2010年中考数学第一轮复习专题训练
人教版中考数学一轮复习数学式解答题专题提升训练
2022-2023学年人教版中考数学一轮复习《数与式》解答题专题提升训练(附答案)1.计算:(1)()÷;(2)(﹣1)2021×|﹣1|+0.5÷(﹣).2.计算:(1)﹣1[3+(﹣3)2]÷(﹣1);(2)(﹣+)÷(﹣);(3)()÷(﹣)﹣;(4)﹣12022﹣(1﹣0.5)×[2﹣(﹣3)2].3.计算:(1);(2).4.计算:﹣32+(﹣1)2021+(﹣π)0﹣﹣(﹣)2.5.(1)已知a=2﹣4444,b=3﹣3333,c=5﹣2222,请用“<”把它们按从小到大的顺序连接起来,说明理由.(2)请探索使得等式(2x+3)x+2021=1成立的x的值.6.已知A=x+,B=.①当x为何值时,A、B互为相反数?②当x为何值时,2A﹣B=1?7.计算:(1)﹣12022+﹣|1﹣|+﹣;(2)20222﹣2021×2023;(3)﹣a6•a5÷a3﹣(a2)3•(﹣3a)2;(4)[(x﹣3y)2﹣7(x+y)(y﹣x)+(2x﹣y)(2y+x)]÷(﹣x).8.已知A=3b2﹣2a2+5ab,B=4ab+2b2﹣a2.(1)化简:2A﹣3B;(2)当a=﹣1,b=4时,求2A﹣3B的值.9.先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2022.10.已知A=2ax3﹣3bx+6,当x=﹣1时,A的值为10.(1)当a=2时,求b的值.(2)当x=﹣2时,A的值为12b﹣20a+k,求k的值.(3)设,当x=1时,比较A与B的大小.11.阅读材料:求1+2+22+23+24+ (2100)首先设S=1+2+22+23+24+…+2100①,则2S=2+22+23+24+25+…+2101②,②﹣①得S=2101﹣1,即1+2+22+23+24+…+2100=2101﹣1.以上解法,在数列求和中,我们称之为“错位相减法”.请你根据上面的材料,解决下列问题:(1)1+2+22+23+24+ (22000)(2)1++()2+()3+()4+…+()2000;(3)求1+3+32+33+34+…+32022的值.12.下面是某同学对多项式(9x2﹣6x+3)(9x2﹣6x﹣1)+4因式分解的过程.解:设9x2﹣6x=y,则原式=(y+3)(y﹣﹣1)+4…第一步=y2+2y+1…第二步=(y+1)2…第三步=(9x2﹣6x+1)2…第四步解答下列问题:(1)该同学从第二步到第三步运用了因式分解的方法是;A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)老师说该同学因式分解的结果不彻底,请你直接写出该因式分解的最后结果;(3)请你尝试用以上方法对多项式n(n2+3n+2)(n+3)+1进行因式分解.13.已知下面一系列等式:①1×=1﹣;②=﹣;③×=﹣;④×=﹣…(1)请你根据这些等式的结构特征,写出第n(n为正整数)个等式:.(2)验证一下你写出的等式是否成立.(3)利用等式计算:++…+.14.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1所示的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成了如图2所示的大正方形.(1)请用两种不同的方法求图2大正方形的面积(用含a,b的式子表示):方法1:;方法2:.(2)观察图2,请你写出代数式(a十b)2,a2+b2,ab之间的等量关系式.(3)根据(2)题中的等量关系,解决如下问题:①已知a+b=6,a2+b2=26,求ab的值;②已知(x﹣2021)2+(x﹣2023)2=48,求(x﹣2022)2的值.15.请同学观察、计算、思考完成下列问题:计算:(1)(a﹣b)(a+b)=;(2)(a﹣b)(a2+ab+b2)=;(3)(a﹣b)(a3+a2b+ab2+b3)=;猜想并验证:(4)(a﹣b)(a n+a n﹣1b+a n﹣2b2+…+a2b n﹣2+ab n﹣1+b n)=;思考:(5)求22022+22021+22020+…+23+22+21的值.16.观察下列各式:①;②;③.(1)按规律第⑩为;(2)用规律计算:.17.甲、乙两个批发店销售同一种苹果,甲批发店的价格为每千克6元,在乙批发店,当一次购买数量不超过50kg时,价格为每千克7元:当一次购买数量超过50kg时,其中有50kg的价格为每千克7元,超过50kg部分的价格为每千克5元.设小王在同一个批发店一次购买苹果的数量为x(kg)(x>0).(1)如表中,a=,b=,c=;一次购买苹果的数量(单位:kg)2050100…甲批发店花费(单位:元)120a600…乙批发店花费(单位:元)b350c…(2)分别用含x的代数式表示:①甲批发店所花费的钱数为;②当一次购买数量不超过50kg时,乙批发店所花费的钱数为;③当一次购买数量超过50kg时,乙批发店所花费的钱数为;(3)如果小王在同一个批发店一次性购买120kg的苹果,通过计算说明他在甲、乙两个批发店哪个更实惠.18.观察下列等式:第一个等式:a1==×(1﹣)第二个等式:a2==×(﹣)第三个等式:a3==×(﹣)第四个等式:a4==×(﹣)…回答下列问题:①按以上规律列出第五个等式:a5==;②用含n的代数式表示第n个等式:a n=(n为正整数)③求a1+a2+a3+a4+…+a2022的值.19.请利用绝对值的性质,解决下面问题:(1)已知a,b是有理数,当a>0时,则=;当b<0时,则=.(2)已知a,b,c是有理数,a+b+c=0,abc<0,求的值.(3)已知a,b,c是有理数,当abc≠0时,求的值.20.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,(1)写出数轴上点B表示的数;(2)|5﹣3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数x的点与表示有理数3的点之间的距离.试探索:①:若|x﹣8|=3,则x=.②:|x+14|+|x﹣8|的最小值为.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.求当t为多少秒时?A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒2个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.问当t为多少秒时?P,Q之间的距离为4.参考答案1.解:(1)()÷=(+﹣)×24=×24+×24﹣×24=6+9﹣14=1;(2)(﹣1)2021×|﹣1|+0.5÷(﹣)=(﹣1)×+×(﹣3)=﹣+(﹣)=﹣3.2.解:(1)﹣1[3+(﹣3)2]÷(﹣1)=﹣1﹣×(3+9)×(﹣)=﹣1﹣×12×(﹣)=﹣1+=;(2)(﹣+)÷(﹣)=(﹣+﹣)×(﹣18)=(﹣)×(﹣18)+×(﹣18)﹣×(﹣18)=9﹣12+15=﹣3+15=12;(3)()÷(﹣)﹣=()×(﹣)﹣=(﹣)﹣+﹣2﹣=﹣4+﹣﹣2=﹣4﹣1﹣2=﹣7;(4)﹣12022﹣(1﹣0.5)×[2﹣(﹣3)2]=﹣1﹣××(2﹣9)=﹣1﹣××(﹣7)=﹣1+=.3.解:(1)原式==1﹣3=﹣2;(2)原式==.4.解:原式=﹣9﹣1+1﹣4﹣=﹣13.5.解:(1)∵a=2﹣4444=()1111,b=3﹣3333=()1111,c=5﹣2222=()1111,又∵,∴()1111>()1111>()1111,∴a>c>b;(2)∵(2x+3)x+2021=1,∴2x+3=1或2x+3=﹣1且x+2021为偶数或2x+3=0且x+2021≠0,解得:x=﹣1或x﹣1.5.6.解:①∵A、B互为相反数,A=x+,B=,∴A+B=0,∴x++=0,4x+10+5(2x+1)=0,x=﹣;②∵2A﹣B=1,A=x+,B=,∴2(x+)﹣=1,x+1﹣=1,x=,8x=10x+5,﹣2x=5,x=﹣.7.解:(1)﹣12002+﹣|1﹣|+﹣=﹣1+5﹣(﹣1)﹣2﹣3=﹣1+5﹣+1﹣2﹣3=﹣;(2)20222﹣2021×2023=20222﹣(2022﹣1)(2022+1)=20222﹣20222+1=1;(3)﹣a6•a5÷a3﹣(a2)3•(﹣3a)2=﹣a6•a5÷a3﹣a6×9a2=﹣a8﹣9a8=﹣10a8;(4)[(x﹣3y)2﹣7(x+y)(y﹣x)+(2x﹣y)(2y+x)]÷(﹣x)=[x2﹣6xy+9y2﹣7(y2﹣x2)+4xy+2x2﹣2y2﹣xy]÷(﹣)=(x2﹣6xy+9y2﹣7y2+7x2+4xy+2x2﹣2y2﹣xy)÷(﹣x)=(10x2﹣3xy)÷(﹣x)=﹣20x+6y.8.解:(1)2A﹣3B=2(3b2﹣2a2+5ab)﹣3(4ab+2b2﹣a2)=6b2﹣4a2+10ab﹣12ab﹣6b2+3a2=﹣a2﹣2ab.(2)当a=﹣1,b=4时,2A﹣3B=﹣(﹣1)2﹣2×(﹣1)×4=﹣1+8=7.9.解:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)]=﹣3a2+4ab+(a2﹣4a﹣4ab)=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a.当a=﹣2,b=2022时,原式=﹣2×(﹣2)2﹣4×(﹣2)=﹣2×4+8=﹣8+8=0.10.解:(1)把x=﹣1,a=2,A=10代入A=2ax3﹣3bx+6,得:10=2×2×(﹣1)3﹣3b×(﹣1)+6,整理,得:10=﹣4+3b+6,解得:;(2)解:把x=﹣2,A=12b﹣20a+k代入A=2ax3﹣3bx+6,得:12b﹣20a+k=2a×(﹣2)3﹣3b×(12)+6,∴12b﹣20a+k=﹣16a+6b+6,∴k=﹣16a+6b+6﹣12b+20a=4a﹣6b+6,∵当x=﹣1时,A的值为10,∴10=﹣2a+3b+6,即:2a﹣3b=﹣4,∴k=4a﹣6b+6=2(2a﹣3b)+6=2×(﹣4)+6=﹣2;(3)当x=1时,A=2ax3﹣3bx+6=2a﹣3b+6=﹣4+6=2,,∵n2+2≥2,∴B≥A.11.解:(1)设S=1+2+22+23+24+…+22000①,则2S=2+22+23+24+…+22000+22001②,②﹣①得:S=22001﹣1;(2)设S=1++()2+()3+()4+…+()2000①,则S=+()2+()3+()4+…+()2001②,①﹣②得:S=1﹣()2001,所以S=2﹣2×()2001=2﹣()2000.即1++()2+()3+()4+…+()2000=2﹣()2000;(3)设S=1+3+32+33+34+…+32022①,则3S=3+32+33+34+35+…+32023②,②﹣①得:2S=32023﹣1,所以S=,即1+3+32+33+34+…+32022=.12.解:(1)该同学从第二步到第三步运用了因式分解的方法是:两个数和的完全平方公式,故选:C;(2)(9x2﹣6x+3)(9x2﹣6x﹣1)+4=(3x﹣1)4;(3)设n2+3n=m,则原式=m(m+2)+1=m2+2m+1=(m+1)2=(n2+3n+1)2.13.解:(1)第n(n为正整数)个等式为:×=﹣,故答案为:×=﹣;(2)∵左边=,右边=﹣=,∴×=﹣;(3)++…+=﹣+﹣+……+﹣=﹣=.14.解:(1)方法1:大正方形的边长为(a+b),∴S=(a+b)2;方法2:大正方形=各个部分相加之和,∴S=a2+2ab+b2.故答案为:(a+b)2,a2+2ab+b2.(2)由图2可得总面积减掉两个小矩形面积等于两个正方形面积之和,即(a+b)2﹣2ab=a2+b2;故答案为:(a+b)2=a2+b2+2ab;(3)①∵a+b=6,∴(a+b)2=36,∵a2+b2=26,∴2ab=(a+b)2﹣(a2+b2)=36﹣26=10,∴ab=5.②令a=x﹣2022,∴x﹣2021=[x﹣(2022﹣1)]=x﹣2022+1=a+1,x﹣2023=[x﹣(2022+1)]=x﹣2022﹣1=a﹣1,∵(x﹣2021)2+(x﹣2023)2=48,∴(a+1)2+(a﹣1)2=48,解得a2=23.∴(x﹣2022)2=23.15.解:(1)(a﹣b)(a+b)=a2﹣b2,故答案为:a2﹣b2;(2)(a﹣b)(a2+ab+b2)=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3,故答案为:a3﹣b3;(3)(a﹣b)(a3+a2b+ab2+b3)=a4+a3b+a2b2+ab3﹣a3b﹣a2b2﹣ab3﹣b4=a4﹣b4,故答案为:a4﹣b4;(4)(a﹣b)(a n+a n﹣1b+a n﹣2b2+…+a2b n﹣2+ab n﹣1+b n)=a n+1+a n b+a n﹣1b2+…+a3b n﹣2+a2b n﹣1+ab n﹣a n b﹣a n﹣1b2﹣…﹣a3b n﹣2﹣a2b n﹣1﹣ab n﹣b n+1=a n+1﹣b n+1,故答案为:a n+1﹣b n+1;(5)22022+22021+22020+…+23+22+21=(2﹣1)(22022+22021+22020+…+23+22+21+1)﹣(2﹣1)×1=22023﹣1﹣1×1=22023﹣1﹣1=22023﹣2.16.