新课标高中数学必修一函数导学案

合集下载

高中数学必修一 《3 1 函数的概念及其表示》集体备课导学案

高中数学必修一 《3 1 函数的概念及其表示》集体备课导学案

【新教材】3.1.1 函数的概念(人教A版)1.理解函数的定义、函数的定义域、值域及对应法则。

2.掌握判定函数和函数相等的方法。

3.学会求函数的定义域与函数值。

重点:函数的概念,函数的三要素。

难点:函数概念及符号y=f(x)的理解。

一、预习导入阅读课本60-65页,填写。

1.函数的概念(1)函数的定义:设A,B是,如果按照某种确定的对应关系f,使对于集合A中的,在集合B中都有和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作.(2)函数的定义域与值域:函数y=f(x)中,x叫做,叫做函数的定义域,与x的值相对应的y值叫做,函数值的集合叫做函数的值域.显然,值域是集合B的.2.区间概念(a,b为实数,且a<b)3.其它区间的表示1.判断(正确的打“√”,错误的打“×”) (1)区间表示数集,数集一定能用区间表示. ( ) (2)数集{x |x ≥2}可用区间表示为[2,+∞]. ( )(3)函数的定义域和对应关系确定后,函数的值域也就确定了.( ) (4)函数值域中每一个数在定义域中一定只有一个数与之对应.( ) (5)函数的定义域和值域一定是无限集合. ( ) 2.函数y =1x +1的定义域是 ( )A .[-1,+∞)B .[-1,0)C .(-1,+∞)D .(-1,0) 3.已知f (x )=x 2+1,则f ( f (-1))= ( ) A .2 B .3 C .4 D .5 4.用区间表示下列集合:(1){x |10≤x ≤100}用区间表示为________. (2){x |x >1}用区间表示为________.题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√xx ,g(x)=√x ;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 题型四 求函数的定义域 例4 求下列函数的定义域:(1)y=(x+2)|x |-x ; (2)f(x)=x 2-1x -1−√4-x . 跟踪训练四1.求函数y=√2x +3√2-x1x 的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x; ④y =2x -√x −1.跟踪训练五1.求下列函数的值域: (1)y = √2x +1 +1;(2)y =1−x 21+x 2.1.对于集合A ={x |0≤x ≤2},B ={y |0≤y ≤3},由下列图形给出的对应f 中,不能构成从A 到B 的函数有( )个A.1个B.2个C.3个D.4个2.函数()2121f x ax x =++的定义域为R ,则实数a 的取值范围为( )A .a >1B .0<a <1C .a <0D .a <13.函数f (x )=√x−1x+3的定义域为 A .{x|1≤x <3或x >3} B .{x|x >1} C .{x|1≤x <2} D .{x|x ≥1}4.已知函数f (2x +1)的定义域为(−2,0),则f (x )的定义域为( ) A.(−2,0)B.(−4,0)C.(−3,1)D.(−12,1)5.下列各组函数中,()f x 与()g x 相等的是( )A .()()2,2f x x g x x =-=-B .()()32,f x x g x ==C .()()22,2x f x g x x x=+=+D .()()22,1x x x f x g x x x-==- 6.集合A ={x |x ≤5且x ≠1}用区间表示____________.7.已知函数8()2f x x =-(1)求函数()f x 的定义域; (2)求(2)f -及(6)f 的值. 8.求下列函数的值域: (1)f (x )=211x x -+;(2)f (x )=x .答案小试牛刀1.(1)× (2) × (3)√ (4)× (5 )× 2.C 3.D4. (1)[10,100] (2)(1,+∞) 自主探究 例1 【答案】D 跟踪训练一【答案】C 例2 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以 它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 跟踪训练二【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 例3 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 跟踪训练三【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3).例4【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 跟踪训练四【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−√2-x+1x 的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32.∴函数f(2x+1)的定义域是[-1,32]. 例5【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.跟踪训练五【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 当堂检测1-5.CADCD 6.(,1)(1,5]-∞7.【答案】(1)()f x 的定义域为[3,2)(2,)-⋃+∞;(2)(2)1f -=-;(6)5f = 【解析】(1)依题意,20x -≠,且30x +≥,故3x ≥-,且2x ≠,即函数()f x 的定义域为[)()3,22,-⋃+∞. (2)()8223122f -=+-+=---,()8663562f =+=-. 8. 【答案】(1)(–∞,2)∪(2,+∞); (2)[–54,+∞). 【解析】(1)因为f (x )=()2131x x +-+=2–31x +,所以f (x )≠2, 所以函数f (x )的值域为(–∞,2)∪(2,+∞).(21x +(t≥0),则x=t 2–1,所以y=t 2–t –1(t≥0). 因为抛物线y=t 2–t –1开口向上,对称轴为直线t=12∈[0,+∞),所以当t=12时,y取得最小值为–54,无最大值,所以函数f(x)的值域为[–54,+∞).。

高中数学必修一 函数与方程 导学案

高中数学必修一  函数与方程 导学案

函数与方程导学案1.函数的零点(1)函数零点的定义一般地,如果函数y=f(x)在实数α处的值等于零,即__________,则α叫做这个函数的________.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与_______有交点⇔函数y=f(x)有_____.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是f(x)=0的根.2.二次函数y=ax2+bx+c (a>0)的图象与零点的关系3.二分法对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.[难点正本疑点清源]1.函数的零点不是点函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标.2.零点存在性定理的条件是充分而不必要条件若函数y=f(x)在闭区间[a,b]上的图象是连续不间断的,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使f(c)=0,这个c就是方程f(x)=0的根.这就是零点存在性定理.满足这些条件一定有零点,不满足这些条件也不能说就没有零点.如图,f(a)·f(b)>0,f(x)在区间(a,b)上照样存在零点,而且有两个.所以我们说零点存在性定理的条件是充分条件,但并不必要.1.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间________.2.若函数f(x)=x2-ax-b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是_____.3.已知函数f(x)=ln x-x+2有一个零点所在的区间为(k,k+1) (k∈N*),则k的值为________.4.若函数f(x)=a x-x-a(a>0,且a≠1)有两个零点,则实数a的取值范围是________.5.已知函数f(x)=x2+x+a在区间(0,1)上有零点,则实数a的取值范围是________.题型一判断函数在给定区间上零点的存在性例1函数的零点存在性问题常用的办法有三种:一是用定理,二是解方程,三是用图象.(1)函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)(2)设函数f (x )=13x -ln x (x >0),则y =f (x ) ( )A .在区间⎝⎛⎭⎫1e ,1,(1,e)内均有零点 B .在区间⎝⎛⎭⎫1e ,1,(1,e)内均无零点C .在区间⎝⎛⎭⎫1e ,1内有零点,在区间(1,e)内无零点D .在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点 题型二 二次函数的零点分布问题例3 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围; (2)若方程两根均在区间(0,1)内,求m 的范围.数形结合思想在函数零点问题中的应用试题:(12分)已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x (x >0).若y =g (x )-m 有零点,求m 的取值范围;A 组 专项基础训练题组一、选择题1.已知函数f (x )=log 2x -⎝⎛⎭⎫13x,若实数x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1)的值为 A .恒为负 B .等于零 C .恒为正 D .不小于零2.已知三个函数f (x )=2x +x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a ,b ,c ,则 ( ) A .a <b <c B .a <c <b C .b <a <c D .c <a <b3.函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x >0的零点个数为 ( )A .3B .2C .1D .0 二、填空题4.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 012x +log 2 012x ,则在R 上,函数f (x )零点的个数为________. 三、解答题5.是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴有且只有一个交点.若存在,求出a 的范围;若不存在,说明理由.6.已知函数f (x )=4x +m ·2x +1有且仅有一个零点,求m 的取值范围,并求出该零点.B 组 专项能力提升题组一、选择题1.已知函数y =f (x )和y =g (x )在[-2,2]上的图象如图所示,给出下列四个选项,其中不正确的是()A .函数f [g (x )]的零点有且仅有6个B .函数g [f (x )]的零点有且仅有3个C .函数f [f (x )]的零点有且仅有5个D .函数g [g (x )]的零点有且仅有4个二、填空题4.已知函数f (x )=x 2+(1-k )x -k 的一个零点在(2,3)内,则实数k 的取值范围是________.三、解答题 8.m 为何值时,f (x )=x 2+2mx +3m +4.有且仅有一个零点;②有两个零点且均比-1大;答案 要点梳理1.(1)f (α)=0 零点 (2)x 轴 零点 2.(x 1,0),(x 2,0) (x 1,0) 两个 一个 无 基础自测1.(1.25,1.5) 2.-12,-133.3 4.a >1 5.(-2,0) 题型分类·深度剖析例1 解 (1)方法一 ∵f (1)=12-3×1-18=-20<0, f (8)=82-3×8-18=22>0, ∴f (1)·f (8)<0,故f (x )=x 2-3x -18,x ∈[1,8]存在零点.方法二 令f (x )=0,得x 2-3x -18=0,x ∈[1,8]. ∴(x -6)(x +3)=0,∵x =6∈[1,8], x =-3∉[1,8],∴f (x )=x 2-3x -18,x ∈[1,8]存在零点.(2)方法一 ∵f (1)=log 23-1>log 22-1=0,f (3)=log 25-3<log 28-3=0, ∴f (1)·f (3)<0,故f (x )=log 2(x +2)-x ,x ∈[1,3]存在零点.方法二 设y =log 2(x +2),y =x ,在同一直角坐标系中画出它们的图象,从图象中可以看出当1≤x ≤3时,两图象有一个交点, 因此f (x )=log 2(x +2)-x ,x ∈[1,3]存在零点. 变式训练1 (1)B (2)D 例2 4变式训练2 B例3 解 (1)由条件,抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,如图(1)所示,得⎩⎪⎨⎪⎧f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0.⇒⎩⎪⎨⎪⎧m <-12,m ∈R ,m <-12,m >-56.即-56<m <-12.(2)抛物线与x 轴交点均落在区间(0,1)内,如图(2)所示 列不等式组⎩⎪⎨⎪⎧f (0)>0,f (1)>0,Δ≥0,0<-m <1.⇒⎩⎪⎨⎪⎧m >-12,m >-12,m ≥1+2或m ≤1-2,-1<m <0.即-12<m ≤1- 2.变式训练3 解 方法一 若a =0,则f (x )=2x -3,f (x )=0⇒x =32∉[-1,1],不合题意,故a ≠0.下面就a ≠0分两种情况讨论:(1)当f (-1)·f (1)≤0时,f (x )在[-1,1]上至少有一个零点,即(2a -5)(2a -1)≤0,解得12≤a ≤52.(2)当f (-1)·f (1)>0时,f (x )在[-1,1]上有零点的条件是⎩⎪⎨⎪⎧f ⎝⎛⎭⎫-12a f (1)≤0,-1<-12a<1,f (-1)·f (1)>0,解得a >52.综上,实数a 的取值范围为⎣⎡⎭⎫12,+∞. 方法二 函数y =f (x )在区间[-1,1]上有零点等价于方程2ax 2+2x -3=0在区间[-1,1]上有实根.显然0不是y =f (x )的零点,由题意转化为x ∈[-1,1]时求a =32·1x 2-1x 的值域.∵1x ∈(-∞,-1]∪[1,+∞),∴a =32⎝⎛⎭⎫1x -132-16在1x =1时取得最小值12. ∴实数a 的取值范围为⎣⎡⎭⎫12,+∞. 课时规范训练 A 组1.C 2.B 3.B 4.35.解 ∵Δ=(3a -2)2-4(a -1)>0, ∴若存在实数a 满足条件, 则只需f (-1)·f (3)≤0即可.f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)=4(1-a )(5a +1)≤0. 所以a ≤-15或a ≥1.检验:①当f (-1)=0时,a =1. 所以f (x )=x 2+x . 令f (x )=0,即x 2+x =0. 得x =0或x =-1.方程在[-1,3]上有两根,不合题意, 故a ≠1.②当f (3)=0时,a =-15,此时f (x )=x 2-135x -65,令f (x )=0,即x 2-135x -65=0,解之得x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a ≠-15.综上所述,a <-15或a >1.6.解 ∵f (x )=4x +m ·2x +1有且仅有一个零点, 即方程(2x )2+m ·2x +1=0仅有一个实根. 设2x =t (t >0),则t 2+mt +1=0. 当Δ=0时,即m 2-4=0,∴m =-2时,t =1;m =2时,t =-1(不合题意,舍去),∴2x =1,x =0符合题意. 当Δ>0时,即m >2或m <-2时, t 2+mt +1=0有两正或两负根, 即f (x )有两个零点或没有零点. ∴这种情况不符合题意.综上可知:m =-2时,f (x )有唯一零点,该零点为x =0. B 组1.B 4.(2,3)8.解 ①f (x )=x 2+2mx +3m +4有且仅有一个零点⇔方程f (x )=0有两个相等实根⇔Δ=0,即4m 2-4(3m +4)=0,即m 2-3m -4=0,∴m =4或m =-1.②方法一 设f (x )的两个零点分别为x 1,x 2,则x 1+x 2=-2m ,x 1·x 2=3m +4. 由题意,知⎩⎪⎨⎪⎧Δ=4m 2-4(3m +4)>0(x 1+1)(x 2+1)>0(x 1+1)+(x 2+1)>0⇔⎩⎪⎨⎪⎧m 2-3m -4>03m +4-2m +1>0-2m +2>0⇔⎩⎪⎨⎪⎧m >4或m <-1,m >-5,m <1,∴-5<m <-1.故m 的取值范围为(-5,-1). 方法二 由题意, 知⎩⎪⎨⎪⎧Δ>0,-m >-1,f (-1)>0,即⎩⎪⎨⎪⎧m 2-3m -4>0,m <1,1-2m +3m +4>0.∴-5<m<-1.∴m的取值范围为(-5,-1).。

