2018年高考数学总复习专题02函数分项练习理

合集下载

2018年高三数学(理)专题02函数(第01期)Word版含解析

2018年高三数学(理)专题02函数(第01期)Word版含解析

x 12】 函数 y=sin x ,x∈( - π ,0) ∪(0 ,
π ) 的图象可能是下列中的
(
)
【答案】 C
考点:函数的图象与性质.
【方法点睛】本题考查函数的图象与性质,属于中档题;已知函数的解析式,判定函数图象
的形状时,一般通过解析式研究函数的定义域、单调性、值域、对称性、特殊值,再结合图
象进行验证排除 .
的大小关系是(

2 0.1 , b
5 lg , c
2
9 log 3 ,则 a,b,c
10
A. b c a B . a c b C . b a c D . a b c
【答案】 D
【解析】
试题分析:显然 a
2 0.1 1 , 0
b
5 lg
1, c
9 log 3
0 , 所以 a b c 。故选 D。
2
10
( 1)利用“若奇函数在 x 0 处有定义,则 f (0) 0 ”求得 a 值;
利用复合函数“同增异减”的规律判定复合函数的单调性
.
9. 【黑龙江牡丹江市一中 2016 届高三 10 月月考 4】设 a 定义域为 R且为奇函数的所有 a 的值为 ( )
{ 1,1, 1 ,3} ,则使函数 y 2
xa 的
A.1,3
B.
1 ,1
C.
1,3 D.
1,1,3
【答案】 A
【解析】 试题分析:因函数定义域为 R,所以 a 等于 1 或 3。又因函数为奇函数,所以 a 等于 1 或 3.
故选 A。
考点:幂函数的定义域及奇偶性。
10. 【山东潍坊一中 2016 届高三 10 月考 3】函数 f (x)

2018届高考数学理科二轮总复习高考23题逐题特训二函数

2018届高考数学理科二轮总复习高考23题逐题特训二函数

(二)函数与导数(2)1.设函数f (x )=2(a +1)x (a ∈R ),g (x )=ln x +bx (b ∈R ),直线y =x +1是曲线y =f (x )的一条切线.(1)求a 的值;(2)若函数y =f (x )-g (x )有两个极值点x 1,x 2.①试求b 的取值范围;②证明:g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 解 (1)设直线y =x +1与函数y =f (x )的图象相切于点(x 0,y 0),则y 0=x 0+1,y 0=2(a +1)x 0,a +1x 0=1,解得a =0. (2)记h (x )=f (x )-g (x ),则h (x )=2x -ln x -bx .①函数y =f (x )-g (x )有两个极值点的必要条件是h ′(x )有两个正零点.h ′(x )=1x -1x-b =-bx +x -1x , 令h ′(x )=0,得bx -x +1=0(x >0).令x =t ,则t >0.问题转化为bt 2-t +1=0有两个不等的正实根t 1,t 2,等价于⎩⎪⎨⎪⎧ Δ=1-4b >0,t 1t 2=1b >0,t 1+t 2=1b >0,解得0<b <14. 当0<b <14时,设h ′(x )=0的两正根为x 1,x 2,且x 1<x 2, 则h ′(x )=-bx +x -1x =-b (x -x 1)(x -x 2)x =-b (x -x 1)(x -x 2)x (x +x 1)(x +x 2). 当x ∈(0,x 1)时,h ′(x )<0;当x ∈(x 1,x 2)时,h ′(x )>0;当x ∈(x 2,+∞)时,h ′(x )<0. 所以x 1,x 2是h (x )=f (x )-g (x )的极值点,∴b 的取值范围是⎝⎛⎭⎫0,14. ②由①知x 1x 2=x 1+x 2=1b.可得g (x 1)+g (x 2)=-2ln b +1b -2,f (x 1)+f (x 2)=2b, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)=12-b ln b -b . 记k (b )=12-b ln b -b ⎝⎛⎭⎫0<b <14, 则k ′(b )=-ln b -2,令k ′(b )=0,得b =1e 2∈⎝⎛⎭⎫0,14, 且当b ∈⎝⎛⎭⎫0,1e 2时,k ′(b )>0,k (b )单调递增; 当b ∈⎝⎛⎭⎫1e 2,14时,k ′(b )<0,k (b )单调递减,且当b =1e 2时,k (b )取最大值1e 2+12, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 2.设函数f (x )=2ax +b x+c ln x . (1)当b =0,c =1时,讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处的切线为y =3x +3a -6且函数f (x )有两个极值点x 1,x 2,x 1<x 2. ①求a 的取值范围;②求f (x 2)的取值范围.解 (1)f (x )=2ax +b x+c ln x ,x >0, f ′(x )=2a -b x 2+c x =2ax 2+cx -b x 2. 当b =0,c =1时,f ′(x )=2ax +1x. 当a ≥0时,由x >0,得f ′(x )=2ax +1x>0恒成立, 所以函数f (x )在(0,+∞)上单调递增.当a <0时,令f ′(x )=2ax +1x >0,解得x <-12a; 令f ′(x )=2ax +1x <0,解得x >-12a, 所以,函数f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. 综上所述,①当a ≥0时,函数f (x )在(0,+∞)上单调递增;②当a <0时,函数f (x )在⎝⎛⎭⎫0,-12a上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)①函数f (x )在x =1处的切线为y =3x +3a -6, 所以f (1)=2a +b =3a -3,f ′(1)=2a +c -b =3, 所以b =a -3,c =-a ,f ′(x )=2a -b x 2+c x =2ax 2-ax +3-a x 2, 函数f (x )有两个极值点x 1,x 2,x 1<x 2,则方程2ax 2-ax +3-a =0有两个大于0的解, ⎩⎨⎧ Δ=(-a )2-8a (3-a )>0,a 2a >0,3-a 2a >0,解得83<a <3. 所以a 的取值范围是⎝⎛⎭⎫83,3.②2ax 22-ax 2+3-a =0,x 2=a +9a 2-24a 4a =14⎝⎛⎭⎫1+ 9-24a , 由83<a <3,得x 2∈⎝⎛⎭⎫14,12, 由2ax 22-ax 2+3-a =0,得a =-32x 22-x 2-1. f (x 2)=2ax 2+a -3x 2-a ln x 2 =a ⎝⎛⎭⎫2x 2+1x 2-ln x 2-3x 2=-32x 2+1x 2-ln x 22x 22-x 2-1-3x 2. 设φ(t )=-32t +1t -ln t 2t 2-t -1-3t ,t ∈⎝⎛⎭⎫14,12, φ′(t )=-3⎝⎛⎭⎫2-1t 2-1t (2t 2-t -1)-⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t2 =-31t 2(2t 2-t -1)2+3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t 2=3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2. 当t ∈⎝⎛⎭⎫14,12时,2t +1t-ln t >0,4t -1>0,φ′(t )>0,所以φ(t )在⎝⎛⎭⎫14,12上单调递增,φ(t )∈⎝⎛⎭⎫163ln 2,3+3ln 2, 所以f (x 2)的取值范围是⎝⎛⎭⎫163ln 2,3+3ln 2.。

2018年高考数学-函数含答案

2018年高考数学-函数含答案

2018年高考复习专题-函数一.函数1、函数的概念:(1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则(3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2、定义域:(1)定义域定义:函数)(x f 的自变量x 的取值范围。

(2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。

(3)确定函数定义域的常见方法:①若)(x f 是整式,则定义域为全体实数②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。

③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数例1. 求函数 ()2143432-+--=x x xy 的定义域。

例2. 求函数()02112++-=x x y 的定义域。

④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、值域 :(1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。

(2)确定值域的原则:先求定义域 (3)常见基本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(4)确定函数值域的常见方法:①直接法:从自变量x 的范围出发,推出()y f x =的取值范围。

高考数学命题热点名师解密:专题(02)函数问题的解题规律(文)(含答案)

高考数学命题热点名师解密:专题(02)函数问题的解题规律(文)(含答案)

专题02 函数问题的解题规律一、函数问题的解题规律解题技巧及注意事项1.定义域陷阱2.抽象函数的隐含条件陷阱3.定义域和值域为全体实数陷阱4.还原后新参数范围陷阱5.参数范围漏解陷阱6.函数求和中的倒序求和问题7.分段函数问题8.函数的解析式求法9.恒成立问题求参数范围问题10.任意存在问题二.知识点【学习目标】1.了解映射的概念,了解构成函数的要素,会求一些简单函数的定义域、值域及函数解析式;2.在实际情境中,会根据不同的需要选择适当的方法(图象法、列表法、解析法)表示函数;3.了解简单的分段函数,并能简单应用;4.掌握求函数定义域及解析式的基本方法.【知识要点】1.函数的概念设A,B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:,其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然{f(x)|x∈A}⊆B.2.映射的概念设A,B是两个集合,如果按照某种对应关系f,对于集合A中的任意一个元素,在集合B中都有唯一确定的元素和它对应,那么这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A 到集合B的映射.3.函数的特点①函数是一种特殊的映射,它是由一个集合到另一个集合的映射;②函数包括定义域A、值域B和对应法则f,简称函数的三要素;③关键是对应法则.4.函数的表示法函数的表示法:图示法、解析法.5.判断两个函数为同一个函数的方法两个函数的定义域和对应法则完全相同(当值域未指明时),则这两个函数相等.6.分段函数若函数在定义域的不同子集上对应法则不同,可用几个式子表示函数,这种形式的函数叫分段函数.注意:不要把分段函数误认为是多个函数,它是一个整体,分段处理后,最后写成一个函数表达式.三.典例分析及变式训练(一)定义域陷阱例1. 【曲靖一中2019模拟】已知,若函数在(﹣3,﹣2)上为减函数,且函数=在上有最大值,则的取值范围为()A. B. C. D.【答案】A【分析】由在上为减函数,可得;由在上有最大值,可得,综上可得结果,.【解析】在上为减函数,,且在上恒成立,,,又在上有最大值,且在上单调递增,在上单调递减,且,,解得,综上所述,,故选A.【点评】本题主要考查对数函数的单调性、复合函数的单调性、分段函数的单调性,以及利用单调性求函数最值,意在考查对基础知识掌握的熟练程度,考查综合应用所学知识解答问题的能力,属于难题. 判断复合函数单调性要注意把握两点:一是要同时考虑两个函数的的定义域;二是同时考虑两个函数的单调性,正确理解“同增异减”的含义(增增增,减减增,增减减,减增减).故答案为:D.练习2.已知函数则__________.【答案】1008【解析】分析:由关系,可类比等差数列一次类推求值即可.详解:函数,则,故答案为:1008.点睛:可类比“等差数列”或函数周期性来处理.(七)分段函数问题例7.【河北省廊坊市2019届高三上学期第三次联考】若函数在上是单调函数,且存在负的零点,则的取值范围是()A. B. C. D.【答案】B【解析】通过函数的单调性及存在负的零点,列出不等式,化简即可.【详解】当时,,所以函数在上只能是单调递增函数,又存在负的零点,而当时,f(0)=1+a,当时,f(0)=3a-2,0<3a-21+a,解得.故选B.【点评】本题考查分段函数的应用,考查分类讨论思想,转化思想以及计算能力.练习1.已知函数,则f(1)- f(9)=()A.﹣1 B.﹣2 C. 6 D. 7【答案】A【解析】利用分段函数,分别求出和的值,然后作差得到结果.【详解】依题意得,,所以,故选.【点评】本小题主要考查利用分段函数求函数值,只需要将自变量代入对应的函数段,来求得相应的函数值.属于基础题.练习2.已知,那么等于( )A. 2 B. 3 C. 4 D. 5【答案】A【解析】将逐步化为,再利用分段函数第一段求解.【详解】由分段函数第二段解析式可知,,继而,由分段函数第一段解析式,,故选A.【点睛】本题考查分段函数求函数值,要确定好自变量的取值范围,再代入相应的解析式求得对应的函数值,分段函数分段处理,这是研究分段函数图象和性质最核心的理念.(八)函数的解析式求法例8. (1)已f ()=,求f(x)的解析式.(2).已知y =f(x)是一次函数,且有f [f(x)]=9x+8,求此一次函数的解析式【答案】(1);(2).【解析】(1)利用换元法即可求解;(2)已知函数是一次函数,可设函数解析式为f(x)=ax+b,再利用待定系数法列出关于a、b的方程组即可求解出a、b的值.【详解】(1)设(x≠0且x≠1)(2)设f(x)=ax+b,则f[f(x)]=af(x)+b=a(ax+b)+b=a2x+ab+b=9x+8或所以函数的解析式为.【点睛】本题考查函数解析式的求解,解题中应用了换元法和待定系数法,待定系数法的主要思想是构造方程(组),对运算能力要求相对较高,属于中档题.练习1.(1) 已知是一次函数,且满足求 ;(2) 判断函数的奇偶性.【答案】(1);(2)见解析.【解析】(1)用待定系数法求一次函数解析式.(2)结合分段函数的性质,分别判断各定义域区间内, f(-x)与f(x)的关系,即可判断函数奇偶性.【点评】本题考查了待定系数法求一次函数,考查了函数的奇偶性的判断,定义域关于原点对称是函数具有奇偶性的前提.再结合分段函数的分段区间,以及对应的解析式,判断关系式f(-x)=f(x)或f(-x)=-f(x)是否成立.练习2.已知函数对一切实数x,y都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.(1)求f(0)的值;(2)求f(x)的解析式;(3)已知a,b∈R,当时,求不等式f(x)+3<2x+a恒成立的a的集合A.【答案】(1)f(0)=﹣2(2)f(x)=x2+x﹣2(3)【解析】(1)令,可得,再根据可得;(2)在条件中的等式中,令,可得,再根据可得所求的解析式;(3)由条件可得当时不等式x2﹣x+1<a恒成立,根据二次函数的知识求出函数上的值域即可得到的范围.【详解】(1)根据题意,在f(x+y)﹣f(y)=x(x+2y+1)中,令x=﹣1,y=1,可得,又,∴.(2)在f(x+y)﹣f(y)=x(x+2y+1)中,令y=0,则f(x)﹣f(0)=x(x+1)又,∴.(3)不等式f(x)+3<2x+a等价于x2+x﹣2+3<2x+a,即x2﹣x+1<a.由当时不等式f(x)+3<2x+a恒成立,可得当时不等式x2﹣x+1<a恒成立.设,则在上单调递减,∴,∴.∴.【点评】(1)解决抽象函数(解析式未知的函数)问题的原则有两个:一是合理运用赋值的方法;二是解题时要运用条件中所给的函数的性质.(2)解答恒成立问题时,一般采用分离参数的方法,将问题转化为求具体函数最值的方法求解,若函数的最值不存在,则可用函数值域的端点值来代替.练习3.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A. (A)B. (B)C. (C)D. (D)【答案】B【解析】当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2-x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2-x,∴EM=x-(2-x)=2x-2,∴S△ENM=(2x-2)2=2(x-1)2,∴y=x2-2(x-1)2=-x2+4x-2=-(x-2)2+2,∴y=.故选B.练习4.如图,李老师早晨出门锻炼,一段时间内沿⊙M的半圆形M→A→C→B→M路径匀速慢跑,那么李老师离出发点M的距离与时间x之间的函数关系的大致图象是()A. B. C. D.【答案】D【解析】由题意,得从M到A距离在增加,由A经B到C与M的距离都是半径,由B到M距离逐渐减少,故选D.(九)恒成立问题求参数范围问题例9. 【湖北省武汉市第六中学2018-2019学年调研数学试题】若函数的定义域为,值域为,则的取值范围A. B. C. D.【答案】C【解析】由函数的定义域、值域结合函数单调性求出的取值范围【详解】由函数的对称轴为且函数图像开口向上则函数在上单调递减,在上单调递增,当且仅当处取得最小值由值域可知,故在上函数单调递增,在处取得最大值故,解得综上所述,故选【点睛】本题在知道函数的定义域与值域后求参量的取值范围,在解答题目时结合函数的单调性判定取值域的情况。