解:(1)①;②;③.按规律第⑩为:﹣×=﹣+,故答案为:﹣×=﹣+;(2)原式=﹣1+﹣++……﹣+=﹣1+=﹣.17.解:(1)①根据题意有,a=50×6=300,b=20×7=140,c=50×7+50×5=600,故答案为:300;140;600;(2)根据题意有,①6x;②7x;③50×7+(x﹣50)×5=350+5x﹣250=5x+100,故答案为:6x;7x;5x+100;(3)当x=120 时,6x=6×120=720 (元);5x+100=5×120+100=700 (元);∵720>700,∴乙批发店史实惠.18.解:(1)由所给式子,可得a5==×(﹣),故答案为:,×(﹣);(2)a n==×(﹣),故答案为:=×(﹣);(3)a1+a2+a3+a4+…+a2022=+++…+=×(1﹣+﹣+﹣+…+)=×(1﹣)=×=.19.解:(1)∵a>0,|a|=a,∴=1;∵b<0,∴|b|=﹣b,∴==﹣1.故答案为:1,﹣1;(2)∵a+b+c=0,abc<0,∴三个数中必需有两个正数,一个负数,可设a>0,b>0,c<0∴a=﹣(b+c),b=﹣(a+c),c=﹣(a+b),∴原式=++=﹣1﹣1+1=﹣1;(3)①三个数同时大于0时,原式=1+1+1=3;②三个数同时小于0时,原式=﹣1﹣1﹣1=﹣3;③一个数大于0,两个数小于0时,原式=1﹣1﹣1=﹣1;④两个数大于0,一个数小于0时,原式=1+1﹣1=1.综上所述,代数式的值为:3或﹣3或1或﹣1.20.解:(1)点B表示的数8﹣22=﹣14.故答案为:﹣14;(2)①|x﹣8|=3,x﹣8=±3,则x=5或11.故答案为:5或11;②|x+14|+|x﹣8|的最小值为8﹣(﹣14)=22.故答案为:22;(3)设经过t秒时,A,P之间的距离为2.此时P点表示的数是5t,则|8﹣2t|=2,解得t=3或t=5.故当t为3或5秒时,A,P两点之间的距离为2;(4)设经过t秒时,P,Q之间的距离为4.此时P点表示的数是2t,Q点表示的数﹣14+4t,则|﹣14+4t﹣2t|=4解得t=9或t=5.故当t为9或5秒时,P,Q之间的距离为4.。
新课标中考数学第一轮复习训练题
新课标中考数学第一轮复习训练题1.2的倒数是 .2.若向南走2m 记作2m -,则向北走3m 记作 m .的相反数是 . 4. 3-的绝对值是( ).A .3-B .3C .13-D .135.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7×10-6B. 0.7×10-6C. 7×10-7D. 70×10-86.某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温 高_ __°C .7.计算:=-13_______.8.比较大小:2- 3.(填“>,<或=”符号) 9. 计算23-的结果是( )A. -9B. 9C.-6D.6 10.下列各式正确的是( )A .33--=B .326-=-C .(3)3--=D .0(π2)0-=11. 31-x 2y 的系数是 ,次数是 . 12.计算:2(2)a a -÷= . 13.下列计算正确的是( )A .5510x x x +=B .5510·x x x =C .5510()x x =D .20210x x x ÷= 14. .若x -y =3,则2x -2y = .15.a ,b 两数的平方和用代数式表示为( )A.22a b +B.2()a b +C.2a b +D.2a b + 16.分解因式:3x 2-27= .17.若 , ),4)(3(2==-+=++b a x x b ax x 则. 18.下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a19.当x =____时,分式11x x +-有意义;当x =____时,分式2x x x -的值为0.20.当x ___________在实数范围内有意义. 21.计算:2=__________.22.若无理数a 满足不等式14<<a ,请写出两个符合条件的___________. 23. 计算:54-= _____________.24是同类二次根式的是( )ABCD1 25.写一个以2-=x 为解的方程 .26.如果方程2130m x -+=是一元一次方程,则m = . 27. 在方程y x 413-=5中,用含x 的代数式表示y 则y = 。
中考数学第一轮专题限时训练精选试题及答案
2015年中考数学一轮复习资料毛坦厂中学叶集分校皖西当代中学二零一四年十月坚持到底,三载拼搏终有回报决胜中考,父母期盼定成现实序言第一轮复习的目的第一轮复习的目的是要“过三关”:(1)过记忆关。
必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。
要求学生记牢认准所有的公式、定理,特别是平方差公式、完全平方和、差公式,没有准确无误的记忆。
要求学生用课前5 ---15分钟的时间来完成这个要求,有些内容重点串讲。
(2)过基本方法关。
如,待定系数法求函数解析式,过基本计算关:如方程、不等式、代数式的化简,要求人人能熟练的准确的进行运算,这部分是决不能丢。
(3)过基本技能关。
如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。
做到对每道题要知道它的考点。
基本宗旨:知识系统化,练习专题化。
2、具体要求与做法:(1)认真阅读考纲,搞清课本上每一个概念,公式、法则、性质、公理、定理。
重视教材的基础作用和示范作用。
抓基本概念的准确性;抓公式、定理的熟练和初步应用;抓基本技能的正用、逆用、变用、连用、巧用;能准确理解教材中的概念;能独立证明书中的定理;能熟练求解书中的例题;能说出书中各单元的作业类型;能掌握书中的基本数学思想、方法,做到基础知识系统化,基本方法类型化,解题步骤规范化(2)抓住基本题型,学会对基本题目进行演变,如适当改变题目条件,改变题目问法等。
(3)初中数学教材中出现的数学方法有:换元法、配方法、图象法、解析法、待定系数法、分析法、综合法、分析综合法、反证法、作图法。
这些方法要按要求灵活运用。
因此复习中针对要求,分层训练,避免不必要的丢分,从而形成明晰的知识网络和稳定的知识框架。
研读课标(特别注意课标中可操作性语言,对“了解”“理解”“掌握”“灵活应用”等做出具体界定),以课本为依据,不扩展范围和提高要求.据课本内容将有关的概念、公式、法则、定理及基本运算、基本推理,基本作图,基本技能和方法等形成合理的知识网络结构,通过网络结构,体现知识发生、发展的过程,体现知识的联系,体现知识的应用功能,做到遗漏的知识要补充;模糊的概念要明晰;零散的内容要整合;初浅的理解要深化,要关注基础知识和基本技能的训练,关注“双基”所蕴涵的数学本质及其在具体情况中的合理应用.(4)防范错误。
中考数学第一轮复习基础知识训练(一)(附答案)
中考数学第一轮复习基础知识训练(一)时间:30分钟你实际使用分钟班级姓名学号成绩一、精心选一选1.图(1)所示几何体的左视图...是()2.一对酷爱运动的夫妇,让他们刚满周岁的孩子拼排3块分别写有“20”、“08”、“北京”的字块.假如小孩将字块横着正排,则该小孩能够排成“2008北京”或“北京2008”的概率是()A.16B.14C.13D.123.一名宇航员向地球总站发回两组数据:甲、乙两颗行星的直径分别为46.110⨯千米和46.1010⨯千米,这两组数据之间()A.有差别B.无差别C.差别是40.00110⨯千米D.差别是100千米4.如图,把直线l向上平移2个单位得到直线l′,则l′的表达式为()A.112y x=+B.112y x=-C.112y x=--D.112y x=-+5.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.24204340x+⨯=⨯B.24724340x-⨯=⨯C.24724340x+⨯=⨯D.24204340x-⨯=⨯6.某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿()A.图(1)需要的材料多B.图(2)需要的材料多C.图(1)、图(2)需要的材料一样多 D.无法确定7.如图,等腰梯形ABCD 下底与上底的差恰好等于腰长,DE AB ∥.则DEC ∠等于( )A.75° B.60° C.45° D.30°8.如图是一台54英寸的大背投彩电放置在墙角的俯视图.设DAO α=∠,彩电后背AD 平行于前沿BC ,且与BC 的距离为60cm ,若100cm AO =,则墙角O 到前沿BC 的距离OE 是( )A.()60100sin cm α+ B.()60100cos cm α+ C.()60100tan cm α+ D.以上答案都不对二、细心填一填9.某农场购置了甲、乙、丙三台打包机,同时分装质量相同的棉花,从它们各自分装的棉花包中随机抽取了10包,测得它们实际质量的方差分别为222S 11.05S 7.96S 16.32===乙甲丙,,.可以确定 打包机的质量最稳定.10.如图,照相时为了把近处的较高物体照下来,常常保持镜头中心不动,使相机旋转一定的角度,若A 点从水平位置顺时针旋转了30︒,那么B 点从水平位置顺时针旋转了__ ____度.图(1) 图(2)第6题第8题ABA D CE B 第7题11.林业工人为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工作原理如图所示.现已知5380.5BAC AB =︒=∠′,米,则这棵大树的直径约为 _____ ____米.12.如图,一次函数11y x =--与反比例函数22y x =-的图象交于点(21)(12)A B --,,,,则使12y y >的x 的取值范围是三、开心用一用13.(6分)解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.14.如图,数轴上点AA 关于原点的对称点为B ,设点B 所表示的数为x ,求(x 的值.第12题答案参考一、精心选一选 BCAD ACBA二、细心填一填9. 乙 10. __30___ 11. _ 0.5__12. 2x <-或01x <<. 三、开心用一用13.(6分)解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.解:解不等式318x -->,得3x <-.解不等式1(5)32x +≤,得x ≤1.原不等式组的解集为3x <-.14.如图,数轴上点AA 关于原点的对称点为B ,设点B 所表示的数为x ,求(0x的值.解: 点AB 与点A 关于原点对称,∴点B 表示的数是,即x =3分00(((121x ==-=-. 6分第12题3- 2- 1- 0 1。
2010年中考数学复习导引
1 复 习 时要 把 各章 节的 知识 联 系起 来 , 能 综合 运 用 , 到 举 一反 三 和 触 . 并 做
5月 l 日 6
一
专 题 知 识
类 旁通.
5月 3 1日
一 模 考试
2 进 行 有 针 对性 的复 习 , 据 个人 的具 体 情 况 开展 查 漏补 缺 , . 根 对知 识 和 解 题 方 法进 行 归类 . 形 成 知识 结 构 的基 础 上 加 深 记 忆. 在 1 通 过检 测或 模 拟 考 试 . 时发 现 自己知 识 的 漏 点和 疑 点 、 维 的 盲 点 、 . 及 思
关 ,如 把 几何 图 形放 到 直 角 坐 标 系 中 .利 用 坐标 系 中 的 坐 标
材, 绝不 能 脱 离课 本 ;3 不搞 题 () 海 战术 , 练习量是相 对而 言的 , 大 它 不 是 盲 目的练 ,而 是 有 针 对 性 、 型 性 、 次性 的 , 切 中要 典 层 是 害 的强 化练 习 ;4 对 于 作业 、 () 练
争考 戛
综 观 每 年 各 地 的 中考 数 学 试 卷 , 大 致 可 分 为 选 择 题 、 填 空
题 、 答 题 三 大 部 分 .就 考 题 难 易 程 度 而 言 , 易 试 题 、 档 试 解 较 中
题 、 难 试 题 的 比 例 为 53 2 较 : :.为 了 能 考 出 一 个 理 想 的 成 绩 , 们 我 应 该 制 订 合 理 的 中 考 数 学 复 习 策 略 : 重 教 材 , 抓 基 础 ; 透 注 狠 渗 思 想 , 握 方 法. 掌
中考 数 学 命 题 除 了着 重 考
查 基 础 知 识 外 。还 十 分 重 视 对
改正 、 定期 归纳 、 强化提 高.
