七年级数学上册1.4.2有理数的除法第1课时有理数的除法教学课件(新版)新人教版
统编教材人教版七年级数学上册1.4.2 第1课时 有理数的除法法则 公开课教学课件
解:(1)原式=-23×-58÷-14 =-23×58×4 =-53. (2)原式=-47×-134×-32=-4. (3)原式=(-2)×3×(-3)=18.
(4)原式=-52×-156×-18×-14 =52×156×18×14 =14.
知识管理
有理数的除法法则 法则一:除以一个不等于 0 的数,等于乘这个数的 倒数 ,这个法则
1 也可表示成 a÷b= a·b (b≠0).
法则二:两数相除,同号得 正 ,异号得 正 ,并把绝对值 相除 .0 除以任何一个不等于 0 的数,都得 0 .
归类探究
类型之一 有理数的除法运算 计算:
(1)36÷(-9); (2)(-48)÷(-6); (3)(-32)÷4; (4)(-110)÷(-5). 解:(1)-4.(2)8.(3)-8.(4)22. 【点悟】 有理数的除法运算与乘法运算类似,关键是确定商的符号, 同号得正,异号得负,并把绝对值相除.
统编教材人教版七年级数学上册
第一章 有理数
1.4.2 第1课时 有理数的除法法则
学习指南
教学目标 1.理解有理数除法的意义,熟练掌握有理数除法法则. 2.会进行有理数的除法运算.
情景问题引入 活动内容:(1)前面我们学习了“有理数的乘法”,那么自然会想到有理 数有除法.如何进行有理数的除法运算呢?开门见山,直接引出本节知识的 核心. (-12)÷(-3)=? (2)回忆小学里乘法与除法互为逆运算,并提问:被除数、除数、商之间 有何关系?
【解析】 a1=12,a2=1-1 12=2,a3=1-1 2=-1,a4=1-1-1=12,…. 可以发现:数列以12,2,-1 循环出现. 因为 2 019÷3=673, 所以 a2 019=-1.
人教版七年级上册数学:第一章《有理数》1.4.2 第1课时《有理数的除法法则》
三、乘除混合运算往往先将除法化为乘法,然后确定积的符 号,最后求出结果(乘除混合运算按从左到右的顺序进行计算)
(1) 12 ; (2) 45
3
12
解 : (1) 12 (12) 3 4 3
(2)
45 12
(45)
(12)
45
12
15 4
二、有理数的乘除混合运算
例3 计算
(1) 125 5 5
7
(2) 2.5 5 ( 1) 84
解:(1)原式 125 5 5 7
(125 5 ) 1 75
125 1 5 1 5 75
25 1 25 1
7
7
(2)原式 5 8 1 254
1
方法归纳
(1)有理数除法化为有理数乘法以后,可以利用 有理数乘法的运算律简化运算
(2)乘除混合运算往往先将除法化为乘法,然后 确定积的符号,最后求出结果(乘除混合运算按从 左到右的顺序进行计算)
两个法则是不是都可以用于解决两数相除呢?
归纳: 两个法则都可以用来求两个有理数相除. 如果两数相除,能够整除的就选择法则二,
不能够整除的就选择用法则一.
典例精析
例1
计算(1)(-36) 9;
(2) ( 12 ) ( 3)
.
25 5
解:(1)(-36) 9= - (36 9)= - 4;
练一练
1.计算
(1)(-45 )÷(-2); (2)-0.5÷78 ×(-54 );
(3)(-7)÷(-32 )÷(-75 )
2
答案:(1)
5
;(2) 5 7
人教版七年级上册 1.4.2有理数的除法(第一课时)
(2)15 ( 3)= 5
15( 1)= 5
3
变为倒数
观察下列两组式子,你能找到它们的共同点吗?
“÷”变“×”
(1)15 3= 5
15 1 = 5
3
变为倒数
“÷”变“×”
一变:符号; 二变:除数.
(2)15 ( 3)= 5
15( 1)= 5
3
变为倒数
三、典例精析
例1 计算:(1) 36 9
3
二、归纳法则
15 3 15 1
3
15
3
15
1 3
有理数的除法法则:
除以一个不等于0的数,等于乘这个数的倒数.
a b a 1 b≠0
b
比一比
让我们再来观察下列两个算式,商的符号及其 绝对值与被除数和除数有没有关系?试着总结 一下规律.