高中数学《函数的概念》导学案

高中数学《函数的概念》导学案

第一章 集合与函数概集合 1.2.1 函数的概念一、学习目标1.理解函数的概念,了解构成函数的三要素;2.会判断给出的两个函数是否是同一函数;3.能正确使用区间表示数集,会求函数定义域、值域及函数相等的判断。

【重点、难点】重点:理解函数的概念,用区间符号正确表示数的集合;难点:对函数概念及符号y=f(x)的理解,求函数定义域和值域。

二、学习过程【情景创设】初中的函数的定义是什么?初中学过哪些函数?设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.并将自变量x 取值的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域.这种用变量叙述的函数定义我们称之为函数的传统定义.初中已经学过:正比例函数、反比例函数、一次函数、二次函数等。

【导入新课】问题1:对教科书中第15页的实例(1),你能得出炮弹飞行1s,5s,10s,20s 时距地面多高吗?其中t 的取值范围是什么?(点拨:用解析式刻画变量之间的对应关系,关注t 和h 的范围)解:h(1)= ,h(5)= , h(10)= , h(20)= 炮弹飞行时间t 的变化范围是数集{026}A x x =≤≤,炮弹距地面的高度h 的变化范围是数集{0845}B h h =≤≤,对应关系21305h t t =- (*)。

从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系(*),在数集B 中都有唯一确定的高度h 和它对应。

问题2:对教科书中第15页的实例(2),你能从图中可以看出哪一年臭氧空洞面积最大?哪些年的臭氧空洞面积大约为2000万平方千米?其中t 的取值范围是什么?(点拨:用图像刻画变量之间的对应关系)。

例子(2)中数集{19792001}A t t =≤≤,{026}B S S =≤≤,并且对于数集A 中的任意一个时间t ,按图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应。

人教新课标版数学高一必修1导学案 函数的概念教师版

人教新课标版数学高一必修1导学案  函数的概念教师版

1.2.1函数的概念教学目标1.理解函数的概念;2.了解构成函数的三要素;3.正确使用函数、区间符号.教学过程一、创设情景教师首先提出问题:通过学生对课本的预习,让学生通过观看《1.2.1 函数的概念》课件“情景引入”部分,让学生与大家分享自己的了解。

通过举例说明和互相交流,做好教师对学生的活动的梳理引导,并给予积极评价.二、自主学习1.函数的概念:设A,B是________的________集,如果按照某种确定的________f,使对于集合________中的________一个数x,在集合________中都有__________的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作________,x∈A.其中,x叫做________,x的取值范围A叫做函数的________;与x的值相对应的y值叫做________,函数值的集合{f(x)|x∈A}叫做函数的________,值域是集合B的子集.提示:非空数对应关系A任意B唯一确定y=f(x)自变量定义域函数值值域2.一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数的________相同,并且__________完全一致,我们就称这两个函数相等.提示:定义域对应关系3.填写下表中不等式、区间和数轴的对应关系:三、合作探究探究点1:函数的概念问题1初中时用运动变化的观点定义函数,用这种观点能否判断只有一个点(0,1),算不算是函数图象?提示:因为只有一个点,用运动变化的观点判断就显得牵强,因此有必要引入用集合和对应来定义的函数概念.问题2用函数的上述定义可以轻松判断:A={0},B={1},f:0→1,满足函数定义,其图象(0,1)自然是函数图象.试用新定义判断下列对应是不是函数?(1)f:求周长;A={三角形},B=R;(2);(3);(4);(5).提示:(1)不是,因为集合A不是数集.(2)是.对于数集A中的每一个x,在数集B中都有唯一确定的y和它对应.(3)是.对于数集A中的每一个x,在数集B中都有唯一确定的y和它对应.(4)不是.一个x=1,对应了三个不同的y,违反了“唯一确定”.(5)不是.x=3没有相应的y与之对应.例1判断下列对应是否为集合A到集合B的函数.(1)A=R,B={x|x>0},f:x→y=|x|;(2)A=Z,B=Z,f:x→y=x2;(3)A=Z,B=Z,f:x→y=x;(4)A={x|-1≤x≤1},B={0},f:x→y=0.提示: (1)A 中的元素0在B 中没有对应元素,故不是集合A 到集合B 的函数. (2)对于集合A 中的任意一个整数x ,按照对应关系f :x →y =x 2在集合B 中都有唯一一个确定的整数x 2与其对应,故是集合A 到集合B 的函数.(3)集合A 中的负整数没有平方根,在集合B 中没有对应的元素,故不是集合A 到集合B 的函数.(4)对于集合A 中任意一个实数x ,按照对应关系f :x →y =0在集合B 中都有唯一一个确定的数0和它对应,故是集合A 到集合B 的函数.名师点评:判断对应关系是否为函数,主要从以下三个方面去判断:(1)A ,B 必须是非空数集;(2)A 中任何一个元素在B 中必须有元素与其对应;(3)A 中任何一个元素在B 中必须有唯一一个元素与其对应.例2 (1)已知函数f (x )=2x +1,求f (0)和f [f (0)];(2)求函数g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数的定义域,值域;(3)若f (x )、g (x )对应关系分别由下表给定,求f [g (x )]的值域.提示: (1)f (0)=2×0+1=1. ∴f [f (0)]=f (1)=2×1+1=3.(2)x 为有理数或无理数,故定义域为R .只有两个函数值0,1,故值域为{0,1}. (3)f [g (x )]中的x =1,2,3.由表知g (1)=1,g (2)=2,g (3)=1,∴f [g (1)]=f (1)=3,f [g (2)]=f (2)=2,f [g (3)]=f (1)=3. ∴值域为{2,3}.名师点评:“某种确定的对应关系f ”可以有各种表现形式,可以是传统的一个解析式,可以是分成若干段,每段一个解析式,也可以用表格硬性指定对应关系.探究点2:函数相等例3 下列函数中哪个与函数y =x 相等? (1)y =(x )2;(2)y =3x 3;(3)y =x 2;(4)y =x 2x. 提示: (1)y =(x )2=x (x ≥0),y ≥0,定义域不同且值域不同,所以不相等; (2)y =3x 3=x (x ∈R ),y ∈R ,对应关系相同,定义域和值域都相同,所以相等;(3)y =x 2=|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,y ≥0;值域不同,且当x <0时,它的对应关系与函数y =x 不相同,所以不相等;(4)y =x 2x的定义域为{x |x ≠0},与函数y =x 的定义域不相同,所以不相等.名师点评:在两个函数中,两个函数的定义域、值域、对应关系有一个不同,两函数就不相等,只有当定义域、对应关系都相同时,两函数才相等.四、当堂检测1.对于函数y =f (x ),以下说法正确的有( ) ①y 是x 的函数;②对于不同的x ,y 的值也不同;③f (a )表示当x =a 时函数f (x )的值,是一个常量; ④f (x )一定可以用一个具体的式子表示出来. A .1个B .2个C .3个D .4个 2.下列说法中,不正确的是( )A .函数值域中的每一个数都有定义域中的数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数值域也就确定了D .若函数的定义域只有一个元素,则值域也只有一个元素 3.下列关于函数与区间的说法正确的是( ) A .函数定义域必不是空集,但值域可以是空集 B .函数定义域和值域确定后,其对应关系也就确定了 C .数集都能用区间表示D .函数中一个函数值可以有多个自变量值与之对应 4.区间(0,1)等于( ) A .{0,1} B .{(0,1)} C .{x |0<x <1}D .{x |0≤x ≤1}5.对于函数f:A→B,若a∈A,则下列说法错误的是()A.f(a)∈B B.f(a)有且只有一个C.若f(a)=f(b),则a=b D.若a=b,则f(a)=f(b)提示:1.B 2.B 3.D 4.C 5.C五、课堂小结本节课我们学习过哪些知识内容?提示:1.函数的本质:两个非空数集间的一种确定的对应关系.由于函数的定义域和对应关系一经确定,值域随之确定,所以判断两个函数是否相等只须两个函数的定义域和对应关系一样即可.2.f(x)是函数符号,f表示对应关系,f(x)表示x对应的函数值,绝对不能理解为f与x 的乘积.在不同的函数中f的具体含义不同,对应关系可以是解析式、图象、表格等.函数除了可用符号f(x)表示外,还可用g(x),F(x)等表示.六、课例点评本节课环节紧凑,重难点突出,设计合理。

高一数学必修(一)函数导学案.doc讲解

高一数学必修(一)函数导学案.doc讲解

课 课 题:第1课时 函数的概念※ 课程学习目标 学习自主化1.理解函数的概念,了解函数的三要素。

提高学生观察分析能力、抽象思维能力;2.通过对三个实例的分析和共同特征的归纳,使学生经历函数概念的形成过程,学会从特殊到一般,由具体到抽象来分析问题解决问题的方法;3.通过经历函数概念的定义过程,使学生体会到变量与常量、具体与抽象的辩证关系,能初步认识到函数关系在我们的生活中是普遍存在的,能体验数学的抽象美。

▓知识梳理与理解 第一层级学习目标※基础知识梳理 知识系统化。

系统形象化◎ 读记教材交流1.同学们看一下课本上第23页三个例子2.问题1:在上述例子中,是否确定了函数关系?为什么?问题2:如何用集合的观点来理解函数的概念?问题3:如何用集合的语言来阐述上面3个例子中的共同特点?反思:(1 )结论是否是正确地概括了例子的共同特征?(2 )比较上述认识和初中函数概念是否有本质上的差异?(3 )一次函数、二次函数、反比例函数等是否也具有上述特征?(4 )进一步,你能举出一些“ 函数“ 的例子吗?它们具有上述特征吗? ※基本问题交流 知识问题化。

问题层次化如何用集合的观点来表述函数的概念?1、一般地,设,A B 是两个 ,如果按照 f ,对于集合A 中的_____元素x ,在集合B 中都有__________的元素()f x 和它对应,这样的 叫做从 到 的一个函数,通常记为 。

其中,所有的输入值x 组成的集合A 叫做函数()y f x =的 ,与x 的值相对的y 的值叫做 ,函数值的集合(){}|f x x A ∈叫做函数的 。

2、函数的三要素:函数的_______、_______、________称为函数的三要素。

3、两个函数只有当 与 都分别相同时,才称为同一函数。

4、判断下列对应是否为函数:个性化再处理:⑴教学流程(1)1,0x x x→≠且x R ∈ (2)x y →且2,,y x x N y R =∈∈5、已知集合{}4,2,0,2,4A =--,对应法则1:1f y x =+,若x 为输入值,且x A ∈,相应的输出值为y ,则4-→ ,2-→ ,0→ ,15→, →13。

人教新课标版数学高一-高中数学必修1导学案 函数的表示法(2)

人教新课标版数学高一-高中数学必修1导学案   函数的表示法(2)

1.2.2函数的表示法(2)(学生学案)练习 判断下列对应是不是从A 到B 的映射?例1(课本P22例7)以下给出的对应是不是从集合A 到B 的映射?(1)集合A={P|P 是数轴上的点},集合B=R ,对应关系f :数轴上的点与它所代表的实数对应。

(2)集合A={P|P 是平面直角坐标系中的点},集合B={(x,y)|x ∈R,y ∈R},对应关系f :平面直角坐标素中的点与它的坐标对应。

(3)集合A={x|x 是三角形},集合B={x|x 是圆},对应关系f :每一个三角形都对应它的内切圆;(4)集合A={x|x 是新华中学的班级},集合B={x|x 是新华中学的学生},对应关系f :每一个班级都对应班里的学生。