中考数学一轮复习专题突破练习—有理数的运算(含解析)
中考数学一轮复习专题突破练习—有理数的运算(含解析)一、单选题1.(2022·陕西西安交大第二附属中学南校区九年级其他模拟)﹣23的倒数是()A.32B.23C.﹣32D.﹣23【答案】C【分析】根据:除0外的数都存在倒数,两个乘积是1的数互为倒数,0没有倒数;判断即可.【详解】解:﹣23的倒数是﹣32.故答案为:C.2.(2022·重庆字水中学九年级三模)下列各数中,相反数最大的是()A.-5 B.-2 C.-1 D.0【答案】A【分析】求得各选项的相反数,然后比较大小即可. 【详解】解:各选项的相反数分别为5,2,1,0∵5210>>>∴-5的相反数最大故答案为A .3.(2022·西安市铁一中学九年级其他模拟)据新浪财经2022年4月2日报到,第一龙头股贵州茅台一路走高,截至收盘涨近6%至2162元,收涨5.75%,市值激增至272000000元.数据272000000用科学记数法表示为( ) A .627210⨯B .82.7210⨯C .90.27210⨯D .927210⨯ 【答案】B 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:8272000000 2.7210=⨯,故选:B.4.(2022·长春市解放大路学校九年级其他模拟)下列各数中,比2021-小的数为()A.2022-B.2020-C.0 D.2020【答案】A【分析】根据有理数的大小比较方法即可求解.【详解】∵2022-<2020-<2021-<0<2020故比2021--小的数为2022故选A.5.(2022·福建泉州市·泉州五中九年级其他模拟)据报道,2020年泉州GDP总量突破万亿大关,约为10159亿元,居全国第18位,其中数10159亿元用科学记数法表示为()A.12⨯元C.4⨯元D.51.0159100.1015910⨯元B.131.015910⨯元0.1015910【答案】A【分析】根据题意,运用科学记数法的表示方法可直接得出答案,要注意绝对值大于1的数字科学记数法的表示形式为:10n a ⨯,其中110a ≤<,n 为正整数.【详解】解:10159亿用科学记数法表示为121.015910⨯,故选:A .6.(2022·山东省诸城市树一中学九年级三模)若x x +=0,那么实数x 一定是( )A .负数B .正数C .零D .非正数 【答案】D【分析】先整理,然后根据绝对值等于它的相反数进行解答.【详解】解:由x +|x |=0得,|x |=−x ,∵负数或零的绝对值等于它的相反数,∴x 一定是负数或零,即非正数.故选:D .7.(2022·江苏南京·)下列四个实数中,是负数的是( )A .-(-1)B .(-1)2C .|-1|D .(-1)3【答案】D 【分析】根据相反数的定义、乘方的定义、绝对值的性质及负数和正数的概念判断可得. 【详解】解:A .-(-1)=1,是正数,不符合题意;B .(-1)2=1,是正数,不符合题意;C .|-1|=1,是正数,不符合题意;D .(-1)3=-1,是负数,符合题意;故选:D .8.(2022·河南师大附中九年级三模)1长度单位“埃”,等于一亿分之一厘米,那么一本杂志长为35厘米,等于( )埃.A .73.510⨯B .83.510⨯C .93.510⨯D .83.510-⨯ 【答案】C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:35cm=35×108埃=3.5×109埃.故选:C.9.(2019·宁夏)如图,是一组按照某种规律摆放而成的图案,第1个图有1个三角形,第二个图有4个三角形,第三个图有8个三角形,第四个图有12个三角形,则图5中三角形的个数是()A.8 B.12 C.16 D.17【答案】C【解析】试题分析:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=4个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12,第五个图案有三角形1+3+4+4+4=16,故选C.考点:规律型:图形的变化类.10.(2022·江苏苏州·)21÷(-7)的结果是()A.3 B.-3 C.13D.13【答案】B【分析】直接根据有理数的除法法则进行求解即可;【详解】21÷(-7)=-3,故选:B.二、填空题11.(2022·厦门市第九中学九年级二模)2022年厦门中考生大约39700人,这个数字可用科学记数法表示为__________【答案】3.97×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:39700=3.97×104.故答案为:3.97×104. 12.(2022·广东)已知a ,b 为有理数,如果规定一种新的运算“※”,规定:23a b b a =-※,例如:122231431=⨯-⨯=-=※,计算:()235=※※_________ .【答案】10 【分析】根据a ※b =2b -3a ,可以计算出所求式子的值. 【详解】解:∵a ※b =2b -3a ,∴(2※3)※5=(2×3-3×2)※5=(6-6)※5=0※5=2×5-3×0 =10-0=10,故答案为:10.13.(2022·贵州)某同学在银行存入1000元,记为1000+元,则支出500元,记为______元.【答案】500【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:“正”和“负”相对,所以,若向银行存入1000元,记作“+1000元”,那么向银行支出500元,应记作“﹣500元”.故答案为:﹣500.14.(2022·浙江)已知实数a,b互为相反数,且|a+2b|=1,b<0,则b=_____.【答案】-1【分析】直接利用互为相反数的定义得出a+b=0,进而化简得出答案.【详解】解:∵实数a,b互为相反数,∴a+b=0,∴|a+2b|=|a+b+b|=|b|=1,∵b<0,∴b=﹣1.故答案为:﹣1.15.(2019·云南)如果x的相反数是2019,那么x的值是__________.【答案】2019-【解析】【分析】根据相反数的定义进行分析即可.【详解】解:∵2019-的相反数是2019,x的值是:2019-.故答案为2019-三、计算题16.(2020·河北九年级一模)小盛和丽丽在学完了有理数后做起了数学游戏(1)规定用四个不重复(绝对值小于10)的正整数通过加法运算后结果等于12,小盛:1+2+3+6=12:丽丽:1+2+4+5=12,问是否还有其他的算式,如果有请写出来一个,如果没有,请简单说明理由:(2)规定用四个不重复(绝对值小于10)的整数通过加法运算后结果等于12;【答案】(1)见解析;(2)答案不唯一,-1-3+7+9=12.【分析】(1)由于1+2+3+4=10,要想和为12,在此基础上要加上2,据此进行思考即可;(2)根据有理数加减法法则按要求进行计算即可(答案不唯一).【详解】(1)没有其他算式了,四个小于10的不同的正整数最小的和为1+2+3+4=10,要想得到和为12,需要加2,则任何两个数加1或者任意一个数加2,又因为数字不能重复,所以只能是3+1或4+1,3+2,或4+2;故符合条件的算式有1+2+4+5,1+2+3+6;只有两个;(2)答案不唯一,如:-1-3+7+9=12,写出一个即可.17.(2020·河北保定市·)计算下列各式的值.(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)(2)﹣3.61×0.75+0.61×3+(﹣0.2)×75%.4【答案】(1)0;(2)-2.4【分析】(1)根据有理数的加减运算法则,先省略括号,再进行计算即可得解;(2)逆运用乘法分配律进行计算即可得解.【详解】解:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)=﹣53+21+69﹣37=﹣90+90=0;(2)33.610.750.61(0.2)75%-⨯+⨯+-⨯4=﹣3.61×0.75+0.61×0.75+(﹣0.2)×0.75=0.75×(﹣3.61+0.61﹣0.2)=0.75×(﹣3.2)=﹣2.4.18.(2022·河南九年级一模)计算下列各题(1)3-----(2)|25|(15)(2)15351-+-+÷-()()2681224(3)23122--⨯--÷-3[(1)()6||]293(4)3331⨯--⨯+-⨯+⨯-2(1)213(1)5(13)7474;(4)-49【答案】(1)4;(2)-9;(3)34【分析】(1)原式先计算乘方及绝对值的代数意义计算即可求出值;(2)原式利用除法法则变形,再利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式逆用乘法分配律计算即可求出值.【详解】解:(1)原式83154=--+=;(2)原式1535=-+-+⨯-()(24)26812=-+-1220910=-;9(3)原式2723=--⨯--⨯9[()6]8923=-++9943=;4(4)原式3311(25)13(2)=-⨯+-⨯+74410=-⨯-⨯71337=--1039=-;4919.(2018·石家庄市第四十一中学九年级二模)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)【答案】-57.5【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣54﹣9÷(﹣2),=﹣62+4.5,=﹣57.5.20.(2020·河北九年级其他模拟)利用运算律有时能进行简便计算.例198×12=(100-2)×12=1 200-24=1 176;例2-16×233+17×233=(-16+17)×233=233.请你参考黑板中老师的讲解,用运算律简便计算: (1)999×(-15);(2)999×11845+999×1-5⎛⎫⎪⎝⎭-999×1835.【答案】(1)-14 985;(2)99 900.【详解】(1)原式=(1 000-1)×(-15)=-15 000+15=-14 985.(2)原式=999×413 118-18555⎡⎛⎫⎤+-⎪⎢⎥⎣⎝⎭⎦=999×100=99 900.21.(2019·浙江中考模拟)计算:–23+6÷3×23.圆圆同学的计算过程如下:原式=–6+6÷2=0÷2=0,请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】–203.【详解】圆圆的计算过程不正确,正确的计算过程为:原式=﹣8+2×23=﹣8+43=﹣203.22.(2022·山东课时练习)求下列各数的绝对值:(1)﹣38;(2)0.15;(3)a(a<0);(4)3b(b>0);(5)a﹣2(a<2);(6)a﹣b.【答案】(1)38;(2)0.15;(3)﹣a;(4)3b;(5)2﹣a;(6)a﹣b≥0时,a ﹣b;a﹣b<0时,b﹣a.【详解】(1)|﹣38|=38;(2)|+0.15|=0.15;(3)∵a<0,∴|a|=﹣a;(4)∵b>0,∴3b>0,∴|3b|=3b;(5)∵a<2,∴a﹣2<0,∴|a﹣2|=﹣(a﹣2)=2﹣a;(6)a﹣b≥0时,|a﹣b|=a﹣b;a﹣b<0时,|a﹣b|=b﹣a.23.(2022·全国课时练习)某沙漠可以粗略看成一个长方体,该沙漠的长度约是4800000m,沙层的深度大约是366cm,已知该沙漠中的体积约为33345km3立方千米.(1)请将沙漠中沙的体积用科学记数法表示出来(单位:m3);(2)该沙漠的宽度是多少米(精确到万位)?(3)如果一粒沙子体积大约是0.036mm3,那么,该沙漠中有多少粒沙子(用科学记数法表示)?【答案】(1)3.334 5×1013m3;(2)1.90×104m;(3)9.26×1023【详解】【分析】(1)首先把3 3345km3换算成33 345 000 000 000m3,再写成科学记数法.(2)沙漠的体积÷撒哈拉沙漠的长度÷沙层的深度=撒哈拉沙漠的宽度.(3)沙漠的体积÷一粒沙子体积=沙漠沙子的粒数.(1)33 345km3=33 345 000 000 000m3=3.334 5×1013m3;(2)3.334 5×1013m3÷4800000m÷366m≈1.90×104m.答:沙漠的宽度是1.90×104m.(3)3.334 5×1013m3=3.334 5×1022mm3,3.3345×1022mm3÷0.036mm3=9.26×1023(粒).答:沙漠中有9.26×1023粒沙子.。
中考数学第一轮复习基础知识训练(十)(附答案)
中考数学第一轮复习基础知识训练(十)时间:30分钟 你实际使用 分钟班级 姓名 学号 成绩一、精心选一选1.计算:3--=________.2.2006年5月20 日,世界上规模最大的混凝土重力坝三峡大坝浇筑完成.建成后,三峡水库库容总量为39 300 000 000立方米.用科学计数法表示库容总量为_____________立方米.3.如图,将矩形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的F 点处.若AFD △的周长为9,ECF △的周长为3,则矩形ABCD 的周长为________. 4.为考察甲、乙两种小麦的长势,分别从中抽取50株小麦,测得苗高,经过数据处理,它们的平均数相同,方差分别为 2215.412S S ==甲乙,,由此可以估计______种小麦长的比较整齐.5.“平阳府有座大鼓楼,半截子插在天里头”.如图,为测量临汾市区鼓楼的高AB ,在距B 点50m 的C 处安装测倾器,测得鼓楼顶端A 的仰角为4012',测倾器的高CD 为 1.3m ,则鼓楼高AB 约为________m(tan 40120.85' ≈).6.写出一个图象位于第一、三象限内的反比例函数表达式__________________. 7.如图,AB 为O ⊙的直径,C D ,是O ⊙上两点,若50ABC = ∠,则D ∠的度数为________.8.为庆祝“六一”儿童节,幼儿园要用彩纸包裹底圆直径..为1m ,高为2m 的一根圆柱的侧面.若每平方米彩纸10元,则包裹这根圆柱侧面的彩纸共需________元(接缝忽略不计, 3.14π≈). 9.将图中线段AB 绕点A 按顺时针方向旋转90后,得到线段AB ',则点B '的坐标是______________.10.如图,依次连结第一个...正方形各边的中点得到第二个正方形,再依次连结第二个正方形各边的中点得到第三个正方形,按此方法继续下去.若第一个...正方形边长为1,则第.n 个.正方形的面积是_________________.AD……二、细心填一填11.下列运算正确的是( ) A= B= C .632a a a ÷=D .2336(2)8ab a b -=-12.不等式组2112x x -<⎧⎨-⎩,≤的解集在数轴上表示为( )13.半径分别为5和8的两个圆的圆心距为d ,若313d <≤,则这两个圆的位置关系一定是( )A .相交B .相切C . 内切或相交D .外切或相交14.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价一定为()A .180元B . 202.5元C . 180元或202.5元D .180元或200元15.如图,在Rt ABC △中,904cm 6cmC AC BC ===,,∠,动点P 从点C 沿CA ,以1cm/s的速度向点A 运动,同时动点Q 从点C 沿CB ,以2cm/s的速度向点B 运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的CPQ △的面积2(cm )y 与运动时间(s)x 之间的函数图象大致是( )16.一个质地均匀的小正方体的六个面上分别标有数字1,2,3,4,5,6.如果任意抛掷小正方体两次,那么下列说法正确的是( ) A .得到的数字和必然是4 B .得到的数字和可能是3 C .得到的数字和不可能是2 D .得到的数字和有可能是1 17.方体( ) D .A .B .C . (s) A. (s) B. (s) C. (s) D.正 视 图左 视 图 俯视图A .3块B .4块C .5块D .6块三、开心用一用19.(1)计算:1221(1)sin 302-⎛⎫-++- ⎪⎝⎭(2)化简:22362444x x x x x -+÷-++答案参考一、填空题:1.3-; 2.103.9310⨯; 3.12; 4.乙; 5.43.8; 6.(略); 7.40;8.62.8; 9.(30),; 10.112n -⎛⎫⎪⎝⎭.三、解答题18.解:(1)原式1124=++-4=. (2)原式23(2)2(2)(2)(2)x x x x x -+=÷+-+ 3(2)2x x =++ 3=.。
中考数学一轮复习 专题01 有理数(基础训练)(原卷版)
