2014届高考数学一轮复习 第2章《基本初等函数、导数及其应用》(第12课时)知识过关检测 理 新人教A版
高考数学一轮复习 第2章《基本初等函数、导数及其应用
2014届高考数学(理)一轮复习知识过关检测:第2章《基本初等函数、导数及其应用》(第10课时)(新人教A版)一、选择题1.若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)=( )A.-1 B.-2C.2 D.0解析:选B.由题意知f′(x)=4ax3+2bx,若f′(1)=2,即f′(1)=4a+2b=2,从题中可知f′(x)为奇函数,故f′(-1)=-f′(1)=-4a-2b=-2,故选B.2.已知点P在曲线f(x)=x4-x上,曲线在点P处的切线平行于直线3x-y=0,则点P的坐标为( )A.(0,0) B.(1,1)C.(0,1) D.(1,0)解析:选D.由题意知,函数f(x)=x4-x在点P处的切线的斜率等于3,即f′(x0)=4x30-1=3,∴x0=1,将其代入f(x)中可得P(1,0).3.(2011·高考江西卷)曲线y=e x在点A(0,1)处的切线斜率为( )A.1 B.2C.e D.1 e解析:选A.∵y′=e x,故所求切线斜率k=e x|x=0=e0=1.4.设f0(x)=sin x,f1(x)=f′0(x),f2(x)=f′1(x),…,f n+1(x)=f′n(x),n∈N,则f2013(x)等于( )A.sin x B.-sin xC.cos x D.-cos x解析:选C.∵f n(x)=f n+4(x),故f2012(x)=f0(x)=sin x,∴f2013(x)=f′2012(x)=cos x.5.(2013·济南质检)若函数f(x)=e x cos x,则此函数图象在点(1,f(1))处的切线的倾斜角为( )A.0 B.锐角C.直角D.钝角解析:选D.由已知得:f′(x)=e x cos x-e x sin x=e x(cos x-sin x).∴f′(1)=e(cos1-sin1).∵π2>1>π4,而由正、余弦函数性质可得cos1<sin1,∴f′(1)<0.即f(x)在(1,f(1))处的切线的斜率k<0.∴切线的倾斜角是钝角.二、填空题6.(2011·高考重庆卷改编)曲线y=-x3+3x2在点()1,2处的切线方程为________.答案:y=3x-17.(2013·黄石质检)已知f(x)=x ln x,若f′(x0)=2,则x0=________.解析:f(x)的定义域为(0,+∞),f′(x)=ln x+1,由f′(x0)=2,即ln x0+1=2,解得x0=e.答案:e8.下列图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (-1)=________.解析:∵f ′(x )=x 2+2ax +a 2-1, ∴导函数f ′(x )的图象开口向上. 又∵a ≠0,其图象必为第三张图.由图象特征知f ′(0)=a 2-1=0,且-a >0,∴a =-1.故f (-1)=-13-1+1=-13.答案:-13三、解答题9.求下列函数的导数:(1)y =(1-x )(1+1x);(2)y =ln xx;(3)y =tan x ;(4)y =(1+sin x )2.解:(1)∵y =(1-x )(1+1x )=1x -x =x -12-x 12,∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(ln x x )′=ln x ′x -x ′ln x x 2=1x ·x -ln xx 2=1-ln xx2. (3)y ′=(sin x cos x )′=sin x ′cos x -sin x cos x ′cos 2x=cos x cos x -sin x -sin x cos 2x =1cos 2x. (4)y ′=[(1+sin x )2]′ =2(1+sin x )·(1+sin x )′ =2(1+sin x )·cos x =2cos x +sin2x .10.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程; (3)求斜率为1的曲线的切线方程.解:(1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率为k 1=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎪⎫x 0,13x 30+43, 则切线的斜率为k 2=x 20.∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0, 解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0. (3)设切点为(x 0,y 0),则切线的斜率为: x 20=1,x 0=±1.切点为(-1,1)或⎝ ⎛⎭⎪⎫1,53, ∴切线方程为y -1=x +1或y -53=x -1,即x -y +2=0或3x -3y +2=0.一、选择题1.下列函数求导运算正确的个数为( )①(3x )′=3x log 3e ;②(log 2x )′=1x ·ln2;③(e x )′=e x;④(1ln x )′=x ;⑤(x ·e x )′=e x+1. A .1 B .2 C .3 D .4解析:选B.求导运算正确的有②③2个,故选B.2.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)解析:选D.∵y =4e x +1,∴y ′=-4exe x +12.令e x +1=t ,则e x=t -1且t >1,∴y ′=-4t +4t 2=4t 2-4t. 再令1t=m ,则0<m <1,∴y ′=4m 2-4m =4(m -12)2-1,m ∈(0,1).容易求得-1≤y ′<0,∴-1≤tan α<0,得34π≤α<π.二、填空题3.(2013·苏州十校联考)已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ⎝ ⎛⎭⎪⎫π4=________.解析:由已知:f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x .则f ′⎝ ⎛⎭⎪⎫π2=-1,因此f (x )=-sin x +cos x ,f ⎝ ⎛⎭⎪⎫π4=0. 答案:04.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=________.解析:∵{a n }是等比数列,且a 1=2,a 8=4,∴a 1·a 2·a 3·…·a 8=(a 1·a 8)4=84=212. ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8),∴f ′(0)等于f (x )中x 的一次项的系数.∴f ′(0)=a 1·a 2·a 3·…·a 8=212.答案:212三、解答题 5.(2013·营口质检)如右图所示,已知A (-1,2)为抛物线C :y =2x 2上的点,直线l 1过点A ,且与抛物线C 相切,直线l 2:x =a (a <-1)交抛物线C 于点B ,交直线l 1于点D .(1)求直线l 1的方程; (2)求△ABD 的面积S 1.解:(1)由条件知点A (-1,2)为直线l 1与抛物线C 的切点, ∵y ′=4x ,∴直线l 1的斜率k =-4, 所以直线l 1的方程为y -2=-4(x +1), 即4x +y +2=0.(2)点A 的坐标为(-1,2),由条件可求得点B 的坐标为(a,2a 2), 点D 的坐标为(a ,-4a -2), ∴△ABD 的面积为S 1=12×|2a 2-(-4a -2)|×|-1-a |=|(a +1)3|=-(a +1)3.。
