红外成像原理ppt课件
合集下载
红外热成像仪原理与应用分析
![红外热成像仪原理与应用分析](https://img.taocdn.com/s3/m/ae51de49bfd5b9f3f90f76c66137ee06eff94ec5.png)
原理阐述
红外热成像仪利用红外探测器接收目标物体发射的红外能量,并将其转化为电 信号。这些电信号经过处理和解析,最终形成可供观察和分析的热图像。红外 热成像仪能够检测到目标物体温度的微小变化,因此可用于监测设备的运行状 态、检测疾病病变以及监控安全等领域。
设备介绍
红外热成像仪主要由红外探测器、光学系统、电子处理系统和显示终端等组成。 其中,红外探测器是核心部件,它能够将红外能量转化为电信号。光学系统则 用于聚焦和传输红外能量至红外探测器。电子处理系统则对探测器输出的电信 号进行处理,以便在显示终端上显示出热图像。
未来展望
红外热成像无损检测技术在未来将得到更广泛的应用和推广。随着科学技术的 发展,该技术将不断优化和创新,提高检测的灵敏度和准确性,扩大应用范围。 例如,在医疗领域,红外热成像无损检测技术可用于医学诊断和疾病监测;在 能源领域,该技术可应用于太阳能电池板的无损检测。
结论
红外热成像无损检测技术是一种基于红外热成像技术的无损检测方法,具有非 接触、非破坏、快速、高灵敏度等优点。本次演示介绍了红外热成像无损检测 技术的原理及其应用,包括发动机无损检测、金属材料质量检测、建筑质量检 测等。随着科学技术的发展,该技术在未来将得到更广泛的应用和推广,为各 个领域的无损检测和监测提供强有力的技术支持。
红外热像仪图像分析系统组件在多个领域都有广泛的应用,以下是几个主要的 应用领域:
1、工业检测:红外热像仪图像分析系统可以用于工业生产中的产品质量检测、 设备故障检测等。通过分析物体发出的红外辐射,可以快速、准确地检测出产 品的缺陷和设备的故障点,大大提高了生产效率和产品质量。
2、医疗诊断:红外热像仪图像分析系统在医疗领域也有着广泛的应用。例如, 可以利用该系统对皮肤疾病进行诊断,通过分析病变部位发出的红外辐射,可 以判断出疾病的类型和严重程度。此外,还可以用于中医诊断等领域。
红外成像
![红外成像](https://img.taocdn.com/s3/m/647b3f38a32d7375a417806c.png)
第二代微夜视仪
• 二代管的光电阴极仍为Na2KSb(Cs)。 但由于 制作工艺技术的不断改进, 使其光电灵敏度与 红外响应比以前提高不少。在二代管内部,成 功地使用了能实现电子倍增的二维元件——微 通道板(MCP )。MCP是由上百万个紧密排列的、 具有较高二次电子发射系数的空心通道管所构 成。其通道芯径间距约 6~12m,长径比为 40~ 60。入射在通道入端的初始电子在电场 作用下激发出二次电子,并且依次倍增,获得了 输出端的高增益。MCP具有增益高、分辨率高、 功耗低、频带宽、寿命长以及自饱和效应等优 点。
• 在自然界中,一切物体都会辐射红外线,因此 利用探测器测定目标本身和背景之间的红外线 差,可以得到不同的红外图像,称为热图像。 同一目标的热图像和可见光图像不同,它不是 人眼所能看到的可见光图像,而是目标表面温 度分布的图像。或者可以说,它是人眼不能直 接看到目标的表面温度分布,而是变成人眼可 以看到的代表目标表面温度分布的热图像。运 用这一方法,便能实现对目标进行远距离热状 态图像成像和测温,并可进行智能分析判断。
美国M982/M983微光夜视眼镜
我军部分夜视器材
驾 驶 员 佩 带 微 光 夜 视 仪
侦 察 兵 使 用 夜 视 仪
步兵使用夜视仪
第三代微光夜视仪
• 第三代微光像增强器(三代管) • 在真空光电夜视器件中的光电阴极为GaAs,因 为GaAs光电阴极具有负电子亲和势,因而它具 有量子效率高、暗发射小、电子能量分布集中 等优点。
