Polarization-based Shape Estimation of Transparent Objects by Using Raytracing and PLZT Cam

合集下载

The Role of Social Media in Modern Society

The Role of Social Media in Modern Society

The Role of Social Media in ModernSocietySocial media has become an integral part of modern society, shaping the way people communicate, interact, and consume information. The role of social media in today's world is multifaceted, with both positive and negative implications. From connecting people across the globe to influencing public opinion and shaping political discourse, social media has significantly impacted various aspects of human life. In this essay, we will explore the diverse roles of social media in modern society, considering its impact on communication, relationships, information dissemination, business, and societal dynamics. Communication is one of the fundamental aspects of human interaction, and social media platforms have revolutionized the way people connect with one another. With the rise of platforms like Facebook, Twitter, Instagram, and WhatsApp, individuals can now communicate instantaneously, irrespective of geographical barriers. This has led to the democratization of information, allowing people to share their thoughts, experiences, and ideas with a global audience. The immediacy and accessibility of social media have transformed the way we communicate, enabling real-time interactions and fostering virtual communities. Moreover, social media has redefined the dynamics of personal and professional relationships. On a personal level, platforms like Facebook and Instagram provide a space for individuals to showcase their lives, stay connected with friends and family, and form new relationships. These platforms have become a digital diary of sorts, allowing users to document their experiences and share them with others. However, the curated nature of social media profiles has also given rise to concerns regarding authenticity and the impact of constant comparison on mental well-being. In the professional sphere, platforms like LinkedIn have revolutionized the way people network and seek job opportunities. Professionals can now connect with potential employers, showcase their skills and experience, and stay updated on industry trends, all through a single platform. This has significantly streamlined the recruitment process and has given individuals greater agency in managing their careers. In addition to its impact on communication and relationships, socialmedia plays a pivotal role in shaping public discourse and influencing opinions. The viral nature of content on platforms like Twitter and YouTube has the power to sway public opinion, spark social movements, and shape political narratives. The ability of social media to amplify voices and mobilize communities has been evident in various social and political movements, from the Arab Spring to the Black Lives Matter movement. However, this same amplification can also lead to the rapid spread of misinformation and the polarization of public opinion, raising concerns about the impact of echo chambers and filter bubbles. Furthermore, the role of social media in information dissemination cannot be overlooked. Platforms like Twitter and Reddit have become hubs for breaking news and real-time updates, often outpacing traditional media outlets in delivering information. This instantaneous access to news has its advantages, allowing people to stay informed and engaged with global events. However, it also poses challenges in terms of verifying the accuracy of information and combatting the spread of fake news. From a business perspective, social media has transformed marketing and customer engagement. Companies now have the ability to reach their target audience directly through targeted advertising and sponsored content. Social media influencers have also emerged as key players in shaping consumer behavior and brand perception. The interactive nature of social media allows businesses to receive real-time feedback from customers, enabling them to tailor their products and services to meet consumer demands. In conclusion, the role of social media in modern society is complex and multifaceted. It has revolutionized communication, redefined relationships, influenced public opinion, transformed information dissemination, and revolutionized business practices. While social media has undoubtedly brought about positive changes, it also poses significant challenges, including issues of privacy, misinformation, and mental well-being. As we navigate the ever-evolving landscape of social media, it is essential to critically evaluate its impact and strive to harness its potential for the greater good of society.。

基于稀疏贝叶斯学习的多频带雷达信号融合

基于稀疏贝叶斯学习的多频带雷达信号融合

基于稀疏贝叶斯学习的多频带雷达信号融合叶钒;何峰;梁甸农;朱炬波【摘要】针对多频带雷达信号融合,建立了多频带雷达信号表示模型,将多频带信号融合问题等价于一个信号表示问题。

研究了基追踪算法在多频带信号融合中的局限性,研究表明:由于多个频带的稀疏分布,破坏了字典的相干性,使得基追踪算法可能无法收敛到真实的稀疏解。

提出了基于稀疏贝叶斯学习的多频带信号融合方法,并证明了字典满足唯一表示性条件从而可以保证算法收敛到真实的稀疏解。

实验表明:基于稀疏贝叶斯学习的多频带信号融合方法能够更加真实地反映目标散射特性。

【期刊名称】《电波科学学报》【年(卷),期】2010(000)005【总页数】5页(P990-994)【关键词】多频带雷达信号融合;稀疏贝叶斯学习;基追踪【作者】叶钒;何峰;梁甸农;朱炬波【作者单位】国防科技大学电子科学与工程学院,湖南长沙410073【正文语种】中文【中图分类】TN9571.引言多频带雷达信号融合处理利用多部雷达在相同视角从不同频带获取目标的一维雷达观测信号,通过信号级的稀疏频带相干融合,提高雷达距离向分辨率[1-3]。

它打破了传统的单雷达成像距离分辨率受限于单部雷达带宽的约束,可明显改善一维距离像质量。

传统的雷达信号融合技术主要为基于谱估计类的融合方法,例如多重信号分类方法(MUSIC)[4]以及修正的求根多重信号分类(Root-MUSIC)方法[2]、矩阵增强矩阵束(MEMP)方法[5]、状态空间方法[6]等。

虽然这些方法的参数估计精度高,但是需要已知目标散射点个数,这在实际处理中往往是无法做到的。

虽然存在众多模型阶数的估计方法,例如最小描述长度(MDL)方法[7]和bootstrap[8]方法,但是估计精度受噪声的影响很大。

而基于自回归(AR)模型[3]、自回归积分滑动平均(ARIMA)模型[9]以及基于正则化[10]的外推内插方法,虽然对模型阶数相对不敏感、但是内插带宽的长度有限,不适合于稀疏子带信号融合[3]。

锂离子电池开路电压曲线形状与多阶段容量损失

锂离子电池开路电压曲线形状与多阶段容量损失

第8卷第6期2019年11月储能科学与技术Energy Storage Science and TechnologyV ol.8 No.6Nov. 2019锂离子电池开路电压曲线形状与多阶段容量损失葛昊1,李哲1,2,张剑波1,2(1清华大学汽车安全与节能国家重点实验室,北京 100084;2北京理工大学北京电动车辆协同创新中心,北京 100081)摘要:锂离子电池老化过程中的多阶段容量损失,即由大致成线性的容量损失阶段突然变为急速下降的容量损失阶段,引起了人们越来越多的关注。

我们发现这种多阶段容量损失特征可以由锂离子电池开路电压曲线的多段斜率形状引起。

电池老化过程中的内阻增加,给定放电规程下的放电截止电压落到电池开路电压曲线的不同斜率区间,导致了不同的容量损失速率。

为了解释这一现象,我们首先以一个两阶段的示例演示了此过程,然后,建立了一个通用的模型来模拟电池老化过程中的容量多阶段衰减,该模型考虑了电池正负极的开路电压曲线与内阻,可以引入多种材料体系、多种老化机理。

本研究为锂离子电池老化行为研究提供了新的视角,可为锂离子电池全生命周期使用提供帮助。

关键词:锂离子电池老化;开路电压曲线形状;多阶段;容量突然衰减;再利用doi: 10.12028/j.issn.2095-4239.2019.0098中图分类号:TM 912 文献标志码:A 文章编号:2095-4239(2019)06-1089-07 Multi-stage capacity loss of lithium-ion batteries originating from the multi-slope nature of open circuit voltage curvesGE Hao1, LI Zhe1,2, ZHANG Jianbo1,2(1State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084, China; 2Beijing Co-innovation Center for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China)Abstract: An inflexion point during battery aging, turning the capacity retention curve from a gradually decreasing region into an abrupt drop, has been reported for a diversity of lithium-ion battery materials. Understandings such a multi-stage aging phenomenon are vital to lifespan design and cascade use of batteries, while they remain hitherto elusive. We unravel that the multi-stage aging behavior can result from the multi-slope nature of open-circuit-voltage (OCV) curve of batteries.Increasing kinetic polarization during aging renders the discharging process terminated in the OCV region with different slopes, leading to distinct aging profiles. In this work, we firstly demonstrate this basic idea using a two-stage example. Then, a general theory of inflexion point in battery aging considering both the positive and negative electrode is extended which is rather facile to incorporate major aging mechanisms and battery chemistries. This work provides new insights in understanding the multi-stage aging behavior, which can further contribute to the lifespan design and reuse of lithium-ion batteries.Key words: lithium-ion battery aging; shape of open circuit voltage curve; multi-stage; abrupt capacity loss; reuse收稿日期:2019-05-21;修改稿日期:2019-06-25。

Electrochemical_Techniques电化学技术

Electrochemical_Techniques电化学技术

• • • •
where: Rp is the polarization resistance icorr the corrosion current The proportionality constant , B, for a particular system can he determined empirically (calibrated from separate weight loss measurements) or, as shown by Stern and Geary, can be calculated from ba and bc, the slopes of the anodic and cathodic Tafel slopes, i.e.

Linear Polarization Resistance (LPR) and the Stern-Geary Equation

With this widely used technique in corrosion monitoring, the polarization resistance of a material is defined as the slope of the potential-current density (DE/Di) curve at the free corrosion potential, yielding the polarization resistance Rp that can be related (for reactions under activation control) to the corrosion current by the Stern-Geary equation:

低RCS宽带磁电偶极子贴片天线设计

低RCS宽带磁电偶极子贴片天线设计

低RCS宽带磁电偶极子贴片天线设计张晨;曹祥玉;高军;李思佳;黄河【摘要】该文设计了一种低雷达散射截面(RCS)的宽带磁电偶极子贴片天线,其中印刷在介质板上的金属贴片为电偶极子,3个金属过孔连接辐射贴片与金属地板构成磁偶极子。

整个天线采用“T”型渐变馈电结构同时激励电偶极子与磁偶极子,天线的频带范围为7.81~13.65 GHz,覆盖了整个X波段。

实测和仿真结果表明,通过在磁电偶极子贴片天线底面采用开槽技术并优化开槽的形状、大小、位置等变量,在天线工作频带范围内实现了RCS的减缩,最大缩减量达到了17.9 dB,同时天线保持了增益稳定不变,E面、H面方向图一致的特性。

%A low Radar Cross Section (RCS) and broadband Magneto-Electric (ME) dipole patch antenna from 7.81 GHz to 13.65 GHz covering the whole X band is designed and fabricated. Metal patches printed on the substrate form the electric dipoles, three metallic vias connected to the radiation patches and the metal ground account for the magnetic dipole radiation. The whole antenna is connected with a T-shaped feed structure which excites electric and magnetic dipoles simultaneously. Numericaland experimental results incident that the RCS of the ME dipole patch antenna can be reduced inthe whole bandwidth which the largest value is up to 17.9 dB by cutting slots on the ground and optimizing the size, shape, position of the slots. Also, the antenna shows advanced performances such as stable gain and almost consistent pattern in E and H plane.【期刊名称】《电子与信息学报》【年(卷),期】2016(038)004【总页数】5页(P1012-1016)【关键词】磁电偶极子天线;宽频带;开槽技术;低RCS;一致性【作者】张晨;曹祥玉;高军;李思佳;黄河【作者单位】空军工程大学信息与导航学院西安 710077;空军工程大学信息与导航学院西安 710077;空军工程大学信息与导航学院西安 710077;空军工程大学信息与导航学院西安 710077;西安通信学院西安 710106【正文语种】中文【中图分类】TN821 引言微带贴片天线以其低剖面、易共形等优点在战场通信、监视及其它作战平台上得到了广泛应用,但由于带宽窄,不能用于宽频天线系统,且E面、H面方向图差异较大,不易于组成天线阵[1,2]。

消费级无人机的RCS测试

消费级无人机的RCS测试
9
Deviations From Baseline
Polarization Change
VV-Pol
EL = 0°, AZ = 6°
HH-Pol
EL = 0°, AZ = 6°
Max = -13.5 dBsm
Max = -15.3 dBsm

HH-Pol: weaker battery return, stronger motor return.
Azimuth Scan Elevation Scan
EL = 0°, AZ = 90°
EL = -90°, AZ = 0°
Max = -9.3 dBsm
Max = -9.0 dBsm
11
Larger Drones: 3DR Solo
3DR Solo (46 cm diagonal) 12-15 GHz
EL = 0°, AZ = 90°
Max = -24.2 dBsm
12
Larger Drones: DJI Inspire 1
DJI Inspire 1 (56 cm diagonal) 12-15 GHz
EL = 0°, AZ = 270°
Max = -3.0 dBsm
3-6 GHz
• • • •
14
In-Situ Measurement Using a UWB Radar
• PulsON 440 (P440) ultra-wideband (UWB) radar by Time Domain Corporation. • Emits short pulses at a pulse repetition frequency of 10 MHz. • Equivalent frequency bandwidth from 3.1 to 5.3 GHz centered at 4.3 GHz.