2014届高考数学一轮复习 第2章《基本初等函数、导数及其应用》(第12课时)知识过关检测 理 新人教A版
2014届高考数学(理)一轮复习知识过关检测:第2章《基本初等函数、导数及其应用》(第12课时)(新人教A 版)一、选择题1.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ) A .0≤a <1 B .0<a <1C .-1<a <1D .0<a <12解析:选B.∵y ′=3x 2-3a ,令y ′=0,可得:a =x 2. 又∵x ∈(0,1),∴0<a <1.故选B.2.(2013·威海调研)函数y =4xx 2+1( )A .有最大值2,无最小值B .无最大值,有最小值-2C .有最大值2,有最小值-2D .无最值解析:选C.∵y ′=x 2+-4x ·2x x +=-4x 2+4x +.令y ′=0,得x =1或-1,f (-1)=-42=-2,f (1)=2.结合图象故选C.3.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A .-37B .-29C .-5D .以上都不对解析:选A.f ′(x )=6x (x -2),∴f (x )在(-2,0)上为增函数,在(0,2)上为减函数,∴当x =0时,f (0)=m 最大,∴m =3,而f (-2)=-37,f (2)=-5,∴f (x )min =-37.4.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( )A .a ≥0B .a <-4C .a ≥0或a ≤-4D .a >0或a <-4解析:选C.∵f ′(x )=2x +2+a x,f (x )在(0,1)上单调,∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立,所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),0<x <1,可知-4<g (x )<0, ∴a ≥0或a ≤-4,故选C.5.(2011·高考湖南卷)设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1 B.12C.52D.22解析:选D.由题意|MN |=t 2-ln t (t >0),不妨令h (t )=t 2-ln t ,则h ′(t )=2t -1t,令h ′(t )=0,解得t =22,因为t ∈⎝ ⎛⎭⎪⎫0,22时,h ′(t )<0,当t ∈⎝ ⎛⎭⎪⎫22,+∞时,h ′(t )>0,所以当t =22时,|MN |达到最小. 二、填空题6.已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________.解析:f ′(x )=m -2x ,令f ′(x )=0,则x =m 2,由题设得m2∈[-2,-1],故m ∈[-4,-2].答案:[-4,-2]7.函数y =sin2x -x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2的最大值是________,最小值是________. 解析:∵y ′=2cos2x -1=0,∴x =±π6.而f ⎝ ⎛⎭⎪⎫-π6=-32+π6,f ⎝ ⎛⎭⎪⎫π6=32-π6,端点f ⎝ ⎛⎭⎪⎫-π2=π2,f ⎝ ⎛⎭⎪⎫π2=-π2,所以y 的最大值是π2,最小值是-π2.答案:π2 -π28.某工厂生产某种产品,已知该产品的月产量x (吨)与每吨产品的价格P (元/吨)之间的函数关系为P =24200-15x 2,且生产x 吨的成本为R =50000+200x (元).则该厂每月生产________吨该产品才能使利润达到最大,最大利润是________万元.(利润=收入-成本)解析:每月生产x 吨时的利润为f (x )=(24200-15x 2)x -(50000+200x )=-15x 3+24000x -50000(x ≥0).由f ′(x )=-35x 2+24000=0,解得x 1=200,x 2=-200(舍去).因f (x )在[0,+∞)内只有一个极值点x =200使f ′(x )=0,故它就是最大值点,且最大值为f (200)=-15×2003+24000×200-50000=3150000(元).所以每月生产200吨产品时的利润达到最大,最大利润为315万元. 答案:200 315 三、解答题9.(2011·高考北京卷)已知函数f (x )=(x -k )e x. (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.解:(1)f ′(x )=(x -k +1)e x. 令f ′(x )=0,得x =k -1.f (x )与↘ ↗所以,f (2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (0)=-k ; 当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1;当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.10.(2011·高考江苏卷)请你设计一个包装盒,如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x (cm).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.解:设包装盒的高为h cm ,底面边长为a cm.由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ). 由V ′=0,得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0, 所以当x =20时,V 取得极大值,也是最大值.