1、组成:(1)微光光学系统;(2)电源;(3)像增 强器(又称微光管,实现光-电-光转换)——钾钠铯光 电阴极、纤维光学面板。
级 联 式 原微 理光 图夜 视 仪 结 构
• 一代微光夜视的优点:被动工作,不易暴露自己; 采用三级级联,光增益高,景物图像较清晰。 • 其缺点: 防强光性能较差,以致于难以在火光 四射的战争环境下工作;体积稍大,比较笨重。
红外成像系统简介
![红外成像系统简介](https://img.taocdn.com/s3/m/1e2a5318f11dc281e53a580216fc700aba68526d.png)
THANKS FOR WATCH时监测
实时红外成像技术能够实现快速的目标物监测,及时发现异常情 况,提高预警和响应速度。
动态跟踪
实时红外成像技术能够实现动态跟踪,对移动目标进行连续监测, 提高跟踪精度和实时性。
促进智能化应用
实时红外成像技术能够与人工智能等技术相结合,实现智能化应 用,提高红外成像系统的应用价值。
性能指标
电源效率、稳定性、可靠性等。
03 红外成像系统的特点
穿透烟雾和灰尘的能力
01
由于红外线波长较长,能够较好 地穿透烟雾和灰尘,因此在火灾 、烟雾等场景中,红外成像系统 能够清晰地观测到目标。
02
在工业领域,红外成像系统也常 用于检测设备运行时的温度异常 ,穿透工厂内的烟尘和气体。
夜间或低光环境下的观测能力
红外成像系统简介
目 录
• 红外成像系统概述 • 红外成像系统的组成 • 红外成像系统的特点 • 红外成像系统的优势与限制 • 红外成像系统的未来发展
01 红外成像系统概述
红外成像系统的定义
红外成像系统是一种能够接收并处理 红外辐射的设备,通过将红外辐射转 换为可见光图像,实现对目标物体的 非接触式检测和识别。
红外成像系统不受光照条件限制,能够在夜间或低光环境下 正常工作,观测目标。
在军事侦察、野生动物研究等领域,红外成像系统是不可或 缺的工具,能够在黑暗中捕捉到目标的热辐射。
对温度变化的敏感性
红外成像系统通过测量目标发射的红外辐射来感知温度变化,因此对温度变化非常 敏感。
在医疗领域,红外成像系统可用于检测人体病变部位的温度异常,如乳腺肿瘤等。
工作原理
基于热电效应或光电效应, 将红外辐射转换为电信号。
性能指标
红外热像仪成像原理课件PPT
![红外热像仪成像原理课件PPT](https://img.taocdn.com/s3/m/21c90fddcc1755270622080b.png)
所张的角度,通俗的说,镜头有一个确定的视野,镜头对这个视野的高度 和宽度的张角称为视场角。
2021/3/10
14
名词解释
测温精度: 测温精度是指测温型红外热像仪进行温度测量时,读取的温度数据与
实际温度的差异。此数值越小,代表热像仪的性能越好。
测温范围: 测温范围是指测温型红外热像仪可以测量到的最高温度和最低温度的
范围。
2021/3/10
15
名词解释
焦距: 透镜中心到其焦点的距离,通常用f表示。焦距的单位通常用mm(毫米)
来表示,一个镜头的焦距一般都标在镜头的前面,如f=50mm(这就是我们 通常所说的“标准镜头”),28-70mm(我们最常用的镜头)、70-210mm (长焦镜头)等。焦距越大,可清晰成像的距离就越远。
制冷式热成像仪: 其探测器中集成了一个低温制冷器,这种装置可以给探测器降温度,
这样是为了使热噪声的信号低于成像信号,成像质量更好。
非制冷式热成像仪: 其探测器不需要低温制冷,采用的探测器通常是以微测辐射热计为基
础,主要有多晶硅和氧化钒两种探测器。
2021/3/10
制冷型
非制冷型
9
名词解释
红外热像仪按照功能分为测温型和非测温型