变式训练1:(1)A R =,{|0}B y y =>,:||f x y x →=;(2)*{|2,}A x x x N =≥∈,{}|0,B y y y N =≥∈,2:22f x y x x →=-+;(3){|0}A x x =>,{|}B y y R =∈,:f x y x →=±. 上述三个对应 是A 到B 的映射.例2:判断下列对应是否是从集合A 到集合B 的映射: (1)A =R,B ={x |x >0},f :x →|x |; (2)A =N ,B =*N,f :x →|x -2|; (3)A ={x |x >0},B=R ,f :x →x 2.变式训练2:设集合{02}M x x =≤≤,{02}N y y =≤≤,从M 到N 有四种对应如图所示:-1023求绝对值-1BA1-22-331开平方-1BA1-22-33419求平方-1BA1-22-33419一种对应rq p -1BA-22-331图甲图乙图丙图丁2y y 22y 2y其中能表示为M 到N 的函数关系的有________.课堂练习:(课本P23练习NO :4)例3.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km ,甲10y (km )与时间x (分)的关系.试写出()y f x =1 (x ≤-1)变式训练3:(tb0108401)画出函数y= x 2 (-1<x<1) 的图象。

高中数学新教材人教版必修一 精品 导学案 4-4 对数函数(第1课时 对数函数的概念、图象及性质)

高中数学新教材人教版必修一 精品 导学案 4-4 对数函数(第1课时 对数函数的概念、图象及性质)

第1课时对数函数的概念、图象及性质学习目标知识梳理1.对数函数的概念一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象及性质(0,+∞)3.反函数指数函数y=a x(a>0,且a≠1)和对数函数y=log a x(a>0,且a≠1)互为反函数.两者的定义域和值域正好互换.名师导学知识点1 对数函数的概念【例】(1)已知对数函数f(x)=(m2-3m+3)·log m x,则m=________.(2)已知对数函数f (x )的图象过点⎝⎛⎭⎫4,12. ①求f (x )的解析式; ②解方程f (x )=2.【解】 (1)由对数函数的定义可得m 2-3m +3=1,即m 2-3m +2=0,也就是(m -1)(m -2)=0,解得m =1或m =2. 又因为m >0,且m ≠1,所以m =2.(2)①由题意设f (x )=log a x (a >0,且a ≠1),由函数图象过点⎝⎛⎭⎫4,12可得f (4)=12, 即log a 4=12,所以4=a 12,解得a =16, 故f (x )=log 16x .②方程f (x )=2,即log 16x =2, 所以x =162=256.反思感悟判断一个函数是对数函数的方法变式训练1.若函数f (x )=log (a +1)x +(a 2-2a -8)是对数函数,则a =________. 解析:由题意可知⎩⎪⎨⎪⎧a 2-2a -8=0,a +1>0,a +1≠1,解得a =4.答案:42.点A (8,-3)和B (n ,2)在同一个对数函数图象上,则n =________. 解析:设对数函数为f (x )=log a x (a >0,且a ≠1). 则由题意可得f (8)=-3,即log a 8=-3, 所以a -3=8,即a =8-13=12.所以f (x )=log 12x ,故由B (n ,2)在函数图象上可得f (n )=log 12n =2,所以n =⎝⎛⎭⎫122=14. 答案:14知识点2 与对数函数有关的定义域问题 【例】求下列函数的定义域. (1)y =log a (3-x )+log a (3+x ); (2)y =log 2(16-4x ); (3)y =log 1-x 5.解 (1)由⎩⎪⎨⎪⎧3-x >0,3+x >0,得-3<x <3,∴函数的定义域是(-3,3). (2)由16-4x >0,得4x <16=42, 由指数函数的单调性得x <2,∴函数y =log 2(16-4x )的定义域为(-∞,2).(3)依题意知⎩⎪⎨⎪⎧1-x >0,1-x ≠1,得x <1且x ≠0,∴定义域为(-∞,0)∪(0,1).反思感悟求含对数式的函数定义域关键是真数大于0,底数大于0且不为1.如需对函数式变形,需注意真数、底数的取值范围是否改变. 变式训练求下列函数的定义域: (1)y =lg(x +1)+3x 21-x ;(2)y =log x -2(5-x ).解:(1)要使函数式有意义,需⎩⎪⎨⎪⎧x +1>0,1-x >0,所以⎩⎪⎨⎪⎧x >-1,x <1,所以-1<x <1.所以该函数的定义域为(-1,1).(2)要使函数式有意义,需⎩⎪⎨⎪⎧5-x >0,x -2>0,x -2≠1,所以⎩⎪⎨⎪⎧x <5,x >2,x ≠3,所以2<x <5,且x ≠3.所以该函数的定义域为(2,3)∪(3,5).知识点3 对数型函数的图象【例1】已知a >0,且a ≠1,则函数y =x +a 与y =log a x 的图象只可能是( )【解析】 当a >1时,函数y =log a x 为增函数,且直线y =x +a 与y 轴的交点的纵坐标大于1;当0<a <1时,函数y =log a x 为减函数,且直线y =x +a 与y 轴的交点的纵坐标在0到1之间,只有C 符合,故选C.【答案】 C【例2】画出下列函数的图象,并根据图象写出函数的定义域、值域以及单调性: (1)y =log 3(x -2); (2)y =|lo |21x g .【解】 (1)函数y =log 3(x -2)的图象如图①.其定义域为(2,+∞),值域为R ,在区间(2,+∞)上是增函数.(2)y =|lo |21x g =⎩⎪⎨⎪⎧log 12x ,0<x ≤1,log 2x ,x >1,其图象如图②.其定义域为(0,+∞),值域为[0,+∞),在(0,1]上是减函数,在(1,+∞)上是增函数.【例3】如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1【解析】 作直线y =1,则直线与C 1,C 2的交点的横坐标分别为a ,b ,易知0<b <a <1.【答案】 B反思感悟有关对数型函数图象问题的应用技巧(1)求函数y =m +log a f (x )(a >0,且a ≠1)的图象过定点时,只需令f (x )=1求出x ,即得定点为(x ,m ).(2)给出函数解析式判断函数的图象,应首先考虑函数对应的基本初等函数是哪一种;其次找出函数图象的特殊点,判断函数的基本性质、定义域、单调性以及奇偶性等;最后综合上述几个方面将图象选出,解决此类题目常采用排除法.(3)根据对数函数图象判断底数大小的方法:作直线y =1与所给图象相交,交点的横坐标即为各个底数,根据在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大,可比较底数的大小. 变式训练1.在同一坐标系中,函数y =2-x 与y =log 2x 的图象是( )解析:选A.函数y =2-x=⎝⎛⎭⎫12x过定点(0,1),单调递减,函数y =log 2x 过定点(1,0),单调递增,故选A.2.已知函数y =log a (x +b )(a >0且a ≠1)的图象如图所示.(1)求实数a 与b 的值;(2)函数y =log a (x +b )与y =log a x 的图象有何关系?解:(1)由图象可知,函数的图象过点(-3,0)与点(0,2),所以可得0=log a (-3+b )与2=log a b ,解得a =2,b =4.(2)函数y =log a (x +4)的图象可以由y =log a x 的图象向左平移4个单位得到.当堂测评1.已知函数f (x )=log a (x -1)+4(a >0,且a ≠1)的图象恒过定点Q ,则Q 点坐标是( ) A .(0,5) B .(1,4) C .(2,4) D .(2,5)解析:选C.令x -1=1,即x =2.则f (x )=4.即函数图象恒过定点Q (2,4).故选C. 2.函数y =log 2|x |的图象大致是( )解析:选A.函数y =log 2|x |是偶函数,且在(0,+∞)上为增函数,结合图象可知A 正确. 3.点(2,4)在函数f (x )=log a x (a >0,且a ≠1)的反函数的图象上,则f ⎝⎛⎭⎫12=________. 解析:因为点(2,4)在函数f (x )=log a x (a >0,a ≠1)的反函数的图象上,所以点(4,2)在函数f (x )=log a x (a >0,a ≠1)的图象上,因此log a 4=2,即4=a 2,又a >0,所以a =2,所以f (x )=log 2x ,故f ⎝⎛⎭⎫12=log 212=-1. 答案:-14.若函数y =log a (x +a )(a >0且a ≠1)的图象过点(-1,0). (1)求a 的值; (2)求函数的定义域.解:(1)将点(-1,0)代入y =log a (x +a )(a >0且a ≠1)中,有0=log a (-1+a ),则-1+a =1,所以a =2.(2)由(1)知y =log 2(x +2),由x +2>0,解得x >-2,所以函数的定义域为{x |x >-2}.。

高中数学必修1(全册)导学案汇总

高中数学必修1(全册)导学案汇总

高中数学必修1(全册)导学案汇总
导学案1:数学命题与证明
内容:本导学案主要介绍数学命题和证明的基本概念和方法。

通过研究,学生将会了解什么是命题,命题的分类以及命题的真值;同时也会研究到数学证明的基本步骤,如假设、推导和结论等。

导学案2:分式与整式
内容:本导学案主要介绍分式和整式的概念、性质和运算方法。

学生将研究如何化简分式,如何进行分式的加减乘除运算;同时也
会研究整式的展开和因式分解的方法。

导学案3:一次函数与二次函数
内容:本导学案主要介绍一次函数和二次函数的基本概念和性质。

通过研究,学生将会了解一次函数和二次函数的图像特征,掌
握如何求解一次方程和二次方程,以及如何利用一次函数和二次函
数进行问题求解。

导学案4:三角函数
内容:本导学案主要介绍三角函数的概念和性质。

学生将研究
正弦函数、余弦函数和正切函数的图像特征,掌握三角函数的周期性、奇偶性和性质等。

同时也会了解三角函数与三角恒等式的关系,并且能够灵活运用三角函数解决实际问题。

导学案5:平面向量基础
内容:本导学案主要介绍平面向量的基本概念和性质。

学生将
研究如何表示平面向量及其运算,掌握平面向量的线性运算法则和
向量共线、垂直的判定方法。

同时也会研究向量的数量积和向量的
夹角等重要概念,以及它们的性质和应用。

以上是《高中数学必修1》全册的导学案汇总,通过系统学习
这些导学案中的内容,学生将能够建立起扎实的数学基础,为进一
步的学习打下坚实的基础。

高中数学必修一导学案-函数的表示

高中数学必修一导学案-函数的表示

学生班级 姓名 小组号 评价数学必修一 1.2.2 函数的表示【学习目标】1.了解函数的三种表示法;2.掌握求函数解析式的方法;【重点和难点】教学重点:求函数解析式的方法。

教学难点:各种求解析式方法的步骤和使用范围。

【使用说明及学法指导】1. 先预习课本P 19-P 20内容,然后开始做导学案。

2. 带“*”的C 层可以不做。

预习案一.知识梳理1.解析法:图像法:列表法:二.问题导学1.如何理解函数的概念?函数三要素是什么?2.求函数解析式方法有哪些?三.预习自测1.已知2()43f x x x =-+,求(1)f x +.2. 1)(2++=x x x f ,则)2(f = _________;=)1(af _________;=-)(b a f _________;=))2((f f _________3. 已知函数f (x)满足f (a)+f (b)=f (ab),且f (2)=p, f (3)=q ,那么f (72)=( )。

(A )p +q (B )3p +2q (C )2p +3q (D )p 3+q 2四.我的疑问:探究案一.合作探究探究1. 某种笔记本的单价是5元,买x (x ∈{1,2,3,4,5})个笔记本需要y 元.试用三种表示法表示函数y=f(x) .探究2. 已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;探究3. 已知1392)2(2+-=-x x x f ,求)(x f 的解析式。

二.课堂训练与检测1. 画出下列函数图象: (1) ;且2,,2)(≤∈=x Z x x x f (2) );3,(,2)(≤∈+=x z x x x f 且2. 若)(x f 是一次函数,14)]([-=x x f f ,则)(x f = _________________.3.如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然 后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义 域为_______4. 设二次函数)(x f 满足:)2()2(--=-x f x f 且图像在y 轴上的截距为1,被x 轴截得 的线段长为22,求函数)(x f 的解析式5.* 已知()f x 满足12()()3f x f x x+=,求()f x .三.课堂小结大家本节课学到了什么?。