此时h a =12.即包装盒的高与底面边长的比值为12.一、选择题1.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总营业收入R 与年产量x 的关系是R =R (x )=⎩⎪⎨⎪⎧400x -12x 2 x ≤480000 x >,则总利润最大时,每年生产的产品是( )A .100B .150C .200D .300 解析:选D.由题意得,总成本函数为 C =C (x )=20000+100x ,所以总利润函数为P =P (x )=R (x )-C (x )=⎩⎪⎨⎪⎧300x -x 22-20000 x 60000-100xx >,而P ′(x )=⎩⎪⎨⎪⎧300-x x ,-100 x >,令P ′(x )=0,得x =300,易知x =300时,P 最大.2.已知函数f (x )=x 3+ax 2+bx +c ,x ∈[-2,2]表示的曲线过原点,且在x =±1处的切线斜率均为-1,给出以下结论:①f (x )的解析式为f (x )=x 3-4x ,x ∈[-2,2]; ②f (x )的极值点有且仅有一个;③f (x )的最大值与最小值之和等于0. 其中正确的结论有( ) A .0个 B .1个 C .2个 D .3个 解析:选C.∵f (0)=0,∴c =0,∵f ′(x )=3x 2+2ax +b . ∴⎩⎪⎨⎪⎧ f =-1f -=-1,即⎩⎪⎨⎪⎧3+2a +b =-13-2a +b =-1. 解得a =0,b =-4,∴f (x )=x 3-4x ,∴f ′(x )=3x 2-4.令f ′(x )=0,得x =±233∈[-2,2],∴极值点有两个.∵f (x )为奇函数,∴f (x )max +f (x )min =0. ∴①③正确,故选C. 二、填空题3.(2013·嘉兴质检)不等式ln(1+x )-14x 2≤M 恒成立,则M 的最小值是________.解析:设f (x )=ln(1+x )-14x 2,则f ′(x )=[ln(1+x )-14x 2]′=11+x -12x =-x +x -+x, ∵函数f (x )的定义域需满足1+x >0,即x ∈(-1,+∞). 令f ′(x )=0得x =1,当x >1时,f ′(x )<0,当-1<x <1时,f ′(x )>0,∴函数f (x )在x =1处取得最大值f (1)=ln2-14.∴要使ln(1+x )-14x 2≤M 恒成立,∴M ≥ln2-14,即M 的最小值为ln2-14.答案:ln2-144.将边长为1 m 的正三角形薄铁片,沿一条平行于某边的直线剪成两块,其中一块是梯形,记s =梯形的周长2梯形的面积,则s 的最小值是________.解析:设剪成的小正三角形的边长为x ,则梯形的周长为3-x ,梯形的面积为12·(x +1)·32·(1-x ),所以s =-x212x +32-x=43·-x21-x 2(0<x <1). 由s (x )=43·-x21-x 2,得 s ′(x )=43·x --x 2--x2-2x-x 22=43·-x -x --x 22. 令s ′(x )=0,且0<x <1,解得x =13.当x ∈⎝ ⎛⎭⎪⎫0,13时,s ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫13,1时,s ′(x )>0. 故当x =13时,s 取最小值3233.答案:3233三、解答题5.(2013·大同调研)已知函数f (x )=ax 3+x 2+bx (a 、b 为常数,g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值、最小值.解:(1)∵f ′(x )=3ax 2+2x +b ,∴g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b . ∵g (x )为奇函数,∴g (-x )=-g (x ),∴⎩⎪⎨⎪⎧3a +1=0b =0,解得:⎩⎪⎨⎪⎧a =-13b =0.∴f (x )的解析式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,∴g ′(x )=-x 2+2.令g ′(x )=0,解得x 1=-2,x 2=2,∴当x ∈(-∞,-2),(2,+∞)时,g (x )单调递减, 当x ∈(-2,2)时,g (x )单调递增,又g (1)=53,g (2)=423,g (2)=43,∴g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43.。
高考数学一轮复习 第2章《基本初等函数、导数及其应用
2014届高考数学(理)一轮复习知识过关检测:第2章《基本初等函数、导数及其应用》(第1课时)(新人教A 版)一、选择题1.下列各组函数中表示同一函数的是( )A .f (x )=x 与g (x )=(x )2B .f (x )=|x |与g (x )=3x 3C .f (x )=lne x 与g (x )=e ln xD .f (x )=x 2-1x -1与g (t )=t +1(t ≠1)解析:选D.由函数的三要素中的定义域和对应关系进行一一判断,知D 正确.2.(2011·高考江西卷)若f (x )=1log 12x +,则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎦⎥⎤-12,0C.⎝ ⎛⎭⎪⎫-12,+∞ D .(0,+∞) 解析:选A.由题意得:⎩⎪⎨⎪⎧2x +1>0log 12x +>0得-12<x <0.3.(2012·高考福建卷)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( )A .1B .0C .-1D .π 解析:选B.∵g (π)=0,f (0)=0,故选B. 4.函数y =f (x )的图象如图所示,则f (x )的解析式为( ) A .y =-|x |-1 B .y =|x -1| C .y =-|x |+1 D .y =|x +1|解析:选C.对照函数图象,分别把x =0代入解析式排除A ,把x =-1代入解析式排除B ,把x =1代入解析式排除D ,故选C.5.(2011·高考辽宁卷)设函数f (x )=⎩⎪⎨⎪⎧21-x, x ≤1,1-log 2x , x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)解析:选D.当x ≤1时,由21-x≤2,知x ≥0,即0≤x ≤1.当x >1时,由1-log 2x ≤2,知x ≥12,即x >1,所以满足f (x )≤2的x 的取值范围是[0,+∞).二、填空题6.已知f (x -1x )=x 2+1x2,则f (3)=________.解析:∵f (x -1x )=x 2+1x 2=(x -1x)2+2,∴f (x )=x 2+2,∴f (3)=32+2=11. 