天津地区2018版高考数学总复习专题2函数分项练习含解析理

天津地区2018版高考数学总复习专题2函数分项练习含解析理

专题02 函数一.基础题组1.【2005天津,理9】设()1f x -是函数()()()112xx f x a a a -=->的反函数,则使()11f x ->成立的的取值范围为( )A 、21(,)2a a -+∞ B 、21(,)2a a --∞ C 、21(,)2a a a- D 、(,)a +∞ 【答案】A【解析】1a >时,()f x 单调增函数,所以()()()()()21111112a f x f fx f x f a--->⇔>⇔>=。

本题答案选A12.【2005天津,理10】若函数()()()3log 0,1a f x x ax a a =->≠在区间1(,0)2-内单调递增,则的取值范围是( )A 、1[,1)4B 、3[,1)4C 、9(,)4+∞ D 、9(1,)4【答案】B【解析】记()3g x x ax =-,则()2'3g x x a =-排除A 本题答案选B3.【2005天津,理16】设()f x 是定义在R 上的奇函数,且()y f x =的图象关于直线12x =对称,则()()()()()12345f f f f f ++++=__________。

【答案】0【解析】()()00f f -=-得()00f = 假设()0f n =因为点(n -,0)和点(1,0n +)关于12x =对称,所以()()()10f n f n f n +=-=-= 因此,对一切正整数都有:()0f n =从而:()()()()()123450f f f f f ++++= 本题答案填写:04.【2007天津,理5】函数)2log 2(0)y x =+>的反函数是( )A.142(2)x x y x +=->B.142(1)x x y x +=->C.242(2)x x y x +=->D.242(1)x x y x +=->【答案】C 【解析】原函数过(4,1)-故反函数过(1,4)-从而排除A 、B 、D ,故选C5.【2007天津,理7】在R 上定义的函数()f x 是偶函数,且()f x (2)f x =-.若()f x 在区间[1,2]上是减函数,则()f x ( ) A.在区间[2,1]--上是增函数,在区间[3,4]上是减函数 B.在区间[2,1]--上是增函数,在区间[3,4]上是减函数 C.在区间[2,1]--上是减函数,在区间[3,4]上是增函数D.在区间[2,1]--上是减函数,在区间[3,4]上是增函数【答案】B 【解析】6.【2007天津,理9】设,,a b c 均为正数,且11222112log ,log ,log ,22b caa b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则( )A.a b c <<B.c b a <<C.c a b <<D.b a c <<【答案】A 【解析】由122log a a =可知0a >21a ⇒>121log 102a a ⇒>⇒<<,由121log 2bb ⎛⎫= ⎪⎝⎭可知0b >⇒120log 1b <<112b ⇒<<,由21log 2cc ⎛⎫= ⎪⎝⎭可知0c >20log 112c c ⇒<<⇒<<,从而a b c <<.故选A7.【2008天津,理7】设函数()()1011<≤-=x xx f 的反函数为()x f 1-,则(A) ()x f 1-在其定义域上是增函数且最大值为1 (B) ()x f 1-在其定义域上是减函数且最小值为0 (C) ()x f 1-在其定义域上是减函数且最大值为1 (D) ()x f 1-在其定义域上是增函数且最小值为0【答案】D8.【2008天津,理9】已知函数()x f 是R 上的偶函数,且在区间[)+∞,0上是增函数.令⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan,75cos,72sinπππf c f b f a ,则 (A) c a b << (B) a b c << (C) a c b << (D) c b a << 【答案】A【解析】5(cos )(c 2os )77b f f ππ=-=,5(tan )(t 2an )77c f f ππ=-= 因为2472πππ<<,所以220cos sin 1tan 7772πππ<<<<,所以b a c <<,选A .9.【2009天津,理4】设函数x x x f ln 31)(-=,则y =f(x)( )A.在区间(e 1,1),(1,e)内均有零点B.在区间(e 1,1),(1,e)内均无零点C.在区间(e 1,1)内有零点,在区间(1,e)内无零点D.在区间(e1,1)内无零点,在区间(1,e)内有零点【答案】D 【解析】由于131)1(+=e ef >0,31)1(=f >0,131)(-=e e f <0,故函数y =f(x)在区间(e1,1)内无零点,在区间 (1,e)内有零点.10.【2009天津,理8】已知函数⎪⎩⎪⎨⎧<-≥+=.0,4,0,4)(22x x x x x x x f .若f(2-a 2)>f(a),则实数a 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-1,2)C.(-2,1)D.(-∞,-2)∪(1,+∞) 【答案】C【解析】由题中的分段函数的图象知函数f(x)在R 上是增函数,则由f(2-a2)>f(a),可得2-a2>a,解之,得-2<a <1.11.【2010天津,理2】函数f (x )=2x+3x 的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2) 【答案】B12.【2011天津,理7】【答案】C 【解析】令4.32log=m ,6.34log =n ,3103log =l ,在同一坐标系下作出三个函数的图象,由图象可得 n l m >>,又∵x y 5=为单调递增函数, ∴b c a >>.13.【2012天津,理4】函数f (x )=2x+x 3-2在区间(0, 1)内的零点个数是( )A .0B .1C .2D .3 【答案】B14.【2012天津,理14】已知函数2|1|1x y x -=-的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________. 【答案】(0,1)∪(1,4)【解析】21,1|1||1||1||1|,111x x x x x y x x x x +>⎧-+-===⎨-+<--⎩函数y=kx -2过定点(0,-2),由数形结合: kAB <k <1或1<k <kAC , ∴0<k <1或1<k <4.15.【2013天津,理7】函数f (x )=2x|log 0.5x |-1的零点个数为( ).A .1B .2C .3D .4 【答案】B【解析】函数f(x)=2x|log0.5x|-1的零点也就是方程2x|log0.5x|-1=0的根,即2x|log0.5x|=1,整理得|log0.5x|=12x ⎛⎫ ⎪⎝⎭.令g(x)=|log0.5x|,h(x)=12x⎛⎫ ⎪⎝⎭,作g(x),h(x)的图象如图所示.因为两个函数图象有两个交点,所以f(x)有两个零点.16.【2014天津,理4】函数()()212log 4f x x =-的单调递增区间是( )(A )()0,+¥ (B )(),0-¥ (C )()2,+¥ (D )(),2-?【答案】D . 【解析】考点:复合函数的单调性(单调区间).17. 【2017天津,理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为(A )a b c <<(B )c b a << (C )b a c << (D )b c a <<【答案】C【解析】因为()f x 是奇函数且在R 上是增函数,所以当0x >时,()0f x >,从而()()g x xf x =是R 上的偶函数,且在[0,)+∞上是增函数,22(log 5.1)(log 5.1)a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以0.8202log 5.13<<<,0.82(2)(log 5.1)(3)g g g <<,所以b a c <<,故选C .【考点】指数、对数、函数的单调性与奇偶性【名师点睛】比较大小是高考的常见题型,指数式、对数式的大小比较要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性、奇偶性等进行大小比较,要特别关注灵活利用函数的奇偶性和单调性,数形结合进行大小比较或解不等式.18.【2017天津,理8】已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是(A )47[,2]16- (B )4739[,]1616-(C)[- (D)39[]16-【答案】A222x x +≥=(当2x =时取等号),所以2a -≤. 综上,47216a -≤≤.故选A . 【考点】不等式、恒成立问题、二次函数、基本不等式 【名师点睛】首先将()||2xf x a ≥+转化为()()22x x f x a f x --≤≤-,涉及分段函数问题要遵循分段处理的原则,分别对的两种不同情况进行讨论,针对每种情况根据的范围,利用极端原理,求出对应的的取值范围. 二.能力题组1.【2006天津,理10】已知函数)(x f y =的图象与函数x a y =(0>a 且1≠a )的图象关于直线x y =对称,记()()[()(2)1]g x f x f x f =+-.若)(x g y =在区间]2,21[上是增函数,则实数的取值范围是( )A .),2[+∞B .)2,1()1,0(C .)1,21[D .]21,0( 【答案】D范围是]21,0(,选D. 2.【2008天津,理16】设1>a ,若仅有一个常数c 使得对于任意的[]a a x 2,∈,都有[]2,a a y ∈满足方程c y x a a =+log log ,这时,的取值的集合为 . 【答案】{2}【解析】由已知得c a y x =,单调递减,所以当[,2]x a a ∈时,11[,]2c c ay a --∈所以1122log 223a c c a c a a c a --⎧⎧⎪⇒⎨⎨⎩⎪⎩≥+≥≤≤,因为有且只有一个常数符合题意,所以2log 23a +=,解得2a =,所以的取值的集合为{2}.3.【2013天津,理8】已知函数f (x )=x (1+a |x |).设关于x 的不等式f (x +a )<f (x )的解集为A .若⎣⎢⎡⎦⎥⎤-12,12⊆A ,则实数a 的取值范围是( ). A.12⎛⎫⎪ ⎪⎝⎭ B.12⎛⎫- ⎪ ⎪⎝⎭C.130,⎫⎛+⎪ ⎪ ⎝⎭⎝⎭ D .⎛-∞ ⎝⎭【答案】A【解析】f(x)=x(1+a|x|)=22,0,,0.ax x x ax x x ⎧+≥⎨-+<⎩若不等式f(x +a)<f(x)的解集为A ,且11,22⎡⎤-⎢⎥⎣⎦A ⊆,则在区间11,22⎡⎤-⎢⎥⎣⎦上,函数y=f(x+a)的图象应在函数y=f(x)的图象的下边.由图可知,若f(x+a)<f(x)的解集为A,且11,22⎡⎤-⎢⎥⎣⎦A⊆,只需1122f a f⎛⎫⎛⎫-+<-⎪ ⎪⎝⎭⎝⎭即可,则有2211112222a a a a⎛⎫⎛⎫⎛⎫--++-+<---⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(a<0),整理,得a2-a-1<0a<<∵a<0,∴a∈⎫⎪⎪⎝⎭.综上,可得a的取值范围是⎫⎪⎪⎝⎭.4. 【2015高考天津,理7】已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为( ) (A )a b c << (B )a c b << (C )c a b << (D )c b a << 【答案】C【考点定位】1.函数奇偶性;2.指数式、对数式的运算.5. 【2015高考天津,理8】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则的取值范围是( ) (A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭【答案】D【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩,即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩【考点定位】求函数解析、函数与方程思、数形结合.三.拔高题组1.【2010天津,理16】设函数f (x )=x 2-1,对任意x ∈32,+∞),f (x m )-4m 2f (x )≤f (x -1)+4f (m )恒成立,则实数m 的取值范围是__________.【答案】(-∞,-2]∪2,+∞) 【解析】解析:原不等式可化为22x m-1-4m2(x2-1)≤(x-1)2-1+4m2-4, 化简,得(1+4m2-21m )x2≥2x+3恒成立. ∵x∈32,+∞), ∴1+4m2-21m ≥223x x +恒成立. 令g(x)=223x x +,x∈32,+∞),2.【2011天津,理8】对实数与,定义新运算 “⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数 ()()22()2,.f x x x x x R =--∈若函数()y f x c =-的图像与轴恰有两个公共点,则实数的取值范围是A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭ 【答案】B 【解析】()()⎪⎩⎪⎨⎧>----≤----=12,12,2)(222222x x x x x x x x x x f ⎪⎪⎩⎪⎪⎨⎧>-<-≤≤--=23,1,231,222x x x x x x 或 则()x f 的图象如图∵c x f y -=)(的图象与轴恰有两个公共点,∴)(x f y =与c y =的图象恰有两个公共点,由图象知2-≤c ,或431-<<-c .3.【2014天津,理14】已知函数()23f x x x =+,x R Î.若方程()10f x a x --=恰有4个互异的实数根,则实数的取值范围为__________.【答案】()()0,19,+∞.【解析】()230x a x a +-+=,由0D =,得()2340a a --=,解得1a =或9a =.又当0a =时,()f x 与()g x 仅两个交点,01a ∴<<或9a >.(方法二)显然1a ¹,∴231x x a x +=-.令1t x =-,则45a t t =++.∵(][),,444t t ???++,∴(][)45,19,t t ?ゥ+++.结合图象可得01a <<或9a >.考点:方程的根与函数的零点.4. 【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R上单调递减,且关于x 的方程│f (x )│=2-x 恰有两个不相等的实数解,则a 的取值范围是(A )(0,23] (B )23,34] (C )13,23]{34} (D )13,23){34} 【答案】C【解析】【考点】函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.5.【2016高考天津理数】已知f (x )是定义在R 上的偶函数,且在区间(−∞,0)上单调递增.若实数a 满足f (2|a -1|)>f(,则a 的取值范围是______. 【答案】13(,)22【解析】试题分析:由题意()f x 在(0,)+∞上单调递减,又()f x 是偶函数,则不等式1(2)(a f f ->可化为1(2)a f f ->,则12a -<112a -<,解得1322a <<. 【考点】利用函数性质解不等式【名师点睛】利用数形结合解决不等式问题时,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:(1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效.(2)借助函数图象的性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需要注意的问题是准确把握代数式的几何意义实现由“数”向“形”的转化.。

