七年级数学期末测试题
人教版七年级上学期数学《期末测试卷》及答案
3.某书上有一道解方程的题: +1=x,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=-2,那么□处应该是数字( )
A.7B.-10C.2D.-2
4.下列说法正确的是()
A. 近似数24.00与24.0的精确度一样
B. 近似数100万精确到万位
二.填空题:(每空3分,共244分)
13.如图,D是AB上一点,CE∥BD,CB∥ED,EA⊥BA于点A,若∠ABC=38°,则∠AED=____.
14.如图,如果AB∥CD,CD∥EF,∠1=36°, ∠2=76°那么∠BCE等于____________
15.已知线段AB=6cm,点C在直线AB上,且CA=4cm,O是AB的中点,则线段OC的长度是_____cm.
(1)若两车同时相向而行,则几小时后相遇?
(2)若两车同时相向而行,则几小时后相距84千米?
(3)若两车同时反向而行,则几小时后相距672千米?
24.如图:已知△ABC与△DEF是一副三角板的拼图,A,E,C,D在同一条线上
(1)求证EF∥BC;
(2)求∠1与∠2的度数.
25.为了庆祝商都正式营业,商都推出了两种购物方案,方案一:非会员购物所有商品价格可获得九五折优惠:方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.
6.多项式a3-4a2b2+3ab-1的项数与次数分别是( )
A.3和4B.4和4C.3和3D.4和3
[答案]B
[解析]
[分析]
多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.
[详解]解:多项式a3-4a2b2+3ab-1的项有:a3、-4a2b2、3ab、-1,共4项,所以项数为4;
人教版七年级上册数学期末测试卷【含答案】
人教版七年级上册数学期末测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么这个三角形的第三边长可能是多少厘米?A. 3厘米B. 17厘米C. 23厘米D. 25厘米3. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是多少厘米?A. 20厘米B. 32厘米C. 44厘米D. 52厘米4. 下列哪个数是偶数?A. 101B. 103C. 105D. 1075. 如果一个正方形的边长是6厘米,那么这个正方形的面积是多少平方厘米?A. 24平方厘米B. 36平方厘米C. 48平方厘米D. 60平方厘米二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。
()2. 一个三角形的两边之和一定大于第三边。
()3. 等腰三角形的两腰相等。
()4. 两个奇数的积一定是奇数。
()5. 一个正方形的对角线长度等于边长的平方根。
()三、填空题(每题1分,共5分)1. 24是4和6的______数。
2. 一个等腰三角形的两腰相等,这个三角形一定是______三角形。
3. 如果一个数的因数只有1和它本身,那么这个数是______。
4. 一个正方形的周长是______,边长是a。
5. 如果一个数的平方根是b,那么这个数是______。
四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。
2. 请简述等腰三角形的性质。
3. 请简述偶数和奇数的性质。
4. 请简述正方形的性质。
5. 请简述因数和倍数的性质。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。
2. 一个正方形的边长是8厘米,求这个正方形的面积。
3. 求24的所有因数。
4. 求25的平方根。
5. 判断101是否是质数。
六、分析题(每题5分,共10分)1. 如果一个数的因数只有1和它本身,那么这个数是什么数?为什么?2. 如果一个三角形的两边之和等于第三边,那么这个三角形是什么三角形?为什么?七、实践操作题(每题5分,共10分)1. 请画出一个等腰三角形,并标出其底边和腰。
七年级数学试卷期末的题目
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. $\sqrt{2}$B. $\pi$C. $\frac{3}{4}$D. $\sqrt{5}$2. 若 $a$,$b$,$c$ 是等差数列,且 $a + b + c = 12$,$b - c = 2$,则 $a - c$ 等于()A. 6B. 4C. 2D. 03. 在下列各图中,全等图形的一对是()A.B.C.D.4. 若 $x^2 - 5x + 6 = 0$,则 $x^2 - 2x + 1 = $()A. 0B. 1C. 2D. 35. 已知函数 $y = kx + b$ 中,$k$,$b$ 为常数,且 $k < 0$,$b > 0$,则函数的图像()A. 经过第一、二、四象限B. 经过第一、二、三象限C. 经过第一、二、四象限D. 经过第一、三、四象限6. 若 $\sin \alpha = \frac{3}{5}$,$\cos \alpha = \frac{4}{5}$,则 $\tan \alpha = $()A. $\frac{3}{4}$B. $\frac{4}{3}$C. $\frac{3}{2}$D. $\frac{2}{3}$7. 在直角坐标系中,点 $A(2, 3)$ 关于 $y$ 轴的对称点坐标是()A. $(-2, 3)$B. $(2, -3)$C. $(-2, -3)$D. $(2, 3)$8. 已知 $a$,$b$,$c$ 成等比数列,且 $a + b + c = 12$,$b^2 = ac$,则$a^2 + c^2 = $()A. 36B. 48C. 60D. 729. 若 $\angle A$,$\angle B$,$\angle C$ 是一个三角形的三个内角,且$\sin A = \frac{1}{2}$,$\cos B = \frac{\sqrt{3}}{2}$,则 $\tan C = $()A. $\frac{\sqrt{3}}{3}$B. $\sqrt{3}$C. $\frac{3}{\sqrt{3}}$D. $\frac{3}{2}$10. 已知 $a$,$b$,$c$ 成等差数列,且 $a + b + c = 12$,$b - c = 2$,则$a - c$ 等于()A. 6B. 4C. 2D. 0二、填空题(每题5分,共20分)11. 已知 $x^2 - 3x + 2 = 0$,则 $x^2 - 5x + 6 = $__________。
七年级第一学期期末考试(数学)试题含答案
七年级第一学期期末考试(数学)(考试总分:120 分)一、单选题(本题共计16小题,总分42分)1.(3分)下列运算结果是a2的是( )A.a+aB.a+2C.a•2D.a•a2.(3分)如图,射线OA表示的方向是( )A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°3.(3分)我国渤海、黄海、东海、南海的海水中含有不少化学元素,其中铝、锰元素总量均约为8×106吨.用科学记数法表示铝、锰元素总量的和约是( )A.8×106吨B.1.6×107吨C.16×106吨D.16×1012吨4.(3分)已知x=5是方程2x−3+a=4的解,则a的值是( )A.3B.2C.-3D.-25.(3分)下列说法不正确...的是( )①a3b的系数是3,次数是3;①近似数304.16精确到了十分位;①多项式−5x+6x2−1是二次三项式;①射线AB与射线BA是同一条射线;①一个角的补角不是锐角就是钝角A.①①①①B.①①①C.①①①D.①①①6.(3分)下列变形不正确...的是( )A.如果a=b,那么a+5=b+5B.如果a=b,那么a−c=b−cC.如果ac=bc,那么a=bD.如果ac =bc,那么a=b7.(3分)已知x3-2m y2与2xy n是同类项,则m−n= ( )A.-1B.0C.1D.28.(3分)如图,数轴上三个点所对应的数分别为a,b,c,则下列结论正确的是( )A.a+b > 0B.a-c > 0C.ac > 0D.|a| > |b|x的值为6,则2x2-5x+6的值为( )9.(3分)已知整式x2−52A.9B.12C.18D.2410.(3分)下列图形中,可能..是如图所示的正方体展开图的是( )A.B.C.D.11.(2分)已知|a|=3,|b|=2,|a−b|=a−b,则a+b=( )A.5或−5B.1或5C.5或−1D.−5或112.(2分)互联网"微商"经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为( )A.80元B.100元C.130元D.150元13.(2分)如图,将一副三角板叠在一起使直角顶点重合于点O(两块三角板可以在同一平面内自由转动),下列结论一定..成立的是( )A.①BOA > ①DOCB.①BOA+① DOC=180°C.①BOA−①DOC=90°D.①BOC≠①DOA14.(2分)如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点,若线段MN的长为4,则线段BC的长度是( )A.4B.6C.8D.1015.(2分)在某市奥林匹克联赛中,实验一中学子再创辉煌,竞赛成绩全市领先.某位同学连续答题40道,答对一题得5分,答错一题扣2分(不答同样算作答错),最终该同学获得144分.请问这位同学答对了多少道题?下面共列出4个方程,其中正确的有( )①设答对了x道题,则可列方程:5x−2(40−x)=144;①设答错了y道题,则可列方程:5(40−y)−2y=144;①设答对题目总共得a分,则可列方程:a5+a−1442=40;①设答错题目总共扣b分,则可列方程:144−b5-b2=40.A.4个B.3个C.2个D.1个16.(2分)在学校温暖课程数字兴趣课中,嘉淇同学将一个边长为a的正方形纸片(如图1)剪去两个相同的小长方形,得到一个""的图案(如图2),将剪下的两个小长方形刚好拼成一个"T"字形(如图3),则"T"字形的外围周长(不包括虚线部分)可表示为( )图1 图2图3A.3a−5bB.5a−8bC.5a−7bD.4a−6b二、填空题(本题共计3小题,总分12分)17.(4分)植树时只要定出两棵树的位置,就能确定这一行树所在的直线,原因是__________.18.(4分)对有理数a,b规定运算"①"的意义为a①b=a+2b,比如:5①7=5+2×7,则方程3x①14=2−x的解为__________ .19.(4分)如图,某花园护栏是用直径为80厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加a厘米(相邻两个条钢之间都有交叉,a为正整数),设半圆形条钢的总个数为x(x为正整数).(1).当a=50,x=2时,护栏总长度为__________厘米;(2).当a=60时,护栏总长度为__________厘米(用含x的式子表示,结果要求化简);(3).若护栏的总长度为15米,为尽量减少条钢用量,a的值应为__________厘米.三、解答题(本题共计7小题,总分66分)20.(8分)按要求解答下列各小题.(1).计算:(-1)2021+(-18)×|-29|-4÷(-2);(2).化简:5a2+3b2+2(a2−b2)−(5a2−3b2).21.(8分)嘉淇正在解关于x的方程A:x−2m=−3x+4.(1).用含m的式子表示方程A的解;(2).嘉淇妈妈问:"若方程A与关于x的方程B:m=4-x2的解互为相反数,那么此时方程A的解为多少?"请你帮嘉淇解决妈妈提出的问题.22.(9分)已知A=by2−ay−1,B=2y2+3ay−10y+3.(1).若多项式2A−B的值与字母y的取值无关,求a,b的值;(2).在1的条件下,求(2a2b+2ab2)−[2(a2b−1)+3a2b+2]的值.23.(9分)阅读下列材料:计算:124÷(13−14+112).解法一:原式=124÷13−124÷14+124÷112=124×3−124×4+124×12=1124.解法二:原式=124÷(412−312+112)=124÷212=124×6=14.解法三:原式的倒数=(13−14+112)÷124=(13−14+112)×24=13×24−14×24+112×24=4原式=14 .(1).上述得到的结果不同,你认为解法________是错误的; (2).计算:(12−14+16)×36=________;(3).请你选择合适的解法计算:(−1210)÷(37+215−310−521)24.(10分)已知点O 是直线AB 上一点,①COE=60°,OF 是①AOE 的平分线. (1).如图,当①BOE=80°时,求①COF 的度数;(2).当①COE 和射线OF 在如图所示的位置,且题目条件不变时.①求①COF 与①AOE 之间的数量关系; ①直接写出①BOE-2①COF 的值.25.(10分)甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为a(0<a <100)千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米/小时,设客车行驶时间为t (小时). (1).当t =5时,客车与乙城的距离为______千米(用含a 的式子表示);(2).已知a =70,丙城在甲、乙两城之间,且与甲城相距260千米,当客车和出租车在甲、乙之间的M 处相遇时,出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种返回乙城的方案:方案一:继续乘坐出租车到丙城,加油后立刻返回乙城(出租车加油时间忽略不计); 方案二:在M 处换乘客车返回乙城.假设客车和出租车的行驶速度始终不变,试通过计算,分析小王选择哪种方案能更快返回到乙城?26.(12分)如图,已知点M是线段AB上一定点,AB=12cm,C,D两点分别从M,B出发,以1cm/s,2cm/s的速度沿直线AB向左运动(C在线段AM上,D在线段BM上).(1).若AM=4cm,当点C,D运动了2s时,AC=______.DM=______.(2).若点C,D运动时,总有MD=2AC,求AM的长;的值。