非均匀性校正是指有效降低探测器的响应率不均匀性,提高热像仪成 像质量的一种技术手段。经过非均匀性校正的热像仪成像画面均匀,鬼影 和坏点现象消失,成像效果得到明显改善,可大大提高热像仪的观察能力。
非均匀校正前
非均匀校正后
2021/3/10
20
名词解释
补偿: 补偿也成为校正,是为了获得非均匀性校正所需的原始数据,从而得
到理想的红外图像,在图像出现不清晰的时候,可对热像仪进行补偿操作。 补偿目标可以根据现场环境和目标特性选择不同的但温度均匀的物体,这 个物体可以是干净无云的天空、热像仪的内置快门、或者关闭的镜头盖等。
2021/3/10
14
名词解释
测温精度: 测温精度是指测温型红外热像仪进行温度测量时,读取的温度数据与
实际温度的差异。此数值越小,代表热像仪的性能越好。
测温范围: 测温范围是指测温型红外热像仪可以测量到的最高温度和最低温度的
范围。
2021/3/10
15
名词解释
焦距: 透镜中心到其焦点的距离,通常用f表示。焦距的单位通常用mm(毫米)
来表示,一个镜头的焦距一般都标在镜头的前面,如f=50mm(这就是我们 通常所说的“标准镜头”),28-70mm(我们最常用的镜头)、70-210mm (长焦镜头)等。焦距越大,可清晰成像的距离就越远。
制冷式热成像仪: 其探测器中集成了一个低温制冷器,这种装置可以给探测器降温度,
这样是为了使热噪声的信号低于成像信号,成像质量更好。
非制冷式热成像仪: 其探测器不需要低温制冷,采用的探测器通常是以微测辐射热计为基
础,主要有多晶硅和氧化钒两种探测器。
2021/3/10
制冷型
非制冷型
9
名词解释
红外热像仪按照功能分为测温型和非测温型
非均匀性校正是指有效降低探测器的响应率不均匀性,提高热像仪成 像质量的一种技术手段。经过非均匀性校正的热像仪成像画面均匀,鬼影 和坏点现象消失,成像效果得到明显改善,可大大提高热像仪的观察能力。
非均匀校正前
非均匀校正后
2021/3/10
20
名词解释
补偿: 补偿也成为校正,是为了获得非均匀性校正所需的原始数据,从而得
到理想的红外图像,在图像出现不清晰的时候,可对热像仪进行补偿操作。 补偿目标可以根据现场环境和目标特性选择不同的但温度均匀的物体,这 个物体可以是干净无云的天空、热像仪的内置快门、或者关闭的镜头盖等。
傅里叶红外光谱成像技术 ppt课件
![傅里叶红外光谱成像技术 ppt课件](https://img.taocdn.com/s3/m/76f0584bcc17552707220858.png)
显微装置中配以物镜和聚光镜(condenser)实现成像 的6× 放大,数值孔径为0.58 。【特定的光学设计 允许样品区域在探测器单元上实现1 ∶ 1 和4 ∶ 1 成像,从而达到25 × 25 和6.25 μm × 6.25 μm 正常空间分辨率(实际的空间分辨率是和波长相关 的,并由衍射限来决定的) 。光谱可以以快速扫描的模 式(最大速率80 pixels/s)进行采集。】可见光成 像(视觉影像Visual image)的收集则通过一个CCD 相机结合计算机控制(亦可手动操作)的显微镜样品台 的运动来最终实现。可见光成像的收集是在白光LED 的 照射下“拼接”而成。而后在可见光成像区域内选择感 兴趣的区域进行红外光谱成像。因为系统集成阵列探测 器和运动样品台,所以红外光谱成像数据采集速度较快。 具体速度还与光谱分辨率及空间分辨率有关,分辨率越 高则采集时间越长。
关于FTIRI 的总结
FTIRI 系统结构介绍
FTIRI 在骨病研究中的 应用
FTIRI 系统工作原理和方式