专题01 有理数【基础训练】一、单选题1.(2021·西宁市教育科学研究院中考真题)中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(-2),根据这种表示法,可推算出图2所表示的算式是( )A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-2.(2021·山东滨州市·中考真题)在数轴上,点A 表示-2.若从点A 出发,沿数轴的正方向移动4个单位长度到达点B ,则点B 表示的数是( )A .-6B .-4C .2D .4 3.(2021·广西百色市·中考真题)﹣2022的相反数是( )A .﹣2022B .2022C .±2022D .2021 4.(2021·广西桂林市·中考真题)有理数3,1,﹣2,4中,小于0的数是( ) A .3 B .1 C .﹣2 D .4 5.(2021·湖北荆门市·中考真题)2021的相反数的倒数是( ).A .2021-B .2021C .12021-D .12021 6.(2021·内蒙古呼和浩特市·中考真题)几种气体的液化温度(标准大气压)如表:A .氦气B .氮气C .氢气D .氧气 7.(2021·湖北襄阳市·中考真题)下列各数中最大的是( )A .3-B .2-C .0D .18.(2021·山东济宁市·中考真题)若盈余2万元记作2+万元,则2-万元表示( ) A .盈余2万元 B .亏损2万元 C .亏损2-万元 D .不盈余也不亏损 9.(2021·广东深圳市·中考真题)计算|1tan 60|-︒的值为( )A .1B .0C 1D .1 10.(2021·湖北鄂州市·中考真题)实数6的相反数等于( )A .6-B .6C .6±D .1611.(2021·湖北恩施土家族苗族自治州·中考真题)-6的相反数是( )A .-6B .6C .6±D .1612.(2021·黑龙江齐齐哈尔市·中考真题)五张不透明的卡片,正面分别写有实数1-,115 5.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A .15B .25C .35D .4513.(2021·广东广州市·中考真题)如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为( )A .3-B .0C .3D .6-14.(2021·广东广州市·中考真题)下列运算正确的是( )A .()22--=-B .3=C .()22346a b a b =D .(a -2)2=a 2-415.(2021·贵州安顺市·中考真题)如图,已知数轴上,A B 两点表示的数分别是,a b ,则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --16.(2021·内蒙古中考真题)下列运算结果中,绝对值最大的是( )A .1(4)+-B .4(1)-C .1(5)-- D17.(2021·黑龙江大庆市·中考真题)下列说法正确的是( )A .||x x <B .若|1|2x -+取最小值,则0x =C .若11x y >>>-,则||||x y <D .若|1|0x +≤,则1x =-18.(2021·河北中考真题)如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为1a ,2a ,3a ,4a ,5a ,则下列正确的是( )A .30a >B .14a a =C .123450a a a a a ++++=D .250a a +<19.(2021·湖南邵阳市·中考真题)如图,若数轴上两点M ,N 所对应的实数分别为m ,n ,则m n +的值可能是( )A .2B .1C .1-D .2-20.(2021·河北中考真题)能与3645⎛⎫-- ⎪⎝⎭相加得0的是( ) A .3645-- B .6354+ C .6354-+ D .3645-+ 21.(2021·四川达州市·中考真题)﹣23的相反数是( ) A .﹣32 B .﹣23 C .23 D .3222.(2021·浙江宁波市·中考真题)在﹣3,﹣1,0,2这四个数中,最小的数是( ) A .﹣3 B .﹣1 C .0 D .223.(2021·安徽中考真题)9-的绝对值是( )A .9B .9-C .19D .19- 24.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( )A .2-B .2C .1D .1-25.(2021·山东枣庄市·中考真题)如图,数轴上有三个点A﹣B﹣C ,若点A﹣B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4二、填空题 26.(2021·辽宁盘锦市·2________27.(2021·江苏常州市·中考真题)数轴上的点A 、B 分别表示3-、2,则点__________离原点的距离较近(填“A ”或“B ”).28.(2021·湖北随州市·()012021π+-=______.29.(2021·湖北鄂州市·中考真题)已知实数a 、b30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1211x x +=_____________. 30.(2021·甘肃兰州市·中考真题)《九章算术》中注有“今两算得失相反,要令正负以名之”大意为:今有两数若其意义相反,则分别叫做正数与负数.若水位上升1m 记作1m +,则下降2m 记作______m .三、解答题31.(2021·广西桂林市·中考真题)计算:|﹣3|+(﹣2)2.32.(2021·河北中考真题)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q ;(2)若共购进4510⨯本甲种书及3310⨯本乙种书,用科学记数法表示Q 的值.33.(2021·西宁市教育科学研究院中考真题)计算: 121(2)|3|2-⎛⎫-+-- ⎪⎝⎭. 34.(2021·山西中考真题)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步49662x x ->--+第三步510x ->-第四步2x >第五步任务一:填空:﹣以上解题过程中,第二步是依据______________(运算律)进行变形的;﹣第__________步开始出现错误,这一步错误的原因是________________;任务二:请直接写出该不等式的正确解集.35.(2021·浙江台州市·中考真题)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.。
2010年中考数学一轮复习——函数综合应用
函数的综合应用◆ 课前热身1.已知y 关于x 的函数图象如图所示,则当0y <时,自变量x 的取值范围是( )A .0x <B .11x -<<或2x >C .1x >-D .1x <-或12x <<2.在平面直角坐标系中,函数1yx =-+的图象经过( )A .一、二、三象限B .二、三、四象限C .一、三、四象限D .一、二、四象限 3.点(13)P ,在反比例函数k y x=(0k ≠)的图象上,则k 的值是( ).A .13B .3C .13-D .3-4、如图为二次函数2y a x b x c=++的图象,给出下列说法: ①0ab <;②方程20a x b x c ++=的根为1213x x =-=,;③0a b c ++>;④当1x >时,y 随x 值的增大而增大;⑤当0y >时,13x -<<.其中,正确的说法有 .(请写出所有正确说法的序号)【参考答案】1. B2. D3. B4.①②④◆考点聚焦知识点一次函数与反比例函数的综合应用;一次函数与二次函数的综合应用;二次函数与图象信息x类有关的实际应用问题大纲要求灵活运用函数解决实际问题考查重点及常考题型利用函数解决实际问题,常出现在解答题中◆备考兵法1.四种常见函数的图象和性质总结轴交点(-,=注意事项总结:(1)关于点的坐标的求法:方法有两种,一种是直接利用定义,结合几何直观图形,先求出有关垂线段的长,再根据该点的位置,明确其纵、横坐标的符号,并注意线段与坐标的转化,线段转换为坐标看象限加符号,坐标转换为线段加绝对值;另一种是根据该点纵、横坐标满足的条件确定,例如直线y=2x 和y=-x-3的交点坐标,只需解方程组 就可以了。
(2)对解析式中常数的认识:一次函数y=kx+b (k ≠0)、二次函数y=ax2+bx+c(a ≠0)及其它形式、反比例函数y= (k≠0),不同常数对图像位置的影响各不相同,它们所起的作用,一般是按其正、零、负三种情况来考虑的,一定要建立起图像位置和常数的对应关系。
2010年中考数学一轮复习——平行四边形
平行四边形◆课前热身1.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于( )A .2cmB .4cmC .6cmD .8cm 2.如图,□ABCD 中,AC .BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( ).A .3B .6C .12D .243.下列命题中错误的是( )A .两组对边分别相等的四边形是平行四边形B .对角线相等的平行四边形是矩形C .一组邻边相等的平行四边形是菱形D .一组对边平行的四边形是梯形4.如图,□ABCD 中,E 、F 分别为BC 、AD 边上的点,要使BF DE =,需添加一个条件: .【参考答案】1. A2. C3. D4. ();BE DF BF DE AF CE BFD BED AFB ADE ==∠=∠∠=∠或∥;;等 A BC E DF第2题图 A B C DE◆考点聚焦1.掌握平行四边形的概念和面积的求法.2.探索并掌握四边形是平行四边形的条件及平行四边形的边、角、•对角线的性质.3.理解平行四边形是中心对称图形,•过对称中心的直线把它分成面积相等的两部分.4.会在平行四边形中运用全等三角形和相似三角形的知识解题.◆备考兵法1.本节内容在考试中,传统的几何证明题所占的比例很小,•大多数试题以探索题和开放题的形式出现,其中拼接、折叠、旋转、平移等几何变换在试题中频繁出现,也有很多涉及面积的试题,要引起重视.2.在以平行四边形为载体为证明线段(或角)相等的问题中,•通常证明这些线段(或角)所在的四边形是平行四边形,再由平行四边形的性质来证明,而不要仅仅停留在证三角形全等上.在复习时,应熟练掌握平行四边形的性质及判别方法,注意图形变换的一些特征,善于从折叠、旋转等几何变换中寻求已知条件.◆考点链接1.平行四边形的性质(1)平行四边形对边______,对角______;角平分线______;邻角______.(2)平行四边形两个邻角的平分线互相______,两个对角的平分线互相______.(填“平行”或“垂直”)(3)平行四边形的面积公式____________________.2.平行四边形的判定(1)定义法:________________________.(2)边:________________________或_______________________.(3)角:________________________.(4)对角线:________________________.◆典例精析例1(2009年湖北襄樊)如图,在ABCD 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD 的周长为( )A .4+B .12+.2+.212+【答案】A【解析】本题考查平行四边形及一元二次方程的有关知识,∵a 是一元二次方程2230x x +-=的根,∴1a =,∴AE=EB =EC =1BC =2,∴ABCD 的周长为4+A .例2 (2008年四川达州)如图,一个四边形花坛ABCD ,被两条线段MN ,EF•分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S 1,S 2,S 3,S 4,若MN∥AB ∥DC,EF∥DA∥CB,则有( )A .S 1=S 4B .S 1+S 4=S 2+S 3C .S 1S 4=S 2S 3D .都不对【答案】 C【解析】 由于平行线间的距离处处相等,则红、黄、紫、白的面积比便等于高的比,此时红、紫的高相等,黄、白的高相等.拓展变式 若例1中,MN 与EF 的交点在AC 上,则S 1,S 2,S 3,S 4,还有何更进一步的关系?_________答案 S 1=S 3 S 2=S 4例3如图,E ,F 是平行四边形ABCD 的对角线AC 上的点,CE=AF .请你猜想:BE•与DF 有怎样的位置关系和数量关系?并对你的猜想加以证明.解析 猜想:BE ∥DF ,BE=DF .证法一:如图1,∵四边形ABCD 是平行四边形,∴BC=AD ,∠1=∠2.又∵CE=AF ,∴△BCE ≌△DAF .A DC EB∴BE=DF ,∠3=∠4,∴BE ∥DF .证法二:如图2,连结BD ,交AC 于点O ,连结DE ,BF .∵四边形ABCD 是平行四边形,∴BO=OD ,AO=CO .又∵AF=CE ,∴AE=CF ,∴EO=FO ,∴四边形BEDF 是平行四边形,∴BE //DF .点评 从近几年的中考试题来看,平行四边形这一节不会出现很复杂的证明题,试题主要考查平行四边形的特征和识别,也有很多地方涉及全等和相似的知识,传统的计算和证明所占的比例较小,大多数以探索和开放题的形式出现.◆迎考精练一、选择题1.(2009年山东威海)如图,在四边形ABCD 中,E 是BC 边的中点,连结DE 并延长,交AB 的延长线于F 点,AB BF =.添加一个条件,使四边形ABCD 是平行四边形.你认为下面四个条件中可选择的是( )A .AD BC =B .CD BF =C .A C ∠=∠D .F CDE ∠=∠2.(2009年甘肃白银)如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( )A .2B .3 C. D.EBA FC D3.(2009年山东日照)如图,在□ABCD中,已知AD=8㎝, AB=6㎝,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm二、填空题1.(2009年广西钦州)如图,在□ABCD中,∠A=120°,则∠D=_ _°.BD2.(2009年辽宁本溪)如图所示,在ABCD中,对角线AC BD、相交于点O,过点O的直线分别交AD BC、于点M N、,若CON△的面积为2,DOM△的面积为4,则AOB△的面积为.3.(2009年黑龙江哈尔滨)如图,在□ABCD中,BD为对角线,E、F分别是AD.BD的中点,连接EF.若EF=3,则CD的长为.4.(2009年山西省)如图,□ABCD的对角线AC、BD相交于点O,点E是CD的中点,ABD△的周长为16cm,则DOE△的周长是 cm.ABCDEO5.(2009年湖南郴州)如图,在四边形ABCD 中,已知AB CD =,再添加一个条件___________(写出一个即可),则四边形ABCD 是平行四边形.(图形中不再添加辅助线)三、解答题1. (2009年湖北黄冈)如图,在△ABC 中,∠ACB =90°,点E 为AB 中点,连结CE ,过点E 作ED ⊥BC 于点D ,在DE 的延长线上取一点F ,使AF =CE .求证:四边形ACEF 是平行四边形.2.(2009年湖南长沙)如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE .DCB A5题DC ABEF AC B E O3.(2009年贵州黔东南州)如图,l 1、l 2、l 3、l 4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h ,正方形ABCD 的四个顶点分别在这四条直线上,且正方形ABCD 的面积是25.(1)连结EF ,证明△ABE、△FBE、△EDF、△CDF 的面积相等.(2)求h 的值.4.(2009年新疆)如图,E 、F 是四边形ABCD 的对角线AC 上两点,AF CE DF BE DF BE ==,,∥.求证:(1)AFD CEB △≌△.(2)四边形ABCD 是平行四边形.5.(2009年广东广州)如图,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点. 证明:四边形DECF 是平行四边形.AB DE FC6.(2009年浙江温州)在所给的9×9方格中,每个小正方形的边长都是1.按要求画平行四边形,使它的四个顶点以及对角线交点都在方格的顶点上.(1)在图甲中画一个平行四边形,使它的周长是整数;(2)在图乙中画一个平行四边形,使它的周长不是整数.(注:图甲、图乙在答题纸上)7.(2009年福建宁德)如图:点A .D .B .E 在同一直线上,AD =BE ,AC =DF ,AC ∥DF ,请从图中找出一个与∠E 相等的角,并加以证明.(不再添加其他的字母与线段)【参考答案】选择题1. D2. C3. B填空题1. 602. 63. 6 因为EF 是△ABD 的中位线,则AB =6,又AB =CD ,所以CD =6.4. 8AFE D C B5. 180180AB CD AD BCAD BC ∥°°=????或或或等解答题1. 证明:∵点E 为Rt△ABC 的斜边中点,∴EC=EA =EB∴∠EAC=∠ECA.∵AF =CE ,CE =EA∴AF =AE ,∴∠AFE=∠AEF.∵∠ACB =∠EDB =90°∴FD∥BC∴∠AEF=∠EAC∴∠EAC=∠ECA=∠AFE=∠AEF.∴∠EAF=180°-∠AFE-∠AEF=180°-∠EAC-∠ECA=∠AEC ∴AF∥CE又∵AF =CE∴四边形ACEF 是平行四边形.2. 证明:平行四边形ABCD 中,AD BC ∥,AD BC =, ACB CAD ∴∠=∠.又BE DF ∥, BEC DFA ∴∠=∠,BEC DFA ∴△≌△,∴CE AF =3. 解:连结EF∵l 1∥l 2∥l 3∥l 4,且四边形ABCD 是正方形∴BE∥FD,BF∥ED∴四边形EBFD 为平行四边形∴BE=FD又∵l 1、l 2、l 3和l 4之间的距离为h∴S △ABE =21BE·h ,S △FBE =21BE·h,S △EDF =21FD·h,S △CDF =21FD·h ∴S △ABE = S △FBE = S △EDF = S △CDF(2)过A 点作AH⊥BE 于H 点。
最新中考数学第一轮总复习课件专题3
B m
O3
考点聚集
1.P(a,b)到x轴的距离_|_b_|_,到y轴的距离_|_a_|_,到原点的距离________.
