振动测试技术资料
振动测试技术学习资料
一、简谐振动有时域测试参数简谐振动中常用的参数为位移、速度、加速度、激振力、振幅和振动频率,其中前五个参数属于时域测试参数。
二、振动测试及信号分析的任务振动测试及信号分析主要有以下五个方面的任务:(1)验证振动理论和计算结果的准确性,也被称为实验验证或工程振动测试中的正问题。
(2)为改进结构优化设计提供充分的实验依据。
(3)查清外界干扰力的激振水平和规律,以便采取措施来减少或控制振动。
(4)检测诊断设备故障。
(5)振动控制。
三、压电式、涡流式及磁电式传感器的机电变化原理。
1、压电式传感器的机电变换原理某些晶体(如人工极化陶瓷、压电石英晶体等)在一定的方向的外力作用下或承受变形时,它的晶体面或极化面上将有电荷产生。
这种从机械能(力或变形)到电能(电荷或电场)的变换称为正压电效应。
而从电能(电场或电压)到机械能(变形或力)的变换称为逆压电效应。
因此利用晶体的压电效应,可以制成测力传感器。
在振动测量中,由于F=ma,所以压电式传感器是加速度传感器。
2、电涡流传感器的机电变换原理电涡流传感器是一种相对式的非接触传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的,主要应用于静位移的测量、振动位移的测量、旋转机械中检测转轴的振动测量。
3、电动式(磁电式)传感器的机电变换原理电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感应出电动势,因此利用这一原理而产生的传感器称之为电动式(磁电式)传感器。
它实际上是速度传感器。
四、选择振动传感器的原则选择拾振器类型时,要根据测试的要求(如要求测位移、或测速度、加速度、力等)及被测物体的振动特性(如待测的频率范围,估计的振幅范围等),应用环境情况(如环境温度、湿度、电磁场干扰情况等)结合各类拾振器本身的各项特性指标来考虑。
下列情况可用位移拾振器:(1)位移幅值特别重要时(例如,不允许某振动部件在振动时碰到别的物体,即要求振幅时)。
振动测试与分析报告
振动测试与分析报告摘要:振动测试与分析是一种重要的技术手段,可以用于评估和优化机械设备的性能和可靠性。
本报告通过对某台机械设备的振动测试与分析,探讨其振动特性、故障诊断以及优化方案,为设备运营和维护提供科学依据。
一、引言振动测试与分析在现代机械设备的研发、生产和维护中起着至关重要的作用。
通过监测机械设备的振动信号,可以有效评估其工作状态和性能,并提前发现潜在的故障。
本次振动测试与分析的目的是对某台机械设备的振动特性进行深入研究,以提供相关的优化方案和建议。
二、实验装置及方法本次实验选取了一台工业用离心泵作为研究对象。
实验装置主要由振动传感器、数据采集设备和分析软件组成。
在进行振动测试之前,首先对设备进行了详细的检查和维护,确保设备正常运行。
然后,将振动传感器安装在设备的关键位置,并通过数据采集设备将振动信号采集下来。
三、振动特性分析通过对振动信号进行频域分析和时域分析,可以获得机械设备的振动特性。
频域分析可以将振动信号转换为频谱图,从而确定振动信号的主要频率成分。
时域分析可以获得振动信号的时间变化特征,包括振动的幅值、相位等。
通过对实验数据的分析,我们得到了离心泵在不同工况下的振动特性,并与设备的设计参数进行对比。
四、故障诊断分析振动信号中的异常振动往往与设备的故障有关。
根据振动信号的频谱图和时域特征,可以判断设备是否存在故障,并定位具体的故障位置。
本次实验中,经过振动信号的分析,我们发现离心泵在高速运行时出现了明显的振动异常。
进一步的故障诊断分析表明,该异常是由设备轴承的磨损引起的。
五、优化方案与建议针对离心泵存在的振动问题,我们提出了几种优化方案和建议。
首先,应对设备轴承进行维护和更换,以避免由于磨损而引起的振动问题。
其次,可以通过增加附加的减振装置来减少设备的振动。
此外,优化设备的结构设计和制造工艺也是减少振动的有效手段。
六、结论通过振动测试与分析,我们深入研究了某台离心泵的振动特性以及故障诊断。
振动测试与分析
振动测试与分析引言:在各行各业中,振动测试与分析是一项重要的技术,它可以帮助我们了解各种物体和系统的振动特性,以及找出潜在的问题并提供解决方案。
本文将介绍振动测试与分析的基本原理和方法,以及其在不同领域的应用。
一、振动测试的原理振动测试是通过将传感器安装在被测试物体上,测量物体在振动过程中产生的加速度或速度来获取振动信号。
传感器将振动信号转换为电信号,再经过信号放大和采样,最终得到振动波形。
常用的传感器包括加速度计、速度计和位移传感器。
二、振动测试的方法1.自由激振法:在物体上施加外力进行振动,然后测量物体的振动响应。
这种方法适用于研究物体的振动特性和固有频率。
2.强迫激振法:通过施加特定的激励信号,使物体以特定频率和幅度振动。
这种方法常用于测试物体的耐振性和振动特性。
3.模态分析法:通过激励物体的不同模态形式,测量物体不同模态的振动响应,从而研究物体的模态特性和阻尼特性。
三、振动测试与分析的应用1.机械工程领域:振动测试与分析在机械工程中有广泛的应用。
例如,在汽车工业中,振动测试可以用于测试汽车零件的耐用性和可靠性,预测零件的寿命。
在航空航天领域,振动测试可以用于测试航天器的结构强度和振动特性,以提高飞行安全性。
2.电子工程领域:振动测试与分析在电子工程领域也有重要的应用。
例如,在手机制造业中,振动测试可以用于测试手机零件的质量,确保手机在使用过程中的稳定性和可靠性。
另外,在电子设备的设计中,振动测试可以用于优化电路板的设计,减少振动对电子元器件的损坏。
3.土木工程领域:振动测试与分析在土木工程领域有助于评估建筑物和结构的安全性。
