Changes in Phosphorus Fractions and Nitrogen
糖代谢重编程与巨噬细胞表型的研究进展
糖代谢重编程与巨噬细胞表型的研究进展①陈娟周永学闫曙光②李京涛③魏海梁④王文霸(陕西中医药大学,咸阳 712046)中图分类号R392.12 文献标志码 A 文章编号1000-484X(2023)10-2098-06[摘要]巨噬细胞是组织防御前线的哨兵,是机体对抗入侵病原体的重要武器,其代谢方式和功能与疾病的发展转归密切相关。
通常,巨噬细胞优先选择葡萄糖氧化磷酸化(OXPHOS)途径代谢产能,在缺氧环境下则以糖酵解为主。
而肿瘤巨噬细胞在氧气充足的情况下也通过糖酵解产能,这便是经典的“沃博格效应”。
研究表明,M1型巨噬细胞的糖代谢重编程与肿瘤细胞类似,表现为以有氧糖酵解为主和OXPHOS为辅,而M2型则恰好相反,因此阻断糖代谢重编程可有效抑制炎症反应。
本文重点阐述了巨噬细胞在炎症疾病调控中的关键作用及其糖代谢重编程的可能机制。
以期为免疫和代谢性相关疾病的防治提供新策略。
[关键词]巨噬细胞;重编程;糖酵解;氧化磷酸化Advances in glycometabolic reprogramming and macrophage phenotypesCHEN Juan, ZHOU Yongxue, YAN Shuguang, LI Jingtao, WEI Hailiang, WANG Wenba. Shaanxi University of Chinese Medicine, Xianyang 712046, China[Abstract]Macrophages are sentinels on the front line of tissue defense and an important weapon for the body to fight against invading pathogens. Their metabolic patterns and functions are closely related to the development and outcome of diseases. In general,macrophages preferentially select the oxidative phosphorylation of glucose (OXPHOS) pathway to metabolize energy production, and in hypoxic environments, glycolysis is the predominant. However, tumor macrophages can also produce energy through glycolysis in the presence of sufficient oxygen, which is the classic "Warburg effect". Studies have shown that the reprogramming of glucose metabo‑lism in M1 type macrophages is similar to that of tumor cells, showing that aerobic glycolysis is dominant and OXPHOS is supplemented,while M2 type macrophages are just the opposite, so blocking glucose metabolism reprogramming can effectively inhibit inflammation reaction. This review focuses on the key role of macrophages in the regulation of inflammatory diseases and the possible mechanism of there programming of glucose metabolism, in order to provide new strategies for the prevention and treatment of immune and metabolic related diseases.[Key words]Macrophages;Reprogramming;Glycolysis;Oxidative phosphorylation巨噬细胞是先天的免疫细胞,在炎症和肿瘤环境中扮演重要角色,具有较高的可塑性并在功能上产生极化,根据微环境的不同,巨噬细胞会呈现不同的表型,经典激活的M1型和交替激活的M2型,糖代谢重编程是其主要的影响因素。
211099098_玉米大豆间作对红壤磷库的活化作用及其磷肥响应
DOI: 10.12357/cjea.20220345苏丽珍, 赵红敏, 侯贤锋, 陈源, 肖靖秀, 郑毅, 汤利. 玉米大豆间作对红壤磷库的活化作用及其磷肥响应[J]. 中国生态农业学报 (中英文), 2023, 31(4): 558−566SU L Z, ZHAO H M, HOU X F, CHEN Y, XIAO J X, ZHENG Y, TANG L. Activation of phosphorus pools in red soil by maize and soybean intercropping and its response to phosphorus fertilizer[J]. Chinese Journal of Eco-Agriculture, 2023, 31(4): 558−566玉米大豆间作对红壤磷库的活化作用及其磷肥响应*苏丽珍1, 赵红敏1, 侯贤锋1, 陈 源1, 肖靖秀1, 郑 毅1,2, 汤 利1**(1. 云南农业大学资源与环境学院 昆明 650201; 2. 云南开放大学 昆明 650599)摘 要: 红壤固磷能力强, 但合理间作可促进磷吸收, 减少磷固定。
本研究基于连续4年的田间定位试验, 分别设置玉米大豆间作(MI)和玉米单作(MM) 2种种植模式, 不施磷肥(P0)、施P 2O 5 60 kg∙hm −2(P60)、施P 2O 5 90 kg∙hm−2(P90)及施P 2O 5 120 kg∙hm −2(P120) 4个施磷水平, 采用改良的Hedley 磷分级法, 研究了玉米大豆间作对玉米根际土壤磷组分的影响及其磷梯度响应; 通过随机森林模型, 探究了不同磷组分对土壤磷活化系数(PAC)的贡献。
玉米大豆间作提高了红壤施磷处理的总磷含量和磷有效性。
与玉米单作相比, P0水平下间作玉米根际土壤速效磷含量显著提高70.4% (P <0.01)。
不同粒径羟基磷灰石对污染土壤铜镉磷有效性和酶活性的影响
不同粒径羟基磷灰石对污染土壤铜镉磷有效性和酶活性的影响崔红标;何静;吴求刚;巨星艳;范玉超;仓龙;周静【摘要】An in-situ field experiment was conducted to study the effects of ordinary hydroxyapatite (HAP,150 μm),micro-hydroxyapatite (MHAP,3 μm) and nano-hydroxyapatite (NHAP,40 nm) on the availability of copper (Cu),cadmium (Cd) and phosphorus (P) and soil enzyme activities.The results showed that MHAP had the best efficiency in increasing soil pH and decreasing soil exchangeable acid and aluminum compared with the other amendments.The concentration of exchangeable fraction of Cu was decreased by 62.6%,74.3% and 70.4%,while that of Cd was decreased by 15.7%,25.3% and 26.7%,respectively,in HAP,MHAP and NHAP-treated soils.The three amendments increased soil total P,with 73.4%-89.8%transformed into stable-P and only 4.61%-17.4% changed into resin-P.Moreover,soil urease activities and microbial biomass carbon were 4.66 and 0.66 times those in the control.The study showed that MHAP was more effective at transforming Cu and Cd from active to inactive fractions and increasing soil available P and soil microbial activity;therefore,MHAP has good potential for the heavy metal-contaminated red soil in southern China.%为研究不同粒径羟基磷灰石对重金属污染土壤的修复效果,采用向污染土壤添加常规磷灰石(150 μm)、微米(3μm)和纳米(40nm)羟基磷灰石的田间原位试验方法,考察其钝化修复5 a后对土壤铜镉磷有效性和酶活性的影响.结果表明:3种粒径羟基磷灰石均提高了土壤pH,降低了土壤交换性酸和交换性铝的含量,且微米羟基磷灰石处理效果最好.常规磷灰石、微米和纳米羟基磷灰石处理分别使w(离子交换态铜)降低了62.6%、74.3%和70.4%,w(离子交换态镉)降低了15.7%、25.3%和26.7%.3种材料均增加了土壤w(TP),其中4.61%~17.4%和73.4%~89.8%分别转化为树脂磷和稳定态磷.微米羟基磷灰石处理分别使土壤脲酶活性和微生物量碳含量提高了4.66和0.66倍.研究显示,微米羟基磷灰石更有利于铜和镉由活性态向非活性态转化,增加土壤磷的有效性,提高土壤微生物活性,在我国南方重金属污染红壤区具有较好的应用潜力.【期刊名称】《环境科学研究》【年(卷),期】2017(030)007【总页数】8页(P1146-1153)【关键词】羟基磷灰石;粒径;铜;镉;磷;有效性;土壤酶活性【作者】崔红标;何静;吴求刚;巨星艳;范玉超;仓龙;周静【作者单位】安徽理工大学地球与环境学院,安徽淮南232001;安徽理工大学地球与环境学院,安徽淮南232001;安徽理工大学地球与环境学院,安徽淮南232001;安徽理工大学地球与环境学院,安徽淮南232001;安徽理工大学地球与环境学院,安徽淮南232001;中国科学院南京土壤研究所,中国科学院土壤环境与污染修复重点实验室,江苏南京21008;中国科学院南京土壤研究所,中国科学院土壤环境与污染修复重点实验室,江苏南京21008【正文语种】中文【中图分类】X53Abstract: An in-situ field experiment was conducted to study the effects of ordinary hydroxyapatite (HAP, 150 μm), micro-hydroxyapatite (MHAP, 3μm) and nano-hydroxyapatite (NHAP, 40 nm) on the availability of copper (Cu), cadmium (Cd) and phosphorus (P) and soil enzyme activities. The results showed that MHAP had the best efficiency in increasing soil pH and decreasing soil exchangeable acid and aluminum compared with the other amendments. The concentration of exchangeable fraction of Cu was decreased by 62.6%, 74.3% and 70.4%, while that of Cd was decreased by 15.7%, 25.3% and 26.7%, respectively, in HAP, MHAP and NHAP-treated soils. The three amendments increased soil total P, with 73.4%-89.8% transformed into stable-P and only 4.61%-17.4% changed into resin-P. Moreover, soil urease activities and microbial biomass carbon were 4.66 and 0.66 times those in the control. The study showed that MHAP was more effective at transforming Cu and Cd from active to inactive fractions and increasing soil available P and soil microbial activity; therefore, MHAP has good potential for the heavy metal-contaminated red soil in southern China.Keywords: hydroxyapatite; grain size; Cu; Cd; phosphorus; availability; soil enzyme activity重金属可以通过食物链对人体健康产生严重威胁,已成为当前全世界关注的主要问题之一[1]. 在我国,由于经济快速发展过程中缺乏完善的环保措施,尤其是在一些金属矿区、金属冶炼和加工企业周边地区,大量的可耕地被重金属污染[2]. 如国家环境保护部和国土资源部在2014年公布的《全国土壤污染状况调查公报》显示,全国耕地土壤点位超标率为19.4%,主要污染物为Cd、Ni、Cu、As等. 根据2016年5月发布的《土壤污染防治行动计划》可知,我国江西、湖南、广东、广西、四川、贵州、云南等地存在污染耕地集中区域,这些地区同时也是我国典型的低磷(有效磷)红壤区[3].近年来,研究[4-5]表明,磷基钝化材料(磷灰石、磷酸二氢钾、过磷酸钙和羟基磷灰石等)可以有效降低土壤和废水中Pb、Cd和Co等重金属活性. 尤其是羟基磷灰石(来源于脊椎动物硬组织部分如骨头和牙齿)对重金属具有强烈的吸附固定能力,目前被广泛应用于修复重金属污染的土壤和沉积物[6-7]. 这种稳定化修复方法不能降低重金属污染物的总量,仅是通过与重金属结合或使其由活性态向非活性态转化[8]. 另外,研究[9-10]表明,羟基磷灰石较常规水溶性磷肥具有低淋出率和缓慢磷释放的特性,是一种具有较大潜力的磷肥. 因此,在我国重金属污染红壤区施加磷基钝化材料羟基磷灰石不仅有助于降低重金属活性,还能够促进作物的生长.研究表明,钝化剂的粒径显著影响土壤重金属的生物有效性和地球化学稳定性[11-12],但目前报道的研究结果并不一致. 如CHEN等[13]发现,小于35 μm的磷矿粉颗粒较133~266 μm颗粒更能有效降低土壤重金属的生物有效性,其主要原因可能是颗粒越小,比表面积大,更有利于形成金属磷酸盐. 然而,笔者前期的室内研究发现,小于12 μm的微米羟基磷灰石较60 nm的纳米羟基磷灰石更能有效的降低铜和镉的有效性[11]. DONG等[14]研究发现,微纳米级羟基磷灰石较微米和纳米级羟基磷灰石更有助于降低污染土壤铜和镉的有效性.另外,以上不同的研究结果都是在实验室内完成,缺少实际污染土壤的田间验证效果比较. 因此,该研究选择三种粒径羟基磷灰石(普通磷灰石粉、微米羟基磷灰石和纳米羟基磷灰石)为供试材料,研究其在田间尺度下连续5 a稳定化修复后对土壤酶活性、铜、镉和磷有效性的影响,以评价田间尺度下不同粒径材料稳定化效果,以期为土壤修复钝化剂的选择提供科学指导.1.1 土壤和羟基磷灰石研究区位于江西省贵溪市滨江乡九牛岗村,靠近一个大型铜冶炼厂和化肥厂. 试验布置前,该区域主要为废弃的水稻田,已被周边企业排放的含有重金属的废水和废气污染,主要污染物是铜(w为592 mg/kg)和镉(w为896 μg/kg)[15]. 土壤pH 为4.48,阳离子交换量(CEC)为82.5 mmol/kg,w(有机碳)、w(碱解氮)、w(速效磷)、w(速效钾)分别为17、144、91、84 mg/kg,交换性酸和交换性铝含量分别为31.7和26.9 mmol/kg.