红20外01光年谱,用珀于金生埃物尔物默理(学Pe和rk生in物E化lm学e进r)行公结司构推分出析一已套有傅大 半里个叶世变纪换。红该外方光法谱提 成供 像了 (重fo要ur的ie结r t构ra信ns息fo,rm例i如nf组ra织re的d 组 成im,ag蛋in白g质,二FT级IR结I)构系和统相,互即作采用用,高DN灵A敏构度象的和线结性构阵转列变, 脂探质测构器并象耦的合排一序个和可相快行速为运等动。的傅样里品叶台变。换红外(fourier t该ra仪n器sfo允r许m红in外fr光ar谱ed成,像F(TIMR)ap光s 谱或技Im术ag则e是s)在以2独0世立纪的80 年样代品后尺期寸兴采起集,并和在 基于生物 FP医A 学开研发究的中红发外挥光着谱越成来像越仪重器要在的 作数用据。采集时间和操作方便性方面相比较具有更明显的优 势,并降低了噪声和成本。自FTIRI 技术出现以来,虽然 仪器系统较昂贵,但仍以其强大的功能在各领域发挥越 来越重要的作用。
《红外成像制导》PPT课件
![《红外成像制导》PPT课件](https://img.taocdn.com/s3/m/52a2494727d3240c8447efff.png)
红外成像制导
周孟
红外线的发现和分类
1800年,英国物理学家赫歇尔研究单色光 的温度时发现 ,红光外一种看不见的“热 线”,称为红外线。
三个波段:近红外线,波长范围为0.76~ 1.5μm;中红外线,波长范围为1.5~ 5.6μm;远红外线,波长范围为5.6~ 1000μm。
红外成像制导
红外制导:是利用红外探测器捕获和跟踪 目标自身辐射的能量来实现寻地制导的技 术。分为红外成像制导技术和红外非成像 制导技术两大类。 主要用于空空导弹、空地导弹和地空导 弹,约有70余种导弹采用红外制导 。
红外非成像制导:一种被动制导技术 ,它 利用红外探测器捕获和跟踪目标自身所辐 射的红外能量来实现精确制导 。
特点:制导精度高,不受无线电干扰的影 响;可昼夜作战;由于采用被动寻的方式, 攻击隐蔽性好。但受云、雾和烟尘的影响; 并有可能被红外诱饵等热源诱惑,偏离和 丢失目标。
一般用作近程武器的制导系统或nfrared ImagIng):是指借助 对红外线敏感的探测器,不直接接触物体, 来记录物体对红外线的辐射、反射、散射 等信息,通过分析,揭示出物体的特征及 其变化。
有被动红外成像技术和主动红外成像技术
红外成像制导:是一种实时扫描技术,它 将景物表面温度的空间分布情况变成按时 序排列的电信号,并以可见光的形式显示 出来,或将其数字化储存在存储器中,然 后利用图形识别和图像处理技术进行背景 抑制,目标图像增强、目标提取和识别特 征工作,从而得到制导信息。
处理中采用红外弱小目标的图像序列作为 原始图像。在实际红外场景中,背景杂波 将小目标淹没,且分布并不服从理想目标 背景模型,若直接用动态规划进行处理, 结果会产生大量的虚警点。因此,在使用 动态规划方法之前,须进行适当的预处理。
周孟
红外线的发现和分类
1800年,英国物理学家赫歇尔研究单色光 的温度时发现 ,红光外一种看不见的“热 线”,称为红外线。
三个波段:近红外线,波长范围为0.76~ 1.5μm;中红外线,波长范围为1.5~ 5.6μm;远红外线,波长范围为5.6~ 1000μm。
红外成像制导
红外制导:是利用红外探测器捕获和跟踪 目标自身辐射的能量来实现寻地制导的技 术。分为红外成像制导技术和红外非成像 制导技术两大类。 主要用于空空导弹、空地导弹和地空导 弹,约有70余种导弹采用红外制导 。
红外非成像制导:一种被动制导技术 ,它 利用红外探测器捕获和跟踪目标自身所辐 射的红外能量来实现精确制导 。
特点:制导精度高,不受无线电干扰的影 响;可昼夜作战;由于采用被动寻的方式, 攻击隐蔽性好。但受云、雾和烟尘的影响; 并有可能被红外诱饵等热源诱惑,偏离和 丢失目标。