例如,在地震工程中,振动测试可以用于评估建筑物的抗震性能,预测地震情况下的结构变形和破坏程度。
此外,振动测试还可以用于监测桥梁、隧道等工程结构的安全状况。
4.生物医学领域:振动测试与分析在生物医学领域中也有应用。
例如,医学领域中常用的超声波检测技术,就是利用振动信号来获取人体组织和器官的内部信息。
3-振动测试分析技术
相对轴位移
§ 3.3振动测试方案
3 测试位置(监测点)
相对轴膨胀
§ 3.3 振动测试方案
4 测试周期:
定期、随机、巡检、在线监测,企业的要求, 国家的规定,分析的需要等。
§ 3.3 振动测试方案
5 振动评定标准:
• 绝对法
根据相应的国际标准、国家标准、行业标准等, 如: ISO, GB, API 等。
直接测量参数的选择
振动位移、振动速度和振动加速度三者的幅值之间的关系 与频率有关,所以,在低频振动场合,加速度的幅值不大 ;在高频振动场合,加速度幅值较大。考虑到三类传感器 及其后续仪器的特性,并根据振动频率范围而推荐选用振 动量测量的范围。
§ 3.2 振动测试的仪器设备
传感器的合理选择
灵敏度
传感器的灵敏度越高,可以感知越小的变化量,即被测量 稍有微小变化时,传感器即有较大的输出。但灵敏度越高 ,与测量信号无关的外界噪声也容易混入,并且噪声也会 被放大。因此,灵敏度高的传感器往往要求有较大的信噪 比。过高的灵敏度会影响其适用的测量范围。
轴承上
75
50
轴上(靠近 轴承)
150
100
3000 25 50
3600 ≥6000
21
12
44
20
§ 3.2 振动测试方案
5 振动评定标准:
绝对法
在制定上述振动标准时,假设: 机组振动为单一频率的正弦波振动; 轴承振动和转子振动基本上有一固定的比
值,因此可利用轴承振动代表转子振动; 轴承座在垂直、水平方向上的刚度基本上
§ 3.2 振动测试的仪器设备
传感器的合理选择 线性范围
传感器都有一定的线性范围,在线性范围内输出与输入成 比例关系。线性范围愈宽,表明传感器的工作量程愈大。
震动测试方案
震动测试方案引言震动测试是一种广泛应用于产品质量控制和可靠性评估的测试方法。
在产品设计和制造的过程中,震动测试可用于模拟实际使用情况下的振动环境,并评估产品在振动环境下的性能和可靠性。
本文将介绍如何编制一份有效的震动测试方案,以确保测试的准确性和可重复性。
1. 目标和背景在编制震动测试方案之前,我们需要明确测试的目标和测试背景。
目标是指测试所要达到的目的,例如评估产品的可靠性、检测产品是否满足特定的振动要求等。
背景是指测试的背景信息,例如产品的使用环境、产品所需承受的振动力等。
2. 测试设备和工具为了进行有效的震动测试,我们需要准备相应的测试设备和工具。
以下是常用的测试设备和工具:•震动台:用于模拟实际的振动环境,具有可调节的振动频率和振动幅度。
•加速度计:用于测量产品在振动过程中的加速度,以评估产品的耐震性能。
•控制器:用于控制震动台的振动频率和振动幅度。
•数据采集器:用于采集和记录测试过程中的振动数据。
•计算机:用于分析和处理采集到的振动数据。
3. 测试方法和步骤为了确保测试的准确性和可重复性,我们需要制定详细的测试方法和步骤。
以下是一般的测试方法和步骤:1.准备测试样品:选择代表性的产品样品作为测试对象,并进行必要的准备工作,例如固定产品样品到震动台上。
2.设置测试参数:根据产品的使用环境和振动要求,设置测试的振动频率和振动幅度。
3.开始测试:启动测试设备,开始进行振动测试。
4.采集数据:使用加速度计和数据采集器,采集产品在振动过程中的加速度数据。
5.分析数据:使用计算机软件对采集到的数据进行分析和处理,例如计算产品的最大加速度、频率响应等。
6.结果评估:根据测试结果进行评估,判断产品是否满足振动要求。
4. 预防措施和注意事项在进行震动测试时,我们需要做好相应的预防措施和注意事项,以确保测试的安全和准确性。
以下是一些常见的预防措施和注意事项:•使用适当的个人防护装备,如安全眼镜和手套。
•确保测试设备和工具的正常运行和维护。
振动测量技术-振动信号的频谱分析振动
振动测量技术-振动信号的频谱分 析振动
5.1.2 振动测量系统
1.振动测量方法分类 振动测量方法按振动信号转换的方式可分为
电磁式 激振器
交变电流通至电磁铁的激振线圈,产生周期性的 交变吸力,作为激振力
用于非接触激振,频率范围宽、 设备简单,振动波形差,激振 力难控制
电液式 激振器
用小型电动式激振器带动液压伺服油阀以控制油 缸,油缸驱动台面产生周期性正弦波振动
激振力大,频率较低,台面负 载大,易于自控和多台激振, 设备复杂
(2) 激振器 激振器是对试件施加某种预定要求的激
振力,使试件受到可控的、按预定要求振动 的装置。为了减少激振器质量对被测系统的 影响,应尽量使激振器体积小、重量轻。表 5.3列举了部分常用的激振器。
振动测量技术-振动信号的频谱分 析振动
表5.3 部分常用的激振设备
名称
工作原理
适用范围及优缺点
永磁式电 动激振器
振动测量技术-振动信号的频谱分 析振动
(3) 振动分析仪器
从拾振器检测到的振动信号和从激振点检测到的力信号 需经过适当的分析处理,以提取出各种有用的信息。目 前常见的振动分析仪器有测振仪、频率分析仪、FFT分 析仪和虚似频谱分析仪等。
1.测振仪 2.频率分析仪 3.FFT分析仪 4.虚拟频谱分析仪
振动测量技术-振动信号的频谱分 析振动
2. 电测法振动测量系统
干扰
激振
系统
测振传感器
中间变换电 路
信号发生器 功放
振动测试技术
任务4 振动测试技术铁路工程结构的振动试验中,常有大量的物理量如应力(应变)、位移、速度、加速度等,需要进行量测、记录和分析。
由于结构的动应变与静应变的测量元件、测量方法基本相同,不同之处在于需要采用动态应变仪进行量测。