七年级上册数学期末测试卷【含答案】
七年级上册数学期末测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个正方形的边长是4厘米,那么它的面积是:A. 16平方厘米B. 8平方厘米C. 12平方厘米D. 4平方厘米2. 下列哪个数是素数?A. 21B. 23C. 25D. 273. 下列哪个图形不是平行四边形?A. 矩形B. 菱形C. 正方形D. 直角三角形4. 如果一个三角形的两边分别是3厘米和4厘米,那么第三边的长度可能是:A. 1厘米B. 6厘米C. 7厘米D. 8厘米5. 下列哪个数是负数?A. -5B. 0C. 3D. 8二、判断题(每题1分,共5分)1. 两个负数相乘的结果是正数。
()2. 所有的偶数都是2的倍数。
()3. 1千克等于1000克。
()4. 三角形的内角和等于180度。
()5. 任何数乘以0都等于0。
()三、填空题(每题1分,共5分)1. 如果一个圆的半径是5厘米,那么它的直径是______厘米。
2. 5的平方是______,5的立方是______。
3. 如果一个等腰三角形的底边是8厘米,腰是5厘米,那么这个三角形的周长是______厘米。
4. 1千米等于______米。
5. 如果一个数的倒数是3,那么这个数是______。
四、简答题(每题2分,共10分)1. 解释什么是素数。
2. 简述等腰三角形的性质。
3. 解释什么是比例。
4. 简述平行四边形的性质。
5. 解释什么是算术平均数。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
2. 一个等边三角形的边长是6厘米,求这个三角形的周长。
3. 如果一个数的2倍加上3等于11,求这个数。
4. 一个圆的直径是14厘米,求这个圆的面积。
5. 如果一个数的3倍减去5等于7,求这个数。
六、分析题(每题5分,共10分)1. 有一个长方形的长是8厘米,宽是4厘米,求这个长方形的对角线长度。
2. 有一个等腰直角三角形,直角边的长度是6厘米,求这个三角形的周长。
七年级数学上册期末测试(含答案)
七年级数学上册期末测试(含答案)时间:100分钟 总分:120分一、选择题(每题3分,共24分)1.已知a 与﹣2021互为倒数,则a 的值为 ( ) A .+2021 B .﹣2021 C .12021-D .12021+【解析】 解:∵()1202112021⎛⎫-⨯-= ⎪⎝⎭, ∴12021-与2021-互为倒数, 则a 的值为12021-.故选:C . 【点睛】本题主要考查倒数的定义,掌握倒数的定义是解题的关键. 2.已知2234m x y x y x y +=,则m 的值为 ( ) A .0 B .1 C .2 D .3 【解析】解:∵2234m x y x y x y +=, ∴m x y 与2x y 是同类项, ∴m =2, 故选: C . 【点睛】本题考查了整式的加减,同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.3.关于x 的方程43x a x +=+的解是1x =,则a 的值是 ( ) A .5 B .6 C .7 D .8 【解析】解:x =1代入方程得:4+3=a +1,a =6, 故选: B . 【点睛】本题考查了方程的解的意义(代入方程满足等式关系)和解一元一次方程,掌握其意义是解题关键.4.下列说法错误的是 ( )A .0既不是正数,也不是负数B .零上6摄氏度可以写成+6℃,也可以写成6℃C .向东走一定用正数表示,向西走一定用负数表示D .若盈利1000元记作+1000元,则-200元表示亏损200元 【解析】∵0既不是正数,也不是负数, ∴A 正确,不符合题意;∵零上6摄氏度可以写成+6℃,也可以写成6℃, ∴B 正确,不符合题意; ∵正方向可以自主确定,∴向东走一定用正数表示,向西走一定用负数表示,是错误的, ∴C 不正确,符合题意;∵盈利1000元记作+1000元,则-200元表示亏损200元, ∴D 正确,不符合题意; 故选:C . 【点睛】本题考查了有理数的基本概念,熟练掌握有理数的基本概念是解题的关键.5.若5x y +=,2310x y -=,则4x y -的值为 ( ).A .15B .5-C .5D .3 【解析】解:因为5x y +=①,2310x y -=②,所以②-①得:4105x y -=-,即45x y -=, 故选:C . 【点睛】本题考查了代数式求值,正确找出所求代数式与两个已知等式之间的联系是解题关键. 6.《九章算术》是中国古代的数学专著,其中载有“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”译文“假设有若干人共同出钱买羊,如果每人出5钱,那么还差45钱;如果每人出7钱,那么还差3钱,求买羊的人数和羊的价钱.”设羊价是x 钱,则可列方程为 ( )A .45357x x ++= B .45357x x --= C .45375x x -+= D .45375x x --= 【解析】解:设羊是x 钱, 根据题意得:45357x x --=. 故选:B .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.7.下列哪个图形是正方体的展开图 ( )A .B .C .D .【解析】解:根据正方体展开图的特征,选项A 、C 、D 不是正方体展开图;选项B 是正方体展开图. 故选:B . 【点睛】此题主要考查了正方体的展开图,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.8.已知三条不同的射线OA 、OB 、OC ,有下列条件:①AOC BOC ∠=∠;②2AOB AOC ∠=∠;③AOC COB AOB ∠+∠=∠;④1BOC AOB 2∠=∠其中能确定射线OC 平分AOB ∠的有( ) A .3个 B .2个 C .1个 D .0个 【解析】∵AOC BOC ∠=∠, ∴OC 平分∠AOB , ∴①正确.∵如图,当∠AOC =∠AOD =∠DOB 时,满足∠AOB =2∠AOC ,但OC 不是∠AOB 的平分线, ∴②错误.∵如图,满足∠AOB =∠AOC +∠COB ,但OC不是∠AOB的平分线,∴③错误.∵如图,满足12BOC AOB∠=∠,但OC不是∠AOB的平分线,∴④错误.综上,只有一个符合要求的,故选C.【点睛】本题考查了角的平分线即从同一顶点出发的射线把这个角分成相等的两个角,正确理解角的平分线的定义是解题的关键.二、填空题(每题3分,共24分)9.某地星期一上午的温度是﹣7℃,中午上升了8℃,下午由于冷空气南下,到夜间又下降了10℃,则这天夜间的温度是_____℃.【解析】由题意可列算式为:﹣7+8−10=﹣9(℃),即这天夜间的温度是﹣9℃,故答案为:﹣9.【点睛】本题考查有理数的加减实际应用,根据题意列出式子再计算时解题的关键.10.若a,b互为倒数,则﹣4ab+1的值为______.【解析】解:∵a,b互为倒数,∴ab=1,∴﹣4ab+1=﹣4+1=﹣3,故答案为:﹣3.【点睛】本题主要考查倒数,代数式求值,利用倒数的定义求解ab的值是解题的关键.11.线段AB =3cm ,延长AB 至点C ,使BC =2AB ,则AC =________cm . 【解析】解:∵线段AB =3cm ,延长AB 至点C ,使BC =2AB , ∴BC=6cm ,∴AC=AB+BC=9cm, 故答案为:9. 【点睛】本题考查线段的和差倍分,解题关键是理清线段之间的和差关系. 12.若a 的相反数是﹣3,b 的绝对值是4,则a ﹣b =________. 【解析】解:∵a 的相反数是−3,b 的绝对值是4, ∴a =3,b =4或−4,∴a ﹣b =3-4=-1或a ﹣b =3−(−4)=3+4=7, 故答案为:-1或7. 【点睛】此题考查了相反数,绝对值以及有理数的减法,熟练掌握各自的性质是解本题的关键.13.已知2AOB BOC ∠=∠,若25BOC ∠=︒,则AOC ∠的度数是__________. 【解析】解:分两种情况考虑.当OB 在∠AOC 中时,如图1所示, ∵∠AOB =2∠BOC =2×25°=50°,∴∠AOC =∠AOB +∠BOC =50°+25°=75°; 当OC 在∠AOB 中时,如图2所示, ∵∠AOB =2∠BOC =2×25°=50°,∴∠AOC =∠AOB ﹣∠BOC =50°﹣25°=25°. 故答案为:75°或25°.【点睛】本题考查了角的计算,分∠AOC =∠AOB +∠BOC 和∠AOC =∠AOB ﹣∠BOC 两种情况考虑是解题的关键. 14.关于x 的一元一次方程120222022xx m -=+的解为2019x =-,则关于y 的方程()31202232022yy m --=-+的解为______. 【解析】 ∵120222022xx m -=+的解为2019x =-, ()31202232022yy m --=-+,∴x =3-y , ∴3-y =-2019, 解得y =2022, 故答案为:2022. 【点睛】本题考查一元一次方程的解,正确得出x 和y 的关系是解题的关键.15.如图,每个图案均由边长相等的黑、白两色的正方形按规律拼接而成,照此规律,第n 个图案中白色正方形比黑色正方形多____________个(用含n 的代数式表示).【解析】解:第1个图案中白色正方形有3⨯2+1⨯1=7个,黑色正方形有2个,白色正方形比黑色正方形多7-2=5个,即多(2⨯2+1)个;第2个图案中白色正方形有3⨯3+1⨯2=11个,黑色正方形有2⨯2=4个,白色正方形比黑色正方形多11-4=7个,即多(2⨯3+1)个;第3个图案中白色正方形有3⨯4+1⨯3=15个,黑色正方形有2⨯3=6个,白色正方形比黑色正方形多15-6=9个,即多(2⨯4+1)个; ,第n 个图案中白色正方形比黑色正方形多()()21123n n ++=+个, 故答案为:(2n +3). 【点睛】此题考查了图形类规律,正确计算已知图形中色正方形比黑色正反向多的个数并得到规律是解题的关键.16.如图,在直线m 上顺次取A ,B ,C 三点,使得3cm AB =,1cm BC =,取线段AC 的中点D ,若动点P 从点A 出发以2cm/s 的速度沿射线AC 方向运动,设运动时间为s t ,当5DP DB =时,t 的值为______s .【解析】解:3cm AB =,1cm BC =, 4cm AC ∴=,D 是线段AC 的中点, 2cm AD ∴=,1cm DB AB AD ∴=-=, 依题意有:2251t -=⨯, 解得 3.5t =. 故答案为:3.5. 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(每题8分,共72分) 17.计算:(1)()()()()219812---+---;(2)24132844⎛⎫--⨯-+ ⎪⎝⎭.【解析】(1)解:原式219812=-+-+ 12812=--+ 2012=-+ 8=-(2)原式13168164=--⨯+ 131624=--+131624=-+3154=-【点睛】此题考查了有理数的混合运算,熟练掌握有理数的混合运算法则,是解本题的关键.18.先化简,再求值:2(3ab 2﹣a 2b +ab )﹣3(2ab 2﹣4a 2b +ab ),其中a =﹣1,b =2. 【解析】解:2(3ab 2﹣a 2b +ab )﹣3(2ab 2﹣4a 2b +ab ) =6ab 2﹣2a 2b +2ab ﹣6ab 2+12a 2b ﹣3ab =10a 2b ﹣ab .当a =﹣1,b =2时, 原式=10a 2b ﹣ab=10×(﹣1)2×2﹣(﹣1)×2 =10×1×2﹣(﹣1)×2 =20+2 =22. 【点睛】本题考查整式加减运算的化简求值,熟练掌握该知识点是解题关键. 19.已知224102m x x y =++,2222n x y y =-+,求: (1)2m n -;(2)当522x y +=时,求2m n -的值. 【解析】解:(1)()222224102222m n x x y x y y -=++--+ 22224102442x x y x y y =++-+- 104x y =+;(2)∵522x y +=∴原式=1042(52)x y x y +=+=2×2=4. 【点睛】此题考查了利用整式的加减化简求值,熟练掌握运算法则是解本题的关键. 20.如图,数轴上有若干个点,每相邻两点间的距离为1,其中点A ,B ,C 对应的数分别是整数a ,b ,c .(1)用含b 的式子分别表示:=a _________,c =_________. (2)已知29c a -=,求b 的值. 【解析】(1)解:由题意知,线段AB 的长为3,线段BC 的长度为1, 则a +3=b ,b +1=c ∴3a b =-,1c b =+ 故答案为:3b -;1b + (2)由3a b =-,1c b =+得:212(3)1267c a b b b b b -=+--=+-+=-+, 79b ∴-+=, 解得2b =-. 【点睛】本题考查了数轴上两点间的距离,列代数式及解一元一次方程等知识,关键根据数轴的距离表示a 与c .21.如图120AOB ∠=,OF 平分AOB ∠,212∠=∠(1)判断1∠与2∠互余吗?试说明理由. (2)2∠与AOB ∠互补吗?试说明理由. 