FROG talk (频率分辨光学开关法)

FROG talk (频率分辨光学开关法)
Perhaps it’s time to ask how researchers in other fields deal with their waveforms…
Consider, for example, acoustic waveforms.
Most people think of acoustic waves in terms of a musical score.
g(t- )
g(t- ) contributes only intensity, not phase (i.e., color), to the signal pulse.
E(t) g(t-)
0

time
The spectrogram tells the color and intensity of E(t) at the time .
Intensity
Intensity Ambiguous Intensity
Autocorrelation
Autocorrelation Ambig Autocor Gaussian
-80
-60
-40
-20
0
20
40
60
80
-150
-100
-50
0
50
100
150
Time
Delay
Autocorrelation and related techniques yield little information about the pulse.
To study this event, you need a strobe light pulse that’s shorter.
Photograph taken by Harold Edgerton, MIT

洛伦兹模型(LorentzModel)

洛伦兹模型(LorentzModel)

energy.
Since Eq. 57 is a linear differential equation, Fourier transforming both sides of
the equation gives the frequency-domain solution.
2
Using the Fourier property of the differential operator,
2. LORENTZ MODEL OF LIGHT MATTER INTERACTION 2.1. From microscopic to macroscopic response
Review the main concepts in basic atom-field interactions. In particular the Lorentz model, a pre-quantum mechanics model, and its asymptotic case for metals, the Drude model.
The Lorentz model explains much of classical optics via a physical picture borrowed from mechanics. The starting point is the “mass on a spring” description of electrons connected to nuclei. Thus, the incident electric field induces displacement to the electron that is under the influence of a spring-like restoring force due to the nucleus.

激光偏振散射法测量钢化玻璃应力的分析

激光偏振散射法测量钢化玻璃应力的分析

激光偏振散射法测量钢化玻璃应力的分析武文杰张哲黄达泉苑静(北京奥博泰科技有限公司北京100070)摘要介绍了表面应力及内部应力分布对钢化玻璃各项性能的影响,给岀了激光偏振散射法的详细理论推导,结合计算机数字图像处理技术,该方法可方便快捷地获得钢化玻璃表面应力与板厚方向的应力分布,是一种比较理想的钢化玻璃应力测量方法,利用四点弯曲试验对激光偏振散射法的准确性进行核验,结果表明该方法可以满足测试要求。

关键词钢化玻璃;应力;激光偏振散射法中图分类号:TQ171文献标识码:A文章编号:1003-1987(2021)03-0015-06Analysis of Stress Measurement of ToughenedGlass by Laser Polarization Scattered-light MethodWU Wenjie,ZHANG Zhe,HUANG Daquan,YUAN Jing(Beijing Aoptek Scientific Co.,Ltd,Beijing100070,China)Abstract:The influence of surface stress and internal stress distribution on the properties of toughened glass is introduced.And the theoretical derivation of laser polarization scattering method is bined with computer digital image processing technology,this method can obtain the surface stress and the stress distribution in the direction of plate thickness of toughened glass easily and quickly.It is an ideal method for stress measurement of toughened glass.The accuracy of laser polarization scattering method is verified by four-point bending test.The results show that the method can meet the test requirements.Key Words:tempered glass,stress,laser polarization scattered-light method0引言钢化玻璃是一种有预应力的玻璃,具有强度高、承载能力大、抗冲击性强等优点⑴,现已经广泛应用于建筑玻璃、防火玻璃、汽车机车、航空玻璃、太阳能光伏光热玻璃等各个领域,物理钢化玻璃的制备原理是将玻璃加热到600-700°c(接近玻璃软化点)的温度,然后再使之迅速冷却,最终在玻璃表面形成压应力层,而玻璃中部是拉应力层⑵,这样的应力是由于温度梯度的作用而引起的力学不均匀和结构不均匀导致的。

混凝土碳化深度测量方法

混凝土碳化深度测量方法

混凝土碳化深度测量方法文章标题:混凝土碳化深度测量方法及其应用引言:混凝土作为一种普遍应用于建筑领域的材料,其性能和耐久性是保证结构稳定和使用寿命的重要因素之一。

其中混凝土内部的碳化现象对其力学性能和耐久性有着重要的影响。

因此,准确测量混凝土碳化深度是评估混凝土结构损伤程度的关键一步。

本文将介绍一些常用的混凝土碳化深度测量方法,并探讨其应用和局限性。

一、表观碳化深度的测量方法表观碳化深度是指混凝土表面颜色发生变化的厚度,通常用于初步评估结构中碳化的情况。

常用的测量方法包括观察法、刚度法和石蜡浸渍法。

1. 观察法:观察法是通过肉眼观察混凝土表面的颜色变化来估计表观碳化深度。

这种方法简单易行,但仅适用于颜色变化较明显的碳化情况,不能给出精确的测量结果。

2. 刚度法:刚度法是利用刚度仪来测量混凝土表面的硬度和弹性模量变化来估计表观碳化深度。

该方法在一定程度上提高了测量的定量性,但仍存在受到表面涂层的影响以及无法测量混凝土内部的限制。

3. 石蜡浸渍法:石蜡浸渍法是将熔化的石蜡浸渍混凝土表面,然后切割薄片进行显微观察和测量碳化深度。

这种方法能够提供较为精确的测量结果,但操作繁琐,且测量结果受到浸渍时间和温度的影响。

二、电化学方法测量混凝土碳化深度电化学方法是通过测量混凝土中的电阻或电导率变化来估计碳化深度。

常用的电化学方法包括极化曲线法、电导率法和表面激活电阻法。

1. 极化曲线法:极化曲线法是通过测量混凝土表面的电流密度-电位(I-V)曲线,来得到混凝土的电极反应动力学参数,从而推断碳化深度。

该方法操作简便,测量结果较为准确,但需要对混凝土表面进行处理以保证电极的稳定性。

2. 电导率法:电导率法是利用浸泡在混凝土中的电极来测量混凝土中的电导率变化。

该方法不需要对混凝土表面进行处理,结果可靠性较高,但无法提供具体的碳化深度数值。

3. 表面激活电阻法:表面激活电阻法是通过测量混凝土表面的电阻来评估碳化深度,该方法简单易行且成本较低,但对于混凝土表面涂层存在一定限制,不适用于涂层较厚或粗糙的情况。

