-= ⎪⎝⎭( ) A .37B .7±C .12-D .18-【答案】D【解析】利用同角三角函数基本关系式,诱导公式,二倍角的余弦函数公式即可求值得解. 【详解】∵cosθ•tanθ=sinθ34=, ∴sin (22πθ-)=cos2θ=1﹣2sin 2θ=1﹣2231()48⨯=-. 故选:D . 【点睛】本题主要考查了同角三角函数基本关系式,诱导公式,二倍角的余弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 4.函数()ln ||(ln ||1)f x x x =+的图象大致为( )A .B .C .D .【答案】A【解析】根据题意,分析函数f (x )的奇偶性以及在区间(0,1e)上,有f (x )>0,据此分析选项,即可得答案. 【详解】根据题意,f (x )=ln |x |(ln |x |+1),有f (﹣x )=ln |﹣x |(ln |﹣x |+1)=ln |x |(ln |x |+1)=f (x ),则f (x )为偶函数,排除C 、D , 当x >0时,f (x )=lnx (lnx +1),在区间(0,1e)上,lnx <﹣1,则有lnx +1<0,则f (x )=lnx (lnx +1)>0,排除B ;故选:A . 【点睛】本题考查函数的图象分析,一般用排除法分析,属于基础题.5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于同一个常数.若第一个单音的频率为f ,则第十个单音的频率为( )A .BC D【答案】B【解析】根据题意,设单音的频率组成等比数列{a n },设其公比为q ,由等比数列的通项公式可得q 的值,进而计算可得答案. 【详解】根据题意,设单音的频率组成等比数列{a n },设其公比为q ,(q >0)则有a 1=f ,a 3=,则q 2=q =第十个单音的频率a 10=a 1q 9=()9f =,故选:B . 【点睛】本题考查等比数列的通项公式,关键是求出该等比数列的公比,属于基础题. 6.已知两条不同直线a 、b ,两个不同平面α、β,有如下命题: ①若//a α,b α⊂ ,则//a b ; ②若//a α,//b α,则//a b ; ③若//αβ,a α⊂,则//a β; ④若//αβ,a α⊂,b β⊂,则//a b 以上命题正确的个数为( ) A .3 B .2C .1D .0【答案】C【解析】直接利用空间中线线、线面、面面间的位置关系逐一判定即可得答案. 【详解】①若a ∥α,b ⊂α,则a 与b 平行或异面,故①错误;②若a ∥α,b ∥α,则a ∥b ,则a 与b 平行,相交或异面,故②错误;③若//αβ,a⊂α,则a与β没有公共点,即a∥β,故③正确;④若α∥β,a⊂α,b⊂β,则a与b无公共点,∴平行或异面,故④错误.∴正确的个数为1.故选:C.【点睛】本题考查命题真假的判断,考查直线与平面之间的位置关系,涉及到线面、面面平行的判定与性质定理,是基础题.7.若x,y满足约束条件102103x yx yx-+≥⎧⎪--≤⎨⎪≤⎩,则2z y x=-的最大值为()A.2-B.1 C.2 D.4【答案】D【解析】已知x,y满足约束条件102103x yx yx-+≥⎧⎪--≤⎨⎪≤⎩,画出可行域,目标函数z=y﹣2x,求出z与y轴截距的最大值,从而进行求解;【详解】∵x,y满足约束条件102103x yx yx-+≥⎧⎪--≤⎨⎪≤⎩,画出可行域,如图:由目标函数z=y﹣2x的几何意义可知,z在点A出取得最大值,A(﹣3,﹣2),∴z max=﹣2﹣2×(﹣3)=4,故选:D.【点睛】在解决线性规划的小题时,常用步骤为:①由约束条件画出可行域⇒②理解目标函数的几何意义,找出最优解的坐标⇒③将坐标代入目标函数,求出最值;也可将可行域各个角点的坐标代入目标函数,验证,求出最值.8.已知2a e =,2b e = ,1123e⎛⎫= ⎪⎝⎭ ,(e 为自然对数的底)则a ,b ,c 的大小关系为( ) A .c a b >> B .c b a >> C .b a c >> D .a b c >>【答案】A【解析】根据条件即可得出,a =log 2e ,b =ln 2,c =log 23,容易得出log 23>log 2e >1,ln 2<1,从而得出a ,b ,c 的大小关系. 【详解】∵1122()23abce e ===,,; ∴21221233a log eb lnc log log ====,,; ∵log 23>log 2e >log 22=1,ln 2<lne =1; ∴c >a >b . 故选:A . 【点睛】本题考查指数式和对数式的互化,对数的换底公式,考查了利用对数函数的单调性比较大小的问题,属于基础题.9.从分别标有1,2,…,9的9张卡片中有放回地随机抽取5次,每次抽取1张.则恰好有2次抽到奇数的概率是( )A .235499⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ B .23255499C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .234599⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D .32355499C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】先求出每次抽到奇数的概率,再利用n 次独立重复试验中恰好发生k 的概率计算公式求出结果. 【详解】每次抽到奇数的概率都相等,为59,故恰好有2次抽到奇数的概率是25C •259⎛⎫ ⎪⎝⎭•349⎛⎫ ⎪⎝⎭, 故选:B . 【点睛】本题主要考查n 次独立重复试验中恰好发生k 的概率计算公式的应用,属于基础题.10.双曲线C :22219x y b-=的左、右焦点分别为1F 、2F ,P 在双曲线C 上,且12PF F △是等腰三角形,其周长为22,则双曲线C 的离心率为( ) A .89B .149C .83D .143【答案】B【解析】根据双曲线的定义和等腰三角形的性质,即可得到c ,化简整理可得离心率. 