答案:117.已知集合A =R ,B ={(x ,y )|x ,y ∈R },f 是从A 到B 的映射,f :x →(x +1,x 2+1),则A 中元素2的象和B 中元素(32,54)的原象分别为________.解析:把x =2代入对应法则,得其象为(2+1,3). 由⎩⎪⎨⎪⎧x +1=32x 2+1=54,得x =12.所以2的象为(2+1,3),(32,54)的原象为12.答案:(2+1,3)、128.(2012·高考陕西卷)设函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,⎝ ⎛⎭⎪⎫12x,x <0,则f (f (-4))=________.解析:f (-4)=⎝ ⎛⎭⎪⎫12-4=16,所以f (f (-4))=f (16)=16=4.答案:4 三、解答题9.已知f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,2x ,-1<x <2,x 22,x ≥2,且f (a )=3,求a 的值.解:①当a ≤-1时,f (a )=a +2,由a +2=3,得a =1,与a ≤-1相矛盾,应舍去. ②当-1<a <2时,f (a )=2a ,由2a =3,得a =32,满足-1<a <2.③当a ≥2时,f (a )=a 22,由a 22=3,得a =±6,又a ≥2,∴a = 6. 综上可知,a 的值为32或 6.10.(1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x );(2)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.解:(1)令t =2x +1,则x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1.(2)x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① 以-x 代x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).一、选择题1.(2012·高考山东卷)函数f (x )=1x ++4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B.x 满足⎩⎪⎨⎪⎧x +1>0x +1≠1,4-x 2≥0即⎩⎪⎨⎪⎧x >-1x ≠0-2≤x ≤2,解得-1<x <0或0<x ≤2.2.(2012·高考江西卷)下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln x xC .y =x e xD .y =sin x x解析:选D.当函数以解析式形式给出时,求其定义域的实质就是以使函数的解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集.函数y =13x的定义域为(-∞,0)∪(0,+∞),而y =1sin x 的定义域为{x |x ∈R ,x ≠k π,k ∈Z },y =ln xx的定义域为(0,+∞),y =x e x的定义域为R ,y =sin x x的定义域为(-∞,0)∪(0,+∞).故选D.二、填空题3.下列对应中,①A ={x |x 是矩形},B ={x |x 是实数},f 为“求矩形的面积”; ②A ={x |x 是平面α内的圆},B ={x |x 是平面α内的矩形};f :“作圆的内接矩形”;③A =R ,B ={x ∈R |x >0},f :x →y =x 2+1;④A =R ,B =R ,f :x →y =1x;⑤A ={x ∈R |1≤x ≤2},B =R ,f :x →y =2x +1. 是从集合A 到集合B 的映射的为________.解析:其中②,由于圆的内接矩形不唯一,因此f 不是从A 到B 的映射;其中④,A 中的元素0在B 中没有对应元素,因此f 不是A 到B 的映射.答案:①③⑤4.设函数f (x )=⎩⎪⎨⎪⎧23x -1x x 2 x <,若f (a )<a ,则实数a 的取值范围是________.解析:当a ≥0时,由23a -1<a 得a >-3取a ≥0.当a <0时,由a 2<a 得,0<a <1,与a <0矛盾, 综上可知a 的取值范围是[0,+∞). 答案:[0,+∞) 三、解答题5.下面是一个电子元件在处理数据时的流程图:(1)试确定y 与x 的函数关系式; (2)求f (-3)、f (1)的值; (3)若f (x )=16,求x 的值.解:(1)y =⎩⎪⎨⎪⎧x +2,x ≥1,x 2+2,x <1.(2)f (-3)=(-3)2+2=11;f (1)=(1+2)2=9.(3)若x ≥1,则(x +2)2=16,解得x =2或x =-6(舍);若x <1,则x 2+2=16,解得x =14(舍)或x =-14. 即x =2或x =-14.。
高考数学一轮总复习第二章函数导数及其应用2_12导数的综合应用课件理新人教A版
由G′(x)=0,得-x2+(1-k)x+1=0. 解得x1=1-k- 21-k2+4<0, x2=1-k+ 21-k2+4>1. 当x∈(1,x2)时,G′(x)>0,故G(x)在[1,x2)内单调递增. 从而当x∈(1,x2)时,G(x)>G(1)=0, 即f(x)>k(x-1), 综上,k的取值范围是(-∞,1).
考点三|利用导数求解生活中的优化问题 (方法突破) 【例 3】 某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的 中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为643π立方米.假 设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为 3 千元,半球形部分每平方米建造费用为 4 千元.设该容器的总建造费用为 y 千元. (1)将 y 表示成 r 的函数 f(r),并求该函数的定义域; (2)讨论函数 f(r)的单调性,并确定 r 和 l 为何值时, 该容器的建造费用最小,并求出最小建造费用.
第十二节 导数的综合应用
栏目 导航
教材回顾 考点突破
最新考纲
考情考向分析
1.利用导数与函数的关系研究 根据近三年的高考
函数的零点问题(方程的根). 来看,导数多与函
2.通过导数构造函数证明不等 数零点、不等式等
式,求不等式恒成立问题.
内容综合考查.
[基础梳理] 1.利用导数证明不等式 若证明f(x)<g(x),x∈(a,b),可以构造函数F(x)=f(x)-g(x),如果F′(x)<0,则 F(x)在(a,b)上是减函数,同时若F(a)≤0,由减函数的定义可知,x∈(a,b)时, 有F(x)<0,即证明了f(x)<g(x).