基于最小二乘法的锂离子电池参数辨识方法研究

基于最小二乘法的锂离子电池参数辨识方法研究

第41卷第1期Vol.41㊀No.1重庆工商大学学报(自然科学版)J Chongqing Technol &Business Univ(Nat Sci Ed)2024年2月Feb.2024基于最小二乘法的锂离子电池参数辨识方法研究李彦乔,李㊀昕安徽理工大学电气与信息工程学院,安徽淮南232001摘㊀要:目的针对使用戴维南等效电路模型对锂电池进行参数辨识不够精确的问题,提出一种二阶RC 等效电路模型并对锂电池进行参数辨识㊂方法通过脉冲放电实验得到锂电池的相关数据,在MATLAB 上使用最小二乘算法对所建立的二阶RC 等效电路进行参数辨识,并对不同SOC (State of Charge )下锂电池各个参数的变化情况进行分析,通过计算锂电池的端电压来判断参数辨识的精确度,最后将辨识结果与戴维南等效电路模型所辨识的结果进行对比并分析㊂结果随着锂电池SOC 下降,锂电池的各个参数会有轻微的波动,在锂电池的SOC 处在较低的水平时,锂电池的各个参数变化比较剧烈,这是由于锂电池的化学浓差极化所导致的,当将辨识的参数用来求解锂电池的端电压时,随着时间的推移,发现锂电池的端电压的误差波动比较稳定,且最大误差不超过0.05V ,反观使用戴维南等效电路模型求得锂电池的端电压误差波动比较大,且最大误差超过了0.08V ㊂结论在锂电池参数辨识上二阶RC 等效电路比戴维南等效电路更加准确,能够更好地描述锂电池的动静态特性,为后续对锂电池的荷电状态估计提供了有力的基础㊂关键词:锂电池;电池等效模型;最小二乘法;参数辨识中图分类号:TM912㊀㊀文献标识码:A ㊀㊀doi:10.16055/j.issn.1672-058X.2024.0001.009㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-03-05㊀修回日期:2022-05-18㊀文章编号:1672-058X(2024)01-0068-07基金项目:安徽省高校自然科学基金资助项目(KJ2019A0106);2020年安徽省教育厅项目(2020JYXM0460).作者简介:李彦乔(1999 ),男,安徽阜阳人,硕士研究生,从事锂电池BMS 研究.通讯作者:李昕(1981 ),女,安徽淮南人,副教授,硕士,从事锂电池BMS 及图像处理研究.Email:brightgirl1981@.引用格式:李彦乔,李昕.基于最小二乘法的锂离子电池参数辨识方法研究[J].重庆工商大学学报(自然科学版),2024,41(1):68 74.LI Yanqiao LI Xin.Research on parameter identification method of lithium-ion battery based on least squares method J .Journal of Chongqing Technology and Business University Natural Science Edition 2024 41 1 68 74.Research on Parameter Identification Method of Lithium-ion Battery Based on Least Squares Method LI Yanqiao LI XinSchool of Electrical and Information Engineering Anhui University of Science and Technology Anhui Huainan 232001 ChinaAbstract Objective Aiming at the problem that the Thevenin equivalent circuit model is not accurate enough to identify the parameters of lithium batteries a second-order RC equivalent circuit model was proposed to identify the parameters of lithium batteries.Methods The relevant data of lithium battery were obtained through a pulse discharge experiment and the least squares algorithm was used on MATLAB to identify the parameters of the established second-order RC equivalent circuit the changes of each parameter of the lithium battery under different states of charge were analyzed the accuracy of parameter identification was judged by calculating the terminal voltage of the lithium battery and the identification results were analyzed and compared with the results identified by the Thevenin equivalent circuit model.Results As the state of charge SOC of the lithium battery decreased the parameters of lithium battery fluctuated slightly.When the SOC of a lithium battery was at a low level the parameters of the lithium battery changed more drastically which was caused by the chemical concentration polarization of the lithium battery.When the identified parameters were used to solve the terminal voltage of the lithium battery it was found that the error fluctuation of the terminal voltages of the lithium battery was relatively stable over time and the maximum error did not exceed 0.05V.In contrast the error fluctuation of the terminal voltages obtained by using the Thevenin equivalent circuit model was large and the maximum error was more第1期李彦乔,等:基于最小二乘法的锂离子电池参数辨识方法研究than0.08V.Conclusion In the identification of lithium battery parameters the second-order RC equivalent circuit is more accurate than the Thevenin equivalent circuit which can better describe the dynamic and static characteristics of lithium batteries providing a strong basis for the subsequent estimation of the state of charge of lithium batteries. Keywords lithium batteries battery equivalent model least squares method parameter identification1㊀引㊀言面对传统能源的枯竭以及环境的污染,世界对新能源技术逐渐重视起来,在这种情况下,新能源技术开始得到持续发展,而我国更是将资源和环境问题提升到国家战略的高度,锂电池作为新能源的重要组成部分,必然也会受到各个国家的青睐,由于锂电池体积小㊁容量大并且放电率高,所以在很多地方都能见到它的身影,小到人们经常使用的电子设备,大到国家的航空航天技术[1]㊂但是以现在的科技条件来看,锂电池的应用技术还不够成熟,许多问题依然等待被解决,其中以安全问题最为突出,因此,锂电池的应用和维护技术成为研究热点[2-3]㊂而对锂电池的各个状态参数的预测和估计是储能安全系统安全运行的必要条件[4-5]㊂所以建立一个可靠又精确的锂电池模型能够提高对锂电池的监控管理以及参数精准的预测估计㊂电池模型的选择对于电池参数的辨识十分重要,如果模型选取的不恰当就会导致对锂电池的参数辨识㊁荷电状态估计等信息的监测变得不够准确,从而就会导致使用者错误使用,酿成不可挽回的后果,所以要选取一个能够直观且简单的锂电池模型就显得十分重要,目前比较常用的锂电池模型主要有电化学模型㊁智能数学模型以及等效电路模型,由于电化学模型需要分析电池内部的反应机理,所以操作起来比较复杂,并且在一些实际产品当中很难应用,一般是用来辅助电池的制造与设计,智能数学模型主要就是神经网络模型,从理论上来看完成电池建模并没有问题,但是由于它需要大量的数据进行训练,使得操作起来十分繁琐,所以在实际应用当中应用较少,而等效电路模型则采用一些电路元件组成电路网络并模拟电池的动态电压响应特性,使得模型的物理意义明确,因此被广泛使用㊂等效电路模型中的各个参数可以通过公式来表达,而且一般包含相对较少的数量,这使得状态空间的数学描述工作也比较容易,因此在系统仿真和实际管理中应用十分广泛㊂文献[5]选择一阶RC等效电路作为等效电路模型,由于模型简单,计算量比较小,对参数进行辨识也比较容易,但是参数辨识的结果误差较大,不能很好地体现锂电池的动静态特性㊂文献[6]选择二阶RC等效电路作为等效电路模型,能够更好地描述锂离子电池的动静态特性,但是缺乏与戴维南等效电路所辨识出来的端电压误差做对比,体现不出来二阶RC等效电路的优越性[5-7]㊂参数辨识是锂电池荷电状态估计(State Of Charge, SOC)的重要环节,如果所辨识的参数不够准确,那么就会影响到锂电池荷电状态估计的精确度,从而给使用者一个错误的信号,因此在对锂电池完成建模之后,需要对模型中的各个参数进行辨识㊂锂电池参数辨识方法主要有粒子群算法㊁卡尔曼滤波算法㊁最小二乘法等㊂粒子群优化算法(Particle Swarm Optimization, PSO)又称粒子群算法㊁微粒群算法㊁或微粒群优化算法,这是一种根据群体合作的任意搜索算法,它是由仿真模拟飞禽的捕食方式而发展起来㊂一般,粒子群优化算法被称之为一种群体智能算法,在求得繁杂的组合优化问题的时候,与一些基本优化算法对比,PSO一般能更有效地快速优化结果,但是它在选择遗传算子时比较麻烦,且不能有效解决离散及组合优化问题,容易陷入局部最优处理上,所以在锂电池参数辨识上使用粒子群算法的学者较少㊂卡尔曼滤波算法是利用现代控制理论的状态方程,通过平台的输出观测数据信息系统情况开展最佳估计的算法,因为观测数据信息包括系统中噪音以及危害,最佳估计也可以理解为是一个滤波过程,但是锂电池的参数辨识涉及非线性运算,卡尔曼滤波无法对非线性运算进行很好的处理,因此卡尔曼滤波算法在参数辨识上使用较少㊂而最小二乘法对系统要求不高,不需要测量数据给其概率统计方面的信息,结果却具备相当不错的统计分析特性㊂选用最小二乘算法原理创建的辨识算法在进行锂电池参数辨识上较为简便,并且辨识结果也比较精确,因此受到众多学者的青睐㊂文献[8]对二阶RC等效电路进行参数辨识,却没有给出不同SOC下各个参数辨识的结果,因此所辨识结果无法判断是否准确㊂根据前人研究成果发现使用二阶RC等效电路作为等效电路模型的研究人员更多,因此本文针对使用戴维南等效电路模型对锂电池进行参数辨识不够精确的问题,提出一种二阶RC等效电路模型并采用最小二乘法对锂电池进行参数辨识,同时对一阶RC等效电路做了同样的研究,在最后对一阶RC电路和二阶RC等效电路两者的端电压误差进行对比,以验证参数辨识的准确性[9-10]㊂96重庆工商大学学报(自然科学版)第41卷2㊀锂离子电池建模因为等效电路模型实际意义确定,关系式比较简易,因此选用等效电路模型对锂电池展开了建模㊂现阶段常见的等效电路模型主要有Rint 模型㊁Thevenin 模型㊁PNGV 模型㊁GNL 模型[11]㊂Rint 模型十分简单,只包含电压源U oc 和电池内电阻R 0㊂Thevenin 模型将RC 电路导入到Rint 模型中,从而能够表现出锂电池工作性质的极化效应㊂PNGV 模型在Thevenin 模型基础上又串联了一个电容,这种模型考虑到锂电池OCV 在充放电的过程中,电流随时间积累产生的误差,从而涵盖了欧姆内阻和电池极化效应㊂GNL 模型引入了一个RC 串联网络和两个一阶RC 并联网络可以模拟出锂电池的欧姆极化㊁电化学极化㊁浓差极化和电池自放电现象,精确度很高,但是模型太过于复杂㊂综合考虑下,选择对Thevenin 模型进行改进,即二阶RC 等效电路,由于Thevenin 模型阶数只有一阶,与实际电池的特性比还是有比较大的误差,为了让电池模型更加精确,在Thevenin 模型上加入一个一阶RC 并联回路,如图1所示㊂经过试验分析,改进之后的二阶RC 等效电路能够更加准确的描述锂电池的动态特性,并且由于阶数为二阶使得计算也并不太复杂,因此选用二阶RC 等效电路作为锂电池的模型㊂图1㊀二阶RC 等效电路模型Fig.1㊀Second -order RC equivalent circuit model锂电池等效电路模型建立后需要辨识的参数有U oc ㊁R 0㊁R 1㊁R 2㊁C 1㊁C 2,其中R 0为欧姆内阻,R 1㊁R 2为极化电容,C 1㊁C 2为极化电容,极化电容和极化电阻共同表征了锂电池的极化效应,U oc 为开路电压,可以认为锂电池静置数个小时后的端电压就是开路电压,U L 为端电压,可以直接测量获得,根据基尔霍夫定律(KVL)可得如下公式:I =U 1R 1+C 1d U 1d t I =U 2R 2+C 2d U 2d t U L =U oc -U 1-U 2-IR 0ìîíïïïïïï(1)式(1)中,U 1为极化电容C 1两端的电压,U 2为极化电容C 2两端的电压,I 为锂电池放电电流㊂3㊀参数辨识根据三星INR18650-30Q 三元锂电池规格说明书得到锂电池的参数如表1所示,将十块电池并联在一起作为一个整体,这个整体就是本文的研究对象㊂参数辨识可以将其分成两个部分,第1个部分是开路电压的辨识,第2个部分是其他参数的辨识,即R 0㊁R 1㊁R 2㊁C 1㊁C 2的辨识㊂由于开路电压与SOC 有对应关系,所以开路电压可以通过与SOC 进行非线性曲线拟合,从而进行辨识,为了减小拟合误差采用充放电实验所得到的数据对开路电压进行非线性曲线拟合㊂而R 0㊁R 1㊁R 2㊁C 1㊁C 2这几个参数通过进行脉冲放电实验,并使用MATLAB 代入最小二乘法进行辨识㊂表1㊀INR18650-30Q 锂电池主要参数Table 1㊀Main parameters of INR18650-30Q lithium battery电池容量/(Ah )标称电压/V 充电截止电压/V 放电截止电压/V33.64.2 2.53.1㊀U oc 的辨识在温度为25ħ的情况下对锂电池进行充放电实验,具体操作如下:将锂电池以恒流的方式进行充电直至充满,并静置2h㊂静置完成后,对锂电池进行1C (30A)恒流放电,每放出5%容量静置2h,将静置后的开路电压再作为下一阶段的开路电压进行放电,重复上述步骤,直到放电到截止电压为止㊂接着对所采集到的实验数据用MATLAB 中的Polyfit 函数进行非线性曲线拟合,在拟合的过程中发现九阶多项式误差相对较小,所以对实验所得的数据进行了九阶多项式拟合,得出U oc 和SOC 的关系式如下:U oc =973.35667a 9-4367.7159a 