一般用作近程武器的制导系统或nfrared ImagIng):是指借助 对红外线敏感的探测器,不直接接触物体, 来记录物体对红外线的辐射、反射、散射 等信息,通过分析,揭示出物体的特征及 其变化。
有被动红外成像技术和主动红外成像技术
红外成像制导:是一种实时扫描技术,它 将景物表面温度的空间分布情况变成按时 序排列的电信号,并以可见光的形式显示 出来,或将其数字化储存在存储器中,然 后利用图形识别和图像处理技术进行背景 抑制,目标图像增强、目标提取和识别特 征工作,从而得到制导信息。
处理中采用红外弱小目标的图像序列作为 原始图像。在实际红外场景中,背景杂波 将小目标淹没,且分布并不服从理想目标 背景模型,若直接用动态规划进行处理, 结果会产生大量的虚警点。因此,在使用 动态规划方法之前,须进行适当的预处理。
红外成像原理
![红外成像原理](https://img.taocdn.com/s3/m/75793f954b35eefdc9d3335d.png)
红外成像原理及应用
一、红外的基本概念 二、红外成像系统 三、红外成像系统的应用
一、红外的基本概念
1666年,进行了著名的色散实色散
天文学家威廉姆·赫胥尔1800年发现了红外线。
由于太阳光是由各种颜色的光谱组成,并且是一 种热量来源,赫胥尔想了解哪一种颜色的光是产 生热量的原因。他设计了一个巧妙的实验。他将 直射的太阳光穿过一个玻璃棱镜,生成光谱,然 后用温度计测量每种颜色的温度。赫胥尔发现从 紫色到红色的光谱波段,温度会逐渐升高,而且 在红色光谱以上的区域竟然是所有光谱中温度最 高的一部分。这部分区域由于其热量辐射,是无 法被人类肉眼探测到的,属于不可见光区域。赫 胥尔将这种不可见辐射命名为“发热的射线”。 现在我们将其称之为红外辐射。
4.科研
如微电子,纸处理,自动化,塑料,模具,装 备设计,通讯,机械测试,科研等等。
红外热像仪能够实时捕捉和记录热分布情况, 有助于工程师对自己建立的装置或正在监测的 事件的热模型进行量化和可视化。由于电子产 品的发展趋势为更小、更轻、功能更强大。
5.建筑检测
在建筑材料中的湿气会破坏结构的完整性,并 且滋生霉菌。解决湿气问题的第一步便是快速 准确的找到并消除一切湿气产生的来源。红外 热像仪将可以立即向您显示何处潮湿和何处干 燥。红外热像仪可以迅速找到问题根源,并进 行小规模的或根本无需对建筑物进行拆卸,从 而把对居住者的影响降到最低。
6.消防
在大面积的森林中,火灾往往是由不明显 的隐火引发的。这是毁灭性火灾的根源, 用现有的普通方法,很难发现这种隐性火 灾苗头。用飞机巡逻,采用红外热成像仪, 则可以快速有效地发现这些隐火,把火灾 消灭在最初。
一般建筑家用电器的发热检测。
请看下一节
3.食品
一、红外的基本概念 二、红外成像系统 三、红外成像系统的应用
一、红外的基本概念
1666年,进行了著名的色散实色散
天文学家威廉姆·赫胥尔1800年发现了红外线。
由于太阳光是由各种颜色的光谱组成,并且是一 种热量来源,赫胥尔想了解哪一种颜色的光是产 生热量的原因。他设计了一个巧妙的实验。他将 直射的太阳光穿过一个玻璃棱镜,生成光谱,然 后用温度计测量每种颜色的温度。赫胥尔发现从 紫色到红色的光谱波段,温度会逐渐升高,而且 在红色光谱以上的区域竟然是所有光谱中温度最 高的一部分。这部分区域由于其热量辐射,是无 法被人类肉眼探测到的,属于不可见光区域。赫 胥尔将这种不可见辐射命名为“发热的射线”。 现在我们将其称之为红外辐射。
4.科研
如微电子,纸处理,自动化,塑料,模具,装 备设计,通讯,机械测试,科研等等。
红外热像仪能够实时捕捉和记录热分布情况, 有助于工程师对自己建立的装置或正在监测的 事件的热模型进行量化和可视化。由于电子产 品的发展趋势为更小、更轻、功能更强大。
5.建筑检测