【详解】双曲线22219x y C b-=:,可得a =3,因为12PF F △是等腰三角形,当211=PF F F 时, 由双曲线定义知|PF 1|=2a +|PF 2|, 在△F 1PF 2中,2c +2c +|PF 2|=22, 即6c ﹣2a =22, 即c 143=, 解得C 的离心率e 149=, 当221=PF F F 时,由双曲线定义知|PF 1|=2a +|PF 2|=2a +2c , 在△F 1PF 2中,2a +2c +2c +2c =22, 即6c =22﹣2a=16, 即c 83=, 解得C 的离心率e 89=<1(舍), 故选:B . 【点睛】本题考查了双曲线的简单性质,考查了运算求解能力和推理论证能力,属于中档题. 11.已知定义在R 上的奇函数()f x 满足()()22f x f x +=-,当20x -≤<时,()()10x f x a a =-> ,且()28f =-,则()2019f =( )A .2B .1C .2-D .1-【答案】C【解析】根据题意,结合函数的奇偶性与对称性可得函数f (x )是周期为8的周期函数,由函数的奇偶性可得f (﹣2)=8,结合函数的解析式求出a 的值,进而求出f (﹣1)的值,进而结合函数的奇偶性与对称性分析可得答案. 【详解】根据题意,函数f (x )是定义在R 上的奇函数,则f (﹣x )=﹣f (x ), 若函数f (x )满足f (x +2)=f (2﹣x ),则有f (﹣x )=f (x +4), 则有f (x +4)=﹣f (x ),变形可得f (x +8)=﹣f (x +4)=f (x ), 则函数f (x )是周期为8的周期函数,又由函数f (x )是定义在R 上的奇函数,且f (2)=﹣8,则f (﹣2)=8, 若当﹣2≤x <0时,f (x )=a x ﹣1(a >0),且f (﹣2)=a ﹣2﹣1=8,解可得a 13=, 则f (﹣1)=(13)﹣1﹣1=2, 则f (1)=﹣2,又由函数f (x )是周期为8的周期函数,则f (2019)=f (3+2016)=f (3)=f (1)=﹣2; 故选:C . 【点睛】本题考查函数的奇偶性与周期性的应用,关键是分析函数的周期性,属于中档题. 12.已知数列{}n a 的前n 项和为n S ,满足11a =,()1121n n n nS nS a n n -=++≥+ ,若138m S >,则m 的最小值为( ) A .6 B .7C .8D .9【答案】C【解析】根据a n =s n ﹣s n ﹣1可以求出{a n }的通项公式,再利用裂项相消法求出s m ,最后根据已知,解出m 即可. 【详解】由已知可得,()111n n n n s s a n --=++,()111n n a n -=+, ()()111111211n a n n n n ⎛⎫==- ⎪-+-+⎝⎭,(n ≥2),11111111232411m s m m ⎛⎫=+-+-++-= ⎪-+⎝⎭111111312218m m ⎛⎫++-- ⎪+⎝⎭>,即11114m m +<+,解之得,m 或 72m +>>7.5,故选:C . 【点睛】本题考查前n 项和求通项公式以及裂项相消法求和,考查了分式不等式的解法,属于中等难度.二、填空题13.已知两直线的方向向量分别为(),1a m =,()4,b m = ,若两直线平行,则m =________.【答案】2±【解析】根据题意可得出a b ,从而得出m 2﹣4=0,解出m 即可. 【详解】 ∵a b ; ∴m 2﹣4=0; ∴m =±2. 故答案为:±2. 【点睛】考查直线的方向向量的概念,以及平行向量的坐标关系. 14.曲线()13xy a e =-在点()0,1处的切线方程为________.【答案】10x y -+=【解析】求出函数的导数,可得切线的斜率,运用斜截式方程可得切线的方程. 【详解】曲线y =(1﹣3a )e x 在点(0,1),可得:1=1﹣3a ,解得a =0, 函数f (x )=e x 的导数为f ′(x )=e x , 可得图象在点(0,1)处的切线斜率为1, 则图象在点(0,1)处的切线方程为y =x +1,即为x ﹣y +1=0. 故答案为:x ﹣y +1=0. 【点睛】本题考查导数的运用:求切线的方程,正确求导和运用斜截式方程是解题的关键,属于基础题.15.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在抛物线24y x =上,则ABP △面积的最小值为________. 【答案】1【解析】通过三角形的面积公式可知当点P 到直线AB 的距离最小时面积最小,求出与直线2x ﹣y ﹣2=0平行且为抛物线的切线的直线方程,进而利用两直线间的距离公式及面积公式计算即得结论. 【详解】依题意,A (﹣2,0),B (0,﹣2),设与直线x +y +2=0平行且与抛物线相切的直线l 方程为:x +y +t =0, 联立直线l 与抛物线方程,消去y 得:y 2+4y +4t =0, 则△=16﹣16t =0,即t =1,∵直线x +y +2=0与直线l 之间的距离d 22==, ∴S min 12=|AB |d 12222=⨯⨯=1. 故答案为:1.【点睛】本题考查直线与圆锥曲线的关系,考查运算求解能力,数形结合是解决本题的关键,属于中档题.16.已知P 是底面为正三角形的直三棱柱111ABC A B C -的上底面111A B C △的中心,作平面BCD AP ⊥与棱1AA 交于点D .若122AA AB ==,则三棱锥D ABC -的体积为_____.【答案】348【解析】由题意画出图形,求出AD 的长度,代入棱锥体积公式求解. 【详解】 如图,∵P 为上底面△A 1B 1C 1的中心,∴A 1P 33=, ∴tan 1113A P PAA AA ∠==. 设平面BCD 交AP 于F ,连接DF 并延长,交BC 于E , 可得∠DEA =∠P AA 1,则tan ∠DEA 3=∵AE 3=∴AD 3314==. ∴三棱锥D ﹣ABC 的体积为V 113131322448=⨯⨯⨯⨯=. 