8+8296.7068a 7-8703.2882a 6+5514.1839a 5-2169.0509a 4+526.89299a 3-78.075788a 2+8.3785642a +2.7739529其中,a =f SOC ,U oc 与f SOC 的关系拟合曲线以及实验所得的数据真实值如下:图2㊀开路电压U oc 和SOC 拟合曲线和实验数据Fig.2㊀Open circuit voltage U oc and SOC fitting curves andexperimental data7第1期李彦乔,等:基于最小二乘法的锂离子电池参数辨识方法研究3.2㊀R0的辨识除U oc以外的其他需要辨识的参数通过脉冲放电数据获取㊂放电电流为1C(30A),每次放电使得锂电池的f SOC下降5%,并静置两个小时,然后再放电使得锂电池的f SOC下降5%,再静置两个小时,将这个步骤循环20次,得出的电压与时间的关系数据如图3所示㊂图3㊀脉冲放电电压时间关系数据图Fig.3㊀The relationship between pulse discharge voltage and time 为了能更直观地看到脉冲放电后端电压的变化,以f SOC=0.85为例,则此时完整的一次放电㊁静置时期的端电压如图4所示㊂图4㊀脉冲放电放大图Fig.4㊀Enlarged view of pulse discharge图4中,A B段,放电初期电压下降十分迅速,这是由于有欧姆内阻R0在作用,C D段电压迅速上升同样是由于欧姆内阻R0在作用,通过这两段的数据就可以利用式(2)来求得欧姆内阻R0的值:R0=U A-U B+U D-U C2I(2) 3.3㊀R1㊁R2㊁C1㊁C2的辨识图4中,B C段电压缓慢下降这是由于极化电容和极化电阻的共同作用所导致,而D E段电压缓慢上升,这同样是由于极化电容和极化电阻共同作用所导致,通过对这两段数据,就可以对极化电容C1㊁C2和极化电阻R1㊁R2进行辨识㊂一阶RC全响应公式如式(3):U C=U0-tτ+IR1-e-tτ()(3)其中,U0为初始电压,U C为电容电压,τ=RC㊂由于C D E段为零输入响应,根据式(3)可得:U1(t)=U1(t C)e-t-t Cτ1U2(t)=U2(t C)e-t-t Cτ2ìîíïïï(4)又A B C段为零状态响应,根据式(3)可得:U1(t)=IR11-e-t-t Aτ1()U2(t)=IR21-e-t-t Aτ2()ìîíïïï(5)由于D E段为锂电池的静置状态,且此时为零输入响应,无放电电流通过,那么此时可以对式(1)的微分方程进行求解可得:U L(t)=U oc(t)-U1(t)e-tτ1-U2(t)e-tτ2(6)其中,τ1=R1C1㊁τ2=R2C2,U L为端电压,U oc为开路电压,U1为电容C1两端的电压,U2为电容C2两端的电压㊂对式(6)进行自定义拟合可得:U L(t)=A-B e-t C-D e-t E其中:A㊁B㊁C㊁D㊁E均为未知数,可以通过MATLAB 中的lsqcurvefit函数来确定这几个未知数的最小二乘最优解㊂lsqcurvefit函数调用的基本格式为:a= lsqcurvefit(fun,x0,x data,y data),其中x data和y data为已有的数据,x0为设定的初始值,这个初始值选取并不会使结果偏离太多,但是为了使结果更加地准确,就需要经过多次尝试,从而得到合适的初始值,fun为预先定义的函数,本文中这个函数选取的是式(6),通过这种方法就能得出τ1㊁τ2㊁U1(t C)㊁U2(t C)的值㊂将式(5)进行变换得:R1=U1(t C)I1-e-t C-t Aτ1()R2=U2(t C)I1-e-t C-t Aτ2()ìîíïïïïïïï(7)通过式(7)就能辨识出R1㊁R2的值㊂R1㊁R2得到后就可以根据τ1=R1C1㊁τ2=R2C2,来计算出C1㊁C2的值㊂根据上述参数辨识步骤,可以得到参数辨识的结果如表2所示㊂17重庆工商大学学报(自然科学版)第41卷表2㊀参数辨识结果Table2㊀Parameter identification resultsf SOC/%R0/mΩR1/mΩR2/mΩC1/kF C2/kF95 3.7 1.30.5620.68579.3 90 3.8 1.70.7420.78674.7 85 3.8 2.20.8230.78951.9 80 3.6 1.4 2.512.3689.75 75 3.8 1.5 4.613.68108.3 70 3.8 1.510.317.68122.9 65 3.7 1.610.826.23253.1 60 3.8 1.7 1.824.18939.4 55 3.6 1.90.9522.36861.5 50 3.8 2.2 1.624.27613.6 45 3.6 2.5 2.826.86361.5 40 3.6 2.3 2.531.83266.6 35 3.6 1.6 2.337.88679.8 30 3.7 2.1 2.221.65889.7 25 3.8 2.6 5.121.08339.3 20 3.7 2.7 6.821.22290.3 15 3.7 2.78.821.26242.3 10 3.9 3.210.416.98192.3 5 4.1 4.217.413.07127.7为了能够更直观地感受不同f SOC与各个参数的对应关系,做出了f SOC与R0㊁R1㊁R2㊁C1㊁C2的关系图(图5 图7),通过这几幅图发现,当f SOC小于0.1时,各参数的变化比较剧烈,这是由于锂电池的化学浓差极化所引起的,而当f SOC大于0.9时,由于锂电池处在化学活化极化状态,所以此时各参数波动也会比较大㊂图5㊀f SOC与R0的关系图Fig.5㊀Diagram of f SOC and R图6㊀f SOC与R12的关系图Fig.6㊀Diagram of f SOC with R1and R2图7㊀f SOC与C1㊁C2的关系图Fig.7㊀Diagram of f SOC with C1and C24㊀验证与分析根据安时积分法可知锂电池t时刻的SOC为f t SOC=f0SOC-ηQNʏtIdt(8)联立式(1)和式(8)可得:d U1d t=-U1R1C1+I C1d U2d t=-U2R2C2+I C2dSOCd t=-IQ Nìîíïïïïïïïï(9)U L=U oc-U1-U2-IR0(10)其中,式(9)称为系统方程,式(10)称为观测方程㊂将式(9)在k时刻离散化可得:U1,k=1-T s R1C1()U1,k-1+T sC1IU2,k=1-T s R2C2()U2,k-1+T sC2If k SOC=f k-1SOC-T s Q N Iìîíïïïïïïïï(11)27第1期李彦乔,等:基于最小二乘法的锂离子电池参数辨识方法研究令x =(U 1,U 2,f SOC ),y =U L ,则式(9)㊁(10)可写成:x k =A x k -1+B I ky k =C x k +D I k +U oc{(12)其中,A =1-T s R 1C 10001-T sR 2C 20001æèççççççöø÷÷÷÷÷÷,B =T s C 1T s C 2-T sQ N æèççççççççöø÷÷÷÷÷÷÷÷C =(-1,-1,0),D =-R 0㊂为了验证参数辨识的准确性,用MATLAB 把式(9)-式(12)进行编程,由于当锂电池f SOC 处于较低水平时锂电池存在着化学浓差极化,所以为了能够更好地准确体现锂电池在正常工作下的端电压,取表2中所辨识的各个参数的前18行数据,即f SOC 在0.05~0.95区间内的数据,求平均得到:R 0=3.7mΩ,R 1=2.0mΩ,R 2=4.2mΩ,C 1=22.87kF,C 2=469.79kF㊂将所得到的参数代入到建立的程序中,得出仿真电压与实测电压如图8所示,仿真电压与实测电压的误差曲线如图9所示㊂根据图8所示,能看出仿真电压和实测电压十分接近,并且随着时间的推移仿真电压与实测电压偏移较小,而通过图9能看出实测电压和仿真电压之间的误差最大不超过0.05V,说明参数辨识的结果是十分准确的㊂如图10所示,为了能更好地体现二阶RC 锂电池等效电路模型的优越性,利用同样的方法做出了锂电池戴维南等效电路模型,对其参数辨识之后,得到其仿真电压与实测电压的误差曲线图后,将其与二阶RC 等效电路模型的仿真电压和实测电压的误差曲线图做对比㊂图8㊀真实值和模型值对比图Fig.8㊀Comparison of true values and modelvalues图9㊀误差曲线图Fig.9㊀Errorcurves图10㊀一阶与二阶的误差曲线图Fig.10㊀Error curves of first -order and second -order通过图10可以发现二阶RC 等效电路模型的精确度要比一阶RC 等效电路模型更高,并且二阶RC 等效电路模型的误差最大不超过0.05V,而一阶RC 等效电路模型的最大误差却超过了0.08V,说明所搭建的二阶RC 等效电路模型能够精准地体现出锂电池的动静态特性㊂5㊀结束语本文通过脉冲放电实验得到锂电池的相关数据,在MATLAB 上使用最小二乘算法对所建立的二阶RC 等效电路进行参数辨识,并对不同SOC 下锂电池各个参数的变化情况进行分析,通过计算锂电池的端电压来判断参数辨识的精确度,最后将辨识结果与戴维南等效电路模型所辨识的结果进行对比,并分析㊂随着锂电池SOC 下降,锂电池的各个参数会有轻微的波动,在锂电池的SOC 处在较低的水平时,锂电池的各个参数变化比较剧烈,这是由于锂电池的化学浓差极化所导致的,当将辨识的参数用来求解锂电池的端电压时,随着时间的推移,发现锂电池的端电压的误差波动比较稳定,且最大误差不超过0.05V,反观使用戴维南等37重庆工商大学学报(自然科学版)第41卷效电路模型求得锂电池的端电压误差波动比较大,且最大误差超过了0.08V㊂在锂电池参数辨识上二阶RC等效电路比戴维南等效电路更加准确,能够更好地描述锂电池的动静态特性,为后续对锂电池的荷电状态估计提供了有力的基础㊂本文选取了三元锂电池作为研究对象,通过对电池模型进行比较选取了更能表现出锂电池动静态特性的二阶RC等效电路模型,接着利用充放电实验得出U oc与f SOC的对应数据,并将数据进行多项式非线性拟合,从而得到U oc-f SOC关系式,利用MATLAB将关系式做成直观的平面图后,得到U oc-f SOC的拟合曲线图,对二阶RC等效电路进行计算分析并与脉冲放电实验数据以及最小二乘法相结合得出锂电池的各个参数辨识结果,并汇总成图表,为了确定所辨识参数的准确性,将参数辨识的结果代入求解锂电池端电压的公式中,通过误差结果可以看出对二阶RC等效电路模型进行参数辨识后,得到的结果比较准确可靠㊂参考文献References1 ㊀呼升.三元锂电池在新能源汽车上的设计与应用J .时代汽车2022 14 122 124.HU Sheng.Design and application of ternary lithium battery in new energy vehicles J .Auto Time 2022 14 122 124.2 ㊀来鑫李云飞郑岳久等.基于SOC-OCV优化曲线与EKF的锂离子电池荷电状态全局估计J .汽车工程2021 431 19 26.LAI Xin LI Yun-fei ZHENG Yue-jiu et al.Global estimation of lithium-ion battery state of charge based on SOC-OCV optimization curve and EKF J .Automotive Engineering 202143 1 19 26.3 ㊀胡浪乔俊叁何涛.基于最小二乘向量机的锂离子电池建模及参数辨识研究J .金属功能材料2021 28 6 52 56.HU Lang QIAO Jun-san HE Tao.Modeling and parameter identification of lithium-ion battery based on least squares vector machine J .Metal Functional Materials 2021 28652 56.4 ㊀关庆庆邢丽坤罗双.关于锂离子电池Thevenin模型的仿真研究J .重庆工商大学学报自然科学版2019 36 372 76.GUAN Qing-qing XING Li-kun LUO Shuang.Simulation research on Thevenin model of lithium-ion battery J .Journal of Chongqing Technology and Business University Natural Science Edition 2019 36 3 72 76.5 ㊀邵玉龙李龙周时国等.电动汽车锂电池建模及参数辨识方法研究J .客车技术与研究2022 44 1 13 16. SHAO Yu-long LI Long ZHOU Shi-guo et al.Research on modeling and parameter identification method of lithium battery for electric vehicle J .Bus Technology and Research 2022 44 1 13 16.6 ㊀吴小慧张兴敢.锂电池二阶RC等效电路模型参数辨识J .南京大学学报自然科学2020 56 5 754 761. WU Xiao-hui ZHANG Xing-gan.Identification of second-order RC equivalent circuit model parameters of lithium batteries J . Journal of Nanjing University Natural Science2020 565 754 761.7 ㊀王宇伟赵阳华迪等.基于二阶等效电路模型的锂电池状态估计方法研究J .节能2022 41 4 38 42. WANG Yu-wei ZHAO Yang HUA Di et al.Research on state estimation method of lithium battery based on second-order equivalent circuit model J .Energy Conservation 2022 41 4 38 42.8 ㊀薛喜红吴明江.基于最小二乘法的动力锂离子电池参数识别J .信息与电脑理论版2022 34 7 72 75. XUE Xi-hong WU Ming-jiang.Parameter identification of power lithium-ion battery based on least squares method J .Information and Computer Theoretical Edition 2022 34 7 72 75.9 ㊀秦东晨张东明王婷婷等.电动汽车锂电池建模仿真及SOC估计研究J .机械设计与制造2021 2 164 168. QIN Dong-chen ZHONG Dong-ming WANG Ting-ting et al. Modeling and simulation of lithium battery electric vehicle and SOC estimation J .Mechanical Design and Manufacturing 2021 2 164 168.10 ZHU Q XIONG N YANG M L et al.State of charge estimation for lithium-ion battery based on nonlinear observer An Hɕmethod J .Energies 2017 10 5 660 679. 11 言理.电动汽车动力电池荷电状态SOC的估算方法研究D .桂林桂林电子科技大学2016.YAN Li.Research on estimation method of electric vehicle power battery state of charge SOC D .Guilin Guilin University of Electronic Technology 2016.责任编辑:陈㊀芳47。