【解析】(1)解:1∠与2∠互余,理由如下: ∵120AOB ∠=︒,OF 平分AOB ∠,∴12==602∠∠︒AOB ,∵21=2∠∠,∴1=30∠︒ ,∴1+2=30+60=90∠∠︒︒︒,∴1∠与2∠互余;(2)解:2∠与AOB ∠互补,理由如下: ∵∠AOB =120°,OF 平分AOB ∠, ∴12==602∠∠︒AOB ,∴∠2+∠AOB =60°+120°=180°, ∴2∠与AOB ∠互补. 【点睛】本题考查角平分线定义,两角互余,互补的判定,掌握角平分线定义,两角互余,互补的判定是解题关键.22.如图是一个长方体的表面展开图,每个面上都标注了字母和数据,请根据要求回答(1)如果A 面在长方体的底部,那么 面会在上面; (2)求这个长方体的表面积和体积.【解析】(1)如图所示,A 与F 是对面,所以如果A 面在长方体的底部,那么 F 面会在上面;故答案是:F ;(2)这个长方体的表面积是:2×(1×3+1×2+2×3)=22(米2).这个长方体的体积是:1×2×3=6(米3).【点睛】关于几何体的表面展开图,关键是那些面是相对的,那些面是相邻的. 23.某糕点厂中秋节前要制作一批盒装月饼,每盒中装4块大月饼和8块小月饼,制作1块大月饼要用0.05kg 面粉,1块小月饼要用0.02kg 面粉,现共有面粉4500kg ,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?最多可生产多少盒盒装月饼?【答案】应用2500kg 面粉生产大月饼,2000kg 面粉生产小月饼才能生产最多的盒装月饼.最多可生产12500盒盒装月饼 【解析】解:设用kg x 面粉生产大月饼,用()4500kg x -面生产小月饼, ∵每盒中装4块大月饼和8块小月饼,4500×20.050.02x x -=, 解得2500(kg)x =,共生产了:2500125000.054=⨯(盒).答:应用2500kg 面粉生产大月饼,2000kg 面粉生产小月饼才能生产最多的盒装月饼.最多可生产12500盒盒装月饼. 【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键. 24.某中学七年级(1)班4名老师决定带领本班m 名学生去某革命胜地参观.该革命胜地每张门票的票价为30元,现有A 、B 两种购票方案可供选择: 方案A :教师全价,学生半价;方案B :不分教师与学生,全部六折优惠(1)请用含m 的代数式分别表示选择A 、B 两种方案所需的费用;(2)当学生人数40m =时,且只选择其中一种方案购票,请通过计算说明选择哪种方案更为优惠. 【解析】(1)解:选择方案A 所需的费用为130430120152m m ⨯+⨯=+(元),选择方案B 所需的费用为()3040.61872m m ⨯+⨯=+(元).(2)解:当40m =时,选择方案A 所需的费用为1201540720+⨯=(元), 选择方案B 所需的费用为184072792⨯+=(元), ∵720792<,∴选择方案A 更为优惠. 【点睛】本题考查了列代数式及代数式求值,理解题意正确列出代数式是解决问题的关键. 25.对于数轴上的A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A ,B ,C 所表示的数分别为1,3,4,此时点B 是点A ,C 的“联盟点”.(1)若点A 表示数﹣2,点B 表示的数4,下列各数,3,2,0所对应的点分别C 1,C 2,C 3,其中是点A ,B 的“联盟点”的是 ;(2)点A 表示数﹣10,点B 表示的数30,P 在为数轴上一个动点: ①若点P 在点B 的左侧,且点P 是点A ,B 的“联盟点”,求此时点P 表示的数; ②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P 表示的数为 . 【解析】(1)解:对于表示的数是3的C 1来说.∵点A 所表示的数为﹣2,点B 所表示的数是4, ∴AC 1=5,BC 1=1.∵AC 1和BC 1不满足2倍的数量关系, ∴C 1不是点A 、点B 的“联盟点”. 对于表示的数是2的C 2来说.∵点A 所表示的数为﹣2,点B 所表示的数是4, ∴AC 2=4,BC 2=2.∵422=⨯,即AC 2=2BC 2,11 ∴C 2是点A 、点B 的“联盟点”.对于表示的数是0的C 3来说.∵点A 所表示的数为﹣2,点B 所表示的数是4,∴AC 3=2,BC 3=4.∵422=⨯,即BC 3=2AC 3,∴C 3是点A 、点B 的“联盟点”.故答案为:C 2或C 3.(2)解:①设点P 在数轴上所表示的数为x .当点P 在线段AB 上,且PA =2PB 时.根据题意得()()10230x x --=-.解得503x =. 当点P 在线段AB 上,且2PA =PB 时.根据题意得()21030x x --=-⎡⎤⎣⎦.解得103x =. 当点P 在点A 的左侧时,且2PA =PB 时.根据题意得2(﹣10﹣x )=30﹣x .解得x =﹣50.综上所述,点P 表示的数为103或503或﹣50. ②当点A 是点P ,点B 的“联盟点”时,有PA =2AB .根据题意得()()1023010x --=⨯--⎡⎤⎣⎦.解得x =70.当点B 是点A 、点P 的“联盟点”时,有AB =2PB 或2AB =PB .根据题意得()()3010230x --=-或()2301030x ⨯--=-⎡⎤⎣⎦.解得x =50或x =110.当点P 是点A 、点B 的“联盟点”时,有PA =2PB .根据题意得()()10230x x --=⨯-.解得x =70.所以此时点P 表示的数为70或50或110.故答案为:70或50或110.【点睛】本题考查数轴上两点间的距离,一元一次方程的实际应用,正确理解题意和应用分类讨论思想是解题关键.。
西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案
西安西工大附中2023-2024学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.122.如图所示的几何体的左视图是( )3.如图,已知点B 在点A 的北偏东65°方向,点C 在点A 的南偏西20°方向,则∠BAC 的度数为( ) A.135°B.130°C.125°D.120°4.下列计算,正确的是( ) A.a 2·a 3=a 6B.a 2+a 3=a 5C.(-a 2)3=-a 6D.a 6÷(-a)3=-a 25.点O 、A 、B 、C 在数轴上的位置如图所示,其中点A 、B 到原点O 的距离相等,点A 、C 之间的距离为2.若点C 表示的数为x ,则点B 所表示的数为( ) A.x +2B.x -2C.-x +2D.-x -26.已知a 是两位数,b 是三位数,把b 直接写在a 的右面,就成为一个五位数,这个五位数用代数式可表示成( )第3题图第5题图D.C.B.A. 第2题图A.abB.100a+bC.a+100bD.1000a+b7.若M(5x -y 2)=y 4-25x 2,那么代数式M 应为( ) A.5x 2-y 2B.5x +y 2C.-y 2+5xD.-5x -y 28.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程为( ) A.x+23=x 2-9B.x 3+2=x−92C.x 3-2=x+92D.x−23=x 2+99.计算24046×(-0.25)2024的结果为() A.-22022B.22022C.14D.-1410.有理数a 、b 、c 所对应的点在数轴上的位置如图所示,化简|a -b|-|2c -a|+|c -b|的结果是( ) A.cB.3c -2bC.2a -3cD.-3c二、填空题(共6小题,每小题3分,计18分)11.西安市冬季里某一天的气温为-7℃~-1℃,这一天西安市的温差是____℃. 12.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,即0.00000000022米.将0.00000000022用科学记数法表示为________.13.小明用若干根等长的小木棒设计出如图所示的图形,则第n 个图形中有小木棒____根.第13题图第3个图形第1个图形第2个图形第4个图形…第10题图14.已知m 、n 为有理数,且4x 2+m x +9=(2x +n)2,则m+n 的值为____.15.如图,∠AOB=126°,射线OC 在∠AOB 外,且∠BOC=2∠AOC ,若OM 平分∠BOC ,ON 平分∠AOC ,则∠MON=____°.16.在如图所示的三阶幻方中,填写了一些数、代数式和汉字(其中每个代数式或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为____. 三、解答题(共7小题,计52分) 17.计算题(每小题4分,共12分) (1)-14÷(-5)2×(-53)-|0.8-1|(2)(-2x 2)3+ x 2·x 4-(-3x 3)2(3)解方程:3+x−12=x -x+1418.(5分)先化简,再求值:[(x -2y)2-(x +3y)(x -3y)+3y 2]÷(-4y),其中x =2023,y=-14.19.(6分)列方程解决下面问题.甲、乙两人分别从A ,B 两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h ,相遇后乙再经1h 到达A 地.求甲、乙两人的速度. 20.(6分)如图,B 、C 两点把线段AD 分成2︰5︰3三部分,M 为AD 的中点,BM=6,求CM 的长度.第20题图ABM C D第15题图AN BC MO0 信实守诚-8-11 x +1 -x -3第16题图21.(6分)为了解某校七年级学生数学期中考试情况,小亮随机抽取了部分学生的数学成绩(成绩都为整数)为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题.(1)这次抽样调查的样本容量为_____. (2)请补全条形统计图.(3)这个学校七年级共有学生1200人,若分数为80分(含80分)以上为优秀,估计这次七年级学生期中数学考试成绩为优秀的学生人数大约有多少?22.(7分)如图①,点O 为直线AB 上一点,过点O 作射线0C ,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角尺绕点O 逆时针旋转至图②,使得点N 在OC 的反向延长线上,求∠MOB 的度数.(2)将图①中的三角尺绕点O 顺时针旋转至图③,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.第21题图A B C D 25%50%10%CD 等级23.(10分)探究与实践 问题发现(1)用四个长为a ,宽为b 的长方形拼成如图所示的正方形ABCD ,由此可以得到(a+b)2、(a -b)2、ab 的等量关系是_____. 问题探究(2)如图②,将边长为a 的正方形APCD 和边长为b 正方形BPEF 拼在一起,使得A 、P 、B 共线,点E 落在PC 上,连接AB.若AB=8,△APE 的面积为7.5,求CE 的长度. 问题解决(3)如图③,某小区物业准备在小区内规划设计一块休闲娱乐区,其中BE 、CF 为两条互相垂直的道路,且BG=CG ,EG=FG ,四边形ABGF 与四边形CDEG 为长方形,现计划在两个三角形区域种植花草,两个长方形区域铺设塑胶地面,按规划要求,道路BE 的长度为80米.若种值花草每平方米需要100元,铺设塑胶地面每平方米需要30元,若物业为本次修建休闲娱乐区筹集了25万元,请你通过计算说明该物业筹集的资金是否够用?(道路的宽度均不计)第22题图图①B 图②BN 图③BM西安西工大附中2023-2024学年第一学期期末考试七年级数学试题参考答案一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.121.解:2-1=121=12,故选D 。
人教版七年级上册数学期末考试试卷附答案
人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。
七年级数学期末试卷及答案
【导语】虽然在学习的过程中会遇到许多不顺⼼的事,但古⼈说得好——吃⼀堑,长⼀智。
多了⼀次失败,就多了⼀次教训;多了⼀次挫折,就多了⼀次经验。
没有失败和挫折的⼈,是永远不会成功的。
本篇⽂章是©⽆忧考⽹为您整理的《七年级数学期末试卷及答案》,供⼤家借鉴。