解析:(1)函数f(x)的定义域为(0,+∞),当k=2时,f′(x)=
高考数学一轮复习 第2章《基本初等函数、导数及其应用
2014届高考数学(理)一轮复习知识过关检测:第2章《基本初等函数、导数及其应用》(第8课时)(新人教A 版)一、选择题1.函数y =5x与函数y =-15x 的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .直线y =x 对称解析:选C.因y =-15x =-5-x,所以关于原点对称.2.把函数y =f (x )=(x -2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是( )A .y =(x -3)2+3B .y =(x -3)2+1C .y =(x -1)2+3D .y =(x -1)2+1解析:选C.把函数y =f (x )的图象向左平移1个单位,即把其中x 换成x +1,于是得到y =[(x +1)-2]2+2=(x -1)2+2,再向上平移1个单位,即得到y =(x -1)2+2+1=(x-1)2+3.3.(2013·铁岭质检)已知图①是函数y =f (x )的图象,则图②中的图象对应的函数可能是( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (-|x |) 解析:选C.由题图②知,图象对应的函数是偶函数,且当x <0时,对应的函数是y =f (x ),故选C.4.(2011·高考课标全国卷)已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( )A .10个B .9个C .8个D .1个解析:选A.如图,作出图象可知y =f (x )与y =|lg x |的图象共有10个交点.5.函数y =e x +e-xe x -e-x 的图象大致为( )解析:选A.∵f (-x )=e -x +e x e -x -e x =-e x +e-xe x -e-x =-f (x ),∴f (x )为奇函数,排除D.又∵y =e x +e -x e x -e -x =e 2x +1e 2x -1=e 2x -1+2e 2x -1=1+2e 2x -1在(-∞,0)、(0,+∞)上都是减函数,排除B 、C. 二、填空题6.已知函数y =1x,将其图象向左平移a (a >0)个单位,再向下平移b (b >0)个单位后图象过坐标原点,则ab 的值为________.解析:图象平移后的函数解析式为y =1x +a -b ,由题意知1a-b =0,∴ab =1. 答案:1 7.函数y =f (x )(x ∈[-2,2])的图象如图所示,则f (x )+f (-x )=________. 解析:由图象可知f (x )为定义域上的奇函数. ∴f (x )+f (-x )=f (x )-f (x )=0. 答案:0 8.如图,函数f (x )的图象是曲线段OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝ ⎛⎭⎪⎫1f 3的值等于________. 解析:由图知f (3)=1, f ⎝ ⎛⎭⎪⎫1f 3=f (1)=2. 答案:2 三、解答题9.作出下列函数的大致图象(1)y =x 2-2|x |;(2)y =log 13[3(x +2)];(3)y =1-x .解:(1)y =⎩⎪⎨⎪⎧x 2-2x ,x ≥0x 2+2x ,x <0图象如图(1).(2)y =log 133+log 13(x +2)=-1+log 13(x +2)其图象如图(2).(3)y =-x -1,其图象如图(3).10.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3, x ∈2,5].(1)在如图给定的直角坐标系内画出f (x )的图象;(2)写出f (x )的单调递增区间. 解:(1)函数f (x )的图象如图所示:(2)函数的单调递增区间为[-1,0],[2,5].一、选择题 1.(2013·长春质检)定义在R 上的函数y =f (x +1)的图象如图所示,它在定义域上是减函数,给出如下命题:①f (0)=1;②f (-1)=1;③若x >0,则f (x )<0;④若x <0,则f (x )>0,其中正确的是( )A .②③B .①④C .②④D .①③解析:选B.由y =f (x +1)的图象向右平移一个单位得到函数y =f (x )的图象如图所示, 结合图象知①④正确,②③错误,故选B.2.(2013·日照质检)若函数f (x )=log a (x +b )的图象如图,其中a ,b 为常数,则函数g (x )=a x +b 的大致图象是( )解析:选D.由函数f (x )=log a (x +b )的图象知0<a <1,0<b <1,故g (x )=a x+b 是由y =a x 的图象向上平移0<b <1个单位得到的,故选D.二、填空题3.已知函数f (x )=2-x 2,g (x )=x .若f (x )*g (x )=min{f (x ),g (x )},那么f (x )*g (x )的最大值是________.(注意:min 表示最小值)解析:画出示意图f (x )*g (x )=⎩⎪⎨⎪⎧2-x 2,x ≤-2,x ,-2<x <1,2-x 2,x ≥1其最大值为1.答案:1 4.已知定义在区间[0,1]上的函数y =f (x ),图象如图所示.对满足0<x 1<x 2<1的任意x 1,x 2,给出下列结论:①f (x 1)-f (x 2)>x 1-x 2; ②x 2f (x 1)>x 1f (x 2); ③f x 1+f x 22<f ⎝ ⎛⎭⎪⎫x 1+x 22. 其中正确结论的序号是________.(把所有正确结论的序号都填上)解析:图象上任意两点x 1,x 2所在直线的斜率的变化范围为(0,+∞),故①错;考察两点(x 1,f (x 1)),(x 2,f (x 2))连线的斜率,从图象上容易得出当0<x 1<x 2<1时,应用斜率关系为f x 1x 1>f x 2x 2,即x 2f (x 1)>x 1f (x 2),所以②正确;在区间[0,1]上任取两点A 、B ,过A 、B 分别作x 轴的垂线,与曲线交点分别为M 、N ,取AB 中点C ,过C 作x 轴的垂线,与曲线交点为P ,与线段MN 交点为Q ,则f x 1+f x 22=CQ ,f ⎝ ⎛⎭⎪⎫x 1+x 22=CP ,从图象(图略)易知CP >CQ ,故有f x 1+f x 22<f ⎝⎛⎭⎪⎫x 1+x 22,所以③正确.答案:②③三、解答题5.已知函数f (x )=m (x +1x )的图象与h (x )=14(x +1x)+2的图象关于点A (0,1)对称.(1)求m 的值;(2)若g (x )=f (x )+a4x在(0,2]上是减函数,求实数a 的取值范围.解:(1)设P (x ,y )是h (x )图象上一点,点P 关于点A (0,1)的对称点为Q (x 0,y 0),则x 0=-x ,y 0=2-y .∴2-y =m (-x -1x),∴y =m (x +1x )+2,从而m =14.(2)g (x )=14(x +1x )+a 4x =14(x +a +1x).设0<x 1<x 2≤2,则g (x 1)-g (x 2)=14(x 1+a +1x 1)-14(x 2+a +1x 2)=14(x 1-x 2)+14(a +1)·x 2-x 1x 1x 2 =14(x 1-x 2)·x 1x 2-a +1x 1x 2>0, 并且在x 1,x 2∈(0,2]上恒成立, ∴x 1x 2-(a +1)<0,∴1+a >x 1x 2,1+a ≥4,∴a ≥3.。
