塔设备机械设计
第八章 塔设备的机械设计(化工技术)
塔壁间的密封
碳钢制塔板与 塔盘圈厚度,一 般3-4mm,用不锈 钢时取2-3mm
2
分块式塔盘第八章图\分块塔板一.rm 第八 章图\分块塔板二.rm
塔身为焊制的整体圆筒,塔盘分成数块, 由人孔送入塔内,安装到塔盘固定件上。
塔径在800~900mm以上时建议采用
特点:
1)结构简单,装拆方便 2)制造方便,模具简单
二 裙座设计 结构: 1)座体 2)基础环 3)螺栓座 4)管孔
1
座体设计
初选座体有效厚度δes,然后验算危险
截面应力。
1)
基底为危险截面时,应满足
操作时,
0 0 M max m0 g Fv0 0 t min KB; K S Z sb Asb
水压试验时,
0.3 M
水压试验时,
0.3 M M e m g min 0.9 K s ; KB Z sm Asm
1 1 w 1 1 max
2
基础环设计
基础环尺寸的确定
1)
Dob Dis 160 ~ 400 mm Dib Dis 160 ~ 400 mm
7)稳定条件
ii max
cr
4
塔体拉应力校核
1)假设有效厚度δei
2)计算最大组合轴向拉应力
内压,正常操作时 外压,非操作时
max 1
i i 2
ii 3
max
ii 3
ii 2
• 3)强度校核条件
ii max
K
5)最大组合轴向压应力
外压,正常操作时 max 1
塔设备的机械设计
阶梯环:一头为鲍尔环,一头翻卷,由于不对 称,装入塔内可减少填料环相互重叠,使填料 表面得以充分利用,同时增大了空隙,使压降 降低,传质效率提高。
鞍形填料:这种填料重迭部分少,空隙率大,利 用率高。它有两种形式,一种是矩鞍环,一种是 弧鞍环,都是敞开式填料,这种填料比拉西环传 质效率的波纹成45°,盘与盘之间成90°排列,结 构紧凑,比表面积大。传质好,且可根据物料温 度及腐蚀情况采用不同的材料。
一、 喷淋装置
液体喷淋装置设计的不合理,将导致液体 分布不良,减少填料的润湿面积,增加沟流和 壁流现象,直接影响填料塔的处理能力和分离 效率。液体喷淋装置的结构设计要求是:能使 整个塔截面的填料表面很好润湿,结构简单, 制造维修方便。
塔径DN=300~500mm时,塔节高度L=800~ 1000mm;塔径DN=600~700mm时,塔节高度 L=1200~1500mm。 为方便安装,每个塔节中的塔盘数为5-6块。
降液管的结构有弓形和圆形两类
另设溢流堰圆形降液管
圆形降液管伸出塔盘表面兼作流堰的圆形降液管
图6-5弓形降液管结构
图6-6弓形降液管的液封槽
塔盘结构有整块式和分块式两种。当塔径 在800~900 mm以下时,建议采用整块式塔盘。 当塔径在800~900 mm以上时,人可以在塔内 进行装拆,一般采用分块式塔盘。
1. 整块式塔盘
此种塔的塔体由若干塔节组成,塔节与塔 节之间则用法兰连接。每个塔节中安装若干块 层层叠置起来的塔盘。塔盘与塔盘之间用管子 支承,并保持所需要的间距。图为定距管式支 承塔盘结构。
2.分块式塔盘
在直径较大的板式塔中,如果仍然用整块式 塔盘,则由于刚度的要求,势必要增加塔盘板 的厚度,而且在制造、安装与检修等方面都很 不方便。因此,当塔径在800 ~900 mm以上 时,都采用分块式塔盘。此时塔身为一焊制整 体圆筒,不分塔节 。
第八章-塔设备的机械设计
Fi hi
i 1
对于等直径、等壁厚塔器的底截面 地震弯矩为:
M
00 E
16 35
1m0
gH
(N mm)
风载荷
风对塔体的作用之一是造成风弯矩,在迎风面的塔壁 和裙座体壁引起拉应力,背风面一侧引起压应力;作 用之二是气流在风的背向引起周期性旋涡,即卡曼涡 街,导致塔体在垂直于风的方向产生周期振动,这种 情况仅仅出现在H/D较大,风速较大时比较明显,一般 不予以考虑。
M
ii max
/
0.785Di2
S
e
2
式中M
ii max
maxM M
ii W
ii E
Me
25%M
ii W
M e
稳定条件:
组合轴向压应 力要满足:
ii m a x压
[ ]cr
KB
minK[ ]t
式中K——载荷组合系数,取K=1.2; B——见书p172。
4 塔体拉应力验算
依前述,假设一有效壁厚Se3。 计算σ1,σ2,σ3,并进行组合,满足如下强度条件:
m0 m01 m02 m03 m04 m05 ma me
(8-1)
塔设备在水压试验时的最大质量
mmax m01 m02 m03 m04 mw ma me (8-2)
塔设备在吊装时的最小质量
mmin m01 0.2m02 m03 m04 ma me (8-3)
地震载荷
(5)水压试验验算。
8.2 裙座设计
四个部分: 1.座体---承受并传
递塔体载荷。 2.基础环---将载荷
传递到基础上。 3.螺栓座---固定塔
于基础上。 4.管孔---人孔、排
气孔、引出管孔。
第二课塔器设计基础及案例
Ring
Intalox Saddle
螺旋环,Spiral Ring
改 进 矩 鞍 (Glitsch) ,
Ballast Saddle
鲍尔(开孔)环,
改 进 矩 鞍 (Koch) , Flexi
Pall (Slotted)Ring
Saddle
哈埃派克(Norton)Hy-Pak 改
进
矩
鞍
(Hydronyl)Hydronyl
体在管内停留时间短,不容易结垢,且容易清洗;但壳程不能清洗,因此用 于较脏的加热介质;其本身造价较低,但要求较高的塔体裙座.
• 卧式热虹吸再沸器的主要特点:可用低裙座,但占地面积大,出塔
产品缓冲容积较大,故流动稳定,在加热段停留时间短,不容易结垢,可以 使用较脏的加热介质.