2018年高考数学 考点通关练 第二章 函数、导数及其应用 5 函数的定义域和值域试题 理

2018年高考数学 考点通关练 第二章 函数、导数及其应用 5 函数的定义域和值域试题 理

考点测试5 函数的定义域和值域一、基础小题1.函数f(x)=1lg x+2-x的定义域为( )A.(0,2] B.(0,2) C.(0,1)∪(1,2] D.(-∞,2] 答案 C解析f(x)=1lg x+2-x是复合函数,所以定义域要满足lg x≠0且2-x≥0且x>0,所以0<x≤2且x≠1.2.若函数y=x2-4x的定义域是{x|1≤x<5,x∈N},则其值域为( )A.[-3,5) B.[-4,5)C.{-4,-3,0} D.{0,1,2,3,4}答案 C解析分别将x=1,2,3,4代入函数解析式,解得y=-3,-4,-3,0,由集合中元素的互异性可知值域是{-4,-3,0}.3.函数y=16-4x的值域是( )A.[0,+∞)B.[0,4]C.[0,4) D.(0,4)答案 C解析由已知得0≤16-4x<16,0≤16-4x<16=4,即函数y=16-4x的值域是[0,4).4.若函数y =kx 2-6x +k +8的定义域为R ,则实数k 的取值范围是( ) A .(-∞,-9]∪[0,+∞) B .[1,+∞) C .[-9,1] D .(0,1]答案 B解析 由题意知kx 2-6x +k +8≥0对于x ∈R 恒成立,当k ≤0时显然不符合,所以⎩⎪⎨⎪⎧k >0,Δ=36-4k k +,解得k ≥1,故选B.5.若函数y =f (x )的值域是[1,3],则函数F (x )=1-f (x +3)的值域是( ) A .[-8,-3] B .[-5,-1] C .[-2,0] D .[1,3]答案 C解析 ∵1≤f (x )≤3,∴-3≤-f (x +3)≤-1,∴-2≤1-f (x +3)≤0,即F (x )的值域为[-2,0].6.已知函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,那么实数a 的取值范围是( )A .(-∞,-1]B .⎝⎛⎭⎪⎫-1,12C .⎣⎢⎡⎭⎪⎫-1,12D .⎝ ⎛⎭⎪⎫0,12 答案 C解析 由题意知y =ln x (x ≥1)的值域为[0,+∞),故要使f (x )的值域为R ,则y =(1-2a )x +3a 为增函数,所以1-2a >0,即a <12,同时,1-2a +3a ≥0,即a ≥-1,综上,-1≤a <12,故选C.7.函数f (x )=a x+log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( ) A .14 B .12 C .2 D .4答案 B解析 当a >1时,a +log a 2+1=a ,log a 2=-1,所以a =12,与a >1矛盾;当0<a <1时,1+a +log a 2=a ,log a 2=-1,所以a =12.8.若函数f (x )的值域是⎣⎢⎡⎦⎥⎤12,3,则函数F (x )=f (x )+1f x 的值域是( ) A .⎣⎢⎡⎦⎥⎤12,3B .⎣⎢⎡⎦⎥⎤2,103C .⎣⎢⎡⎦⎥⎤52,103D .⎣⎢⎡⎦⎥⎤3,103答案 B解析 因为F (x )=f (x )+1f x≥2,当且仅当f (x )=1f x,即f (x )=1时取等号,所以F (x )min =2;又函数F (x )为连续函数,当f (x )=12时,F (x )=52;当f (x )=3时,F (x )=103,故F (x )max =103,所以F (x )的值域为⎣⎢⎡⎦⎥⎤2,103.故选B.9.下列函数中,值域是(0,+∞)的是( ) A .y =15-x+1B .y =⎝ ⎛⎭⎪⎫12x -1 C .y =⎝ ⎛⎭⎪⎫131-xD .y =1-2x答案 C解析 因为5-x+1>1,所以A 项中函数的值域为(0,1);B 、D 项中函数的值域均为[0,+∞);因为1-x ∈R ,根据指数函数性质可知C 项中函数的值域为(0,+∞),故选C.10.若函数y =f (x )的定义域为[0,2],则函数g (x )=f (x +1)-f (x -1)的定义域为________.答案 {1}解析 由条件可得⎩⎪⎨⎪⎧0≤x +1≤2,0≤x -1≤2,解得x =1,所以g (x )的定义域为{1}.11.若函数y =log 2(ax 2+2x +1)的值域为R ,则a 的取值范围为________. 答案 [0,1]解析 设f (x )=ax 2+2x +1,由题意知,f (x )取遍所有的正实数.当a =0时,f (x )=2x +1符合条件;当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ=4-4a ≥0,解得0<a ≤1.所以0≤a ≤1.12.已知函数f (x )与g (x )分别由下表给出:则函数y =g (f (x ))的值域为________. 答案 {2,3,5}解析 由表格可知,函数f (x )的定义域是{1,2,3,4}.则当x =1时,y =g (f (1))=g (2)=3;当x =2时,y =g (f (2))=g (1)=2;当x =3时,y =g (f (3))=g (4)=5;当x =4时,y=g (f (4))=g (2)=3.所以函数y =g (f (x ))的值域为{2,3,5}.二、高考小题13.[2014·山东高考]函数f (x )=12x2-1的定义域为( ) A .⎝ ⎛⎭⎪⎫0,12 B .(2,+∞)C .⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D .⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 答案 C解析 要使函数f (x )有意义,需使(log 2x )2-1>0,即(log 2x )2>1,∴log 2x >1或log 2x <-1,解得x >2或0<x <12.故f (x )的定义域为⎝ ⎛⎭⎪⎫0,12∪(2,+∞). 14.[2014·上海高考]设f (x )=⎩⎪⎨⎪⎧x -a 2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]答案 D解析 ∵当x ≤0时,f (x )=(x -a )2,又f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x+a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解之,得-1≤a ≤2,∴a 的取值范围是0≤a ≤2.选D.15.[2016·江苏高考]函数y =3-2x -x 2的定义域是________. 答案 [-3,1]解析 若函数有意义,则3-2x -x 2≥0,即x 2+2x -3≤0,解得-3≤x ≤1. 16.[2015·浙江高考]已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.答案 0 22-3解析 由题知,f (-3)=1,f (1)=0,即f (f (-3))=0.又f (x )在(-∞,0)上单调递减,在(0,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增,所以f (x )min =min{f (0),f (2)}=22-3.17.[2015·山东高考]已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.答案 -32解析 ①当a >1时,f (x )在[-1,0]上单调递增,则⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,无解.②当0<a <1时,f (x )在[-1,0]上单调递减,则⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,∴a+b =-32.18.[2015·福建高考]若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.答案 (1,2]解析 当x ≤2时,f (x )=-x +6,f (x )在(-∞,2]上为减函数,∴f (x )∈[4,+∞).当x >2时,若a ∈(0,1),则f (x )=3+log a x 在(2,+∞)上为减函数,f (x )∈(-∞,3+log a 2),显然不满足题意,∴a >1,此时f (x )在(2,+∞)上为增函数,f (x )∈(3+log a 2,+∞),由题意可知(3+log a 2,+∞)⊆[4,+∞),则3+log a 2≥4,即log a 2≥1,∴1<a ≤2.三、模拟小题19.[2016·湖南三校联考]函数f (x )=-x 2+3x +4+lg (x -1)的定义域是( ) A .[-1,4] B .(-1,4] C .[1,4] D .(1,4]答案 D解析 由题意,得⎩⎪⎨⎪⎧-x 2+3x +4≥0,x -1>0,解得1<x ≤4.20.[2017·内蒙古包头一中模拟]若函数f (x )=1log 3x +c 的定义域为⎝ ⎛⎭⎪⎫12,1∪(1,+∞),则实数c 的值为( )A .1B .-1C .-2D .-12答案 B解析 依题意,不等式组⎩⎪⎨⎪⎧2x +c >0,2x +c ≠1的解集应为⎝ ⎛⎭⎪⎫12,1∪(1,+∞),所以c =-1,故选B.21.[2017·杭州联考]设f (x )=lg 2+x 2-x ,则f ⎝ ⎛⎭⎪⎫x 2+f ⎝ ⎛⎭⎪⎫2x 的定义域为( ) A .(-4,0)∪(0,4) B .(-4,-1)∪(1,4) C .(-2,-1)∪(1,2) D .(-4,-2)∪(2,4)答案 B解析 ∵2+x 2-x >0,∴-2<x <2,∴-2<x 2<2且-2<2x <2,取x =1,则2x=2不合题意(舍去),故排除A ,取x =2,满足题意,排除C 、D ,故选B.22.[2017·邵阳石齐中学月考]已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z ),值域是[0,1],那么满足条件的整数数对(a ,b )共有( )A .2个B .3个C .5个D .无数个答案 C解析 ∵函数f (x )=4|x |+2-1的值域是[0,1],∴1≤4|x |+2≤2,∴0≤|x |≤2,∴-2≤x ≤2,∴[a ,b ]⊆[-2,2].又由于仅当x =0时,f (x )=1,当x =±2时,f (x )=0,故在定义域中一定有0,且2,-2中必有其一,故满足条件的整数数对(a ,b )有(-2,0),(-2,1),(-2,2),(-1,2),(0,2)共5个.23.[2017·东北三校联考]已知函数f (x )=⎩⎪⎨⎪⎧xx +,x >0,x x -,x ≤0,则f (a )的值不可能为( )A .2017B .12016C .0D .-2答案 D解析 如图作出y =f (x )的图象,则f (x )的值域为[0,+∞),故f (a )不可能为-2. 24.[2016·汕头模拟]函数y =3|x |-1的定义域为[-1,2],则函数的值域为________. 答案 [0,8]解析 当x =0时,y min =3|x |-1=30-1=0,当x =2时,y max =3|x |-1=32-1=8,故值域为[0,8].一、高考大题1.[2016·浙江高考]已知a ≥3,函数F (x )=min{2|x -1|,x 2-2ax +4a -2},其中min{p ,q }=⎩⎪⎨⎪⎧p ,p ≤q ,q ,p >q .(1)求使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围; (2)①求F (x )的最小值m (a );②求F (x )在区间[0,6]上的最大值M (a ). 解 (1)由于a ≥3,故当x ≤1时,(x 2-2ax +4a -2)-2|x -1|=x 2+2(a -1)(2-x )>0, 当x >1时,(x 2-2ax +4a -2)-2|x -1|=(x -2)(x -2a ).所以,使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围为[2,2a ]. (2)设函数f (x )=2|x -1|,g (x )=x 2-2ax +4a -2. ①f (x )min =f (1)=0,g (x )min =g (a )=-a 2+4a -2, 所以,由F (x )的定义知m (a )=min{f (1),g (a )},即m (a )=⎩⎨⎧0,3≤a ≤2+2,-a 2+4a -2,a >2+ 2.②当0≤x ≤2时,F (x )≤f (x )≤max{f (0),f (2)}=2=F (2),当2≤x ≤6时,F (x )≤g (x )≤max{g (2),g (6)}=max{2,34-8a }=max{F (2),F (6)}.所以,M (a )=⎩⎪⎨⎪⎧34-8a ,3≤a <4,2,a ≥4.二、模拟大题2.[2017·贵州六盘水二中月考]已知f (x )=2+log 3x ,x ∈[1,9],试求函数y =[f (x )]2+f (x 2)的值域.解 ∵f (x )=2+log 3x 的定义域为[1,9],要使[f (x )]2+f (x 2)有意义,必有1≤x ≤9且1≤x 2≤9,∴1≤x ≤3,∴y =[f (x )]2+f (x 2)的定义域为[1,3].又y =(2+log 3x )2+2+log 3x 2=(log 3x +3)2-3.∵x ∈[1,3],∴log 3x ∈[0,1],∴y max =(1+3)2-3=13,y min =(0+3)2-3=6. ∴函数y =[f (x )]2+f (x 2)的值域为[6,13].3.[2017·云南师大附中月考]已知函数f (x )=x 2-4ax +2a +6,x ∈R . (1)若函数的值域为[0,+∞),求a 的值;(2)若函数的值域为非负数集,求函数f (a )=2-a |a +3|的值域. 解 f (x )=x 2-4ax +2a +6=(x -2a )2+2a +6-4a 2. (1)∵函数值域为[0,+∞),∴2a +6-4a 2=0. 解得a =-1或a =32.(2)∵函数值域为非负数集,∴2a +6-4a 2≥0, 即2a 2-a -3≤0,解得-1≤a ≤32.∴f (a )=2-a |a +3|=2-a (a +3)=-⎝ ⎛⎭⎪⎫a +322+174,∴f (a )在⎣⎢⎡⎦⎥⎤-1,32上单调递减, ∴-194≤f (a )≤4,即f (a )值域为⎣⎢⎡⎦⎥⎤-194,4. 4.[2016·山西质检]已知函数g (x )=x +1,h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ).(1)求函数f (x )的表达式,并求其定义域; (2)当a =14时,求函数f (x )的值域.解 (1)∵g (x )=x +1,h (x )=1x +3,x ∈(-3,a ], ∴f (x )=g (x )·h (x )=(x +1)·1x +3=x +1x +3, 即f (x )=x +1x +3,x ∈[0,a ](a >0). (2)当a =14时,函数f (x )的定义域为⎣⎢⎡⎦⎥⎤0,14, 令x +1=t ,则x =(t -1)2,t ∈⎣⎢⎡⎦⎥⎤1,32.∴f (x )=F (t )=t t 2-2t +4=1t +4t-2,当t =4t 时,t =±2∉⎣⎢⎡⎦⎥⎤1,32, 又t ∈⎣⎢⎡⎦⎥⎤1,32时,y =t +4t 单调递减, 则F (t )单调递增,∴F (t )∈⎣⎢⎡⎦⎥⎤13,613,即函数f (x )的值域为⎣⎢⎡⎦⎥⎤13,613.。