常规磷灰石粉(pH=9.12,粒径150 μm)购自湖北南漳县鑫泰磷化工;微米(pH=7.68,粒径3 μm)和纳米羟基磷灰石(pH=7.72,粒径40 nm)购自南京埃普瑞纳米材料公司. 常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石中w(Cu)、w(Cd)分别为10.5、5.85、4.4 mg/kg和61.7、38.3、37.1 μg/kg.1.2 试验过程试验于2010年11月布置,共设4个处理,分别为常规磷灰石、微米和纳米羟基磷灰石以及对照处理. 其中常规磷灰石、微米和纳米羟基磷灰石用量均为表层20 cm土壤质量的1%,对照处理不添加任何钝化材料. 采用随机区组设计,每处理三次重复,每小区面积为4 m2(2 m×2 m). 各小区间采用防渗聚乙烯塑料薄膜(高出30 cm)包裹田埂,防止因雨水径流影响试验结果.利用人工翻耕、耙匀使钝化材料与0~20 cm表层土壤充分混匀,然后用自来水清水平衡(每小区施加100 kg)1周后施复合肥、播种黑麦草. 整个试验过程中仅在2010年施加一次钝化材料,并且黑麦草仅在2010—2014年能够存活,其生物量逐渐降低. 但是试验过程中除对照处理外均有土著杂草金黄狗尾草生长. 另外,试验过程中各小区施肥、播种、田间管理方式均保持一致.试验样品于2016年1月28日采集,此时小区杂草已经移除,样品采集深度0~20 cm. 一部分样品装于无菌自封袋中,用于土壤酶活性和微生物量碳氮的分析;另一份样品带回实验室后风干、研磨后用于土壤化学性质、铜和镉及磷有效性的分析.1.3 分析方法土壤和钝化材料的pH采用固液比为1∶2.5的比例添加无CO2蒸馏水,用pH电极(E-201-C,上海楚柏实验室设备有限公司)测定. 土壤w(有机碳)采用重铬酸钾湿式氧化法测定,土壤w(TN)、w(TP)、阳离子交换量、w(碱解氮)、w(速效磷)、w(速效钾)、交换性酸和交换性铝含量按照常规方法[16]测定. 土壤采用HF-HNO3-HCLO4(10 mL-5 mL-5 mL)电热板消解后,采用原子吸收(或石墨炉)分光光度计法测定w(TCu)和w(TCd). 土壤铜和镉的离子交换态、碳酸盐结合态、铁锰氧化物结合态、有机结合态和残渣态含量采用Tessier分级方法[17]测定.土壤磷分级采用Tiessen等[18]的方法测定:①树脂磷,0.5 g风干土用去离子水和阴离子交换树脂提取;②NaHCO3提取无机磷(NaHCO3-Pi)和有机磷(NaHCO3-Po),上一步残留物加入pH=8.5的0.5 mol/L NaHCO3提取;③NaOH提取无机磷(NaOH-Pi)和有机磷(NaOH-Po),上一步残留物加入0.1 mol/L NaOH提取;④NaOH提取态磷,上一步残留物加入1 mol/L NaOH提取;⑤残渣态磷,上一步残留物用H2SO4和H2O2消解提取.土壤微生物量碳氮含量采用氯仿熏蒸-浸提方法[19]测定. 土壤过氧化氢酶、脲酶和酸性磷酸酶活性参照文献[20-21]的方法测定. 其中过氧化氢酶活性用每克土滴定H2O2消耗的0.1 mol/L KMnO4的毫升数表示,记为mL/g;脲酶和酸性磷酸酶活性采用比色法测定,分别以37 ℃下培养24 h后每g土中NH3-N 和酚的mg数表示,均记为mg/[g/(24 h)].1.4 数据处理用Excel 2010对试验数据进行整理,SPSS 19.0 软件对数据进行单因素方差分析,不同处理间的最小显著性差异检验在P<0.05(LSD)水平上.2.1 土壤性质变化如表1所示,常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石处理污染土壤5 a后土壤pH较对照分别显著提高了0.48、0.61和0.57个单位. 与土壤pH相似,三种钝化材料均显著增加了土壤w(TP)和w(有效磷),其中微米和纳米羟基磷灰石处理w(TP)和w(有效磷)分别较对照增加了2.07、2.19倍以及1.49和1.16倍. 与w(有效磷)相同,三种钝化材料均显著增加了土壤w(速效钾). 与对照相比,常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石分别使土壤交换性酸和交换性铝显著降低了75.2%、76.1%、71.6%和86.4%、87.8%、81.5%. 但是所有处理土壤间,土壤w(TN)、w(有机碳)和阳离子交换量未有显著差异.2.2 土壤铜和镉化学形态变化不同粒径羟基磷灰石处理后土壤铜和镉化学形态变化如表2所示. 对照处理中,五种形态铜的分布规律为:残渣态>离子交换态>有机结合态>碳酸盐结合态>铁锰氧化物结合态. 三种粒径羟基磷灰石处理后,铜化学形态的分布均表现为残渣态>铁锰氧化物结合态>碳酸盐结合态>有机结合态>离子交换态. 其中常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石处理w(离子交换态铜)较对照分别显著降低了62.6%、74.3%和70.4%. 三种粒径羟基磷灰石处理均提高了土壤w(碳酸盐结合态铜)和w(铁锰氧化物结合态铜),但是未对w(有机结合态铜)和w(残渣态铜)产生显著影响. 然而,与对照相比,微米羟基磷灰石和纳米羟基磷灰石处理w(TCu)分别显著提高了20和25 mg/kg.由表2可知,对照处理中,五种形态镉的分布规律为残渣态>离子交换态>碳酸盐结合态>铁锰氧化物结合态>有机结合态. 与铜相似,常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石处理w(离子交换态镉)较对照分别显著降低了15.7%、25.3%和26.7%. 另外,三种粒径羟基磷灰石处理后均显著增加了w(铁锰氧化物结合态镉)和w(有机结合态镉),但是对w(残渣态镉)和w(TCd)没有显著影响.2.3 土壤磷化学形态变化如表3所示,常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石处理分别使土壤w(树脂磷)和w(NaOH 提取态无机磷)较对照提高了0.35、1.05和1.52倍以及0.35、0.77和0.73倍. 另外,三种粒径材料均提高了土壤w(NaHCO3提取态无机磷)和w(NaOH 提取态有机磷). 与树脂磷变化相似,常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石处理土壤w(HCl提取态磷)和w(残渣态磷)分别较对照提高了6.55、6.25和7.02倍以及3.69、3.44和3.05倍. 但是,三种粒径材料对土壤w(NaHCO3提取态有机磷)的影响较小.2.4 土壤酶活性和微生物量碳氮变化三种粒径材料对土壤酶活性和微生物量碳氮的影响如图1所示. 对于土壤过氧化氢酶活性,三种材料的添加均未对其产生显著影响. 常规磷灰石和微米羟基磷灰石处理使土壤脲酶活性较对照显著增加了2.11和4.46倍,但纳米羟基磷灰石处理未表现出显著差异. 与对照相比,常规磷灰石处理微弱降低了土壤酸性磷酸酶活性,但是微米羟基磷灰石和纳米羟基磷灰石对土壤酸性磷酸酶活性的影响较小. 另外,与对照相比,常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石处理较对照分别使土壤微生物量碳含量增加了0.56、0.66和0.58倍,但仅常规羟基磷灰石处理显著增加了土壤微生物量氮的含量.羟基磷灰石是一种碱性材料(pH>7.6),其溶解过程〔见式(1)〕能够消耗大量H+[22],因而可以增加土壤pH,导致土壤交换性酸和交换性铝含量的降低. 与此相同,WEI等[23]研究也表明,纳米羟基磷灰石的添加较对照土壤pH显著增加了1.8个单位. 另外,尽管常规羟基磷灰石材料具有最高的pH,但是笔者研究结果表明修复5 a后,微米羟基磷灰石对土壤pH的提高幅度最好,其次是纳米羟基磷灰石. 这可能是由于常规的磷灰石中除含有羟基磷灰石外,还含有一定量的碳酸钙,其在酸性条件下快速溶解,导致其对土壤pH的维持效果不如微米和纳米羟基磷灰石. 处理后土壤速效钾较对照增加可能是由于三种钝化材料本身含有一定量的钾,增加了土壤中w(TK);黑麦草的生长改变微生物群落结构促进土壤钾活性的提高. 另外,研究区域土壤的总氮和总磷较其他地区处于较高的水平,主要是由于该研究区靠近一个化肥厂,前期土壤灌溉了含有大量氮磷的废水,导致其w(TN)和w(TP)逐渐增加.与前期的室内研究结果[11]一致,大田试验条件下微米和纳米羟基磷灰石能够显著降低土壤w(离子交换态铜)和w(离子交换态镉). 其主要原因是由于三种材料均提高了土壤pH,降低了交换性酸和交换性铝含量,增加了土壤对重金属的固定能力.且该研究中土壤w(离子交换态铜)和w(离子交换态镉)均与pH呈现极显著的负相关关系,与交换性酸和交换性铝含量均呈现极显著的正相关关系(数据未列出). 因为土壤pH可用来表示土壤活性酸度,是土壤溶液中H+浓度的直接反映;交换性酸、交换性铝可用来表达土壤潜性酸度,是土壤胶体吸附的可代换性H+和Al3+. 因此,土壤酸度是影响土壤重金属活性的关键因子. 此外,一些研究[7,24]表明羟基磷灰石主要是通过离子交换、表面络合和共沉淀等作用,降低重金属的活性. Siebers等[25]指出高含量镉下,磷酸盐材料主要是通过形成磷酸盐沉淀来降低土壤镉的有效性. DONG等[14]研究进一步表明,不同粒径的羟基磷灰石对铜和镉吸附固定存在机理上的差异,微纳米羟基磷灰石的表面特性和结构特点使得其具有更多的吸附位点,提高对铜和镉的吸附能力. 通常,材料粒径越小,比表面积和表面能越大,对重金属的吸附固定能力更强[13],但该研究中微米羟基磷灰石对铜和镉活性的降幅要优于常规磷灰石和纳米羟基磷灰石. 在前期的研究中笔者认为,这可能是由于纳米羟基磷灰石在土壤中发生团聚,失去了纳米材料的特性[11],导致微米羟基磷灰石对重金属具有较好钝化效果.此外,与对照相比,钝化材料的应用均不同程度的提高了土壤w(TCu)和w(TCd),这与笔者前期的研究结果[26]一致. 这可能是由于尽管该地区目前已经不再遭受灌溉水带入的重金属污染,但是仍然存在大气干湿沉降的重金属污染. 如陶美娟等[27]的研究表明,该地区干湿沉降的铜和镉含量年均达到1 973和15.2 mg/m2. 另外,笔者前期通过比较重金属输入(钝化材料输入和大气干湿沉降输入)和输出(植物吸收、地表径流和向下淋溶)发现,钝化材料(常规磷灰石、石灰和木炭)的添加均提高了土壤对铜和镉的吸附固定能力,减少了通过地表径流和淋溶作用输出的重金属,且其减少的重金属输出量大于通过植物提取和地表径流输出的重金属总量,因而导致改良后表层土壤重金属总量高于对照处理[26,28]. 因此,在实际的土壤修复过程中,完全截断外源污染物的输入尤其必要.同时,羟基磷灰石的添加显著增加了土壤w(TP),其在溶解过程也会导致大量磷的溶出[10],因此可以显著增加土壤w(有效磷). 与土壤有效磷变化相同,常规磷灰石、微米和纳米羟基磷灰石的添加增加了土壤树脂磷,但是仅占总磷的4.61%、12.6%和17.4%. 同样,Rivaie等[29]研究也表明磷灰石和过磷酸钙的应用可以显著增加土壤w(树脂磷). 根据文献[30],活性无机磷(NaHCO3-Pi)和中度活性无机磷(NaOH-Pi)更有可能被植物吸收和利用,该研究中微米和纳米羟基磷灰石处理的土壤均高于对照和普通磷灰石处理,因此更有利于植物生长. 类似地,LIU等[9,31]研究发现,有机和无机磷改良材料的应用均增加了土壤NaHCO3-Pi和NaOH-Pi 的含量. 因为HCl提取态磷主要来源于土壤磷灰石、钙磷及其他负电荷氧化物结合态磷[32],所以该研究中三种粒径羟基磷灰石材料均显著增加了土壤HCl提取态磷.总的来看,三种粒径材料的添加均提高了土壤w(活性磷)、w(中度活性磷)和w(稳定态磷),且对稳定态磷的提高幅度最大. 另外,微米和纳米羟基磷灰石对活性磷的提高优于常规磷灰石. 但是,添加的三种粒径材料处理土壤中,73.4%~89.8%增加的总磷都是以稳定态磷(HCl提取态和残渣态)形式存在,这可能导致我国南方地区土壤有效磷较低的一个原因. 这也表明,羟基磷灰石钝化材料在我国南方重金属污染的缺磷(有效磷低)土壤中具有较大应用潜力,既能够钝化重金属,又可以通过有效磷的提升,促进作物的增产. 但是要控制好用量,因为w(树脂磷)过高,容易导致水体的富营养化[33]. 如前期的室内淋溶试验发现,没有作物生长的情况下,0.5%用量的羟基磷灰石处理镉污染土壤,淋出液磷的含量达到0.50~1.42 mg/L,超过了GB 3838—2002《地表水环境质量标准》Ⅴ类水标准〔ρ(TP)为0.4 mg/L〕[34].土壤微生物活性是评价土壤污染的一个重要特性,尤其是土壤酶活性,其在养分循环、有机质转化、土壤理化性质、微生物活性方面具有重要作用,常用于土壤质量的评价[35-36]. 该研究结果表明,微米羟基磷灰石处理能够显著增加土壤脲酶和过氧化氢酶活性,纳米羟基磷灰石处理对土壤酶活性未有显著影响. 另外,该研究也表明,三种材料粒径的应用均有利于土壤微生物量碳的提高. 可见,总体上微米羟基磷灰石处理更有利于土壤酶活性和微生物量碳的增加. 这可能是由于材料的应用显著提高了土壤pH,降低了土壤铜和镉的活性,改变了土壤微生物群落结构,导致土壤微生物活性的增加. 同时,黑麦草和土著植物杂草金黄狗尾草的残落物、根系分泌物和根际微生物影响土壤微生物群落结构,提高土壤微生物活性. 如WEI等[23]的研究发现,纳米HAP处理后提高了黑麦草生物量和土壤脲酶和脱氢酶的活性,并改变了土壤微生物多样性和群落结构,尤其是增加了土壤中Stenotrophomonas sp.和Bacteroides的数量.a) 微米羟基磷灰石较常规磷灰石和纳米羟基磷灰石更有利于提高土壤pH,降低土壤交换性酸和交换性铝含量;随着常规磷灰石、微米和纳米羟基磷灰石的添加,土壤中w(离子交换态铜)降低了62.6%、74.3%和70.4%,w(离子交换态镉)降低15.7%、25.3%和26.7%.b) 常规磷灰石、微米和纳米羟基磷灰石显著提高了土壤w(TP),其中的4.61%~17.4%和73.4%~89.8%分别转化为树脂磷和稳定态磷.c) 常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石的添加分别使土壤微生物量碳含量增加了0.56、0.66和0.58倍,且常规磷灰石和微米羟基磷灰石处理使土壤脲酶活性增加了2.11和4.46倍,但仅有常规磷灰石处理显著增加土壤微生物量氮的含量.【相关文献】[1] HU Yuanan,CHENG Hefa,TAO Shu.The challenges and solutions for cadmium-contaminated rice in China:acritical review[J].Environment International,2016,92:515- 532.[2] LI Wanlu,XU Binbin,SONG Qiujin,et al.The identification of ′hotspots′ of heavy metal pollution in soil-rice systems at a regional scale in eastern China[J].Science of the Total Environment,2014,472:407- 420.[3] LI Baozhen,GE Tida,XIAO Heai,et al.Phosphorus content as a function of soil aggregate size and paddy cultivation in highly weathered soils[J].Environmental Science and Pollution Research,2016,23(8):7494- 7503.[4] SMICIKLAS I,DIMOVIC S,PLECAS I,et al.Removal of Co2+ from aqueous solutions by hydroxyapatite[J].Water Research,2006,40(12):2267- 2274.[5] VALIPOUR M,SHAHBAZI K,KHANMIRZAEI A.Chemical immobilization oflead,cadmium,copper and nickel in contaminated soils by phosphateamendments[J].Clean-Soil,Air,Water,2016,44(5):572- 578.[6] ZHANG Zizhong,LI Mengyan,CHEN Wei,et al.Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite[J].Environmental Pollution,2010,158(2):514- 519.[7] MA Q Y,TRAINA S J,LOGAN T J,et al.Effects of aqueous Al,Cd,Cu,Fe(Ⅱ),Ni,and Zn on Pb immobilization by hydroxyapatite[J].Environmental Science &Technology,1994,28(7):1219- 1228.