• 立式和卧式强制循环再沸器的共同特点:适应于高粘度液体和
热敏性物料,因为强制循环流速高,停留时间短,有利于工艺流体循环流 量的控制和调节.
精馏方案的选定
• 5.冷却方式
– 1)冷却剂----通常是水,水温随气候而定.入口一般为15℃--20℃,出
口<50℃,目的防止溶解于水中的无机盐析出.
• 冷却剂 还可以是冷冻盐水.液氨等,一般用于较低温度。
– 2)冷凝设备的结构形式
2024/6/8
4
天津创举科技有限公司
➢ 六七十年代,出现塔径十米以上的板式塔,塔板 数多达上百块、塔高度达80米;填料塔的最大直 径有15米,高八十年代以后,填料塔开始大量应用。板式塔与
填料塔的应用并驾驱,竞争日趋激烈。 ➢ 近年来,大量新型塔板研究成功。例如:
• 小塔---蛇管换热器 • 大塔---列管式换热器
工艺流程设计的要求
第六章 塔设备的机械设计
自支承式塔设备的塔体除承受工作介质压力 之外,还承受自重载荷、风载荷、地震载荷及 偏心载荷的作用。
(1)塔设备自重载荷的计算
塔设备的操作质量:
(kg) (6-2) 塔设备水压试验时的质量,这时设备质量最大, 简称设备最大质量 m0 m01 m02 m03 m04 mw ma me (kg) (6-3) 设备吊装时的质量,这时设备质量最小,简称 设备最小质量: m0 m01 0.2m02 m03 m04 ma me (kg) (6-4)
M
00 E
8CZ 1 m0 g (10 H 3.5 14 H 2.5 h 4h3.5 ) 175H 2.5
(Nmm)
底部截面的地震弯矩 16 I I M E CZ 1 mo gH 35
(Nmm)
(3)风载荷的计算
图6-31所示为自支承式塔设备受风压作用 的示意图。塔体会因风压而发生弯曲变形。吹 到塔设备迎风面上的风压值,随设备高度的增 加而增加。为了计算简便,将风压值按设备高 度分为几段,假设每段风压值各自均布于塔设 备的迎风面上,如图所示。
Fk Cz α1k mk g (N )
式中 Cz—— 结构综合影响系数,对圆筒形 直立设备取Cz=0. 5; α1—— 对应于塔器基本自振周期T(利用图630查取α1值时,应使T =T1)的地震影响系数 α值; ηk—— 基本震型参与系数;
关于 α—— 地震影响系数,按图6-30确定;图中曲 Tg 0.9 线部分按公式
(6-19)
(4 )偏心载荷的计算
有些塔设备在顶部悬挂有分离器、热交换 器、冷凝器等附属设备,这些附属设备对塔体 产生偏心载荷。偏心载荷所引起的弯矩为: Me=me g e (6-20) 式中 me—— 偏心质量Kg e—— 偏心质量的重心至塔设备中心线的距离, mm
塔式起重机设计规范
塔式起重机设计规范1. 引言塔式起重机是一种常用的起重设备,广泛应用于工地、码头等领域。
为了保证塔式起重机的安全性和功能性,设计过程中必须遵循一定的规范,本文将介绍塔式起重机设计规范的相关要求。
2. 设计原则在进行塔式起重机的设计过程中,需要遵循以下原则:2.1 安全性原则塔式起重机的设计必须保证其在运行过程中能够保持稳定,并且能够承受额定的荷载。
设计中应考虑各种不同荷载情况下的稳定性和安全性。
2.2 功能性原则塔式起重机的设计应满足其预期功能,包括提升和移动重物的能力。
设计中应考虑不同工况下的功能需求,确保起重机能够满足实际使用需求。
2.3 经济性原则塔式起重机的设计应尽可能节约成本,同时要保证其性能和质量。
在设计过程中应考虑材料的成本、维护成本等因素,达到经济合理的设计方案。
3. 结构设计塔式起重机的结构设计是实现功能和安全的关键。
以下是一些常见的结构设计要求:3.1 塔身结构塔式起重机的塔身结构应具有足够的强度和刚度,以保证其在运行过程中不会发生变形或断裂。
在设计过程中,需要考虑材料强度、造型和连接方式等因素。
3.2 附着装置塔式起重机的附着装置用于固定塔身,以保证其稳定性。
附着装置应具有足够的牢固性,并且能够承受塔身和荷载的力。
3.3 提升装置塔式起重机的提升装置用于提升和放下重物。
提升装置应具有足够的承载能力和运行稳定性,并且具备合理的工作空间和速度等参数。
4. 控制系统设计塔式起重机的控制系统设计是实现操作和控制的关键。
以下是一些常见的控制系统设计要求:4.1 操纵方式塔式起重机的操纵方式可以采用手动或自动控制。
在设计中需要考虑操纵杆、按钮、遥控器等的布置和操作方式,以便操纵员能够灵活、准确地操作起重机。
4.2 安全保护装置塔式起重机的控制系统中应配备必要的安全保护装置,例如过载保护装置、限位保护装置等。
这些装置能够对起重机的运行状况进行监测,保证操作的安全性。
5. 维护与检修塔式起重机的维护和检修是保障其安全和运行的重要环节。
塔设备设计
3章 塔的机械设计3.1设计条件:塔体与裙座的机械设计条件如下:(1) 塔体内径mm D i 600=,塔高近似取H=12000mm 。
(2) 计算压力MPa p c 20.0=,设计温度t=200℃。
(3) 设计地区:基本风压值20/400m N q =,地震设防烈度为8度,场地土类:Ⅰ类,设计地震分组:第二组,设计基本地震加速度为0.3g 。
(4) 塔内装有N=26层浮阀塔,每块塔盘上存留介质层高度为mm h w 60=,介质密度为31/5.794m kg =ρ。
(5) 沿塔高每6块塔板左右开设一个手孔,手孔数为3个,相应在手孔处安装半圆形平台3个,平台宽度为B=800mm ,高度为1000mm 。
(6) 塔外保温层的厚度为mm s 100=δ,保温材料密度为32/300m kg =ρ。
(7) 塔体与裙座间悬挂一台再沸器,其操作质量为./20003m kg m e =。
(8) 塔体与封头材料选用16MnR,其中[][]MPa 109.1E 345MPa 1701705⨯====,,,MPa MPa s t σσσ。
(9) 裙座材料选用Q235-B 。
(10)塔体与裙座对接焊接,塔体焊接接头系数85.0=φ。
(11)塔体与封头厚度附加量C=2mm ,裙座厚度附加量C=2mm 。
3.2 按计算压力计算塔体和封头厚度1、 塔体厚度计算[]mm mm p D p ctic 442.020.085.0170260020.02<=-⨯⨯⨯=-=φσδ取δ=4mm ,考虑厚度附加量C=2mm ,经圆整,取mm n 6=δ,mm e 4=δ 。