【篇⼀】 ⼀、选择题(每⼩题4分,共40分) 1.﹣4的绝对值是() A.B.C.4D.﹣4 考点:绝对值. 分析:根据⼀个负数的绝对值是它的相反数即可求解. 解答:解:﹣4的绝对值是4. 故选C. 点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运⽤到实际运算当中. 绝对值规律总结:⼀个正数的绝对值是它本⾝;⼀个负数的绝对值是它的相反数;0的绝对值是0. 2.下列各数中,数值相等的是()A.32与23B.﹣23与(﹣2)3C.3×22与(3×2)2D.﹣32与(﹣3)2 考点:有理数的乘⽅. 分析:根据乘⽅的意义,可得答案. 解答:解:A32=9,23=8,故A的数值不相等; B﹣23=﹣8,(﹣2)3=﹣8,故B的数值相等; C3×22=12,(3×2)2=36,故C的数值不相等; D﹣32=﹣9,(﹣3)2=9,故D的数值不相等; 故选:B. 点评:本题考查了有理数的乘⽅,注意负数的偶次幂是正数,负数的奇次幂是负数. 3.0.3998四舍五⼊到百分位,约等于()A.0.39B.0.40C.0.4D.0.400 考点:近似数和有效数字. 分析:把0.3998四舍五⼊到百分位就是对这个数百分位以后的数进⾏四舍五⼊. 解答:解:0.3998四舍五⼊到百分位,约等于0.40. 故选B. 点评:本题考查了四舍五⼊的⽅法,是需要识记的内容. 4.如果是三次⼆项式,则a的值为()A.2B.﹣3C.±2D.±3 考点:多项式. 专题:计算题. 分析:明⽩三次⼆项式是多项式⾥⾯次数的项3次,有两个单项式的和.所以可得结果. 解答:解:因为次数要有3次得单项式, 所以|a|=2 a=±2. 因为是两项式,所以a﹣2=0 a=2 所以a=﹣2(舍去). 故选A. 点评:本题考查对三次⼆项式概念的理解,关键知道多项式的次数是3,含有两项. 5.化简p﹣[q﹣2p﹣(p﹣q)]的结果为()A.2pB.4p﹣2qC.﹣2pD.2p﹣2q 考点:整式的加减. 专题:计算题. 分析:根据整式的加减混合运算法则,利⽤去括号法则有括号先去⼩括号,再去中括号,最后合并同类项即可求出答案. 解答:解:原式=p﹣[q﹣2p﹣p+q], =p﹣q+2p+p﹣q, =﹣2q+4p, =4p﹣2q. 故选B. 点评:本题主要考查了整式的加减运算,解此题的关键是根据去括号法则正确去括号(括号前是﹣号,去括号时,各项都变号). 6.若x=2是关于x的⽅程2x+3m﹣1=0的解,则m的值为()A.﹣1B.0C.1D. 考点:⼀元⼀次⽅程的解. 专题:计算题. 分析:根据⽅程的解的定义,把x=2代⼊⽅程2x+3m﹣1=0即可求出m的值. 解答:解:∵x=2是关于x的⽅程2x+3m﹣1=0的解, ∴2×2+3m﹣1=0, 解得:m=﹣1. 故选:A. 点评:本题的关键是理解⽅程的解的定义,⽅程的解就是能够使⽅程左右两边相等的未知数的值. 7.某校春季运动会⽐赛中,⼋年级(1)班、(5)班的竞技实⼒相当,关于⽐赛结果,甲同学说:(1)班与(5)班得分⽐为6:5;⼄同学说:(1)班得分⽐(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的⽅程组应为() A.B. C.D. 考点:由实际问题抽象出⼆元⼀次⽅程组. 分析:此题的等量关系有:(1)班得分:(5)班得分=6:5;(1)班得分=(5)班得分×2﹣40. 解答:根据(1)班与(5)班得分⽐为6:5,有: x:y=6:5,得5x=6y; 根据(1)班得分⽐(5)班得分的2倍少40分,得x=2y﹣40. 可列⽅程组为. 故选:D. 点评:列⽅程组的关键是找准等量关系.同时能够根据⽐例的基本性质对等量关系①把⽐例式转化为等积式. 8.下⾯的平⾯图形中,是正⽅体的平⾯展开图的是() A.B.C.D. 考点:⼏何体的展开图. 分析:由平⾯图形的折叠及正⽅体的展开图解题. 解答:解:选项A、B、D中折叠后有⼀⾏两个⾯⽆法折起来,⽽且缺少⼀个底⾯,不能折成正⽅体. 故选C. 点评:熟练掌握正⽅体的表⾯展开图是解题的关键. 9.如图,已知∠AOB=∠COD=90°,⼜∠AOD=170°,则∠BOC的度数为()A.40°B.30°C.20°D.10° 考点:⾓的计算. 专题:计算题. 分析:先设∠BOC=x,由于∠AOB=∠COD=90°,即∠AOC+x=∠BOD+x=90°,从⽽易求∠AOB+∠COD﹣∠AOD,即可得x=10°. 解答:解:设∠BOC=x, ∵∠AOB=∠COD=90°, ∴∠AOC+x=∠BOD+x=90°, ∴∠AOB+∠COD﹣∠AOD=∠AOC+x+∠BOD+x﹣(∠AOC+∠BOD+x)=10°, 即x=10°. 故选D. 点评:本题考查了⾓的计算、垂直定义.关键是把∠AOD和∠AOB+∠COD表⽰成⼏个⾓和的形式. 10.⼩明把⾃⼰⼀周的⽀出情况⽤如图所⽰的统计图来表⽰,则从图中可以看出() A.⼀周⽀出的总⾦额 B.⼀周内各项⽀出⾦额占总⽀出的百分⽐ C.⼀周各项⽀出的⾦额 D.各项⽀出⾦额在⼀周中的变化情况 考点:扇形统计图. 分析:根据扇形统计图的特点进⾏解答即可. 解答:解:∵扇形统计图是⽤整个圆表⽰总数⽤圆内各个扇形的⼤⼩表⽰各部分数量占总数的百分数.通过扇形统计图可以很清楚地表⽰出各部分数量同总数之间的关系, ∴从图中可以看出⼀周内各项⽀出⾦额占总⽀出的百分⽐. 故选B. 点评:本题考查的是扇形统计图,熟知从扇形图上可以清楚地看出各部分数量和总数量之间的关系是解答此题的关键. ⼆、填空题(每⼩题5分,共20分) 11.在(﹣1)2010,(﹣1)2011,﹣23,(﹣3)2这四个数中,的数与最⼩的数的差等于17. 考点:有理数⼤⼩⽐较;有理数的减法;有理数的乘⽅. 分析:根据有理数的乘⽅法则算出各数,找出的数与最⼩的数,再进⾏计算即可. 解答:解:∵(﹣1)2010=1,(﹣1)2011=﹣1,﹣23=﹣8,(﹣3)2=9, ∴的数是(﹣3)2,最⼩的数是﹣23, ∴的数与最⼩的数的差等于=9﹣(﹣8)=17. 故答案为:17. 点评:此题考查了有理数的⼤⼩⽐较,根据有理数的乘⽅法则算出各数,找出这组数据的值与最⼩值是本题的关键. 12.已知m+n=1,则代数式﹣m+2﹣n=1. 考点:代数式求值. 专题:计算题. 分析:分析已知问题,此题可⽤整体代⼊法求代数式的值,把代数式﹣m+2﹣n化为含m+n的代数式,然后把m+n=1代⼊求值. 解答:解:﹣m+2﹣n=﹣(m+n)+2, 已知m+n=1代⼊上式得: ﹣1+2=1. 故答案为:1. 点评:此题考查了学⽣对数学整体思想的掌握运⽤及代数式求值问题.关键是把代数式﹣m+2﹣n化为含m+n的代数式. 13.已知单项式与﹣3x2n﹣3y8是同类项,则3m﹣5n的值为﹣7. 考点:同类项. 专题:计算题. 分析:由单项式与﹣3x2n﹣3y8是同类项,可得m=2n﹣3,2m+3n=8,分别求得m、n的值,即可求出3m﹣5n的值. 解答:解:由题意可知,m=2n﹣3,2m+3n=8, 将m=2n﹣3代⼊2m+3n=8得, 2(2n﹣3)+3n=8, 解得n=2, 将n=2代⼊m=2n﹣3得, m=1, 所以3m﹣5n=3×1﹣5×2=﹣7. 故答案为:﹣7. 点评:此题主要考查学⽣对同类项得理解和掌握,解答此题的关键是由单项式与﹣3x2n﹣3y8是同类项,得出m=2n﹣3,2m+3n=8. 14.已知线段AB=8cm,在直线AB上有⼀点C,且BC=4cm,M是线段AC的中点,则线段AM的长为2cm或6cm. 考点:两点间的距离. 专题:计算题. 分析:应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上. 解答:解:①当点C在线段AB的延长线上时,此时AC=AB+BC=12cm,∵M是线段AC的中点,则AM=AC=6cm; ②当点C在线段AB上时,AC=AB﹣BC=4cm,∵M是线段AC的中点,则AM=AC=2cm. 故答案为6cm或2cm. 点评:本题主要考查两点间的距离的知识点,利⽤中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选⽤它的不同表⽰⽅法,有利于解题的简洁性.同时,灵活运⽤线段的和、差、倍、分转化线段之间的数量关系也是⼗分关键的⼀点. 三、计算题(本题共2⼩题,每⼩题8分,共16分) 15. 考点:有理数的混合运算. 专题:计算题. 分析:在进⾏有理数的混合运算时,⼀是要注意运算顺序,先算⾼⼀级的运算,再算低⼀级的运算,即先乘⽅,后乘除,再加减.同级运算按从左到右的顺序进⾏.有括号先算括号内的运算.⼆是要注意观察,灵活运⽤运算律进⾏简便计算,以提⾼运算速度及运算能⼒. 解答:解:, =﹣9﹣125×﹣18÷9, =﹣9﹣20﹣2, =﹣31. 点评:本题考查了有理数的综合运算能⼒,解题时还应注意如何去绝对值. 16.解⽅程组:. 考点:解⼆元⼀次⽅程组. 专题:计算题. 分析:根据等式的性质把⽅程组中的⽅程化简为,再解即可. 解答:解:原⽅程组化简得 ①+②得:20a=60, ∴a=3, 代⼊①得:8×3+15b=54, ∴b=2, 即. 点评:此题是考查等式的性质和解⼆元⼀次⽅程组时的加减消元法. 四、(本题共2⼩题,每⼩题8分,共16分) 17.已知∠α与∠β互为补⾓,且∠β的⽐∠α⼤15°,求∠α的余⾓. 考点:余⾓和补⾓. 专题:应⽤题. 分析:根据补⾓的定义,互补两⾓的和为180°,根据题意列出⽅程组即可求出∠α,再根据余⾓的定义即可得出结果. 解答:解:根据题意及补⾓的定义, ∴, 解得, ∴∠α的余⾓为90°﹣∠α=90°﹣63°=27°. 故答案为:27°. 点评:本题主要考查了补⾓、余⾓的定义及解⼆元⼀次⽅程组,难度适中. 18.如图,C为线段AB的中点,D是线段CB的中点,CD=1cm,求图中AC+AD+AB的长度和. 考点:两点间的距离. 分析:先根据D是线段CB的中点,CD=1cm求出BC的长,再由C是AB的中点得出AC及AB的长,故可得出AD的长,进⽽可得出结论. 解答:解:∵CD=1cm,D是CB中点, ∴BC=2cm, ⼜∵C是AB的中点, ∴AC=2cm,AB=4cm, ∴AD=AC+CD=3cm, ∴AC+AD+AB=9cm. 点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键. 五、(本题共2⼩题,每⼩题10分,共20分) 19.已知,A=a3﹣a2﹣a,B=a﹣a2﹣a3,C=2a2﹣a,求A﹣2B+3C的值. 考点:整式的加减. 专题:计算题. 分析:将A、B、C的值代⼊A﹣2B+3C去括号,再合并同类项,从⽽得出答案. 解答:解:A﹣2B+3C=(a3﹣a2﹣a)﹣2(a﹣a2﹣a3)+3(2a2﹣a), =a3﹣a2﹣a﹣2a+2a2+2a3+6a2﹣3a, =3a3+7a2﹣6a. 点评:本题考查了整式的加减,解决此类题⽬的关键是熟记去括号法则,熟练运⽤合并同类项的法则,这是各地中考的常考点. 20.⼀个两位数的⼗位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与⼗位数字对调之后组成的两位数.求这个两位数. 考点:⼀元⼀次⽅程的应⽤. 专题:数字问题;⽅程思想. 分析:先设这个两位数的⼗位数字和个位数字分别为x,7﹣x,根据题意列出⽅程,求出这个两位数. 解答:解:设这个两位数的⼗位数字为x,则个位数字为7﹣x, 由题意列⽅程得,10x+7﹣x+45=10(7﹣x)+x, 解得x=1, ∴7﹣x=7﹣1=6, ∴这个两位数为16. 点评:本题考查了数字问题,⽅程思想是很重要的数学思想. 六.(本题满分12分) 21.取⼀张长⽅形的纸⽚,如图①所⽰,折叠⼀个⾓,记顶点A落下的位置为A′,折痕为CD,如图②所⽰再折叠另⼀个⾓,使DB沿DA′⽅向落下,折痕为DE,试判断∠CDE的⼤⼩,并说明你的理由. 考点:⾓的计算;翻折变换(折叠问题). 专题:⼏何图形问题. 分析:根据折叠的原理,可知∠BDE=∠A′DE,∠A′DC=∠ADC.再利⽤平⾓为180°,易求得∠CDE=90°. 解答:解:∠CDE=90°. 理由:∵∠BDE=∠A′DE,∠A′DC=∠ADC, ∴∠CDA′=∠ADA′,∠A′DE=∠BDA, ∴∠CDE=∠CDA′+∠A′DE, =∠ADA′+∠BDA, =(∠ADA′+∠BDA′), =×180°, =90°. 点评:本题考查⾓的计算、翻折变换.解决本题⼀定明⽩对折的两个⾓相等,再就是运⽤平⾓的度数为180°这⼀隐含条件. 七.(本题满分12分) 22.为了“让所有的孩⼦都能上得起学,都能上好学”,国家⾃2007年起出台了⼀系列“资助贫困学⽣”的政策,其中包括向经济困难的学⽣免费提供教科书的政策.为确保这项⼯作顺利实施,学校需要调查学⽣的家庭情况.以下是某市城郊⼀所中学甲、⼄两个班的调查结果,整理成表(⼀)和图(⼀): 类型班级城镇⾮低保 户⼝⼈数农村户⼝⼈数城镇户⼝ 低保⼈数总⼈数 甲班20550 ⼄班28224 (1)将表(⼀)和图(⼀)中的空缺部分补全. (2)现要预定2009年下学期的教科书,全额100元.若农村户⼝学⽣可全免,城镇低保的学⽣可减免,城镇户⼝(⾮低保)学⽣全额交费.求⼄班应交书费多少元?甲班受到国家资助教科书的学⽣占全班⼈数的百分⽐是多少? (3)五四青年节时,校团委免费赠送给甲、⼄两班若⼲册科普类、⽂学类及艺术类三种图书,其中⽂学类图书有15册,三种图书所占⽐例如图(⼆)所⽰,求艺术类图书共有多少册? 考点:条形统计图. 分析:(1)由统计表可知:甲班农村户⼝的⼈数为50﹣20﹣5=25⼈;⼄班的总⼈数为28+22+4=54⼈; (2)由题意可知:⼄班有22个农村户⼝,28个城镇户⼝,4个城镇低保户⼝,根据收费标准即可求解; 甲班的农村户⼝的学⽣和城镇低保户⼝的学⽣都可以受到国家资助教科书,可以受到国家资助教科书的总⼈数为25+5=30⼈,全班总⼈数是50⼈,即可求得; (3)由扇形统计图可知:⽂学类图书有15册,占30%,即可求得总册数,则求出艺术类图书所占的百分⽐即可求解. 解答:解: (1)补充后的图如下: (2)⼄班应交费:28×100+4×100×(1﹣)=2900元; 甲班受到国家资助教科书的学⽣占全班⼈数的百分⽐:×100%=60%; (3)总册数:15÷30%=50(册), 艺术类图书共有:50×(1﹣30%﹣44%)=13(册). 点评:本题考查的是条形统计图和扇形统计图的综合运⽤.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表⽰出每个项⽬的数据;扇形统计图直接反映部分占总体的百分⽐⼤⼩. ⼋、(本题满分14分) 23.如图所⽰,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数. (2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数. (3)如果(1)中∠BOC=β(β为锐⾓),其他条件不变,求∠MON的度数. (4)从(1)(2)(3)的结果你能看出什么规律? (5)线段的计算与⾓的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计⼀道以线段为背景的计算题,并写出其中的规律来? 考点:⾓的计算. 专题:规律型. 