新课标高中数学必修一全册导学案及答案

新课标高中数学必修一全册导学案及答案

新课标高中数学必修一全册导学案及答案【导学案】导学目标:1. 了解高中数学必修一全册的内容安排和学习要求;2. 掌握每个单元的重点概念和基本知识;3. 学会自主学习的方法和技巧;4. 提高数学学习的效果和成绩。

导学步骤:一、概述随着教育改革的不断深化,我国高中数学教学也在不断调整和完善。

新课程标准下的高中数学必修一全册是高中数学学科的基础课程,培养学生扎实的数学基础和数学思维能力,为后续学习打下坚实的基础。

二、内容安排新课标高中数学必修一全册主要分为六个单元,分别是:1. 函数与导数2. 二次函数与图形3. 平面向量4. 概率与统计5. 三角函数6. 数列与数学归纳法三、学习要求在学习和掌握高中数学必修一全册的过程中,要注意以下几点:1. 注重基本概念的理解和掌握,建立起系统的数学知识体系;2. 理解数学概念和方法的本质,注重数学思想的培养;3. 做好充分的练习,提高解题能力和应用能力;4. 灵活运用各种工具和技巧,培养自主学习的能力。

四、学习方法与技巧1. 预习:在上课前预习新内容,了解基本概念和知识点;2. 讲解:全面准确理解老师的讲解和授课内容;3. 练习:做大量的练习题,加深对知识点的理解和记忆;4. 总结:及时总结归纳,掌握解题方法和技巧;5. 提问:有问题及时向老师请教或与同学讨论。

五、经典题解析下面是每个单元中的一个经典题目的解析,供参考:单元一:函数与导数题目:已知函数f(x) = x^3 - 3x^2 + 2x + 1,求f(x)的导函数。

解析:首先,我们知道函数f(x)的导函数是函数f'(x),表示函数f(x)在任意一点的斜率。

对于多项式函数来说,我们可以直接应用定理求导的方法。

根据定理,对于任意的幂函数x^n,其导函数是nx^(n-1)。

应用此定理,我们可以得到f(x)的导函数为f'(x) = 3x^2 - 6x + 2。

六、答案归纳在学习过程中,我们要时刻关注自己的学习效果和学习成果。

人教新课标版数学高一必修1导学案 函数的表示法教师版

人教新课标版数学高一必修1导学案   函数的表示法教师版

1.2.2函数的表示法教学目标1.了解函数的三种表示法及各自的优缺点;2.掌握求函数解析式的常见方法;3.尝试作图和从图象上获取有用的信息.4.给出分段函数,能研究有关性质;5.了解映射的概念.教学过程一、创设情景教师首先提出问题:通过学生对课本的预习,让学生通过观看《1.2.2 函数的表示法》课件“情景引入”部分,让学生与大家分享自己的了解。

通过举例说明和互相交流,做好教师对学生的活动的梳理引导,并给予积极评价.二、自主学习1.列表法通过列出自变量与对应函数值的表来表示函数关系的方法叫做列表法.2.图象法用“图形”表示函数的方法叫做图象法.3.解析法(公式法)如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析法(也称为公式法).4.在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.5.三、合作探究探究点1:解析法问题: 任何一个函数都能用解析法表示吗?提示:不一定,如某地的天气与日期之间存在函数关系,但无法用解析法表示.实际上,能够用解析法表示的函数是少之又少的.例1 根据下列条件,求f (x )的解析式.(1)f [f (x )]=2x -1,其中f (x )为一次函数;(2)f (x +1x )=x 2+1x 2; (3)f (x )+2f (-x )=x 2+2x .提示:(1)由题意,设f (x )=ax +b (a ≠0),∵f (f (x ))=af (x )+b =a [ax +b ]+b=a 2x +ab +b =2x -1,由恒等式性质,得⎩⎪⎨⎪⎧a 2=2,ab +b =-1, ∴⎩⎪⎨⎪⎧ a =2,b =1-2或⎩⎪⎨⎪⎧a =-2,b =1+ 2.∴所求函数解析式为f (x )=2x +1-2或f (x )=-2x +1+ 2.(2)f (x +1x )=x 2+1x 2=(x +1x)2-2, ∴f (x )=x 2-2.又x ≠0,∴x +1x ≥2或x +1x≤-2, ∴f (x )中的x 与f (x +1x )中的x +1x取值范围相同, ∴f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(3)∵f (x )+2f (-x )=x 2+2x ,将x 换成-x ,得f (-x )+2f (x )=x 2-2x ,∴联立以上两式消去f (-x ),得3f (x )=x 2-6x ,∴f (x )=13x 2-2x . 名师点评:1.如果已知函数类型,可以用待定系数法.2.如果已知f (g (x ))的表达式,想求f (x )的解析式,可以设t =g (x ),然后把f (g (x ))中每一个x 都换成t .3.如果条件是一个关于f (x )、f (-x )的方程,我们可以用x 的任意性进行赋值.如把每一个x 换成-x ,其目的是再得到一个关于f (x )、f (-x )的方程,然后消元消去f (-x ).探究点2:图象法思考 要知道林黛玉长什么样,你觉得一个字的描述和一张二寸照片哪个更直观? 提示:一图胜千言.例2 试画出函数y =1-x 2的图象.提示: 由1-x 2≥0解得函数定义域为[-1,1].当x =±1时,y 有最小值0.当x =0时,y 有最大值1.x =±12时,y =32. 利用以上五点描点连线,即得函数y =1-x 2的图象如下:名师点评:画图时一般很难把所有点都描出来,故为了使画出来的图能反映变量间的变化规律,我们要尽量选择关键点:最高点、最低点和与x ,y 轴的交点.探究点3:研究分段函数的性质例3 已知函数f (x )=|x -3|-|x +1|.(1)求f (x )的值域;(2)解不等式:f (x )>0;(3)若直线y =a 与f (x )的图象无交点,求实数a 的取值范围.提示:若x ≤-1,则x -3<0,x +1≤0,f (x )=-(x -3)+(x +1)=4;若-1<x ≤3,则x -3≤0,x +1>0,f (x )=-(x -3)-(x +1)=-2x +2;若x >3,则x -3>0,x +1>0,f (x )=(x -3)-(x +1)=-4.∴f (x )=⎩⎪⎨⎪⎧ 4,x ≤-1,-2x +2,-1<x ≤3,-4,x >3.(1)-1<x ≤3时,-4≤-2x +2<4.∴f (x )的值域为[-4,4)∪{4}∪{-4}=[-4,4].(2)f (x )>0,即⎩⎨⎧ x ≤-1,4>0① 或⎩⎪⎨⎪⎧ -1<x ≤3,-2x +2>0② 或⎩⎪⎨⎪⎧x >3,-4>0③ 解①得x ≤-1,解②得-1<x <1,解③得x ∈∅.所以f (x )>0的解集为(-∞,-1]∪(-1,1)∪∅=(-∞,1).(3)f (x )的图象如下:由图可知,当a ∈(-∞,-4)∪(4,+∞)时,直线y =a 与f (x )的图象无交点.名师点评:研究分段函数,要牢牢抓住两个要点:(1)分段研究.(2)合并表达.因为分段函数无论分成多少段,仍是一个函数,对外是一个整体. 探究点4:映射例4以下给出的对应是不是从集合A到集合B的映射?(1)集合A={P|P是数轴上的点},集合B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)集合A={P|P是平面直角坐标系中的点},集合B={(x,y)|x∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;(3)集合A={x|x是三角形},集合B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)集合A={x|x是新华中学的班级},集合B={x|x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.提示:(1)按照建立数轴的方法可知,数轴上的任意一个点,都有唯一的实数与之对应,所以这个对应f:A→B是从集合A到集合B的一个映射.(2)按照建立平面直角坐标系的方法可知,平面直角坐标系中的任意一个点,都有唯一的一个实数对与之对应,所以这个对应f:A→B是从集合A到集合B的一个映射.(3)由于每一个三角形只有一个内切圆与之对应,所以这个对应f:A→B是从集合A到集合B的一个映射.(4)新华中学的每一个班级里的学生都不止一个,即与一个班级对应的学生不止一个,所以这个对应f:A→B不是从集合A到集合B的一个映射.名师点评:映射是一种特殊的对应,它具有:(1)方向性:映射是有次序的,一般地从A 到B的映射与从B到A的映射是不同的;(2)唯一性:集合A中的任意一个元素在集合B中都有唯一的元素与之对应,可以是:一对一,多对一,但不能一对多.四、当堂检测1.如图中所示的对应:其中构成映射的个数为()A .3B .4C .5D .62.如果二次函数的图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式可以是( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-14.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≤0-2x ,x >0,使函数值为5的x 的值是( ) A .-2或2B .2或-52C .-2D .2或-2或-524.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( )5.著名的Dirichlet 函数D (x )=⎩⎪⎨⎪⎧1,x 取有理数时,0,x 取无理数时,则D [D (x )]等于( ) A .0B .1 C.⎩⎪⎨⎪⎧ 1,x 取无理数时0,x 取有理数时 D.⎩⎪⎨⎪⎧1,x 取有理数时0,x 取无理数时 提示:1.A 2.D 3.C 4.C 5.B五、课堂小结本节课我们学习过哪些知识内容?提示:1.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式,再列表描出图象,画图时要注意一些关键点,如与坐标轴的交点,端点的虚、实问题等.2.如何求函数的解析式求函数的解析式的关键是理解对应关系f 的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法).3.对分段函数的理解(1)分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.(2)分段函数的图象应分段来作,特别注意各段的自变量取值区间端点处函数的取值情况,以决定这些点的虚实情况.六、课例反思本节课充分体现学生的主体地位,基于对学情的准确分析,采用“教师设疑引导,学生自主探究”的教学方法,教师在教学中只负责“抛砖引玉”,通过精心设计的问题,学生个体独立思考和小组合作探究相结合,学生汇报交流和老师的点拨引导相结合,激发学生的思维,从而建构知识、形成方法、培养能力,整个教学过程形成了以提出问题与解决问题相互引发携手并进的“探究问题”学习链,学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“研究者”,教学过程成为学生主动获取知识、发展能力的过程。

高中数学新教材必修第一册《3.1.2函数的表示法》导学案

高中数学新教材必修第一册《3.1.2函数的表示法》导学案

高中数学新教材必修第一册《3.1.2函数的表示法》导学案
学习目标
1. 了解函数的表示方法;
2. 掌握函数解析式的多种求法.
预习导学
1. 函数的三种表示方法: 、 、
2. 函数的三种表示法对比:
课堂讲义
一、重难点:函数解析式的多种求法
方法1:待定系数法求函数解析式
.)(14))(()(.1的解析式,求满足如果一次函数例x f x x f f x f -=
变式训练:
1.()(1)()29,()f x f x f x x f x +-=+已知是一次函数,且满足3求的解析式
2.()(0)0,
(1)()2,()f x f f x f x x f x =+-=已知是二次函数,且满足求的解析式
方法2:换元法(或配凑法)求函数解析式
例2.
方法3:构造方程组法求函数解析式
例3. ()()+2(-)=1,()f x f x f x x f x +若满足关系式求的解析式
变式训练:1()3()+2()4,()f x f x f x f x x
=设满足求的解析式
二、规律总结:
求函数解析式的常用方法:
1. 待定系数法:
2. 换元法:
3. 配凑法:
4. 构造方程组法:
三、课堂小结:
这节课主要学习了哪些内容?
四、作业:
变式训练:已知f (x+1)=x 2-3x+2,求f (x )的解析式; 已知f (x -1)=x 2-4x+2,求f (x )的解析式;。