2.A(x1,y1),B(x2,y2)为坐标系中的点,则AB=__(_x_1___x_2 _)2___(_y_1___y_2_)_2 _. 3.表示地理位置的方法:_①__平__面__直__角__坐__标__系__法__②__方__位__角__+__距__离__③__经__纬__度___.
积为S,运动时间为t,则S关于t的函数图象大致为( D )
D
Cy
y
y
y
M
A N B O A xO B xO C x O D x 6.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和 BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( B )
8.如图,在矩形ABCD中,AB=4,BC=6,E为AB中点,动点P从点B开始沿BC方向运 动到点C停止,动点Q从点C开始沿CD-DA方向运动,与点P同时出发,同时停止. 这两点的运动速度均为每秒1个单位.若设他们的运动时间为x(秒),△EPQ 的面积为y,则y与x之间的函数关系的图象大致是( A )
3.如图,全等的等腰直角△ABC和△DEF,∠B=∠DEF=90º,点B,C,E,F在直线l
上.△ABC从左图的位置出发向右作匀速运动,而△DEF不动.设两个三角形
重合部分的面积为y,运动的距离为x.下面表示y与x的函数图象大致是( C )
AD
y
y
y
y
l B C(E) F O A x O B x O C x O D x
O P3 P6 P4 P5
2010年中考数学一轮复习——几何初步及平行线、相交线
几何初步及平行线、相交线◆课前热身1.(2009年山东日照)如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于 ( )A.70°B.65°C.50°D.25°2.(2009年福建福州)已知∠1=30°,则∠1的余角度数是( )A .160° B.150° C .70° D .60°3.(2009年江西省)如图,直线m n ∥,︒∠1=55,︒∠2=45,则∠3的度数为( )A .80︒B .90︒C .100︒D .110︒4.(2009年重庆)如图,直线A B C D 、相交于点E ,D F AB ∥.若100A E C ∠=°, 则D ∠等于( )A .70°B .80°C .90°D .100°【参考答案】 1. C 2. D 3. C 4. B ◆考点聚焦CAE BF D 第4题 EDBC′FCD ′ A第1题〖知识点〗两点确定一条直线、相交线、线段、射线、线段的大小比较、线段的和与差、线段的中点、角、角的度量、角的平分线、锐角、直角、钝角、平角、周角、对顶角、邻角、余角、补角、点到直线的距离、同位角、内错角、同旁内角、平行线、平行线的性质及判定、命题、定义、公理、定理〖大纲要求〗1.了解直线、线段和射线等概概念的区别,两条相交直线确定一个交点,解线段和与差及线段的中点、两点间的距离、角、周角、平角、直角、锐角、钝角等概念,掌握两点确定一条直线的性质,角平分线的概念,度、分、秒的换算,几何图形的符号表示法,会根据几何语句准确、整洁地画出相应的图形;2.了解斜线、斜线段、命题、定义、公理、定理及平行线等概念,了解垂线段最短的性质,平行线的基本性质,理解对顶角、补角、邻补角的概念,理解对顶角的性质,同角或等角的补角相等的性质,掌握垂线、垂线段、点到直线的距离等概念,会识辨别同位角、内错角和同旁内角,会用一直线截两平行线所得的同位角相等、内错角相等、同旁内角互补等性质进行推理和计算,会用同位角相等、内错角相等、或同旁内角互补判定两条直线平行. 考点提炼:1.运用两点确定一条直线解决实际问题.2.会比较角的大小,掌握角的表示法,能进行角的有关计算.3.明确线段、直线、射线的概念及区别与联系,线段的表示方法,•会进行有关线段的计算.4.掌握角平分线的定义及性质.5.掌握两角互余、互补的概念,并能进行有关计算.6.掌握对顶角、同位角、内错角、同旁内角等概念.7.掌握平行线的性质与判定,并能运用这些知识进行有关计算或推理.8.掌握两条直线垂直的概念.◆备考兵法1.能运用方程思想解决互余、互补、平行线的性质以及三角形内、•外角和等知识和一些有关计算线段、角的问题.2.在进行角的计算时,要注意单位的换算,即1°=60′,1′=60″.3.要注意区分平行线的判定与性质,不要混淆滥用.〖考查重点与常见题型〗1.求线段的长、角的度数等,多以选择题、填空题出现,如:已知∠а=112°,则∠а的补角的度数是_________.◆考点链接1. 两点确定一条直线,两点之间线段最短._______________叫两点间距离.2. 1周角=__________平角=_____________直角=____________.3. 如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.4. ___________________________________叫对顶角,对顶角___________.5. 过直线外一点心___________条直线与这条直线平行.6. 平行线的性质:两直线平行,_________相等,________相等,________互补.7. 平行线的判定:________相等,或______相等,或______互补,两直线平行.8. 平面内,过一点有且只有_____条直线与已知直线垂直.◆典例精析例1 (2009年湖北黄冈)66°角的余角是_________.【答案】︒24【解析】如果两个角的和等于90度,就说这两个角互余.由此可以得出答案为︒24例2(2008年湖北孝感)如图,a∥b,点M,N分别在a,b上,P为两平行线间一点,•那么∠1+∠2+∠3=()A.180° B.270° C.360° D.540°【答案】C【解析】方法一:过点P作PE∥a(如图).∵a∥b,∴PE∥b.∴∠1+∠MPE=180°,∠3+∠NPE=180°,∴∠1+∠3+∠2=180°+180°=360°.方法二:过点P作PF∥a(如图),∵a∥b,∴PF∥b.∴∠1=∠MPF,∠3=∠NPF.∵∠2+∠MPF+∠NPF=360°,∴∠1+∠2+∠3=360°.方法三:连结MN (如图). ∵a ∥b ,∴∠AMN+∠BNM=180°. 又∵△MPN 内角和为180°,∴∠1+∠2+∠3=180°+180°=360°. 方法四:延长MP 交直线b 于点D (如图). ∵a ∥b ,∴∠1=∠4.∵∠2,∠3,∠4是△DPN 的外角. ∴∠2+∠3+∠4=360°, ∴∠1+∠2+∠3=360°.点评 在数学学习与复习过程中,通过一题多解,从不同侧面复习数学知识,•使大学开阔视野,拓展思路,提高解题能力.例3 已知n (n ≥2)个点P 1,P 2,P 3,……,P n 在同一个平面内,且其中没有任何三点在同一条直线上,设S n 表示过这n 个点中的任意两个点所作的直线条数,显然S 2=1,S 3=3,S 4=6,S 5=10,…,由此可推断S n =______. 【答案】S n =12n (n-1).【解析】 方法一:∵n 个点中任意三点不在同一直线上. ∴其中这一点分别与其他(n-1)个点可作(n-1)条直线.这样共可作n (n-1)条直线,此时两点间的直线重复作了一次,故S n =12n (n-1).方法二:因要探究S n 与n 的关系,可设S n 关于n 的二次函数关系,即S n =an 2+bn+c (a ,•b ,c 是常数),若是一次函数关系,则a=0,依题意,得421,933,164 6.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解得1,21,20.b a c =-=⎧=⎪⎪⎪⎨⎪⎪⎪⎩即S n =12n 2-12n .验证:当n=5时,S n =12×52-12×5=10.∴S n =12n 2-12n=(1)2n n -.方法三:∵S 2=1,S 3=1+2,S 4=1+2+3,S 5=1+2+3+4,…∴S n =1+2+3+…+n-1, ∴S n =(1)2n n -. 答案(1)2n n -点评 通过一题多解,让同学们从不同角度认识理解数学,拓展了解题思路,•提高了数学能力. ◆迎考精练 一、选择题1.(2009年重庆綦江)如图,直线EF 分别与直线AB 、CD 相交于点G 、H ,已知∠1=∠2= 90°,GM 平分∠HGB 交直线CD 于点M .则∠3=( )A .60°B .65°C .70°D .130°2.(2009年安徽)如图直线1l ∥2l ,则∠α为( ).A.150°B.140°C.130°D.120°3.(2009年辽宁朝阳)如图,已知AB ∥CD,若∠A=20°,∠E=35°,则∠C 等于( ).A.20°B. 35°C. 45°D.55°4.(2009年广东广州)如图,AB ∥CD ,直线l 分别与AB 、CD 相交,若∠1=130°,则∠2=( )A.40°B.50°C.130°D.140°AEB G CDM H F1 2 35.(2009年山东临沂)下列图形中,由AB C D ∥,能得到12∠=∠的是( )6.(2009年广东清远)如图,AB C D ∥,EF AB ⊥于E E F , 交C D 于F ,已知160∠=°,则2∠=( )A .20°B .60°C .30°D .45°7.(2009 年广东佛山)30°角的余角是( ) A .30°角 B .60°角 C .90°角 D .150°角8.(2009年广东肇庆)如图,R t A B C △中, 90A C B ∠=°,DE 过点C ,且D E AB ∥,若 55A C D ∠=°,则∠B 的度数是( )A .35°B .45° C.55° D.65°9.(2009年山东枣庄)如图,直线a ,b 被直线c 所截,下列说法正确的是( ) A .当12∠=∠时,a b ∥ B .当a b ∥时,12∠=∠ C .当a b ∥时,1290∠+∠=D .当a b ∥时,12180∠+∠=二、填空题1.(2009年河南)如图,AB //CD ,CE 平分∠ACD , 若∠1=250,那么∠2的度数是 .2.(2009年浙江嘉兴)如图,AD ∥BC ,BD 平分∠ABC ,且︒=∠110A ,则=∠D .A CB D1 2 A CB D1 2 A .B .12 ACDC . BD C A D . 12 A B CD Ec a b21CDBA EF 123.(2009年陕西省)如图,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠1=47°,则∠2的大小是______ .4.(2009年山东威海)如图,直线l 与直线a,b 相交.若a ∥b ,∠1=70°170∠= ,则∠2的度数是_________.5.(2009年湖北黄石)如图,1502110A B C D ∠=∠=∥,°,°,则3∠= .6.(2009年吉林省)将一张矩形纸片折叠成如图所示的形状,则∠ABC =________ 度. 三、解答题1.(2009年福建莆田)(1)根据下列步骤画图..并标明相应的字母:(直接在图1中画图) ①以已知线段A B (图1)为直径画半圆O ;②在半圆O 上取不同于点A B 、的一点C ,连接A C B C 、; ③过点O 画O D BC ∥交半圆O 于点D .(2)尺规作图..:(保留作图痕迹,不要求写作法、证明) 已知:A O B ∠(图2). 求作:A O B ∠的平分线.AB C1 23 bal 21第4题图ADCB2.(2009年山东淄博)如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度数.【参考答案】 选择题 1. B 2. D 3. D 4. C 5. B 6. C 7. B 8. A 9. D 填空题 1. 50°图2OB ABA图1ABCDE2. 35°3. 133°4. 110°5. 60°6. 73 解答题1.解:(1)正确完成步骤①、②、③,各得1分,字母标注完整得1分,满分4分. (2)说明:①以点O 为圆心,以适当长为半径作弧交O A O B 、于两点C D 、②分别以点C D 、为圆心,以大于12C D 长为半径作弧,两弧相交于点E③作射线O E2. 解: ∵AB ∥CD , ∠A =37º,∴∠ECD =∠A =37º. ∵DE ⊥AE ,∴∠D =90º–∠ECD =90º–37º=53º.BA图1图2OBA EDCCD。
中考数学第一轮复习检测题(十)