(浙江专版)2018高考数学一轮复习 第2章 函数、导数及其应用 第1节 函数及其表示课时分层训练

(浙江专版)2018高考数学一轮复习 第2章 函数、导数及其应用 第1节 函数及其表示课时分层训练

课时分层训练(三) 函数及其表示A组基础达标(建议用时:30分钟)一、选择题1.下列各组函数中,表示同一函数的是( )A.f(x)=x,g(x)=(x)2B.f(x)=x2,g(x)=(x+1)2C.f(x)=x2,g(x)=|x|D.f(x)=0,g(x)=x-1+1-xC[在A中,定义域不同,在B中,解析式不同,在D中,定义域不同.]2.(2017·浙江名校联考)设M={x|-2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是( )A B C DB[A项,定义域为[-2,0],D项,值域不是[0,2],C项,当x=0时有两个y值与之对应.故选B.]3.(2017·宁波市质检)已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=( ) A.x+1 B.2x-1C.-x+1 D.x+1或-x-1A[设f(x)=kx+b,则由f[f(x)]=x+2,可得k(kx+b)+b=x+2,即k2x+kb+b =x+2,∴k2=1,kb+b=2,解得k=1,b=1,则f(x)=x+1.故选A.] 4.下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( ) 【导学号:51062015】A.y=x B.y=lg xC.y=2x D.y=1 xD[函数y=10lg x的定义域与值域均为(0,+∞).函数y=x的定义域与值域均为(-∞,+∞).函数y=lg x的定义域为(0,+∞),值域为(-∞,+∞).函数y=2x的定义域为(-∞,+∞),值域为(0,+∞).函数y=1x的定义域与值域均为(0,+∞).故选D.]5.已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14A [由于f (a )=-3, ①若a ≤1,则2a -1-2=-3,整理得2a -1=-1.由于2x>0,所以2a -1=-1无解;②若a >1,则-log 2(a +1)=-3, 解得a +1=8,a =7, 所以f (6-a )=f (-1)=2-1-1-2=-74.综上所述,f (6-a )=-74.故选A.]二、填空题6.(2017·温州二次质检)若函数f (x )=⎩⎪⎨⎪⎧f x -,x ≥2,|x 2-2|,x <2,则f (5)=________.【导学号:51062016】1 [由题意得f (5)=f (3)=f (1)=|12-2|=1.]7.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. [-1,2] [∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3,3],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2].]8.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.(-∞,2] [由题意得⎩⎪⎨⎪⎧fa <0,f2a +f a或⎩⎪⎨⎪⎧f a,-f2a ,解得f (a )≥-2.由⎩⎪⎨⎪⎧a <0,a 2+a ≥-2或⎩⎪⎨⎪⎧a ≥0,-a 2≥-2,解得a ≤ 2.]三、解答题9.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式. 【导学号:51062017】[解] 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,4分即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧a =2,b +5a =17,8分解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.15分10.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))的解析式.[解] (1)由已知,g (2)=1,f (2)=3, ∴f (g (2))=f (1)=0,g (f (2))=g (3)=2.4分 (2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ;8分 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.∴f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.15分B 组 能力提升 (建议用时:15分钟)1.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①B [对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x=-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.]2.设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是________.【导学号:51062018】⎣⎢⎡⎭⎪⎫23,+∞ [由f (f (a ))=2f (a ),得f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1. 当a ≥1时,有2a≥1,∴a ≥0,∴a ≥1. 综上,a ≥23.]3.根据如图2­1­1所示的函数y =f (x )的图象,写出函数的解析式.图2­1­1[解] 当-3≤x <-1时,函数y =f (x )的图象是一条线段(右端点除外),设f (x )=ax +b (a ≠0),将点(-3,1),(-1,-2)代入,可得f (x )=-32x -72;3分当-1≤x <1时,同理可设f (x )=cx +d (c ≠0), 将点(-1,-2),(1,1)代入,可得f (x )=32x -12;8分当1≤x <2时,f (x )=1.10分所以f (x )=⎩⎪⎨⎪⎧-32x -72,-3≤x <-1,32x -12,-1≤x <1,1,1≤x <2.15分。

高考理科数学二轮专项训练专题:02 函数

高考理科数学二轮专项训练专题:02 函数

f
(2)
8
e2
0 ,所以存在
x0
(0,
1) 2
是函数
f
( x) 的极小值点,即函数
f
(x) 在 (0,
x0 )
上单调
递减,在 ( x0, 2) 上单调递增,且该函数为偶函数,符合 条件的图像为 D.
11.已知函数
f
xx R满足
f
x
2
f
x,若函数
y
x
1 x

y
f
x图像的交点为 x1
,y1 ,
m
x2 ,y2 ,…, xm ,ym ,则 i1 xi yi
所以 20.8 log2 5.1 3 ,故 b a c ,选 C.
8.已知函数
f
(x)
3x
(1)x 3
,则
f
(x)
A.是奇函数,且在 R 上是增函数
C.是奇函数,且在 R 上是减函数
B.是偶函数,且在 R 上是增函数 D.是偶函数,且在 R 上是减函数
A【解析】
f
(x)
3 x
(1)x 3
③当 0
a
1,此时 m
f
(
a )
b
a2
,M
f
(0)
b或M
f
(1)
1 a b ,
2
2
4
M m a2 或 M m 1 a a2 .综上, M m 的值与 a 有关,与 b 无关.选 B.
4
4
7.已知奇函数 f (x) 在 R 上是增函数, g(x) xf (x) .若 a g( log2 5.1) , b g(20.8 ) , c g(3) ,则