(1)15 3 5
(2)15 3 5
被除数与除 数符号相反
二、归纳法则
怎样计算 15 呢?
根据除法是乘法的逆运算,就是要求一个数,
使它与 相乘得 15 .
因为
(5) 3 15
所以
15 3 5
①
另一方面,我们有 (15) 1 5
②
3
于是有 15 3 15 1 ③
3
③式表明,一个数除以 可以 转化为乘 1 来进行,
3
即一个数除以 ,等于乘 的倒数 1 .
3
二、归纳法则
想一想
仿照上面的方法,我们再来看如何计算
15 3
因为 5 3 15 所以 15 3 5
想一想
(15)
1 3
(15)
1 3
5
于是有
15
3
人教版七年级上册数学作业课件 第一章 有理数 有理数的除法 第1课时 有理数的除法法则
9.计算: (1)(-32)÷4×(-115); 解:原式=185. (3)(-81)÷94×(-49)÷8. 解:原式=2.
(2)(-113)×(-9)÷(-12); 解:原式=-24.
10.下列计算: ①(-1)×(-2)×(-3)=6;②(-36)÷(-9)=-4; ③23×(-94)÷(-1)=32;④(-4)÷12×(-2)=16. 其中正确的有( C ) A.4 个 B.3 个 C.2 个 D.1 个
(2)(-3.75)÷(-1.25); 解:原式=3. (4)(-2467)÷6. 解:原式=-417.
知识点二 有理数的乘、除混合运算 7.计算-100÷5×15,结果正确的是( B )
A.4 B.-4 C.-100 D.100
8.下列计算正确的是( C ) A.-3.5÷78×(-34)=-3 B.-2÷3×3=-29 C.(-6)÷(-4)÷(+65)=54 D.- 1 ÷(1÷1)=-1 30 6 5
(2)若 a,b,c 都是非零有理数,求 a + b + c +|abc|的值. |a| |b| |c| abc
解:当 a,b,c 同为正数时,原式=1+1+1+1=4;
当 a,b,c 同为负数时,原式=-1-1-1-1=-4;
当 a,b,c 中有两个数为正数,一个为负数时,原式=
1+1-1-1=0;当 a,b,c 中有两个数为负数,一个
为正数时,原式=1-1-1+1=0.
综上所述, a + b + c +|abc|的值为 |a| |b| |c| abc
4
或
0
或-4.
答:天都峰峰顶的气温大约为 7.2 ℃.
(2)若某地的地面温度为 20 ℃,高空某处的气温为 -22 ℃,求此处的高度. 解:(-22-20)÷(-6)=7(km).
2.2.2有理数的除法(第1课时除法法则) 课件(共20张PPT)七年级数学上册 (人教版2024)
(2)-
− −
=-
(4)-− =
(4) − =0
第二章 有理数的运算
归纳整理
乘倒数
乘法分配律
除法
乘法
简便运算
乘除混合运算步骤
第一步 定号:偶正奇负来确定符号。 第二步 统一:将除法转化为乘法。 第三步 运算:按乘法进行运算或化简。
针对练习
81.计计算算:
(1)(-12)÷21×4÷(-24)
49
(2)(-12131)÷4.
3
3 44
16 81
(3)(1
6
-
1 4
+
1)÷(-
2
214) 10
(4)(-
5 )÷(-
11
13)×(-
8
21)÷8
5
9
9 13
课堂小结
有理数除法
1.除以一个不等于0的数,等于乘这个数 的倒数 法则
2.两数相除,同号得正,异号得负,并把绝 对值相除
转化
步骤
判断
乘法分配律
(2)(-12)÷(+1 ) (4)0÷(-3.72) (6)(-4.72)÷1
(2)(-12)÷(+1 )= -8 (4)0÷(-3.72)= 0 (6)(-4.72)÷1= -4.72
第二章 有理数的运算
针对练习
1.计算
(1)−−
(2)-
− −
(3)−
(4)-− (5)−
解:(1)−− = 7 (3) − =-
5
1 7
(2) 12 ; 1
−48
4
(4)- −−09.3. 30
6.计算:
(1)
36
9 11
1.4.2 有理数的除法 第1课时 有理数的除法法则
[点拨]进行有理数的除法运算时,先确定商的符号,再计算商的 绝对值,这种方法适用于能整除的情形.