[推荐学习]高考数学一轮复习第2章基本初等函数导数及其应用第12讲导数与函数的单调性知能训练轻松闯关
第12讲 导数与函数的单调性1.(2016·九江模拟)函数f (x )=(x -3)e x的递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)解析:选D.函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)·e x ]′=e x +(x -3)e x=(x -2)·e x.由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )递增,此时由不等式f ′(x )=(x -2)e x >0,解得x >2.2.(2016·郑州一模)设函数f ′(x )=x 2+3x -4,则y =f (x +1)的递减区间为( ) A .(-4,1) B .(-5,0)C.⎝ ⎛⎭⎪⎫-32,+∞ D.⎝ ⎛⎭⎪⎫-52,+∞解析:选B.由f ′(x )=x 2+3x -4,令f ′(x )<0,即x 2+3x -4<0,解得-4<x <1,所以函数f (x )的递减区间为(-4,1),所以y =f (x +1)的递减区间为(-5,0). 3.(2016·江西省质检)函数f (x )=x e x -1+x2的大致图像是( )解析:选B.f (x )是偶函数,排除A ,D ;x >0时,f ′(x )=12·e 2x-2x e x-1(e x -1)2,记h (x )=e 2x-2x e x -1,因为h ′(x )=2e x (e x-x -1)>0,所以h (x )>h (0)=0,所以f ′(x )>0,即f (x )在(0,+∞)上是递增的,排除C ,所以选B.4.对于在R 上可导的任意函数f (x ),若满足(x -a )·f ′(x )≥0,则必有( ) A .f (x )≥f (a ) B .f (x )≤f (a ) C .f (x )>f (a ) D .f (x )<f (a )解析:选A.由(x -a )f ′(x )≥0知,当x >a 时,f ′(x )≥0;当x <a 时,f ′(x )≤0.所以当x =a 时,函数f (x )取得最小值,则f (x )≥f (a ). 5.(2016·郑州第一次质量预测)已知定义在R 上的函数f (x )满足f (-3)=f (5)=1,f ′(x )为f (x )的导函数,且导函数y =f ′(x )的图像如图所示,则不等式f (x )<1的解集是( ) A .(-3,0) B .(-3,5) C .(0,5) D .(-∞,-3)∪(5,+∞)解析:选B.依题意得,当x >0时,f ′(x )>0,f (x )是增函数;当x <0时,f ′(x )<0,f (x )是减函数.又f (-3)=f (5)=1,因此不等式f (x )<1的解集是(-3,5).6.已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在[-1,1]上是减函数,则a 的取值范围是( ) A .0<a <34B.12<a <34 C .a ≥34D .0<a <12解析:选C.f ′(x )=(2x -2a )e x+(x 2-2ax )e x=[x 2+(2-2a )x -2a ]e x,由题意当x ∈[-1,1]时,f ′(x )≤0恒成立,即x 2+(2-2a )x -2a ≤0恒成立.令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧g (-1)≤0,g (1)≤0,即⎩⎪⎨⎪⎧(-1)2+(2-2a )·(-1)-2a ≤0,12+2-2a -2a ≤0, 解得a ≥34.故选C.7.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是________.解析:在(0,2π)上有f ′(x )=1-cos x >0,所以f (x )在(0,2π)上是递增的. 答案:增函数8.(2016·石家庄二中开学考试)已知函数f (x )=ln x +2x ,若f (x 2+2)<f (3x ),则实数x 的取值范围是________.解析:由题可得函数定义域为(0,+∞),f ′(x )=1x+2xln 2,所以在定义域内f ′(x )>0,函数递增,所以由f (x 2+2)<f (3x )得x 2+2<3x ,所以1<x <2. 答案:(1,2)9.已知函数f (x )=e |x -a |(a 为常数),若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.解析:由f (x )=e |x -a |=⎩⎪⎨⎪⎧e x -a,x ≥a ,e -x +a ,x <a 知,当x ≥a 时,函数f (x )为增函数,而已知函数f (x )在区间[1,+∞)上为增函数,所以a 的取值范围为(-∞,1].答案:(-∞,1]10.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________.解析:由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞). 答案:(-3,0)∪(0,+∞)11.已知函数f (x )=ln x +me x(m 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求m 的值;(2)求f (x )的单调区间.解:(1)由题意得f ′(x )=1x-ln x -m e x, 又f ′(1)=1-me =0,故m =1.(2)由(1)知,f ′(x )=1x-ln x -1ex. 设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的递增区间是(0,1),递减区间是(1,+∞). 12.(2016·云南省第一次统一检测)已知函数f (x )=ln x -x1+2x .(1)求证:f (x )在区间(0,+∞)上递增; (2)若f [x (3x -2)]<-13,求实数x 的取值范围.解:(1)证明:由已知得f (x )的定义域为(0,+∞). 因为f (x )=ln x -x1+2x,所以f ′(x )=1x -1+2x -2x (1+2x )2=4x 2+3x +1x (1+2x )2.因为x >0,所以4x 2+3x +1>0,x (1+2x )2>0. 所以当x >0时,f ′(x )>0.所以f (x )在(0,+∞)上递增. (2)因为f (x )=ln x -x1+2x ,所以f (1)=ln 1-11+2×1=-13.由f [x (3x -2)]<-13得f [x (3x -2)]<f (1).由(1)得⎩⎪⎨⎪⎧x (3x -2)>0,x (3x -2)<1,解得-13<x <0或23<x <1.所以实数x 的取值范围为⎝ ⎛⎭⎪⎫-13,0∪⎝ ⎛⎭⎪⎫23,1.1.(2016·河北省衡水中学模拟)已知函数f (x )=⎝⎛⎭⎪⎫x +a xe x,a ∈R .(1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)当a =-1时,求证:f (x )在(0,+∞)上为增函数.