2、 封头厚度计算采用标准椭圆形封头:[]mm mm p D p ctic 442.020.05.085.0170260020.02<=⨯-⨯⨯⨯=-=φσδ,取δ=4mm,考虑厚度附加量C=2mm 经圆整后,取mm n 6=δ,mm e 4=δ。
塔机械设计数据
1400452502.667-176937.6420塔体16MnR[σ]t (Mpa)170[σ](Mpa)170σs (Mpa)裙座Q235-A [σ]t (Mpa)113[σ](Mpa)113σs (Mpa)13.040062mm 12.979614mm 1塔壳和裙座质量A 圆筒质量塔体圆筒高度H 039.86m外径D 01436mm圆筒质量m 125090.283kg B 封头质量324.61封头质量m 2649.22kgC 裙座质量锥形裙座尺寸Dis 2000mm 2m dis 1400mm1.4m裙座质量m 33813.1614kgD 塔壳和裙座质量m 0129552.664kg 2塔内构件质量75kg/m3塔内构件质量m 027966.2934kg 37388.166kg 4保温材料质量查得DN(mm )曲面高度mm直边高度140035040160040040保温材料质量m 035888.1564kg三. 塔的质量载荷计算查得DN=1400mm,壁厚18mm 的标准椭圆形封头质量由于锥角很小,故可按圆筒计算,取锥体的平均直径查得浮阀塔盘单位质量人孔,法兰,接管与附属物质量m a 一. 选择材料二. 按计算压力计算筒体和封头的壁厚塔体S 封头,采用标准椭圆封头S 加上壁厚附加量C=2mm,并名义厚度Sn6. 场地土为Ⅱ类场地土7. 支座为φ1200/ φ1800mm,高度Hs=5m 的圆8. 塔体焊接接头系数φ=0.85,塔体与裙座对接9. 塔体与封头的壁厚附加量取C=2mm,裙座厚液相介质密度 ρl(kg/m 3)机械设计课程设计理论机械设计条件塔体内径D (mm )塔高 H(mm) 1. 每隔15个塔板左右开设一个人孔,共设5个.2. 相应人孔处安装操作平台,平台宽B=900mm 计算压力 Pc(Mpa)操作温度T(ºC)塔板数Np塔板上清液层高度h l (mm) 3. 塔体外表面保温层厚度δs=100mm,材料密度4. 塔器设置地区基本风压值q 0=500N/m 25. 地震设防烈度为7度5平台,扶梯质量m 044448.8891kg62306.4446kg7冲水质量m w 62200.102kg 8全塔操作质量m 057550.614kg 9全塔最小质量m min48871.134kg10全塔最大质量m max 117444.27kg 质量(kg) 塔段号12345圆筒质量m 1005035.6815035.685035.681封头质量m 20324.61000裙座质量m 3762.632293050.5291塔壳和裙座质量m 01762.632293375.13915035.6815035.685035.681塔内构件质量m 0200923.62821962.711847.256保温材料质量m 03058.921158.1171158.121158.117平台,扶梯质量m 0440697.77782857.7778857.778857.7778塔内物料质量m 050629.06183194.4792413.268413.2682人孔附属物质量m a 190.65807843.784791258.921258.921258.92冲水质量m w 0420.212315.041231512315.04塔段操作质量m 0993.290365604.68369428.60410686.510571.02塔段最大质量m max993.290365395.821721549.1722588.222472.8塔段最小质量m min 993.290364975.62178495.2228703.048679.948塔段长度(mm)10004000800080008000人孔,平台数01111塔板数00817162.283506s 塔的第二振型10.08地震影响系数α10.0166802H/Di=32.3214 >152确定危险截面0-0截面1-1截面3A 0-0截面M E l 0-0N*mm B 1-1截面M E l 1-1N*mm C2-2截面M E l 2-2N*mm1风力计算海边为A型1.38大连500q1A 风振系数的计算12六. 风载荷计算94334877.6塔段号计算危险截面的地震弯距97346645.0382304958.2裙座基底截面由地震设防烈度为7度, 查得αmax =由Ⅱ类场地土且结构综合影响操作时塔内物料质量m 05釜液深度h 0将全塔分为7段,各段质量载荷如下五. 地震载荷计算四. 塔的自振周期计算等直径,等厚度塔的基本自振周期T 1笼式扶梯单位质量q F3.210.2330.720.780.010.081.1 1.381.019641.135652B 有效直径D ei 的计算100mm 塔段号1234塔段长度l i 1000400080008000K 3(mm)400400400400K 4=2*∑A/l i025*******D ei (mm)2036228621612161C 水平风力计算结果如下塔段号1234K 10.70.70.70.7K 2i 1.0196364 1.135652 1.362691.592941q 0(N/m 2)690690690690f i 1.1 1.38 1.56 1.7l i (mm)1000400080008000D ei (mm)2036228621612161风力P i (N)1102.9686921.6217750.722612.082危险截面风弯距计算A 0-0截面M w 0-0N*mm B1-1截面M w 1-1N*mm C 2-2截面M w 2-2N*mm158.340625Mpa 2A 0-0截面σ20-0-5.61279MpaB 1-1截面σ21-1-6.88689Mpa AsmC2-2截面σ22-2-7.09877Mpa3A 0-0截面M max 0-0N*mm B1-1截面M max 1-1N*mm C 2-2截面M max 2-2N*mm3266028888七. 