计算:-53÷-35. 解:-53÷-35 =-53×-35① =1.②
(1)找错:以上解法从第___①_____步开始出现错误; (2)改正:(-53)÷(-35)=(-53)×(-53)=295.
【归纳总结】有理数除法运算的“四种技巧”: 技巧一 当两个有理数能够整除时,确定符号后,直接相除 技巧二 当除数是分数时,把除法转化为乘法 当除数是小数时,把小数转化为分数,再把除法转 技巧三 化为乘法 当除数是带分数时,把带分数转化为假分数,再把 技巧四 除法转化为乘法
总结反思
知识点 有理数的除法法则 法则1: 除以一个__不_等_于__0__的数,等于乘这个数的__倒_数_____. 这个法则也可以表示成a÷b=___a_·1b____(b≠0). 法则2:两数相除,同号得____正____,异号得___负_____,并把 绝对值____相_除_____.0除以任何一个不等于0的数,都得 0 ________.
解: (1)16÷(-4)=-(16÷4)=-4. (2)(-0.75)÷0.25=-(0.75÷0.25)=-3. (3)(-84)÷(-7)=84÷7=12. (4)0÷(-2019)=0.
【归纳总结】计算两数相除的“三步法”: 一观察,确定商的符号;二确定商的绝对值;三确定结果.
目标二 能将有理数除法转化成乘教材例 5(2)针对训练 计算:
(1)(-272)÷11;
(2)(-8)÷(-32);
(3)-79÷+312;
(4)338÷(-2.25);
(5)-1÷-352.
解: (1)(-272)÷11=-272×111=-27. (2)(-8)÷(-23)=8÷23=8×32=12. (3)(-79)÷(+312)=-79×27=-29. (4)338÷(-2.25)=-287×49=-112. (5)-1÷(-325)=1×157=157.
人教版七年级数学上册1.有理数的除法课件
知识回顾
一个数的倒数如何求? a的倒数是什么?
你能很快地说出下列各数的倒数吗?
原数 - 5 9 7
8
倒数
1 5
8 9
1 7
0 -1 1 2 3
-1 3
5
1、求整数的倒数是用1除以它, 2、求分数的倒数是分子分母调换位置, 3、求小数的倒数必须先化成分数再求。
学习目标
1、理解有理数除法法则并会应用法则进行
除法计算。
(法则)
2、会化简分数。
3、掌握乘除混合运算。
自学指点
看课本P34-35,回答下列问题: 1、如何灵活运用两个除法法则;(理解) 2、乘除混合运算的符号如何确定。 3、看例题5的格式,思考有理数除法的步骤-2__) ×(-4)= 8; a b a 1 (b 0)
6
6
11 23
3 (1) 3
运算顺序颠倒
1 6
错误应用分配律
当堂作业
有理数除法法则(二)
两数相除,同号得正,异号得负,并把绝对值相除。 0除以任何一个不等于0的数,都得0
除法法则 (一) 除以一个不等于0的数,等于乘以
这个数的倒数。 除法法则(二)
两数相除,同号得正,异号得负, 并把绝对值相除。 0除以任何一个不等于0的数都得0。
(先定符号,值再相除)
两个法则都可以用来求两个有理数相除. 1、如果两数相除,能够整除的用法则二 (确定符号后,直接用绝对值相除) 2、 不能够整除的用法则一。
所以 8 ÷(-4)= _-2___ ;
b
因为
8×
1 4
=__-2_
;
所以
8
÷(-4)=___8×
人教版数学七年级上册1.4.2《有理数的除法(1)》教学设计1
人教版数学七年级上册1.4.2《有理数的除法(1)》教学设计1一. 教材分析《有理数的除法(1)》是人教版数学七年级上册的教学内容,本节课主要让学生掌握有理数除法的基本运算方法,理解有理数除法的运算规律,培养学生解决实际问题的能力。
教材通过引入日常生活中的一些实例,让学生感受有理数除法的实际意义,进而引导学生探究有理数除法的运算方法。
二. 学情分析学生在七年级上册已经学习了有理数的加法、减法、乘法,对有理数的基本运算有了初步了解。
但学生在解决实际问题时,往往不能灵活运用有理数运算规律。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生将实际问题转化为有理数除法运算问题,并通过实例让学生感受有理数除法的运算规律。
三. 教学目标1.知识与技能:使学生掌握有理数除法的基本运算方法,理解有理数除法的运算规律。
2.过程与方法:培养学生解决实际问题的能力,提高学生运用有理数除法解决生活中的问题。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作探究的精神。
四. 教学重难点1.教学重点:有理数除法的基本运算方法。
2.教学难点:理解有理数除法的运算规律,解决实际问题。
五. 教学方法1.情境教学法:通过引入日常生活中的一些实例,让学生感受有理数除法的实际意义。
2.引导发现法:教师引导学生观察、分析实例,发现有理数除法的运算规律。
3.合作学习法:学生分组讨论,共同解决问题,提高学生合作能力。