[8] KOMAREK M,VANEK A,ETTLER V.Chemical stabilization of metals and arsenic in contaminated soils using oxides:a review[J].Environmental Pollution,2013,172:9- 22. [9] LIU R,LAL R.Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions[J].Science of the Total Environment,2015,514:31- 139.[10] MONTALVO D,MCLAUGHLIN M J,DEGRYSE F.Efficacy of hydroxyapatite nanoparticles as phosphorus fertilizer in Andisols and Oxisols[J].Soil Science Society of America Journal,2015,79(2):551- 558.[11] CUI Hongbiao,ZHOU Jing,ZHAO Qiguo,et al.Fractions of Cu,Cd,and enzyme activities in a contaminated soil as affected by applications of micro-and nano-hydroxyapatite[J].Journal of Soils and Sediments,2013,13(4):742- 752.[12] BERBER-MENDOZA M S,LEYVA-RAMOS R,ALONSO-DAVILA P,et al.Effect of pH and temperature on the ion‐exchange isotherm of Cd(Ⅱ)and Pb(Ⅱ)on clinoptilolite[J].Journal of Chemical Technology and Biotechnology,2006,81(6):966- 973.[13] CHEN S,ZHU Y G,MA Y B.The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils[J].Journal of HazardousMaterials,2006,134(1):74- 79.[14] DONG Anle,YE Xinxin,LI Hongying,et al.Micro/nanostructured hydroxyapatite structurally enhances the immobilization for Cu and Cd in contaminated soil[J].Journal of Soils and Sediments,2016,16(8):2030- 2040.[15] CUI Hongbiao,FAN Yuchao,YANG J,et al.In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil[J].Chemosphere,2016,161:233- 241.[16] 鲁如坤.土壤农业化学分析法[M].北京:中国农业科技出版社,l999.[17] TESSIER A,CAMPBELL P G C,BISSON M.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844- 851. [18] TIESSEN H,MOIR J O.Characterization of available P by sequential extraction,in Carter,M.R.(ed.):soil sampling and methods of analysis[M].Boca Raton:Lewis Publishers,1993.[19] VANCE E D,BROOKES P C,JENKINSON D S.An extraction method for measuring soil microbial biomass C[J].Soil Biology & Biochemistry,1987,19(6):703- 707.[20] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.[21] 周礼凯.土壤酶学[M].北京:科学出版社,1987.[22] BOISSON J,RUTTENS A,MENCH M,et al.Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils.Part 1.Influence of hydroxyapatite on metal exchange ability in soil,plant growth and plant metal accumulation[J].Environmental Pollution,1999,104(2):225- 233.[23] WEI Liu,WANG Shutao,ZUO Qingqing,et al.Nano-hydroxyapatite alleviates the detrimental effects of heavy metals on plant growth and soil microbes in e-waste-contaminated soil[J].Environmental Sciences Processes & Impacts,2016,18:760- 767. [24] CAO X D,MA L Q,RHUE D R,et al.Mechanisms of lead,copper,and zinc retention by phosphate rock[J].Environmental Pollution,2004,131:435- 444.[25] SIEBERS N,KRUSE J,LEINWEBER P.Speciation of phosphorus and cadmium in a contaminated soil amended with bone char:sequential fractionations and XANES spectroscopy[J].Water,Air,& Soil Pollution,2013,224(5):1- 13.[26] CUI H B,FAN Y C,XU L,et al.Sustainability of in situ remediation of Cu-and Cd-contaminated soils with one-time application of amendments in Guixi,China[J].Journal of Soils and Sediments,2016,16(5):1498- 1508.[27] 陶美娟,周静,梁家妮,等.大型铜冶炼厂周边农田区大气重金属沉降特征研究[J].农业环境科学学报,2014,33(7):1328- 1334. TAO Meijuan,ZHOU Jing,LIANG Jiani,et al.Atmospheric deposition of heavy metals in farmland area around a copper smelter[J].Journal of Agro-Environment Science,2014,33(7):1328- 1334.[28] CUI Hongbiao,ZHOU Jing,SI Youbin,et al.Immobilization of Cu and Cd in a contaminated soil:one-and four-year field effects[J].Journal of Soils andSediments,2014,14(8):1397- 1406.[29] RIVAIE A A,LOGANATHAN P,GRAHARM J D,et al.Effect of phosphate rock and triple superphosphate on soil phosphorus fractions and their plant-availability and downward movement in two volcanic ash soils under Pinusradiata plantations in NewZealand[J].Nutrient Cycling in Agroecosystems,2008,82(1):75- 88.[30] NEGASSA W,LEINWEBER P.How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus:a review[J].Journal of Plant Nutrition and Soil Science,2009,172(3):305- 325.[31] MALIK M A,MARSCHNER P,KHAN K S.Addition of organic and inorganic P sources to soil:effects on P pools and microorganisms[J].Soil Biology and Biochemistry,2012,49:106- 113.[32] RODRIGUES M,PAVINATO P S,WITERS P J A,et al.Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna[J].Science of the Total Environment,2016,542:1050- 1061.[33] LI Ronghua,WANG J J,ZHOU Baoyue,et al.Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios[J].Science of the Total Environment,2016,559:121- 129.[34] 马凯强,崔红标,范玉超,等.模拟酸雨对羟基磷灰石稳定化污染土壤磷/镉释放的影响[J].农业环境科学学报,2016,35(1):67- 74. MA Kaiqiang,CUI Hongbiao,FAN Yuchao,et al.Effects of simulated rain on release of phosphorus and cadmium in a contaminated soil immobilized by hydroxyapatite[J].Journal of Agro-Environment Science,2016,35(1):67- 74.[35] GIL-SOTRES F,TRASAR-CEPEDA C,LEIROS M,et al.Different approaches to evaluating soil quality using biochemical properties[J].Soil Biology and Biochemistry,2005,37(5):877- 887.[36] WASILKOWSKI D,MROZIK A,PIOTROWSKA-SEGET Z,et al.Changes in enzyme activities and microbial community structure in heavy metal-contaminated soil under in situ aided phytostabilization[J].Clean-Soil,Air,Water,2014,42(11):1618- 1625.。
生态文明视角下探索可再生资源回收体系以丽水职业技术学院为例
猱2科枝Journal of Green Science and Technology第6期2019年3月生态文明视角下探索可再生资源回收体系——以丽水职业技术学院为例王璐瑶,陈颖,岳建(丽水职业技术学院,浙江丽水323000)摘要:指出了在资源过度消耗、生态文明亟需建设的大环境下,各高校作为社会的缩膨,毎年有大量可再生资源被浪费,垃圾资源化效率低下.不仅如此,大学校园资源分类回收机制也存在诸多弊端。
以我国各高校正面临的垃圾分类困局为契机,通过对比发达国家所釆取的针对城市生活垃圾分类措施.采取“互联网+”的方式,探索了适用于高校校园的垃圾分类市场化运作模式,旨在运用价格杠杆的方式引导广大师生主动进行垃圾分类,提升生态文明素养、倡导绿色环保理念。
关键词:生态文明;绿色环保;可再生资源回收体系;建设;高校中图分类号:X24文献标识码:A文章编号:1674-9944(2019)6-0090-021引言建设生态文明,关系人民福祉,关乎民族未来。
在以习近平同志为核心的党中央高度重视下,生态文明建设地位不断提升口。
现阶段,我国面临资源短缺问题,许多可再生资源得不到充分利用,而我国循环经济的发展正处于从理念倡导、局部试验、示范向全面实践推进阶段学校是社会的重要组成部分,教育是促进可持续发展和提高人民解决环境与发展问题的关键手段⑷。
在这一关键时期,垃圾问题对于校园来说是一大问题,大学校园内可再生资源的浪费较为常见,如学生的废旧书籍、衣物等一些可回收物得不到充分回收和利用.造成较为严重的浪费现象。
进行二次分类,则时间、人力成本过高,如何用全新的理念解决垃圾问题,已经成为当下大学校园不可忽视、亟待解决的重要问题。
在生态文明视角下探索高校可再生资源回收体系的建立,不但能培养学生养成垃圾分类回收的习惯.使废品得到利用、空间得以释放,更能引导广大学生树立正确的生态文明观,形成一个循环可再生资源回收机制,符合我国当前实际情况,契合国家可持续发展的政策导向,具备较好的合理性和实践价值,对于促进整个社会的生态文明建设具有重要意义。
土壤磷素迁移转化机理研究
土壤磷素迁移转化机理研究1 引言各类水环境污染都是由点源和非点源(NPS)的共同作用造成的。
近年来,非点源磷素对水体富营养化的贡献日益突出,在发达国家尤为明显。
磷是动植物必需的营养元素,过量的磷素进入水体可以导致水体富营养化[1,2],来自农田的磷在非点源污染中占有很大的份额[3],水体中总磷与流域内农业用地的比例呈正相关关系[2,4,5]。
这样,解决水体富营养化问题受制于对流域的NPS磷素的控制[6~8]。
流域NPS的输出控制对水资源保护至关重要,其控制途径主要有:(1)源控制,即将污染物控制在产生的源头;(2)迁移控制,即利用传输廊道对污染物进行截留、转化,降低其输出量;(3)对受纳水体的治理。
后者属于“末端治理”,花费巨大,恢复周期长,且效果不明显[9],因而,尽量将NPS控制在源头,并促进其在系统内部的循环,是最佳管理措施的关键。
NPS在源头的产生机制及其在流域内的传输过程日益受到关注[10]。
2 土壤磷素的来源及其存在形态磷的天然源主要来自岩石的风化作用,当岩石风化时,这些磷酸盐大量溶解,变成可被植物吸收利用的有效磷。
人为源主要是施用磷肥。
土壤中磷的形态可分为无机磷和有机磷。
无机态磷几乎全部是正磷酸盐,根据其所结合的主要阳离子的性质不同,可以把土壤中通常存在的磷酸盐化合物分为:磷酸钙(镁)化合物、磷酸铁(铝)类化合物、闭蓄态磷(由氧化铁等不溶性胶膜包被,在土壤中有相当比例,但很难发挥其有效作用)以及磷酸铁铝与碱金属、碱土金属复合而成的磷酸盐类。
有机态磷主要有:核酸类、植素类和磷脂类。
有机磷在总磷中所占比例及其变化范围很宽,在森林、草原或植被下发育的土壤,有机磷可占土壤总磷量的50%以上,甚至可达90%[11]。
土壤有机磷中,肌醇磷酸盐占20%~50%,磷酯1%~5%,核苷酸0.2%~2.5%,其余30 %~50%的化学结构还不十分清楚[12]。
3 磷素在土壤中的固定与转化3.1 土壤磷的固定土壤组分可与土壤液相中的磷反应将其移出液相,成为生物不易利用的形态,这叫做磷的固定(又叫磷的吸附)。
磷肥对马尾松苗木根系及针叶内氮、磷、钾生化计量特征的影响
增加情况下,植物体内的生化计量特征表现情况不 一致,有正面[14] 、中立[15] 及负面响应[16] 。 因此,通 过分析不同磷肥施用量对 1 年生马尾松苗根系及针 叶内 N、P、K 及生化计量特征的影响,探讨增加土壤 中磷元素质量分数后马尾松 N、P、K 元素供应状况 及协调作用关系,为马尾松施肥及人工林培育提供 理论基础及技术指导。
136) ;贵州省省级科技计划项目( ZK[2022] 一般 207) ;国家自然科学基金(31860178) 。
第一作者简介:周玮,博士,副教授。 研究方向为森林土壤和土壤营养。 E-mail: 605466767@ qq. com
引文格式:周玮,王艺,苏春花. 磷肥对马尾松苗木根系及针叶内氮、磷、钾生化计量特征的影响[ J] . 森林工程,2024,40 (1) :9-16.