2018届高考数学理科二轮总复习高考小题分项练 2 含解

2018届高考数学理科二轮总复习高考小题分项练 2 含解

高考小题分项练2 函数的图象与性质1.函数y =⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0的单调增区间为________.答案 [0,+∞)解析 当x ≥0时,y =x 为增函数;当x <0时,y =x 2为减函数. 2.若函数f (x )=(x +1)(x -a )为偶函数,则a =________. 答案 1解析 ∵f (x )=(x +1)(x -a )=x 2+(1-a )x -a 为偶函数,∴对称轴x =-1-a2=0,∴a =1.3.函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥4,f (x +3),x <4,则f (f (-1))=________.答案 0解析 f (f (-1))=f (f (2))=f (f (5))=f (1)=f (4)=0.4.若函数f (x )=x 2-6x +m 在区间[2,+∞)上的最小值是-3,则实数m 的值为________. 答案 6解析 函数f (x )=x 2-6x +m 的对称轴是x =3,开口向上,所以函数f (x )在[2,3]上单调递减,在(3,+∞)上单调递增,故函数在x =3处取得最小值. 由f (3)=32-6×3+m =-3,解得m =6. 故实数m 的值为6.5.函数y =|x |(1-x )的单调增区间为________. 答案 ⎣⎡⎦⎤0,12 解析 当x ≥0时,y =|x |(1-x )=x (1-x )=x -x 2 =-⎝⎛⎭⎫x -122+14; 当x <0时,y =|x |(1-x )=-x (1-x )=x 2-x =⎝⎛⎭⎫x -122-14. 故y =⎩⎨⎧-⎝⎛⎭⎫x -122+14,x ≥0,⎝⎛⎭⎫x -122-14,x <0,函数图象如图所示.所以函数的单调增区间为⎣⎡⎦⎤0,12. 6.已知f (x )=⎩⎪⎨⎪⎧2x-3,x >0,g (x ),x <0是奇函数,则f (g (-2))=________.答案 1解析 方法一 当x <0时,-x >0,g (x )=-f (-x )=-(2-x -3)=3-⎝⎛⎭⎫12x ,所以g (-2)=-1,f (g (-2))=f (-1)=3-2=1.方法二 因为g (-2)=f (-2)=-f (2),所以f (g (-2))=f (-f (2))=f (-(22-3))=f (-1)=-f (1)=1.7.已知函数f (x )=a x (a >0且a ≠1)在[-1,1]上恒有f (x )<2,则实数a 的取值范围为________. 答案 ⎝⎛⎭⎫12,1∪(1,2)解析 当a >1时,f (x )在[-1,1]上是增函数, ∵在x ∈[-1,1]上恒有f (x )<2, ∴f (1)<2,∴1<a <2.当0<a <1时,f (x )在[-1,1]上是减函数, ∵在x ∈[-1,1]上恒有f (x )<2,∴f (-1)<2, ∴1a <2且0<a <1,∴12<a <1. 综上所述,实数a 的取值范围为12<a <1或1<a <2.8.当函数f (x )=⎩⎪⎨⎪⎧lg x ,x >0,-2x +a ,x ≤0有且只有一个零点时,a 的取值范围是________.答案 {a |a ≤0或a >1}解析 ∵f (1)=lg 1=0,∴当x ≤0时,函数f (x )没有零点,故-2x +a >0或-2x +a <0在(-∞,0]上恒成立,即a >2x 或a <2x 在(-∞,0]上恒成立,故a >1或a ≤0.9.函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m >0,n >0,则2m +1n 的最小值为________.答案 92解析 由题意得点A (-2,-1), 故-2m -n +2=0,即2m +n =2.∴2m +1n =2m +n m +2m +n 2n =n m +m n +2+12≥4+12=92, 当且仅当m =n =23时,等号成立.10.函数y =log a x (a >0且a ≠1)在x ∈[2,+∞)上恒有|y |>1,则a 应满足的条件是________. 答案 12<a <1或1<a <2解析 若0<a <1,当x ≥2时,log a x <0,∴log a x <-1. 由题意知log a 2<-1,∴a ∈⎝⎛⎭⎫12,1. 若a >1,当x ≥2时,log a x >0,∴log a x >1. 由题意知log a 2>1,∴a ∈(1,2). 综上可知,12<a <1或1<a <2.11.已知t 为常数,函数y =|x 2-2x -t |在区间[0,3]上的最大值为2,则t =________. 答案 1解析 二次函数y =x 2-2x -t 在[0,3]上的最大值为2或最小值为-2,f (1)=1-2-t =-1-t =-2,∴t =1,或f (3)=3-t =2,∴t =1.综上t =1.12.已知f (x )是定义在R 上的偶函数,且对于任意的x ∈[0,+∞),满足f (x +2)=f (x ),若当x ∈[0,2)时,f (x )=|x 2-x -1|,则函数y =f (x )-1在区间[-2,4]上的零点个数为________. 答案 7解析 由题意作出y =f (x )在区间[-2,4]上的图象,与直线y =1的交点共有7个,故函数y =f (x )-1在区间[-2,4]上的零点个数为7.13.设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数:f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K .取函数f (x )=a -|x |(a >1).当K =1a 时,函数f K (x )的单调减区间是________.答案 (1,+∞)解析 由题意知,当K =1a(a >1)时,令f (x )≤1a ,即a -|x |≤1a,解得x ≤-1或x ≥1;令f (x )>1a ,即a -|x |>1a ,解得-1<x <1.所以f K (x )如图实线所示.由图象知,f K (x )在(1,+∞)上为减函数.14.已知函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数.若直线y =k (x +1)(k>0)与函数y =f (x )的图象恰有三个不同的交点,则实数k 的取值范围是________. 答案 ⎣⎡⎭⎫14,13解析 根据[x ]表示的意义可知,当0≤x <1时,f (x )=x ,当1≤x <2时,f (x )=x -1,当2≤x <3时,f (x )=x -2,以此类推,当k ≤x <k +1时,f (x )=x -k ,k ∈Z ,当-1≤x <0时,f (x )=x +1.作出函数f (x )的图象如图,直线y =k (x +1)过点(-1,0),当直线经过点(3,1)时恰有三个交点,当直线经过点(2,1)时恰有两个交点,在这两条直线之间时有三个交点,故k ∈⎣⎡⎭⎫14,13.。

2018版高考一轮总复习数学理习题 第2章 函数、导数及

2018版高考一轮总复习数学理习题 第2章 函数、导数及

(时间:40分钟)1.现有一组数据如下:( ) A .v =log 2tB .v =log 12 tC .v =t 2-12D .v =2t -2答案 C解析 取t =1.99≈2(或t =5.1≈5),代入A 得v =log 22=1≠1.5;代入B ,得v =log 122=-1≠1.5;代入C ,得v =22-12=1.5;代入D ,得v =2×2-2=2≠1.5,故选C.2.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧c x ,x <A ,c A ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16 答案 D解析 (回顾检验法)∵c A=15,故A >4,则有c2=30,解得c =60,A =16,将c =60,A=16代入解析式检验知正确.故选D.3.某商店已按每件80元的成本购进某商品1000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件( )A .100元B .110元C .150元D .190元 答案 D解析 设售价提高x 元,利润为y 元,则依题意得y =(1000-5x )×(20+x )=-5x 2+900x +20000=-5(x -90)2+60500.故当x =90时,y max =60500,此时售价为每件190元.4.用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是(参考数据lg 2≈0.3010)( )A .3B .4C .5D .6 答案 B解析 设至少要洗x 次,则⎝ ⎛⎭⎪⎫1-34x ≤1100,∴x ≥1lg 2≈3.322,因此需4次,故选B.5.国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过部分的14%纳税;超过4000元的按全稿酬的11%纳税.若某人共纳税420元,则这个人的稿费为( )A .3000元B .3800元C .3818元D .5600元 答案 B解析 由题意可建立纳税额y 关于稿费x 的函数解析式为y =⎩⎪⎨⎪⎧0,x ≤800x -,800<x ≤4000,0.11x ,x >4000显然由0.14(x -800)=420,可得x =3800.6.某生产厂商更新设备,已知在未来x (x >0)年内,此设备所花费的各种费用总和y (万元)与x 满足函数关系y =4x 2+64,欲使此设备的年平均花费最低,则此设备的使用年限x 为________.答案 4解析 y x=4x +64x≥24x ·64x =32,当且仅当4x =64x,即x =4时等号成立.7.若某商场将彩电价格由原价(2250元/台)提高40%,然后在广告上写出“大酬宾八折优惠”,则商场每台彩电比原价多卖________元.答案 270解析 由题意可得每台彩电比原价多卖2250×(1+40%)×80%-2250=270(元). 8.某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,则截取的矩形面积的最大值为________.答案 180解析 依题意,知20-x x =y -824-y ,即x =54(24-y ),∴阴影部分的面积S =xy =54(24-y )y =54(-y 2+24y )(8<y <24),∴当y =12时,S 有最大值为180.9.甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得利润是100⎝ ⎛⎭⎪⎫5x +1-3x 元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.解 (1)根据题意,200⎝ ⎛⎭⎪⎫5x +1-3x ≥3000,整理得5x -14-3x≥0,即5x 2-14x -3≥0,又1≤x ≤10,可解得3≤x ≤10. (2)设利润为y 元,则y =900x·100⎝ ⎛⎭⎪⎫5x +1-3x =9×104⎝ ⎛⎭⎪⎫5+1x -3x 2=9×104⎣⎢⎡⎦⎥⎤-3⎝ ⎛⎭⎪⎫1x -162+6112,故x =6时,y max =457500元.10.一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?解 (1)设每年降低的百分比为x (0<x <1).则a (1-x )10=12a ,即(1-x )10=12,解得x=1-⎝ ⎛⎭⎪⎫12110 .(2)设经过m 年剩余面积为原来的22,则a (1-x )m=22a ,即⎝ ⎛⎭⎪⎫12m10 =⎝ ⎛⎭⎪⎫1212 ,m 10=12,解得m =5,故到今年为止,已砍伐了5年.(3)设从今年开始,以后砍了n 年,则n 年后剩余面积为22a (1-x )n .令22a (1-x )n ≥14a ,即(1-x )n≥24,⎝ ⎛⎭⎪⎫12n10 ≥⎝ ⎛⎭⎪⎫1232 ,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.(时间:20分钟)11.某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系可用图象表示的是( )答案 A解析 由于开始的三年产量的增长速度越来越快,故总产量迅速增长,图中符合这个规律的只有选项A ;后三年产量保持不变,总产量直线上升,故选A.12.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a e nt .假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a 8,则m 的值为________.答案 10解析 根据题意12=e 5n ,令18a =a e nt,即18=e nt ,因为12=e 5n ,故18=e 15n,则t =15,m =15-5=10.13.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A (a 为常数),广告效应为D =a A -A .那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)答案 14a 2解析 令t =A (t ≥0),则A =t 2,∴D =at -t 2=-⎝ ⎛⎭⎪⎫t -12a 2+14a 2,∴当t =12a ,即A =14a 2时,D 取得最大值.14.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式C =3+x ,每日的销售额S (单位:万元)与日产量x 的函数关系式S =⎩⎪⎨⎪⎧3x +k x -8+x ,x ,已知每日的利润L =S -C ,且当x =2时,L =3. (1)求k 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.解 (1)由题意,得L =⎩⎪⎨⎪⎧2x +k x -8+x,11-x x,因为x =2时,L =3,所以3=2×2+k2-8+2.解得k =18.(2)当0<x <6时,L =2x +18x -8+2, 所以L =2(x -8)+18x -8+18=-[ 2(8-x )+188-x]+18≤-2-x188-x+18=6.当且仅当2(8-x)=188-x,即x=5时取得等号.当x≥6时,L=11-x≤5.所以当x=5时,L取得最大值6.所以当日产量为5吨时,每日的利润可以达到最大值6万元.。

新课标Ⅰ2018年高考数学总复习专题02函数分项练习含解析文20171001391

新课标Ⅰ2018年高考数学总复习专题02函数分项练习含解析文20171001391

专题02 函数一.基础题组1.【2011课标,文3】下列函数中,既是偶函数又在(0,)单调递增的函数是( )A.y x3B.y|x|1C.y x21D.y2|x|【答案】B【解析】由偶函数,排除A、C选项;在(0,)上单调递增,排除D,故选B.2. 【2008全国1,文1】函数y1x x的定义域为()A.{x|x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|0≤x≤1}【答案】Dx10【解析】由根式有意义可知,0x1.x03.【2007全国1,文8】设a1,函数f(x)log x在区间[a,2a]上的最大值与最小值之差a为12,则a()A. 2B.2C.22D.4【答案】:D【解析】:∵a1,∴函数f(x)log x在区间[a,2a]上为增函数,∴a1log2loga a a a,解得a4.24. 【2005全国1,文13】若正整数m满足10m1251210m,则m = 。