六. 教学准备1.教学课件:制作课件,展示实例和教学内容。
2.教学素材:准备一些实际问题,用于引导学生解决。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用课件展示日常生活中的一些实例,如购物时找零、制作食品时配料等,引导学生感受有理数除法的实际意义。
2.呈现(10分钟)教师通过讲解,向学生介绍有理数除法的基本运算方法,如“同号两数相除,异号两数相除”等。
同时,引导学生观察实例,发现有理数除法的运算规律。
新人教版七年级数学上册1.4.2 第1课时 有理数的除法法则 (3)
第一章 有理数1.4 有理数的乘除法1.4.2 有理数的除法第1课时 有理数的除法法则学习目标:1.认识有理数的除法,经历除法的运算过程.2.理解除法法则,体验除法与乘法的转化关系.3.掌握有理数的除法及乘除混合运算.重点:有理数的除法法则及运算. 难点:准确、熟练地运用除法法则.一、知识链接 1.填一填:2.有理数的乘法法则:两数相乘,同号________,异号_______,并把_________相乘. 一个数同0相乘,仍得________. 3.进行有理数乘法运算的步骤: (1)确定_____________; (2)计算____________. 二、新知预习1.根据除法是乘法的逆运算填空: (+2)×(+3)=+6(+6)÷(+2)=_________, 对 162+⨯=__________. (-2)×(-3)=+6(+6)÷(-2)=_________, 比 16()2+⨯-=__________. 2.对比观察上述式子,你有什么发现?【自主归纳】 有理数的除法法则:除以一个数(不等于0)等于乘这个数的____________. 3.根据有理数的乘法法则和除法法则,讨论:(1)同号两数相除,商的符号怎样确定,结果等于什么?(2)异号两数相除,商的符号怎样确定,结果等于什么?(1)-54 ÷(-9);(2)-27 ÷ 3;(3)0 ÷(-7);(4)-24÷(-6).思考:从上面我们能发现商的符号有什么规律?有理数除法法则(二):两数相除,同号得 ,异号得 ,并把绝对值 .0除以任何一个不等于0的数,都得 . 思考:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?归纳:两个法则都可以用来求两个有理数相除.如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1 计算(1)(-36)÷ 9; (2)(-2512)÷(-53).例2 化简下列各式: (1)312-;(2)1245--探究点2:有理数的乘除混合运算 例3 计算 (1)(-12575)÷(-5);(2)-2.5÷85×(-41).方法归纳:(1)有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算;(2)乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算). 1.(1)(-24)÷4; (2) (-18)÷(-9); (3) 10÷(-5). 2.计算:(1)(-24)÷[(-32)×49];(2)(-81)÷214×49÷(-16).二、课堂小结 一、有理数除法法则: 1.a ÷b =a ×b1(b ≠0)。
最新人教版《有理数的除法》教学设计教案(第1课时)
第一章有理数1.4 有理数的乘除法1.4.2 有理数的除法第1课时一、教学目标【知识与技能】掌握有理数除法法则,会进行有理数的除法运算以及分数的化简.【过程与方法】通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.【情感态度与价值观】培养学生勇于探索积极思考的良好学习习惯.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】正确应用法则进行有理数的除法运算.【教学难点】灵活运用有理数除法的两种法则.五、课前准备教师:课件、直尺、倒数图片等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课根据实验测定,高度每增加1km,气温大概下降6℃. 某登山运动员攀登某高峰的途中发回信息,报告他所在高度的温度是-15℃,当时地面气温为3℃. 请问你能确定登山运动员所在的位置高度吗?(出示课件2)(二)探索新知1.师生互动,探究有理数的除法法则(出示课件4)教师问1:小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?学生回答:50×20=100.教师问2:放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?学生回答:100 ÷50=20.教师问3:从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?