第 40 卷 第 1 期 2024 年 1 月
森 林 工 程 FOREST ENGINEERING
doi:10. 3969 / j. issn. 1006-8023. 2024. 01. 002
Vol. 40 No. 1 Jan. ,2024
磷肥对马尾松苗木根系及针叶内氮、磷、钾 生化计量特征的影响
Keywords:Ecological stoichiometry; root; needles; Pinus massonana; P fertilizer
收稿日期:2023-03-08
基金项目:贵州省科技厅基础研究项目[ 黔科合基础[ 2018] 1072] ;贵州省教育厅成长人才项目( 黔教合 KY 字[ 2018]
1 试验材料与方法
1. 1 试验设计 2016 年 12 月在温室大棚内设置试验样地,将
大棚内土壤混匀,用体积分数为 5% 甲醛溶液进行 消毒,消毒后设计苗床,苗床规格为 200 cm( 长) × 80 cm( 宽) × 30 cm( 高) ,苗床间步道宽 40 cm。 设 计磷肥 4 个不同水平的随机区组试验,将每个苗床 用塑料薄膜分为 4 块(每 1 块为 1 个处理),每个处 理 3 个重复,共 3 个苗床。 2017 年 1 月在苗床进行 1 年生苗木移栽(1 年生苗木为凯里种苗园苗木), 每个小区内种植苗木 15 株,选择生长均匀的马尾松 苗,苗高 20 ~ 30 cm,地径 0. 5 ~ 0. 6 mm。 按时进行 浇水、除草等管理。 待苗木成活并经过 2 个月缓苗 期后进行施肥处理,分别施用不同量的 P 肥,试验 所需磷肥为钙镁磷肥( P 有效率为 14%) 0、50、100、 200 g / 株 ( P1、P2、P3、P4) 4 个水平,4 个小区分别 为 4 个不同的施肥量,施肥量根据前期的研究结果 进行设定,每个处理 3 个重复。 在上述设计好的苗 床上取土,分 析 土 壤 基 本 性 质, 以 便 了 解 供 试 土 壤 的基本情况,具体土壤性质见表 1。
环境保护前沿—干湿交替变化对土壤中磷形态影响及环境意义
Advances in Environmental Protection 环境保护前沿, 2012, 2, 15-19doi:10.4236/aep.2012.22003 Published Online June 2012 (/journal/aep)Influence of Alternative Drying-Wetting on PhosphorusFractions in Soils with Different Organic Matter Contentand Environmental Implications*Linlin Wei1, Gang Xu1,2#, Junna Sun2, Wenjun Xie2, Hongbo Shao1,3#1Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai2Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta (Binzhou University), Binzhou3Institute of Life Sciences, Qingdao University of Science & Technology, QingdaoEmail: {llwei, #gxu, #hbshao}@Received: Mar. 25th, 2012; revised: Apr. 9th, 2012; accepted: Apr. 12th, 2012Abstract: In the context of global change, it is of significance to study the effect of alternative drying-wetting on the soil fertility level and the environmental quality of water body. In this study, soil P was fractionated by using a modified Hedley fractionation method to examine the effect of alternative drying-wetting on phosphorus fractions in soils with different organic matter content. The results displayed no significant difference of total phosphorus between the two treatments because the coefficient of variance was less than 10%. However, there is a significant change in the distribu-tion of soil phosphorus fractions: increase the content of labile-P (especially resin-P) and organic-P (NaHCO3-Po, NaOH-Po and Con.Hcl-Po) while decreasing the content of NaOH-Pi and occlude-P. Under the alternative drying and wetting condition, resin-P increased by 121% in the organic soil, while only increasing by 31% in the sterile soil, which indicates a significant effect of alternative of drying and wetting on labile-P in soils with high organic matter content. The study indicates that alternative drying and wetting seemed to drive the phosphorus transformation from the oc-clude-P to labile-P and organic-P. In the context of global change, alternative drying and wetting can increase the con-tent of labile P in the soil to improve crop growth. However, when there is rainfall or irrigation, it may aggravate the loss of soil phosphorus, which will induce the offshore eutrophication and possibly threaten the coastal environmental quality and regional ecological security.Keywords: Phosphorus Fractionation; Drying-Wetting; Climate Change; Organic Soil; Sterile Soil干湿交替变化对土壤中磷形态影响及环境意义*魏琳琳1,徐刚1,2#,孙军娜1,谢文军2,邵宏波1,3#1中国科学院烟台海岸带研究所,烟台2山东省黄河三角洲生态环境重点实验室(滨州学院),滨州3青岛科技大学生命科学研究所,青岛Email: {llwei, #gxu, #hbshao}@收稿日期:2012年3月25日;修回日期:2012年4月9日;录用日期:2012年4月12日摘要:在全球变化的背景下,干湿交替对于土壤肥力水平和水体环境质量,具有重要的研究意义。
藁本内酯通过抑制铁自噬延缓小鼠听皮层组织衰老
网络出版时间:2024-03-0918:27:07 网络出版地址:https://link.cnki.net/urlid/34.1086.R.20240306.1725.020藁本内酯通过抑制铁自噬延缓小鼠听皮层组织衰老周颖东1,张梦娴1,王青玲1,康浩然2,张治成2,王庆林3,刘亚敏4,郭向东2(1.河南中医药大学第一临床医学院,河南郑州 450046;2.河南中医药大学第一附属医院耳鼻喉科,河南郑州 450000;3.河南医学高等专科学校,河南郑州 451191;4.河南中医药大学药学院,河南郑州 450046)收稿日期:2023-10-15,修回日期:2024-01-22基金项目:国家自然科学基金资助项目(No81403439);河南省科技攻关计划(No222102310604,232102310430);河南省中医药科学研究专项重点课题(No20-21ZY1045);河南省高等学校重点科研项目(No23A360028)作者简介:周颖东(1998-),硕士生,研究方向:内耳疾病,E mail:zyd786794242@163.com;郭向东(1980-),硕士,副主任医师,硕士生导师,研究方向:内耳疾病,通信作者,E mail:guoxiangdong0618@126.comdoi:10.12360/CPB202309043文献标识码:A文章编号:1001-1978(2024)03-0455-07中国图书分类号:R 332;R284 1;R322 81;R339 38;R591 1;R764 436摘要:目的 探究藁本内酯(ligustilide,LIG)延缓听皮层组织衰老,治疗中枢性老年性聋的机制。
方法 将40只13月龄C57BL/6J小鼠随机分为LIG低剂量组(L LIG)、LIG中剂量组(M LIG)、LIG高剂量组(H LIG)和衰老组(Age),同品系2月龄小鼠10只作为对照组(Ctrl)。
石油馏分中酸性物质的组成分析
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2016年第35卷第4期·1074·化工进展石油馏分中酸性物质的组成分析肖丽霞,吕涯(华东理工大学石油加工研究所,上海 200237)摘要:针对某炼厂酮苯脱蜡装置原料油(减三线)中酸性物质组成特殊(对装置产生严重的腐蚀)的情况,采用碱醇法提取其中的酸性物质,借助负离子电喷雾-傅里叶变换离子回旋共振质谱(negative-ion ESI FT-ICR MS)研究其酸性组分的组成及分布,并与工业级脱脂环酸进行比较,从分子层面上揭示了其特殊之处。
Negative-ion ESI FT-ICR MS结果表明,减三线酸性化合物主要的特点为O2类化合物中脂肪酸(Z=0)占明显优势,缩合度较大的Z=−8和Z=−10的O2类化合物中有些碳数的物质相对丰度也比较大,碳数分布有两个中心;O1类杂原子化合物的相对丰度仅次于O2类化合物,且大大高出其他类杂原子化合物,O1类化合物中,烷基酚类化合物占绝对优势。
减三线酸性化合物的特殊组成将对进一步探究腐蚀机理和寻求解决设备腐蚀的途径有重要的指导意义。
关键词:石油馏分;腐蚀;酸性物质;负离子电喷雾-傅里叶变换离子回旋共振质谱;组成中图分类号:TE 622 文献标志码:A 文章编号:1000–6613(2016)04–1074–07DOI:10.16085/j.issn.1000-6613.2016.04.017Composition of acidic compounds in petroleum fractionXIAO Lixia,LÜ Ya(Institute of Petroleum Processing,East China University of Science and Technology,Shanghai 200237,China)Abstract:The acidic compounds in the feedstock of a refinery(vacuum cut 3) made devices corroded seriously,so the composition and distribution of the acidic compounds were analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectroscopy (negative-ion ESI FT-ICR MS). The acid fraction was extracted by alkaline-ethanol extraction prior to analysis,and compared with the industrial-grade naphthenic acids. The specialty of the acidic compounds in the feedstock of the refinery was explained from the molecular level. Negative-ion ESI FT-ICR MS revealed that the O2 class of the extracted acid fraction in the feedstock was dominated by acyclic carboxylic acids (belong to Z=0 family),and those had higher relative abundance of some compounds belonged to Z=−8 and −10 families of the O2 class,which leads the carbon number distribution curve has two peaks. The relative abundance of O1 class was much higher than that of other classes except for O2 class. The O1 class was dominated by alkylphenols. The special composition and distribution of acidic compounds has an important guiding significance to study the mechanism of corrosion and seek treatments for equipment corrosion.Key words:petroleum fractions;corrosion;acidic species;negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectroscopy(negative-ion ESI-FT-ICR MS);composition随着石油资源的不断消耗,含酸或高酸原油的处理量越来越大,对石油加工过程产生很多影响,例如加工时引起装置严重腐蚀、影响产品质量等[1-2],深入研究石油及馏分中的酸性物质成为石油化学研究的热点之一。