中考数学第一轮复习检测题(十)班级 姓名 成绩一、选择题(本大题共6小题,每小题2分,共12分)1. -2的绝对值为( )A . -2 B . 2 C . 21-D . 21 2. 下列各等式成立的是( )A .752a a a =+B .236()a a -=C .21(1)(1)a a a -=+-D .222()a b a b +=+ 3. 一组数据-2,1,0,-1,2的极差是( )A .4 B .3 C .2 D .14. 一种病毒长度约为0.000058 mm ,用科学记数法表示这个数为( )A . 5.8×106-B . 5.8×105-C .0.58×105-D .58×106-5. 在下列图形中,既是轴对称图形,又是中心对称图形的是( )直角三角形 正五边形 正方形 等腰梯形A .B .C .D .6. 如图,A 是反比例函数xk y =图象上一点,过点A 作AB ⊥x 轴 于点B ,点P 在y 轴上,△ABP 的面积为1,则k 的值为( )A . 1B .2C .-1D .-2二、填空题(本大题共10小题,每小题2分,共20分)7. 计算:32= .8. 如图,已知AB ∥CD ,∠EF A =50°,则∠DCE 等于 .9. 函数1+=x x y 中,自变量x 的取值范围是 .10. 如图,∠A 是⊙O 的圆周角,∠OBC =30°,则∠A 的度数为 度.11. 一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4 个红球,且摸出红球的概率为41,那么袋中其它颜色的球有 个.12. 如图,矩形OABC 的长OA 为2,宽AB 为1,则该矩形绕点O 逆时针旋90O 后,B 点的坐标为 .13. 如图,△ABC 中,AB =4,BC =3,AC =5. 以AB 所在直线为轴旋转一周形成的几何体的侧 面积为 .14. 若方程062=--a x x 没有实数根,则a 的取值范围是 .15. 如图,点A 1、B 1、C 1分别是△ABC 的三边BC 、AC 、AB 的中点,点A 2、B 2、C 2分别是△A 1B 1C 1的边B 1C 1、A 1C 1、A 1B 1的中点,依此类推,则△A n B n C n 与△ABC 的面积比为 .16. 用直角边分别为3和4的两个直角三角形拼成四边形,所得的四边形的周长是 .三、解答题(本大题共8小题,共68分)17.(8分)解不等式组⎪⎩⎪⎨⎧+<+≤+413,33)2(2x x x x ,并判断x =32是否为此不等式组的解.18.(8分)先化简:4)2121(2-÷+--x x x x ,再选择一个恰当的数作为x 的值代入求值.19.(8分)已知正比例函数kx y =1 (k ≠0)和反比例函数xm y =2的图象都经过点(-2,1). (1)求这两个函数的表达式;(2)试说明当x 为何值时,?21y y >第12题第15题 第13题20.(8分)如图,在△ABC中,AB=AC.(1)作∠BAC的角平分线,交BC于点D(尺规作图,保留痕迹);(2)在AD的延长线上任取一点E,连接BE、CE.求证:△BDE≌△CDE;(3)当AE=2AD时,四边形ABEC是菱形.请说明理由.21.(8分)多年来,许多船只、飞机都在大西洋的一个区域内神秘失踪,这个区域被称为百慕大三角.根据图中标出的百慕大三角的位置及相关数据计算:(1)∠BAC的度数;(2)百慕大三角的面积.(参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)28.(8分)已知二次函数122+-+=m mx x y (m 为常数).(1)求证:不论m 为何值,该二次函数图象的顶点P 都在函数12++-=x x y 的图象上;(2)若顶点P 的横、纵坐标相等,求P 点坐标.22.(10分)点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,∠DBA =∠C .(1)请判断BD 所在的直线与⊙O 的位置关系,并说明理由;(2)若AD=AO =1,求图中阴影部分的面积(结果保留根号).24.(10分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (2,4),B (4,0).(1)以原点O 为位似中心,把线段AB 缩小为原来的21; (2)若(1)中画出的线段为B A '',请写出线段B A ''两个端点A ',B '的坐标;(3)若线段AB 上任意一点M 的坐标为(a ,b ),请写出缩小后的线段B A ''上对应点M '的坐标.。
中考数学第一轮复习基础知识训练(十七)(附答案)
中考数学第一轮复习基础知识训练(十七)时间:30分钟 你实际使用 分钟班级 姓名 学号 成绩一、精心选一选1.如图1,在平面直角坐标系中,点E 的坐标是( ) A.(12), B.(21), C.(12)-, D.(12)-, 2.在ABC △中,90C ∠= ,34AC BC ==,,则sin A 的值是( ) A.43B.45C.34D.353.如图2,Rt Rt ABC DEF △≌△,则E ∠的度数为( ) A.30 B.45 C.60 D.904.下列各式运算结果为8x 的是( ) A.44x x ·B.44()xC.162x x ÷D.44x x +5.小伟五次数学考试成绩分别为:86分,78分,80分,85分,92分,李老师想了解小伟数学学习变化情况,则李老师最关注小伟数学成绩的( ) A.平均数 B.众数 C.中位数 D.方差 6.如图3,数轴上点N 表示的数可能是( )7.如图4,点A B C D E F G H K ,,,,,,,,都是78⨯方格纸中的格点,为使DEM ABC △∽△,则 点M 应是F G H K ,,,四点中的( ) A.F B.G C.HD.K8.图5能折叠成的长方体是( )图 5A. B. C. D.0 1 2 341- N图2图4二、细心填一填9.2-的绝对值等于 .10.某水井水位最低时低于水平面5米,记为5-米,最高时低于水平面1米,则水井水位h 米中h 的取值范围是 . 11.已知两圆的圆心距12O O 为3,1O 的半径为1,2O 的半径为2,则1O 与2O 的位置关系为 . 12.如图6,点P 是O 外一点,PA 切O 于点A , 60O ∠= ,则P ∠度数为 .13.大连某小区准备在每两幢楼房之间,开辟面积为300平方米的 一块长方形绿地,并且长比宽多10米,设长方形绿地的宽为x 米,则可列方程为 .14.如图7,双曲线ky x=与直线y mx =相交于A B ,两点,B 点坐标为(23)--,,则A 点坐标为 .15.图8是二次函数221y ax x a =-+-的图象, 则a 的值是 .三、解答题 16.已知方程111x =-的解是k ,求关于x 的方程20x kx +=的解.P图6 图8图7答案参考一、选择题 1.A; 2.B; 3.C;4.A;5.D;6.B;7.C;8.D. 二、填空题9.2; 10.51h --≤≤;11.外切;12.30 ;13.(10)300x x +=; 14.(23),;15.1.三、解答题16.解:111x =-.方程两边同时乘以(1)x -,得11x =-.解得2x =.经检验,2x =是原方程的解,所以原方程的解为2x =. 即2k =.把2k =代入20x kx +=,得220x x +=. 解得1202x x ==-,.。
中考数学一轮复习《命题、定理与证明》知识要点及专题练习
中考数学一轮复习知识点课标要求专题训练:命题、定理与证明(含答案)一、知识要点:1、命题与定理定义1:判断一件事情的语句,叫做命题。
命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项。
数学中的命题常可以写成“如果……,那么……”的形式。
“如果”后接的部分是题设,“那么”后接的部分是结论。
定义2:如果题设成立,那么结论一定成立,这样的命题叫做真命题。
定义3:题设成立时,不能保证结论一定成立,这样的命题叫做假命题。
定义4:如果一个命题的正确性是经过推理证实的,这样得到的真命题叫做定理。
定义5:两个命题的题设和结论正好相反,我们把这样的两个命题叫做互为逆命题。
其中一个叫做原命题,另外一个叫做逆命题。
如果定理的逆命题是正确的,那么它也是一个定理,我们把这个定理叫做原定理的逆定理。
2、证明:一个命题的正确性需要经过推理才能作出判断,这个推理过程叫做证明。
二、课标要求:1、通过具体实例,了解定义、命题、定理、推论的意义。
2、结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念。
会识别两个互逆的命题,知道原命题成立其逆命题不一定成立。
3、知道证明的意义和证明的必要性,知道证明要合乎逻辑,知道证明的过程可以有不同的表达形式,会综合法证明的格式。
4、了解反例的作用,知道利用反例可以判断一个命题是错误的。
三、常见考点:1、命题及命题真伪的判断。
2、命题的条件和结论的区分。
3、写出命题的逆命题。
四、专题训练:1.下列说法正确的是()A.一组数据6,5,8,8,9的众数是8B.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐C.命题“若|a|=1,则a=1”是真命题D.三角形的外角大于任何一个内角2.下列命题正确的是()A.三角形的一个外角大于任何一个内角B.三角形的三条高都在三角形内部C.三角形的一条中线将三角形分成两个三角形面积相等D.两边和其中一边的对角相等的三角形全等3.下列四个命题:①5是25的算术平方根;②(﹣4)2的平方根是﹣4;②经过直线外一点,有且只有一条直线与这条直线平行;④同旁内角互补.其中真命题的个数是()A.0个B.1个C.2个D.3个4.下列说法中,不正确的个数是()①若a+b=0,则有a,b互为相反数,且=﹣1;②若|a|>|b|,则有(a+b)(a﹣b)是正数;③三个五次多项式的和也是五次多项式;④a+b+c<0,abc>0,则﹣+﹣的结果有三个;⑤方程ax+b=0(a,b为常数)是关于x的一元一次方程.A.1个B.2个C.3个D.4个5.如图,在矩形ABCD中,AB=,BC=1,把矩形ABCD绕点A顺时针旋转30°得到矩形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为()A.B.C.D.6.下列命题:①负数没有立方根;②一个实数的算术平方根一定是正数;③一个正数或负数的立方根与这个数同号;④如果一个数的算术平方根是这个数本身,那么这个数是1或0;⑤如果一个数的立方根是这个数本身,那么这个数是1或0,其中错误的有()A.2个B.3个C.4个D.5个7.写出“对顶角相等”的逆命题.8.四位同学参加数学知识竞赛活动,分别获得第一、二、三、四名,大家猜测谁得第几名时,明明说:“甲得第一,乙得第二”;文文说:“甲得第二,丁得第四”;凡凡说:“丙得第二,丁得第三”.名次公布后,他们每人都只猜对了一半,那么甲、乙、丙、丁的名次顺序为.(按一、二、三、四的名次排序)9.如图,直线与x轴、y轴分别交于A、B两点,点P是第二象限图象上一动点,PM⊥x轴于点M,PN⊥y轴于点N,连接MN,在点P的运动过程中,线段MN长度的最小值是.10.如图,矩形ABCD中,AB=2,BC=,将矩形ABCD绕点A旋转得到矩形AB'C'D',点C的运动路径为.当点B'落在CD上时,图中阴影部分的面积为.11.如图,等边△ABC中,AB=3,点D,点E分别是边BC,CA上的动点,且BD=CE,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为.12.在Rt△ABC中,∠ABC=90°,AB=8,BC=4.如图,将直角顶点B放在原点,点A放在y轴正半轴上,当点B在x轴上向右移动时,点A也随之在y轴上向下移动,当点A 到达原点时,点B停止移动,在移动过程中,点C到原点的最大距离为.13.如图,▱ABCD中,E为AD上一点,F为BC上一点,EF与对角线BD交于点O,以下三个条件:①BO=DO;②EO=FO;③AE=CF,以其中两个作为题设,余下的一个作为结论组成命题,其中真命题的个数为.14.如图,等腰直角△ABC中,∠ACB=90°,AC=BC=4,M为AB中点,D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED、ME,则点D在运动过程中ME的最小值为.15.如图,在半径为2的⊙O中,弦AB⊥直径CD,垂足为E,∠ACD=30°,点P为⊙O上一动点,CF⊥AP于点F.①弦AB的长度为;②点P在⊙O上运动的过程中,线段OF长度的最小值为.16.如图,一个长为4,宽为3的长方形木板斜靠在水平桌面上的一个小方块上,其短边与水平桌面成30°夹角,将长方形木板按逆时针方向做两次无滑动的翻滚,使其短边恰好落在水平桌面上,则长方形木板顶点A在滚动过程中所经过的路径长为.17.桌子上有7张反面向上的纸牌,每次翻转n张(n为正整数)纸牌,多次操作后能使所有纸牌正面向上吗?用“+1”、“﹣1”分别表示一张纸牌“正面向上”、“反面向上”,将所有牌的对应值相加得到总和,我们的目标是将总和从﹣7变化为+7.(1)当n=1时,每翻转1张纸牌,总和的变化量是2或﹣2,则最少次操作后所有纸牌全部正面向上;(2)当n=2时,每翻转2张纸牌,总和的变化量是,多次操作后能使所有纸牌全部正面向上吗?若能,最少需要几次操作?若不能,简要说明理由;(3)若要使多次操作后所有纸牌全部正面向上,写出n的所有可能的值.18.阅读下面内容,并解答问题.在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,AB∥CD,直线EF分别交AB,CD于点E,F.∠BEF的平分线与∠DFE的平分线交于点G.求证:.(1)请补充要求证的结论,并写出证明过程;(2)请从下列A、B两题中任选一题作答,我选择题.A.在图1的基础上,分别作∠BEG的平分线与∠DFG的平分线交于点M,得到图2,则∠EMF 的度数为.B.如图3,AB∥CD,直线EF分别交AB,CD于点E,F.点O在直线AB,CD之间,且在直线EF右侧,∠BEO的平分线与∠DFO的平分线交于点P,则∠EOF与∠EPF满足的数量关系为.19.点E、F分别是菱形ABCD边BC、CD上的点.(1)如图,若CE=CF,求证AE=AF;(2)判断命题“若AE=AF,则CE=CF”的真假.若真,请证明;若假,请在备用图上画出反例.20.概念学习.已知△ABC,点P为其内部一点,连接PA、PB、PC,在△PAB、△PBC、△PAC 中,如果存在一个三角形,其内角与△ABC的三个内角分别相等,那么就称点P为△ABC 的等角点.理解应用(1)判断以下两个命题是否为真命题,若为真命题,则在相应横线内写“真命题”;反之,则写“假命题”.①内角分别为30°、60°、90°的三角形存在等角点;;②任意的三角形都存在等角点;;(2)如图①,点P是锐角△ABC的等角点,若∠BAC=∠PBC,探究图①中,∠BPC、∠ABC、∠ACP之间的数量关系,并说明理由.解决问题如图②,在△ABC中,∠A<∠B<∠C,若△ABC的三个内角的角平分线的交点P是该三角形的等角点,求△ABC三角形三个内角的度数.参考答案1.解:A、一组数据6,5,8,8,9的众数是8,是真命题;B、甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8,则乙组学生的身高较整齐,原命题是假命题;C、命题“若|a|=1,则a=1”是假命题,原命题是假命题;D、三角形的外角大于任何一个不与它相邻的内角,原命题是假命题;故选:A.2.解:A、三角形的一个外角大于与它不相邻的任何一个内角,原命题是假命题;B、钝角三角形的三条高不在三角形内部,原命题是假命题;C、三角形的一条中线将三角形分成两个三角形面积相等,是真命题;D、两边和其夹角相等的三角形全等,原命题是假命题;故选:C.3.解:①5是25的算术平方根,本小题说法是真命题;②∵(﹣4)2的平方根是±4,∴本小题说法是假命题;②经过直线外一点,有且只有一条直线与这条直线平行,本小题说法是真命题;④∵两直线平行,同旁内角互补,∴本小题说法是假命题;故选:C.4.解:①若a+b=0,则有a,b互为相反数,当a=b=0时,无意义,本小题说法不正确;②∵|a|>|b|,∴a2>b2,∴(a+b)(a﹣b)=a2﹣b2>0,是正数,本小题说法正确;③(2a5+a﹣3)+(﹣a5+2a﹣3)+(﹣a5+a2﹣30)=a2+3a﹣36,则三个五次多项式的和不一定是五次多项式,本小题说法不正确;④当a+b+c<0,abc>0时,a、b、c两个正数、一个负数或一个正数、两个负数,则﹣+﹣的结果有两个,本小题说法不正确;⑤方程ax+b=0(a,b为常数),当a=0时,不是关于x的一元一次方程,本小题说法不正确;故选:D.5.