振动参量可用不同类型的传感器予以感受拾起,并从被测量对象中引出,形成测量信号,将能量通过测量线路发送出去,再通过仪器仪表将振动过程中的物理量进行测量并记录下来。
传感器是振动测试系统中的一个重要组成部分,它具有独立的结构形式。
按照被测物理量来分类,传感器可以分为位移传感器、速度传感器和加速度传感器;按照工作原理来分类,传感器可以分为机械式传感器和电测传感器(包括磁电式、压电式、电感式、应变式)两大类。
在本节中,主要介绍各类振动参量测试仪器及传感器的基本原理、构造与使用方法。
一、惯性式传感器惯性式传感器有位移、速度及加速度传感器三种。
它的特点是直接对机械量(位移速度、加速度)进行测量,故输入、输出均为机械量。
常用的惯性式位移传感器有:机械式测振仪、地震仪等。
惯性式传感器的工作原理及其特性曲线在振动传感果中最具有代表性,其他类型传感器大都是在此基础上发展而得到的。
在惯性式传感器中,质量弹簧系统将振动参数转换成了质量块相对于仪器壳体的位移,使传感器可以正确反映振动体的位移、速度和加速度。
但由于测试工作的需要,传感器除应正确反映振动体的振动外,还应不失真地将位移、速度和加速度等振动参量转换为电量,以便用电量进行量测。
一般地,桥梁结构、厂房、民用建筑的一阶自振频率在零点几到十几赫兹之间,这就要求传感器具有很低的自振频率。
为降低an,必须加大质量块m。
因此一般惯性式位移传感器的体积较大也较重,使用时对被测系统有一定影响,特别对于一些质量较小的振动体就不太适用。
当被测对象振动频率与惯性式传感器的固有频率之比变化时,可以测量不同的振动参量。
更接近于物此时,测得的壳体位移接近于物体的位移。
若选用较大的阻尼系数,δ体位移,此时惯性式传感器可用于动位移的测量,故称为位移传感器。
振动监测技术
3.2 振动测试技术概述
加速度计 核心是一片压电晶体材料,通常为人工极化的铁电陶瓷,受到应
力作用时,无论是拉伸、压缩还是剪切,在它的两个极板上均出现与 所加应力成比例的电荷。
加速度传感器用得最广,不仅具有上述优点,且无需电源,自身 会产生电信号,没有运动件,不致被磨损,它体积小、质量轻、精度 高、适应温度范围广,便宜,通过积分电路可方便地获得速度和位移 信号。
(1)丹麦Brüel & Kjær公司是全世界最大的声学、振 动测量分析仪器的研究及制造公司,已具有六十 年的历史和丰富的经验,进入中国市场已有五十 多年。思百吉
(2)英国Prosig公司推出了一系列汽车测试新产品, 其中代表性的产品是P8000数据采集系统以及最新 版本的DATS软件分析系统。Prosig产品是实验室, 工作台或者野外条件下进行数据采集,分析和显 示的专家。
(2)滤波器选取感兴趣的频率,去除噪声。 (3)积分电路
加速度信号速度信号位移信号 (4)激振器对于静止的设备或非工作状态下的设备。(脉 冲锤) (4)测振仪(便携式测振仪)
有的测振仪带有电荷放大器,测量参数可调节,量程可调 节,灵敏度可调节,具有自校准功能,电路过载报警,后板可
接外部滤波器,及其它接口等特点。
响应或输出 机器在激励下产生的动态行为
振动诊断 对正运行或非工作状态的系统给以激励,测出响应,对数据
处理后,与事先制定的某些标准比较,进而判断系统内部结构的破坏、裂纹、磨
损、松脱、老化等各种影响正常运转的故障。
振动是机器运行伴生现象,它包含着丰富的机器运行状态的信息。一般
地,随着故障的出现和发展,机器的振动都会发生明显的变化。在正常运行状态
振动试验技术资料和数据处理和分析方法
振动试验技术和数据处理和分析方法振动试验是指评定产品在预期的使用环境中抗振力量而对受振动的实物或模型进展的试验。
依据施加的振动载荷的类型把振动试验分为正弦振动试验和随机振动试验两种。
正弦振动试验包括定额振动试验和扫描正弦振动试验。
扫描振动试验要求振动频率按肯定规律变化,如线性变化或指数规律变化。
振动试验主要是环境模拟,试验参数为频率范围、振动幅值和试验持续时间。
振动对产品的影响有:构造损坏,如构造变形、产品裂纹或断裂;产品功能失效或性能超差,如接触不良、继电器误动作等,这种破坏不属于永久性破坏,由于一旦振动减小或停顿,工作就能恢复正常;工艺性破坏,如螺钉或连接件松动、脱焊。
从振动试验技术进展趋势看,将承受多点掌握技术、多台联合感动技术。
简介振动试验是仿真产品在运输、安装及使用环境中所患病到的各种振动环境影响,本试验是模拟产品在运输、安装及使用环境下所患病到的各种振动环境影响,用来确定产品是否能承受各种环境振动的力量。
振动试验是评定元器件、零部件及整机在预期的运输及使用环境中的抵抗力量。
最常使用振动方式可分为正弦振动及随机振动两种。
正弦振动是试验室中常常承受的试验方法,以模拟旋转、脉动、震荡(在船舶、飞机、车辆、空间飞行器上所消灭的)所产生的振动以及产品构造共振频率分析和共振点驻留验证为主,其又分为扫频振动和定频振动两种,其严苛程度取决于频率范围、振幅值、试验持续时间。
随机振动则以模拟产品整体性构造耐震强度评估以及在包装状态下的运送环境,其严苛程度取决于频率范围、GRMS、试验持续时间和轴向。
振动又分为正弦振动、随机振动、复合振动、扫描振动、定频振动。
描述振动的主要参数有:振幅、速度、加速度。
振动试验包括响应测量、动态特性参量测定、载荷识别以及振动环境试验等内容。
响应测量主要是振级的测量。
为了检验机器、构造或其零部件的运行品质、安全牢靠性以及确定环境振动条件,必需在各种实际工况下,对振动系统的各个选定点和选定方向进展振动量级的测定,并记录振动量值同时间变化的关系(称为时间历程)。
振动测试方法
振动测试方法振动测试是指通过对物体进行振动实验,来获取物体在振动过程中的性能参数和振动特性的一种测试方法。