广西北部湾近岸海域氮生物地球化学过程及营养盐沉积记录
广西北部湾近岸海域氮生物地球化学过程及营养盐沉积记录摘要河口近岸区域作为连接陆地和海洋的重要过渡地带,承受着沿海城市发展和人类活动的巨大压力,更容易发生各类环境问题,如富营养化及赤潮爆发已经对沿岸生态系统和经济发展带来了严重的威胁。
了解营养盐的迁移转化和沉积历史对于缓解和防治近岸富营养化问题具有重要的科学意义。
本研究选取广西北部湾近岸海域作为研究对象,针对营养盐的收支平衡、氮的关键生物地球化学过程及营养盐的沉积记录开展了一系列研究,主要研究成果如下:(1) 本文研究了广西北部湾近岸海域表层水、上覆水和沉积物孔隙水中的营养盐浓度,发现营养盐的高值区都位于受河流输入和人类活动显著影响的区域,整体上营养盐都有着从河口向外湾逐渐降低的趋势,说明了陆源输入是营养盐的一个主要来源。
而夏季的营养盐浓度基本都显著高于冬季,这也与丰水期陆源的输入量大大高于枯水期密切相关。
另外,本文运用Fick第一扩散定律估算了沉积物-水界面的营养盐扩散通量,发现所有营养盐的扩散通量均为正值,表明营养盐是从沉积物扩散到上覆水体中的,是水体营养盐的一个内源。
低氧和高温可以促进沉积物-水界面的营养盐扩散过程。
(2)本研究通过实地调查和LOICZ箱式模型,估算了广西北部湾近岸海域氮、磷、硅的收支情况。
在季节尺度内,由于水通量和营养盐浓度的差异,营养盐通量的季节变化很大,丰水期的通量明显大于枯水期。
综合所有河口的收支结果表明,广西北部湾近岸海域是所有营养盐的汇。
海底地下水排放是最大的营养盐来源,其次为河流输入;外海交换是主要的营养盐输出途径。
(3)本文研究了广西北部湾近岸海域固氮作用的时空分布规律,运用乙炔还原法测定了研究区域表层水体的固氮速率。
固氮作用在夏季和冬季的平均速率分别为0.33±0.17 nmolN/L/h和0.23±0.11 nmolN/L/h,主要发生在高温、低硝酸盐、低氮磷比(N/P<16)的环境中。
陇中黄土高原不同耕作措施下土壤磷动态研究
陇中黄土高原不同耕作措施下土壤磷动态研究许艳;张仁陟【摘要】依托陇中黄土高原旱作农田已实施13 a的保护性耕作试验,研究传统耕作、免耕、传统耕作秸秆还田、免耕秸秆覆盖、传统耕作地膜覆盖和免耕地膜覆盖6种耕作措施下土壤全磷及磷组分动态变化特征.结果表明:试验期各处理土壤全磷和总无机磷均逐年增长;两个秸秆还田处理总有机磷逐年增长,免耕地膜覆盖和免耕处理总体增长,传统耕作和传统耕作地膜覆盖处理相对稳定;各无机磷组分均总体增长,其中氢氧化钠提取态无机磷、水溶态无机磷和碳酸氢钠提取态无机磷涨幅较大,平均涨幅分别为253.6%、128.6%和66.9%;保护性耕作可不同程度地提高水溶态无机磷、碳酸氢钠提取态无机磷和氢氧化钠提取态无机磷含量,相同覆盖条件下免耕较传统耕作效果明显,尤其免耕秸秆覆盖处理最明显;耕作方式对浓盐酸提取态无机磷和残留磷的影响不明显;保护性耕作可提高碳酸氢钠提取态有机磷和氢氧化钠提取态有机磷含量,两个秸秆还田处理最明显,两处理也可提高浓盐酸提取态有机磷含量,但免耕、传统耕作地膜覆盖和免耕地膜覆盖处理下该组分含量降低.综上,采取保护性耕作可适当减少磷肥用量,保护性耕作尤其是免耕秸秆覆盖方式值得在该区推广.%[Objective]The Loess Plateau in Central Gansu is one of the most seriously eroded regions in China. In this area the soil is generally in lack of phosphorus,and the conventional tillage pattern prevailing in the region exacerbates the loss of phosphorus and other soil nutrients. Therefore,it is urgent to address the problem by improving farmland management and hence to uplift utilization efficiency of soil phosphorus. This study attempts to characterize dynamic changes of soil total phosphorus and phosphorus fractions in the soil under six different tillage patterns,so as to revealmechanisms of the six tillage patterns affecting soil phosphorus,and provide a theoretical basis for remolding the original tillage pattern or establishing a new sustainable tillage pattern.[Method]For this study,a 13-year-long field experiment on tillage has been carried out in an upland farm on the Loess Plateau in Central Gansu. The experiment is designed to have six different tillage patterns,that is,conventional tillage(T),no-tillage(NT), conventional tillage with straw incorporation(TS),no-tillage with straw mulching(NTS),conventional tillage with plastic mulching(TP),and no-tillage with plastic mulching(NTP). For in-lab analysis, Tiessen's modified Hedley method was used for fractionation of soil phosphorus. Six extractants were used sequentially from weak to strong in capacity to extract nine fractions of phosphorus,that is,Resin-Pi, NaHCO3-Pi,NaHCO3-Po,NaOH-Pi,NaOH-Po,D.HCl-Pi,C.HCl-Pi,C.HCl-Po and Residual-P.[Result]Results show:(1)During the experiment,soil total phosphorus in all the treatments increased year by year,with a rate ranging from 8.1% to 15.6%,and in terms of soil phosphorus increase rate,the six treatments exhibited an order of NTS>TS>NTP≈NT≈T≈TP. Total inorganic phosphorus also showed an increasing trend in all the treatments. In Treatments NTS and TS,total organic phosphorus increased the fastest or by48.7% and 46.0%,respectively,and in Treatments NTP and NT it did by 18.9% and 16.3%, respectively,while in Treatments T and TP it remained almost unchanged;(2)During the experiment, all the fractions of inorganic phosphorus were on a rising trend,except for Resin-Pi and NaHCO3-Pi,which declined slightly in 2011. Among all the inorganic phosphorusfractions,NaOH-Pi rose the fastest with an average growth rate of all the six treatments reaching up to 253.6%;Resin-Pi and NaHCO3-Pi followed,with an average growth rate being 128.6% and66.9%,respectively;And the relative content of the three fractions also some what increased;(3)NaHCO3-Po and NaOH-Po showed an overall increasing trend except for a slight fall in 2011 in the five treatments of conservation tillage,however,they did not change much in TreatmentT,throughout the entire experiment. C.HCl-Po increased year by year in Treatments TS and NTS, and remained almost unchanged in Treatment T,and showed overall downward trends in Treatments NT, TP andNTP;(4)The five patterns of conservation tillage raised the content of Resin-Pi、NaHCO3-Pi and NaOH-Pi,and no tillage was more effective than conventional tillage,when the same in supplementary measure,with Treatment NTS in particular,which increased the content of D.HCl-Pi. The effect of tillage on C.HCl-Pi and Residual-P was not obvious. The five treatments of conservation tillage,especially Treatments NTS andTS,increased the content of NaHCO3-Po and NaOH-Po,and Treatments NTS and TS,also raised the content of C.HCl-Po,but Treatments NT,TP and NTP reduced the content of C.HCl-Po,in comparison with TreatmentT.[Conclusion]Phosphorus fertilizer would accumulate in the soil year by year,existing in the soil in the form of NaOH-Pi,moderate in activity and in the form of Resin-Pi and NaHCO3-Pi,high in activity,and the accumulation does not have much impact on fractions of organic phosphorus. Sparse rainfall is no good to accumulation of phosphorus of active fractions,suchas Resin-Pi,NaHCO3-Pi and NaHCO3-Po,but conducive to that of phosphorus of stable fractions,such as D.HCl-Pi and C.HCl-Pi. Conservation tillages may increase the content of phosphorus of the fractions,moderate and high in activity,especially Treatment NTS. Therefore,it can be concluded that the adoption of conservation tillage can reduce the consumption of phosphorus fertilizer to a certain extent. Conservation tillage,especially the practice of no-tillage with straw mulching,is worth promoting in this area.【期刊名称】《土壤学报》【年(卷),期】2017(054)003【总页数】12页(P670-681)【关键词】陇中黄土高原;耕作措施;土壤全磷;土壤磷组分【作者】许艳;张仁陟【作者单位】甘肃农业大学资源与环境学院,兰州 730070;甘肃农业大学资源与环境学院,兰州 730070【正文语种】中文【中图分类】S343.1;S157.4+2磷是作物生长发育必需的营养元素,它来源于土壤,土壤中磷的丰缺程度对作物的生长发育有重大影响[1]。
CaO_2不同投加方式对底泥磷释放的抑制效果分析_张亚雷
其中, I 为底泥磷形态变化率( % ) , A n 为第 n 天底 泥各种磷形态含量( mg/ g ) , A 0 为底泥各种磷形态 初始含量( mg / g) .
2 结果与讨论
2 1 不同 CaO2 投加方式对底泥 SRP 的抑制效果 图 2 描述了 CaO2 不同投加方式对底泥 SRP 释
1 材料与方法
1 1 实验材料 金山湖位于江苏镇江市区的西北, 本试验底泥
取自金山湖生态修复示范区. 利用抓斗采泥器采集 表层 10cm , 水样取自水面以下 50cm. 采样后马上运
收稿日期: 2005-12-16; 修订日期: 2006-04-15 基金项目: 国家 高技术 研究发 展计划 ( 863) 项 目( 2003AA 06011000-
底泥取少量在实验室内自然风干, 碾磨, 过 100 目筛, 分析其各理化指标, 见表 2.