解:连接AC',在矩形ABCD中,∵∠B=90°,AB=,BC=1,∴tan∠BAC==,∴∠BAC=30°,∵旋转角为30°,∴A、B′、C共线.∴AC===2,∵S阴=S扇形ACC′﹣S△AB′C′,∴S阴=﹣=﹣,故选:B.6.解:①负数有立方根,原命题是假命题;②一个实数的算术平方根一定是非负数,原命题是假命题;③一个正数或负数的立方根与这个数同号,原命题是真命题;④如果一个数的算术平方根是这个数本身,那么这个数是1或0,原命题是真命题;⑤如果一个数的立方根是这个数本身,那么这个数是1、﹣1或0,原命题是假命题;故选:B.7.解:∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两个角是对顶角,简化后即为:相等的角是对顶角.8.解:因为他们每人只猜对一半,可以先假设明明说“甲得第一”是正确的,由此推导:明明:甲得第一→文文:丁得第四→凡凡:丙得第二→乙得第三,成立;若假设明明说“乙得第二”是正确的,由此进行推导:明明:乙得第二→文文:丁得第四→凡凡:丙得第二,矛盾.所以甲、乙、丙、丁的名次顺序为甲、丙、乙、丁.故答案为:甲、丙、乙、丁.9.解:连接OP.∵直线与x轴、y轴分别交于A、B两点,∴A(﹣2,0),B(02),∴OA=2,OB=2,∴tan∠BAO==,∴∠BAO=30°,∵PM⊥x轴于点M,PN⊥y轴于点N,∴∠PMO=∠PNO=∠MON=90°,∴四边形OMPN是矩形,∴MN=OP,∴当OP⊥AB时,MN=OP的值最小,最小值=OA•sin30°=,故答案为.10.解:如图,连接AC,AC′.∵四边形ABCD是矩形,∴∠B=∠D=∠DAB=90°,∵AB=2,BC=,∴AC===,∵cos∠DAB′=,∴∠DAB′=30°,DB′=AB′=1,∴∠BAB′=∠CAC′=60°,CB′=CD﹣DB′=2﹣1=1,∴S阴=S扇形CAC′﹣S△AC′B′﹣S△ACB′=﹣×2×﹣×1×=﹣.故答案为﹣.11.解:∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠BAC=∠BCE=60°,∴在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠AFE=∠BAD+∠FBA=∠CBE+∠FBA=∠ABC=60°,∴∠AFB=120°,∴点F的运动轨迹是以点O为圆心,OA为半径的弧,如图,此时∠AOB=120°,OA==,所以弧AB的长为:=.则点F的运动路径的长度为.故答案为:.12.解:如图所示:取A1B1的中点E,连接OE,C1E,当O,E,C1在一条直线上时,点C到原点的距离最大,在Rt△A1OB1中,∵A1B1=AB=8,点OE为斜边中线,∴OE=B1E=A1B1=4,又∵B1C1=BC=4,∴C1E==4,∴点C到原点的最大距离为:OE+C1E=4+4.故答案为:4+4.13.解:已知②EO=OF;①BO=DO,结论:③AE=CF.理由:在△DOE和△BOF中,∴△DOE≌△BOF(SAS),∴DE=BF,∵四边形ABCD是平行四边形,∴AD=BC,∴AE=FC,同理可得:已知②EO=FO,③AE=CF,结论:①BO=DO,是真命题;已知:①BO=DO,③AE=CF,结论:②EO=FO,是真命题,故答案为:3.14.解:如图,连接BE,过点M作MG⊥BE的延长线于点G,过点A作AK⊥AB交BD的延长线于点K,∵等腰直角△ABC中,∠ACB=90°,∴∠B=45°,∴∠K=45°,∴△AKB是等腰直角三角形.∵线段AD绕点A逆时针旋转90°得到线段AE,∴△ADE是等腰直角三角形,∴∠KAD+∠DAB=∠BAE+∠DAB=90°,∴∠KAD=∠BAE,在△ADK和△AEB中,∴△ADK≌△AEB(SAS),∴∠ABE=∠K=45°,∴△BMG是等腰直角三角形,∵AC=BC=4,∴AB=4,∵M为AB中点,∴BM=2,∴MG=BG=2,∠G=90°,∴BM>MG,∴当ME=MG时,ME的值最小,∴ME=BE=2.故答案为2.15.解:①如图,连接OA.∵OA=OC=2,∴∠OCA=∠OAC=30°,∴∠AOE=∠OAC+∠ACO=60°,∴AE=OA•sin60°=,∵OE⊥AB,∴AE=EB=,∴AB=2AE=2,故答案为2.②取AC的中点H,连接OH,OF,HF,∵OA=OC,AH=HC,∴OH⊥AC,∴∠AHO=90°,∵∠COH=30°,∴OH=OC=1,HC=,AC=2,∵CF⊥AP,∴∠AFC=90°,∴HF=AC=,∴OF≥FH﹣OH,即OF≤﹣1,∴OF的最小值为﹣1.故答案为﹣1.16.解:第一次转动是以点M为圆心,AM为半径,圆心角是60度所以弧AA1的长==π,第二次转动是以点N为圆心,A′N为半径圆心角为90度,所以弧A′A″的长==π,所以总长为π.故答案为π.17.解:(1)总变化量:7﹣(﹣7)=14,次数(至少):14÷2=7,故答案为:7;(2)①两张由反到正,变化:2×[1﹣(﹣1)]=4,②两张由正到反,变化:2×(﹣1﹣1)=﹣4,③一正一反变一反一正,变化﹣1﹣1+1﹣(﹣1)=0,不能全正,总变化量仍为14,无法由4,﹣4,0组成,故不能所有纸牌全正;故答案为:14;(3)由题可知:0<n≤7.①当n=1时,由(1)可知能够做到,②当n=2时,由(2)可知无法做到,③当n=3时,总和变化量为6,﹣6,2,﹣2,14=6+6+2,故n=3可以,④当n=4时,总和变化量为8,﹣8,4,﹣4,0,14无法由8,﹣8,4,﹣4,0组成,故=4不可以,⑤当n=5时,总和变化量为10,﹣10,6,﹣6,2,﹣2,14=10+2+2,故n=5可以,⑥当n=6时,总和变化量为12,﹣12,8,﹣8,4,﹣4,0,无法组合,故n=6不可以,⑦当n=7时,一次全翻完,可以,故n=1,3,5,7时,可以.18.解:(1)结论:EG⊥FG;理由:如图1中,∵AB∥CD,∴∠BEF+∠DFE=180°,∵EG平分∠BEF,FG平分∠DFE,∴,,∴.在△EFG中,∠GEF+∠GFE+∠G=180°,∴∠G=180°﹣(∠GEF+∠GFE)=180°﹣90°=90°,∴EG⊥FG.故答案为EG⊥GF.(2)A.如图2中,由题意,∠BEG+∠DFG=90°,∵EM平分∠BEG,MF平分∠DFG,∴∠BEM+∠MFD=(∠BEG+∠DFG)=45°,∴∠M=∠BEM+∠MFD=45°,B.如图3中,由题意,∠EOF=∠BEO+∠DFO,∠EPF=∠BEP+∠DFP,∵PE平分∠BEO,PF平分∠DFO,∴∠BEO=2∠BEP,∠DFO=2∠DFP,∴∠EOF=2∠EPF,故答案为A或B,45°,∠EOF=2∠EPF.19.解:(1)连接AC,∵四边形ABCD是菱形,∴∠ACE=∠ACF,在△ACE与△ACF中,∴△ACE≌△ACF(SAS),∴AE=AF,(2)当AE=AF=AF'时,CE≠CF',如备用图,所以命题“若AE=AF,则CE=CF”是假命题.20.解:理解应用(1)①内角分别为30、60、90的三角形存在等角点是真命题;②任意的三角形都存在等角点是假命题,如等边三角形不存在等角点;故答案为:真命题,假命题;(2)如图①,∵在△ABC中,∠BPC=∠ABP+∠BAC+∠ACP,∠BAC=∠PBC,∴∠BPC=∠ABP+∠PBC+∠ACP=∠ABC+∠ACP;解决问题如图②,连接PB,PC∵P为△ABC的角平分线的交点,∴∠PBC=∠ABC,∠PCB=∠ACB,∵P为△ABC的等角点,∴∠PBC=∠BAC,∠BCP=∠ABC=2∠PBC=2∠BAC,∠ACB=∠BPC=4∠A,又∵∠A+∠ABC+∠ACB=180°,∴∠A+2∠A+4∠A=180°,∴∠A=,∴该三角形三个内角的度数分别为,,。
最新2010年九年级数学中考一轮复习精品教案(第一讲:实数)
第一讲:实数本期分四个专题复习:有理数及其运算、实数及其运算、二次根式及科学计数法与有效数字中考对这部分内容的考查一般以选择题、填空题及简单的解答题出现,大多都比较简单,但近几年出现了一些设计新颖的创新试题.由于这部分试题的概念较多,且逻辑性较强,命题者又对这部分内容常常设置一些易混、易错的题目,因此同学们在复习这部分知识时,一定要理解有关概念、运算法则及运算律等,着重训练基本运算方法与技能.例3 : 计算:22-5×51+2 . 思路点拨 :本题是有理数的混合运算,除了要熟练掌握有关运算法则,还要注意运算顺序.解:原式=4-1+2 =3+2 =5. 练习:1. 如果向东走80 m 记为80 m ,那么向西走60 m 记为( ) A.-60 m B.︱-60︱m C.60 m D.601m 2. )下面的几个有理数中,最大的数是( )A .2B .13C .-3D .15- 3. 如果2()13⨯-=,则“”内应填的 数是( ) A .32B .23C .23-D .32-4. A 为数轴上表示1-的点,将A 点沿数轴向左移动2个单位长度到B 点,则B 点所表示的数为( ) A .3-B .3C .1D .1或3-5. 一种商品原价120元,按八折(即原价的80%)出售,则现售价应为 _______元.6. 计算:121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭.答案: 1.A 2.A 3.D 提示:1÷(32-)=-234.A 提示:-1-2=-35.96 提示:120×80%=966.解:121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭463=-+1=.最新考题1.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 2.(2009年黄石市)实数a 在数轴上对应的点如图所示,则a ,a -,1-的大小关系是( )A .1a a -<<-B .a a a -<-<C .1a a <-<-D .1a a <-<-3.(2009营口)计算:12345314,3110,3128,3182,31244,+=+=+=+=+=,归纳各计算结果中的个位数字的规律,猜测200931+的个位数字是()A. 0B. 2C. 4D. 84.(2009年浙江省绍兴市)将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm”和“15cm”分别对应数轴上的 3.6-和x ,则( )A .9<x <10B .10<x <11C .11<x <12D .12<x <13 答案:1. A 2. C 3. C 4.C 知识点2:实数及其运算例1: |-9|的平方根是( ) A.81 B.±3 C.3 D.-3思路点拨 :因为|-9|=9,而9的平方根为±3,所以|-9|的平方根是±3,故选B.例31的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间思路点拨:解答有关无理数的估算问题一般有两种途径:直接估算或利用计算器求解.这里用的是直接估算的方法——平方法,只要首先将原数平方,看其在哪两个平方数之间,运用这种方法可以估计一个带根号的数的整数部分,估计其大致范围.解:因为16<17<25,所以4<17<5,所以1<6.故选D.例4_________.思路点拨:实数的运算与有理数的运算一样,要注意运算顺序:先乘方、开方,再乘除,后加减,如果有括号先算括号里面的,能运用运算律的就运用,简化运算,解答实数运算题时,一定要注意把结果化为最简形式.-4×2222+=3.练习1. 4的算术平方根是()A.2±B.2 C.D2. 在实数0,10.1235中,无理数的个数为()A.0个B.1个C.2个D.3个3. 实数a、b在数轴上的位置如图1所示,则a与b的大小关系是()A.ba< B.ba= C.ba> D.无法确定4.2的值( )A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间5.= .6.计算:⎛÷⎝图1答案: 1.B2.B3.C 提示:观察实数a 、b 在数轴上所对应的位置可知b<a.4.C 提示:因为25<27<36,所以5<27<6,所以2<4. 5.3 提示:原式=23-3=36.解:原式⎛=÷ ⎝143==. 最新考题1.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( )A .32B .23C .23-D .32-2.(2009年黄冈市)1.8的立方根为()A .2B .±2C .4D .±43.(2009年湖南长沙)已知实数a 在数轴上的位置如图所示,则化简|1|a -为( )A .1B .1-C .12a -D .21a -4. (2009年义乌)平方根节是数学爱好者的节目,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如2009年的3月3日,2016年的4月4日.请你写出本世纪内你喜欢的一个平方根(题中所举例子除外)._______年_______月_______日.答案:1. D 2. A 3. A 4.答案不唯一,如2025年5月5日.知识点3: 二次根式例1有意义,则实数x 的取值范围是 .思路点拨 :在何种形式中出现二次根式,都要注意被开方数为非负数这一条件,有时它还可能成为隐含的解题的关键条件.解:被开方数x -3≥0,得x≥3. 例2: 若333.3.33.332.3132,022222或的值等于())(则D C B A x x x x x x +--+-=--思路点拨 :认真观察所给条件和所求的代数式的特点才可发现思路,找准解题 的“出发点”。
多边形与平行四边形-中考数学第一轮总复习课件(全国通用)