高中数学必修一新教材第二章导学案

高中数学必修一新教材第二章导学案

一元二次函数、方程和不等式2.1 等式性质与不等式性质 第1课时 不等关系与不等式1.不等关系不等关系常用不等式来表示. 2.实数a ,b 的比较大小一般地,∀a ,b ∈R ,有a 2+b 2≥2ab , 当且仅当a =b 时,等号成立.1.大桥头竖立的“限重40吨”的警示牌,是指示司机要安全通过该桥,应使车货总重量T 不超过40吨,用不等式表示为( )A .T <40B .T >40C .T ≤40D .T ≥402.某高速公路要求行驶的车辆的速度v 的最大值为120 km/h ,同一车道上的车间距d 不得小于10 m ,用不等式表示为( )A .v ≤120 km/h 且d ≥10 mB .v ≤120 km/h 或d ≥10 mC.v≤120 km/h D.d≥10 m3.雷电的温度大约是28 000 ℃,比太阳表面温度的4.5倍还要高.设太阳表面温度为t℃,那么t应满足的关系式是________.4.设M=a2,N=-a-1,则M、N的大小关系为________.用不等式(组)表示不等关系【例1】京沪线上,复兴号列车跑出了350 km/h的速度,这个速度的2倍再加上100 km/h,不超过民航飞机的最低时速,可这个速度已经超过了普通客车的3倍,请你用不等式表示三种交通工具的速度关系.在用不等式(组)表示不等关系时,要进行比较的各量必须具有相同性质,没有可比性的两个(或几个)量之间不可用不等式(组)来表示.另外,在用不等式(组)表示实际问题时,一定要注意单位的统一.1.用一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,要求菜园的面积不小于216 m2,靠墙的一边长为x m.试用不等式表示其中的不等关系.比较两数(式)的大小【例2】已知x≤1,比较3x3与3x2-x+1的大小.把本例中“作差法比较两个实数大小的基本步骤:2.比较2x2+5x+3与x2+4x+2的大小.不等关系的实际应用【例3】某单位组织职工去某地参观学习需包车前往.甲车队说:“如领队买全票一张,其余人可享受7.5 折优惠”.乙车队说:“你们属团体票,按原价的8折优惠”.这两车队的原价、车型都是一样的,试根据单位去的人数,比较两车队的收费哪家更优惠.解决决策优化型应用题,首先要确定制约着决策优化的关键量是哪一个,然后再用作差法比较它们的大小即可.3.甲、乙两家旅行社对家庭旅游提出优惠方案.甲旅行社提出:如果户主买全票一张,其余人可享受五五折优惠;乙旅行社提出:家庭旅游算集体票,按七五折优惠.如果这两家旅行社的原价相同,那么哪家旅行社价格更优惠?1.比较两个实数的大小,只要求出它们的差就可以了.a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.2.作差法比较大小的一般步骤第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”;第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论);最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.1.思考辨析(1)不等式x ≥2的含义是指x 不小于2.( )(2)若a <b 或a =b 之中有一个正确,则a ≤b 正确.( ) (3)若a >b ,则ac >bc 一定成立.( )2.下面表示“a 与b 的差是非负数”的不等关系的是( ) A .a -b >0 B .a -b <0 C .a -b ≥0 D .a -b ≤0 3.若实数a >b ,则a 2-ab ________ba -b 2.(填“>”或“<”).4.完成一项装修工程,请木工共需付工资每人500元,请瓦工共需付工资每人400元,现有工人工资预算20 000元,设木工x 人,瓦工y 人,试用不等式表示上述关系.第2课时 等式性质与不等式性质1.等式的性质(1) 性质1 如果a =b ,那么b =a ; (2) 性质2 如果a =b ,b =c ,那么a =c ; (3) 性质3 如果a =b ,那么a ±c =b ±c ; (4) 性质4 如果a =b ,那么ac =bc ; (5) 性质5 如果a =b ,c ≠0,那么a c =bc . 2.不等式的基本性质 (1)对称性:a >b ⇔b <a . (2)传递性:a >b ,b >c ⇒a >c .(3)可加性:a >b ⇔a +c >b +c .(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (5)加法法则:a >b ,c >d ⇒a +c >b +d . (6)乘法法则:a >b >0,c >d >0⇒ac >bd . (7)乘方法则:a >b >0⇒a n >b n >0(n ∈N ,n ≥2).1.若a >b ,c >d ,则下列不等关系中不一定成立的是( )A .a -b >d -cB .a +d >b +cC .a -c >b -cD .a -c <a -d 2.与a >b 等价的不等式是( ) A .|a |>|b | B .a 2>b 2 C.ab >1 D .a 3>b 3 3.设x <a <0,则下列不等式一定成立的是( )A .x 2<ax <a 2B .x 2>ax >a 2C .x 2<a 2<axD .x 2>a 2>ax 利用不等式性质判断命题真假【例1】 对于实数a ,b ,c 下列命题中的真命题是( ) A .若a >b ,则ac 2>bc 2 B .若a >b >0,则1a >1bC .若a <b <0,则b a >a bD .若a >b ,1a >1b ,则a >0,b <0运用不等式的性质判断时,要注意不等式成立的条件,不要弱化条件,尤其是不能凭想当然随意捏造性质.解有关不等式选择题时,也可采用特殊值法进行排除,注意取值一定要遵循如下原则:一是满足题设条件;二是取值要简单,便于验证计算.1.下列命题正确的是( )A .若a 2>b 2,则a >bB .若1a >1b ,则a <b C .若ac >bc ,则a >b D .若a <b ,则a <b 利用不等式性质证明简单不等式【例2】 若a >b >0,c <d <0,e <0,求证:e (a -c )2>e(b -d )2. [思路点拨] 可结合不等式的基本性质,分析所证不等式的结构,有理有据地导出证明结果.利用不等式的性质证明不等式注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.2.已知a >b ,e >f ,c >0,求证:f -ac <e -bc . 不等式性质的应用[探究问题]1.小明同学做题时进行如下变形: ∵2<b <3, ∴13<1b <12, 又∵-6<a <8, ∴-2<ab <4.你认为正确吗?为什么?提示:不正确.因为不等式两边同乘以一个正数,不等号的方向不变,但同乘以一个负数,不等号方向改变,在本题中只知道-6<a <8.不明确a 值的正负.故不能将13<1b <12与-6<a <8两边分别相乘,只有两边都是正数的同向不等式才能分别相乘.2.由-6<a <8,-4<b <2,两边分别相减得-2<a -b <6,你认为正确吗? 提示:不正确.因为同向不等式具有可加性.但不能相减,解题时要充分利用条件,运用不等式的性质进行等价变形,而不可随意“创造”性质.3.你知道下面的推理、变形错在哪儿吗? ∵2<a -b <4, ∴-4<b -a <-2. 又∵-2<a +b <2, ∴0<a <3,-3<b <0, ∴-3<a +b <3.这怎么与-2<a +b <2矛盾了呢?提示:利用几个不等式的范围来确定某不等式的范围要注意:同向不等式两边可以相加(相乘),这种转化不是等价变形.本题中将2<a -b <4与-2<a +b <2两边相加得0<a <3,又将-4<b -a <-2与-2<a +b <2两边相加得出-3<b <0,又将该式与0<a <3两边相加得出-3<a +b <3,多次使用了这种转化,导致了a +b 范围的扩大.【例3】 已知1<a <4,2<b <8,试求a -b 与ab 的取值范围.求含字母的数(或式子)的取值范围时,一要注意题设中的条件,二要正确使用不等式的性质,尤其是两个同方向的不等式可加不可减,可乘不可除.3.已知-π2≤α<β≤π2,求α+β2,α-β2的取值范围.1.在应用不等式性质时,一定要搞清它们成立的前提条件,不可强化或弱化成立的条件.2.要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性.1.思考辨析(1)若a>b,则ac>bc一定成立.()(2)若a+c>b+d,则a>b,c>d.()2.如果a>b>0,c>d>0,则下列不等式中不正确的是()A.a-d>b-c B.-ad<-bc C.a+d>b+c D.ac>bd3.若-1<α<β<1,则下列各式中恒成立的是()A.-2<α-β<0 B.-2<α-β<-1 C.-1<α-β<0 D.-1<α-β<14.若bc-ad≥0,bd>0.求证:a+bb≤c+dd.2.2基本不等式第1课时基本不等式1.重要不等式∀a,b∈R,有a2+b2≥2ab,当且仅当a=b时,等号成立.2.基本不等式(1)有关概念:当a,b均为正数时,把a+b2叫做正数a,b的算术平均数,把ab叫做正数a,b的几何平均数.(2)不等式:当a,b是任意正实数时,a,b的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.1.不等式a 2+1≥2a 中等号成立的条件是( ) A .a =±1 B .a =1 C .a =-1 D .a =0 2.已知a ,b ∈(0,1),且a ≠b ,下列各式中最大的是( ) A .a 2+b 2 B .2ab C .2ab D .a +b 3.已知ab =1,a >0,b >0,则a +b 的最小值为( ) A .1 B .2 C .4 D .8 4.当a ,b ∈R 时,下列不等关系成立的是________. ①a +b2≥ab ;②a -b ≥2ab ;③a 2+b 2≥2ab ;④a 2-b 2≥2ab . 对基本不等式的理解【例1】 给出下面四个推导过程: ①∵a 、b 为正实数,∴b a +ab ≥2b a ·a b =2; ②∵a ∈R ,a ≠0,∴4a +a ≥24a ·a =4; ③∵x 、y ∈R ,xy <0,∴x y +y x =-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-x y +⎝ ⎛⎭⎪⎫-y x ≤-2⎝ ⎛⎭⎪⎫-x y ⎝ ⎛⎭⎪⎫-y x =-2. 其中正确的推导为( )A .①②B .①③C .②③D .①②③1.基本不等式ab ≤a +b2(a >0,b >0)反映了两个正数的和与积之间的关系. 2.对基本不等式的准确掌握要抓住以下两个方面:(1)定理成立的条件是a 、b 都是正数.(2)“当且仅当”的含义:当a =b 时,ab ≤a +b2的等号成立,即a =b ⇒a +b 2=ab ;仅当a =b 时,a +b 2≥ab 的等号成立,即a +b2=ab ⇒a =b .1.下列不等式的推导过程正确的是________. ①若x >1,则x +1x ≥2x ·1x =2.②若x <0,则x +4x =-⎣⎢⎡⎦⎥⎤(-x )+⎝ ⎛⎭⎪⎫-4x ≤-2(-x )·⎝ ⎛⎭⎪⎫-4x =-4. ③若a ,b ∈R ,则b a +ab ≥2b a ·a b =2.利用基本不等式比较大小【例2】 (1)已知a ,b ∈R +,则下列各式中不一定成立的是( ) A .a +b ≥2ab B.b a +a b ≥2 C.a 2+b 2ab≥2ab D.2aba +b ≥ab(2)已知a ,b ,c 是两两不等的实数,则p =a 2+b 2+c 2与q =ab +bc +ca 的大小关系是________.1.在理解基本不等式时,要从形式到内含中理解,特别要关注条件. 2.运用基本不等式比较大小时应注意成立的条件,即a +b ≥2ab 成立的条件是a >0,b >0,等号成立的条件是a =b ;a 2+b 2≥2ab 成立的条件是a ,b ∈R ,等号成立的条件是a =b .2.如果0<a <b <1,P =a +b2,Q =ab ,M =a +b ,那么P ,Q ,M 的大小顺序是( )A .P >Q >MB .M >P >QC .Q >M >PD .M >Q >P 利用基本不等式证明不等式【例3】 已知a ,b ,c 是互不相等的正数,且a +b +c =1,求证:1a +1b +1c >9.1.条件不等式的证明,要将待证不等式与已知条件结合起来考虑,比如本题通过“1”的代换,将不等式的左边化成齐次式,一方面为使用基本不等式创造条件,另一方面可实现约分与不等式的右边建立联系.2.先局部运用基本不等式,再利用不等式的性质(注意限制条件),通过相加(乘)合成为待证的不等式,既是运用基本不等式时的一种重要技能,也是证明不等式时的一种常用方法.3.已知a ,b ,c ∈R ,求证:a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.4.已知a >1,b >0,1a +3b =1,求证:a +2b ≥26+7.1.应用基本不等式时要时刻注意其成立的条件,只有当a >0,b >0时,才会有ab ≤a +b 2.对于“当且仅当……时,‘=’成立…”这句话要从两个方面理解:一方面,当a =b 时,a +b 2=ab ;另一方面:当a +b 2=ab 时,也有a =b .2.应用基本不等式证明不等式的关键在于进行“拼”、“凑”、“拆”、“合”、“放缩”等变形,构造出符合基本不等式的条件结构..1.思考辨析(1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( )(2)若a ≠0,则a +1a ≥2a ·1a =2.( )(3)若a >0,b >0,则ab ≤⎝ ⎛⎭⎪⎫a +b 22.( ) 2.设a >b >0,则下列不等式中一定成立的是( )A .a -b <0B .0<a b <1 C.ab <a +b 2 D .ab >a +b3.不等式9x -2+(x -2)≥6(其中x >2)中等号成立的条件是( )A .x =3B .x =-3C .x =5D .x =-54.设a >0,b >0,证明:b 2a +a 2b ≥a +b .第2课时 基本不等式的应用已知x 、y 都是正数,(1)若x +y =S (和为定值),则当x =y 时,积xy 取得最大值S 24.(2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p .上述命题可归纳为口诀:积定和最小,和定积最大.1.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是()A.72 B .4 C.92 D .52.若x >0,则x +2x 的最小值是________. 3.设x ,y ∈N *满足x +y =20,则xy 的最大值为________.利用基本不等式求最值【例1】 (1)已知x <54,求y =4x -2+14x -5的最大值; (2)已知0<x <12,求y =12x (1-2x )的最大值.[思路点拨] (1)看到求y =4x -2+14x -5的最值,想到如何才能出现乘积定值;(2)要求y =12x (1-2x )的最值,需要出现和为定值.利用基本不等式求最值的关键是获得满足基本不等式成立条件,即“一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创设应用基本不等式的条件.具体可归纳为三句话:若不正,用其相反数,改变不等号方向;若不定应凑出定和或定积;若不等,一般用后面第三章§3.2函数的基本性质中学习.1.(1)已知x >0,求函数y =x 2+5x +4x的最小值; (2)已知0<x <13,求函数y =x (1-3x )的最大值.利用基本不等式求条件最值【例2】 已知x >0,y >0,且满足8x +1y =1.求x +2y 的最小值. 81.本题给出的方法,用到了基本不等式,并且对式子进行了变形,配凑出满足基本不等式的条件,这是经常使用的方法,要学会观察、学会变形.2.常见的变形技巧有:(1)配凑系数;(2)变符号;(3)拆补项.常见形式有f (x )=ax +b x 型和f (x )=ax (b -ax )型.2.已知a >0,b >0,a +2b =1,求1a +1b 的最小值.利用基本不等式解决实际问题【例3】 如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.现有36 m 长的钢筋网材料,每间虎笼的长、宽分别设计为多少时,可使每间虎笼面积最大?1.在应用基本不等式解决实际问题时,应注意如下思路和方法:(1)先理解题意,设出变量,一般把要求最值的量定为函数;(2)建立相应的函数关系,把实际问题抽象成函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.2.