故答案为:348. 【点睛】本题考查多面体体积的求法,考查空间想象能力与思维能力,考查计算能力,是中档题.三、解答题17.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2a =,3c = ,cos sin 6B B π⎛⎫=- ⎪⎝⎭.(1)求b 的值;(2)求()cos C B -的值.【答案】(1) b =.(2)【解析】(1(B 3π-)=0,结合范围B 3π-∈(3π-,23π),可求B 的值,由余弦定理可得b 的值. (2)由(1)及余弦定理可得cos C 的值,计算出sinC ,根据两角差的余弦函数公式即可计算得解cos (C ﹣B )的值. 【详解】(1)∵a =2,c =3,6cosB sin B π⎛⎫=- ⎪⎝⎭,可得:cos B =B 12-cos B ,∴(B 3π-)=0, ∵B ∈(0,π),B 3π-∈(3π-,23π),∴B 3π-=0,可得:B 3π=,∴由余弦定理可得:b ===(2)由余弦定理得222cos 0214a b c C ab +-===>.可知0,2C π⎛⎫∈ ⎪⎝⎭,故由22sin cos 1C C +=得sin 14C ==,()1cos cos cos sin sin 214C B C B C B ∴-=+=+=【点睛】本题主要考查了三角函数恒等变换的应用,余弦定理,两角差的余弦函数公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.如图,在三棱锥P-ABC 中,AP CP = ,O 是AC 的中点,1PO =,2OB =,PB =(1)证明:平面PAC ⊥平面ABC ;(2)若AC BC ⊥,3BC = ,D 是AB 的中点,求二面角P CD B --的余弦值.【答案】(1)证明见解析;(2) 3010-【解析】(1)利用PO ⊥AC ,OP 2+OB 2=PB 2,即PO ⊥OB .可证明PO ⊥面ABC ,即可得平面P AC ⊥平面ABC ;(2)由(1)得PO ⊥面ABC ,过O 作OM ⊥CD 于M ,连接PM ,则∠PMO 就是二面角P ﹣CD ﹣B 的补角.解三角形POM 即可. 【详解】(1)∵AP =CP ,O 是AC 的中点,∴PO ⊥AC ,∵PO =1,OB =2,5PB =∴OP 2+OB 2=PB 2,即PO ⊥OB . ∵AC ∩OB =O ,∴PO ⊥面ABC , ∵PO ⊂面P AC ,∴平面P AC ⊥平面ABC ;(2)由(1)得PO ⊥面ABC ,过O 作OM ⊥CD 于M ,连接PM , 则∠PMO 就是二面角P ﹣CD ﹣B 的平面角的补角. ∵OC 22OB CB =-=1,∴AC =2,AB 347=+=∴CD 172AB ==. ∴S △COD 111323442ABCS ==⨯⨯=∴132CD OM ⋅=∴OM 37=PM 22107OM OP =+= ∴310OM cos PMO PM ∠==∴二面角P ﹣CD ﹣B 的余弦值为3010-.【点睛】本题考查了空间面面垂直的证明,空间二面角的求解,作出二面角的平面角是解题的关键,属于中档题.19.已知某单位甲、乙、丙三个部门共有员工60人,为调查他们的睡眠情况,通过分层抽样获得部分员工每天睡眠的时间,数据如下表(单位:小时) 甲部门 6 7 8 乙部门 5.5 6 6.5 7 7.5 8 丙部门 55.566.578.5(1)求该单位乙部门的员工人数?(2)从甲部门和乙部门抽出的员工中,各随机选取一人,甲部门选出的员工记为A ,乙部门选出的员工记为B ,假设所有员工睡眠的时间相互独立,求A 的睡眠时间不少于B 的睡眠时间的概率;(3)若将每天睡眠时间不少于7小时视为睡眠充足,现从丙部门抽出的员工中随机抽取3人做进一步的身体检查.用X 表示抽取的3人中睡眠充足的员工人数,求随机变量X 的分布列与数学期望. 【答案】(1)24人;(2)23;(3)X 的分布列见解析;数学期望为1 【解析】(1)分层抽样共抽取:3+6+6=15名员工,其中该单位乙部门抽取6名员工,由此能求出该单位乙部门的员工人数.(2)基本事件总数n 1136C C ==18,利用列举法求出A 的睡眠时间不少于B 的睡眠时间包含的基本事件个数,由此能求出A 的睡眠时间不少于B 的睡眠时间的概率. (3)X 的可能取值为0,1,2,分别求出相应的概率,由此能求出X 的分布列和数学期望E (X ). 【详解】(1)由题意,得到分层抽样共抽取:3+6+6=15名员工, 其中该单位乙部门抽取6名员工, ∴该单位乙部门的员工人数为:66015⨯=24人. (2)由题意甲部门抽取3名员工,乙部门抽取6名员工, 从甲部门和乙部门抽出的员工中,各随机选取一人,基本事件总数n 1136C C ==18,A 的睡眠时间不少于B 的睡眠时间包含的基本事件(a ,b )有12个:(6,5.5),(6,6),(7,5.5),(7,6),(7,6.5),(7,7),(8,5.5),(8,6),(8,6.5),(8,7),(8,7.5),(8,8),∴A 的睡眠时间不少于B 的睡眠时间的概率p 122=183=. (3)由题意从丙部门抽出的员工有6人,其中睡眠充足的员工人数有2 人, 从丙部门抽出的员工中随机抽取3人做进一步的身体检查.用X 表示抽取的3人中睡眠充足的员工人数,则X 的可能取值为0,1,2,P (X =0)343615C C ==,P (X =1)21423635C C C ==, P (X =2)12423615C C C ==, ∴X 的分布列为:E (X )131012555=⨯+⨯+⨯=1. 【点睛】本题考查离散型随机变量的分布列、数学期望的求法,涉及到古典概型及分层抽样的基本知识,考查运算求解能力,是中档题.20.已知椭圆C :()222210x y a b a b+=>>与圆M :()22252x y b ++=的一个公共点为6,1⎛⎫- ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)过点M 的直线l 与椭圆C 交于A 、B 两点,且A 是线段MB 的中点,求OAB 的面积.