中考数学第一轮总复习典例精讲考点聚集查漏补缺拓展提升第五单元 四边形专题5.1 多边形与平行四边形知识点多边形01平行四边形02拓展训练03【例1-1】如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=____º.AC B30 1.n边形的内角和___________,外角和_____.2.n边形的对角线__________.考点聚焦(n-2)·180º360ºn(n-3)/2知识点一典例精讲多边形1.将一个矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和不可能是( ) A.360º B.540º C.720º D.900º2.若正多边形的一个外角是60º,则该正多边形的内角和为______.3.一个多边形的内角和是外角和的2倍,则这个多边形的边数为____,有____条对角线.4.用一条宽相等的足够长的纸条,打一个结,如图(1),然后轻轻拉紧,压平就可以得到如图(2)的正五边形ABCDE,其中∠BAC=____度D 720º 6 9 365.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115º,则∠BAE的度数为______.6.如图,在五边形ABCDE中,∠A+∠B+∠E=300º,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是______.7.如图,∠A+∠B+∠C+∠D=_____º.8.如图,A,B,C,D,为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18º,则这个正多边形的边数为____.125º60º 26810知识点多边形01平行四边形02拓展训练03【例2-1】如图,在□ABCD中,点E,F分别在BC,AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE,CF,判断四边形AECF的形状,并说明理由.A DCBOEF考点聚焦证明四边形ABCD是平行四边形的方法(五种)边:①两组对边分别平行 ②两组对边分别相等 ③一组对边平行且相等角:④两组对角分别相等;对角线:⑤对角线互相平分.【例2-2】如图,□ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( ) A.15 B.18C.21D.24A ADCB1E O 考点聚焦平行四边形的性质(1)边:对边相等,对边平行;(2)角:对角相等;(3)对角线:对角线互相平分。
2010年中考数学一轮复习——矩形、菱形、正方形
矩形、菱形、正方形◆ 课前热身1.如图,将矩形ABCD 沿BE 折叠,若∠CBA ′=30°则∠BEA ′=_____. ABC DEA′2.如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A,则这个菱形的面积= cm 2.3.如图1,由“基本图案”正方形ABCO 绕O 点顺时针旋转90°后的图形是 ( ).基本图案图1 A . B . C . D .4.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( ) A .矩形B .直角梯形C .菱形D .正方形5.如图,四边形ABCD 是平行四边形, 使它为矩形的条件可以是 .6. 的平行四边形是是菱形(只填一个条件). 【参考答案】1.60°2.603.A4. A5.答案不唯一,如AC =BD ,∠BAD =90o,等6.对角线互相垂直(或有一组邻边相等,或一条对角线平分一组对角)AB◆考点聚焦 知识点矩形 菱形 正方形 大纲要求1.理解几种特殊的平行四边形的定义、特征和识别方法. 2.理解几种特殊的平行四边形之间的关系.3.了解特殊平行四边形的面积公式,中点四边形和重心的物理意义. 4.会求解特殊平行四边形与函数或三角函数有关的问题.5.会求特殊平行四边形中涉及全等、相似和其他几何变换的问题.考查重点和常考题型本节内容的试题涉及特殊平行四边形的概念、性质、•判定及它们之间的关系,主要考查边长、对角线长、面积等的计算,题型有填空题、选择题,但更多的是证明题,求值计算题、条件探索题、几何动态问题和与函数结合题. ◆备考兵法1.在求菱形的边长、角度、对角线长等问题时,•通常是在某一个直角三角形中运用勾股定理及有关直角三角形的知识来解决.正方形的性质很多,要根据题目的已知条件,选择最恰当的方法,使解题思路简捷.2.在解答时,要根据特殊平行四边形的一些特殊规律或添加相应的辅助线,•将所求的结论转化在特殊的平行四边形或三角形中思考,要注意寻找图形中隐含的相等的边和角. ◆考点链接1. 特殊的平行四边形的之间的关系正平行四边形矩形菱形方形2. 特殊的平行四边形的判别条件成为矩形,需增加的条件是_______ _____ ;要使成为菱形,需增加的条件是_______ _____ ;要使矩形ABCD成为正方形,需增加的条件是______ ____ ;要使菱形ABCD成为正方形,需增加的条件是______ ____ .3. 特殊的平行四边形的性质◆典例精析例1(2009年浙江杭州)如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是_____________.【答案】14或16或26【解析】本题考查了学生的空间想象能力和发散思维能力。
中考数学第一轮复习精品讲解(专题突破)
A.55
B.42
图 Z1-2 C.41
D.29
[解析] 第一个图形 1 个,第 2 个图形有:2(1+2)-1=5,第 3 个图形有:2(1+2+3)-1=11,„,第 6 个图形有:2(1+2+ 3+4+5+6)-1=41(个).
·新课标
专题突破一
3.[2011· 菏泽]填在下面各正方形中的四个数之间都有相同 158 的规律,根据这种规律,m 的值是________.
[解析]规律是每个数的末位数是 2,4,8,6,„,四个数循环,2010÷ 4 =502„„2,所以 22010 末位数与 22 的末位数 4 相同.
数字规律型问题是研究按一定规律排列的数之间的相互关系或大 小变化规律的问题,解决这类问题的关键是仔细分析前后各数之间 的联系,从而发现其中所蕴含的规律.
3 5.[2011· 湛江]已知:A2 3= 3×2 = 6, A 5= 5×4×3 = 60 , 2 A5 =5×4×3×2=120,A3 6=6×5×4×3=360,„,观察前面 < 的计算过程,比较 A5 A3 9________ 10.(填“>”或“<”或“=”)
5 [解析] A9 -A3 10=9×8×7×6×5-10×9×8×7×6×5×4×3<0.
专题突破一
规律探索题
专题突破二
专题突破三 专题突破四 专题突破五 专题突破六 专题突破七 专题突破八 专题突破九
新概念型题
图标信息题 阅读理解题 开放探究题 动手操作题 方案设计题 动态型问题 综合型问题
·新课标
专题突破一
专题突破一 规律探索题
பைடு நூலகம்
·新课标
专题突破一
1.如图 Z1-1,下面是按照一定规律画出的“数形图”, 经观察可以发现:图 A2 比图 A1 多出 2 个“树枝”, 图 A3 比图 A2 多出 4 个“树枝”, 图 A4 比图 A3 多出 8 个“树枝”,„, 照此规律,图 A6 比图 A2 多出“树枝”( C )
中考数学第一轮复习坐标系专题训练
中考数学第一轮复习专题训练一、填空题:(每题3分,共36分)1、点A (3,-2)关于 x 轴对称的点是_____。
2、P (2,3)关于原点对称的点是_____。
3、P (-2,3)到 轴的距离是_____。
4、小红坐在第 5 排 24 号用(5,24)表示,则(6,27)表示小红坐在第__排___号。
5、以坐标平面内点A (2,4),B (1,0),C (-2,0)为顶点的三角形的面积是__。
6、如图1,△AOB 的顶点A 的坐标为_____。
7、如图1,△AOB 沿x 轴向右平移1个单位后,得到△A'O'B',则点A'的坐标为____。
8、如图2,矩形ABOC 的长OB =3,宽AB =2,则点A___。
9、如图3,正方形的边为2,则顶点C的坐标为_____。
10、如图4,△AOB 和它缩小后得到的△COD 。
则△AOB 和△COD 的相似比为____。
11、小东要在电话中告诉同学如图5的图形,他应当怎样描述。
_________________________。
12、如图6,一个机器人从O 点出以,向正东方走3米到达A 点,再向正北方走6米到达A 2点,再向正西方向走9米到达A 3点,再向正南方向走12米到达A 4点,再向正东走15米到达A 5点,按如此规律走下去,当机器人走到A 6点时,离O点的距离是_____米。
二、选择题:(每题 4 分,共 24 分) 1、若点A (m ,n )在第三象限,则点B (-m ,n),在( )A 、第一象限B 、第二象限C 、第三名象限D 、第四象限2、若P (m ,2)与点Q (3,n )关于 轴的对称,则m 、n 的值是( ) A 、-3,2 B 、3,-2 C 、-3,-2 D 、3,2 3、A 在B 的北偏东30°方向,则B 在A 的( )A 、北偏东30°B 、北偏东60°C 、南偏西30°D 、南偏西60°4、下列说法正确的是( )A 、两个等腰三角形必是位似图形B 、位似图形必是全等图形C 、两个位似图形对应点连线可能无交点D 、两个位似形对应点连线只有一个交点5、将△ABC 的三个顶点的纵坐标乘以-1,横坐标不变,则所得图形与原图形的关系是( )yy x 东 (6)x )A 、关于 x 轴对称B 、关于 轴对称C 、关于原点对称D 、原图形向 轴负方向平移1个单位6、如图,每个小正方形的边长为1个单位,对于A 、B 的位置,下列说法错误的是( )A 、B 向左平移 2 个单位再向下移 2 个单位与 A 重合B 、A 向左平移 2 个单位再向下移 2 个单位与 B 重合C 、B 在 A 的东北方向且相距 22 个单位D 、若点 B 的坐标为(0,0),则点 A 的坐标为(-2,-2)三、解答题:(每题 9 分,共 54 分)1、在如图所示的国际象棋棋盘中,双方四只子的位置分别是A (b ,3),B (d ,5),C (f ,7),D (h ,2),请在图中描出它们的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年中考数学第一轮复习专题训练
(一)
(实数)
一、填空题:(每题3分,共36分)
1、-2的倒数是____。
2、4的平方根是____。
3、-27的立方根是____。
2的绝对值是____。
5、2004年我国外汇储备3275.34亿美元,用科学记数法表示为____亿美元。
6、比较大小:-1
2 ____-1
3 。
7、近似数
0.020精确到____位,它有____个有效数字。
8、若n为自然数,那么(-1)2n+(-1)2n+1=____。
9、若实数a、b满足|a-2|+(b+1
2 2=0,则ab=____。
10、在数轴上表示a的点到原点的距离为3,则a-3=____。
11、已知一个矩形的长为3cm,宽为2cm,试估算它的对角线长为____。
(结果保留两个有效数字)
12、罗马数字共有7个:I(表示1),V(表示5),X(表示10),L(表示50),C(表示100),D(表示500),M(表示1000),这些数字不论位置怎样变化,所表示的数目都是不变的,其计数方法是用“累积符号”和“前减后加”的原则来计数的:
如IX=10-1=9,VI=5+1=6,CD=500-100=400,则XL=___,XI=___。
二、选择题:(每题4分,共24分)
1、下列各数中是负数的是()
A、-(-3)
B、-(-3)2
C、-(-2)3
D、|-2|
2、在π,-1
7, 3.14,sin30°,0各数中,无理数有()
A、2个
B、3个
C、4个
D、5个
3、绝对值大于
1小于4的整数的和是()
A、0B、5C、-5D、10
4、下列命题中正确的个数有()
①实数不是有理数就是无理数②a<a+a③121的平方根是±11
④在实数范围内,非负数一定是正数⑤两个无理数之和一定是无理数
A、1个
B、2个
C、3个
D、4个
5、天安门广场的面积约为44万平方米,请你估计一下,它的百万之一大约相当于()
A、教室地面的面积
B、黑板面的面积
C、课桌面的面积
D、铅笔盒面的面积
6、已知|x|=3,|y|=7,且x y<0,则x+y的值等于()
A、10
B、4
C、±10
D、±4
三、计算:(每题6分,共24分)
1、-21
2 (-5)×1
5 2、(1
3
4 -
7
8 -
7
12
)÷(-13 4 )
3、(-1
1 2
3×3-
2+2°-
2
3
(精确到0.01)四、解答题:(每题8分,共40分)1、把下列各数填入相应的大括号里。
π,
2,
-
1 2
, 2.3,30%,(1)整数集:{…}
(2)有理数集:{…}(3)无理数集:{
…}
2、在数轴上表示下列各数:
2的相反数,绝对值是
1 2 11
4
012
3、已知:x 是|-3|的相反数,y 是-2的绝对值,求2x 2-y 2的值。
4、某人骑摩托车从家里出发,若规定向东行驶为正,向西行驶为负,一天行驶记录如下:(单位:km )
-7,+4,+8,-3,+10,-3,-6,
问最后一次行驶结束离家里有多远?若每千米耗油0.28升,则一天共耗油多少升?
5、已知实数a 、b 在数轴上的位置如图所示:b
a
a +
b |
五、(8分)若(2x+3)2x-y的值。
六、(8分)一次水灾中,大约有20万人的生活受到影响,灾情持续一个月,请推断:大约需要组织多少帐篷?多少千克粮食?
七、(10分)若正数a的倒数等于其本身,负数b的绝对值等于3,且c<a,c2=36,求代数式2(a-2b2)-5c的值。
答案:
(一)
一、1、-1
22、±23、-34、25、3.27534×103
6、<
7、千分两
8、09、-110、0或-311、3.6cm 12、40
11
二、1、B
2、A
3、A
4、B
5、C
6、D 三、1、=-5
2×(-1
5)×1
5
=1
102、=(7
4-7
8-7
12×(-7
4=-1+12+1
6
=-1
6
3、=-27
8×1
9+1
=-3
81
=58
4、=4.21
四、1、(1)2(2)2,-1
2,3,30%(33、∵x =-3,y =2∴2x 2-y 2=2(-3)2-22=2×9-4
=18-4=14
4、-7+4+8-3+10-3-6=3离家在正东3千米处
7+4+8+3+10+3+6
=4141×0.28=11.48升5、a -b +(a +b)=2a 五、∵=-3
2
=-2
∴x -y =-322=1
2
六、解:设4个人合一帐篷,大约要5万个帐篷,每人每天用粮0.5千克,则20×0.5×30=300万千克七、∵a =1,b =-3,c =-6∴2(a -2b 2)-5c =2[1-2×(-3)2]-5×(-6)
=2[1-18]+30=-34+30=-4。