(lg20.3010)【答案】155【解析】1二.能力题组1. 【2014全国1,文5】设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A. f(x)g(x)是偶函数B. |f(x)|g(x)是奇函数C. f(x)|g(x)|是奇函数D. |f(x)g(x)|是奇函数【答案】C【解析】由函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,可得:|f(x)|和|g(x)|均为偶函数,根据一奇一偶函数相乘为奇函数和两偶函数相乘为偶函数的规律可知选C.2. 【2011全国1,文10】3. 【2010全国1,文7】已知函数f(x)=|lg x|.若a≠b,且f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.1,+∞)C.(2,+∞)D.2,+∞)【答案】:C【解析】函数f(x)=|lg x|的图象如图所示,2由图象知a,b一个大于1,一个小于1,不妨设a>1,0<b<1.∵f(a)=f(b),∴f(a)=|lg a|=lg a=f(b)=|lg b|=-lg b=lg1b.∴a=1b.∴a+b=b+1b>2b1=2.b4. 【2010全国1,文10】设a=log32,b=ln2,c=5-12,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【答案】:C【解析】∵log32=l n2ln3<ln2,要比较log32=1log32与5-12=15,只需比较log23与51=log22 5,只需比较3与2 5,∵2 5>22=4>3,∴log32>5-.∴c<a<b.25. 【2005全国1,文8】设0a 1,函数f()log(2x 2x 2),则使f(x)0的x a a a的取值范围是,(A)(,0)(B)(0,)(C)(,log3)(D)(log 3,)a a【答案】C【解析】6. 【2015高考新课标1,文10】已知函数f(x)x1x22,1log(x 1),x,且f(a)3,则123f(6a)()(A)(B)5(C)3(D)174444【答案】A7.【2016新课标1文数】若a>b>0,0<c<1,则(A)log a c<log b c (B)log c a<log c b (C)a c<b c (D)c a>c b 【答案】B【解析】试题分析:对于选项A,1g c1g clog c,log c,0c 1,1g c 0,而a blg a lg ba b 0,所以lg a lg b,但不能确定lg a、lg b的正负,所以它们的大小不能确定;对于选项B,lg a lg blog a ,log b ,lg a lg b,两边同乘以一个负数c clg c lg c1lg c改变不等号方向,所以选项B正确;对于选项C,利用y x c在第一象限内是增函数即可得到a cb c,所以C错误;对于选项D,利用yc x在R上为减函数易得c a c b,所以D错误.所以本题选B.8.【2016新课标1文数】函数y=2x2–e|x|在–2,2]的图像大致为,4【答案】D【解析】试题分析:函数f(x)=2x2–e|x|在–2,2]上是偶函数,其图像关于y轴对称,因为f,所以排除A,B选项;当x0,2时,f (x)=4x e x有一(2)8e,08e122零点,设为x,当0x(0,x)时,f(x)为减函数,当x(x,2)时,f(x)为增函数.故选D.【考点】函数的图像与性质【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项.9. 【2017新课标1,文8】函数ysin2x1cos x的部分图像大致为A.B.5C.D.【答案】C【解析】sin2x试题分析:由题意知,函数y为奇函数,故排除B;当xπ时,y0,故排1cos x除D;当x1时,sin201cos2y,故排除A.故选C.【考点】函数图像10.【2017新课标1,文9】已知函数f(x)ln x ln(2x),则A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减,C.y= f(x)的图像关于直线x=1对称D.y= f(x)的图像关于点(1,0)对称【答案】C【解析】试题分析:由题意知,f(2x)ln(2x)ln x f(x),所以f(x)的图像关于直线x1对称,故C正确,D错误;又f(x)ln[x(2x)](0x2),由复合函数的单调性可知f(x)在(0,1)上单调递增,在(1,2)上单调递减,所以A,B错误,故选C.【考点】函数性质三.拔高题组61. 【2013课标全国Ⅰ,文12】已知函数f(x)=22,0,x x x若|f(x)|≥ax,则a的取值ln(x 1),x 0.范围是().A.(-∞,0] B.(-∞,1] C.-2,1] D.-2,0] ,【答案】D【解析】可画出|f(x)|的图象如图所示.当a>0时,y=ax与y=|f(x)|恒有公共点,所以排除B,C;当a≤0时,若x>0,则|f(x)|≥ax恒成立.若x≤0,则以y=ax与y=|-x2+2x|相切为界限,,y ax由y x2x,2得x2-(a+2)x=0.∵Δ=(a+2)2=0,∴a=-2.∴a∈-2,0].故选D.2. 【2011课标,文10】在下列区间中,函数f(x)e x 4x 3的零点所在的区间为( )1 A.(,0)41(0,)4B.C.11(,)4213(,)24D.【答案】C【解析】因为f(0)2 0,11f()e420,411f()e210,所以选C.23. 【2011课标,文12】已知函数y f(x)的周期为2,当x [1,1]时f(x)x2,那么函数y f(x)的图象与函数y |lg x|的图象的交点共有( )A.10个B.9个C.8个D.1个【答案】A【解析】画出图象,不难得出选项A正确.4. 【2007全国1,文9】f(x),g(x)是定义在R上的函数,h(x)f(x)g(x),则7“ f (x ) , g (x ) 均为偶函数”是“h (x ) 为偶函数”的( ),A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【答案】:B5. 【2007全国 1,文 14】函数 y f (x ) 的图像与函数ylog x (x 0) 的图像关于直线3y x 对称,则 f (x ) ____________。

新课标Ⅱ2018年高考数学总复习专题02函数分项练习含解析文20171001363

新课标Ⅱ2018年高考数学总复习专题02函数分项练习含解析文20171001363

专题02 函数一.基础题组1. 【2017新课标2,文8】函数f(x)ln(x22x8)的单调递增区间是A.(,2)B.(,1)C.(1,)D.(4,)【答案】D【考点】复合函数单调区间【名师点睛】求函数单调区间的常用方法:(1)定义法和导数法,通过解相应不等式得单调区间;(2)图象法,由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集:二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(3)利用复合函数“同增异减”的原则,此时需先确定函数的单调性.2. 【2007全国2,文4】以下四个数中的最大者是( )(A) (ln2)2 (B) ln(ln2) (C) ln 2(D) ln2【答案】:D【解析】3. 【2006全国2,文4】如果函数y f(x)的图像与函数y32x的图像关于坐标原点对称,则y f(x)的表达式为( )(A)y2x3(B)y2x3(C)y2x3(D)y2x3【答案】D【解析】任取两个点在原函数上,经过原点对称,即(x,y)变为(-x,-y),即y32x,所以1y f(x)的表达式为y2x 3.4. 【2005全国3,文5】设13x ,则7()A.-2<x<-1 B.-3<x<-2 C.-1<x<0 D.0<x<1 【答案】A1【解析】∵3x,∴xlog7,∴-2<x<-1.37ln2ln3ln55. 【2005全国3,文6】若a,b,c,则235()A.a<b<c B.c<b<a C.c<a<b D.b<a<c【答案】C6.【2014全国2,文15】偶函数y f(x)的图像关于直线x 2对称,f(3)3,则f (1) =________.【答案】3【解析】因为y f(x)的图像关于直线x 2对称,故f(3)f(1)3,又因为y f(x)是偶函数,故f (1)f(1)3.二.能力题组1. 【2013课标全国Ⅱ,文8】设a=log32,b=log52,c=log23,则().A.a>c>b B.b>c>aC.c>b>a D.c>a>b【答案】D【解析】∵log25>log23>1,∴log23>1>1log32>1log52>0,即log23>1>log32>log52>0,∴c>a>b.2. 【2010全国新课标,文6】如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0( 2,-2),角速度为1,那么点P到x轴的距离d关于时间t的函数图像大致为()2【答案】:C排除B.故选C项.3. 【2007全国2,文9】把函数y=e x的图象按向量a=(2,0)平移,得到y=f(x)的图象,则f(x)= ( )(A) e x+2 (B) e x-2 (C) e x-2 (D) e x+2【答案】:C【解析】把函数y=e x的图象按向量a=(2,0)平移,即把函数y=e x的图象向右平移2个单位,得到f(x)e x2.4. 【2017新课标2,文14】已知函数f(x)是定义在R上的奇函数,当x(,0)时,f x x3x2,则f(2).()2【答案】12【解析】f(2)f(2)[2(8)4]12.【考点】函数奇偶性【名师点睛】(1)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个3区间上的解析式,或充分利用奇偶性得出关于f(x)的方程,从而可得f(x)的值或解析式.(2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据f(x)f(x)0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.三.拔高题组1. 【2013课标全国Ⅱ,文12】若存在正数x使2x(x-a)<1成立,则a的取值范围是().A.(-∞,+∞)B.(-2,+∞)C.(0,+∞)D.(-1,+∞)【答案】:D|lg x|,0x10,2. 【2010全国新课标,文12】已知函数f(x)=1若a,b,c互不相等,且-x6,x10.2f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10) B.(5,6)C.(10,12) D.(20,24)【答案】:C【解析】由图知a,b,c有两个在(0,10]上,假设a,b∈(0,10],并有一个大于1一个小于1,不妨设a<1,b>1,则f(a)=|lg a|=-lg a=lg 1a,f(b)=|lg b|=lg b,∴1a=b.∴a·b·c=c,由图知c∈(10,12).43. 【2006全国 2,文 10】若 f (sin x ) 3 cos 2x , 则 f (cos x )( )(A )3cos 2x (B )3sin 2x (C )3 cos 2x (D )3 sin 2x【答案】C 【解析】∵ f (sin x ) 3 cos 2x 3 (1 2sin 2 x ) ,∴ f (t ) 3(1 2t 2 ) ,∴ f (cos x )3 (1 2 cos 2 x ) 2 2 cos 2 x 3cos 2x .4. 【2012全国新课标,文 16】设函数f (x )(x 1)2sin x x 21 的最大值为 M ,最小值为 m ,则M +m =__________.【答案】:25. 【2006全国 2,文 21】(本小题满分为14分) 设 aR ,函数若 f (x )0 的解集为A , B x |1 x 3,AB,f (x ) ax2x 2a .2求实数的取值范围。

专题2-1 函数及其表示讲-2018年高考数学一轮复习讲练测浙江版 含解析 精品

专题2-1 函数及其表示讲-2018年高考数学一轮复习讲练测浙江版 含解析 精品

第01节 函数及其表示 【考纲解读】【知识清单】1. 函数与映射的概念对点练习:设集合{}=,,A a b c ,{}=0,1B ,试问:从A 到B 的映射共有几个? 【答案】2.函数的定义域、值域(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.对点练习:若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( )【答案】B【解析】A中函数定义域不是[-2,2],C中图象不表示函数,D中函数值域不是[0,2].3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.对点练习:若函数满足关系式,则的值为()A. 1B. -1C.D.【答案】A【解析】试题分析:因为函数满足关系式,所以,用代换,可得,联立方程组可得,故选A.4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.对点练习:【2017届湖南郴州监测】已知211,0()2(1),0x x f x x x ⎧+≤⎪=⎨⎪-->⎩,则使()1f a =-成立的值是____________. 【答案】42-或【考点深度剖析】函数的概念,经常与函数的图象和性质结合考查,有时以小题的面目出现,有时渗透于解答题之中.分段函数表示一个函数,不是几个函数,从近几年高考命题看,考查力度有加大趋势,与之相关的题目,往往有一定的难度,关键是与基本初等函数结合,要求不但要理解分段函数的概念,更要掌握基本初等函数的图象和性质.【重点难点突破】考点1 映射与函数的概念【1-1】给出四个命题:①函数是其定义域到值域的映射;②()f x =③函数2(N)y x x ∈=的图象是一条直线;④2()x f x x=与()g x x =是同一个函数.其中正确的有( )A .1个B .2个C .3个D .4个 【答案】A【解析】(1)由函数的定义知①正确.②中满足()f x 正确.③中2(N)y x x ∈=的图象是一条直线上的一群孤立的点,所以③不正确.④中2()x f x x=与()g x x =的定义域不同,∴④也不正确.故选A .【1-2】设集合,则下列对应中不能构成到的映射的是( ) A. B. C.D.【答案】B【解析】试题分析:当时,集合中任意元素,在中都有唯一的元素与之对应,所以对应到的映射;当时,集合中没有元素与之对应,所以对应不是到的映射;当时,集合中任意元素,在中都有唯一的元素与之对应,所以对应到的映射;当时,集合中任意元素,在中都有唯一的元素与之对应,所以对应到的映射,故选B.【1-3】下列两个对应中是集合错误!未找到引用源。