CINRAD-SA偏振雷达定量降水估测算法改进及应用评估

CINRAD-SA偏振雷达定量降水估测算法改进及应用评估

郭佳, 吴艳锋, 罗丽, 等. 2020. CINRAD-SA 偏振雷达定量降水估测算法改进及应用评估[J]. 气候与环境研究, 25(3): 305−319. GUO Jia, WU Yanfeng, LUO Li, et al. 2020. Improvement of the Quantitative Precipitation Estimation Algorithm Based on the CINRAD-SA Polarization Radar and Its Application Evaluation [J]. Climatic and Environmental Research (in Chinese), 25 (3): 305−319. doi:10.3878/j.issn.1006-9585.2020.19012CINRAD-SA 偏振雷达定量降水估测算法改进及应用评估郭佳 1 吴艳锋 1 罗丽 2, 3 肖辉2, 31 北京敏视达雷达有限公司,北京 1000852 中国科学院大气物理研究所云降水物理与强风暴实验室,北京 1000293 中国科学院大学,北京 100049摘 要 为了提高雷达定量降水估测的精度,建立一套高精度的双偏振雷达定量降水估测方法,并对其在业务应用中的表现进行评估。

本文利用雨滴谱仪数据使用非球形粒子的散射模型(T-Matrix 模型)进行不同偏振量的模拟计算,根据计算结果对实测雨滴谱数据(DSD )进行分类拟合,实现对CSU-HIDRO (Colorado State University-Hydrometeor Identification Rainfall Optimization )优化降水估测算法的改进。

为了评估改进后CSU-HIDRO 优化算法(简称CSU-HIDRO_I )的应用效果,本文选取2016~2017年两年汛期发生于中国华南地区的6次大范围强降水过程为评估对象,分别采用单偏振雷达定量降水估测的R (Z H )关系法(WSR-88D Precipitation Processing System ,简称PPS 法)和CSU-HIDRO_I 法进行小时降水量估测。

哈尔滨工业大学工学硕士学位论文5...