【答案】(1) 22132x y +=;(2)428【解析】(1)将公共点代入椭圆和圆方程可得a ,b ,进而得到所求椭圆方程; (2)设过点M (0,﹣2)的直线l 的方程为y =kx ﹣2,联立椭圆方程,运用韦达定理,以及三角形的面积公式可得所求值. 【详解】 (1)由题意可得22312a b +=1,32+(b 2﹣1)252=,解得a 2=3,b 2=2,则椭圆方程为2232x y +=1;(2)设过点M (0,﹣2)的直线l 的方程为y =kx ﹣2, 联立椭圆方程2x 2+3y 2=6,可得(2+3k 2)x 2﹣12kx +6=0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 221223k k =+,x 1x 22623k=+, A 是线段MB 的中点,可得x 2=2x 1, 解得k 267=,x 122132=,可得△OAB 的面积为12•2•|x 1﹣x 2|=|x 1|428=.【点睛】本题考查了椭圆方程的求解,考查了直线与圆锥曲线位置关系,其中联立直线方程和圆锥曲线方程,运用韦达定理,是解题的常用方法. 21.已知函数()()()ln 11,0f x ax x a x a =+->≠. (1)讨论函数()f x 的单调性;(2)当1x >时,()()2f x ax <,求证:21a e>. 【答案】(1) 见解析;(2)证明见解析【解析】(1)由f (x )含有参数a ,单调性和a 的取值有关,通过分类讨论说明导函数的正负,进而得到结论;(2)法一:将已知变形,对a 分类讨论研究()()ln 11g x x ax a x =-+->的正负,当0a <与1a ≥时,通过单调性可直接说明,当01a <<时,可得g (x )的最大值为1g a ⎛⎫⎪⎝⎭,利用导数解得结论.法二:分析0a <时,01x ∃>且01x →使得已知不成立;当0a >时,利用分离变量法求解证明. 【详解】(1)()()1ln 1ln f x a x a x a x a x ⎛⎫'=+-+⋅=+ ⎪⎝⎭, ①当0a >时,由1x >得ln 0x a +>,得()0f x '>,所以()f x 在()1,+∞上单调递增; ②当0a <时,由()0f x '>得ln 0x a +<,解得1a x e -<<, 所以()f x 在()1,ae-上单调递增,在()f x 在(),ae-+∞上单调递减;(2)法一:由()()2f x ax <得()ln 10ax x ax a -+-<(), 设()()ln 11g x x ax a x =-+->,则()()11g x a x x'=->, ①当0a <时,()0g x '>,所以()g x 在()1,+∞上单调递增,()()11g x g >=-,可知01x ∃>且01x →时, ()00g x <,()000ax g x ⋅>,可知()式不成立;②当1a ≥时,()0g x '<,所以()g x 在()1,+∞上单调递减,()()110g x g <=-<,可知()式成立;③当01a <<时,由()0g x '>得11x a<<, 所以()g x 在11,a ⎛⎫⎪⎝⎭上单调递增,可知()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,所以()max 1ln 2g x g a a a ⎛⎫==--⎪⎝⎭,由()式得ln 20a a --<, 设()ln 2h a a a =--,则()110h a a'=-<,所以()h a 在()0,1上单调递减,而2211220h e e⎛⎫=+-> ⎪⎝⎭,h (1)=1-2=-1<0, 所以存在t 211e ∈(,),使得h (t )=0,由()210h a h e <<⎛⎫ ⎪⎝⎭得211t a e<<<;综上所述,可知21a e>. 法二:由()()2f x ax <得()ln 10ax x ax a -+-< (), ①当0a <时,得ln 10x ax a -+->,01x ∃>且01x →时,00ln 10x ax a -+-<,可知()式不成立;②当0a >时,由()式得ln 10x ax a -+-<,即ln 11x a x ->-, 设()()ln 111x g x x x -=>-,则()()()()()22111ln 12ln 11x x x x x g x x x ⋅-----'==--, 设()12ln h x x x =--,则()221110xh x x x x-'=-=<,所以()h x 在()1,+∞上单调递减,又()110h e e =->,()2210h e e =-<,所以()20,x e e ∃∈,()00012ln 0h x x x =--= (),当()001,x x ∈时,()0h x > ,得()0g x '>,所以()g x 在()01,x 上递增, 同理可知()g x 在()0,x +∞上递减,所以()()0max 00ln 11x g x g x x -==-,结合()式得()max 01g x x =,所以2011a x e>>, 综上所述,可知21a e >.【点睛】本题考查了利用导数研究函数的单调性及恒成立问题,涉及到了导数的应用、分类讨论、构造函数等方法技巧,属于较难题.22.在直角坐标系xOy 中,曲线C 的参数方程为2cos 3sin x y αα=⎧⎨=⎩(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,点32,4P π⎛⎫⎪⎝⎭在直线l :cos sin 0m ρθρθ-+=上.(1)求曲线C 和直线l 的直角坐标方程;(2)若直线l 与曲线C 的相交于点A 、B ,求||||PA PB ⋅的值.