对于函数y =x +k x (k >0),可以证明0<x ≤k 及-k ≤x <0上均为减函数,在x ≥k 及x ≤-k 上都是增函数.求此函数的最值时,若所给的范围含±k 时,可用基本不等式,不包含±k 时,可用函数的单调性求解(后面第三章3.2函数的基本性质中学习).3.某单位用2 160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2 000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积1.利用基本不等式求最值,要注意使用的条件“一正二定三相等”,三个条件缺一不可,解题时,有时为了达到使用基本不等式的三个条件,需要通过配凑、裂项、转化、分离常数等变形手段,创设一个适合应用基本不等式的情境.2.不等式的应用题大都与函数相关联,在求最值时,基本不等式是经常使用的工具,但若对自变量有限制,一定要注意等号能否取到.1.思考辨析(1)两个正数的积为定值,一定存在两数相等时,它们的和有最小值.( )(2)若a >0,b >0且a +b =4,则ab ≤4.( )(3)当x >1时,函数y =x +1x -1≥2x x -1,所以函数y 的最小值是2x x -1.( ) 2.若实数a 、b 满足a +b =2,则ab 的最大值为( )A .1B .22C .2D .43.已知0<x <1,则x (3-3x )取最大值时x 的值为( )A.12B.34C.23D.254.已知x >0,求y =2x x 2+1的最大值. 2.3 二次函数与一元二次方程、不等式 第1课时 一元二次不等式及其解法1.一元二次不等式的概念只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2.一元二次不等式的一般形式(1)ax2+bx+c>0(a≠0).(2)ax2+bx+c≥0(a≠0).(3)ax2+bx+c<0(a≠0).(4)ax2+bx+c≤0(a≠0).思考1:不等式x2-y2>0是一元二次不等式吗?提示:此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式.3.一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.思考2:类比“方程x2=1的解集是{1,-1},解集中的每一个元素均可使等式成立”.不等式x2>1的解集及其含义是什么?提示:不等式x2>1的解集为{x|x<-1或x>1},该集合中每一个元素都是不等式的解,即不等式的每一个解均使不等式成立.4.三个“二次”的关系件?提示:结合二次函数图象可知,若一元二次不等式ax2+x-1>0的解集为R,则⎩⎨⎧ a >0,1+4a <0,解得a ∈∅,所以不存在a 使不等式ax 2+x -1>0的解集为R .1.不等式3+5x -2x 2≤0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >3或x <-12B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -12≤x ≤3C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≥3或x ≤-12D .R C [3+5x -2x 2≤0⇒2x 2-5x -3≥0⇒(x -3)(2x +1)≥0⇒x ≥3或x ≤-12.]2.不等式3x 2-2x +1>0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -1<x <13B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 13<x <1 C .∅ D .R3.不等式x 2-2x -5>2x 的解集是________.4.不等式-3x 2+5x -4>0的解集为________.一元二次不等式的解法【例1】 解下列不等式:(1)2x 2+7x +3>0;(2)-4x 2+18x -814≥0;(3)-2x 2+3x -2<0.解不含参数的一元二次不等式的一般步骤(1)化标准.通过对不等式的变形,使不等式右侧为0,使二次项系数为正. (2)判别式.对不等式左侧因式分解,若不易分解,则计算对应方程的判别式. (3)求实根.求出相应的一元二次方程的根或根据判别式说明方程有无实根. (4)画草图.根据一元二次方程根的情况画出对应的二次函数的草图.(5)写解集.根据图象写出不等式的解集.1.解下列不等式(1)2x 2-3x -2>0;(2)x 2-4x +4>0;(3)-x 2+2x -3<0;(4)-3x 2+5x -2>0. 含参数的一元二次不等式的解法【例2】解关于x的不等式ax2-(a+1)x+1<0.[思路点拨]①对于二次项的系数a是否分a=0,a<0,a>0三类进行讨论?②当a≠0时,是否还要比较两根的大小?解含参数的一元二次不等式的一般步骤提醒:对参数分类讨论的每一种情况是相互独立的一元二次不等式的解集,不能合并.2.解关于x的不等式:ax2-2≥2x-ax(a<0).三个“二次”的关系[探究问题]1.利用函数y=x2-2x-3的图象说明当y>0、y<0、y=0时x的取值集合分别是什么?这说明二次函数与二次方程、二次不等式有何关系?提示:y=x2-2x-3的图象如图所示.函数y=x2-2x-3的值满足y>0时自变量x组成的集合,亦即二次函数y=x2-2x-3的图象在x轴上方时点的横坐标x的集合{x|x<-1或x>3};同理,满足y<0时x的取值集合为{x|-1<x<3},满足y=0时x的取值集合,亦即y=x2-2x-3图象与x轴交点横坐标组成的集合{-1,3}.这说明:方程ax 2+bx +c =0(a ≠0)和不等式ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)是函数y =ax 2+bx +c (a ≠0)的一种特殊情况,它们之间是一种包含关系,也就是当y =0时,函数y =ax 2+bx +c (a ≠0)就转化为方程,当y >0或y <0时,就转化为一元二次不等式.2.方程x 2-2x -3=0与不等式x 2-2x -3>0的解集分别是什么?观察结果你发现什么问题?这又说明什么?提示:方程x 2-2x -3=0的解集为{-1,3}.不等式x 2-2x -3>0的解集为{x |x <-1或x >3},观察发现不等式x 2-2x -3>0解集的端点值恰好是方程x 2-2x -3=0的根.3.设一元二次不等式ax 2+bx +c >0(a >0)和ax 2+bx +c <0(a >0)的解集分别为{x |x <x 1或x >x 2},{x |x 1<x <x 2}(x 1<x 2),则x 1+x 2,x 1x 2为何值?提示:一元二次不等式ax 2+bx +c >0(a >0)和ax 2+bx +c <0(a >0)的解集分别为{x |x <x 1或x >x 2},{x |x 1<x <x 2}(x 1<x 2),则⎩⎪⎨⎪⎧ x 1+x 2=-b a ,x 1x 2=c a ,即不等式的解集的端点值是相应方程的根.【例3】 已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},求关于x 的不等式cx 2+bx +a <0的解集.[思路点拨] 由给定不等式的解集形式→确定a <0及关于a ,b ,c 的方程组→用a 表示b ,c →代入所求不等式→求解cx 2+bx +a <0的解集1.(变结论已知以a ,b ,c 为参数的不等式(如ax 2+bx +c >0)的解集,求解其他不等式的解集时,一般遵循:(1)根据解集来判断二次项系数的符号;(2)根据根与系数的关系把b,c用a表示出来并代入所要解的不等式;(3)约去a,将不等式化为具体的一元二次不等式求解.1.解一元二次不等式的常见方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,可以得到解一元二次不等式的一般步骤:①化不等式为标准形式:ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0);②求方程ax2+bx+c=0(a>0)的根,并画出对应函数y=ax2+bx+c图象的简图;③由图象得出不等式的解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.当m<n时,若(x-m)(x-n)>0,则可得{x|x>n或x<m};若(x-m)(x-n)<0,则可得{x|m<x<n}.有口诀如下:大于取两边,小于取中间.2.含参数的一元二次型的不等式在解含参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑(1)关于不等式类型的讨论:二次项系数a>0,a<0,a=0.(2)关于不等式对应的方程根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0).(3)关于不等式对应的方程根的大小的讨论:x1>x2,x1=x2,x1<x2.3.由一元二次不等式的解集可以逆推二次函数的开口及与x轴的交点坐标.1.思考辨析(1)mx2-5x<0是一元二次不等式.()(2)若a>0,则一元二次不等式ax2+1>0无解.()(3)若一元二次方程ax2+bx+c=0的两根为x1,x2(x1<x2),则一元二次不等式ax 2+bx +c <0的解集为{x |x 1<x <x 2}.( )(4)不等式x 2-2x +3>0的解集为R .( )2.设a <-1,则关于x 的不等式a (x -a )⎝ ⎛⎭⎪⎫x -1a <0的解集为________.3.已知关于x 的不等式ax 2+bx +c <0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-2或x >-12,则ax 2-bx +c >0的解集为________.4.解下列不等式: (1)x (7-x )≥12; (2)x 2>2(x -1).第2课时 一元二次不等式的应用1.分式不等式的解法主导思想:化分式不等式为整式不等式思考1:x +2>0与(x -3)(x +2)>0等价吗?将x +2>0变形为(x -3)(x +2)>0,有什么好处?提示:等价;好处是将不熟悉的分式不等式化归为已经熟悉的一元二次不等式.2.(1)不等式的解集为R (或恒成立)的条件(1)阅读理解,认真审题,分析题目中有哪些已知量和未知量,找准不等关系. (2)设出起关键作用的未知量,用不等式表示不等关系(或表示成函数关系). (3)解不等式(或求函数最值).(4)回扣实际问题.思考2:解一元二次不等式应用题的关键是什么?提示:解一元二次不等式应用题的关键在于构造一元二次不等式模型,选择其中起关键作用的未知量为x ,用x 来表示其他未知量,根据题意,列出不等关系再求解.1.若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x ≤0,则A ∩B 等于( ) A .{x |-1≤x <0} B .{x |0<x ≤1}C .{x |0≤x <2} D .{x |0≤x ≤1} 2.不等式x +1x ≥5的解集是________.3.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________.4.在如图所示的锐角三角形空地中,欲建一个面积不小于300m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是________.分式不等式的解法【例1】 解下列不等式: (1)x -3x +2<0;(2)x +12x -3≤1.1.对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.2.对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.1.解下列不等式:(1)x +1x -3≥0;(2)5x +1x +1<3.一元二次不等式的应用【例2】国家原计划以2 400元/吨的价格收购某种农产品m吨.按规定,农户向国家纳税为:每收入100元纳税8元(称作税率为8个百分点,即8%).为了减轻农民负担,制定积极的收购政策.根据市场规律,税率降低x个百分点,收购量能增加2x个百分点.试确定x的范围,使税率调低后,国家此项税收总收入不低于原计划的78%.[思路点拨]将文字语言转换成数学语言:“税率降低x个百分点”即调节后税率为(8-x)%;“收购量能增加2x个百分点”,此时总收购量为m(1+2x%)吨,“原计划的78%”即为2 400m×8%×78%.求解一元二次不等式应用问题的步骤2.某校园内有一块长为800 m,宽为600 m的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.不等式恒成立问题[探究问题]1.若函数y=ax2+2x+2对一切x∈R,f(x)>0恒成立,如何求实数a的取值范围?2.若函数y=x2-ax-3对-3≤x≤-1上恒有x2-ax-3<0成立,如何求a的范围?3.若函数y =x 2+2(a -2)x +4对任意-3≤a ≤1时,y <0恒成立,如何求x 的取值范围?【例3】 已知y =x 2+ax +3-a ,若-2≤x ≤2,x 2+ax +3-a ≥0恒成立,求a 的取值范围.[思路点拨] 对于含参数的函数在某一范围上的函数值恒大于等于零的问题,可以利用函数的图象与性质求解.1.(变结论1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是:当a =0时,b =0,c >0;当a ≠0时,⎩⎨⎧ a >0,Δ<0.2.不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是:当a =0时,b =0,c <0;当a ≠0时,⎩⎨⎧a <0,Δ<0.3.解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.1.解分式不等式时,一定要等价变形为一边为零的形式,再化归为一元二次不等式(组)求解.当不等式含有等号时,分母不为零.2.对于某些恒成立问题,分离参数是一种行之有效的方法.这是因为将参数分离后,问题往往会转化为函数问题,从而得以迅速解决.当然,这必须以参数容易分离作为前提.分离参数时,经常要用到以下简单结论:(1)若f (x )有最大值f (x )max ,则a >f (x )恒成立⇔a >f (x )max ;(2)若f (x )有最小值f (x )min ,则a <f (x )恒成立⇔a <f (x )min .3.在某集合A 中恒成立问题 设y =ax 2+bx +c (a ≠0)若ax 2+bx +c >0在集合A 中恒成立,则集合A 是不等式ax 2+bx +c >0的解集的子集,可以先求解集,再由子集的含义求解参数的取值(范围).1.思考辨析(1)不等式1x >1的解集为x <1.( )(2)求解m >ax 2+bx +c (a <0)恒成立时,可转化为求解y =ax 2+bx +c 的最小值,从而求出m 的范围.( )2.不等式(x +1)(x +2)2(x +3)x +4>0的解集为________.3.对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是________.4.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天能获得400元以上的销售收入,应怎样制定这批台灯的销售价格?不等式的性质【例1】 如果a ,b ,c 满足c <b <a 且ac <0,则以下列选项中不一定成立的是( )A .ab >acB .c (b -a )>0C .cb 2<ab 2D .ac (a -c )<0不等式真假的判断,要依靠其适用范围和条件来确定,举反例是判断命题为假的一个好方法,用特例法验证时要注意,适合的不一定对,不适合的一定错,故特例只能否定选择项,只要四个中排除了三个,剩下的就是正确答案了.1.若a >b >c 且a +b +c =0,则下列不等式中正确的是( ) A .ab >ac B .ac >bc C .a |b |>c |b | D .a 2>b 2>c 22.若1≤a ≤5,-1≤b ≤2,则a -b 的取值范围为________. 基本不等式【例2】 设x <-1,求y =(x +5)(x +2)x +1的最大值.基本不等式的主要应用是求函数的最值或范围,既适用于一个变量的情况,也适用于两个变量的情况.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能.解答此类问题关键是创设应用不等式的条件,合理拆分项或配凑因式是常用的解题技巧,而拆与凑的目的在于使等号能够成立.3.若x ,y 为实数,且x +2y =4,则xy 的最大值为________. 一元二次不等式的解法【例3】 解关于x 的不等式:x 2+(1-a )x -a <0.。