2018年高考数学分类汇编:专题二函数及其性质

2018年高考数学分类汇编:专题二函数及其性质

《2018年高考数学分类汇编》第二篇:函数图像及其性质一、选择题1.【2018全国一卷5】设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =2.【2018全国一卷9】已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3.【2018全国二卷3】函数的图像大致为4.【2018全国二卷10】若在是减函数,则的最大值是A .B .C .D .5.【2018全国二卷11】已知是定义域为的奇函数,满足.若,则A .B .0C .2D .506.【2018全国三卷12】12.设,,则A .B .C .D .7.【2018天津卷5】已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 ()2e e x xf x x --=()cos sin f x x x =-[,]a a -a π4π23π4π()f x (,)-∞+∞(1)(1)f x f x -=+(1)2f =(1)(2)(3)(50)f f f f ++++=…50-0.2log 0.3a =2log 0.3b =0a b ab +<<0ab a b <+<0a b ab +<<0ab a b <<+(A) a b c >>(B) b a c >>(C) c b a >>(D) c a b >>8.【2018全国三卷7】函数的图像大致为9.【2018浙江卷5】函数y =||2x sin2x 的图象可能是A .B .C .D .10.【2018上海卷16】设D 是含数1的有限实数集,f x ()是定义在D 上的函数,若f x ()的图像绕原点逆时针旋转π6后与原图像重合,则在以下各项中,1f ()的可能取值只能是( )(A(B(C(D )0二、填空题1.【2018全国三卷15】函数在的零点个数为________.2.【2018天津卷14】已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++≤=⎨-+->⎩若关于x 的方程()f x ax =恰有2个互异的实数解,则a 的取值范围是 .422y x x =-++()πcos 36f x x ⎛⎫=+ ⎪⎝⎭[]0π,3.【2018江苏卷5】函数()f x =的定义域为 .4.【2018江苏卷9】函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩-则((15))f f 的值为 .5.【2018浙江卷15】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎪⎨-+<⎪⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________. 6.【2018上海卷4】设常数a R ∈,函数f x x a =+()㏒₂(),若f x ()的反函数的图像经过点31(,),则a= . 7.【2018上海卷7】已知⎭⎬⎫⎩⎨⎧---∈3,2,1,21,21,1,2α,若幂函数αx x f =)(为奇函数,且在0+∞(,)上速减,则α=_____ 8.【2018上海卷11】已知常数a >0,函数ap x f x x +=22)(的图像经过点65p p ⎛⎫ ⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p qpq +=,则a =__________三.解答题1.【2018上海卷19】(本题满分14分,第1小题满分6分,第2小题满分8分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时,某地上班族S 中的成员仅以自驾或公交方式通勤,分析显示:当S 中()%0100x x <<的成员自驾时,自驾群体的人均通勤时间为⎪⎩⎪⎨⎧<<-+≤<=10030,9018002300,30)(x x x x x f (单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题:I )当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间? II )求该地上班族S 的人均通勤时间g x ()的表达式;讨论g x ()的单调性,并说明其实际意义. 参考答案 一、选择题1. D2.C3.B4.A5.C6.B7.D8.D9.D 10.B 7. 解析:3.0log 2.0=a ,3.0log 2=b ,2.0log3.0log 1log 2.02.02.0<< ,5.0log 3.0log 22<10<<∴a ,1-<∴b又2log 2.0log 113.03.0+=+=+abba b a4.0log 3.0=13.0log 3.0=< 0<+<∴b a ab 。

【配套K12】天津专用2018版高考数学总复习专题02函数分项练习含解析理

【配套K12】天津专用2018版高考数学总复习专题02函数分项练习含解析理

专题02 函数一.基础题组1.【2005天津,理9】设()1f x -是函数()()()112xx f x a a a -=->的反函数,则使()11f x ->成立的的取值范围为( )A 、21(,)2a a-+∞ B 、21(,)2a a --∞ C 、21(,)2a a a - D 、(,)a +∞ 【答案】A【解析】1a >时,()f x 单调增函数,所以()()()()()21111112a f x f fx f x f a--->⇔>⇔>=。

本题答案选A12.【2005天津,理10】若函数()()()3log 0,1a f x x ax a a =->≠在区间1(,0)2-内单调递增,则的取值范围是( )A 、1[,1)4B 、3[,1)4C 、9(,)4+∞ D 、9(1,)4【答案】B【解析】记()3g x x ax =-,则()2'3g x x a =-排除A 本题答案选B3.【2005天津,理16】设()f x 是定义在R 上的奇函数,且()y f x =的图象关于直线12x =对称,则()()()()()12345f f f f f ++++=__________。