【答案】(1) C :22149x y +=;l:0x y -+=;(2) 20||||13PA PB ⋅= 【解析】(1)直接把曲线C 的参数方程中的参数消去,即可得到曲线C 的普通方程,把P 的极坐标代入直线方程求得m ,结合极坐标与直角坐标的互化公式可得直线l 的直角坐标方程;(2)写出直线l 的参数方程,把直线l 的参数方程代入曲线C 的直角坐标方程,化为关于t 的一元二次方程,利用此时t 的几何意义及根与系数的关系求解. 【详解】(1)由2(3x cos y sin ααα=⎧⎨=⎩为参数),消去参数α,可得曲线C 的普通方程为22149x y +=;由324P π⎛⎫ ⎪⎝⎭,在直线l :ρcosθ﹣ρsinθ+m =0上,得0m =,得m = 由cos x ρθ=,sin y ρθ=,∴直线l :ρcosθ﹣ρsinθ+m =0的直角坐标方程为x ﹣y +=0; (2)由(1)知直线l 的倾斜角为4π,(P , 直线l的参数方程为2x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),代入22149x y +=,得:13t 2﹣20t ﹣20=0. ∴|P A |•|PB |2013A B t t =⋅=. 【点睛】本题考查简单曲线的极坐标方程,考查参数方程化普通方程,关键是参数方程中此时t 的几何意义的应用,是中档题.23.已知函数()|2|||f x x a x a =+--. (1)若()12f >,求a 的取值范围;(2)x y R ∀∈、,()()6f x f y >- ,求a 的取值范围. 【答案】(1) ()2,4,3a ⎛⎫∈-∞-+∞ ⎪⎝⎭.(2) ()1,1a ∈-. 【解析】(1)f (1)=|2a +1|﹣|a ﹣1|211312122a a aa a a ⎧⎪+⎪⎪=-≤≤⎨⎪⎪---⎪⎩><,根据f (1)>2分别解不等式即可'(2)根据绝对值三角不等式求出f (x )的值域,然后由条件可得f (x )min >f (y )max ﹣6,即﹣3|a |>3|a |﹣6,解出a 的范围. 【详解】(1)∵f (x )=|x +2a |﹣|x ﹣a |,∴f (1)=|2a +1|﹣|a ﹣1|211312122a a aa a a ⎧⎪+⎪⎪=-≤≤⎨⎪⎪---⎪⎩><, ∵f (1)>2,∴221a a +⎧⎨⎩>>,或32112a a ⎧⎪⎨-≤≤⎪⎩>,或2212a a --⎧⎪⎨-⎪⎩><,∴a >1,或23<a ≤1,或a <﹣4,∴a 的取值范围为()243⎛⎫-∞-⋃+∞ ⎪⎝⎭,,;(2)∵||x+2a|﹣|x﹣a||≤|(x+2a)﹣(x﹣a)|=3|a|,∴f(x)∈[﹣3|a|,3|a|],∵∀x、y∈R,f(x)>f(y)﹣6,∴只需f(x)min>f(y)max﹣6,即﹣3|a|>3|a|﹣6,∴6|a|<6,∴﹣1<a<1,∴a的取值范围为[﹣1,1].【点睛】本题考查了绝对值不等式的解法和利用绝对值三角不等式求函数的范围,考查了分类讨论和转化思想,属中档题.。
广东省揭阳市2019届高三上学期期末学业水平调研数学(理)试题 (5)
【题文】(12分)已知椭圆C :22221(0)x y a b a b+=>>的上顶点为A ,以A 为圆心,椭圆的长半轴为半径的圆与y轴的交点分别为(0,1+、(0,1.(1)求椭圆C 的方程;(2)设不经过点A 的直线l 与椭圆C 交于P 、Q 两点,且0AP AQ ⋅=,试探究直线l 是否过定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.【答案】解:(1)依题意知点A 的坐标为(0,)b ,则以点A 圆心,以a 为半径的圆的方程为: 222()x y b a +-=,------------------------------------------------------------------------------------1分 令0x =得y b a =±,由圆A 与y轴的交点分别为(0,1+、(0,1-可得11b a b a ⎧+=+⎪⎨-=⎪⎩,解得1,b a ==-------------------------------------------------------3分 故所求椭圆C 的方程为2213x y +=.----------------------------------------------------------------4分 (2)解法1:由0AP AQ ⋅=得AP AQ ⊥,可知PA 的斜率存在且不为0,设直线:1PA l y kx =+---------------① 则1:1QA l y x k=-+-------------②----------------------6分 将①代入椭圆方程并整理得22(13)60k x kx ++=,可得2613P k x k=-+, 则22113P y k =-+,-------------------------------------------------------------------------------------------------8分 类似地可得2266,133Q Q k x y k k ==-++,----------------------------------------------------------9分 由直线方程的两点式可得:直线l 的方程为 21142k y x k -=-,------------------------------11分 即直线l 过定点,该定点的坐标为1(0,)2-.