各种载荷引起的轴向应力计算计算压力引起的轴向拉应力σ1操作质量引起的轴向压应力σ2最大弯距引起的轴向应力σ338452007223994005975384520072232660288883994005975八. 筒体和裙座危险截面的强度与稳定性校核振型系数φzi (取u=1)风压高度变化系数f i (B类)风振系数K 2i有效直径D ei 的计算结果如下塔和管线的保温层厚度δsi =δps 设笼式扶梯与塔顶管线成90º角,取平台构件的投计算截面距地面高度h it (m )脉动增大系数ξ(B类)脉动影响系数νi (B类)1A 强度校核173.4Mpa>126.7874B 稳定性校核180Mpa>82.91122σmax 组压0-0-85.071013Mpa A=0.001489σmax 组压1-1-134.23115Mpa[σ]cr1A 试验压力p T 3.33375Mpaσ147.53530.9*σs *φ =263.925Mpa >σB 72.925781MpaC -15.4605MpaD 39.780968±MpaE σmax 组拉2-297.2462Mpa 许用应力0.9*Kσs *φ316.71MpaF σmax 组压2-2-55.2415Mpa许用应力180Mpa2A σ20-0-11.446Mpa σ21-1-14.17MpaB σ30-023.8375±Mpa σ31-1152.813±MpaC σmax 组压0-0-35.2831Mpaσmax 组压1-1许用应力168Mpa1基础环尺寸取D ob2400mm取D ib18402基础环应力校核8.88E+08mm 3A σbmax 4.798863Mpa B σbmax1.965902Mpa选用150号混凝土许用应力R a 7.5Mpa >σbmax 3基础环厚度(有筋板) b=167mm M42l 160-22082.99594.654140Mpa基础环材料的许用应力[σ]b满足要求地脚螺栓直径查得M x =-0.165*σbmax *b 2N*mm/mm 查得M y =0.0781*σbmax *l 2N*mm/mm >σmax 组压2-2裙座水压试验应力校核水压试验时,重力引起的轴向应力σ2基础环抗弯截面系数Z b基础环面积A b由弯距引起的轴向应力σ3最大组合轴向压应力校核满足要求十. 基础环设计水压试验时,重力引起的轴向应力σ22-2由弯距引起的轴向应力σ32-2最大组合轴向拉应力校核最大组合轴向压应力校核九. 筒体和裙座水压试验应力校核筒体水压试验应力校核由试验压力引起的环向应力σ满足要求由试验压力引起的轴向应力σ1筒体危险截面2-2处的最大组合轴向压应力σmax组压2-2许用轴向压应力[σ]cr 筒体危险截面2-2处的最大组合轴向拉应力σmax组拉2-2许用轴向拉应力筒体的强度与稳定性校核裙座的稳定性校核裙座危险截面0-0及1-1处的最大组合轴向压应力基础环厚度S b 30.763746mm取S b35mm1A 4.23948Mpa取σB4.23948Mpa2地脚螺栓直径取地脚螺栓个数n=28147十一. 地脚螺栓设计地脚螺栓承受的最大拉应力σB 由于σB >0,故此塔设备必须安装地脚螺栓以上各项计算均满足强度条件及稳定性条件地脚螺栓材料的许用应力[σ]bt 查得地脚螺栓直径M56选用28个M56的地脚螺栓,满足要求计理论数值计算开设一个人孔,共设5个.作平台,平台宽B=900mm,单位质量150kg/m3厚度δs=100mm,材料密度ρ2=300kg/m3风压值q0=500N/m2土00mm,高度Hs=5m的圆锥形裙座=0.85,塔体与裙座对接焊接附加量取C=2mm,裙座厚度附加量取C=2mm345235E (Mpa)190000mm,并圆整,还应考虑刚度,稳定性及多种载荷等因素,取筒体,封头和裙座18mm Se16mm1.436m内径Di 1.4mρ钢7850kg/m3kg直边高度h240mmDos2036mm 2.036mdos1436mm 1.436mDim1700mm 1.7mDom1736mm 1.736mmm内表面积m2容积V m32.30050.42022.97610.616640kg/m 0.7m67合计5035.6814916.08425058.80324.61649.22003813.165035.6815240.69429521.21962.711269.9897966.291158.1171189.5315880.92857.77782884456.89413.2682267.40882330.751258.921310.1737380.312315.0412442.7662123.110686.479565.79757536.322588.2521741.151173298703.0388282.39748832.680008200452001051711690.380584第三0.126860.40.52-2截面M E 0-0N*mmM E 1-1N*mm M E 2-2N*mm690q1t123597.934567裙座与塔底焊接处截面1117918597102881197.8必须考虑高振型影响裙座人孔处截面地土且近震, 查得Tg=合影响系数 Cz=h 0q F17.224.231.238.245.2333330.820.840.8610.8650.8750.230.40.590.8211.56 1.71.811.91 1.981.3626921.592941 1.841972.11412.3257576108mm 567800080008200400400400125125121.9512161216121615670.70.70.71.8419722.114084 2.325766906906901.81 1.91 1.988000800082002161216121612783933716.8839413.580517.87σ30-079.45823±Mpa σ31-1127.3443±Mpa Zsm30195321σ32-2132.6032±Mpa各危险截面的σ3计算如下塔顶管线外径d 0件的投影面积∑A=0.5m 2183.8451Mpa 1.2Mpa -139.702Mpa A=0.0021486查得 B=150MpaMpa查得 B=140Mpa168MpaMpa-166.983Mpamm 1864849mm 2取σbmax4.798863Mpamm b/l 1.0437522082.9N*mm/mm取M s =|M x |max 组压2-2满足要求积A b>σmax 组压2-2满足要求满足稳定性条件满足强度条件压2-2拉2-2组合载荷系数 K=满足稳定性条件B0.821495Mpa螺栓Mpa d149.4533mm。