在建筑材料中的湿气会破坏结构的完整性,并 且滋生霉菌。解决湿气问题的第一步便是快速 准确的找到并消除一切湿气产生的来源。红外 热像仪将可以立即向您显示何处潮湿和何处干 燥。红外热像仪可以迅速找到问题根源,并进 行小规模的或根本无需对建筑物进行拆卸,从 而把对居住者的影响降到最低。
6.消防
在大面积的森林中,火灾往往是由不明显 的隐火引发的。这是毁灭性火灾的根源, 用现有的普通方法,很难发现这种隐性火 灾苗头。用飞机巡逻,采用红外热成像仪, 则可以快速有效地发现这些隐火,把火灾 消灭在最初。
一般建筑家用电器的发热检测。
请看下一节
3.食品
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外成像的原理
红外辐射的大气窗口
红外辐射在大气中传输时,不同波长的红 外辐射,有着不同的吸收和衰减;
1~2.5
3~5
8~14
13
红外成像系统
红外成像系统
主动式红外成像系统 (红外夜视仪)
利用不同物体 对红外辐射的 不同反射
被动式红外成像系统 (红外热像仪)
利用物体自 然发射的红 外辐射
14
被动式红外成像系统
如何减小大气后向 散射影响?
选通技术
通过发射脉冲时序 配合,使变像管在接 收观察目标反射回来 的红外辐射时工作。
33
主动式红外成像系统
探照灯:短脉 冲红外激光
+
红外变像管: 加选通电极
34
8微秒
脉冲光源 照明输出
后向散射辐射 目标反射辐射
减少大气后 向散射对红 外图像对比 度和清晰度
的影响
选通脉冲
红外热像仪
自然界中,一切物体都可以辐射红外线, 因此利用探测仪测定目标的本身和背景之 间的红外线差并可以得到不同的红外图像, 热红外线形成的图像称为热图;
目标的热图像和目标的可见光图像不同, 它不是人眼所能看到的目标可见光图像, 而只是目标表面温度分布图像 ;
15
被动式红外成像系统
光电转换 电视光栅
来这么有 用啊!
天文
气象
文物鉴定
医学
军事
数据传输
9
红外成像的原理
一、红外线的特性 又称红外辐射,是指波长为0.78~1000
微米的电磁波。其中波长为0.78~2.0微米的 部分称为近红外,波长为2.0~1000微米的部 分称为热红外线,也就是我们熟悉的中远 红外光;
10
红外成像的原理
红外辐射普遍存在于自然界:
优点:成像清晰、对比度高、不受环境光源影响; 缺点:易暴露,不利于军事应用。
25
Backdrops:
- These are full sized backdrops, just scale them up! - Can be Copy-Pasted out of Templates for use anywhere!
17
18
被动式红外成像系统
ThermoVision™ A20-V高品质红外热像仪 19
被动式红外成像系统
树林中人的热图像
小图是可见光图像 大图是热图像
热图像再现了景物各部分温度和辐射发射
率的差异,能够显示出景物的特征。
20
红外成像的原理
当然啦,由上面的红外热图可 以知道,物体各部分的温度分布, 这些都只是探测器探测到的图像, 但我们更多时候更需要的是直观的 图像,而不只是观测目标表面的温 度分布,所以还要将探测器探测的 红外光转换成人眼识别的可见光 。
荧光屏
电子光学系统
通常变像管的光阴极采用对近红外敏感 (0.8~1.2um)的银氧铯光敏层,电子光学部 分相当于一个静电聚焦系统。
32
主动式红外成像系统
大气后向散射现象: 红外探照灯向目标 发出的红外光束通 过大气时,其中一 部分散射后向辐射 进入观察系统。引 入了图像的背景噪 声,降低了图像对 比度和清晰度。
目镜组:把变像管荧光屏上的像放大,便于 人眼观察;
与常规光学仪器不同,变像管将物镜组和目 镜组隔开,使得光学系统的入瞳和出瞳不存 在物象共轭关系!