学生回答:有理数除法与有理数乘法互为逆运算.教师问4:引入负数后,如何计算有理数的除法呢?以8÷(-4)为例.(出示课件5)师生共同讨论后解答如下:根据除法意义,这就是要求一个数,使它与-4相乘得8.因为(-2)×(-4)=8所以8÷(-4)=-2 ①另外,我们知道,8×(-14)=-2 ②由①、②得8÷(-4)=8×(-14)③③式表明,一个数除以-4可以转化为乘以-14来进行,即一个数除以-4,℃等于乘以-4的倒数-14.教师问5:对于其他的数是不是也可以呢?请完成下面的题目:(出示课件6)学生回答:中间组由上到下答案依次为:-2,-6,45,-8;右边组由上到下答案依次为:-2,-6,45,-8;教师问6:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则了吗?学生回答:上面各组数计算结果相等,有理数的除法可以转化为乘法进行计算.教师问7:观察下列两组式子,你能找到它们的共同点吗?(出示课件7)学生回答:除以一个数等于乘以它的倒数.教师问8:除数能为0吗?学生回答:不能为0.教师问9:换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘以1a呢?[例如(-10)÷(-0.4)]学生做题后回答:仍然可以.总结点拨: 从而得出有理数除法法则:(出示课件8)除以一个不等于0的数,等于乘以这个数的倒数.这个法则也可以表示成:a÷b=a·1b(b≠0), 其中a 、b 表示任意有理数(b≠0)教师问10:利用上面的除法法则计算下列各题.(出示课件9)(1)(–54)÷ (–9); (2)(–27) ÷3;(3)0 ÷ (–7); (4)(–24) ÷(–6).学生回答:(1)6;(2)-9;(3)0;(4)4教师问11:从上面我们能发现商的符号有什么规律?学生回答:同号得正,异号得负.总结点拨:(出示课件10)两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.教师问12:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?(出示课件11)师生共同解答如下:1. 两个法则都可以用来求两个有理数相除.2. 如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1:计算:(出示课件12)(1)(–36) ÷ 9;(2)(-1225)÷(-35) .师生共同解答如下:解:(1)(–36) ÷ 9= –(36×19 )= –4;(2)例2:化简下列各式:(出示课件14)(1) −123 ;(2)−45−12 . 师生共同解答如下:解:(1)(2)例3:计算:(出示课件)(1) (2) 师生共同解答如下:解:(1)原式=12557 ÷5=(125+57)×15=125×15+57×15=25+17=2517点拨:如果有带分数,可以将带分数写成整数部分和分数部分的和,利用分配律进行运算,更加简便.(2)原式=52×85×14= 1点拨:将小数化为分数.总结点拨:1. 有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.2. 乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).(三)课堂练习(出示课件19-22)1. (–21) ÷7的结果是( )A .3B .–3C .13 D. –132. 计算:(–12) ÷ 3=_______.3. 填空:(1)若a ,b 互为相反数,且a ≠ b ,则a b =________;(2)当a < 0时,|a |a =_______;(3)若 a>b ,a b <0,则a ,b 的符号分别是__________. (4)若–3x=12,则x =_____.4.若|2x +6|+|3−y |=0,则x y =_________.5. (1)计算(- 45)÷(- 2) ;(2)计算-0.5÷78×(- 54);(3)计算(-7)÷(- 32)÷(- 75)参考答案:1.B2.-43.(1)-1;(2)-1;(3)a>0,b<0;(4)-44.-1 解析:由题意得,|2x +6|+|3−y |=0,解得x=-3,y=3,所以x y =−33=-1.5.解:(1)原式=45×12=25(2)原式=12×87×54=57(3)原式=-7×23×57=-103(四)课堂小结今天我们学了哪些内容:除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.(五)课前预习预习下节课(1.4.2)36页到37页的相关内容。
初中数学人教版七年级上册《1.4.2有理数的除法(1)》课件(完美版)
(3)1÷(-9);
(6)
6 5
2 5
(3)1÷(-9)
=1×( = 1
)
1 9
9
(6)
6 5
2 5
65 3 52
练习1
想一想:如何化简下列分数呢?