表 2 金山湖生态修复示范区底泥理化性质
Table 2 Charact eristic of sediment sample in Jinshan Lake
pH
TN/ mg g- 1 TP/ mg g- 1 TOC/ %
LOI/ %
6 74
3 88
2 36
2 54
3 22
1 2 实验方法 容积为 2 5L 的棕色 试剂瓶的底部 平铺 0 8L
的新鲜沉积物, 底泥高度 7cm, 再加入水样 1 6L ( 泥 水比为 1 2) , 在倒入过程中, 一直在底泥上方鼓吹 氮气, 保持底泥上方的厌氧, 避免因空气氧化引起的 误差. 按 2 种投加方式将 3 000g CaO2 投加在底泥 中: 投加在底泥中, 混匀, 以下简称 CaO2 混匀; 投加在底泥表面 ( 为保持对比一致性, 该投加方式 下也对底泥同样强度的混匀, 空白对照组亦同样处 理) , 以下简称 CaO2 覆盖. 实验设空白对照和 2 种 投加方式 3 个组, 每个组各设 6 个装置, 总共 18 个, 装样时底泥的量严格控制一致并保持均匀, 在 15 的室内密封( 均保持厌氧条件) 、避光保存, 经过 1d, 5d, 10d, 18d, 30d, 从各组中取 1 瓶分析上覆水、间隙 水的 SRP 浓度以及底泥磷形态变化. 1 3 分析方法
沉积物中磷的赋存形态及磷形态顺序提取分析方法_许春雪
岩矿测试 http: ∥www. ykcs. ac. cn
2011 年
European Commission when they developed the phosphorus reference materials in sediments: namely,the Williams method,Hieltjes-Lijklema method,Ruttenberg method and Golterman method. It summarizes the domestic and foreign scholars applied extractable method and determination method about phosphorus in sediments. The domestic scholars application methods are based on the foreign scholars used methods,expounding the geochemical significance of sequential extraction methods. Also reviewed are the release mechanism of phosphorus in sediments. Establishing sediments-phosphorus in water migration,circulation and transformation model which have great significance has been proposed because it could solve the problem of eutrophication fundamentally. Key words: phosphorus speciation; sediments; sequential extraction; eutrophication
“hopf分支”文件汇编
“hopf分支”文件汇编目录一、几类生物数学模型的Hopf分支二、时滞微分方程的Hopf分支的时域与频域分析三、时滞生物动力系统的稳定性和Hopf分支研究四、反应扩散捕食系统的Hopf分支和稳态解五、几类生物数学模型的Hopf分支几类生物数学模型的Hopf分支Hopf分支是一种非线性动力学行为,可在许多生物数学模型中找到。
它是一种重要的现象,可在各种不同的生物系统,如神经元、生态系统和流行病模型中找到。
Hopf分支是动态系统的一种类型,它描述了一个稳定状态如何转变为一个周期振荡状态。
具体来说,Hopf分支是指一个稳定状态失去稳定性并转变为一个等幅振荡态的过程。
这个过程是连续的,并且振荡的频率在分支点处为零。
在生物数学模型中,Hopf分支可用于描述许多不同的生物学现象。
例如,它可以描述神经元的发放和抑制,以及生物种群的周期波动。
以下是一些生物数学模型中常见的Hopf分支类型:神经元模型是一种描述神经元放电和抑制的数学模型。
Hopf分支可以描述神经元从静止状态到周期振荡状态的转变。
这种转变被认为是一种神经编码和解码的重要机制。
种群模型是一种描述生物种群动态变化的数学模型。
Hopf分支可以描述种群从稳定状态到周期振荡状态的转变。
这种转变被认为是一种生态平衡的调整机制。
流行病模型是一种描述传染病传播规律的数学模型。
Hopf分支可以描述疾病从稳定状态到周期振荡状态的转变。
这种转变被认为是一种控制传染病传播的重要机制。
Hopf分支在生物数学模型中具有广泛的应用。
它可以描述许多不同的生物学现象,包括神经元发放和抑制、生态平衡调整和传染病传播规律等。
通过建立适当的数学模型,可以更好地理解这些生物学现象的本质和规律,为未来的研究提供重要的参考。
时滞微分方程的Hopf分支的时域与频域分析时滞微分方程的Hopf分支是动力学系统中一类重要的现象,它在电路系统、神经网络、生物系统等领域有着广泛的应用。
Hopf分支是指系统在某些参数变化时,从稳定状态或周期状态偏离出来,进入一种新的持续振荡状态,即产生一个新的稳定极限环。
若尔盖不同退化高寒草甸土壤磷形态及其影响因素
第 32 卷 第 12 期Vol.32,No.1236-462023 年 12 月草业学报ACTA PRATACULTURAE SINICA 杨志强, 刘丹, 廖小琴, 等. 若尔盖不同退化高寒草甸土壤磷形态及其影响因素. 草业学报, 2023, 32(12): 36−46.YANG Zhi -qiang , LIU Dan , LIAO Xiao -qin , et al . Changes in soil phosphorus fractions and their causes under alpine meadows with different degradation status in Zoigê. Acta Prataculturae Sinica , 2023, 32(12): 36−46.若尔盖不同退化高寒草甸土壤磷形态及其影响因素杨志强,刘丹*,廖小琴,陈丹阳,宋小艳,柳杨,王长庭(西南民族大学青藏高原研究院,四川 成都 610041)摘要:为了明确不同退化高寒草甸土壤磷含量的变化特征,以若尔盖未退化(UD )、轻度退化(LD )、中度退化(MD )、重度退化(SD )和极度退化(ED )高寒草甸为研究对象,采用Hedley 磷分级法,测定并比较不同退化程度下高寒草甸土壤磷形态含量差异,探讨影响退化高寒草甸土壤磷形态的环境因素。
结果显示:1)整体上高寒草甸土壤磷形态以盐酸磷为主,稀盐酸无机磷(DHCl -P i )、浓盐酸无机磷(CHCl -P i )和浓盐酸有机磷(CHCl -P o )含量之和占总磷(TP )的50%以上。
2)高寒草甸土壤各形态磷随退化程度加剧整体呈下降趋势。
与未退化草甸相比,极度退化草甸0~10 cm 土壤水溶性磷(H 2O -P )、碳酸氢钠无机磷(NaHCO 3-P i )和碳酸氢钠有机磷(NaHCO 3-P o )显著降低了92.51%、89.57%和85.10%,10~20 cm 土壤仅NaHCO 3-P o 显著降低了80.32%;0~20 cm 土壤氢氧化钠无机磷(NaOH -P i )、氢氧化钠有机磷(NaOH -P o )、浓盐酸有机磷(CHCl -P o )和残余磷(residual -P )整体表现为随退化加剧而降低,最小值均在极度退化草甸且分别为12.15、7.09、21.14和26.48 mg ·kg -1。
转甲状腺素蛋白淀粉样变心肌病生物标志物的研究进
基金项目:重庆医科大学未来医学青年创新团队支持计划(NO.0184)通信作者:黄毕,E mail:huangbi120@163.com转甲状腺素蛋白淀粉样变心肌病生物标志物的研究进展黎铸 秦俭 罗素新 黄毕(重庆医科大学附属第一医院心血管内科,重庆400042)【摘要】转甲状腺素蛋白淀粉样变心肌病(ATTR CM)是一种浸润性心肌病,近年来越来越受到重视。
由于临床表现缺乏特异性,ATTR CM的误诊率和漏诊率均较高。
随着对该疾病的重视及研究的深入,近年来对ATTR CM的认识取得了一定的进展。
生物标志物对疾病的诊断具有重要价值,虽然目前尚无ATTR CM特异性的生物标志物,但一些生物标志物已被证实和ATTR CM相关,对ATTR CM的辅助诊断具有一定的价值。
现综述近年来与ATTR CM相关的生物标志物的研究进展。
【关键词】转甲状腺素蛋白淀粉样变心肌病;生物标志物;视黄醇结合蛋白;非天然甲状腺素;多肽探针;神经丝轻链【DOI】10 16806/j.cnki.issn.1004 3934 2023 12 015BiomarkersinTransthyretinAmyloidCardiomyopathyLIZhu,QINJian,LUOSuxin,HUANGBi(DepartmentofCardiology,TheFirstAffiliatedHospitalofChongqingMedicalUniversity,Chongqing400042,China)【Abstract】Transthyretinamyloidcardiomyopathy(ATTR CM)isaninfiltrativecardiomyopathy,andrecentlymoreattentionhasbeenpaidonit.Duetothelackofspecificityofclinicalmanifestations,thereremainssubstantialdelaybetweeninitialsymptomsanddiagnosis.TheunderstandingofATTR CMhasmadesomeprogresswiththeattentiontothediseaseinrecentyears.Biomarkersareofgreatvalueinthediagnosisofdiseases.AlthoughthereislackofspecificbiomarkerforATTR CMatpresent,somebiomarkershavebeenconfirmedtoberelatedtoATTR CMandhavecertainvalueintheauxiliarydiagnosisofATTR CM.ThisarticlereviewstherecentprogressofbiomarkersrelatedtoATTR CM.【Keywords】Transthyretinamyloidcardiomyopathy;Biomarker;Retinol bindingprotein;Nonnativetransthyretin;Peptideprobe;Neurofilamentlightchain 转甲状腺素蛋白淀粉样变心肌病(transthyretinamyloidcardiomyopathy,ATTR CM)是一种由于转甲状腺素蛋白(transthyretin,TTR)沉积引起的浸润性心肌病。
《土壤中的解磷微生物研究文献综述4200字》
土壤中的解磷微生物研究文献综述目录土壤中的解磷微生物研究文献综述 (1)1.1 前言 (1)1.2 土壤中的磷 (2)1.2.1 土壤中的磷的存在形式及动态变化 (2)1.2.2 我国磷肥的应用现状 (2)1.3 解磷微生物的研究概况 (2)1.3.1 微生物在磷素循环中的作用 (2)1.3.2 解磷微生物的的种类 (3)1.3.3 解磷微生物的解磷机制 (3)1.3.4 解磷菌肥研究现状 (4)1.3.5 矿区土壤中解磷细菌研究现状 (4)参考文献 (4)1.1 前言磷是生物生长发育的必需元素之一,动物和微生物可通过捕食或分解代谢来补充,而植物体内的磷元素主要来自植物根部对土壤中可溶性磷元素的吸收。
其含量的多少直接影响植物的生根、幵花、固氮以及光合作用等生命活动[1]。
土壤中的磷素有95%以上以难溶性盐的形式存在。
由于具有溶解度极低、不易被吸收的特性,导致我国一半以上的耕地存在着土壤或植物的缺磷现象。
磷素的缺乏常会导致作物的生长发育受限,目前国家主要采取增施化学磷肥[2]等措施。
磷肥的不合理施用造成了磷矿资源过量开采[3,4]、环境污染[5,6]以及当季磷肥利用率较低等一些列的问题。
至今磷仍然是我国农业生产中重要的限制因素之一,因此研究更加高效无害的新型磷肥,提高磷肥使用效率,是提高我国乃至全球农业发展虐待解决的问题之一。
目前为止,多种解磷微生物已经在农业生产中得到了应用,但仍旧存在着菌株定殖能力较弱,溶磷效果不佳等问题。
由于土壤中磷素成分多样复杂,因此筛选具有多重解磷能力且对恶劣生态环境适应性较强的微生物,仍是解磷菌肥开发的一项重要的基础性工作[7]。
本研究以辽宁省大连市某水镁矿尾矿表层土壤中筛选出的兼具溶磷效果和环境适应能力强的细菌菌株为研究对象,探讨了其对钙磷、铝磷、铁磷以及有机磷等四种不同类型难溶性磷的降解性能,为今后开发和利用解磷菌肥提供参考依据,对节约磷矿资源,缓解相关的面源污染等问题具有重要的现实意义。
磷在污泥热解过程中的迁移转化
磷在污泥热解过程中的迁移转化孟详东;黄群星;严建华;郜华萍【摘要】采用SMT方法研究磷在热解产物中的赋存形态和分布.结果发现,热处理促进污泥中有机磷(OP)向无机磷(IP)转化.热解温度在800℃以下时,污泥中的磷富集在热解后的污泥固体中.随热解温度升高,污泥中全磷(TP)、无机磷(IP)和磷灰石无机磷(AP)的含量均表现出逐渐升高的趋势,非磷灰石无机磷(NAIP)含量则表现出先升高再降低的趋势.热解温度升高会促使NAIP向AP转化,800℃时AP含量达到最大.污泥中NAIP的主要存在形式为磷酸铝盐和磷酸铁盐,磷酸钙盐含量随温度的升高逐渐增加.污泥中正磷酸单酯和焦磷酸盐受热转化为正磷酸盐,热解后的污泥中磷基本以正磷酸盐的形式存在.该结论为污泥的无害化、资源化利用提供了理论支持.【期刊名称】《化工学报》【年(卷),期】2018(069)007【总页数】9页(P3208-3215,封4)【关键词】污泥;热解;磷;迁移转化【作者】孟详东;黄群星;严建华;郜华萍【作者单位】浙江大学热能工程研究所,能源清洁利用国家重点实验室,浙江杭州310027;浙江大学热能工程研究所,能源清洁利用国家重点实验室,浙江杭州310027;浙江大学热能工程研究所,能源清洁利用国家重点实验室,浙江杭州310027;昆明理工大学环境科学与工程学院,云南昆明 650093【正文语种】中文【中图分类】X703引言磷是难再生的非金属矿资源,当前世界磷矿石的年开采量为1.4亿吨左右,预计到2030年世界磷矿石的年开采量将超过1.87亿吨[1]。
据资料统计,我国现有 27亿吨折标磷矿储量,仅能维持我国再使用70年左右,其中还包含90%以上的非富磷矿,如果仅以富磷矿磷储量计算,则仅能维持我国使用10~15年[2]。
在可预见的磷矿石供应紧缺的未来下,从废弃物中回收磷资源可成为部分解决方案[3-4]。
在城市污水的处理过程中,磷元素由于具有单向流动的特点而不能被分解,使得大量的磷富集在剩余污泥中。
西南大学生物化学考研真题
西南⼤学⽣物化学考研真题2002年攻读硕⼠学位研究⽣⼊学考试试题⼀、名词解释1.变构现象2.离⼦交换层析3.增⾊效应4.Tm5.Km6.同⼯酶7.氧化磷酸化8.转氨作⽤9.拓扑异构酶10.操纵⼦⼆、是⾮题1、蛋⽩质磷酸化和去磷酸化是可逆反应,该可逆反应是同⼀种酶催化完成2、所有mRNA的起始密码⼦都是AUG3、真核细胞和原核细胞核糖体中的RNA数⽬和种类都是相同的4、⼀个氨基酸残基就是⼀个肽单元5、DNA复制需要RNA引物,RNA复制需要引物6、由于遗传密码的简并性,⼀个氨基酸可以有⼏种tRNA,但通常只有⼀种肽酰-tRNA合成酶7、蛋⽩质在热⼒学上最稳定的构象是⾃由能低的结构8、细胞液中脂肪酸合成需要线粒体产⽣⼄酸,⽽⼄酸是由⼄酰CoA将它带出线粒体膜9、在蛋⽩质和多肽分⼦中,只有⼀种连接氨基酸残基的共价键-肽键10、B族维⽣素在体内均能构成辅酶⽽参加代谢11、⼀种辅助因⼦只能与⼀种酶蛋⽩结合⽽成为特异性的酶12、脂肪酸的合成是β-氧化的逆过程13、共价调节酶的活动受ATP的共价修饰14、⼄醛酸循环存在于所有的⽣物体内15、蛋⽩质的分离、纯化主要是利⽤蛋⽩质分⼦的净电荷分⼦⼤⼩和形状、溶解性和亲和⼒的不同三、问答题1、⾷物中的核酸是⼈体营养所必需的吗?为什么?2、为什么说三羧酸循环是糖类、脂肪及氨基酸三⼤物质彻底氧化的共同通路?3、(1)有⼀份核酸样品,可能混有少量蛋⽩质,只允许定性测定⼀种元素,即可以确定其有⽆蛋⽩质污染,你选择哪⼀种元素,理由是什么?4、(2)有多种⽅法可以区别⾼分⼦量的DNA与RNA分⼦,请写出⼀种最简单可⾏的⽣化分析⽅法,并简要说明理由5、试述各种核酸在蛋⽩质⽣物合成过程中已知的主要作⽤6、已知某种毒蛇能分泌⼀种剧毒的蛋⽩质,试没有⼀个试验⽅案⽤于分离纯化和鉴定这种蛋⽩质2003年攻读硕⼠学位研究⽣⼊学考试试题⼀、名词解释1、蛋⽩质的三级结构2、亲和层析3、减⾊效应4、Z-DNA5、全酶6、诱导酶7、呼吸链8、糖酵解9、拓扑异构酶10、操纵⼦⼆、是⾮题1、核酶是核糖核酸酶的简称2、所有具有催化作⽤的物质都是酶3、真核细胞和原核细胞核糖体中的RNA数⽬和种类是不同的4、组成蛋⽩质的20种氨基酸都有⼀个不对称性的α-碳原⼦,所以都有旋光性5、DNA复制需要DNA引物,RNA复制不需要引物6、由于遗传密码简并性,⼀个氨基酸可以有⼏种tRNA,因此通常有⼏种氨酰-tRNA合成酶7、温和碱性条件下,RNA容易⽔解,DNA否8、细胞液中脂肪酸合成需要线粒体产⽣⼄酸,⽽⼄酸是⾃⼄酰CoA将它带出线粒体膜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Integrative Agriculture© 2013, CAAS. All rights reserved. Published by Elsevier Ltd.Changes in Phosphorus Fractions and Nitrogen Forms During Composting of Pig Manure with Rice StrawLÜ Dui-an 1, 2, Y AN Bai-xing 1, W ANG Li-xia 1, DENG Zhi-qiang 1, 2 and ZHANG Y u-bin 31Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, P.R.China 2University of Chinese Academy of Sciences, Beijing 100049, P.R.China 3College of Plant Science, Jilin University, Changchun 130062, P.R.ChinaAbstractThe study was conducted to reveal P fractions and N forms changing characters during composting of pig manure with rice straw. During composting, the NH 4+-N concentration decreased and reached at a relatively low value (<400 mg kg -1) in the final compost, while the NO 3--N concentration increased. Total N losses mainly occurred during thermophilic phase due to the high temperature, the high NH 4+-N concentration and the increase of pH value. Labile inorganic P was dominated in the pig manure and initial compost mixture. During composting, the proportion of labile inorganic P of total extracted P decreased, while the proportion of Fe+Al-bound P, Ca+Mg-bound P and residual P increased. The evolutions of the proportion of labile inorganic P, Fe+Al-bound P and Ca+Mg-bound P were well correlated with the changes of pH value, organic matter and C/N ratio. Therefore, composting could increase the concentration of N and P and decrease the presence of NH 4+-N and labile P fractions which might cause environmental issues following land application.Key words : composting, nitrogen forms, phosphorus fractions, organic matter, pig manureINTRODUCTIONPig manure has sufficient amount of nutrients, especially N and P, which are the main limiting nutrients in majority of soil for crop production. However, long-term manure application to agriculture lands will lead to N and P accumulation in soils and an acceleration of soluble N and P transfer into water bodies via runoff (Huang et al. 2011; Li Q et al. 2012). To address this problem, strategies such as composting has been adopted in many countries. During composting, labile organic compounds are stabilized and converted into products that could be used as organic fertilizer and soil conditioner.The N forms are closely related to the degree of compost maturity (Bernal et al. 2009). Immature compost usually means high NH 4+-N concentration which can be easily lost through NH 3 volatilization following land application (Doydora et al. 2011; Vaddella et al . 