振动测试方法主要包括模态分析、频率响应分析、传递函数法等多种技术手段。
下面将详细介绍这些振动测试方法的原理和应用。
模态分析是振动测试中常用的一种方法,它通过对结构进行外部激励,然后测量结构的振动响应,从而确定结构的振动特性。
在进行模态分析时,通常会采用加速度传感器或激光测振仪等设备来测量结构的振动响应,并通过信号处理和分析来获取结构的固有频率、振型和阻尼比等参数。
模态分析可以帮助工程师了解结构的动力特性,为结构设计和改进提供重要参考。
频率响应分析是另一种常用的振动测试方法,它通过对结构施加不同频率的激励信号,然后测量结构的振动响应,从而得到结构的频率响应特性。
在进行频率响应分析时,通常会采用振动台、电磁振动器或冲击激励器等设备来对结构进行激励,并通过加速度传感器或位移传感器等设备来测量结构的振动响应。
频率响应分析可以帮助工程师了解结构在不同频率下的振动特性,对结构的动态响应和耦合效应进行分析和评估。
传递函数法是振动测试中一种重要的分析方法,它通过对结构施加输入信号,然后测量结构的输入和输出信号,从而建立结构的传递函数模型。
在进行传递函数法分析时,通常会采用激励信号和响应信号的频谱分析方法,通过信号处理和系统辨识技术来获取结构的传递函数模型。
传递函数法可以帮助工程师了解结构的振动响应特性和动态特性,为结构的控制和优化提供重要依据。
综上所述,模态分析、频率响应分析和传递函数法是振动测试中常用的方法,它们在工程领域中具有重要的应用价值。
通过对结构进行振动测试,可以全面了解结构的动力特性和振动特性,为结构设计、改进和故障诊断提供重要参考。
同时,振动测试方法的发展也为工程师提供了更多的技术手段和分析方法,为工程振动问题的解决提供了更多的可能性。
希望本文所介绍的振动测试方法能够为工程师在振动测试领域提供一定的参考和帮助。
振动测试技术
拱桥振动测试姓名:刘*学号:*******班级:研14-1班课程:振动测试技术年月:2015年7月18日目录一振动测试概述 (1)1 振动分类及描述 (1)2 振动基本参量表示方法 (1)3 振动测试仪器分类及配套使用 (3)4 窗函数的分类及用途 (4)5 信号采集及分析过程中出现的问题,怎样解决? (7)二、惯性式速度型与加速度型传感器 (8)1 惯性式速度传感器的分类 (8)2 压电式加速度传感器 (9)三振动特性参数的常用量测方法 (12)1 振动基本参数的量测 (12)2 简谐振动频率的量测 (12)3 机械系统固有频率的测量 (12)4 简谐振动幅值的测量: (12)5衰减系数的测量: (13)6结构动力特性参数量测 (13)7 稳态正弦激振及测试 (13)8 瞬态激振及测试 (14)9 随机激振及测试 (15)四题目(结构设计) (16)1 结构设计资料及试验要求 (16)2.试验目的 (18)3.试验方法 (18)4 结果分析 (20)五概念 (22)1 功率谱 (22)2 自相关函数 (22)3 互相关函数 (23)4 相干函数 (23)5 传递函数 (24)六模态分析 (26)1 概念 (26)2 方法分类及理解 (26)一振动测试概述1 振动分类及描述按照运动的表现形式,振动可以分为确定性和非确定性振动(即随机振动)。
确定性振动又分为周期性和非周期性振动。
周期性振动分为简谐振动和复杂周期振动。
非周期运动又分为准周期和瞬态振动。
非确定性振动分为平稳随机和非平稳随机,平稳随机又分为各态历经和非各态历经。
按振动激励类型分类,振动可分为随机自由振动和随机强迫振动。
按振动位移的特征分类,振动可分为:横向振动(振动体上的质点在垂直于轴线的方向产生位移的振动)、纵向振动(振动体的质点沿轴线方向产生位移的振动)和扭转振动(振动体上的质点沿轴线方向产生位移的振动)。
周期运动的最简单形式是简谐振动。
振动测试技术方案
振动测试技术方案振动测试技术方案1. 背景介绍振动测试技术是工程领域中的一项重要技术。
振动测试可用于检测设备或结构的自然振动频率、结构的弹性属性、应力及损伤状态等。
识别设备或结构的振动特征,能够帮助人们更准确地评估设备或结构的健康状况,进而有效地进行预防性维护和故障诊断。
2. 技术方案2.1 设备准备在进行振动测试之前,首先需要准备必要的设备。
主要包括振动测量仪器、传感器、电缆、电源等。
振动测量仪器可选择三维振动计或光学测量仪器等。
传感器主要包括加速度计、速度计和位移计等。
为了保证测量结果的准确性,选择合适的传感器至关重要。
电缆和电源用于连接和供电。
2.2 测量方法振动测试方法通常包括自由振动测试和受控振动测试。
自由振动测试是指在设备或结构自然振动条件下进行测试,而受控振动测试是指通过施加外部控制力激发设备或结构的振动来进行测试。
根据实际情况选择合适的测试方法。
2.3 测量步骤具体的振动测试步骤如下:步骤一:选择合适的测量点根据设备或结构的特性和需要测量的参数,选择合适的测量点。
对于一些比较大的结构,需要选定多个测量点进行测试,以便全面地了解结构的振动情况。
步骤二:安装传感器将传感器安装在测量点上,并通过电缆与测量仪器连接。
安装传感器时应注意传感器的位置和方向,以免影响测试结果。
步骤三:进行测量在进行测量之前,应保证设备或结构处于正常工作状态。
启动测试仪器,记录测量数据。
在自由振动测试中,测量数据通常包括振动频率、振幅和阻尼等参数。
在受控振动测试中,还需记录激振频率、激振幅值以及相位等参数。
步骤四:数据分析对测量数据进行分析,根据实际情况选择合适的分析方法。
常用的分析方法包括频谱分析、时域分析、相位分析等。
通过分析得到的结果,可以了解设备或结构的振动特性,有助于下一步的预防性维护或故障诊断工作。
3. 注意事项在进行振动测试时,需要注意以下事项:3.1 选取合适的测量点和传感器,以保证测量结果的准确性。