哈尔滨工业大学工学硕士学位论文5...

硕士学位论文基于四元数的极化-DOA估计算法研究RESEARCH OF POLARIZATION-DOA ESTIMATION ALGORITHM BASED ONQUATERNION娄毅哈尔滨工业大学2013年7月国内图书分类号:TN911.7 学校代码:10213 国际图书分类号:621.3 密级:公开工学硕士学位论文基于四元数的极化-DOA估计算法研究硕士研究生:娄毅导师:金铭教授申请学位:工学硕士学科:信息与通信工程所在单位:信息与电气工程学院答辩日期:2013年7月授予学位单位:哈尔滨工业大学Classified Index: TN911.7U.D.C: 621.3Dissertation for the Master Degree in Engineering RESEARCH OF POLARIZATION-DOA ESTIMATION ALGORITHM BASED ONQUATERNIONCandidate:Lou YiSupervisor:Prof. Jin MingAcademic Degree Applied for:Master of Engineering Speciality:Information and CommunicationEngineeringAffiliation:School of Information and ElectricalEngineeringDate of Defence:July, 2013Degree-Conferring-Institution:Harbin Institute of Technology哈尔滨工业大学工学硕士学位论文摘要提取作入射到传感器阵列上的信号源的位置,即为达波方向(DOA)的估计。

DOA估计适用无线通信、雷达、射电天文学、声纳、导航、多目标追踪及其他工程应用。

电磁矢量传感器阵列相较于标量传感器阵列具有获得更好的系统性能、更高的抗角度模糊能力、对模型误差的鲁棒性更高,还有极化多址能力,这让电磁矢量传感器阵列在通信,信息战等中都获得更多关注。

材料与微波的相互作用-文档资料

材料与微波的相互作用-文档资料

(5)各种金属碳化物氮化物氧化物的焙烧与合 成
(6)金属熔融及热处理
(7)金属氧化矿的碳热还原
(8)金属硫化矿的脱琉
(9)特种合金的制备 •.
•5
C.纳米材料的制备(nanometer materials)
(1)纳米硅粉熔融提纯 (2)纳米钨粉碳化加工 (3)炭纳米管的制备
D.磁性类材料(magnetic materials)
•.
•18
d.热平衡与热失控
heat balance & thermo runaway
介质损耗的正斜率dε”/dT 特性会引起材料在
加热过程中的“热失控”现象,通常,在单位体积
內的监温度上升速率比例于ε”f E2,而同一体
积内的热逸散则比例于α 2T, 这里α为热扩
散率;当ε”f E2等于热逸散率时,就建立起一个
为“烹饪炉”〔cooking oven〕,最后才改
名为今天 的“微波炉”〔microwave
•.
•1
oven 〕。
上世纪七十年代,民用领域內,微波功率主要
应用于食品(food)与橡胶(rubber)两个行
业。不久后,微波功率在橡胶硫化技术,光纤
棒预制技术,微波等离子体刻蚀、掩膜及气相
沉积技术,陶瓷烧结技术等方面取得了突破,
F.人造金刚石生产工艺(artificial diamond)
(1)叶蜡石模具的干燥
(2)石墨加触媒颗粒料的焙烧还原
(3)人造金刚石的氧化焙烧
(4)人造金刚石成品的干燥
G.稀土荧光粉的高温合成(RE phosphor powder)
(LED、灯用三基色长余辉等稀土材料的制备)
•.
•7
H.橡胶的硫化与脱硫 curing & desulphurization

基于偏振识别的水下测量系统及方法

基于偏振识别的水下测量系统及方法

基于偏振识别的水下测量系统及方法英文回答:Underwater measurement systems based on polarization recognition are widely used in various fields such as marine biology, oceanography, and underwater robotics. These systems utilize the unique properties of polarized light to accurately measure underwater parameters such as water quality, object detection, and depth estimation.One example of a water quality measurement system is the use of polarized light to detect and quantify the presence of pollutants in the water. By analyzing the polarization state of the light reflected or transmitted through the water, the system can determine the concentration of pollutants such as oil, chemicals, or microorganisms. This is achieved by comparing the measured polarization state with a pre-defined reference polarization state.Another application of polarization recognition in underwater measurement is object detection and tracking. By analyzing the polarization pattern of light reflected off objects underwater, the system can differentiate between different types of objects and track their movements. For example, in underwater robotics, a polarized light sensor can be used to detect and track underwater structures, marine organisms, or even underwater vehicles.Depth estimation is another important application of polarization recognition in underwater measurement systems. By analyzing the polarization state of light as it propagates through the water, the system can estimate the depth of the water column. This can be particularly useful in underwater mapping and navigation tasks, where accurate depth information is crucial.Overall, underwater measurement systems based on polarization recognition offer several advantages over traditional methods. They are non-invasive, allowing measurements to be taken without disturbing the underwater environment. They are also highly accurate and reliable, asthe polarization properties of light are less affected by factors such as water turbidity or scattering compared to other optical properties.中文回答:基于偏振识别的水下测量系统在海洋生物学、海洋学和水下机器人等领域得到了广泛应用。

X波段双偏振相控阵雷达在2021年夏季2

X波段双偏振相控阵雷达在2021年夏季2

23农业灾害研究2022,12(12)Application of X-bandDual Polarization Phased Array Radar in Two Heavy Rainfall Processes in 2021 SummerWANGLi (XuchangMeteorologicalBureau, Xuchang, Henan 461000)Abstract This paper selects conventional meteorological data, NCEP global analysis data and other data, mainly analyzes the application of X-band dual polarized phased array radar in the two processes of continuous regional heavy rain in Xuchang on July 19-22, 2021 and short-term heavy rain in Xuchang on July 16, 2021. The results show that the vertical refinement capability of phased array radar has greatly improved the accuracy of important radar products, including VIL, precipitation estimation, hail index and storm identification and early warning.Key words X-band; Radar; Strong preci-pitation; CirculationX 波段双偏振相控阵雷达在2021年夏季2次强降水过程中的应用汪 莉许昌市气象局,河南许昌 461000摘要 选择常规气象资料、NCEP 全球分析资料等资料,分析X 波段双偏振相控阵雷达在2021年7月19—22日许昌持续区域性大暴雨和2021年7月16日许昌局地短时强降水2次过程中的应用。

一种小规模超宽带相控阵天线设计

一种小规模超宽带相控阵天线设计

一种小规模超宽带相控阵天线设计柏艳英【摘要】目前基于阵元间强耦合效应已设计出超宽带相控阵天线,但是其规模较大.针对规模小或者在扫描方向上规模小,如何增强阵元间耦合而实现超宽带相控阵天线的问题,采用平衡对踵Vivaldi天线(BAVA)作为天线单元,优化天线单元辐射金属的形状,并采用镜像法布阵天线单元设计出一个小规模4×16的斜极化超宽带相控阵天线.仿真和试验结果表明,采用的方法可以增强小规模超宽带相控阵天线的阵元间耦合效应,实现频率0.8f0~2.0f0(f0为工作频率)驻波比小于2,法向增益达17.34~23.0 dBi,在±45°范围内实现无栅瓣扫描.该小规模超宽带相控阵天线已在实际工程中应用.%At present,a lot of ultra-wideband(UWB) phased arrays have been designed based on the strong mutual coupling between the array elements.But the UWB phased arrays are large.For a small scale or a small scale array in the scanning direction,the problem of how to achieve the ultra-wideband perform-ances by enhancing the mutual coupling between the array elements is necessary to be developed.In this paper,Balanced Antipodal Vivaldi Antennas (BAVAs) are adopted. By optimizing the radiation metal shape and arranging the direction of the antenna elements with mirroring technique,a small 4×16 oblique polarization UWB phased array is designed.The simulation and experiment results show that this method can enhance the mutual coupling between the small UWB array elements. The array has a good voltage standing-wave ratio(VSWR) less than 2.0 in the frequency 0.8f0~2.0f0(f0is the operation frequency), norm gain 17.34 ~23.0 dBi,and large scanning angle beyond 45° without gratinglobes. The designed small scale UWB phased array antenna has been applied in engineering.【期刊名称】《电讯技术》【年(卷),期】2018(058)002【总页数】5页(P214-218)【关键词】超宽带相控阵天线;平衡对踵Vivaldi天线(BAVA);阵元耦合;镜像技术;大角度扫描【作者】柏艳英【作者单位】中国西南电子技术研究所,成都610036【正文语种】中文【中图分类】TN822.81 引言超宽带相控阵天线是天线综合技术发展的一个重要方向,有利于满足成本、尺寸、重量、性能要求,减少传感器综合的天线总数,实现天线资源的高度综合和高效共享。

可见光散射模型双向反射分布函数的仿真分析

可见光散射模型双向反射分布函数的仿真分析

可见光散射模型双向反射分布函数的仿真分析刘燕;张健;吕瑛【摘要】双向反射分布函数(BRDF)模型是建立空间目标反射太阳光光度曲线的重要组成部分,反映了目标自身特性对反射光强的影响,为精确研究其中包含的一般规律,利用MATLAB软件,对已成功应用于空间目标识别领域的T-S BRDF模型进行仿真和分析.针对粗糙度较小和粗糙度较大的两种情况,观察研究反射角方向、T-S 双向反射分布函数以及BRDF值等参量,对反射的镜面反射/漫反射程度作出判定.仿真分析所得出的结论为后续反演空间目标位置参数提供了依据.【期刊名称】《微处理机》【年(卷),期】2019(040)003【总页数】3页(P40-42)【关键词】双向反射分布函数;粗糙度;漫反射;镜面反射;观测角【作者】刘燕;张健;吕瑛【作者单位】西北工业大学明德学院信息工程学院,西安710124;西北工业大学明德学院信息工程学院,西安710124;西北工业大学明德学院信息工程学院,西安710124【正文语种】中文【中图分类】TP391.9;O4321 引言20 世纪80年代以来,人类航天活动日益频繁,进入空间的目标数量不断增加,其载荷的复杂化、目标形状的多样化、目标体积的小型化对空间目标特性的研究提出了迫切的需要。

目标与背景所能暴露呈现的特性是对可探测和可识别的参量的科学描述。

对于空间目标而言,在所有空间目标监测与识别跟踪的相关任务中,希望尽可能详细地获得几何结构与尺寸、运行轨道、辐照度、辐亮度、偏振度、偏振角等特性数据。

因为目标的几何机构与尺寸反映了目标的大小和基本结构特性,辐亮度反映了目标在特定轨道、特定位置和特定光照条件下的亮度信息,目标的偏振特性可以补充光度和光谱信息,有效提高对空间目标的识别能力[1-4]。