分析:(1)⾸先根据题中已知的两个⾓度数,求出⾓AOC的度数,然后根据⾓平分线的定义可知⾓平分线分成的两个⾓都等于其⼤⾓的⼀半,分别求出⾓MOC和⾓NOC,两者之差即为⾓MON的度数; (2)(3)的计算⽅法与(1)⼀样. (4)通过前三问求出的⾓MON的度数可发现其都等于⾓AOB度数的⼀半. (5)模仿线段的计算与⾓的计算存在着紧密的联系,也在已知条件中设计两条线段的长,设计两个中点,求中点间的线段长. 解答:解:(1)∵∠AOB=90°,∠BOC=30°, ∴∠AOC=90°+30°=120°, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=60°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC=15° ∴∠MON=∠MOC﹣∠NOC=45°; (2)∵∠AOB=α,∠BOC=30°, ∴∠AOC=α+30°, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=+15°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC=15° ∴∠MON=∠MOC﹣∠NOC=; (3)∵∠AOB=90°,∠BOC=β, ∴∠AOC=90°+β, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=+45°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC= ∴∠MON=∠MOC﹣∠NOC=45°; (4)从(1)(2)(3)的结果可知∠MON=∠AOB; (5) ①已知线段AB的长为20,线段BC的长为10,点M是线段AC的中点,点N是线段BC的中点,求线段MN的长; ②若把线段AB的长改为a,其余条件不变,求线段MN的长; ③若把线段BC的长改为b,其余条件不变,求线段MN的长; ④从①②③你能发现什么规律. 规律为:MN=AB. 点评:本题考查了学会对⾓平分线概念的理解,会求⾓的度数,同时考查了学会归纳总结规律的能⼒,以及会根据⾓和线段的紧密联系设计实验的能⼒. 【篇⼆】 ⼀、选择题(每题3分,共30分) 1.﹣2的相反数是()A.﹣B.﹣2C.D.2 2.据平凉市旅游局统计,2015年⼗⼀黄⾦周期间,平凉市接待游客38万⼈,实现旅游收⼊16000000元.将16000000⽤科学记数法表⽰应为()A.0.16×108B.1.6×107C.16×106D.1.6×106 3.数轴上与原点距离为5的点表⽰的是()A.5B.﹣5C.±5D.6 4.下列关于单项式的说法中,正确的是()A.系数、次数都是3B.系数是,次数是3C.系数是,次数是2D.系数是,次数是3 5.如果x=6是⽅程2x+3a=6x的解,那么a的值是()A.4B.8C.9D.﹣8 6.绝对值不⼤于4的所有整数的和是()A.16B.0C.576D.﹣1 7.下列各图中,可以是⼀个正⽅体的平⾯展开图的是() A.B.C.D. 8.“⼀个数⽐它的相反数⼤﹣4”,若设这数是x,则可列出关于x的⽅程为()A.x=﹣x+(﹣4)B.x=﹣x+4C.x=﹣x﹣(﹣4)D.x﹣(﹣x)=4 9.⽤⼀个平⾯去截:①圆锥;②圆柱;③球;④五棱柱,能得到截⾯是圆的图形是()A.①②③B.①②④C.②③④D.①③④ 10.某商店有两个进价不同的计算器都卖了64元,其中⼀个盈利60%,另⼀个亏损20%,在这次买卖中,这家商店()A.不赔不赚B.赚了32元C.赔了8元D.赚了8元 ⼆、填空题(每题3分,共30分) 11.﹣3的倒数的绝对值是. 12.若a、b互为倒数,则2ab﹣5=. 13.若a2mb3和﹣7a2b3是同类项,则m值为. 14.若|y﹣5|+(x+2)2=0,则xy的值为. 15.两点之间,最短;在墙上固定⼀根⽊条⾄少要两个钉⼦,这是因为. 16.时钟的分针每分钟转度,时针每分钟转度. 17.如果∠A=30°,则∠A的余⾓是度;如果∠1+∠2=90°,∠1+∠3=90°,那么∠2与∠3的⼤⼩关系是. 18.如果代数式2y2+3y+5的值是6,求代数式4y2+6y﹣3的值是. 19.若规定“*”的运算法则为:a*b=ab﹣1,则2*3=. 20.有⼀列数,前五个数依次为,﹣,,﹣,,则这列数的第20个数是. 三、计算和解⽅程(16分) 21.计算题(8分) (1) (2)(2a2﹣5a)﹣2(﹣3a+5+a2) 22.解⽅程(8分) (1)4x﹣1.5x=﹣0.5x﹣9(2)1﹣=2﹣. 四、解答题(44分) 23.(6分)先化简,再求值:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3),其中. 24.(7分)⼀个⾓的余⾓⽐它的补⾓的⼤15°,求这个⾓的度数. 25.(7分)如图,∠AOB为直⾓,∠AOC为锐⾓,且OM平分∠BOC,ON平分∠AOC,求∠MON的度数. 26.(7分)⼀项⼯程由甲单独做需12天完成,由⼄单独做需8天完成,若两⼈合作3天后,剩下部分由⼄单独完成,⼄还需做多少天? 27.(7分)今年春节,⼩明到奶奶家拜年,奶奶说过年了,⼤家都长了⼀岁,⼩明问奶奶多⼤岁了.奶奶说:“我现在的年龄是你年龄的5倍,再过5年,我的年龄是你年龄的4倍,你算算我现在的年龄是多少?”聪明的同学,请你帮帮⼩明,算出奶奶的岁数. 28.(10分)某市电话拨号上⽹有两种收费⽅式,⽤户可以任选其⼀:A、计时制:0.05元/分钟;B、⽉租制:50元/⽉(限⼀部个⼈住宅电话上⽹).此外,每种上⽹⽅式都得加收通信费0.02元/分钟. (1)⼩玲说:两种计费⽅式的收费对她来说是⼀样的.⼩玲每⽉上⽹多少⼩时? (2)某⽤户估计⼀个⽉内上⽹的时间为65⼩时,你认为采⽤哪种⽅式较为合算?为什么? 参考答案 ⼀、选择题(每题3分,共30分) 题号12345678910 答案DBCDBBCAAD ⼆、填空题(每题3分,共30分) 11.1/3;12.﹣3;13.1;14.﹣32;15.线段;两点确定⼀条直线; 16.6度;0.5度;17.60度;∠2=∠3;18.﹣1;19.5;20.﹣20/21. 三、计算和解⽅程(16分) 21.(1)1/12;(2)a-10;22.(1)x=-3;(2)x=1 四、解答题(44分) 23.解:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3) =-6x+9x2﹣3﹣9x2+x﹣3 =-5x﹣6----------------------------------------------------------------------------4分 当时,-5x﹣6=-5×(-1/3)-6=-13/3---------------------------------------2分 24.解:设这个⾓的度数为x,则它的余⾓为(90°﹣x),补⾓为(180°﹣x),--------2分 依题意,得:(90°﹣x)﹣(180°﹣x)=15°,-------------------------------------------4分 解得x=40°.--------------------------------------------------------------------------------------6分 答:这个⾓是40°.----------------------------------------------------------------------------7分 25.解:∵OM平分∠BOC,ON平分∠AOC, ∴∠MOC=∠BOC,∠NOC=∠AOC,------------------------------------------------------2分 ∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)-----------------------------------------4分 =(∠BOA+∠AOC﹣∠AOC) =∠BOA =45°.----------------------------------------------------------------------------------------------6分 故∠MON的度数为45°.-------------------------------------------------------------------------7分 26.解:设⼄还需做x天.-----------------------------------------------------------------------1分 由题意得:++=1,-------------------------------------------------------------------------4分 解之得:x=3.------------------------------------------------------------------------------------6分 答:⼄还需做3天.------------------------------------------------------------------------------7分 27.解:设⼩明现在的年龄为x岁,则奶奶现在的年龄为5x岁,根据题得,--------------1分 4(x+5)=5x+5,---------------------------------------------------------------------------------3分 解得:x=15,-------------------------------------------------------------------------------------5分 经检验,符合题意,5x=15×5=75(岁).------------------------------------------------------6分 答:奶奶现在的年龄为75岁.------------------------------------==--------------------------7分 28.解:(1)设⼩玲每⽉上⽹x⼩时,根据题意得------------------------------------------1分 (0.05+0.02)×60x=50+0.02×60x,--------------------------------------------------------------2分 解得x=.-----------------------------------------------------------------------------------------5分 答:⼩玲每⽉上⽹⼩时;--------------------------------------------------------------------6分 (2)如果⼀个⽉内上⽹的时间为65⼩时, 选择A、计时制费⽤:(0.05+0.02)×60×65=273(元),----------------------------------8分 选择B、⽉租制费⽤:50+0.02×60×65=128(元). 所以⼀个⽉内上⽹的时间为65⼩时,采⽤⽉租制较为合算.--------------------------------10分 【篇三】 ⼀、选择题:每⼩题3分,共30分。
浙江省杭州市萧山区2023-2024学年七年级上学期期末数学试题(含答案)
2023学年第一学期期末学业水平测试七年级数学试题卷考生须知:1.本试卷满分120分,考试时间120分钟.2.答题前,在答题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效.答题方式详见答题纸上的说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5.考试结束后,试题卷和答题纸一并上交.试题卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2024的相反数是( )A .2024B .C.D .2.2023年9月23日至10月8日,第19届亚运会在中国浙江杭州举行,亚运会主场馆为杭州奥体中心体育馆,又名“大莲花”.体育馆总建筑面积约为216000平方米,将数字216000用科学记数法表示为( )A .B .C .D .3.下列各数,,,中,负数有()A .1个B .2个C .3个D .4个4.在下列四个数中,最大的数是()A .B .0C .2D .5的值在( )A .8和9之间B .7和8之间C .6和7之间D .5和6之间6.如图,P 是直线l 外一点,A ,B ,C 三点在直线l 上,且于点B ,,则下列结论中正确的是()①线段BP 的长度是点P 到直线l 的距离;②线段AP 的长度是A 点到直线PC 的距离;2024-1202412024-60.21610⨯421.610⨯62.1610⨯52.1610⨯|2|-2(2)-23-3(2)-1-5-3+PB l ⊥90APC ∠=︒③在PA ,PB ,PC 三条线段中,PB 最短;④线段PC 的长度是点P 到直线l 的距离.A .①②③B .③④C .①③D .①②③④7.将一副三角板按如图所示位置摆放,其中与一定相等的是()A .B .C .D .8.古代名著《算学启蒙》中有一题:良马日行二百三十里,缀马日行一百三十里,驾马先行一十一日,问良马几何追及之?意思是:跑得快的马每天走230里,跑得慢的马每天走130里,慢马先走11天,快马几天可追上慢马?若设快马x 天可追上慢马,则可列方程为( )A .B .C .D .9.下列说法正确的是()A .若,则B .若,则C .若,则D .若,则10.