振动与冲击测试技术与应用研究
振动与冲击测试技术与应用研究引言振动与冲击测试技术是现代工程领域中重要的测试手段之一。
通过对产品或系统在振动与冲击环境下的性能进行评估和验证,可以确保其在实际使用中的安全可靠性。
本文将探讨振动与冲击测试技术的原理、方法和应用研究。
一、振动测试技术1.1 振动测试原理振动测试通过对被测物体施加不同频率和幅度的振动力,测量被测物体在振动作用下的响应,包括位移、速度和加速度等参数。
该参数可用于评估被测物体的结构强度、动力特性和耐久性等性能。
1.2 振动测试方法常见的振动测试方法包括模态分析、频谱分析和振动传递路径分析等。
其中,模态分析可用于确定被测物体的固有频率和振型,频谱分析可用于分析振动信号的频谱特征,振动传递路径分析可用于研究振动传递路径的响应特性和能量传递机制。
1.3 振动测试应用振动测试广泛应用于航空航天、汽车、电子设备等领域。
例如,在航空航天领域,振动测试可用于评估飞行器在飞行中的动力学性能和结构强度,以确保其安全飞行;在汽车领域,振动测试可用于评估汽车在行驶中的悬挂系统、车身结构和底盘部件的可靠性。
二、冲击测试技术2.1 冲击测试原理冲击测试通过施加冲击载荷于被测物体,测量冲击载荷所产生的应力响应,以评估被测物体在冲击环境下的耐久性和可靠性。
冲击测试中常见的载荷形式包括冲击锤、冲击块和冲击波。
2.2 冲击测试方法常见的冲击测试方法包括冲击试验、落锤试验和冲击响应分析等。
其中,冲击试验可用于评估被测物体在外界冲击下的结构强度和失效模式,落锤试验可用于模拟物体在坠落过程中的冲击力,冲击响应分析可用于分析被测物体在冲击载荷下的动态响应。
2.3 冲击测试应用冲击测试在工程领域中的应用非常广泛。
例如,在建筑工程中,冲击测试可用于评估结构材料的抗冲击性能,以确保建筑物在地震等自然灾害中的安全性;在电子设备领域,冲击测试可用于评估电子元器件在运输和使用过程中的耐冲击性能。
结论振动与冲击测试技术是现代工程领域中不可或缺的测试手段。
振动测试技术
振动测试技术振动测试技术孙利民编郑州⼤学2004.6振动测试技术⽬录第1 章振动测试技术概论 (1)1.1振动试验的⽬的和意义 (1)1.2试验⽅法和内容 (3)1.3⼯程振动中的被测参数 (6)1.4⼯程振动测试及信号分析的任务 (13)1.5⼯程振动测试⽅法及分类…………………………………………15 第2 章机械式传感器⼯作原理 (17)2.1传感器的作⽤ (17)2.2相对式机械接收原理 (18)2.3惯性式机械接收原理 (18)2.4⾮简谐振动测量时的技术问题……………………………………26 第3 章机电式传感器⼯作原理 (29)3.1振动传感器的分类 (29)3.2电动式传感器 (30)3.3压电式传感器 (32)3.5 参量型传感器………………………………………………………41 第4 章振动测量系统………………………………………………………I474.1微积分放⼤器 (47)4.2滤波器………………………………………………………………544.3压电加速度传感器测量系统 (60)4.4电涡流式传感器的测量系统 (65)4.5动态电阻应变仪 (67)4.6参量型传感器测量系统...................................................73 第5 章激振设备 (77)5.1激振器……………………………………………………………775.2振动台……………………………………………………………805.3液压式振动台 (82)5.4其它激振⽅法............................................................84 第6 章基本振动参数的测量及仪器设备 (87) I6.1简谐振动频率的测量 (87)6.2机械系统固有频率的测量 (92)6.3简谐振动幅值的测量 (96)6.4同频简谐振动相位差的测6.5衰减系数的测量…………………………………………………103 第7 章模拟平稳信号分析 (109)7.1波形分析的简单⽅法 (109)7.2模拟式频率分析 (114)7.3 模拟式实时频谱分析简介................................................120 第8 章振动测试仪器的校准 (123)8.1分部校准与系统校准 (123)8.2静态校准法 (125)8.3绝对校准法 (126)8.4相对校准法…………………………………………………………127 第9章数字信号分析 (131)9.1基本知识……………………………………………………………1319.2离散傅⾥叶变换 (134)9.3快速傅⾥叶变换II(F F T) (137)9.4泄漏与窗函数 (141)9.5噪声与平均技术 (145)9.6数字信号分析仪的⼯作原理及简介....................................148 第10 章实验模态分析简介 (154)10.1基本概念 (154)10.2多⾃由度系统的传递函数矩阵和频响函数矩阵………………10.3传递函数的物理意义 (162)10.4多⾃由度系统的模态参数识别 (164)10.5模态分析中的⼏种激振⽅法 (170)10.6模态分析的实验过程 (172)II第1 章概述1.1 振动试验的⽬的和意义唯物史观认为,世界上的⼀切都在运动着,运动是物质存在的形式。
工程振动测试技术09 第9章 基本振动参数常用的测量方法
⑥
放大器 电路
电路 触发电路
与门电器
⑦
时基信号 发生器
数字显示 计算电路
(1)
仪器由三部分组成:
(2)
1、计数部分;
(3)
2、时基信号发生器;
(4)
3、显示部分。
(5)
(6)
(7)