【答案】0【解析】()()00f f -=-得()00f = 假设()0f n =因为点(n -,0)和点(1,0n +)关于12x =对称,所以()()()10f n f n f n +=-=-= 因此,对一切正整数都有:()0f n =从而:()()()()()123450f f f f f ++++= 本题答案填写:04.【2007天津,理5】函数()2log 42(0)y x x =++>的反函数是( )A.142(2)x x y x +=->B.142(1)x x y x +=->C.242(2)x x y x +=->D.242(1)x x y x +=->【答案】C 【解析】原函数过(4,1)-故反函数过(1,4)-从而排除A 、B 、D ,故选C5.【2007天津,理7】在R 上定义的函数()f x 是偶函数,且()f x (2)f x =-.若()f x 在区间[1,2]上是减函数,则()f x ( ) A.在区间[2,1]--上是增函数,在区间[3,4]上是减函数 B.在区间[2,1]--上是增函数,在区间[3,4]上是减函数 C.在区间[2,1]--上是减函数,在区间[3,4]上是增函数D.在区间[2,1]--上是减函数,在区间[3,4]上是增函数【答案】B 【解析】6.【2007天津,理9】设,,a b c 均为正数,且11222112log ,log ,log ,22b caa b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则( )A.a b c <<B.c b a <<C.c a b <<D.b a c <<【答案】A 【解析】由122log a a=可知0a >21a ⇒>121log 102a a ⇒>⇒<<,由121log 2bb ⎛⎫= ⎪⎝⎭可知0b >⇒120log 1b <<112b ⇒<<,由21log 2cc ⎛⎫= ⎪⎝⎭可知0c >20log 112c c ⇒<<⇒<<,从而a b c <<.故选A7.【2008天津,理7】设函数()()1011<≤-=x xx f 的反函数为()x f 1-,则(A) ()x f 1-在其定义域上是增函数且最大值为1 (B) ()x f 1-在其定义域上是减函数且最小值为0 (C) ()x f 1-在其定义域上是减函数且最大值为1 (D) ()x f 1-在其定义域上是增函数且最小值为0【答案】D8.【2008天津,理9】已知函数()x f 是R 上的偶函数,且在区间[)+∞,0上是增函数.令⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan,75cos,72sinπππf c f b f a ,则 (A) c a b << (B) a b c << (C) a c b << (D) c b a << 【答案】A【解析】5(cos )(c 2os )77b f f ππ=-=,5(tan )(t 2an )77c f f ππ=-= 因为2472πππ<<,所以220cos sin 1tan 7772πππ<<<<,所以b a c <<,选A .9.【2009天津,理4】设函数x x x f ln 31)(-=,则y =f(x)( )A.在区间(e 1,1),(1,e)内均有零点B.在区间(e 1,1),(1,e)内均无零点C.在区间(e 1,1)内有零点,在区间(1,e)内无零点D.在区间(e1,1)内无零点,在区间(1,e)内有零点【答案】D 【解析】由于131)1(+=e ef >0,31)1(=f >0,131)(-=e e f <0,故函数y =f(x)在区间(e1,1)内无零点,在区间 (1,e)内有零点.10.【2009天津,理8】已知函数⎪⎩⎪⎨⎧<-≥+=.0,4,0,4)(22x x x x x x x f .若f(2-a 2)>f(a),则实数a 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-1,2)C.(-2,1)D.(-∞,-2)∪(1,+∞) 【答案】C【解析】由题中的分段函数的图象知函数f(x)在R 上是增函数,则由f(2-a2)>f(a),可得2-a2>a,解之,得-2<a <1.11.【2010天津,理2】函数f (x )=2x+3x 的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2) 【答案】B12.【2011天津,理7】【答案】C 【解析】令4.32log=m ,6.34log=n ,3103log=l ,在同一坐标系下作出三个函数的图象,由图象可得 n l m >>,又∵xy 5=为单调递增函数, ∴b c a >>.13.【2012天津,理4】函数f (x )=2x+x 3-2在区间(0, 1)内的零点个数是( )A .0B .1C .2D .3 【答案】B14.【2012天津,理14】已知函数2|1|1x y x -=-的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________. 【答案】(0,1)∪(1,4)【解析】21,1|1||1||1||1|,111x x x x x y x x x x +>⎧-+-===⎨-+<--⎩函数y=kx -2过定点(0,-2),由数形结合: kAB <k <1或1<k <kAC , ∴0<k <1或1<k <4.15.【2013天津,理7】函数f (x )=2x|log 0.5x |-1的零点个数为( ).A .1B .2C .3D .4 【答案】B【解析】函数f(x)=2x|log0.5x|-1的零点也就是方程2x|log0.5x|-1=0的根,即2x|log0.5x|=1,整理得|log0.5x|=12x ⎛⎫ ⎪⎝⎭.令g(x)=|log0.5x|,h(x)=12x⎛⎫ ⎪⎝⎭,作g(x),h(x)的图象如图所示.因为两个函数图象有两个交点,所以f(x)有两个零点.16.【2014天津,理4】函数212log 4f x x 的单调递增区间是( )(A )0, (B ),0 (C )2, (D ),2【答案】D . 【解析】考点:复合函数的单调性(单调区间).17. 【2017天津,理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为(A )a b c << (B )c b a << (C )b a c << (D )b c a <<【答案】C【解析】因为()f x 是奇函数且在R 上是增函数,所以当0x >时,()0f x >,从而()()g x xf x =是R 上的偶函数,且在[0,)+∞上是增函数,22(log 5.1)(log 5.1)a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以0.8202log 5.13<<<,0.82(2)(log 5.1)(3)g g g <<,所以b a c <<,故选C .【考点】指数、对数、函数的单调性与奇偶性【名师点睛】比较大小是高考的常见题型,指数式、对数式的大小比较要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性、奇偶性等进行大小比较,要特别关注灵活利用函数的奇偶性和单调性,数形结合进行大小比较或解不等式.18.【2017天津,理8】已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是(A )47[,2]16-(B )4739[,]1616-(C )[23,2]- (D )39[23,]16-【答案】A222222x x x x+≥⨯=(当2x =时取等号),所以232a -≤≤. 综上,47216a -≤≤.故选A . 【考点】不等式、恒成立问题、二次函数、基本不等式 【名师点睛】首先将()||2xf x a ≥+转化为()()22x x f x a f x --≤≤-,涉及分段函数问题要遵循分段处理的原则,分别对的两种不同情况进行讨论,针对每种情况根据的范围,利用极端原理,求出对应的的取值范围. 二.能力题组1.【2006天津,理10】已知函数)(x f y =的图象与函数xa y =(0>a 且1≠a )的图象关于直线x y =对称,记()()[()(2)1]g x f x f x f =+-.若)(x g y =在区间]2,21[上是增函数,则实数的取值范围是( )A .),2[+∞B .)2,1()1,0(C .)1,21[D .]21,0( 【答案】D范围是]21,0(,选D. 2.【2008天津,理16】设1>a ,若仅有一个常数c 使得对于任意的[]a a x 2,∈,都有[]2,a a y ∈满足方程c y x a a =+log log ,这时,的取值的集合为 . 【答案】{2}【解析】由已知得c a y x =,单调递减,所以当[,2]x a a ∈时,11[,]2c c a y a --∈所以1122log 223a c c a c a a c a --⎧⎧⎪⇒⎨⎨⎩⎪⎩≥+≥≤≤,因为有且只有一个常数符合题意,所以2log 23a +=,解得2a =,所以的取值的集合为{2}.3.【2013天津,理8】已知函数f (x )=x (1+a |x |).设关于x 的不等式f (x +a )<f (x )的解集为A .若⎣⎢⎡⎦⎥⎤-12,12⊆A ,则实数a 的取值范围是( ). A .15⎫-⎪⎪⎝⎭ B .13⎫-⎪⎪⎝⎭C .15130,22⎛⎫⎛⎫-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭D .15,2⎛-∞ ⎝⎭【答案】A【解析】f(x)=x(1+a|x|)=22,0,,0.ax x x ax x x ⎧+≥⎨-+<⎩若不等式f(x +a)<f(x)的解集为A ,且11,22⎡⎤-⎢⎥⎣⎦A ⊆,则在区间11,22⎡⎤-⎢⎥⎣⎦上,函数y=f(x+a)的图象应在函数y=f(x)的图象的下边.由图可知,若f(x+a)<f(x)的解集为A,且11,22⎡⎤-⎢⎥⎣⎦A⊆,只需1122f a f⎛⎫⎛⎫-+<-⎪ ⎪⎝⎭⎝⎭即可,则有2211112222a a a a⎛⎫⎛⎫⎛⎫--++-+<---⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(a<0),整理,得a2-a-1<01515a-+<<∵a<0,∴a∈152⎛⎫⎪ ⎪⎝⎭.综上,可得a的取值范围是152⎛⎫⎪ ⎪⎝⎭.4. 【2015高考天津,理7】已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为( ) (A )a b c << (B )a c b << (C )c a b << (D )c b a << 【答案】C【考点定位】1.函数奇偶性;2.指数式、对数式的运算.5. 【2015高考天津,理8】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则的取值范围是( )(A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭【答案】D【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩【考点定位】求函数解析、函数与方程思、数形结合.三.拔高题组1.【2010天津,理16】设函数f (x )=x 2-1,对任意x ∈32,+∞),f (x m )-4m 2f (x )≤f (x -1)+4f (m )恒成立,则实数m 的取值范围是__________.【答案】(-∞,-2]∪2,+∞) 【解析】解析:原不等式可化为22x m-1-4m2(x2-1)≤(x-1)2-1+4m2-4, 化简,得(1+4m2-21m )x2≥2x+3恒成立. ∵x∈32,+∞), ∴1+4m2-21m ≥223x x +恒成立. 令g(x)=223x x +,x∈32,+∞),2.【2011天津,理8】对实数与,定义新运算 “⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数 ()()22()2,.f x x x x x R =--∈若函数()y f x c =-的图像与轴恰有两个公共点,则实数的取值范围是A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭ 【答案】B 【解析】()()⎪⎩⎪⎨⎧>----≤----=12,12,2)(222222x x x x x x x x x x f ⎪⎪⎩⎪⎪⎨⎧>-<-≤≤--=23,1,231,222x x x x x x 或 则()x f 的图象如图∵c x f y -=)(的图象与轴恰有两个公共点,∴)(x f y =与c y =的图象恰有两个公共点,由图象知2-≤c ,或431-<<-c . 3.【2014天津,理14】已知函数23f x x x ,x R .若方程10f x a x 恰有4个互异的实数根,则实数的取值范围为__________.【答案】()()0,19,+∞.【解析】230x a x a ,由0,得2340a a ,解得1a 或9a .又当0a 时,f x 与g x 仅两个交点,01a ∴<<或9a >.(方法二)显然1a ,∴231x x a x .令1t x ,则45a t t .∵,,444t t ,∴45,19,t t .结合图象可得01a 或9a .考点:方程的根与函数的零点.4. 【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R上单调递减,且关于x 的方程│f (x )│=2-x 恰有两个不相等的实数解,则a 的取值范围是(A )(0,23] (B )23,34] (C )13,23]{34} (D )13,23){34} 【答案】C【解析】 【考点】函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.5.【2016高考天津理数】已知f (x )是定义在R 上的偶函数,且在区间(−∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (2-),则a 的取值范围是______.【答案】13(,)22【解析】试题分析:由题意()f x 在(0,)+∞上单调递减,又()f x 是偶函数,则不等式1(2)(2)a f f ->可化为1(2)a f f ->,则12a -<112a -<,解得1322a <<. 【考点】利用函数性质解不等式【名师点睛】利用数形结合解决不等式问题时,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:(1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效.(2)借助函数图象的性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需要注意的问题是准确把握代数式的几何意义实现由“数”向“形”的转化.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题02 函数1. 【2006高考北京理第5题】已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么的取值范围是( ) (A )(0,1) (B )1(0,)3(C )11[,)73(D )1[,1)7【答案】C2. 【2006高考北京理第6题】在下列四个函数中,满足性质: “对于区间(1,2)上的任意1212,()x x x x ≠,1221|()()|||f x f x x x -<-恒成立”的只有( )(A )1()f x x=(B )()||f x x =(C )()2xf x =(D )2()f x x =【答案】A 【解析】2112121212x x 111|||||x x x x x x |x x |--==-|12x x 12∈,(,)12x x ∴>1121x x ∴<1∴ 1211|x x -|<|x 1-x 2|故选A 3. 【2007高考北京理第2题】函数()3(02)xf x x =<≤的反函数的定义域为( ) A.(0)+∞, B.(19], C.(01), D.[9)+∞,【答案】B 【解析】试题分析:函数()()302xf x x =<≤的值域为(]1,9,反函数的定义域为(]1,9,选B.【考点】原函数与反函数的定义域和值域的关系,指数函数的值域.4. 【2007高考北京理8题】对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数. 能使命题甲、乙、丙均为真的所有函数的序号是( ) A.①③B.①②C.③D.②【答案】D 【解析】试题分析:函数①()()lg 21f x x =-+,函数()()2lg 1f x x +=+是偶函数,且()f x 在(),2-∞上是减函数,在()2,+∞上是增函数,但对命题丙:()()()()12lg 1lg 21lg21x f x f x x x x ++-=+--+=-+在(),0-∞时,()()112lglglg 121321x x x x x +-+⎛⎫==+ ⎪-+--+⎝⎭为减函数,排除函数①,对于函数③,()()cos 2f x x =+函数()()2cos 2f x x +=+不是偶函数,排除函数③,只有函数②()()22f x x =-符合要求,选D .【考点】函数的奇偶性和单调性5. 【2008高考北京理第2题】若0.52a =,πlog 3b =,22πlog sin 5c =,则( ) A .a b c >> B .b a c >>C .c a b >>D .b c a >>【答案】 A考点:函数的映射关系,函数的图像。

6. 【2008高考北京理第3题】“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】 B考点:充要条件,反函数,映射关系,函数单调性。

7. 【2009高考北京理第3题】为了得到函数3lg 10x y +=的图像,只需把函数lg y x =的图像上所有的点 ( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度 【答案】C 【解析】试题分析: A .()()lg 31lg103y x x =++=+, B .()()lg 31lg103y x x =-+=-,C .()3lg 31lg 10x y x +=+-=, D .()3lg 31lg 10x y x -=--=.故应选C.考点:函数图象的平移变换.8. 【2011高考北京理第6题】根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为()x A f x x A <=≥(A ,c 为常数)。

已知工人组装第4件产品用时30分钟,组装第A件产品时用时15分钟,那么c 和A 的值分别是 A. 75,25B. 75,16C. 60,25D. 60,16【答案】D【解析】由条件可知,x A ≥时所用时间为常数,所以组装第4件产品用时必然满足第一个分段函数,即(4)3060f c ==⇒=,()1516f A A ==⇒=,选D 。

9. 【2011高考北京理第8题】设A (0,0),B (4,0),C (4+t ,4),D (t ,4)(t R ∈),记N (t )为平行四边形ABCD 内部(不含边界)的整点的个数,其中整数点是指横、纵坐标都是整数的点,则函数N (t )的值域为 A .{ 9,10,11 }B .{ 9,10,12 }C .{ 9,11,12 }D .{ 10,11,12 }【答案】C【解析】如下图,在t=0,0<t<1,t=1时分别对应点为9,11,12,选C 。

图1 t=0时情况点分布(9点)A(0,0)4AB =,所以线段k k A B 上的整点有3个或4个,所以()333412N t ⨯≤≤⨯=,不难求得点1233,1,,2,,3424t t t A A A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ①当不是整数时,123,,A A A 都不是整点,()12N t =; ②当为4n 型整数时,123,,A A A 均为整点,()9N t =;③当为42n +型整数时,123,,A AA 中只有2A 是整点,()11N t =;④当为41n +或43n +型整数时,都不是整数,()12N t =(以上表述中为整数)B(4,0)A(0,0)图3 t=1时情况点分布(12点)A(0,0)上面4种情形涵概了的所有可能取值,所以()N t 的值域为{ 9,11,12 },如图所示,故选C 10. 【2013高考北京理第5题】函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=( ). A .e x +1 B .ex -1C .e-x +1D .e-x -1【答案】D考点:函数图像的平移.11. 【2014高考北京理第2题】下列函数中,在区间(0,)+∞上为增函数的是( )A .y =.2(1)y x =- C .2x y -= D .0.5log (1)y x =+【答案】A 【解析】试题分析:对A ,函数1+=x y 在),1[+∞-上为增函数,符合要求;对B ,2)1(-=x y 在)1,0(上为减函数,不符合题意; 对C ,xy -=2为),(+∞-∞上的减函数,不符合题意; 对D ,)1(log 5.0+=x y 在),1(+∞-上为减函数,不符合题意. 故选A.考点:函数的单调性,容易题.12.【2016高考北京理数】已知,y R ∈,且0x y >>,则( )A.110x y-> B.sin sin 0x y -> C.11()()022x y -< D.ln ln 0x y +>【答案】C考点: 函数性质【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法. (2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;(3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.13. 【2015高考北京,理7】如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是( )A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C【考点定位】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,体现了数形结合思想.14.【2017高考北京理数第5题】已知函数1()3()3x xf x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数【答案】A 【解析】试题分析:()()113333x xx x f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以该函数是奇函数,并且3x y =是增函数,13xy ⎛⎫= ⎪⎝⎭是减函数,根据增函数−减函数=增函数,可知该函数是增函数,故选A.【考点】函数的性质【名师点睛】本题属于基础题型,根据()f x -与()f x 的关系就可以判断出函数的奇偶性,判断函数单调性的方法:(1)利用平时学习过的基本初等函数的单调性;(2)利用函数图象判断函数的单调性;(3)利用函数的四则运算判断函数的单调性,如:增函数+增函数=增函数,增函数−减函数=增函数;(4)利用导数判断函数的单调性.15. 【2005高考北京理第13题】对于函数)(x f 定义域中任意的)(,2121x x x x ≠,有如下结论: ①)()()(2121x f x f x x f ⋅=+; ②)()()(2121x f x f x x f +=⋅;③;0)()(2121>--x x x f x f ④.2)()()2(2121x f x f x x f +<+ 当x x f lg )(=时,上述结论中正确结论的序号是 .【答案】②③ 【解析】试题分析: 对于①②可以用()lg f x x =直接验证即可②满足题意 对于③④如右图所示:对于()lg f x x =图象上任意不同 两点1122(,())(,())A x f x B x f x , 1212()()0AB f x f x k x x -=>-显然成立(可以用1'()0(0)ln10f x x x =>>)故③正确再有AB 中点C (1212()(),)22x x f x f x ++过C 作DC x ⊥轴交()f x 于D (12,)2D x x y + D 在()f x 上有:1212()()()22D C x x f x f x y f y ++=>=故④不正确 考点:对数的运算性质。

相关文档
最新文档