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形的盒子底部,按图甲和图乙两种方式摆放,若长方体盒子底部的长与宽的差a 为2,则图甲和图乙中阴影部分周长之差为()A .4B .3C .2D .1二、填空题:本大题有6个小题,每小题3分,共18分.11.单项式的系数是__________.12.若,则的补角的度数是__________.13.如果,那么的值是__________.α∠β∠230(11)13013011x x -=+⨯230(11)130130x x -=+23013011130x x =-⨯23013011130x x =+⨯a b =a c b c +=-ax ay =33ax ay -=+a b =22ac bc =22ac bc =a b=732a b c -7330α∠=︒'α∠5m n -=337m n --14.如图,直线AE 与CD 相交于点B ,,,则的度数是__________.第14题图15.若单项式与单项式的和仍是一个单项式,则的值是__________.16.设代数式,代数式为常数.观察当x 取不同值时,对应A 的值并列表如下(部分):X …123…A…567…若,则__________.三、解答题:本大题有8个小题,共72分,解答应写出文字说明、证明过程或演算步骤.17.(本题满分6分)(1);(2).18.(本题满分6分)(1);(2).19.(本题满分8分)如图,已知平面上有三点A ,B ,C .用无刻度直尺和圆规作图(请保留作图痕迹);(1)画线段AB ,直线BC ,射线CA ;(2)在线段BC 上找一点E ,使得.20.(本题满分8分)设,,(1)化简:;(2)若x 是8的立方根,求的值.60DBE ∠=︒BF AE ⊥CBF ∠15m xy +61n x y --n m 13x a A +=+33ax A a -=A B =x =(3)(7)--+33232-+÷317x x -=+3141136x x --=-CE BC AB =-223A x x =--22B x x =+-23A B -23A B -21.(本题满分10分)一根竹竿插入一水池底部的淤泥中(如图),竹竿的入泥部分占全长的,淤泥以上的入水部分比入泥部分长米,露出水面部分为米,竹竿有多长?水有多深?22.(本题满分10分)如图,点C 为线段AB 上一点,AC 与CB 的长度之比为3:4,D 为线段AC 的中点.(1)若,求BD 的长;(2)若E 是线段BD 的中点,若,求AB 的长(用含a 的代数式表示).23.(本题满分12分)综合与实践问题情境:“综合与实践”课上,老师提出如下问题:将一直角三角板的直角顶点O 放在直线AB 上,OC ,OD 是三角板的两条直角边,三角板可绕点O 任意旋转,射线OE 平分.当三角板绕点O 旋转到图1的位置时,,试求的度数;数学思考:(1)请你解答老师提出的问题.数学探究:(2)老师提出,当三角板绕点O 旋转到图2的位置时,射线OE 平分,请同学们猜想与之间有怎样的数量关系?并说明理由;深入探究:(3)老师提出,当三角板绕点O 旋转到图3的位置时,射线OE 平分,请同学们猜想与∠BOD 之间有怎样的数量关系?并说明理由.24.(本题满分12分)1512131021AB =CE a =AOD ∠35COE ∠=︒BOD ∠AOD ∠COE ∠BOD ∠AOD ∠COE ∠如图,在数轴上点A 表示数-3,点B 表示数,点C 表示数5,点A 到点B 的距离记为AB .我们规定:AB 的大小可以用位于右边的点表示的数减去左边的点表示的数来表示.例如:.(1)求线段AC 的长;(2)以数轴上某点D 为折点,将此数轴向右对折,若点A 在点C 的右边,且,求点D 表示的数;(3)若点A 以每秒1个单位长度的速度向左运动,点C 以每秒4个单位长度的速度向左运动,两点同时出发,经过t 秒时,,求出t的值.1-(1)(3)2AB =---=4AC =2AC AB =2023学年第一学期期末质量检测七年级数学参考答案一、选择题;(每小题3分,共30分)题号12345678910答案BDBCCABDCA二、填空题:(每小题3分,共18分)11.12.13.814.15.2516.三、解答题:17.解;(1)(2)18.解:(1)(2)19.解:(1)画絨后AB 直线BC 射线CA(2)在线段BC 上找一点E ,使得.20.解:(1)化简:.(2)是8的立方根,,.21.解;没竹竿有x 米,则竹竿入泥部分为米,则淤泥以上的入水部分为米,由题意可得:,解得,则,答:竹竿有3米,则水深为米.22.解:(1)由,设,,,,,解得,,,2-10630︒'()106.5︒150︒5210-7-4x =910x =CE BC AB =-()()222322332A B x x x x -=---+-2224263365x x x x x x =----+=-x 2x ∴=222352106A B x x ∴-=-=-=-15x 1152x ⎛⎫+ ⎪⎝⎭1111355210x x x +++=3x =11115210x +=1110:3:4AC BC =3AC x =4BC x =14AB = AC BC AB +=3421x x ∴+=3x =9AC ∴=12BC =为绕段AC 的中点,,.(2)如图所示.由,设,,,为线段AC 的中点,,,为BD 的中点,,,,,解得,.23.解:(1)由题可知:,,.又平分,..(2),理由如下:设,则.平分,.即.(3),理由如下:设,则,,,..24.解:(1).(2)对折后,点A 在点C 的右边,且,点A 表示的数是9,点D 表示的数是.(3)点A 以每秒1个单位长度的速度向左运动t 秒,点C 以每秒4个单位长度的速度向左运动t 秒,D 1922CD AC ∴==9331222BD CD BC ∴=+=+=:3:4AC BC =3AC m =4BC m =7AB m ∴=D 1322AD AC m ∴==311722BD AB AD a m m ∴=-=-=B 11124BE BD m ∴==115444CE BC BE m m m ∴=-=-=CE a = 54m a ∴=45m a =2875AB m a ∴==90DOC ∠=︒35COE ∠=︒ 903555DOE DOC COE ∴∠=∠-∠=︒-︒=︒OE AOD ∠2110AOD DOE ∴∠=∠=︒180********BOD AOD ∴∠=︒-∠=︒-︒=︒2BOD COE ∠=∠BOD x ∠=180AOD x ∠=︒-OE AOD ∠90DOC ∠=︒ 11909022COE DOC DOE x x ⎛⎫∴∠=∠-∠=︒-︒-= ⎪⎝⎭2BOD COE ∠=∠2360BOD COE ∠+∠=︒AOE x ∠=2AOD x ∠=902BOC x ∠=︒-1802BOD x ∴∠=︒-90COE x ∠=︒+()22901802360COE BOD x x ∴∠+∠=︒++︒-=︒5(3)8AC =--= 4AC =∴∴9(3)32+-=运动后表示的数是,运动后表示的数是.①当点C 在A 的右边时,,,,,.②当C 在A 的左边时,,,,,.(得一个答案给3分,两个答案都对给5分)A ∴3t --C ∴54t -2AB t ∴=+54(3)83AC t t t =----=-2AB AC = 2(2)83t t ∴+=-45t ∴=2AB t =+(3)(54)38AC t t t =--=-=-2AB AC = 2(2)38t t ∴+=-12t ∴=。
人教版七年级数学上册期末测试卷(完整)
人教版七年级数学上册期末测试卷(完整)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c2.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°3.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.下列图形具有稳定性的是()A.B.C.D.5.已知x是整数,当30x-取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q7.把1a-)A a-B.a-C a D.a8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56° 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.4.若()2320m n -++=,则m+2n 的值是________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程(1)37322x x +=- (2)31322322510x x x +-+-=-2.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.3.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a ,b)是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为P 1(a +6,b -2).(1)直接写出点C 1的坐标;(2)在图中画出△A 1B 1C 1;(3)求△AOA 1的面积.4.如图,四边形ABCD 中,∠A =∠C =90°,BE ,DF 分别是∠ABC ,∠ADC 的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长度/秒的速度同时从O点向左运动.当点A与点B 之间的距离为3个单位长度时,求点P所对应的数是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、A5、A6、C7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、60°3、3 44、-15、2或2.56、2或-8三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)811 x=2、±33、(1)(4,-2);(2)作图略,(3)6.4、(1)∠1+∠2=90°;略;(2)(2)BE∥DF;略.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)点P对应的数是1;(2)存在x的值,当x=﹣3或5时,满足点P到点A、点B的距离之和为8;(3)当点A与点B之间的距离为3个单位长度时,点P所对应的数是﹣4或﹣28.。
七年级(上)数学期末检测题(人教版)
七年级(上)数学期末检测题(人教版)一、选择题。
(本大题共12小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)|﹣2021|的相反数是()A.2021B.C.﹣2021D.2.(2分)献礼新中国成立70周年的影片《我和我的祖国》,不仅彰显了中华民族的文化自信,也激发了观众强烈的爱国情怀与观影热情.据某网站统计,国庆期间,此部电影票房收入约22亿元,平均每张票约40元,估计观影人次约为(用科学记数法表示)()A.0.55×108B.5.5×107C.5.5×106D.5.5×1053.(2分)如图,是一个正方体的平面展开图,那么,在该正方体中,与“想”字所对的汉字是()A.法B.学C.数D.方4.(2分)若(m+2)x|m|﹣1=8是一元一次方程,则m的值为()A.4B.±2C.﹣2D.25.(2分)若﹣3x m+2y2与5x3y n﹣1的和仍为单项式,则m与n的值分别是()A.1,3B.1,1C.0,3D.﹣1,16.(2分)已知2a﹣3b=2,则5﹣6a+9b的值是()A.0B.2C.﹣1D.17.(2分)规定※是一种新的运算符号,且a※b=ab+a+b,例如:2※3=2×3+2+3=11,那么(3※4)※1=()A.19B.29C.39D.498.(2分)某商品原价为a元,因销量下滑,经营者连续两次降价,每次降价10%,后因供不应求,又一次提高20%,问现在这种商品的价格是()A.1.08a元B.0.88a元C.0.972a元D.0.968 a元9.(2分)两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是a千米/时,水流速度为2千米/时,2小时后两船相距()千米.A.4a B.4a+8C.8D.4a﹣810.(2分)如图,O为直线AB上一点,OC平分∠AOD,∠AOC=50°,∠BOD=4∠DOE,则∠DOE的度数为()A.20°B.18°C.60°D.80°11.(2分)已知A,B,C三点在同一直线上,AB=21,BC=9,点E、F分别为线段AB、BC的中点,那么EF等于()A.15B.12或15C.6或12D.6或1512.(2分)如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n (n>1)个点,记第1个图形中总的点数为S2=3,第2个图形中总的点数为S3=6,依次为S4=9,S5=12.以下说法错误的是()A.S7=18B.S11=30C.若S n=60,则n=21D.若S n+S n+1=57,则n=11二、填空题。
七年级数学期末测试卷
七年级数学期末测试卷七年级数学期末测试题一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请将你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)1、下列各对数中,数值相等的是()A、x+y=10,x+2y=8B、x+y=8,x+2y=10C、x+2y=8,x+y=10D、x+2y=10,x+y=82、A-27与(-2)7、B-32与(-3)2、C-3×23与-32×2、D―(―3)2与―(―2)3二、填空题(本题共有8个小题,每小题3分,共24分)1、若a、b互为相反数,c、d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x2+3cd•x的根为________。