塔设备设计说明书
塔设备设计说明书概述塔设备的设计和选型是建立在对循环吸收工段、精制工段流程的模拟、优化的基础上。
在满足工艺要求的条件下,考虑设备的固定投资费用和操作费用,进行进一步模拟计算、设计和选型。
设计主要包括工艺参数设计、基本参数设计和机械设计。
工艺参数设计对该塔的生产能力、分离效果、物料和能量等操作参数作了设计;基本参数设计部分完成了塔设备的选型、填料的选型和参数设计塔板负荷性能校核等内容的设计;机械工程设计部分设计内容为塔设备的材质壁厚、封头、开口和支座地基等,同时对塔的机械性能做了校核。
我们完成了对全厂2 座塔设备的工艺参数设计、基本参数设计和机械设计,并选取其中最有代表性的二氧化碳吸收塔给出了详细的计算和选型说明。
详细的设备装配图见工艺设计施工图。
烟道气吸收塔设计说明书第1 部分概要烟道气吸收塔是吸收的关键设备之一,其作用是贫液吸收烟道气中的二氧化碳,从而达到使二氧化碳从烟道气中分离的目的。
塔的吸收能力直接影响到二氧化碳的回收率。
吸收塔的设计应符合一下塔设备的基本要求:1生产能力大,即气液处理量大;2分离效率高,即气液相能充分接触;3 适应能力及操作弹性大,即对各种物料性质的适应性强并且在负荷波动时能维持操作稳定,保持较高的分离效率;4流体流动阻力小,即气相通过每层塔板或单位高度填料层的压降小;5 结构简单可靠,材料耗用量少,制造安装容易,以降低设备投资;设计说明书包括工艺参数设计、基本结构设计和机械工程设计三部分。
工艺参数设计对该塔的生产能力、吸收效果、物料和能量等操作参数作了设计;基本参数设计部分完成了塔设备的选型、填料的选型和参数设计、塔板负荷性能校核等内容的设计;机械工程设计部分设计内容为塔设备的材质壁厚、封头、开口和支座地基等,同时对塔的机械性能做了校核。
第2 部分工艺参数设计2.1 生产能力项目年产十万吨二氧化碳,根据物料横算,气体进料量为7119.88kg/h ,液体进料量为294619kg/h ,塔顶物流量为54990.8kg/h ,塔底物流量为309748Kg/h 。
浅谈石油化工塔型设备基础的结构设计及设计要点
浅谈石油化工塔型设备基础的结构设计及设计要点发布时间:2023-02-15T07:02:45.845Z 来源:《建筑实践》2022年19期作者:张弘强[导读] 塔型设备是石油化工行业中的重要组成部分,张弘强中石油吉林化工工程有限公司 132002摘要:塔型设备是石油化工行业中的重要组成部分,它包括设备本体、附属构筑物、基础设备等。
其中,操作平台、扶手、梯子等辅助性构件非常重要。
塔基支承塔式装置的受力可分为垂直荷载和水平荷载两类。
为此,应采取合理的结构设计,以确保基础的坚固、适用、经济合理。
塔型设备基础的设计要充分考虑到风、震的影响,因此,在进行基础结构设计时,必须明确塔型设备承受的荷载。
因此,本文着重介绍了塔形设备的有关基础设施的设计要求及注意事项,以供同行借鉴。
关键词:塔型设备;基础设备;结构设计;设计要求引言:塔型设备是一种比较重要的高层建筑,广泛用于石化工业和其他工业领域。
按照生产流程分为吸收塔、裂解塔、热再生塔、蒸发塔等。
从受力角度来看,该结构的变形比较大,存在着一定的侧向扰动,并以风荷载和地震作用为主。
由于上述两种水平力的作用,使得塔体的基础成为整个塔体的核心。
为了确保塔型设备的安全运营,不仅要确保其设计工作的顺利进行,而且要使其与其设计密切相关,并且与之相协调。
因此,建筑设计人员需要具备充分的相关知识。
1.石油化工塔形设备概述石油化工塔型设备是石化行业中常用的设备,它直接关系到工艺的生产能力、产品质量、能源消耗、原料消耗和环境保护等。
据统计,石油化工企业能耗占工业能耗的比例很高,超过60%的能耗用于蒸馏设备。
化工和石化项目的总投资在总投资的30%-40%左右。
塔内的分离效果,包括产品的纯度、产品的回收、工业生产的能耗。
一般可分为:地面框架塔、底部框架塔、框架塔、排塔。
最常见的是斜塔和斜塔。
塔式设备地基的设计,首先要确定其承载力,塔基上的荷载分为两类:永久荷载:结构自重,各种管道和保温重量,平台,栏杆,梯子的重量;风荷载、平台活荷载、充水荷载等变量的变化荷载。
塔设备机械设计
第五章 塔设备设计 9
课程设计 5.3.3 自振周期 将塔设备看成是顶端自由,底端刚性固定,质量沿高 度连续分布的悬臂梁。 其基本震型的自振周期T1按式(5-4)计算:
T1 90 .33 H mo H 10 3 E e Di
(s)
如校核不能满足条件时,须重新设定有 效厚度,重复上述计算,直至满足要求。
第五章 塔设备设计 20
课程设计
5.3.9 塔设备压力试验时的应力校核 5.3.9.1 圆筒应力 对选定的各计算截面按式(5-33)、式 (5-34)、式(5-35)和式(5-36)进行各项应力 计算: 试验压力引起的周向应力:
第五章 塔设备设计 7
5.3.1 塔设备的载荷分析 塔设备在操作时主要承受以下几种载荷作 用: 1、操作压力 2、质量载荷 3、地震载荷 4、风载荷 5、偏心载荷 (各种载荷示意图及符号见图5-3)
第五章 塔设备设计 8
课程设计
(塔设备设计计算常用符号及说明见表5-3)
课程设计
5.3.2 质量载荷 塔设备的操作质量mo(Kg) mo=mo1+mo2+mo3+mo4+mo5+ma+me 塔设备的最大质量mmax mmax =mo1+mo2+mo3+mo4+mw+ma+me 塔设备的最小质量mmin mmin =mo1+0.2mo2+mo3+mo4+ma+me
5.4.1 板式塔的总体结构 其总体结构可以分为五大部分: ①塔体与裙座 ②塔盘结构 ③除沫装置 ④设备接管 ⑤塔附件(扶梯、平台、吊柱、保温圈)
塔设备机械设计讲解
第一章绪论1.1塔设备概述塔设备是石油、化工、轻工等各工业生产中仅次与换热设备的常见设备。
在上述各工业生产过程中,常常需要将原料中间产物或粗产品中的各个组成部分(称为组分)分离出来作为产品或作为进一步生产的精制原料,如石油的分离、粗酒精的提纯等。