---------------------------------------------------------12分【解法2:若直线l 垂直于x 轴,则AP 不垂直于AQ ,不合题意,可知l 的斜率存在,又l 不过点(0,1),设l 的方程为y kx m =+(1)m ≠,又设点1122(,)(,)P x y Q x y 、,则1122(,1),(,1)AP x y AQ x y =-=-,由0AP AQ ⋅=得121212()10x x y y y y +-++=,由2233y kx m x y =+⎧⎨+=⎩,消去y 得222(31)6330k x kmx m +++-=,----------------------------6分 2212(31)k m ∆=-+,当0∆>即22310k m -+>时,122631km x x k +=-+-------① 21223331m x x k -=+---------②-----------------------------------------7分 又22121212()y y k x x mk x x m =+++,1212()2y y k x x m +=++,--------------------------8分 于是有221212(1)()()210k x x mk k x x m m ++-++-+=,-----------③---------------------9分 将①②代入③得22222336(1)()2103131m km k mk k m m k k -+--+-+=++ 整理得:12m =-,--------------------------------------------------------------------------------------11分 满足0∆>,这时直线l 的方程为12y kx =-,直线l 过定点1(0,)2-.------------------12分】【解析】【标题】广东省揭阳市2019届高三上学期期末学业水平调研数学(理)试题【结束】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
揭阳市2018-2019学年度高中毕业班学业水平考试数学(理科)本试卷共23题,共150分,共4页,考试结束后将本试卷和答题卡一并收回.注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题目的顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.复数的虚部是( )A. B. 2 C. D.【答案】C【解析】【分析】先用复数除法运算化简,由此求得其虚部.【详解】依题意,故虚部为.所以选C.【点睛】本小题主要考查复数除法的运算,考查复数虚部的概念,属于基础题.2.已知集合,,则( )A. B. C. D.【答案】C【解析】【分析】解分式不等式求得集合的取值范围,然后求两个集合的交集.【详解】对于集合,由得,解得,故,所以选C.【点睛】本小题主要考查一元二次不等式的解法,考查两个集合交集的概念及运算,属于基础题.3.已知命题若,则;命题、是直线,为平面,若//,,则//.下列命题为真命题的是( )A. B. C. D.【答案】B【解析】【分析】利用两边平分的方法判断命题是真命题,利用线面平行的性质判断命题是假命题,由此选出正确的选项. 【详解】对于命题,将两边平方,可得到,故命题为真命题.对于命题,直线,但是有可能是异面直线,故命题为假命题,为真命题.所以为真命题,故选B.【点睛】本小题主要考查不等式的性质,考查线面平行以及两条直线的位置关系,考查含有简单逻辑词命题真假性的判断,属于基础题.4.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正..确.的是( )A. 从2000年至2016年,该地区环境基础设施投资额逐年增加;B. 2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C. 2012年该地区基础设施的投资额比2004年的投资额翻了两番;D. 为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.【答案】D【解析】【分析】根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题. 5.函数的图象大致为( )A. B. C. D.【答案】A 【解析】 【分析】 分别令,根据的函数值,对选项进行排除,由此得出正确选项.【详解】由四个选项的图像可知,令,,由此排除C 选项.令,,由此排除B 选项.由于,排除D 选项.故本小题选A.【点睛】本小题主要考查函数图像的判断,考查利用特殊点排除的方法,属于基础题. 6.若满足约束条件,则的最小值为( )A. 1B. 2C. -2D. -1 【答案】D 【解析】 【分析】画出可行域,通过向下平移基准直线到可行域边界的位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知,目标函数在点处取得最小值,且最大值为.故选D.【点睛】本小题主要考查利用线性规划求线性目标函数的最大值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画图可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.7.若,,,则的大小关系为( )A. B.C. D.【答案】A【解析】【分析】首先利用对数运算比较的大小,同理利用对数运算比较的大小,由此得到大小关系.【详解】由于,即.由于,即.所以,故选A.【点睛】本小题主要考查对数的运算公式,考查比较大小的方法,属于属于基础题.8.若点在抛物线上,记抛物线的焦点为,直线与抛物线的另一交点为B,则( )A. B. C. D.【答案】D【解析】【分析】将点的坐标代入抛物线方程求得的值,由此求得焦点的坐标,由此求得的值,联立直线的方程与抛物线的方程求得点的坐标,由此求得的值,而的夹角为,最后利用数量积的运算求得的值【详解】依题意易得,,由抛物线的定义得,联立直线AF的方程与抛物线的方程消去y 得,得, 则,故 .故选D.【点睛】本小题主要考查抛物线标准方程的求法,考查直线和抛物线交点坐标的求法,考查了向量数量积的运算.属于基础题.9.某几何体示意图的三视图如图示,已知其主视图的周长为8,则该几何体侧面积的最大值为( )A. B. C. D.【答案】C 【解析】 【分析】有三视图得到几何体为圆锥,设出圆锥的底面半径和母线长,根据主视图的周长得到一个等量关系,然后利用基本不等式求得侧面积的最大值.