29
主动式红外成像系统
3.1.3 红外变像管
红外变像管是主动式红外成像系统的核心, 是一种高真空图像转换器件,完成从近红外 图像到可见光图像的转换并增强图像。
21
红外摄影图片:
22
我们肯定会想,为什么都是黑白的 照片呢?
因为红外摄像是利用普通CCD黑白摄 像机可以感受红外光的光谱特性(即可以 感受可见光,也可以感受红外光),配合 红外灯作为“照明源”来夜视成像,所以 所成的图像只有黑白;
23
红外摄像的基本原理图:
24
主动式红外成像系统
主动式红外成像系统自身带有红外光源, 是根据被成像物体对红外光源的不同反射率, 以红外变像管作为光电成像器件的红外成像 系统。
红外成像原理 及应用
1
天文观测
地面10米望远镜用7种波长观 SL-9彗核C碰撞前后的木星红外 测的彗木碰撞后的红外图像 图像
2
军事观察
红外摄像机(英军押解伊战俘)
红外望远镜
军事观察
3
气象预测
红外云图
4
艺术鉴定
5
温度感应
红外感应开关
红外测温仪
6
数据传输
7
一、应用
医学成像
8
一、应用广泛
红外线原
装有红外夜视仪的步枪
主动式红外成像 系统
红外夜视图像
26
主动式红外成像系统
主动式红外成像系统的系统结构
主动式红外成像系统
光学系统
物镜组 目镜组
红外变像管 红外探照灯 高压电源
光谱转换 电子成像 亮度增强
红外辐射光源 变像管电源
27
主动式红外成像系统结构
28
主动式红外成像系统
光学系统
物镜组:把目标成像于变像管的光阴极面上;
任何温度高于绝对零度的物体(人体、冰、 雪等)都在不停地发射红外辐射。
红外辐射的倍频程比可见光宽: 倍频程:若使每一频带的上限频率比下限频 率高一倍,即频率之比为2,这样划分的每一 个频程称为1倍频程,简称倍频程。
可见光:0.38~0.78um,一个倍频程 红外线:0.78~1000um,商为1282=210,10个倍频程
16
被动式红外成像系统
信号处理与显示
信号处理与显示的基本任务是形成与景物 温度分布相对应的视频信号,然后根据景物 各单元对应的视频信号标出景物各部分的温 度,并显示出景物的热图像。 信号处理部分包括:前置放大、主放、自动 增益控制、限制带宽、检波、鉴幅、多路传 输和线性变换。
显示可以采用发光二极管和CRT。
从结构材料上分,红外变像管可以分为金属 结构型和玻璃结构型;
从工作方法上分,可以分为连续工作方式和 选通工作方式。
30
主动式红外成像系统
阴极外筒
电子光学系统
电子轨迹
阳极锥电极
光学纤维
红外光阴极
荧光屏
红外变像管结构
31
主动式红外成像系统
红外变像管的工作过程
近红外辐射
光阴极面
电子流图像
可见光图像
高能电子
精确测量目
标与观察者 之间的距离
11红外成像的原理Fra bibliotek波长温度
红外辐射能量密度曲线
物体名称 温度/K
太阳
11000
融化的铁 1803
融化的铜 1173
融化的蜡 336
人体
305
地球大气 300
冰
273
液态氮
77.2
max / m
0.26 1.61 2.47 8.62 9.50 9.66 10.6 37.53
常见物体的峰值波长
12