双向反射分布函数BRDF 模型是空间目标辐照度、辐亮度、偏振度、偏振角模型的重要组成部分。

通过分析BRDF 模型随各参数的变化规律,可以有效地为研究空间目标特性提供基础。

利用雨滴尺寸分布数据确定雷达测雨参数

利用雨滴尺寸分布数据确定雷达测雨参数

利用雨滴尺寸分布数据确定雷达测雨参数赵振维吴振森沈广德摘要:本文根据我国青岛、广州和新乡地区实测雨滴尺寸分布数据,计算了球形雨滴雷达反射因子Z,椭球形雨滴雷达反射因子ZH和差分反射率ZDR,回归给出了这些地区的常规气象雷达测雨算式Z~R关系和多参数雷达测雨算式ZH 、ZDR~R关系,并对其测雨精度和地区差异进行了比较.关键词: 常规气象雷达;多参数雷达;雨滴尺寸分布;雷达测雨中图分类号: TN959.4 文献标识码: A文章编号:0372-2112 (2000) 03-0109-03Determination of Radar Parameters for Measuring RainfallBased on Raindrop Size Distribution DataZHAO Zhen-wei,SHEN Guang-de(Qingdao Branch of China Research Institute of RadiowavePropagation,Qingdao 266071,China)ZHAO Zhen-wei,WU Zhen-sen(Ph ysics Department of Xidian University,Xi′an 710071,China)Abstract: Based on raindrop size distribution (DSD) data measured in Qingdao,Guangzhou and Xinxiang,the radar reflectivity factor Z for spherical raindrops,the radar reflectivity factor ZH and diferential reflectivity ZDRfor oblate ellipsoid raindrops are calculated.The reflectivity-rainfall relation (Z-R relation) for conventional meteorological radar and reflectivity,differentialreflectivity-rainfall relation for multiparameter radar (ZH ,ZDR-Rrelation) are given by regression,and the performance difference of two kinds of radar for measuring rainfall and difference for measuring rainfall in different regions are also discussed in the paper.Key words: conventional meteorologicalradar;multiparameter radar;raindrop size distribution;radar rainfall estimation1 引言通过雷达测量估算地面降雨率是四十多年来雷达气象学研究的重要课题,也是研究降雨对10GHz以上频段电波传播特性影响的重要手段[1~6].常规气象雷达利用雷达反射因子和降雨率的关系来估算降雨率,而这一关系随地理位置、季节、气候区域和降雨类型有很大的变化[1].Seliga等引进了利用差分雷达反射率(ZDR )和差分传播相移(KDP)估算降雨率的多参数雷达测雨方法[2,3].大量研究表明,多参数雷达测量降雨与地面雨量计和滴谱仪测量结果之间有很好的一致性[4~6].本文利用我国温带海洋性气候区(青岛),亚热带海洋性气候区(广州)和温带内陆性气候区(新乡)的雨滴尺寸分布测量数据,计算了球形雨滴的雷达反射因子Z和椭球形雨滴水平极化雷达反射因子ZH 及差分雷达反射率ZDR,并给出了雷达反射因子Z和降雨率R以及椭球形雨滴水平极化雷达反射因子ZH和差分雷达反射率ZDR与降雨率R之间的关系,比较了常规气象雷达和多参数雷达测雨精度和雷达测雨算式的地域差异.这些关系可用于我国不同气候区的雷达测雨估算.2 理论基础由于气象雷达一般工作在C波段和S波段,其工作波长比雨滴直径大的多,此时雨滴的散射截面计算可用Rayleigh近似,对于球形雨滴,在Rayleigh近似下,雷达反射因子Z可表示为[1]:Z=∫DmaxN(D)D6dD (1)上式中D为雨滴直径(mm),N(D)为雨滴尺寸分布(mm-1m-3).Dmax为降雨的最大雨滴直径,对于椭形雨滴,在Rayleigh近似下[7],水平和垂直极化雷达反射因子ZH 和ZV为:(2)式(2)LH,V为椭球雨滴的极化因子[7].椭球雨滴的短轴a和长轴b之间的关系取为[8]:(3)D为等体积球形雨滴的直径.雷达差分反射率定义为:Z DR =10lg(ZH/ZV) (4)降雨率R(mm/h)由下式给出:R=6π×10-4∫Dmax0D3Vt(D)N(D)dD,(mm/h) (5)式中Vt(D)(m/s)为直径为D的雨滴末速度,雨滴末速度数据由Gunn和Kinzer给出[9].3 雷达测雨参数的导出为了确定雷达测雨参数,我们利用青岛、广州和新乡实测雨滴尺寸分布数据(其中青岛的数据为1986年和1988年两年夏季测量的共415组数据,广州数据为1992年夏季测量的150组数据,新乡的数据为1985年夏季测量的72组数据,所有数据都是利用GBPP-100激光滴谱仪测量的),通过(1)~(5)计算的雷达反射因子、雷达差分反射率和降雨率作为雷达测量数据和实际降雨率来确定雷达测雨参数.为了得到雷达测雨算式,对于常规气象雷达,我们假设降雨率与雷达反射因子为指数关系:R=aZ b (6)对于多参数雷达,假设降雨率与雷达反射因子和差分反射率之间有以下关系:R=kZαH ZβDR(7)利用上述雨滴尺寸分布计算的雷达反射因子、差分雷达反射率和降雨率,并利用最小二乘法回归的雷达测雨参数如表1所示.青岛、广州和新乡地区雷达测雨参数可应用于我国温带海洋性气候区、亚热带海洋性气候区和温带大陆性气候区的雷达测雨.表1 气象雷达测雨参数表2 气象雷达测雨精度4 测雨精度比较为了比较比较常规气象雷达和多参数雷达的测雨精度,我们假设利用雨滴尺寸分布计算的降雨率为实测降雨率RD(i),利用雨滴尺寸分布计算的雷达反射因子和差分反射因子为雷达实测数据,利用式(6)和(7)计算的降雨率为雷达测量降雨率Rm(i) ,通过计算两者的平均误差(bias)、均方根误差(rmse)、相关系数(coef)和相对标准误差(fse),结果如表2和表3所示.从表2和表3可以看出多参数雷达比常规其气象雷达测雨精度有了很大改进.为了更直观的比较两者的测雨精度,图1和图2给出了利用青岛地区雨滴尺寸分布计算的降雨率RD 和雷达参数反演的降雨率Rm结果,从图1和图2的比较可以看出,多参数雷达反演结果的离散性比常规气象雷达的反演结果的离散性要好得多.表3 多参数气象雷达测雨精度地区bias rmse coef fse青岛1.6994 4.6135 0.9480 0.1795广州2.7240 6.9182 0.9503 0.2061新乡3.0692 5.6934 0.9802 0.1352图1 常规气象雷达参数反演降雨率与雨滴尺寸分布计算降雨率比较图2 多参数雷达参数反演降雨率与雨滴尺寸分布计算降雨率比较图3 不同雨滴尺寸分布Z—R关系比较5 不同地区雷达测雨算式的比较雷达测雨误差不但与降雨类型有关.而且与气候区域有关,为了比较雷达测雨算式的地域差异,图3给出了青岛、广州、新乡和国际上广泛使用的Marshall-Palmer(M-P)雨滴尺寸分布[10]的Z-R关系的比较,其中M-P雨滴尺寸分布的Z-R关系为[1]:R=0.0365Z0.625 (8)从图中可以看出,新乡地区Z-R关系与M-P雨滴尺寸分布的Z-R关系接近,而同属海洋性气候区的青岛和广州地区的Z-R关系接近,但属不同雨气候区的新乡与青岛和广州的Z-R关系有较大差异.雷达反射因子与雨滴直径的6次方成正比,对于相同的雷达反射因子,新乡地区估算的降雨率高于青岛和广州地区的降雨率表明了新乡地区雨滴尺寸分布中的大雨滴含量小于青岛和广州地区雨滴尺寸分布的大雨滴含量.6 结束语本文利用青岛、广州和新乡地区实测的雨滴尺寸分布,得到了这些地区常规气象雷达和多参数气象雷达测雨算式,这些算式可分别应用于我国温带、亚热带海洋性气候区和温带大陆性气候的雷达测雨.研究结果表明在不同地区使用不同雷达测雨算式可提高雷达测雨性能,同时使用多参数气象雷达可大大提高雷达测雨精度,因此在我国不同雨气候区开展雷达测雨的研究和发展多参数气象雷达对提高雷达在水文气象中的应用性能,大面积的降雨估算和防洪防涝的短期预报具有重要意义.基金项目:电科院预研基金和国防预研基金资助课题赵振维1965年出生,分别于1983年和1989年在西安电子科技大学和中国电波传播研究所获工学学士和硕士学位,现为中国电子学会高级会员,中国电波传播研究所青岛分所第一研究室主任,高级工程师,并在西安电子科技大学在职攻读博士学位,曾获电子部科技进步二等奖一项,主要研究兴趣为微波、毫米波传播和遥感.吴振森1946年出生,1981年在武汉大学获理学硕士学位,现为西安电子科技大学教授,博士生导师,主要研究兴趣为复杂系统电磁(光)波传播、散射及复杂散射体的几何建模.沈广德1965年出生,1991年毕业于中国科技大学,获硕士学位,现为中国电波传播研究所高级工程师,主要研究兴趣为微波、毫米波传播和遥感. 赵振维(中国电波传播研究所青岛分所,青岛266071)(西安电子科技大学,西安710071)吴振森(西安电子科技大学,西安710071)沈广德(中国电波传播研究所青岛分所,青岛266071)参考文献[1]葛文忠,蒋培杰.雷达探测大气和海洋.北京:海洋出版社,1986 [2]T.A.Seliga,V.N.Bringi.Potential use of radar differential reflectivity measurements at orthogonal polarization for measuring precipitation.J.Appl.Meteor.1976,15:69~76[3]T.A.Seliga,V.N.Bringi.Differetial reflectivity and differential phase shift:Application in radar meteorology.Radio Sci.1978,13:271~275[4]K.Aydin,Y.Lure,T.A.Seliga.Polarimetric radar measurements of rainfall compared with ground-based rain gauges during MAYPOLE′84.IEEE Trans.Geosci Remote Sensing,1990,28(4):443~449 [5]T.A.Seliga,V.N.Bringi,E.A.Muleller.First comparisions of rainfall rates derived from radar differential reflectivity and disdrometer measurements.IEEE Trans.Geosci RemoteSensing,1982,20:201~204[6]J.W.F.Goddard,S.M.Cherry.The ability of dual polarization radar (copolar linear) to predict rainfall rate and microwave attenuation.Radio Sci.1984,19:201~208[7]K.Ishimaru.Wave propagation and scattering in random media.New York,Academic press.1978,Chapter 1[8]T.Oguchi.Attenuation and phase rotation of radio waves due to rain:calculations at 19.3 and 34.8 GHz,Radi Sci.,1973,8(1):31~38 [9]R.Gunn,G.D.Kinzer.The terminal velocity of fall for water droplets in stagnant air.J.Meteorol.1949,6:243~248[10]J.S.Marshall,W.M.Palmer.The distribution of raindrops with size.J.Meter.1984,10:25~29收稿日期:1998-09-21;修订日期:1999-04-07。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Daisuke Miyazaki, Noriyuki Takashima, Akira Yoshida, Eiki Harashima, Katsushi Ikeuchi, "Polarization-based Shape Estimation of Transparent Objects by Using Raytracing and PLZT Camera,"in Proceedings of SPIE (Polarization Science and Remote Sensing II, Part of SPIE's International Symposium on Optics and Photonics 2005),Vol. 5888, pp. 1-14, San Diego, CA USA, Aug. 2005.http://www.cvl.iis.u-tokyo.ac.jp/~miyazaki/Polarization-based Shape Estimation of Transparent Objects by Using Raytracing and PLZT CameraDaisuke Miyazaki a,Noriyuki Takashima b,Akira Yoshida b,Eiki Harashima b,and Katsushi Ikeuchi aa The University of Tokyo,4-6-1Komaba,Meguro-ku,Tokyo,153-8505JAPAN;b Furuuchi Chemical Corporation,6-17-17Minamioi,Shinagawa-ku,Tokyo,140-0013JAPANABSTRACTIn thefirst part of this paper,we present a method to estimate the shape of transparent objects by using polarization.Few existing methods for this procedure consider internal interreflection,which is a multiple reflection occurring inside the transparent object.Our proposed method considers such interreflection by using the raytracing method.Also,we calculate the polarization state of the light using Mueller calculus.We then combine these methods to produce rendered polarization data.The shape of the object is computed by an iterative framework that minimizes the difference between the obtained polarization data and the rendered polarization data.In the second part of this paper,we present an apparatus to measure the polarization state of the light.To analyze the light,we use a material called PLZT whose material state changes with the applied voltage.We obtain the polarization state of the light by controlling the voltage of the PLZT from the computer. In the last part of this paper,we present some experimental results using the proposed method and apparatus. Keywords:Mueller calculus,PLZT,Transparent object,Shape-from-X,Raytracing1.INTRODUCTIONIn thefield of computer vision,few methods have been proposed for estimating the shape of transparent objects,because of the difficulty of dealing with mutual reflection,which is the phenomenon that the light not only reflects at the surface of the transparent object but also transmits into the object and causes multiple reflections and transmissions inside it.We use the term“interreflection”for such internal reflection.For thefirst part of this paper,we present a method for estimating the surface shape of transparent objects by using the raytracing method and Mueller calculus.For the second part of this paper,we present a device for measuring the Stokes parameters of the observed light by using PLZT.Much research has been done on the polarization phenomenon.By analyzing the polarization phenomenon,Schech-ner et al.decomposed the reflected scene and the transmitted scene that were originally combined with a glass plate.Wolff and Boult,Nayar et al.,Lin and Lee,and Umeyama and Godin separated the specular reflection component and the diffuse reflection component of the image by polarization analysis.In thefield of computer graphics,a polarizingfilter is also used to separate the specular reflection component from the diffuse reflection component to estimate the parameters of BRDF(Bidirectional Reflectance Distribution Function).Schechner et ed polarization to improve the quality of images taken in hazy weather and under water.Schechner et al.also developed a device and an algorithm to obtain polarization data in a widefield of view.By using a polarizer,Cula et al.decomposed the image taken under multiple light sources into the images taken under each light sources.Clark et al.and Wallace et al.improved the laser rangefinder by polarization analysis to estimate the shape of opaque objects.Wolff,Boult,and Chen used polarization analysis to classify material into metal or dielectric.Sandus,Nicodemus,Jordan et al.and Wolff et al.analyzed the degree of polarization in infrared wavelengths.There are roughly four kinds of methods to calculate the polarization state of the light:(1)a simple calculation method using Fresnel formulae,(2)a method using a coherence matrix,(3)Mueller calculus,and(4)Jones calculus.Some commercial raytracing software simulates the polarization state by using these methods.Kagalwala and Kanade used Jones calculus to simulate the structure of the Nomarski DIC(Differential Interference Contrast)microscope.Koshikawa and Shirai used Mueller cal-culus to estimate the surface normal of specular polyhedrons.Gondek et al.calculated the polarization state of the light by using the raytracing method and Fresnel formulae.Wolff and Kurlander calculated the polarization state of the light Further author information:(Send correspondence to Daisuke Miyazaki.)Daisuke Miyazaki:E-mail:miyazaki@cvl.iis.u-tokyo.ac.jp,Telephone:+81(0)354526242by using the raytracing method and a coherence ter,Tannenbaum et al.and Guy and Soler extended this method.Gu and Yeh extended the Jones calculus method.Chipman also extended the Jones calculus method,which can be easily combined with the raytracing method.Wilkie et al.calculated the polarization state of the light by using the raytracing method and Mueller calculus.Wolff et al.,Fujikake et al.,and Harnett and Craighead developed a polarization camera with liquid crystal,which is controllable from a computer.A material called PLZT has a polarization characteristic and is used in many applicationfields.The polarization characteristic of PLZT is analyzed by Shames et al..Recently,research to estimate the shape of the object by using polarization has increased.Koshikawa and Shirai proposed to use the degree of polarization,employing circularly polarized light sources to determine the surface normal of specular polyhedrons.They used Mueller calculus to calculate the polarization state of the light.Wolff and Boult indicated that the surface normal of the object surface is constrained by analyzing the polarization of the object,and estimated the surface normal of a planar glass from two views.Rahmann estimated the orientation of aflat object and the position of the light source by polarization analysis of a single view.Rahmann also addressed the potential of recovering the shape of specular surfaces from ter,Rahmann and Canterakis estimated the shape of specular objects from two or more views.Also,they proved that the quadratic shape of specular objects can be estimated from two views.Drbohlav andˇS´a ra estimated the shape of diffuse objects by combining polarization analysis and photometric stereo.Miyazaki et al.estimated the shape and reflectance of specular objects and the illuminant direction from one view.Saito et al.and Miyazaki et al.estimated the surface shape of transparent objects by means of polarization analysis.Unfortunately, because these methods do not consider interreflection,they do not provide sufficient accuracy for estimating the shape of transparent objects.Many methods have been developed to deal with transparent objects.Recently,a method called environment mat-ting has been developed for graphics applications that render transparent objects.When one watches at a planar glass such as a window,one can see both the reflection of the foreground scene and the transmission of the background scene. Farid and Adelson,Schechner et al.,Szeliski et al.,and Levin et al.attempted to separate the two scenes by observing the composite image of the two scenes.Nikolaev and Nayar developed a transparent robot arm,which helps the robot to recognize what it is grasping.Osadchy et ed the specularity of transparent objects for object recogni-tion.From the image of natural scene,McHenry et al.detected the edge of transparent objects by using the fact that the color of the pixels between one side of the edge and the other side of the edge is similar.These methods,however,do not provide total information about the shape of the transparent object.Some methods that estimate the3D shape of transparent objects have been proposed.Murase estimated the shape of a water surface by analyzing the undulation of that surface.Hata et al.estimated the surface shape of transparent objects by analyzing the deformation of the light projected onto the transparent objects.Ohara et al.estimated the depth of the edge of a transparent object by using shape-from-focus.Ben-Ezra and Nayar estimated the parameterized surface shape of transparent objects by using structure-from-motion.Kutulakos estimated both the depth and the surface normal of transparent objects by multiple viewpoints and multiple light sources.Saito et al.and Miyazaki et al.estimated the surface shape of transparent objects by means of polarization analysis.None of these methods are capable of estimating arbitrary shapes of transparent objects.For thefirst part of this paper,we simulate the interreflection of transparent objects by using the raytracing method and Mueller calculus,and we use this method to estimate the surface shapes of transparent objects that have arbitrary shapes. For the second part of this paper,we simulate the state of the material called PLZT by Mueller calculus,and we use this material to measure the polarization state of the observed light.The rest of the paper is organized as follows.In Section2,we explain the method that estimates the surface shapes of transparent objects by using the raytracing method and Mueller calculus.In Section3,we explain the method that measures the polarization state of the light by using PLZT and Mueller calculus.Our measurement results are shown in Section4,and our conclusions are presented in Section5.2.TRANSPARENT SURFACE MODELINGThe theoretical details of the principle of polarization,which appears in this section,are presented in the literature.Figure1.Reflection,refraction,and transmission.2.1.Polarization RaytracingFigure1describes the light reflected and transmitted between material1and material2.We assume that the surface of transparent objects is optically smooth;thus,the incidence angle is equal to the reflection angle.The transmission angle is related to the incidence angle as the following Snell’s law:(1) where is the incidence angle,is the transmission angle,and is the ratio of the refractive index of material2to that of material1.In this paper,we assume that the refractive index of one object is a scalar value which is,at the same time,constant throughout any part of the object.Therefore,this paper does not focus on birefringent materials.The plane of incidence(POI)is a plane that includes the surface normal direction,the incident light direction,the reflected light direction,and the transmitted light direction.Subscripts and represent the components parallel and perpendicular to the POI,respectively.Parallel and perpen-dicular components of intensity reflectivity are represented as and,respectively,while those of intensity transmis-sivity are represented as and,respectively.These values are defined as follows:(2) Brewster angle is defined as follows:(3) Critical angle is defined as follows:(4) For the total reflection,we must use and.In this paper,we call the raytracing method that considers the polarization effect the polarization raytracing method. The algorithm of the polarization raytracing method can be divided into two parts.For thefirst part,the calculation of the propagation of the ray,we employ the same algorithm used in the conventional raytracing method.For the second part, the calculation of the polarization state of the light,we employ Mueller calculus in this paper because of its simplicity of description,along with its ease of understanding and implementation.These three methods have almost identical functions; thus,all discussions presented in this paper are also applicable to other calculi.Stokes vector,a4D vector,represents the polarization state of the light,and the Mueller matrix,a matrix,represents how the object changes the polarization state of the light.Figure2.Reflected and transmitted light observed by the camera.Here we present an example of calculation.Suppose the geometrical setup when the reflected and transmitted light is observed from the camera is as described in Figure2.In thisfigure,there are two kinds of coordinates sytems: coordinates and coordinates.Here,the axis and the axis are the same.is included in the POI and is facing to the same side as the surface normal is facing.The angle between axis and axis is called the POI angle in coordinates.In the case presented in Figure2,observed light is a composition of reflected light and transmitted light.The Stokes vector of the observed light is calculated as follows:(5) Stokes vectors of the incident light are represented as and,where and represent the lights that are set in