【详解】由三视图知,该几何体为圆锥,设底面的半径为r ,母线的长为,则,又S侧=(当且仅当时“=”成立).故选C.【点睛】本小题主要考查由三视图还原为原图,考查圆锥的侧面积计算公式,考查利用基本不等式求最值,属于基础题. 10.已知在区间上,函数与函数的图象交于点P ,设点P 在x 轴上的射影为,的横坐标为,则的值为( )A. B. C. D.【答案】B 【解析】 【分析】利用两个函数图像相交,交点的坐标相同列方程,化简后求得的值,再利用正切的二倍角公式求得的值.【详解】依题意得,即..故选B.【点睛】本小题主要考查两个函数交点的性质,考查同角三角函数的基本关系式,考查正切的二倍角公式,属于基础题.11.已知双曲线C:的左、右焦点分别为,坐标原点O关于点的对称点为P,点P 到双曲线的渐近线距离为,过的直线与双曲线C右支相交于M、N两点,若,的周长为10,则双曲线C的离心率为( )A. B. 2 C. D. 3【答案】B【解析】【分析】依题意得到点的坐标,利用点到渐近线的距离列方程,求得的值,根据双曲线的定义得周长的表达式,由此列方程求得,的值,进而求得双曲线的离心率.【详解】依题意得点P,,由双曲线的定义得周长为,由此得,,故.【点睛】本小题主要考查点和点对称的问题,考查点到直线距离公式,考查双曲线的定义以及双曲线离心率的求法,考查分析与求解的能力.属于中档题.双曲线的渐近线方程是.根据双曲线的定义,双曲线上任意一点到两个焦点的距离之差的绝对值为.12.如图,在三棱柱中,底面,∠ACB=90°,为上的动点,则的最小值为( )A. B. C. 5 D.【答案】C【解析】【分析】易得平面,故∠.将二面角沿展开成平面图形,此时的长度即的最小值,利用余弦定理求出这个最小值.【详解】由题设知△为等腰直角三角形,又平面,故∠=90°,将二面角沿展开成平面图形,得四边形如图示,由此,要取得最小值,当且仅当三点共线,由题设知∠,由余弦定理得.【点睛】本小题主要考查空间线面垂直关系的证明,考查空间两条线段长度和的最小值的求法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分.13.的展开式中的系数为_______;【答案】224【解析】【分析】先求得二项式展开式的通项公式,化简后求得的系数.【详解】二项式展开式的通项公式为,令,解得,故的系数为.【点睛】本小题主要考查二项式展开式的通项公式,考查二项式展开式指定项的系数,属于基础题.14.若向量、不共线,且,则_______;【答案】3【解析】【分析】先利用,求出的值,再求的值.【详解】由于,故,即,即,解得,当时,,两者共线,不符合题意.故.所以.【点睛】本小题主要考查平面向量垂直的表示,考查向量模的坐标表示,考查两个向量数量积的坐标表示.如果两个平面向量相互垂直,则它们的数量积为零.数量积运算有两种表示形式,一种是利用模和夹角来表示,即.另一种是用坐标来表示,即.15.已知函数,若,则实数的取值范围是_________;【答案】【解析】【分析】先判断函数是增函数且为奇函数,利用单调性和奇偶性将不等式转化为,解不等式求得的取值范围.【详解】因函数为增函数,且为奇函数,,,解得.【点睛】本小题主要考查函数的单调性,考查函数的奇偶性,考查利用单调性和奇偶性解抽象函数不等式,属于基础题.16.已知,则______.【答案】【解析】【分析】利用两角和的正弦、余弦公式,化简,由此求得函数的最小正周期,根据及函数的周期性,求得表达式的值.【详解】依题意可得,其最小正周期,且故【点睛】本小题主要考查三角函数恒等变换,考查两角和的正弦公式以及余弦公式,考查三角函数的周期性以及特殊角的三角函数值.两角和与差的正弦、余弦公式是有差别的,要记忆准确,不能记混.在求有关年份的题目时,往往是根据题目所给已知条件,找到周期,再根据周期性来求解.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.(一)必考题:共60分17.已知数列的前n项和为,且满足,.(1)求数列的通项公式;(2)若等差数列的前n项和为,且,,求数列的前项和.【答案】(1)(2)【解析】【分析】(1)令,求得的值,用求得的通项公式.(2)利用(1)的结论求得的值,利用基本元的思想求得的公差及通项公式,再利用裂项求和法求得前项和.【详解】解:(1)当时,,由得(),两式相减得,又,∴(),又,∴(),显然,,即数列是首项为3、公比为3的等比数列,∴;(2)设数列的公差为d,则有,由得,解得,∴,又∴.【点睛】本小题主要考查数列已知求的方法,考查利用基本元的思想求解等差数列的通项公式,考查裂项相消求和法.基本元的思想是在等差数列中有个基本量,利用等差数列的通项公式或前项和公式,结合已知条件列出方程组,通过解方程组即可求得数列18.如图,在三棱锥P-ABC中,正三角形PAC所在平面与等腰三角形ABC所在平面互相垂直,AB=BC,O是AC中点,OH⊥PC于H.(1)证明:PC⊥平面BOH;(2)若,求二面角A-BH-O的余弦值.【答案】(1)详见解析(2)【解析】【分析】(1)先证明平面,得到,结合已知,证得平面.(2)以为空间坐标原点建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【详解】解:(1)∵AB=BC,O是AC中点,∴ BO⊥AC,又平面PAC⊥平面ABC,且平面ABC,平面PAC∩平面ABC=AC,∴ BO⊥平面PAC,∴ BO⊥PC,又OH⊥PC,BO∩OH=O,∴ PC⊥平面BOH;(2)易知PO⊥AC,又BO⊥平面PAC,如图,以O为原点,OB所在的直线为x轴,建立空间直角坐标系O - xyz,由易知,OC=2,,,∴ ,,,,,,,设平面ABH的法向量为,则,∴,取x=2,得,由(1)知是平面BHO的法向量,易知,设二面角A-BH-O的大小为,显然为锐角,则,∴ 二面角A-BH-O的余弦值为.【点睛】本小题主要考查空间线面垂直的证明,考查利用空间向量法求二面角余弦值的方法,属于中档题.19.