2011). During composting, NH 4+-N can be immobilized or transformed to organic forms. Knowledge of evolution of N forms during composting is particularly important to assess agronomic and economic value of compost product, maturity of compost and risk following land application. The concentrations of P in animal manure and compost ranged from 1.5 to 39.3 g kg -1 (Sharpley and Moyer 2000). Most of the studies about P during composting only include total P (TP) content or the incrementReceived 25 October, 2012 Accepted 6 March, 2013LÜ Dui-an, Tel: +86-431-85542215, E-mail: lvduian_1147@; Correspondence WANG Li-xia, Tel: +86-431-85542215, E-mail: lxwang@1856LÜ Dui-an et al. between final and initial TP concentrations. Asknowledge of TP provides no information of the natureof chemical forms of P, fractionation of P should beintroduced in the study for it could provide an effectiveapproach for investigating availability, solubility andinter-conversion among P fractions (Shen et al. 2004).The P fractions in different environments such as insoils (Redel et al. 2008), sediments of marine, riversand lakes (Xiang and Zhou 2011) and sludge (Xieet al. 2011) have been widely researched, but littleinformation is available on the evolution of P fractionsduring composting.The objectives of current research were to determineP fractions and N forms evolution during compostingof pig manure with rice straw, and to investigate theparameters that influence P distribution. The changesof P fractions and N forms during composting wouldbe helpful to estimate the nutrient supply capacityof manure composting and the environmental riskfollowing land application.RESULTS AND DISCUSSIONCompost properties and humic substance contentTemperature is one of the most important parameters to monitor composting process (Fig. 1). During composting, microorganism decomposes organic matter (OM) and produces energy which increases the temperature. The temperature of the compost reached thermophilic phase in 1 wk and maintained for nearly2 wk, then decreased to ambient temperature ond 49, which meant the OM in the compost had been stabilized and the composting came to the end.OM losses can be defined as the percentage of decomposition (Fig. 2-A). The decomposition process mainly occurred during thermophilic phase of composting due to the high bacterial activities as a result of the high temperature and substantial biodegradable raw materials. The plateau value reached after 31 d of composting illustrated the lower bacterial activity due to lack of biodegradable compounds. This parameter is a good indicator of compost OM stability.The pH value increased throughout the composting because of the decomposition of acid-type compounds and the mineralization of organic compounds to inorganic compounds, such as NH4+-N (Fig. 2-B) (Paredes et al. 2000). The value of electrical conductivity (EC) increased at the beginning and thermophilic phase because of the mineralization of OM, but decreased at the latter phase which might be due to the precipitation of mineral salts, the volatilization of NH3and the stabilization of OM (Fig. 2-B). The C/N ratio of the study decreased, especially during thermophilic phase coinciding with the greatest OM degradation and then maintained at about 12 in the final compost (Fig. 2-C), indicating a good degree of maturity (Bernal et al. 1996). Dissolved organic carbon (DOC) decreased sharply at the beginning of the composting (Fig. 2-C), because these compounds were highly available to microorganisms. However, during thermophilic phase, DOC increased as a result of the continuously release of breakdown product through OM degradation. Later, DOC decreased again. Most of the DOC in the mature compost is present as humic substance (HS) and is unavailable for further decomposition (Hsu and Lo 1999).Temperature(°C)Composting time (d)Fig. 1 Compost and ambient temperature during composting of pig manure with rice straw.Changes in Phosphorus Fractions and Nitrogen Forms During Composting of Pig Manure with Rice Straw 1857Fig. 2 Changes in physicochemical properties of the compost mixture during composting of pig manure with rice straw. A, organic matter (OM) and total N (TN) losses. B, pH and EC. C, dissolved organic carbon (DOC) and C/N ratio. D, carbon of humic substance. E, urease activity and alkaline phosphatase (AlkP) activity. F, different N forms.FEDCBAE C (d S m -1)p HComposting time (d)2.02.53.03.54.04.55.0C /ND O C (g k g -1)Composting time (d)C a r b o n o f h u m i c s u b s t a n c e (g k g -1)Composting tme (d)A l k P a c t i v i t y (g p h e n o l k g -1 h -1)U r e a s e a c t i v i t y (g N H 4-N k g -1 d -1)Composting time (d)T N (g k g -1)I n o r g a n i c N (m g k g -1)Composting time (d)O M a n d T N l o s s e s (p e r c e n t a g e o f i n i t i a l v a l u e )Composting time (d)810121416182022242628303201234505101520253035404550HS comprises the most important fraction of OM for their unique properties, such as adsorption or reaction with metal ions, buffering pH, and as a potential source of nutrients for plants (Hsu and Lo1858 LÜ Dui-an et al.1999). HS can be separated into humic acid (HA) and fulvic acid (FA). The concentration of carbon of HS (C HS), carbon of HA (C HA) and carbon of FA (C FA) had a similar decreasing trend at the beginning of composting (Fig. 2-D), because of the degradation of simple organic carbon compounds (such as simple carbohydrates, fats and sugars) which could be easily mineralized and metabolized by microorganisms (Bernal et al. 2009). Then, these forms increased as a consequence of the fierce OM degradation during the following week. Later, C HS, C HA and C FA showed different evolution trends, C HA became stabled, while C HS and C FA decreased. The increase of C HA and decrease of C FA during composting represent the humification of OM and the maturity of the compost. Roletto et al. (1985) suggests that C HA/C FA>1 as the limited humification level for composts. The maximum value (2.53±0.10) of C HA/C FA observed in the final compost indicated that the composting was fully developed.Urease activity and alkaline phosphatase activityUrease is of agronomic value because the enzyme can catalyze hydrolysis of urea to CO2 and NH3. Urease is found widely distributed in nature such as soils, animals, plants and microorganism (Roscoe et al. 2000). At the beginning of composting, urease activity increased due to the high readily biodegradable OM and N-compound (Fig. 2-E), especially urea, which was rich in pig manure. Then, urease activity decreased and became stabled after 31 d of composting, which might be due to the stabilization of OM.Phosphatase is a key enzyme in the P cycle. Alka-line phosphatase (AlkP) activity decreased at the beginning of composting, and then increased to a plateau value on d 31 (Fig. 2-E), which differed from other studies. Ros et al. (2006) found AlkP activity increased at the beginning and reached maximum value in the mature compost, while Raut et al. (2008) found AlkP activity decreased after thermophilic phase of composting.Evolution of different N formsThe evolution of different N forms during composting is shown in Fig. 2-F. Total N (TN) increased slightly as a consequence of concentration effect due to the mass loss during composting (Bernal et al.2009). As NH4+-N could be easily transformed to organic forms under the metabolism of microorganisms or lost through NH3 volatilization, there was a little decrease of NH4+-N concentration at the beginning of composting. Then, an increase in the NH4+-N concentration was observed during the following week which might be due to the degradation of OM and N-compounds. Moreover, the high level of urease activity would accelerate the hydrolysis of urea and bring up the NH4+-N concentration. After 15 d of composting, the NH4+-N concentration decreased again, which could be explained by volatilization and immobilization processes. A high level of NH4+-N concentration indicates unstabilized materials during composting. The final NH4+-N concentration in the compost was below 400 mg kg-1, which was recommended as the maximum value in mature compost (Bernal et al. 1998). The NO3--N concentration was found at a low level at the beginning and mainly increased after thermophilic phase, because the high temperature and the high NH4+-N concentration inhibited the activity and growth of nitrifying bacteria (Morisaki et al. 1989). The decrease of NH4+-N and appearance of NO3--N are good indictors of the maturation process (Riffaldi et al. 1986). NH4+-N/NO3--N ratio decreased gradually during composting and reached near 2 in the final compost, which was still higher than the value (<0.16) established by Bernal et al. (1998) for mature compost, but lower than the result found by Huang et al. (2004). As different composting technologies and raw materials were used, the value varied at a wide range (Bernal et al. 1998; Huang et al. 2004; Amir et al. 2005; Haroun et al. 2009).TN losses in the final compost was (35.91±1.13)% of initial value (Fig. 2-A). At the beginning of composting, although there was a high level of NH4+-N concentration, the TN losses was low since the pH value was only near 7 which might limit NH3 volatilization. The greatest TN losses was observed during thermophilic phase due to the highChanges in Phosphorus Fractions and Nitrogen Forms During Composting of Pig Manure with Rice Straw 1859temperature, the high level of NH 4+-N concentration and the increase in pH value which would enhance the volatilization of NH 3 (Bernal et al . 2009). The plateau value of TN losses reached on d 31 meant that the OM and N-compound in the compost had become stabled. Low value of TN losses is desirable as it means the increases of agronomic and economic value in the compost product.Changes in P fractionsThe concentration and proportion of individual P fractions are shown in Fig. 3. The concentration ofall forms of P increased due to the decomposition of OM and the mass losses during composting. Pearson correlation matrices of P fractions with pH, OM, C/N ratio, C HS , DOC and AlkP activity were investigated to determine the influence of these selected parameters on the changes of P distribution during composting (Table 1).As the main fraction in the pig manure, labile inorganic P (P i ) accounted for (51.75±1.61)% of total extracted P. This compound is dominated by phosphate and is effective P fraction for plants uptake of P significantly (Turner and Leytem 2004). However, too much anthropogenic inputs of soluble102030405060708090100 Labile P iLabile P oFe+Al P Humic P Moderately labile P o P e r c e n t a g e o f t o t a l e x t r a c t e d P (%)Composting time (d)5 000DCBAT h e c o n c e n t r a t i o n o f P f r a c t i o n (m g k g -1)Composting time (d)5001 0001 5002 0002 5003 0003 5004 000T h e c o n c e n t r a t i o n o f m i c r o b i a l P (m g k g -1)Composting time (d)Microbial P49393123157105101520M i c r i o b i a l P (p e r c e n t a g e o f t o t a l e x t r a c t e d P )Composting time (d)493931231571010Fig. 3 Changes in P fractions during composting of pig manure with rice straw. A and B, the concentration of P fractions. C and D, the percentage of P fractions of total extracted P.1860LÜ Dui-an et al.P to soil will lead to excrescent labile P i transfer to water bodies which can contribute to eutrophication in freshwater ecosystems (Leytem and Bjorneberg 2009; McCallister et al. 2010). During