2、如果一个数的平方与这个数的差等于0,那么这个数只能是()A 0.B-1.C 1.D 0或13、绝对值大于或等于1,而小于4的所有的正整数的和是()A 8.B 7.C 6.D 54、计算:(-1)100+(-1)101的结果是()A 0.B-1.C 1.D 25、2003年5月19日,XXX特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为xxxxxxxx枚,用科学记数法表示正确的是() A.1.205×107.B.1.20×108.C.1.21×107.D.1.205×1046、若代数式x-3的值是2,则x的值是()A)0.75.(B)1.75.(C)1.5.(D)3.57、-p2=0的解为________。
8、已知轮船逆水前进的速度为m千米/时,水流速度为2千米/时,则轮船在静水中的速度是__________。
9、某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是___________。
10、若x=1时,代数式ax3+bx+1的值为5,则x=-1时,代数式ax3+bx+1的值等于___________。
人教版七年级下册数学期末测试卷(含答案解析)
人教版七年级下册数学期末测试卷一.选择题(每小题3分,共36分)1.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A.3个B.4个C.5个D.6个2.二元一次方程2a+5b=﹣6,用含a的代数式表示b,下列各式正确的是()A.B.C.D.3.如图,直线a、b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠1+∠2=180°4.点P(x﹣1,x+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限5.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32 B.0.2 C.40 D.0.256.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.7、将一张长方形纸片如图所示折叠后,再展开,如果∠1=56°,那么∠2等于()A.56°B.68°C.62°D.66°8、如图,已知AB∥DE,∠ABC=70º,∠CDE=140º,则∠BCD的值为( )A.70ºB.50ºC.40º D.30º9、若a、b均为正整数,且,则a+b的最小值是()A.3 B.4 C.5 D.610、若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015 D.﹣5201511、若关于x的不等式组只有5个整数解,则a的取值范围()A.B.C.D.12、. 如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13)B.(–13,–13)C.(14,14)D.(–14,–14)二、填空题(每小题3分,共18分)13.如图,当剪刀口∠AOB增大21°时,∠COD增大__________度.14.在二元一次方程x+4y=13中,当x=5时,y=__________.15.如图所示,一个机器人从O点出发,向正东方向走3m到达A1点,再向正北方向走6m到达A2点,再向正西方向走9m到达A3点,再向正南方向走12m到达A4点,再向正东方向走15m到达A5点,按如此规律走下去,相对于点O,机器人走到A6时是__________位置.16、已知关于的不等式组只有两个整数解,则的取值范围__________.17、如图,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC的平分线交BC于点D,记∠ADC=α,∠ACG=β,∠AEF=γ,则:α、β、γ三者间的数量关系式是__________.18、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是__________.三、解答题(共8小题,共66分)19.(6分)计算:20.(6分)解方程组:21.(8分)解不等式组:22.(8分)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.23.(9分)如图,已知四边形ABCD(网格中每个小正方形的边长均为1).(1)写出点A,B,C,D的坐标;(2)求四边形ABCD的面积.24.(9分)已知关于x,y的方程组的解满足不等式组求满足条件的m的整数值.25.(10分)如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.26.(10分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.参考答案一.选择题(共12小题,满分36分,每小题3分)1.B.2.D.3.D.4.D.5.A.6.D.7、B.8、D 9、B.10、B 11、A 12、C 二.填空题(共6小题,满分24分,每小题4分)13.21度.14.215.(9,12).16、17、2∠α=∠β+∠γ.18、(2011,2)三解答题19.答案为:20.答案为:x=2,y=–1.5;21.解:解不等式3(x﹣1)<2x,得:x<3,解不等式﹣<1,得:x>﹣9,则原不等式组的解集为﹣9<x<3.22.解:(1)如图1,∵AB∥CD,∴∠END=∠EFB,∵∠EFB是△MEF的外角,∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,故答案为:∠E=∠END﹣∠BME;(2)如图2,∵AB∥CD,∴∠CNP=∠NGB,∵∠NPM是△GPM的外角,∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,∵MQ平分∠BME,PN平分∠CNE,∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,∵AB∥CD,∴∠MFE=∠CNE=2∠CNP,∵△EFM中,∠E+∠FME+∠MFE=180°,∴∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠CNP)=180°,∴∠E+2∠NPM=180°;(3)如图3,延长AB交DE于G,延长CD交BF于H,∵AB∥CD,∴∠CDG=∠AGE,∵∠ABE是△BEG的外角,∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①∵∠ABM=∠MBE,∠CDN=∠NDE,∴∠ABM=∠ABE=∠CHB,∠CDN=∠CDE=∠FDH,∵∠CHB是△DFH的外角,∴∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),②由①代入②,可得∠F=∠E,即.故答案为:.23解:(1)由图象可知A(﹣2,1),B(﹣3,﹣2),C(3,﹣2),D(1,2);(2)S四边形ABCD=S△ABE+S△ADF+S△CDG+S正方形AEGF=0.5×1×3+0.5×1×3+0.5×2×4+3×3=16。
七年级数学下册期末考试题(附答案解析)
七年级数学下册期末考试题(附答案解析)一、单选题1.目前代表华为手机最强芯片的麒麟990处理器采用7nm工艺制程,1nm=0.0000001cm,则7nm用科学记数法表示为()A.0.7×10﹣6cm B.0.7×10﹣7cm C.7×10﹣6cm D.7×10﹣7cm2.下列各式,计算结果为a6的是()A.a2+a4B.a7÷a C.a2•a3D.(a2)43.若a<b,则下列不等式中正确的是()A.a﹣3<b﹣3 B.a﹣b>0 C.b D.﹣2a<﹣2b4.不等式2x+3>1的解集在数轴上表示正确的是()A.B.C.D.5.下列命题中,可判断为假命题的是()A.在同一平面内,过一点有且只有一条直线与已知直线垂直B.两条直线被第三条直线所截,同位角相等C.同旁内角互补,两直线平行D.直角三角形两个锐角互余6.如图,在四边形ABCD中,连接BD,下列判断正确的是()A.若∠1=∠2,则AB∥CDB.若∠3=∠4,则AD∥BCC.若∠A+∠ABC=180°,则AB∥CDD.若∠A=∠C,∠ABC=∠ADC,则AB∥CD7.《九章算术》中记载:“今有上禾三秉,益实六斗,当下禾十秉;下禾五秉,益实一斗,当上禾二秉.问上、下禾实一秉各几何?”其大意是:今有上等稻子三捆,若打出来的谷子再加六斗,则相当于十捆下等稻子打出来的谷子;有下等稻子五捆,若打出来的谷子再加一斗,则相当于两捆上等稻子打出来的谷子.问上等、下等稻子每捆打多少斗谷子?设上等稻子每捆打x斗谷子,下等稻子每捆打y斗谷子,根据题意可列方程组为()A.B.C.D.8.如图,在△ABC中,BC=7,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF =4,则下列结论中错误的是()A.DF=7 B.∠F=30°C.AB∥DE D.BE=49.已知a是任何实数,若M=(2a﹣3)(3a﹣1),N=2a(a﹣)﹣1,则M、N的大小关系是()A.M≥NB.M>NC.M<ND.M,N的大小由a的取值范围10.如图,四边形ABCD中,AD∥BC,AB⊥BC,AD=6,BC=10,DC=DE,∠CDE=90°,则△ADE的面积是()A.4 B.8 C.12 D.1611.若x、y满足2134x yx y=-⎧⎨+≥⎩,则x的最小整数值为()A.-1 B.1 C.0 D.212.如图1是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中∠CFE度数是多少( )A .160°B .150°C .120°D .110°二、填空题 13.已知112x y =⎧⎪⎨=⎪⎩是方程42ax y +=的一个解,那么a =___________. 14.如图,将△ABC 向左平移3cm 得到△DEF ,AB 、DF 交于点G ,如果△ABC 的周长是12cm ,那么△ADG 与△BGF 的周长之和是__.15.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A ,B 两岛的视角∠ACB =________.16.对于实数a ,b ,定义运算“*”:a *b =22()()a ab a b ab b a b ⎧-≥⎨-<⎩,例如:4*2,因为4>2,所以4*2=42﹣4×2=8.若x ,y 是二元一次方程组521x y x y +=⎧⎨-=⎩的解,则x *y =_____. 17.为了加强学生课外阅读,开阔视野,某学校开展了“书香校园,从我做起”的主题活动学校随机抽取50名学生,对他们一周的课外阅读时间进行调查,结果如图所示,学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,若学校共有2000人,则获得“阅读之星”的有 ___人.18.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第n个正方形(实线)四条边上的整点个数共有_______________个.19.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为15,则点C的坐标为 ________.20.如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)…则第2068秒点P所在位置的坐标是_______________.三、解答题21.计算下列各题:(13;(2)若(2x ﹣1)2=9,试求x 的值.22.解不等式组()2532113x x +≥⎧⎪+⎨<⎪⎩,并把它的解集在数轴上表示出来.23.为庆祝中国共产党成立100周年,让红色基因、革命薪火代代传承,某校开展以学习“四史”(党史、新中国史、改革开放史、社会主义发展史)为主题的书画展,为了解作品主题分布情况,在学生上交的作品中,随机抽取了若干份进行统计,并根据调查统计结果绘制了统计图表:请结合上述信息完成下列问题:(1)m=,n=;(2)请补全频数分布直方图;(3)在扇形统计图中,“新中国史”主题作品份数对应的圆心角是度;(4)若该校共上交书画作品1800份,估计以“党史”为主题的作品有多少份?24.如图,AD∥BE,AB∥CD,点C在直线BE上,连接AC、AE,∠3=∠4,求证:∠1=∠225.甲、乙两同学在商店购买中性笔和笔记本,甲要买3支中性笔,2本笔记本需花费19元;乙要买7支中性笔,1本笔记本需花费26元,(1)求中性笔和笔记本的单价;(2)商店新进一种单价为3元的小装饰品,甲、乙两同学非常喜欢,都想购买,但各自付款后,只有甲还剩2元钱,他们看到商店的优惠条件“中性笔每盒10支,整盒买每支可优惠0.5元”后,经商讨两人找到了一种购买方法,如愿以偿,他们是怎样买的?请通过计算说明.26.在综合与实践课上,老师计同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.°(1)如图(1),若三角尺的60°角的顶点G放在CD上,若∠2 = 2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC间的数量关系;(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,∠CFG=β,则∠AEG与∠CFG的数量关系是什么?用含α,β的式子表示.参考答案与解析:1.【解答】解:7nm=7×0.0000001cm=7×10﹣7cm,故选:D.2.【解答】解:A、a2+a4,无法计算,故此选项错误;B、a7÷a=a6,故此选项正确;C、a2•a3=a5,故此选项错误;D、(a2)4=a8,故此选项错误.