某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训,甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表,其中第一、二周达标的员工评为优秀.(1)在甲组内任选两人,求恰有一人优秀的概率;(2)每个员工技能测试是否达标相互独立,以频率作为概率.(i)设公司员工在方式一、二下的受训时间分别为、,求、的分布列,若选平均受训时间少的,则公司应选哪种培训方式?(ii)按(i)中所选方式从公司任选两人,求恰有一人优秀的概率.【答案】(1)(2)(i)应选择培训方式一(ii)【解析】【分析】(1)甲组人中有人优秀,利用超几何分布概率计算公式,计算得“甲组内任选两人,求恰有一人优秀的概率”.(2)可能取值有,根据题目所给数据计算出每种取值对应的频率也即概率,由此得到分布列并其算出期望值.的所有可能取值为,根据题目所给数据计算出每种取值对应的频率也即概率,由此得到分布列并其算出期望值.根据两个期望值较小的即为选择.(3)先计算出从公司任选一人,优秀率为,再按照二项分布的概率计算公式计算得“从公司任选两人,求恰有一人优秀的概率”【详解】解:(1)甲组60人中有45人优秀,任选两人,恰有一人优秀的概率为;(2)(i)的分布列为,的分布列为,∵,∴公司应选培训方式一;(ii)按培训方式一,从公司任选一人,其优秀的概率为,则从公司任选两人,恰有一人优秀的概率为.【点睛】本小题主要考查利用超几何分布和二项分布计算概率,考查离散型随机变量分布列及其期望,属于中档题.20.已知椭圆:的上顶点为A,以A为圆心,椭圆的长半轴为半径的圆与y轴的交点分别为、.(1)求椭圆的方程;(2)设不经过点A的直线与椭圆交于P、Q两点,且,试探究直线是否过定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.【答案】(1)(2)直线过定点【解析】【分析】(1)根据圆的圆心和半径写出圆的标准方程,令求得圆与轴交点的坐标,由此列方程组求得的值,进而求得椭圆的标准方程.(1)根据,利用点斜式设出直线的方程,并分别代入椭圆方程解出两点的坐标,由此求得直线的方程,由此求得定点的坐标为.【详解】解:(1)依题意知点A的坐标为,则以点A圆心,以为半径的圆的方程为:,令得,由圆A与y轴的交点分别为、可得,解得,故所求椭圆的方程为.(2)由得,可知PA的斜率存在且不为0,设直线-① 则-②将①代入椭圆方程并整理得,可得,则,类似地可得,由直线方程的两点式可得:直线的方程为,即直线过定点,该定点的坐标为.【点睛】本小题主要考查圆的标准方程和几何性质,考查直线和椭圆的位置关系,考查直线方程的两点式以及直线过定点的问题.属于中档题.要求直线和椭圆的交点坐标,需要联立直线和椭圆的方程,解方程组求得,这里需要较强的运算能力.直线过定点的问题,往往是将含有参数的部分合并,由此求得直线所过的定点.21.已知函数(,).(1)讨论函数的单调性;(2)当时,,求k的取值范围.【答案】(1)详见解析(2)或【解析】【分析】(1)将函数求导并化简,对分成两种情况,讨论函数的单调性.(2)原不等式即(),当时,上述不等式显然成立.当时,将不等式变为,构造函数,利用导数研究函数的单调性,由此求得的取值范围.【详解】解:(1).①若,当时,,在上单调递增;当时,,在上单调递减.②若,当时,,在上单调递减;当时,,在上单调递增.∴当时,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.(2)(),当时,上不等式成立,满足题设条件;当时,,等价于,设,则,设(),则,∴在上单调递减,得.①当,即时,得,,∴在上单调递减,得,满足题设条件;②当,即时,,而,∴,,又单调递减,∴当,,得,∴在上单调递增,得,不满足题设条件;综上所述,或.【点睛】本小题主要考查利用导数求解函数参数的函数单调性问题,考查利用导数求解含有参数不等式恒成立问题.对函数求导后,由于导函数含有参数,故需要对参数进行分类讨论,分类讨论标准的制定,往往要根据导函数的情况来作出选择,目标是分类后可以画出导函数图像,进而得出导数取得正、负的区间,从而得到函数的单调区间.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.已知曲线C的参数方程为(t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,过极点的两射线、相互垂直,与曲线C分别相交于A、B两点(不同于点O),且的倾斜角为锐角. (1)求曲线C和射线的极坐标方程;(2)求△OAB的面积的最小值,并求此时的值.【答案】(1)C的极坐标方程为,[或];的极坐标方程为;(2)【解析】【分析】(1)消去参数,求得曲线的普通方程,再转为极坐标方程.射线过原点,根据角度直接写出的极坐标方程.(2)利用极坐标方程求得的表达式,求得三角形面积的表达式,利用三角函数的的最值求得三角形面积的最小值,同时求得的值.【详解】解:(1)由曲线C的参数方程,得普通方程为,由,,得,所以曲线C的极坐标方程为,[或]的极坐标方程为;(2)依题意设,则由(1)可得,同理得,即,∴∵∴,∴,△OAB的面积的最小值为16,此时,得,∴.【点睛】本小题主要考查参数方程转化为极坐标方程,考查利用极坐标求三角形的面积,考查三角函数求最值,属于中档题.23.已知函数.(1)当时,求不等式的解集;(2)当时,不等式恒成立,求的取值范围.【答案】(1)(2)【解析】【分析】(1)当时,利用零点分段法去绝对值,解一元一次不等式求得不等式的解集.(2)当时,对函数去绝对值后,构造一次函数,一次函数恒大于或等于零,则需区间端点的函数值为非负数,由此列不等式组,解不等式组求得的取值范围.【详解】解:(1)①当时,,解得,②当时,,解得,③当时,解得,综上知,不等式的解集为.(2)当时,,设,则,恒成立,只需,即,解得【点睛】本小题主要考查利用零点分段法解含有两个绝对值的不等式,考查化归与转化的数学思想方法,属于中档题.。