(1) 12 ; 3
(2) 45 12
解:
(1) 12 =(-12)÷3 3
七年级数学上册1.4.2第1课时有理数的除法课件新版新人教版精品
1
最新中小学课件
2
最新中小学课件
3
最新中小学课件
4
最新中小学课件
5
最新中小学课件
6
最新中小学课件
7
最新中小学课件
8
最新中小学课件
最新中小学课件
10
最新中小学课件
11
最新中小学课件
12
最新中小学课件
13
最新中小学课件
14
最新中小学课件
15
谢谢!
墨子,(约前468~前376)名翟,鲁人 ,一说 宋人, 战国初 期思想 家,政 治家, 教育家 ,先秦 堵子散 文代表 作家。 曾为宋 国大夫 。早年 接受儒 家教育 ,后聚 徒讲学 ,创立 与儒家 相对立 的墨家 学派。 主张•兼 爱”“ 非攻“ 尚贤” “节用 ”,反 映了小 生产者 反对兼 并战争 ,要求 改善经 济地位 和社会 地位的 愿望, 他的认 识观点 是唯物 的。但 他一方 面批判 唯心的 宿命论 ,一方 面又提 出同样 是唯心 的“天 志”说 ,认为 天有意 志,并 且相信 鬼神。 墨于的 学说在 当时影 响很大 ,与儒 家并称 为•显 学”。 《墨子》是先秦墨家著作,现存五 十三篇 ,其中 有墨子 自作的 ,有弟 子所记 的墨子 讲学辞 和语录 ,其中 也有后 期墨家 的作品 。《墨 子》是 我国论 辩性散 文的源 头,运 用譬喻 ,类比 、举例 ,推论 的论辩 方法进 行论政 ,逻辑 严密, 说理清 楚。语 言质朴 无华, 多用口 语,在 先秦堵 子散文 中占有 重要的 地位。 公输,名盘,也作•“般”或•“班 ”又称 鲁班, 山东人 ,是我 国古代 传说中 的能工 巧匠。 现在, 鲁班被 人们尊 称为建 筑业的 鼻祖, 其实这 远远不 够.鲁 班不光 在建筑 业,而 且在其 他领域 也颇有 建树。 他发明 了飞鸢 ,是人 类征服 太空的 第一人 ,他发 明了云 梯(重武 器),钩 钜(现 在还用) 以及其 他攻城 武器, 是一位 伟大的 军事科 学家, 在机械 方面, 很早被 人称为 “机械 圣人” ,此外 还有许 多民用 、工艺 等方面 的成就 。鲁班 对人类 的贡献 可以说 是前无 古人, 后无来 者,是 我国当 之无愧 的科技 发明之 父。
人教版七年级数学上册1.有理数的除法课件
创设情境 提出问题
一个数乘以-3等于12,这个数是多少?如何列算式表示?
12÷(-3)=?
一个数乘以-3等于 -12 ,这个数又是多少?如何列算式表示?
(-12)÷(-3)=?
讨论探究
归纳分类
小学:正数÷正数 和 0÷正数
思考:有理数的除法有哪些情况呢?
}
正数÷正数负数÷负数
转化的思想方法
1.已知a与4的和为0,b的相反数是- 1,c的绝对值是
3,求ab + bc +ca 的值.
(解:- 13或5)
正数÷负数
六种情况
负数÷正数
0÷正数
0÷负数
}
}
同号
异号
0除以任何非0的数
填一填:
4×2=___
8
2
8÷4=___
6×6=___
36
6
36÷6=___
35
5×7=___
7
35÷5=___
8×9=___
72
9
72÷8=___
填一填:
4×(-2)=___
-8
-8÷4=___
-2
-5×7= -35
___
解 : (2) (28) (4)
(36 9)
28 4
4
7
两个有理数相除,有两种方法:
第一种运用有理数的除法法则:两数相除,同号
得正,异号得负,并把绝对值相除;
第二种方法是把除法转化为乘法:除以一个
数等于乘以这个数的倒数;(0不能作除数)
一
如(-78) ÷3运用上述第______种方法简便.
正
两个有理数相除, 同号得____,
七年级数学上册 1.4.2 有理数的除法(第1课时)课件 (新版)新人教版
第十五页,共16页。
凡事顺其自然,遇事处之泰然,得意之时淡然, 失意之时坦然,艰辛曲折(qūzhé)必然,历尽沧 桑悟然.