故选:B.3.【解答】解:A、不等式的两边都减3,不等式的方向不变,故A正确;B、不等式的两边都减b,不等号的方向不变,故B错误;C、不等式的两边都乘以,不等号的方向不变,故C错误;D、不等式的两边都乘以﹣2,不等号的方向改变,故D错误;故选:A.4.【解答】解:2x>1﹣3,2x>﹣2,x>﹣1,故选:D.5.【解答】解:A、在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题;B、两条平行直线被第三条直线所截,同位角相等,故错误,是假命题;C、同旁内角互补,两直线平行,正确,是真命题;D、直角三角形两个锐角互余,正确,是真命题,故选:B.6.【解答】解:A、根据∠1=∠2不能推出AB∥CD,故本选项不符合题意;B、根据∠3=∠4不能推出AD∥BC,故本选项不符合题意;C、根据∠A+∠ABC=180°能不能推出AB∥CD,故本选项不符合题意;D、根据∠A=∠C,∠ABC=∠ADC,可得∠A+∠ADC=180°,能推出AB∥CD,故本选项符合题意.故选:D.7.【解答】解:设上等稻子每捆打x斗谷子,下等稻子每捆打y斗谷子,根据题意可列方程组为:.故选:C.8.【解答】解:∵把△ABC沿RS的方向平移到△DEF的位置,BC=7,∠A=80°,∠B=70°,∴EF=BC=7,CF=BE=4,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣80°﹣70°=30°,AB∥DE,∴B、C、D正确,A错误,故选:A.9.【解答】解:∵M=(2a﹣3)(3a﹣1),N=2a(a﹣)﹣1,∴M﹣N=(2a﹣3)(3a﹣1)﹣2a(a﹣)+1,=6a2﹣11a+3﹣2a2+3a+1=4a2﹣8a+4=4(a﹣1)2∵(a﹣1)2≥0,∴M﹣N≥0,则M≥N.故选:A.10.【解答】解:过D点作DH⊥BC于H,过E点作EF⊥AD于F,如图,∵AB⊥BC,AD∥BC,∴∠DAB=∠B=90°,∵DH⊥BC,∴四边形ABHD为矩形,∴BH=AD=6,∴CH=BC﹣BH=10﹣6=4,∵∠ADH=90°,∴∠FDC +∠CDH =90°,∵∠CDE =90°,即∠EDF +∠FDC =90°,∴∠EDF =∠CDH ,在△DEF 和△DCH 中,,∴△DEF ≌△DCH (AAS ),∴EF =CH =4,∴S △ADE =•AD •EF =×6×4=12.故选:C .11.B【解析】∵2134x y x y =-⎧⎨+≥⎩, ∴1234x y x y +⎧=⎪⎨⎪+≥⎩, ∴3342x x ++≥, 解得1≥x ,∴x 的最小整数为1,故选B .12.B【解析】∵四边形ABCD 为长方形,∴AD ∥BC ,∴∠BFE =∠DEF =10°.由翻折的性质可知:图2中,∠EFC =180°﹣∠BFE =170°,∠BFC =∠EFC ﹣∠BFE =160°, ∴图3中,∠CFE =∠BFC ﹣∠BFE =150°.故选B .13.0【解析】∵112xy=⎧⎪⎨=⎪⎩是方程42ax y+=的一个解,∴1422a+⨯=,即:a=0.故答案是:0.14.12【解析】∵△ABC向左平移3cm得到∆DEF,∴AD=FC,∴△ADG与△BGE的周长之和=AD+BF+DF+AB=BC+AC+AB=12,故答案为12;15.70°##70度【解析】连接AB.∵C岛在A岛的北偏东45°方向,在B岛的北偏25°方向,∴∠CAB+∠ABC=180°-(45°+25°)=110°,∵三角形内角和是180°,∴∠ACB=180°-(∠CAB+∠ABC)=180°-110°=70°.故答案为:70°.16.-3【解析】=52=1x yx y+⎧⎨-⎩①②,①+②得:3=6x,∴=2x,代入①得:=3y,∵2<3,∴原式2=233=69=3⨯---.故答案为:﹣3.17.200【解析】2000×550=200(人),即若学校共有2000人,则获得“阅读之星”的有200人,故答案为:200.18.4n【解析】第1个正方形的整点个数为4=41⨯,第2个正方形的整点个数为8=4⨯2,第3个正方形的整点个数为12=4⨯3,,∴第n个正方形的整点个数为4n,故答案为:4n.19.(6,3)【解析】∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为15,点A的坐标为(1,3),∴3AC=15,∴AC=5,∴C(6,3),故答案为:(6,3).20.(45,43)【解析】由题意分析可得,动点P第8=2×4秒运动到(2,0)动点P第24=4×6秒运动到(4,0)动点P第48=6×8秒运动到(6,0)以此类推,动点P第2n(2n+2)秒运动到(2n,0)∴动点P第2024=44×46秒运动到(44,0)2068-2024=44∴按照运动路线,点P到达(44,0)后,向右一个单位,然后向上43个单位∴第2068秒点P所在位置的坐标是(45,43)故答案为:(45,43)21.(1;(2)2或﹣1.【解析】(1)原式=4﹣1﹣(3=4﹣1﹣;(2)根据平方根的意义可得:2x ﹣1=3或2x ﹣1=﹣3,解得:x =2或x =﹣1,即x 的值为2或﹣1.22.10.5x -≤<,图见解析【解析】:解不等式253x +≥,得1x ≥-,解不等式()2113x +<,得0.5x <, 则不等式组的解集为10.5x -≤<,将其解集表示在数轴上如下:同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(1)10;28;(2)见解析;(3)144°;(4)216份【解析】(1)由题意得:样本总数=6÷12%=50人,∴m =50×20%=10,∴n %=14÷50=28%,∴n =28,故答案为:10,28;(2)如图(3)由题意得:“新中国史”主题作品份数对应的圆心角=360°×20÷50=144°;(4)由题意得:以“党史”为主题的作品=1800×12%=216(份)答:以“党史”为主题的作品大约有216份.24.见解析【解析】证明:∵AD∥BE,∴∠3=∠DAC,又∵AB∥CD,∴∠4=∠BAE,又∵∠3=∠4,∴∠DAC =∠BAE,∴∠DAC-∠5=∠BAE-∠5,∴∠1=∠2.25.(1)笔记本的单价为5元,单独购买一支笔芯的价格为3元;(2)他们合买笔芯即可如愿以偿,见解析【解析】(1)设笔记本的单价为x元,中性笔单价为y元,依题意,得:2319726x yx y+=⎧⎨+=⎩,解得:53xy=⎧⎨=⎩.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)他们合买笔芯即可如愿以偿.甲、乙带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为:5×(2+1)+(30.5-)×10=40(元).∵4740-=7(元),3×2=6(元),7>6,∴他们合在一起购买笔芯,即可如愿以偿.进行解题.26.(1)∠1=40°;(2)∠AEF+∠FGC=90°,理由见详解;(3)α+β=300°,理由见详解【解析】:(1)∵AB∥CD,∴∠1=∠EGD,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)∠AEF+∠FGC=90°,理由如下:如图,过点F作FP∥AB,∵CD∥AB,∴FP∥AB∥CD,∴∠AEF=∠EFP,∠FGC=∠GFP,∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3)α+β=300°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°,∴∠AEG−∠FEG+∠CFG−∠EFG=180°,∵∠FEG=30°,∠EFG=90°,∴∠AEG−30°+∠CFG−90°=180°,∴∠AEG+∠CFG=300°,即:α+β=300°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B. C. D.
A
B m
n
x
七年级数学期末测试题
一、选择题:(本大题共10小题,每小题3分,共30分.) 1.如果+20%表示增加20%,那么-6%表示 ( ) A .增加14% B .增加6%
C .减少6%
D .减少26%
2.13-
的倒数是( ) A .3 B . 13 C .-3 D . 1
3
-
3、如右图是某一立方体的侧面展开图 ,则该立方体是 ( )
4、青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示为( )A.7
0.2510⨯ B.7
2.510⨯ C.6
2.510⨯
D.5
2510⨯
5、已知代数式3y 2
-2y+6的值是8,那么32
y 2-y+1的值是 ( ) A .1 B .2 C .3 D .4
6、2、在│-2│,-│0│,(-2)5
,-│-2│,-(-2)这5个数中负数共有 ( )
A .1 个
B . 2个
C . 3个
D . 4个
7.在解方程
5
1
13--
=x x 时,去分母后正确的是( ) A .5x =15-3(x -1) B .x =1-(3 x -1) C .5x =1-3(x -1) D .5 x =3-3(x -1) 8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于( )
A .4x -1
B .4x -2
C .5x -1
D .5x -2 9. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉
一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .
2m n - B .m n - C .2
m
D .
2
n
10 ( )
A .这是一个棱锥
B .几何体有4个面
C .几何体有5个顶点
D .几何体有8条棱 二、填空题:(本大题共10小题,每小题3分,共30分)
11.我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是___℃. 12.三视图都是同一平面图形的几何体有 、 .(写两种即可) 13.多项式1322
23-+--x xy y x x 是_______次_______项式 14.若x=4是关于x的方程5x-3m=2的解,则m= . 15.多项式2
2
3368x kxy y xy --+-不含xy 项,则k = ;
16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)
17.已知线段AB =10cm ,点D 是线段AB 的中点,直线AB 上有一点C ,并且BC =2 cm ,则线段DC = . 18.钟表在3点30分时,它的时针和分针所成的角是 .
19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,
售货员最低可以打___________折出售此商品
20.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得
到的平面图形,那么组成这个几何体所用的小立方块的个数是 .
从正面看 从左面看 从上面看 三、解答题:.
21.计算:(6分) (1) 3x 2+6x+5-4x 2+7x -6, (2) 5(3a 2b-ab 2)—(ab 2+3a 2
b )
22.计算(12分)
(1)12-(-18)+(-7)-15 (2)(-8)+4÷(-2) (3)(-10)÷551⨯⎪⎭
⎫
⎝⎛-
(4)121()24234-+-⨯-
m n
n
n 图1 图2
10题
23.解方程:( 12分)
(1)7104(0.5)x x -=-+(2)0.5y —0.7=6.5—1.3y (3)3421x x =
-(4)513x +-21
6
x -=1
24.(5分)先化简,再求值:14×(-4x2
+2x-8)-(12x-1),其中x=12
.
25.(5分)已知一个角的余角是这个角的补角的4
1
,求这个角.
26.(5分)跑的快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?
27.(7分)如图,∠AOB =∠COD =900
,OC 平分∠AOB ,∠BOD =3∠DOE 试求 ∠COE 的度数。
28.(8分)为了鼓励居民节约用水,某市自来水公司按如下方式对每户月用水量进行计
算:当用水量不超过10吨时,每吨的收费标准相同,当用水量超过10吨时,超出10吨的部分每吨的收费标准也相同,下表是小明家1-4月份用水量和交费情况:
请根据表格中提供的信息,回答以下问题:
(1)若小明家5月份用水量为20吨,则应缴水费多少元? (2)若小明家6月份交纳水费29元,则小明家6月份用水多少吨?
O
A
B
初一数学试题答案
一、选择题:(共30分,每小题3分)
1.C
2.C
3.D
4.C
5.B
6.B
7.A
8.B
9.A 10.B
二、填空题:(共30分,每小题3分)
11. 14 12.正方体、球 13.四、五 14.6 15.2
16.n-m 17.3cm或7cm 18. 750 17.七 20.8
三、解答题:(共60分)
21. (共6分,每小题3分)
(1) -x2+13x-1 (2) 15a2b—6ab2
22. (共12分,每小题3分)
(1)8 (2)-10 (3)250 (4)-2
23. (共12分,每小题3分)
(1)x=3 (2) y=4
(1)x=-3/5 (2)x=3/8
24.(5分)原式=-x2-1 原式=-5/4
25. (5分)600
26.(5分)解:设快马X天可以追上慢马,则
240x=150(x+12)
X=20
27.(7分)∠COE=75°
28.(8分)(1)50元(2)13吨。