1、计数部分; 它包括衰减与放大器、限
幅电路、微分电路及双稳态触 发电路等。
基本功能:将被测正弦信 号变成矩形脉冲信号,如图中 第5个波形。
直流数字电压表由A/D转换器及电子计数显示器两 部分组成。A/D转换器是核心电路。有许多种形式。
积分式A/D转换器抗干扰力强,使用方便。比较式 A/D转换器测量速度快、精度高,稳定性好。
在电压表中读出电压值后,还需利用测试系统 的变换关系,求出振幅值。
例如:若测量系统为压电式加速度测量系统, 由电压表输出的电压读数为416 mv 。
指针式电压表是一台交流电压表,它有三种不同的 检波电路,使得电表指针的偏转分别与被测信号的平 均绝对值、峰值或有效值成正比。从而构成了三种不 同的电压表,测出三种不同的振动参数(峰值、有效值、 平均绝对值)数值。
9.3.2 数字式电压表直读法
数字式测振表的原理框图和指针式基本相同,所不 同是,指针式仪表采用磁电式表头;数字式仪表采用 一个直流数字电压表。
2. 调节干扰力频率法 1 用电磁激振器激振
2. 用振动台激振
将整个机械系统(模型)安装在振动台台面上。 振动台工作时,并使被测系统产生牵连惯性力并作 强迫振动。改变振动台位移的频率而幅值不变,利 用共振法就可测出系统的固有频率。
电动式振动台
除此方法外,还有晶体激 振,声波激振等。
用强迫振动法只可测得前 几阶固有频率,若得到更高阶 的固有频率,可应用实验模态 分析法。
振动测试标准与方法
振动测试标准与方法
振动测试是一种不可或缺的防腐和验证测量,用于确定物体在使用过程中所受到的振动是否超过了物体在振动作用下应具备的处理能力。
它是评价产品状态和可靠性的重要技术指标。
由于振动的性质、参数和功能的不同,以及不同应用的要求,振动测试的方法也不断发展,现在根据使用领域和时间配置,总结出了以下振动测试标准和测试方法:
1.长期振动验证测试:它的目的是衡量在一定的持续振动时间内,连续不断的验证产品是否会出现不良状态。
2.振动耐久测试:它是评估产品在设定持续时间及振动条件下运行,以及在这种情况下产品是否损坏的重要测试。
3.瞬态特性测试:它是用来测试特定频率振动下,物体对应于特定时间和振幅应力的响应性能。
4. 空腔振动测试:它是一种衡量物体内部振动变化的测试方法,例如当衡量生产过程中电路板的内部温度。
5. 内部振动测量:它是采用特制的陀螺仪,以收集和分析产品内部振动的特点,如振动频率,响应时间等。
6. 动态强度测试:它是采用加载设备,以增大物体的振动,测试它在极端情况下是否可以抵抗被作用于其上的外力。
7. 隔离测试:它旨在衡量物体上的振动是否会通过结构而进入其他部件,以防止振动引起的各种故障。
安全可靠的振动测试是物体抗振性能评估的一个重要组成部分,对于机械装置的设计及安全可靠的运行至关重要。
有效的振动测试标准和测试方法能够保证产品质量,提高生产效率,减少质量缺陷,更好地满足客户的需求。
振动测试技术基础培训
航空航天工程应用
• 神州飞船
航天
• 飞机整机强度试验、模态
试验
• 飞机发动机试验、整机测 试、动部件测试等
• 火箭发动机点火试验
• 卫星地面试验
旋转设备状态监测
• 在电力、冶金、石化、化工等流程工业中,生产线上设备运行状态关 系到整个生产线流程。通常建立状态(定期或在线)监测系统。
石化企业输 油管道、储 油罐等压力 容器的破损 和泄露检测。
2 响应特性
传感器的响应特性是指在所测频率范围 内,保持不失真的测量条件。
实际上传感器的响应总不可避免地有一 定延迟,但总希望延迟的时间越短越好。
3 线性范围
任何传感器都有一定线性工作范围。在 线性范围内输出与输入成比例关系,线性范 围愈宽,则表明传感器的工作量程愈大。传 感器工作在线性区域内,是保证测量精度的 基本条件。
4R
金属丝应变片: dR (1 2 )
R
V与应变成线性关系,可以用电桥测量电压测量应变
电桥的接法:
单臂
半桥
全桥
动手做:
1. 自己动手在等强度梁上粘 贴应变片。
2. 使用应变测试系统测试等 强度梁应变值。
电涡流位移传感器
原理:涡流效应
产品:
电涡流转速传感器
磁电式速度传感器
1.变换原理:
• 在一定的应力范围(弹性形变)内, 材料的应力与应变量成正比,它们的 比例常数称为弹性模量或弹性系数 。
• 胡克定律(弹性定律)
传感器基础—被测物理量
• 振动位移:就是质量块运动 的总的距离,也就是说当质 量块振动时,位移就是质量 块上、下运动有多远。
• 位移的单位可以用µm 表示。 • 进一步可以从振动位移的时
震动测试仪
震动测试仪引言:震动测试仪是一种用于测量和分析物体在受到震动或振动时的行为和性能的设备。
它广泛应用于工业、军事、科研和其他领域,以帮助人们了解和改进产品的可靠性和耐久性。
本文将介绍震动测试仪的原理、应用领域和技术参数,以及如何正确使用和维护震动测试仪。
一、原理震动测试仪基于加速度传感器和数据采集系统的原理工作。
当被测试物体发生震动时,加速度传感器可以感知到物体的加速度变化,并将其转换为电信号。
数据采集系统将传感器收集到的电信号转换为数字信号,并进行数据处理和分析。
通过测量和分析物体的加速度、速度和位移等参数,人们可以评估物体的振动行为和性能。
二、应用领域1. 工业领域:震动测试仪在工业生产中被广泛应用于各种产品的质量控制和性能测试。
例如,汽车制造商在生产线上使用震动测试仪来检测汽车零部件的可靠性和耐久性。
此外,电子设备制造商也使用震动测试仪来测试电子产品的抗震性能,以确保其在运输和使用过程中不会受到损坏。
2. 军事领域:在军事领域,震动测试仪被广泛应用于武器、导弹和其他军事设备的研发和测试。
通过对这些设备进行震动测试,可以评估它们在战斗环境中的稳定性和可靠性。
这对于确保军事设备在战斗时的正常运行至关重要。