解:函数f (x )的定义域为{x |x ≠0},f ′(x )=x 3+x 2+ax -a x 2e x.(1)当a =0时,f (x )=x ·e x,f ′(x )=(x +1)e x, 所以f (1)=e ,f ′(1)=2e.所以曲线y =f (x )在点(1,f (1))处的切线方程是y -e =2e(x -1),即2e x -y -e =0.(2)证明:当a =-1时,f ′(x )=x 3+x 2-x +1x2·e x (x >0).设g (x )=x 3+x 2-x +1, 则g ′(x )=3x 2+2x -1=(3x -1)(x +1). 令g ′(x )=(3x -1)(x +1)>0,得x >13.令g ′(x )=(3x -1)(x +1)<0,得0<x <13.所以函数g (x )在⎝ ⎛⎭⎪⎫0,13上是减函数,在⎝ ⎛⎭⎪⎫13,+∞上是增函数, 所以函数g (x )在x =13处取得最小值,且g ⎝ ⎛⎭⎪⎫13=2227>0.所以g (x )在(0,+∞)上恒大于零.于是,当x ∈(0,+∞)时,f ′(x )=x 3+x 2-x +1x 2·e x>0恒成立.所以当a =-1时,函数f (x )在(0,+∞)上为增函数.2.已知a ∈R ,函数f (x )=(-x 2+ax )e x(x ∈R ,e 为自然对数的底数). (1)当a =2时,求函数f (x )的递增区间;(2)函数f (x )是否为R 上的单调函数?若是,求出a 的取值范围;若不是,请说明理由.解:(1)当a =2时,f (x )=(-x 2+2x )e x,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x=(-x 2+2)e x.令f ′(x )>0,即(-x 2+2)e x>0,因为e x >0,所以-x 2+2>0,解得-2<x <2,所以函数f (x )的递增区间是(-2,2). (2)若函数f (x )在R 上是递减的, 则f ′(x )≤0对任意x ∈R 都成立.即[-x 2+(a -2)x +a ]e x≤0对任意x ∈R 都成立.因为e x>0,所以x 2-(a -2)x -a ≥0对任意x ∈R 都成立.所以Δ=(a -2)2+4a ≤0,即a 2+4≤0,这是不可能的. 故函数f (x )不可能在R 上是递减的. 若函数f (x )在R 上是递增的,则f ′(x )≥0对任意x ∈R 都成立,即[-x 2+(a -2)x +a ]e x≥0对任意x ∈R 都成立.因为e x>0,所以x 2-(a -2)x -a ≤0对任意x ∈R 都成立.而Δ=(a -2)2+4a =a 2+4>0,故函数f (x )不可能在R 上是递增的. 综上可知函数f (x )不是R 上的单调函数. 3.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间; (2)若函数y =f (x )的图像在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)内总不是单调函数,求m 的取值范围.解:(1)f ′(x )=a (1-x )x(x >0), 当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞); 当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数. (2)由(1)得f ′(2)=-a2=1,即a =-2.所以f (x )=-2ln x +2x -3,所以g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x ,所以g ′(x )=3x 2+(m +4)x -2.因为g (x )在区间(t ,3)内总不是单调函数, 即g ′(x )=0在区间(t ,3)内有变号零点.由于g ′(0)=-2,所以⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立,由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,即m >-373,所以-373<m <-9.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014届高考数学(理)一轮复习知识过关检测:第2章《基本初等函数、导数及其应用》(第12课时)(新人教A 版)一、选择题1.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ) A .0≤a <1 B .0<a <1C .-1<a <1D .0<a <12解析:选B.∵y ′=3x 2-3a ,令y ′=0,可得:a =x 2. 又∵x ∈(0,1),∴0<a <1.故选B.2.(2013·威海调研)函数y =4xx 2+1( )A .有最大值2,无最小值B .无最大值,有最小值-2C .有最大值2,有最小值-2D .无最值解析:选C.∵y ′=4x 2+1-4x ·2x x +1=-4x 2+4x +1.令y ′=0,得x =1或-1,f (-1)=-42=-2,f (1)=2.结合图象故选C.3.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A .-37B .-29C .-5D .以上都不对解析:选A.f ′(x )=6x (x -2),∴f (x )在(-2,0)上为增函数,在(0,2)上为减函数,∴当x =0时,f (0)=m 最大,∴m =3,而f (-2)=-37,f (2)=-5,∴f (x )min =-37.4.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( )A .a ≥0B .a <-4C .a ≥0或a ≤-4D .a >0或a <-4解析:选C.∵f ′(x )=2x +2+a x,f (x )在(0,1)上单调,∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立,所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),0<x <1,可知-4<g (x )<0, ∴a ≥0或a ≤-4,故选C.5.(2011·高考湖南卷)设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1 B.12C.52D.22解析:选D.由题意|MN |=t 2-ln t (t >0),不妨令h (t )=t 2-ln t ,则h ′(t )=2t -1t,令h ′(t )=0,解得t =22,因为t ∈⎝ ⎛⎭⎪⎫0,22时,h ′(t )<0,当t ∈⎝ ⎛⎭⎪⎫22,+∞时,h ′(t )>0,所以当t =22时,|MN |达到最小. 二、填空题6.已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________.解析:f ′(x )=m -2x ,令f ′(x )=0,则x =m 2,由题设得m2∈[-2,-1],故m ∈[-4,-2].答案:[-4,-2]7.函数y =sin2x -x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2的最大值是________,最小值是________. 