高中数学必修1第二 章 复习导学案

高中数学必修1第二 章 复习导学案

高中数学必修1第二章 复习导学案(1)第二章 基本初等函数一、教学目标1、巩固本章知识。

2、培养学生应用知识能力。

教学重点:培养学生应用知识能力教学难点:熟练应用知识解题。

二、问题导学:指数函数(一)指数与指数幂的运算1.根式的概念: .◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。

当n 时,a a n n =,当n 时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a a n m n m ,)1,,,0(11*>∈>==-n N n m a a aa n m n m n m◆ 0的正分数指数幂 ,0的负分数指数幂 3.实数指数幂的运算性质 (1)r a ·sr r a a +=),,0(R s r a ∈>;(2)rs s r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)( ),,0(R s r a ∈>.(二)指数函数及其性质1、指数函数的概念: .注意:指数函数的底数的取值范围,底数不能是负数、零和1.(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =;对数函数(一)对数1.对数的概念: ,记作: (a — 底数,N — 真数,N a log — 对数式)说明:○1 注意底数的限制0>a ,且1≠a ;○2 x N N a a x =⇔=log ; ○3 注意对数的书写格式. 两个重要对数:○1 常用对数: N lg ; ○2 自然对数: 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化幂值 真数2、对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么:○1 M a (log ·=)N ; ○2 =NM a log ; ○3 n a M log n = )(R n ∈. 注意:换底公式ab bc c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =;(2)a b b a log 1log =. (二)对数函数1、对数函数的概念: 叫做对数函数,其中x 是自变量,函数的定义域是 .注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

新课标高中数学必修1全册导学案和答案

新课标高中数学必修1全册导学案和答案

§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素(1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈; (2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ∉. 2.集合中元素的特性:确定性;无序性;互异性. 3.集合的表示方法:列举法;描述法;Venn 图. 4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N ,正整数集记作*N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R .[预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数;(2)某班所有高个子的同学; (3)不等式217x +>的整数解; (4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形 例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是( )(A )所有著名的作家可以形成一个集合(B )0与 {}0的意义相同 (C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集 (D )方程0122=++x x 的解集只有一个元素 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .}01|{2=+-x x x 3.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B= . [归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。

高中数学必修1精品教案导学案—1.3.1-1函数的单调性

高中数学必修1精品教案导学案—1.3.1-1函数的单调性

§1.3.1函数的单调性与最大(小)值(1)第一课时 单调性【教学目标】1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;2. 学会运用函数图象理解和研究函数的性质;3. 能够熟练应用定义判断与证明函数在某区间上的单调性. 【教学重点难点】重点:函数的单调性及其几何意义.难点:利用函数的单调性定义判断、证明函数的单调性 【教学过程】(一)创设情景,揭示课题1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: ○1 随x 的增大,y 的值有什么变化? ○2 能否看出函数的最大、最小值? ○3 函数图象是否具有某种对称性? 2. 画出下列函数的图象,观察其变化规律:(1)f(x) = x ○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ .(2)f(x) = -x+2○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . (3)f(x) = x 2 ○1在区间 ____________ 上,f(x)的值随着x 的增大而 ________ .○2 在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ .3、从上面的观察分析,能得出什么结论?学生回答后教师归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上变化趋势也不同,函数图象的这种变化规律就是函数性质的反映,这就是我们今天所要研究的函数的一个重要性质——函数的单调性(引出课题)。

(二)研探新知1、y = x 2的图象在y 轴右侧是上升的,如何用数学符号语言来描述这种“上升”呢? 学生通过观察、思考、讨论,归纳得出:函数y = x 2在(0,+∞)上图象是上升的,用函数解析式来描述就是:对于(0,+∞)上的任意的x 1,x 2,当x 1<x 2时,都有x 12<x 22. 即函数值随着自变量的增大而增大,具有这种性质的函数叫增函数。

人教新课标版数学高一-高中数学必修1导学案 函数的概念

人教新课标版数学高一-高中数学必修1导学案  函数的概念

1.2.1函数的概念(学生学案)问题1:1=y (R x ∈)是函数吗?问题2:x y =与xx y 2=是同一函数吗?观察对应:求平方B B例1:(tb0107701)判断下列各式,哪个能确定y 是x 的函数?为什么? (1)x 2+y=1 (2)x+y 2=1 请填写下表:例2: 求下列函数的定义域: ① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)(. 变式训练2:(课本P19练习NO :1)例3: 已知函数)(x f =32x -5x+2,求f(3), f(-2), f(a+1).变式训练3:(课本P19练习NO :2) 例4:下列函数中哪个与函数x y =是同一个函数?⑴()2x y =;⑵33x y =;⑶2x y =(4)y=2x x变式训练4:①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y③21)52()(-=x x f 52)(2-=x x f例5: 求下列函数的值域: (1)x y 3=;(2)xy 8=;(3)54+-=x y ;(4)762+-=x x y . 布置作业: A 组:1、(课本P24习题1.2 A 组NO :1)2、(课本P24习题1.2 A 组NO :2)3、(课本P24习题1.2 A 组NO :3)4、(课本P24习题1.2 A 组NO :4)5、(课本P24习题1.2 A 组NO :5)6、(课本P24习题1.2 A 组NO :6)B 组:1、(课本P24习题1.2 B 组NO :1)2、(tb0305316)已知二次函数y= -x 2+4x+5(1) 当x ∈R 时,求函数的值域。

(2) 当x ∈[0,3]时,求函数的值域。

(3) 当x ∈[-1,1]时,求函数的值域。

C 组:1、(tb0108313)设函数f(x) =x 2+x+21的定义域是[n,n+1] (n ∈N +),那么在f(x)的值域中共有___________个整数。

高中数学必修一函数1导学案

高中数学必修一函数1导学案

第二章 函数第一节 函数定义及三要素考察Step1:基础知识巩固 1.函数定义:设集合A 是一个 ,对A 中的 ,按照 ,都有 ,则这种 叫做集合A 上的一个函数。

记作:.),(A x x f y ∈=.其中 叫做自变量,自变量的取值范围(集合A )叫做函数的 。

函数值的取值范围叫做函数的 。

2、函数的三要素是 、 和 ;其中起决定因素的是 和 ,当且仅当二者均相同时,两个函数才表示同一函数。

3.(1)具体函数认为定义域是使函数解析式 或使实际问题有意义的x 的取值范围。

求函数 定义域的主要依据是:(1)分式 。

(2)偶次方根的被开方数 。

(2)抽象函数的定义域是式子中x 的 。

(3)如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是各基本初等函数定义域的 ,结果用 或 表示。

6.表示函数的方法常用的有 、 、 三种。

7.求函数值域常用方法: 。

Step2:实战演练题型一:函数定义高考真题 一函数定义题目1.(2011广东文10)设)(),(),(x h x g x f 是R 上的任意实值函数.如下定义两个函数))((x g f ο和))((x g f •; 对任意))(())((,x g f x g f R x =∈ο;))((x g f •=)()(x g x f .则下列等式恒成立的是( ) A .()()()()()())(x h g h f x h g f ••=•οο B .()()()()()())(x h g h f x h g f οοο•=•C .()()()()()())(x h g h f x h g f οοοοο=D . ()()()()()())(x h g h f x h g f •••=••2.(2011四川理16)函数)(x f 的定义域为A ,若A x x ∈21,且)()(21x f x f =时总有21x x =,则称)(x f 为单函数.例如,函数)(,12)(R x x x f ∈+=是单函数.下列命题:其中的真命题是_______.(写出所有真命题的编号)①函数R x x x f ∈=,)(2是单函数; ②若)(x f 为单函数,A x x ∈21,且21x x ≠,则)()(21x f x f ≠;③若B A f →:为单函数,则对于任意B b ∈,它至多有一个原象;④函数)(x f 在某区间上具有单调性,则)(x f 一定是单函数.3.(2010陕西文数)某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =][x (][x 表示不大于x 的最大整数)可以表示为( )(A y =[10x ] (B )y =[310x +] (C )y =[410x +] (D )y =[510x +] 4.(2000天津)设集合A 和B 都是坐标平面上的点集},|),{(R y R x y x ∈∈, 映射B A f →:把集合A 中的元素),(y x 映射成集合B 中的元素),(y x y x -+,则在映射f 下,象()1,2(的原象是( )A.(3,1)B.(21,23)C.( 21,23-) D.(1,3) 5.(2006陕西)为确保信息安全,信息需要加密传输,发送方由明文→密文(加密).接收方由密文→明文(解密).已知加密规则为:明文d c b a ,,,对应密文d d c c b b a 4,32,2,2+++. 例如明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,76.(2006广东)对于任意的两个实数对(a,b)和(c,d ),规定:(a,b)=(c,d)当且仅a=c,b=d ;运算“⊗”为:(a ,b)⊗(c ,d)=(ac-bd ,bc+ad);运算“⊕”为:(a ,b)⊕(c ,d)=(a+c ,b+d).设p 、q ∈R,若(1,2)⊗(p,q)=(5,0),则(1,2)⊕(p,q)=( )A.(4,0)B.(2, 0)C.(0,2)D.(0,-4)7.(2006浙江)已知函数}3,2,1{}3,2,1{:→f 满足)()]([x f x f f =,则这样的函数个数共( )A .1个B .2个C .8个D .10个题型二:函数定义域高考真题一 具体函数定义域1(2011广东文4)函数)1lg(11)(++-=x xx f 的定义域是 ( ) A .)1,(--∞ B .),1(+∞ C .),1()1,1(+∞⋃- D .),(+∞-∞2.(2011安徽文13)函数261x x y --=的定义域是 .3.(2011江西文3)若)12(log 1)(21+=x x f ,则)(x f 的定义域为( )A )0,21(- B.),21(+∞- C.),0()0,21(+∞⋃- D.)2,21(- 4.(2010湖北文数).函数0.51log (43)y x =-的定义域为( ) A ( 34,1) B(34,∞) C (1,+∞) D. ( 34,1)∪(1,+∞) 5.(2009江西卷理)函数2ln(1)34x y x x +=--+的定义域为( )A .(4,1)--B .(4,1)-C .(1,1)-D .(1,1]-6.(湖南卷14)已知函数3()(1).1ax f x a a -=≠-若0>a ,则()f x 的定义域是 。