3. 科研领域:震动测试仪也是科学研究中重要的工具之一。
科学家可以使用震动测试仪来研究物体在不同频率和振幅下的振动行为。
例如,地震学家可以使用震动测试仪来研究地震的发生机制和影响,以便提高地震预警系统的准确性和可靠性。
三、技术参数震动测试仪的技术参数对于用户选择正确的设备和进行合适的测试至关重要。
以下是一些常见的技术参数:1. 频率范围:表示震动测试仪可以测量的频率范围。
不同的设备在此参数方面可能有所不同,用户需根据具体需求选择适合的设备。
2. 加速度范围:指震动测试仪能够测量的最大加速度范围。
该参数通常以重力加速度(g)为单位表示。
3. 准确度:表示设备测量结果与真实值之间的偏差程度。
高准确度的设备可以提供更可靠的测试结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拱桥振动测试姓名:刘沛学号:0214185班级:研14-1班课程:振动测试技术年月:2015年7月18日目录一振动测试概述 (1)1 振动分类及描述 (1)2 振动基本参量表示方法 (1)3 振动测试仪器分类及配套使用 (3)4 窗函数的分类及用途 (4)5 信号采集及分析过程中出现的问题,怎样解决? (7)二、惯性式速度型与加速度型传感器 (8)1 惯性式速度传感器的分类 (8)2 压电式加速度传感器 (9)三振动特性参数的常用量测方法 (12)1 振动基本参数的量测 (12)2 简谐振动频率的量测 (12)3 机械系统固有频率的测量 (12)4 简谐振动幅值的测量: (12)5衰减系数的测量: (13)6结构动力特性参数量测 (13)7 稳态正弦激振及测试 (13)8 瞬态激振及测试 (14)9 随机激振及测试 (15)四题目(结构设计) (16)1 结构设计资料及试验要求 (16)2.试验目的 (18)3.试验方法 (18)4 结果分析 (20)五概念 (22)1 功率谱 (22)2 自相关函数 (22)3 互相关函数 (23)4 相干函数 (23)5 传递函数 (24)六模态分析 (26)1 概念 (26)2 方法分类及理解 (26)一振动测试概述1 振动分类及描述按照运动的表现形式,振动可以分为确定性和非确定性振动(即随机振动)。
确定性振动又分为周期性和非周期性振动。
周期性振动分为简谐振动和复杂周期振动。
非周期运动又分为准周期和瞬态振动。
非确定性振动分为平稳随机和非平稳随机,平稳随机又分为各态历经和非各态历经。
按振动激励类型分类,振动可分为随机自由振动和随机强迫振动。
按振动位移的特征分类,振动可分为:横向振动(振动体上的质点在垂直于轴线的方向产生位移的振动)、纵向振动(振动体的质点沿轴线方向产生位移的振动)和扭转振动(振动体上的质点沿轴线方向产生位移的振动)。
周期运动的最简单形式是简谐振动。
这种振动的表示方法及特点是描述其他振动形式的基础。
一般的周期运动可以借助傅里叶级数表示成一系列简谐振动的叠加,该过程称为谐波分析。
非周期运动则需要通过傅里叶积分作谐波分析。
2 振动基本参量表示方法工程振动测试的主要参数有位移、速度、加速度、激振力、振幅、振动频率、阻尼比及结构的振动模态等。
其中前五个参数属于时域测试参数。
下面分别来说明振动基本参量的表示方法及其含义:(1)振幅(A):振幅就是振动过程中振动物体离开平衡位置的最大距离。
振动的幅度有三种表示法,即峰值、平均值和有效值。
(2)周期(T):从振动波形来看,连续两次波峰或者波谷之间耗费的时间就是一个振动周期,也就是完成一次振动所需的时间。
(3)频率(f):单位时间内振动循环的次数f,单位是赫兹(Hz)。
频率是振动特性的标志,是分析振动原因的重要依据。
周期T是物体完成一个振动过程所需要的时间,单位是秒(s )。
频率与周期互为倒数,1f T=。
(4)相位():振动物体在任一时刻t 的运动状态(指位置和速度)都由()t ωϕ+决定,()t ωϕ+是决定简谐振动运动状态的物理量,称为振动的相位。
表示0t =时的相位,叫做初相位或初相。
物体的振动在一个周期内所经历的运动状态没有一个相同的,这相当于相位从0到2π的变化;而位移和速度都相同的运动状态,它们所对应的相位差是2π或2π的整数倍。
因此,相位是反映简谐运动周期性特点,并用以描述运动状态的重要物理量。
(5)临界阻尼(cr c )可定义为:体系自由振动反应中不出现往复振动所需的最小阻尼值,即 22cr n c m km ω==。
(6)结构的阻尼系数(c ):是结构在每一振动循环中消耗能量大小的度量。
结构的阻尼比是结构的重要动力特性参数,利用结构自由振动试验可以获得结构的阻尼比。
(7)对数衰减率(δ):定义为 i 2i+12ln1u u πζδζ==-, i i+1u u 为相邻振动峰值比。
简谐振动中的测试参数: 位移,速度,加速度为时间调和函数的振动称为简谐振动,这是一种最简单最基本的振动。
其函数表达式为:位移: ()s i n ()s i n (2x t A t A f tωπ== 速度: ()c o s ()s i n (2)2v t A t A f t πωωωπ==+加速度: 22()sin()sin(2)a t A t A ft ωωωππ=-=+式中: A ——位移幅值(cm 或mm );ω——振动圆频率(1s );f ——振动频率(Hz )。
()()()x t v t a t 、、三者之间的相位依次相差为2π。
若令:速度幅值V A ω=,加速度幅值20a A ω=,则有220(2)a V A f A ωωπ===。
由此可见,位移幅值A 和频率ω(或f ),是两个十分重要的特征量,速度和加速度的幅值V 和0a 可以直接由位移幅值A 和频率f 。
导出。
在测量中,振动测试参数的太小常用峰值、绝对平均值和有效值来表示。