这些生产过程称为物质分离过程或物质传递过程,有时还伴有传热和化学反应过程。
传质过程是化学工程中一个重要的基本过程,通常采用蒸馏、吸收、萃取。
以及吸附、离子交换、干燥等方法。
相对应的设备又可称为蒸馏塔、吸收塔、萃取塔等。
在塔设备中所进行的工艺过程虽然各不相同,但从传质的必要条件看,都要求在塔内有足够的时间和足够的空间进行接触,同时为提高传质效果,必须使物料的接触尽可能的密切,接触面积尽可能大。
为此常在塔内设置各种结构形式的内件,以把气体和液体物料分散成许多细小的气泡和液滴。
根据塔内的内件的不同,可将塔设备分为填料塔和板式塔。
在板式塔中,塔内装有一定数量的塔盘,气体自塔底向上以鼓泡喷射的形式穿过塔盘上的液层,使两相密切接触,进行传质。
两相的组分浓度沿塔高呈阶梯式变化。
不论是填料塔还是板式塔,从设备设计角度看,其基本结构可以概括为:(1)塔体,包括圆筒、端盖和联接法兰等;(2)内件,指塔盘或填料及其支承装置;(3)支座,一般为裙式支座;(4)附件,包括人孔、进出料接管、各类仪表接管、液体和气体的分配装置,以及塔外的扶梯、平台、保温层等。
塔体是塔设备的外壳。
常见的塔体是由等直径、等壁厚的圆筒及上、下椭圆形封头所组成。
随着装置的大型化,为了节省材料,也有用不等直径、不等壁厚的塔体。
塔体除应满足工艺条件下的强度要求外,还应校核风力、地震、偏心等载荷作用下的强度和刚度,以及水压试验、吊装、运输、开停车情况下的强度和刚度。
另外对塔体安装的不垂直度和弯曲度也有一定的要求。
支座是塔体的支承并与基础连接的部分,一般采用裙座。
其高度视附属设备(如再沸器、泵等)及管道布置而定。
它承受各种情况下的全塔重量,以及风力、地震等载荷,因此,应有足够的强度和刚度。
塔设备的机械设计
b. 塔盘板之间下可拆的螺纹连接。
塔设备的机械设计
c. 塔盘板间双面可拆的螺纹连接。
塔设备的机械设计
(2)螺纹卡 板紧固件
塔设备的机械设计
(3)楔形紧固件 龙门楔结构和楔卡结构
塔设备的机械设计
二、塔盘的机械计算
需要进行强度校核和挠度计算,以满足其强度和刚度 要求。
(一)塔盘的设计载荷
fmax35q8lE44 If 塔设备的机械设计
塔设备的机械设计
三、塔盘构件的最小厚度
为保证塔盘在制造、安装过程中的强度和刚度, 规定了塔盘构件的最小厚度。
四、塔节简介
塔设备的机械设计
第三节 填料塔结构设计
一、液体分布装பைடு நூலகம் 二.液体收集及再分布装置 三、填料支承装置 四、填料压板和床层限制板
塔设备的机械设计
支承圈和支承板的尺寸参见表。
塔设备的机械设计
塔盘紧固件
是连接构件,用于塔盘之间的连接,塔盘板与支 承圈、支承板、受液盘或支承梁,以及降液板与支持 板之间的连接。
常用紧固件有螺纹、螺纹卡板 楔卡等结构。
塔设备的机械设计
(1)螺纹紧固件
a.塔盘之间上可拆的螺纹连接。
(a)为槽式塔板之间可拆螺纹结构。 (b)为自身梁式塔盘板之间上可拆螺纹连接结构。
塔径D=400 ~ 600mm, δ =3~4mm 塔径D=700 ~ 1200mm, δ =4~6mm 分布器定位块外缘与塔壁的间隙:8~12mm 塔径〉600mm,分布盘常设计成分块式结构,一般分 2~3块
塔设备的机械设计
液体通过分布盘上方的中心管加入盘内的,中心管口距 围环上缘~200mm。
塔设备的机械设计
3.降液管结构
塔设备设计
24
3.7 最大弯矩
塔设备任意计算截面 I-I 处的最大弯矩按下式计算:
I− M maxI I ⎧ MW− I + M e ⎪ = ⎨ I−I I M E + 0.25 MW− I + M e ⎪ ⎩
取其中较大值
塔设备底部截面 0-0 处的最大弯矩按下式计算:
0− 0 M max 0 ⎧ MW− 0 + M e ⎪ = ⎨ 0− 0 0− 0 ⎪ M E + 0.25 MW + M e ⎩
取其中较小值
FVh−h —— 仅在最大弯矩为地震弯矩参与组合时计入。
h− h h 0.3 MW− h + M e m max g ⎧ KB + ≤⎨ Z sm Asm ⎩ 0.9σ s
取其中较小值
Asb ——h-h截面处裙座的截面积,mm2 Z sb ——h-h截面处裙座壳截面系数,mm3
33
3.11 地脚螺栓座(基础环设计)
35
3.11 地脚螺栓座(地脚螺栓)
δ b ,max ——混凝土基础上的最大压力, MPa
0− 0 ⎧ M max m0 ⋅ g ⎪ Z + A ⎪ b b =⎨ 0 0.3 MW− 0 + M e mmax ⋅ g ⎪ + ⎪ Zb Ab ⎩
δ b ,max
取其中较大值
36
3.12 裙座与塔壳焊缝(搭接焊缝)
M
0− 0 W
l3 ⎞ l1 l2 ⎞ ⎛ ⎛ = P1 + P2 ⎜ l1 + ⎟ + P3 ⎜ l1 + l2 + ⎟ + LL 2 2⎠ 2⎠ ⎝ ⎝
23
3.6 偏心弯矩
塔设备的机械设计课程设计
塔设备的机械设计课程设计一、课程目标知识目标:1. 让学生掌握塔设备的基本结构及其在化工生产中的应用,理解塔设备的设计原理和关键参数;2. 使学生了解塔设备机械设计的相关标准、规范和要求,掌握塔设备的设计流程;3. 引导学生掌握塔设备力学分析的基本方法,理解其强度、稳定性和疲劳寿命等方面的评价标准。
技能目标:1. 培养学生运用所学知识进行塔设备结构设计和计算的能力;2. 提高学生解决实际工程问题的能力,能够根据设计要求完成塔设备的机械设计;3. 培养学生查阅相关资料、运用专业软件进行塔设备设计和分析的能力。
情感态度价值观目标:1. 激发学生对化工设备机械设计的兴趣,培养其创新意识和实践能力;2. 培养学生严谨的科学态度和良好的团队协作精神,使其在工程设计中具备较强的责任感和使命感;3. 引导学生关注化工设备在实际生产中的应用,认识到所学知识在工程实践中的价值。
本课程针对高年级本科或研究生阶段的学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果。
通过本课程的学习,学生能够掌握塔设备机械设计的基本原理和方法,具备实际工程问题的分析和解决能力,为未来从事相关工作奠定坚实基础。
二、教学内容1. 塔设备概述:介绍塔设备的基本概念、分类及其在化工生产中的重要作用,对应教材第一章。