新导学案高中数学人教版必修一:1.2.1 《函数的概念》(1).pptx

新导学案高中数学人教版必修一:1.2.1  《函数的概念》(1).pptx
ቤተ መጻሕፍቲ ባይዱ
归纳:三个实例变量之间的关系都可以描述为,对于数集 A 中的每一个 x,按照某种对应关系 f,在 数集 B 中都与唯一确定的 y 和它对应,记作: f: A B .
新知:函数定义.
设 A、B 是非空数集,如果按照某种确定的对应关系 f, 使对于集合 A 中的任意一个数 x,在集 合 B 中都有唯一确定的数 f (x) 和它对应,那么称 f: A B 为从集合 A 到集合 B 的一个函
探究任务二:区间及写法
新知:设 a、b 是两个实数,且 a<b,则:
{x | a x b} [a,b] 叫闭区间;
{x | a x b} (a,b) 叫开区间;
{x | a x b} [a,b) ,{x | a x b} (a,b] 都叫半开半闭区间. 实数集 R 用区间(, ) 表示,其中“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正
5. 函数 y 2 的定义域是 ,值域是 .(用区间表示) x
【拓展提升】 1. 求函数 y 1 的定义域与值域.
x 1
学海无涯
2. 已知 y f (t) t 2 , t(x) x2 2x 3 . (1)求 t(0) 的值; 2 求 f (t) 的定义域; 3 试用 x 表示 y.
C. 国际上常用恩格尔系数(食物支出金额÷总支出金额)反
映一个国家人民生活质量的高低. “八五”计划以来我们城镇居民的恩格尔系数如下表.
年份 1991 1992 1993 1994 1995 …
恩格尔 系数%
53.8 52.9 50.1 49.9 49.9

讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应 关系? 三个实例有什么共同点?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.1.1函数的概念与图象(1)[自学目标]1.体会函数是描述变量之间的依赖关系的重要数学模型,理解函数的概念; 2.了解构成函数的要素有定义域、值域与对应法则; [知识要点]1.函数的定义:,.2.函数概念的三要素:定义域、值域与对应法则. 3.函数的相等. [预习自测]例1.判断下列对应是否为函数: (1) (2)这里补充:(1)︱,;(2);(3)︱,; (4)≤≤≤≤ 分析:判断是否为函数应从定义入手,其关键是是否为单值对应,单值对应的关键是元素对应的存在性和唯一性。

例2. 下列各图中表示函数的是------------------------------------------[ ]A B C D )(x f y =A x ∈2,0,;x x x R x→≠∈,x y →2,y x =,.x N y R ∈∈,{A R B x ==∈R 0x >}:f x y x →=,:3A B N f x y x ==→=-{A x R =∈0}x >,:B R f x y x =→=±{0A x =x 6},{0B x =x 3},:2xf x y →=O O OO例3. 在下列各组函数中,与表示同一函数的是------------------[]A .=1,=B .与C .与D .=∣∣,=(≥)例4 已知函数 求及(),[课内练习]1.下列图象中表示函数y=f(x)关系的有--------------------------------( )A.(1)(2)(4)B.(1)(2)C.(2)(3)(4)D.(1)(4)2.下列四组函数中,表示同一函数的是----------------------------------( )A .B .和C .和D .和3.下列四个命题(1)f(x)=有意义; (2)表示的是含有的代数式 (3)函数y=2x(x )的图象是一直线;(4)函数y=的图象是抛物线,其中正确的命题个数是 ( )A .1B .2C .3D .0)(x f )(x g )(x f )(x g 0x x y =2x y =2x y =2)1(+=x y )(x f x )(x g 2x 63-x x 0=)(x f )1(f )]1([f f 5+x x 0<24129y x x =-+32y x =-2y x =y x x =y x =2y x =y x =2y x =x x -+-12)(x f x N ∈⎪⎩⎪⎨⎧<-≥0,0,22x x x x4.已知f(x)=,则f()= ; 5.已知f 满足f (ab )=f (a )+ f (b),且f (2)=,那么=[归纳反思]1.本课时的重点内容是函数的定义与函数记号的意义,难点是函数概念的理解和正确应用;2.判断两个函数是否是同一函数,是函数概念的一个重要应用,要能紧扣函数定义的三要素进行分析,从而正确地作出判断.[巩固提高]1.下列各图中,可表示函数的图象的只可能是--------------------[ ]A B C D2.下列各项中表示同一函数的是-----------------------------------------[ ] A .与B .=,=C .与D . 21与3.若(为常数),=3,则=------------------------[ ]A .B .1C .2D .4.设,则等于--------------------------------[ ] A .B .C .D .5.已知=,则= , = 6.已知=,且,则的定义域是 , 值域是221(1)1(1)x x x x ⎧->⎪⎨-<⎪⎩33p q f =)3()72(f ()f x )(x f y =0)1(-=x y 1=y y 221x y xx 231,y x x R =-∈1,y x x N =-∈=)(x f -x 12)(-=t t g =)(x f a x +2a )2(f a 1-2-=)(x f 1,11±≠-+x x x )(x f -)(1x f )(x f -)(1x f -)(x f )(x f 12+x )2(f )1(+x f )(x f 1-x Z x ∈]4,1[-∈x )(x f7.已知= ,则 8.设,求的值9.已知函数求使的的取值范围10.若,,求,§2.1.1函数的概念与图象(2)[自学目标]掌握求函数定义域的方法以及步骤; [知识要点]1、函数定义域的求法:(1)由函数的解析式确定函数的定义域; (2)由实际问题确定的函数的定义域;(3)不给出函数的解析式,而由的定义域确定函数的定义域。

[预习自测]例1.求下列函数的定义域:)(x f ()()221111x x x x ⎧-≥⎪⎨-<⎪⎩=)33(f 3()1f x x =+)]}0([{f f f 1()3,2f x x =+9()(,4)8f x ∈x 12)(2+=x x f 1)(-=x x g )]([x g f )]([x f g )(x f )]([x g f(1) (2)=(3) (4)= 分析:如果是整式,那么函数的定义域是实数集;如果是分式,那么函数的定义域是使分母的实数的集合;如果是二次根式,那么函数的定义域是使根号内的表达式≥0例2.周长为的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底边长为2,求此框架围成的面积与的函数关系式,并指出其定义域例3.若函数的定义域为[ (1)求函数的定义域;(2)求函数的定义域。

[课内练习] 1.函数的定义域是―――――――――――――――――( ) A.B.C.D.R2.函数f(x)的定义域是[,1],则y=f(3-x)的定义域是―――――――――( ) A [0,1] B [2,] C [0,] D ()f x x =)(x f xx -11()21f x x=+)(x f +-x 5x-21()f x R ()f x 0≠()f x l x y x =y )(x f ]1,1-(1)f x +=y )41()41(-++x f x f ()1f x x x=-(),0-∞()0,+∞[0,)+∞125252(),3-∞3.函数=的定义域是:4.函数的定义域是 5.函数的定义域是[归纳反思]1.函数定义域是指受限制条件下的自变量的取值; 2.求函数的定义域常常是归结为解不等式和不等式组; [巩固提高]1.函数=+的定义域是----------------------------[ ] A .[,] B .( C .[0,1] D .{}2.已知的定义域为[],则的定义域为------------[ ]A .[]B .[C .[D .[ 3.函数------------------------------------[ ]A .B .C .D .4.函数=的定义域是 5.函数=的定义域是 ;值域是 。

6.函数的定义域是: 。

7.求下列函数的定义域 (1) =; (2)=; (3)()f x ()01x -)5lg()(-=x x f ()()1log 143++--=x x xx f y 21x -12-x 1-1),1[]1,+∞-∞- 1,1-)(x f 2,2-)21(x f -2,2-]23,21-]3,1-,2-]231x y +={}0x x >{}0x x <{}0,1x x x <≠-{}0,1x x x ≠≠-y xx 1+)(x f 1+x 11y x=-y 32+x y )1)(21(1+-x x 51+-=x x y8.若函数的定义域为,则的定义域.9.用长为30cm 的铁丝围成矩形,试将矩形面积S ()表示为矩形一边长的函数,并画出函数的图象.10.已知函数=,若,求的表达式.§2.1.1函数的概念与图象(3)[自学目标]掌握求函数值域的基本求法; [知识要点]函数值域的求法函数的值域是由函数的定义域与对应法则确定的,因此,要求函数的值域,一般要从函数的定义域与对应法则入手分析,常用的方法有: (1)观察法;(2)图象法;(3)配方法;(4)换元法。

[预习自测]例1. 求下列函数的值域: (1);()f x []3,1x ∈-()()()F x f x f x =+-2cm ()x cm )(x f c bx ax ++21)()1(,0)0(++=+=x x f x f f )(x f 21,{1,2,3,4,5}y x x =+∈(2);(5) 变题: ≤≤);(6分析:求函数的值域,一种常用的方法就是将函数的解析式作适当的变形,通过观察或利用熟知的基本函数(如一次函数、二次函数等)的值域,从而逐步推出所求函数的值域(观察法);或者也可以利用换元法进行转化求值域。

例2. 若函数的定义域为,值域为,求的取值范围[课堂练习] 1.函数的值域为( ) A . B . C . D . 2.函数y=2x 2-4x-3,0≤x ≤3的值域为 ( ) A (-3,3) B (-5,-3) C (-5,3) D (-5,+∞)=y x 1+=y 322+--x x =y 322+--x x 5(-x 2-234y x x =--[0,]m 25[,4]4--m ()201y x x=>+[]0,2(]0,2()0,2[)0,2A .B .C .D . 45.求函数的定义域和值域[归纳反思]求函数的值域是学习中的一个难点,方法灵活多样,初学时只要掌握几种常用的方法,如观察法、图象法、配方法、换元法等,在以后的学习中还会有一些新的方法(例如运用函数的单调性、配方法、分段讨论法、不等式法等等),可以逐步地深入和提高。

[巩固提高] 1.函数=的值域是---------------------------------------[ ] A .( B .R C .(0,1) D .(1,走2.下列函数中,值域是(0,)的是--------------------------------[ ] A .= B .=2( C . D .3.已知函数的值域是,则函数的值域是--------[ ] A. B. C. D.4.={},则的值域是: .: .: . 7.求下列函数的值域 (1) (2)(3)(4) (5)(6)=2121-4-y )1(1>x x),0()0,+∞∞- )∞+∞+y 132+-x x y 1+x )0>x 12++=x x y 21xy =()f x []2,2-()1y f x =+[]1,3-[]3,1-[]2,2-[]1,1-)(x f ∈-x x x ,23,2,1±±±)(x f 1y =221y x x =---2(23)y x x =-≤≤2211x y x -=+2y x =y x x 3121-+8.当时,求函数的值域§2.1.1函数的概念与图象(4)[自学目标] 1.会运用描点法作出一些简单函数的图象,从“形”的角度进一步加深对函数概念的理解; 2.通过对函数图象的描绘和研究,培养数形结合的意识,提高运用数形结合的思想方法解决数学问题的能力. [知识要点]1.函数图象的概念将自变量的一个值作为横坐标,相应的函数值作为纵坐标,就得到坐标平面上的一个点.当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点.所有这些点组成的集合(点集)为即,所有这些点组成的图形就是函数的图象.2.函数图象的画法画函数的图象,常用描点法,其基本步骤是:⑴列表;⑵描点;⑶连线.在画图过程中,一定要注意函数的定义域和值域. 3.会作图,会读(用)图 [预习自测]例1.画出下列函数的图象,并求值域:(1)=,[1,2]; (2)= (),{0,1,2,3};(3)=; 变题:; (4)=[1,3]x ∈2()26f x x x c =-+0x ()0f x ()()0,0x f x ()(){},,x f x x A ∈()(){},,x y y f x x A =∈()y f x =y 13-x ∈x y 1-x∈x y x 1y x =-y 2x 22--x例2.直线y=3与函数y=|x2-6x |图象的交点个数为()(A)4个(B)3个(C)2个(D)1个例3.下图中的A. B. C. D四个图象中,用哪三个分别描述下列三件事最合适,并请你为剩下的一个图象写出一件事。

相关文档
最新文档