所谓峰值是指振动量在给定区间内的最大值,均值是振动量在一个周期内的平均值,有效值即均方根值,它们从不同的角度反映了振动信号的强度和能量。
3 振动测试仪器分类及配套使用一、分类(1)机械式的测量仪器。
将工程振动的参量转换成机械信号,再经机械系统放大后,进行测量、记录。
此法常用的仪器有杠杆式测振仪和盖格尔测振仪,能测量的频率较低,精度也较差。
但在现场测试时较为简单方便。
(2)光学式的测量仪器。
将工程振动的参量转换为光学信号,经光学系统放大后显示和记录。
常用的仪器有读数显微镜和激光测振仪等。
目前光学测量方法主要是在实验室内用于振动仪器系统的标定及校准。
(3)电测仪器。
将工程振动的参量转换成电信号,经电子线路放大后显示和记录。
这是目前应用得最广泛的测量方法。
图1.1 电测法基本测量系统示意图二、配套使用情况目前,整个动态测试仪器系统通常有以下三种测振仪配套方式,见图2。
图1.2 动态测试系统三种配套仪器系统4 窗函数的分类及用途一、分类1. 矩形窗(Rectangular 窗)矩形窗属于时间变量的零次幂窗,函数形式为: 磁电式拾振器 U 电压放大器 U动态数据采集仪压电式加速度q 电荷放大器 U 应变式传感器 R 动态电阻应变仪UA/D 显示终端 计算机主机 打印机1,0,()0t T Tw t t ⎧≤≤⎪=⎨⎪≥⎩, T 。
相应的谱窗为:()2s i n tW t ωωω= 2. 三角窗(Bartlett 或Fejer 窗)三角窗是幂窗的一次方形式,其定义为: ()1(1);0t t w t t T T T T ⎧-⎪=≤≤⎨⎪≥⎩0谱窗为: s i n 2()2T W T ωωω⎛⎫ ⎪= ⎪ ⎪⎝⎭3. 汉宁窗(Hanning 窗)又称升余弦窗,其时间函数 为:()111(cos ),t 220t t T T T w t T π⎧+≤⎪=⎨⎪≥⎩其谱窗为:sin 1sin()sin()()2T T T W T T T ωωπωπωωωπωπ+-⎡⎤=++⎢⎥+-⎣⎦4. 海明窗(Hamming 窗)海明窗也是余弦窗的一种,又称改进的升余弦窗,其时间函数为:()1(0.540.46cos ),t 0t t T TT w t T π⎧+≤⎪=⎨⎪≥⎩其谱窗为:sin sin()sin()() 1.080.46T T T W T T T ωωπωπωωωπωπ+-⎡⎤=++⎢⎥+-⎣⎦5. 高斯窗 高斯窗是一种指数窗,其时域函数为:()1t 0t T Tw t T ⎧≤⎪=⎨⎪≥⎩2-at e ,式中:a 为常数,决定了函数曲线衰减的快慢。
高斯窗谱的主瓣较宽,故而频率分辨力低,高斯窗函数常被用来截断一些非周期信号,如指数衰减信号等。
6. 参数可调整窗 利用变换窗的参数得到不同的性能,如上述余弦族窗中的系数,指数窗中的a ,以及Gauss 窗、Dolph —chebyshev窗、Kalser-Bessel 窗等也都是参数可调窗。
可以组构成一些窗函数系列、如P200、P300系列窗。
二 用途在数字信号频率分析中,要求对不同类型的时间信号选用不同的窗函数,对随机信号的处理,通常选用汉宁窗,因为它可以在不太加宽主瓣的情况下较大的压低旁瓣的高度从而有效的减少了功率的泄露。
对本来就有很好的离散谱信号,例如周期信号或准周期信号,分析时最好用旁瓣较低的Kalser-Bessel 窗。
冲击过程和瞬态过程的测量,一般用矩形窗而不选用汉宁窗或Kalser-Bessel 窗,因为这些窗对起始端很小的加权会使瞬态信号失去其基本特性。
5 信号采集及分析过程中出现的问题,怎样解决?1 信号采集和分析过程中出现的问题信号分析和采集过程中会出现信号频率混叠、连续信号的截断和抽样所引起的泄露、时域到频域转化、处理不好引起的误差和错误、信号中的信噪比等等问题。
2解决方法对于信号频率混叠需要进行对输入信号的抗混滤波,波样采集和模数转换。
对于连续信号的截断和抽样所引起的泄露需要进行加窗处理,通常所用的窗有矩形窗,汉宁窗,三角窗和海明窗等等。
再通过FFT变换,进行时域到频域的变换和数据计算。
信息论指出:对常用频宽为F的限时、白色高斯噪声信道,信道容量。
当容量不变时,增大带宽可降低信噪比,提高信噪比必须压缩带宽。
因此,抗干扰为主要矛盾时,可扩展频带换取低信噪比下接收,调频与扩频均基于这一原理。
频带为主要矛盾时,则可用信噪比换取频带,多进制、多电平传输均基于这一原理。
二、惯性式速度型与加速度型传感器1 惯性式速度传感器的分类惯性式测振传感器是利用弹簧质量系统的强迫振动特性来进行振动测量的。
这种传感器可以直接固定在被测物体上,它不需要相对参考系固定传感器。
是一种绝对式测振传感器。
分为磁电式拾振器和压电式加速度传感器。
一.磁电式拾振器(1)力学模型图示:图2.1 磁电式拾振器1—弹簧;2—质量块;3—线圈;4—磁钢;5—仪器外壳(2)力学原理惯性式速度传感器的换能原理是以导线在磁场中运动切割磁力线产生电动势为基础的。
由永磁铁和导磁体组成磁路系统,在磁钢间隙中放一工作线圈,当线圈在磁场中运动时,由于线切割磁力线,根据电磁感应定律在线圈中就有感应电动势产生,其大小正比于切割磁力线的线圈匝数和通过此线圈中的磁通量的变化率。
当仪器结构定型后,感应电动势和线圈对磁钢相对运动的线速度成正比。
电磁拾振器又称为速度计。
线圈中感应电动势大小为: E nBLv式中n—线圈的匝数;B—磁钢与线圈间的磁场强度;L—每匝线圈的平均长度;V—线圈的运行速度。
2 压电式加速度传感器(1)力学模型示意图:下图中:1—仪器外壳;2—硬弹簧;3—质量块;4—压电晶体;5—输出线图2.2 压电式加速度传感器结构原理(2)工作原理压电式加速度传感器一般有三类,即中心压缩式、剪切式和三角剪切式。