- 塔设备结构及工作原理- 塔设备的分类及特点2. 塔设备设计原理:讲解塔设备设计的基本原理、关键参数和设计要求,对应教材第二章。
- 塔设备设计的基本原理- 塔设备设计的关键参数- 塔设备设计的相关规范和要求3. 塔设备结构设计:学习塔设备的结构设计方法,包括力学分析、强度计算等,对应教材第三章。
- 塔设备力学分析- 塔设备强度计算- 塔设备稳定性分析4. 塔设备设计流程与实践:通过案例分析,使学生掌握塔设备设计的实际操作流程,对应教材第四章。
- 塔设备设计流程- 设计软件的应用- 案例分析与实践5. 塔设备设计评价与优化:介绍塔设备设计评价标准及优化方法,提高学生的工程设计能力,对应教材第五章。
汽提塔机械设计
汽提塔机械设计摘要汽提塔根据GB150-1998《钢制压力容器》和JB4710-2005《钢制塔式容器》标准设计。
本设计内容包括说明部分和计算部分。
塔设备是化工,炼油,医药等各工业生产中重要的传质传热设备。
它的作用是实现气-液相或液-液相之间的充分接触,从而达到相际间进行传质及传热的目的。
塔设备广泛用于蒸馏、吸收、气提、萃取等单元操作中。
本设计中,说明部分主要包括塔设备的作用,分类,构造,以及汽提塔总体结构的说明,设备所用材料及结构的选择,制造工艺说明,设备的检验,安装和运输。
计算部分主要包括塔体壁厚计算,水压试验校核,开孔补强,补强圈设计等;质量载荷,地震载荷,风载荷的计算,塔体强度和轴向稳定性验算,裙座设计以及筒体与裙座对接焊缝的验算。
汽提塔属于压力容器,主要用于汽提出油气中的轻组分,同时把轻组分汽提到分馏塔中,提高汽油产率。
此次设计着重结构设计与计算,通过计算与校核得到可行的数据,以这些数据作为尺寸依据从而绘制了装配图和零部件图。
整个设计由翻译,说明书和图纸组成。
关键词:汽提塔,设计计算,强度校核Stripper mechanical designAbstractThe stripping tower is based on GB150—1998‘steel pressure vessel’and JB4710—2005‘steel tower vessel’.This design consists of two parts: declarations and calculations.Tower is an important mass transfer and heat transfer equipment in chemical industry, refining oil, pharmaceutical industry and other industrial production. Its role is to realize the gas phase or liquid phase contact fully, so as to achieve the mass transfer and heat transfer purpose between phases. Tower is widely used in distillation, absorption, gas extraction, extraction and unit operation.In this design, declarations part mainly includes the function, classification and structure of the tower equipment; general structure instruction of stripper tower, materials and structure choice of the equipment , manufacturing process description, the inspection, installation and transportation of the equipment.The computation part mainly includes the thickness calculation of the tower body wall, hydraulic pressure test, opening reinforcement, circle strengthen design; calculations of quality load, earthquake load and the wind load; tower body strength and axial stability checking, skirt holder and butt weld checking.The stripper belongs to pressure vessel, mainly used for stripping the light component of oil, at the same time the light component was stripped to the fractionating tower, improves the yield of gas. The design focuses on the structure design and calculation, through calculation and checking get feasible data, use these data as a basisto draw the assembly and parts diagram. The whole design consists of translation, specifications and graph papers.Keywords: stripping tower, design calculation, strength check目录1说明部分 (1)1.1设计任务 (1)1.2设计思想 (1)1.3设计特点 (2)1.4主要设计参数的确定和说明 (2)1.4.1 设计压力 (2)1.4.2 设计温度 (2)1.4.3 焊缝系数 (3)1.4.4 壁厚附加量 (3)1.4.5 许用应力 (3)1.5材料的选择和论证 (4)1.5.1 考虑机械性能对设备材料进行选择论证 (4)1.5.2 考虑腐蚀方面对设备材料进行选择论证 (4)1.5.3 各主要部件材料的选择与论证 (5)1.6结构型式的选择与论证 (6)1.6.1 塔盘结构型式的选择与论证 (8)1.6.2 封头结构型式的选择与论证 (11)1.6.3 裙座结构形式的选择与论证 (13)1.6.4 法兰的结构型式选择与论证 (15)1.6.5 平台梯子结构形式的确定 (19)1.7制造工艺 (20)1.7.1 塔体制造工艺线 (20)1.7.2 焊接工艺 (21)1.7.3 质量检验技术要求 (22)1.8汽提塔的结构简图 (23)2计算部分 (24)2.1筒体封头壁厚的计算 (24)2.1.1筒体的壁厚计算 (24)2.1.2 封头的壁厚计算 (24)2.2水压试验应力校核 (25)2.3塔体轴向稳定与强度校核计算 (26)2.3.1 载荷分析 (26)2.3.2 工况及危险截面分析 (27)2.4质量载荷计算 (28)2.5塔的自振周期计算 (30)2.6地震弯距和地震载荷的计算 (31)2.7风载荷和风弯距计算 (34)2.7.1 各塔段所承受的风力计算 (34)2.7.2 风弯距的计算 (36)2.8弯矩的计算 (36)2.9圆筒轴向应力校核 (37)2.9.1 圆筒轴向应力 (37)2.9.2 圆筒强度稳定校合 (37)2.9.3 圆筒强度稳定校核 (37)2.10裙座强度及稳定性校核 (39)2.11裙座与塔壳连接焊缝验算 (40)2.12垫脚螺栓的计算 (41)2.13法兰强度校核 (43)2.13.1 常一油入口法兰的选定 (43)2.13.2 法兰系数 (43)2.13.3 对上述设计条件下的法兰进行强度校核 (44)2.14开孔补强计算 (48)2.14.1 塔顶常—气相出口 (48)2.14.2 筒体人孔处接管的补强 (51)3 结论 (55)参考文献 (56)谢辞 (57)1 说明部分1.1 设计任务汽提塔的主要设计参数:设计压力:0.82MPa设计温度:190℃介质:汽油、油气内径:1200mm塔高:26302mm保温层厚:110mm(微孔硅酸钙)地震烈度:7度场地类别:Ⅱ安装地点:抚顺1.2 设计思想(1)根据GB150-98《钢制压力容器》与JB4710-98《钢制塔式容器》等国家标准为基础进行设计。
课程思政案例
课程思政案例塔设备的机械设计——职业素养之工匠精神教育一、教学目标1、课程教学目标:了解塔设备机械设计的基本知识。
2、思政育人目标:(1)设计思路,通过塔设备机械设计知识的讲解,告诫学生要全面的分析问题,自然地达到思政育人的效果;(2)思政育人目标:培养学生辩证思维。
(3)育人主题:科学精神,工匠精神,价值主题二、教学实施过程1、引出课堂知识——案例分析2007年9月13日,由张家港市化工机械有限公司为大唐国际年产46万吨煤基烯烃项目制造的“亚洲第一塔”——C3分离塔在内蒙古锡林格勒建设现场成功吊装。
该C3分离塔以其塔身主体板厚(68毫米),直径(8米)、高度(100。
115米)、重量(总重2460吨),不仅创造了多项国内第一,在亚洲同行业内也属首创,被誉为“亚洲第一塔”。
这是我国具有完全自主知识产权的、大规模塔设备的应用,在塔制造领域,我们可以自豪地说“中国制造”。
这是塔设备设计人员和机械设计人员设计出来的。
通过该案例的引入,激发学生的民族自豪感。
另外也启示学生,要培养工匠精神。
图6亚洲第一塔2、塔设备的机械设计通过引入电影《我和我的祖国》,展现国家成就以及大国工匠精神,作为新时代的大学生更应该注重培养这样的精神。
塔设备,其工作条件差,在运行和使用中损坏的可能性比较大。
因此对它的设计一定要合理,并且要定期维护,作为学习化学工程与工艺的学生,设计符合工艺要求的化工容器更需要这种精神。
以此激发注重学生培养敬业精神。
塔设备的设计包含塔体和裙座的设计,要设计的内容包含厚度计算,压力计算,质量载荷计算,应力校核等多个方面,是前面学过所有的知识的总结。
因此,需要一定的知识储备才可以设计出符合要求的塔设备。
知识的储备不是一天两天就能储备的,而是日积月累的过程。
如果没有丰富的知识,坚实的基础,也只能是竹篮打水一场空,更别谈为建设国家出力。
另外知识也代表着财富,对于未来,谁掌握知识,谁就能立足社会。
以此告诫学生注重学习的积累,才能为建设祖国贡献力量,才能实现自己的初心和使命。
塔吊设计的理论方案
塔吊设计的理论方案塔式起重机,俗称塔吊,是一种专业用于起重、装卸和搬运重物的机械设备。
在现代建筑和工程领域,塔吊广泛应用于大型工程项目中,为高空作业提供了强大的起重能力和灵活性。
本文将探讨塔吊设计的理论方案,包括设计原则、结构要素、选型依据以及工作原理等方面内容。
一、设计原则塔吊设计的理论方案需要遵循以下几个原则:1. 安全性原则:塔吊是高空起重设备,安全性是设计的首要目标。
塔吊的设计应考虑到各种工况和荷载情况下的稳定性和完整性,确保设备在工作中不会发生意外事故。
2. 结构合理性原则:塔吊的结构应当合理布局,并且各个部分之间应有良好的结构协调性。
合理的结构设计可以提高塔吊的整体性能,并且方便进行安装、拆卸和维修。
3. 经济性原则:设计的理论方案需要考虑到塔吊的性能和造价之间的平衡。
设计师应根据具体项目的需求,选择合适的材料和工艺,以实现在保证质量的前提下尽可能降低成本。
二、结构要素塔吊的设计包括以下几个主要结构要素:1. 塔身:塔身是塔吊的主要支撑部分,通常由多节钢管段组成,通过螺栓连接。
塔身的高度决定了塔吊的起重高度,需根据具体工程要求来确定。
2. 回转机构:回转机构使得塔吊能够在水平方向上进行旋转,以满足不同工作区域的需求。
回转机构包括回转轴、回转机构传动装置等。
3. 起升机构:起升机构是塔吊的核心组成部分,负责提升和降低载荷。
常见的起升机构包括液压起升机构和钢丝绳起升机构。
4. 平衡重物:平衡重物是为了保持塔吊的平衡,减小偏心力而设置的。
通常通过增加塔吊顶部的反重物或在底部设置对称的平衡臂来实现。
三、选型依据塔吊的选型需要根据具体的工程要求和工况条件来进行选择。
以下是选型时需要考虑的几个主要依据:1. 预计起重能力:根据工程项目的需求,预估所需的最大起重能力,以决定选择适合的塔吊型号。
2. 工作半径:根据工作现场的布置和需求,确定所需的工作半径范围,选取对应塔吊的臂长。
3. 受力状况:考虑工作现场的风速、地震等因素,确定塔吊在受力状态下的工作安全范围。