the origin of the reflection and transmission,respectively.is the rotation Mueller matrix and is given by:(6) and are the reflection Mueller matrix and the transmission Mueller matrix,respectively,which are represented as follows:(7)However,if the total reflection occurs,then and are set to be identity matrix and zero matrix,respectively.is the retardation Mueller matrix and is given as:(8)where is the amount of the phase shift(or retardation).The phase of the reflected light shifts when the total reflection occurs.Also,the phase of the reflected light inverts when the incidence angle is smaller than the Brewster angle. Consequently,the value of is set as follows:(9)(10)2.2.Inverse Polarization RaytracingIn this section,we introduce our method for estimating the front surface shape of a transparent object using the Stokes vector as an input under the assumption that the refractive index,the shape of the back surface,and the illumination distribution are given.Details of numerical algorithms are presented in the literature.We denote the input polarization data as.Polarization data are represented as an image(2-dimensionally distributed data)where the Stokes vector is set for each pixel.The polarization raytracing explained in Section2.1can render the polarization data from the shape of the transparent object by tracing the light ray and by Mueller calculus.We denote this rendered polarization image as.The shape of transparent objects is represented as the height,set for each pixel. Heights partially differentiated by and are called gradients,and are represented as and,respectively:(11)Surface normal is represented by these gradients.The rendered polarization image depends upon height and surface normal,so it can be represented as.A straightforward definition of the cost function,which we want to minimize,can be as follows:(12)We will sometimes omit the variables in the subsequent discussions for simplicity of description.depends upon ,,and,while,,and depend upon each other per Equation(11).Thus,the cost function must be modified as follows:(13) is a Lagrange undetermined multiplier.Euler equations that minimize Equation(13)are derived as follows:(14) where is a4-neighbor average of.Each of the above equations can be decomposed into two steps:(15)(16)(17)(18)(19)(20)Here,,,and are scalar values that are determined for each pixel and for each iteration step.Superscript represents the iteration number.We do not write down the iteration number for Equation(20)because we do not use this equation.One reason is that the cost function depends upon the change of surface normal rather than on the change of height.Another reason is that the cost function smoothly changes when the surface normal changes,but it does not smoothly change when the height changes.This fact was empirically proved in the preliminary experiments.The algorithm goes as follows.First,we set initial values of shape for each point of the front surface.Next,and are calculated by Equations(15)(17).Then,we solve Equations(16)(18).and should be optimal values;thus,we use Brent’s method to determine and,which minimizes the cost function.After computing and at every pixel, we solve Equation(19)by the relaxation method to determine the height.We use the alternating-direction implicit method to solve the relaxation problem.To conclude,the front surface shape of the transparent object is estimated by an iterative computation,where each step of iteration solves Equations(15)–(19),and the iteration stops when Equation(12) is minimized.Figure3.System of PLZT and linear polarizer.3.PLZT POLARIZATION CAMERA3.1.PLZTPLZT(lanthanum modified lead zirconate-lead titanate),,consists of a set of compositions and is a transparent ferroelectric ceramic material.The procedure to fabricate the PLZT is roughly as follows:first,mix tetrabutyl zirconate,tetrabutyl titanate,lead oxide,and lanthanum acetate;next,dry the precipitate;andfinally,PLZT is obtained by hot pressing the dried precipitate.PLZT is a birefringence medium,and it acts like a retarder(or waveplate).The optical properties of PLZT depends on the electricfield.By changing the amount of electricfield,PLZT will act like a half-wave plate,a quarter-wave plate,etc.Please refer to Shames et al.for the polarization characteristic of PLZT.Some researchers developed polarization cameras with liquid crystal,which is controllable from a computer. However,they only measure thefirst three components of the Stokes vector.We developed a polarization camera with PLZT,which is controllable from a computer,and which can measure all four components of the Stokes vector.3.2.PLZT and Linear PolarizerIn this section,we explain about the setup described in Figure3.We set the-axis heading toward the camera.Then we set the linear polarizer in front of the camera,whose optical axis is rotated from-axis to-axis.Finally,we set the PLZT in front of the linear polarizer,whose optical axis is the same as the-axis.The Mueller matrix of the horizontal linear polarizer,whose optical axis is the same as the-axis,is represented as follows:(21) where,and for an ideal linear polarizer.The value of for the actual linear polarizer is obtained in the preliminary experiments.The Mueller matrix of rotation is represented in Equation(6).Thus,the Mueller matrix of the linear polarizer whose optical axis rotated as will be:(22)PLZT acts like a retarder depending on the voltage pressing to the PLZT.The Mueller matrix of retardation is repre-sented in Equation(8).Thus,the Mueller matrix of the PLZT whose optical axis is the same as-axis will be:(23)As a result,the Mueller matrix of the system illustrated in Figure3will be:(24)Figure4.System of PLZT and NDfilter.PLZT has a hysteresis and acts as a retarder even if there is no electric current streaming inside the PLZT.The Mueller matrix in this case will be,where is determined in the preliminary experiments.PLZT acts like a quarter-wave plate when the voltage of the PLZT is increased in a certain value.The amount of the voltage is determined in the preliminary experiments.In this case,,thus,the Mueller matrix will be.PLZT acts like a half-wave plate when the voltage of the PLZT is increased in a certain value.The amount of the voltage is determined in the preliminary experiments.In this case,.Thus,the Mueller matrix will be.3.3.PLZT and ND FilterIn this section,we explain about the setup described in Figure4.We set the-axis heading toward the camera.Then we set the ND(neutral density)filter in front of the camera.Finally,we set the PLZT in front of the NDfilter,whose optical axis is the same as the-axis.The Mueller matrix of NDfilter is represented as follows:(25)where.The value of for the actual NDfilter is obtained a priori.As a result,the Mueller matrix of the system illustrated in Figure4will be:(26) 3.4.Stokes VectorThe light that has a Stokes vector,first transmits through the PLZT and the linear polarizer or the ND filter,and then is observed by the camera.Only thefirst component of Stokes vector is observed by the camera because it represents the intensity of the light.We denote the intensity observed by the system suggested in Section3.2when there is no voltage in the PLZT as.The intensity is calculated by the Mueller matrix.Next,we denote the intensity observed by the system suggested in Section3.2when the PLZT acts like a quarter-wave plate as.The intensity is calculated by the Mueller matrix.We also denote the intensity observed by the system suggested in Section 3.2when the PLZT acts like a half-wave plate as.The intensity is calculated by the Mueller matrix. Finally,we denote the intensity observed by the system suggested in Section3.3as.The intensity is calculated by the Mueller matrix.By concatenating the four equations,which are related to,,,and,these equations can be expressed in a matrix as follows:(27)Figure5.Acquisition System“Polavision”.Figure6.Measurement result of Polavision:(a),(b),(c),(d),and(e)DOP.By calculating the inverse matrix in the above equation,we can calculate the Stokes vector of the light of the target.4.MEASUREMENT RESULT4.1.Acquisition System“Polavision”For obtaining the polarization state of the light by using PLZT,we developed an acquisition system that we named“Polav-ision”(Figure5).First,the slider is set in front of the camera,which switches the linear polarizer and the NDfilter. Next,PLZT is set in front of the slider.Finally,band-passfilters are set in front of the system to observe only the light whose wavelength is around540nm,since the performance of PLZT and polarizer will become the maximum around such wavelength.First,we set the linear polarizer in front of the camera,and we obtain three images by setting three different electric voltages to the PLZT.Next,we change the polarizer into the NDfilter,and we obtain one image with no electric voltage to the PLZT.From these four images,we calculate the Stokes parameters of the light.4.2.Measurement Results of PolavisionThe measurement result of an indoor scene is shown in Figure6.Figures6(a)(b)(c)and(d)represent the four Stokes parameters,respectively.The degree of polarization(DOP)of the scene is shown in Figure6(e).The DOP represents how much the light is polarized and is defined as follows:(28) The white pixel represents the high value and the black pixel represents the low value in Figure6.Figure6(e)tells us that the DOP of the liquid crystal display has a higher value because the liquid crystal display is polarized.We also measured the linear polarizer and the left circular polarizer by Polavision.The measured DOP of the linear polarizer was0.72.The true value must be1.The measured fourth parameter of Stokes vector of the left circularFigure7.Acquisition System“Cocoon”.polarizer was-0.25.The true value must be-1.These results indicate that the system can obtain thefirst three parameters of the Stokes vector in enough precision,while the system cannot precisely obtain the fourth parameter of the Stokes vector. Enhancing the precision of the fourth parameter of the Stokes vector will be our future work.4.3.Acquisition System“Cocoon”For obtaining polarization data to calculate the shape of transparent objects,we developed an acquisition system that we named“Cocoon”(Figure7).The target object is set inside the center of a plastic sphere whose diameter is35cm.This plastic sphere is illuminated by36incandescent lamps.These36light sources are almost uniformly distributed spatially around the plastic sphere by the geodesic dome.This geodesic dome,originally developed by Ikeuchi and Nayar,is a polyhedron generated by a2nd order geodesation operation of an icosahedron.This dome has42vertices,80faces,and 120edges;however,there are no triangles in the bottom part of the actual setup in order to support the geodesic dome. Later,Debevec et al.developed a similar setup called“Light Stage”to sample the appearance of a human face under various illumination distributions.The plastic sphere diffuses the light that comes from the light sources,and it behaves as a spherical light source,which illuminates the target object from every direction.The target object is observed by monochrome camera from the top of the plastic sphere,which has a hole on the top.PLZT,linear polarizer,and NDfilter are set in front of the camera.The Stokes vector is obtained by Polavision.The DOP is defined in Equation(28).As shown in Section4.2,the precision of the fourth parameter of the Stokes vector of Polavision is too low.Thus,for the shape estimation of transparent objects,we do not use the fourth parameter ,and we calculate the DOP as follows:(29) Now,we define phase angle as follows:(30) In this paper,we use the DOP and the phase angle as inputs instead of using the Stokes vector as an input.4.4.Measurement Results of Cocoon4.4.1.HemisphereFor thefirst measurement result of Cocoon,we observe an acrylic transparent hemisphere from the spherical part.We assume that the refractive index and the back surface shape are known.We also assume that the illumination distribution is known.This paper only concentrates on proposing a method to estimate the shapes of transparent objects,and does not focus on obtaining the correct illumination distribution.Figure8.Estimation result of hemisphere:(a)Initial state(result of previous method),(b)result after10loops.Figure9.Estimation result:(a)Initial state(result of previous method),(b),(c)results after5and50loops.The estimation result is shown in Figure8.Figure8(a)represents the result of the previous method and,at the same time,it represents the intial value.Figure8(b)is the result after10loops of our method.More detailed evaluation is done in the2D plane that is a cross-section of the3D object,which includes the center of the base circle and the line perpendicular to that circle.The proposed algorithm estimates the front surface shape,a semicircle,by using the polarization data of the2D plane as input data.The result of applying the proposed method is given in Figure9(c).In Figure9,the solid line represents the estimated shape,and the dotted line represents the true shape. The result of the previous method(Figure9(a))is used for the initial state of the shape.Figure9(b)and Figure9(c)are the results after5and50loops,respectively.The RMS(Root Mean Square)error between the estimated value and the true value is used to compare the accuracy between the proposed method and the previous method.The RMS error of the surface normal was for the previous method and for our method.The RMS error of the height was2.70mm for the previous method and0.672mm for our method.4.4.2.Bell-shaped ObjectNow we observe the transparent object shown in Figure10(a).This object is made of acrylic and is a body-of-revolution. Its refractive index is1.5and its diameter at the base is24mm.The object is observed from the projected area.The front surface is a curved surface and the back surface is a disk.The camera is set orthogonally to the disk.We assume that the refractive index and the back surface shape are known.We also assume that the illumination distribution is known.Figure10.(a)Bell-shaped transparent acrylic real object.Estimation result:(b)Initial value,(c),(d)result after5,20loops.We estimate the shape of a cross-section of the object to analyze the precision of the proposed method.The cross-section includes the center of the base circle and the line perpendicular to that circle.Figure10(d)illustrates the estimated shape of the object.The solid curve represents the obtained front height,and the dotted line represents the given back height.The initial value is set to be a semicircle shown in Figure10(b).The estimated shape after5and20loops is illustrated in Figure10(c)and Figure10(d),respectively.RMS of the height was0.24mm,where the true shape was obtained from the silhouette extracted manually by a human operator from the photograph of the object taken from the side.5.CONCLUSIONIn thefirst half of this paper,we proposed a novel method for estimating the surface shape of transparent objects by minimizing the difference between the input polarization data taken by observing the transparent object and the computed polarization data rendered by the polarization raytracing method.Experimental results showed that the accuracy of the method was higher than the previous method.We assumed that the back surface shape,the refractive index,and the illumination distribution are known.Relaxing such assumption will be our future work.In the second half of the paper,we proposed a novel device for measuring the polarization state of the light by using a material called PLZT.We estimated the entire four parameters of the Stokes vector compared to other existing meth-ods,which measure only thefirst three parameters of the Stokes vector.PLZT has a faster response than liquid crystal;thus,there is a potential that we can develop a faster measurement system than other methods that use liquid crystal.This measurement system is controllable from the computer,and can measure the polarization state of the light semi-automatically.However,this system requires a human operation for switching thefilter during the measurement. Developing a real-time automatic measurement system is our goal for this project.Also,based on the experimental results, the measurement of the fourth parameter of the Stokes vector was not precise enough.Finding the reason for this problem and solving it will be another task for future work.ACKNOWLEDGMENTSThis research was supported in part by the Ministry of Education,Culture,Sports,Science and Technology under the Leading Project,“Development of High Fidelity Digitization Software for Large-Scale and Intangible Cultural Assets.”Daisuke Miyazaki was supported by the Japan Society for the Promotion of Science.The authors thank Joan Knapp for proofreading and editing this manuscript.REFERENCES1.D.Miyazaki and K.Ikeuchi,“Inverse Polarization Raytracing:Estimating Surface Shape of Transparent Objects,”in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,pp.II:910–917, San Diego,CA USA,June2005.2.W.A.Shurcliff,Polarized light:production and use,p.207,Harvard University Press,Cambridge,Mass,1962.3.Y.Y.Schechner,J.Shamir,and N.Kiryati,“Polarization and statistical analysis of scenes containing a semireflector,”Journal of Optical Society of America A,vol.17,no.2,pp.276–284,2000.4.L.B.Wolff and T.E.Boult,“Constraining object features using a polarization reflectance model,”IEEE Transactionson Pattern Analysis and Machine Intelligence,vol.13,no.7,pp.635–657,1991.5.S.K.Nayar,X.-S.Fang,and T.Boult,“Separation of Reflection Components Using Color and Polarization,”Inter-national Journal of Computer Vision,vol.21,no.3,pp.163–186,1997.6.S.Lin and S.W.Lee,“Detection of Specularity Using Stereo in Color and Polarization Space,”Computer Vision andImage Understanding,vol.65,no.2,pp.336–346,Feb.1997.7.S.Umeyama and G.Godin,“Separation of Diffuse and Specular Components of Surface Reflection by Use of Po-larization and Statistical Analysis of Images,”IEEE Transactions on Pattern Analysis and Machine Intelligence,vol.26,no.5,May2004.Developing“Polavision”and related algorithms was mainly performed by Noriyuki Takashima,Akira Yoshida,and Eiki Harashima. Developing“Cocoon”and related algorithms was mainly performed by Daisuke Miyazaki and Katsushi Ikeuchi.。

相关文档
最新文档