解析:∵y ′=2cos2x -1=0,∴x =±π6.而f ⎝ ⎛⎭⎪⎫-π6=-32+π6,f ⎝ ⎛⎭⎪⎫π6=32-π6,端点f ⎝ ⎛⎭⎪⎫-π2=π2,f ⎝ ⎛⎭⎪⎫π2=-π2,所以y 的最大值是π2,最小值是-π2.答案:π2 -π28.某工厂生产某种产品,已知该产品的月产量x (吨)与每吨产品的价格P (元/吨)之间的函数关系为P =24200-15x 2,且生产x 吨的成本为R =50000+200x (元).则该厂每月生产________吨该产品才能使利润达到最大,最大利润是________万元.(利润=收入-成本)解析:每月生产x 吨时的利润为f (x )=(24200-15x 2)x -(50000+200x )=-15x 3+24000x -50000(x ≥0).由f ′(x )=-35x 2+24000=0,解得x 1=200,x 2=-200(舍去).因f (x )在[0,+∞)内只有一个极值点x =200使f ′(x )=0,故它就是最大值点,且最大值为f (200)=-15×2003+24000×200-50000=3150000(元).所以每月生产200吨产品时的利润达到最大,最大利润为315万元. 答案:200 315 三、解答题9.(2011·高考北京卷)已知函数f (x )=(x -k )e x. (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.解:(1)f ′(x )=(x -k +1)e x. 令f ′(x )=0,得x =k -1.f (x )与所以,f (2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (0)=-k ; 当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1;当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.10.(2011·高考江苏卷)请你设计一个包装盒,如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x (cm).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.解:设包装盒的高为h cm ,底面边长为a cm.由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ). 由V ′=0,得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0, 所以当x =20时,V 取得极大值,也是最大值.此时h a =12.即包装盒的高与底面边长的比值为12.一、选择题1.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总营业收入R 与年产量x 的关系是R =R (x )=⎩⎪⎨⎪⎧400x -12x 2 0≤x ≤40080000 x >400,则总利润最大时,每年生产的产品是( )A .100B .150C .200D .300 解析:选D.由题意得,总成本函数为 C =C (x )=20000+100x ,所以总利润函数为P =P (x )=R (x )-C (x )=⎩⎪⎨⎪⎧300x -x 22-20000 0≤x ≤40060000-100x x >400,而P ′(x )=⎩⎪⎨⎪⎧300-x 0≤x ≤400,-100 x >400,令P ′(x )=0,得x =300,易知x =300时,P 最大.2.已知函数f (x )=x 3+ax 2+bx +c ,x ∈[-2,2]表示的曲线过原点,且在x =±1处的切线斜率均为-1,给出以下结论:①f (x )的解析式为f (x )=x 3-4x ,x ∈[-2,2]; ②f (x )的极值点有且仅有一个;③f (x )的最大值与最小值之和等于0. 其中正确的结论有( ) A .0个 B .1个 C .2个 D .3个 解析:选C.∵f (0)=0,∴c =0,∵f ′(x )=3x 2+2ax +b . ∴⎩⎪⎨⎪⎧ f ′1=-1f ′-1=-1,即⎩⎪⎨⎪⎧3+2a +b =-13-2a +b =-1. 解得a =0,b =-4,∴f (x )=x 3-4x ,∴f ′(x )=3x 2-4.令f ′(x )=0,得x =±233∈[-2,2],∴极值点有两个.∵f (x )为奇函数,∴f (x )max +f (x )min =0. ∴①③正确,故选C. 二、填空题3.(2013·嘉兴质检)不等式ln(1+x )-14x 2≤M 恒成立,则M 的最小值是________.解析:设f (x )=ln(1+x )-14x 2,则f ′(x )=[ln(1+x )-14x 2]′=11+x -12x =-x +2x -121+x , ∵函数f (x )的定义域需满足1+x >0,即x ∈(-1,+∞). 令f ′(x )=0得x =1,当x >1时,f ′(x )<0,当-1<x <1时,f ′(x )>0,∴函数f (x )在x =1处取得最大值f (1)=ln2-14.∴要使ln(1+x )-14x 2≤M 恒成立,∴M ≥ln2-14,即M 的最小值为ln2-14.答案:ln2-144.将边长为1 m 的正三角形薄铁片,沿一条平行于某边的直线剪成两块,其中一块是梯形,记s =梯形的周长2梯形的面积,则s 的最小值是________.解析:设剪成的小正三角形的边长为x ,则梯形的周长为3-x ,梯形的面积为12·(x +1)·32·(1-x ),所以s =3-x 212·x +1·32·1-x =43·3-x 21-x 2(0<x <1). 由s (x )=43·3-x 21-x 2,得 s ′(x )=43·2x -6·1-x 2-3-x 2·-2x 1-x 22=43·-23x -1x -31-x 22. 令s ′(x )=0,且0<x <1,解得x =13.当x ∈⎝ ⎛⎭⎪⎫0,13时,s ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫13,1时,s ′(x )>0. 故当x =13时,s 取最小值3233.答案:3233三、解答题5.(2013·大同调研)已知函数f (x )=ax 3+x 2+bx (a 、b 为常数,g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值、最小值.解:(1)∵f ′(x )=3ax 2+2x +b ,∴g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b . ∵g (x )为奇函数,∴g (-x )=-g (x ),∴⎩⎪⎨⎪⎧3a +1=0b =0,解得:⎩⎪⎨⎪⎧a =-13b =0.∴f (x )的解析式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,∴g ′(x )=-x 2+2.令g ′(x )=0,解得x 1=-2,x 2=2,∴当x ∈(-∞,-2),(2,+∞)时,g (x )单调递减, 当x ∈(-2,2)时,g (x )单调递增,又g (1)=53,g (2)=423,g (2)=43,∴g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43.。