第十六页,共16页。
(1) 12 . 3
(2) 45 . 12
解 : (1) 12 12 3 4.
3
(2) 45 45 (12) 15 .
12
4
第八页,共16页。
【例题(lìtí)】
例3 计算(jì
suàn):
(1)(125
5 7)
(5).
解 :(1)(125 5) (5) 7
(125 5) 1 75
(2)
2.5
5 8
(
1 4
)
解:(2)
2.5
5 8
(
1 4
)
581 254
125 1 5 1
1.
5 75
25 1 25 1 . 77
第九页,共16页。
【跟踪
(求g下ēn列zō(nxigà)l训iè)各数的倒数: 练】
(1)-3.
(2) 1 1 .
2
(3)0.2.
分析:欲求某数的倒数,就是( jiùshì)要确定与这
3.求下列(xiàliè)有理数的倒数.
1, -2, 1, 1.5 , 4,1 -1, -0.25 ,
7
32
21 5
第三页,共16页。
思考:1.小学是怎样进行除法(chúfǎ)运算的?
2.讨论两数相除的例子(lì zi)有哪些情形?
正数除以正数
8÷4
负数除以正数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
除以一个非零的数等于乘以这个正数的倒数。
有理数除法法则:
除以一个数, 等于_________________. 乘以这个数的倒数
1 a÷b=a · (b≠0). b
注意:除法在运算时有 2 个要素要发生变化。
变 1 除 乘 变 2 除数 倒数
例1 计算: (1) (-36) ÷9
解:
(1) (2)
1 5 1 125 5 7 5
5 1 ( 2) 2.5 ( ) 8 4
5 8 1 原式 2 5 4
1
1 25 7 1 25 7
(1) (-8)÷(-4)
(2) (-3.2)÷0.08
解:(1)2
(2) -40
求解中的第一步是
确定商的符号 _______________
人教
数学
七年级
上册
1.4.2 有理数的除法 第1课时 有理数的除法
计算: 72 8×9=____, -12 (-4)×3 =____, 2×(-3)=____, -6 12 (-4)×(-3)=____, 0×(-6)=____, 0
8 72÷9=____,
3 (-12)÷(-4)=____, -3 (-6) ÷2=____, -3 12÷(-4)=____, 0÷(-6)=____, 0
;
绝对值相除 ; 第二步是______________
计算:
(1) (21) 3
-7
计算:
(2) (36) (9)
4
计算:
(3) (1.6) 0.4
-4
计算:
( 4) 7 0 ( ) 83
0
计算:
(5) 2 1 ( ) 5
5 2
除法法则:
除以一个不等于0的数,等于乘这 个的数的倒数.
观察右侧算式, 两个有理数相除时: 除法能否转化为乘法? 商的符号如何确定? 商的绝对值如何确定?
正数除以正数 负数除以正数 零除以正数 因为 所以
1 8÷4 =2 8 =2 4 1 (-8)÷4 =-2 ( 8) =-2 4 1 0 =0 0÷4 =0 4
(-2)×4= -8, (-8)÷4= -2.
两个有理数相除, 同号得正, 异号得负,并 把绝对值相除; 0除以任何非0数都得0.
, 并把绝对值相除
异号两数相除得负 , 并把绝对值相除 零除以任何非零数得零
商的符号如何确定? 商的绝对值如何确定?
正 两个有理数相除, 同号得____, 负 并把绝对值_______. 相除 异号得_____,
0 0除以任何一个不等于0的数都得_____. 0不能作为除数
化简下列分数:
12 (1) 3
5 25 (2) ( ) ÷( ) 3 12 1 (-36) ÷9 =(-36) × =-4 9 25 5 ) ÷ ( 12 3 25 3 = × ( ) 12 5 5 = 4
8 72÷9=____,
同号两数相除得正
3 (-12)÷(-4)=____,
-3 (-6) ÷2=____, -3 12÷(-4)=____, 0÷(-6)=____, 0
45 ( 2) 12
12 (1) (12) 3 4 3
45 15 (2) (45) (12) 45 12 12 4
因为有理数的除法可以化为乘法,所以可以利用 乘法的运算性质简化运算.
5 (1)( 125 ) (5); 7
5 1 原式 ( 125 ) 7 5