composting, the largest decrease was found in labile P i. The proportion of total extracted P in this pool decreased from (52.52±0.13)% at the beginning to (27.45±0.35)% at the end of the composting. The decrease of the proportion of labile P i was significantly correlated with the decrease of OM (R=0.990**) and C/N ratio (R=0.997**) and the increase of pH value (R=-0.905***). As labile P i is mainly consisted of phosphate which could form insoluble precipitates as a result of sorption to clays, incorporation into interior structure of non-labile materials and reaction with metal ions (Forbes et al. 2005; Li H et al. 2012), the formation of HS an d the increase of pH value during OM degradation could accelerate the transformation of labile P i to more recalcitrant forms.Labile organic P (P o) is also considered to be soluble form and represents weakly absorbed P o in soils that includes DNA, phospholipids, and simple phosphate monoesters (Turner and Leytem 2004). These compounds have environmental significance even if present in relatively small concentration for their mobility (Stewart and Tiessen 1987). During composting, the proportion of labile P o decreased from (3.63±0.19) to (1.29±0.06)%. The decrease of labile P o was well correlated with the changes of C HS (R=0.778*) and DOC (R=0.873*). This might because labile P o was mainly contained in dissoluble organic matters.Microbial P represents P i and P o held in live mi-croorganisms. This compound is important for plants use, for it can turn over rapidly to labile P i and labile P o following land application of organic wastes (Forbes et al. 2005). The proportion of microbial P in the compost increased nearly throughout the composting and reached plateau value ((11.08±0.56)% of total extracted P) in the final compost. The increase of the microbial P was positively correlated with the decrease of OM (R=-0.896**) and C/N ratio (R=-0.824*) and the increase of pH value (R=0.975**). As found by Raut et al. (2008), there is an increase of microbial biomass during composting. The increase in microbial biomass might be responsible for the increase in the proportion of microbial P.The P extracted by NaOH and HCl can be consid-ered poorly soluble in the environment (Turner and Leytem 2004). These fractions include Fe+Al-bound P, humic P, Ca+Mg-bound P and moderately labile P o. During composting, the proportion of P extracted by NaOH and HCl increased, which meant the im-mobilization of P. Fe+Al-bound P only accounted for (8.38±0.17)% of total extracted P at the beginning of composting. However, this fraction increased and became quantitatively important in the final compost, accounting for (15.98±0.28)% of total extracted P. The largest increase was found in Ca+Mg-bound P. This form was recalcitrant and was dominated pool in the final compost, accounting for (40.93±0.34)% of total extracted P. On the contrary to labile P i, the in-creases of Fe+Al-bound P and Ca+Mg-bound P were well correlated with the decrease of OM (R=-0.955** and R=-0.956**, respectively) and C/N ratio (R= -0.943** and R=-0.980**, respectively) and the increase of pH value (R=0.893** and R=0.839*,respectively). Many studies have shown that phosphate would be adsorbed on the surface of Fe, Al, Ca, Mg and hydrox-ides (Danenlouwerse et al. 1993; Li H et al.2012). The large amounts of these ions in pig manure were responsible for the formation of Fe+Al-bound P and Ca+Mg-bound P (Turner and Leytem 2004). The hu-mic P and the moderately labile P o are the forms that may have environmental risk under the biological de-composition of microorganism. These two forms are mainly constituted of P o like P monoesters and phytic acid (Turner and Leytem 2004). The proportion of humic P of total extracted P decreased during com-posting, while the change of moderately labile P o wasTable 1Correlation coefficients of P fractions with selected physicochemical properties of the compost mixture during compos-ting of pig manure with rice strawP fraction pH OM C/N C HS DOC AlkP Labile P i-0.905** 0.990**0.997**0.2510.606-0.680 Labile P o-0.763*0.7510.7080.778*0.873*-0.123 Fe+Al-bound P0.893**-0.955**-0.943**-0.198-0.5590.740 Humic P-0.4940.7010.812*0.0220.262-0.236 Ca+Mg-bound P0.839*-0.956**-0.980**-0.289-0.5940.538 moderately labile P o-0.6780.7240.6590.3110.478-0.511 Residual P0.969**-0.937**-0.870*-0.546-0.828*0.638 Microbial P0.975**-0.896**-0.824*-0.465-0.797*0.718 *, ** statistically significant at the probability level 0.05 and 0.01 (2-tailed), respectively.Changes in Phosphorus Fractions and Nitrogen Forms During Composting of Pig Manure with Rice Straw 1861irregular.Although the change of the proportion of residual P was small, it showed statistically significant increase during composting. The increase of the proportion of residual P was well correlated with the decrease of OM (R=-0.937**) and C/N ratio (R=-0.870*) and the increase of pH (R=0.969**).Thus, the decrease order of P fraction at the be-ginning of composting was labile P i>Ca+Mg-bound P>Fe+Al-bound P>microbial P>residue P>humic P>moderately labile P o>labile P o, while in the ma-ture compost the order was Ca+Mg-bound P>labile P i>Fe+Al-bound P>microbial P>residue P>moderately labile P o>humic P>labile P o. The composting process allowed the transformation of labile P i and labile P o to more recalcitrant forms such as Fe+Al-bound P, Ca+Mg-bound P and residual P. This indicates that composting could be a useful way of managing ma-nure for P fixation and reducing agricultural P in run-off following land application.CONCLUSIONComposting could increase the concentration of N and P and decrease the presence of NH4+-N and soluble P fractions which might cause environmental problems following land application. The NH4+-N concentration was at a relatively low value (<400 mg kg-1) in the final compost. The NO3--N concentration mainly increased during mature phase. Composting allowed the transformation of labile P i which was dominated at the beginning of composting to more recalcitrant forms such as Ca+Mg-bound P which was dominated in the final compost, Fe+Al-bound P and residual P. The decrease of labile P i and the increase of Ca+Mg-bound P, Fe+Al-bound P, residual P and microbial P were well correlated with the increase of pH value, the decrease of OM and C/N ratio.MATERIALS AND METHODS Experimental procedureThe composting pile (about 400 kg) was prepared constituting of pig manure and rice straw in a ratio of 3:1 (w/w, fresh weight). The initial moisture content of the compost was adjusted to about 65% and maintained at the same level by adding necessary amount of water weekly. Composting was conducted in a vessel with a volume of 640 L (length×width×height=0.8 m×0.8 m×1.0 m). In the button of the vessel, there were eight PVC tubes with ventilation holes in sidewalls. Forced aeration was used during the composting and the air-blowing was controlled by a timer which was set at 30 min ventilation per hour. The aeration flow was controlled at 6 m3 h-1 by rotameters. Temperature was measured daily at the center of the pile by temperature sensors and the ambient temperature was achieved simultaneously.The composting was lasted for 49 d. And seven samples were taken during the experimental time (on d 1, 7, 15, 23, 31, 39, 49). Each sample was taken by mixing nine sub-samples together (three from the top, three from the middle and three from the button) and then divided into two parts: one was kept at 4°C and the other was air-dried, grounded and sieved to <0.25 mm for further analyses. The physicochemical properties of the experimental raw materials are shown in Table 2.Table 2 Physicochemical properties of the experimental raw materials (dry matter basis)Parameter Pig manure Rice straw pH 7.10±0.01 7.03±0.01 EC (dS m-1) 3.65±0.01 3.01±0.02 NH4+-N (mg kg-1)3454.70±83.30444.40±40.16 NO3--N (mg kg-1) 129.10±14.85 60.30±34.65 Organic matter (g kg-1)806.03±3.73886.86±9.92 Total N (g kg-1) 31.49±0.62 11.42±0.01 Total P (g kg-1) 15.80±0.23 3.63±0.10 Values are means±standard error.Chemical analysisThe compost samples were analyzed for pH and EC in 1:10 (w/v) water extracts (He et al. 2009). NH4+-N and NO3--N were extracted with 2 mol L-1 KCl from fresh samples and were then determined by the indophenol blue method and cadmium reduction method. The moisture contents of the samples were determined after dried at 105°C for 24 h. Ash content was determined by combustion at 550°C for 8 h. OM was determined by subtraction of ash content. Total organic carbon was calculated as 58% of OM (Zmora-Nahum et al.2005). TN was measured by Kjeldahl method (Bremner 1996). DOC, C HS extracted with 0.1 mol L-1NaOH, and C FA from the NaOH extraction at pH 1.0 were determined by potassium dichromate oxidic method (Pereira et al. 2006).C HA was calculated as the difference in C HS and C FA. Activities of urease and AlkP were measured according to Cang et al. (2009).Losses of OM and TN were calculated from the initial (A1) and final (A2) ash contents following the formula (Paredes1862LÜ Dui-an et al.et al. 2000):OM losses (%)=100-100×[A1(100-A2)]/[A2(100-A1)]TN losses (%)=100-100×[(A1N2)/(A2N1)]W h e r e N1a n d N2a r e t h e i n i t i a l a n d f i n a l T N concentration, respectively.Sequential P fractionationThe procedure of sequential P fractionation modified acco r ding to the method of Hedley et al. (1982) was shown in Fig. 4. The organic component of the HCl extracts (moderately labile P o) was added which was not included in the Hedley fractionation procedure, as this pool should not be ignored in compost. TP in the extracts was analyzed following sulfuric acid-potassium persulfate digestion in an autoclave while P i was analyzed directly. Residual P after the final extraction and TP in the compost samples were determined after digested with concentrated H2SO4 and H2O2. The P i and TP in the extracts and digest were all assessed by the ascorbic acid method after the specified treatment. The recoveries between the sum of individual P fractions and TP ranged from 86 to 93%. The differences were caused by the accumulation losses between each procedure.Fig. 4 Sequential P fractionation procedure. TP, total P; P i, inorganic P; P o, organic P.AcknowledgementsThis work was financially supported by the Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07201004) and Jilin Provincial Research Foundation for Basic Research, China (201105033).ReferencesA mir S, Hafidi M, Merlina G, Revel J C. 2005. Sequentialextraction of heavy metals during composting of sewage sludge. Chemosphere, 59, 801-810.Bernal M P, Alburquerque J A, Moral R. 2009. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology, 100, 5444-5453.Bernal M P, Navarro A F, Roig A, Cegarra J, Garcia D.1996. Carbon and nitrogen transformation during composting of sweet sorghum bagasse. Biology and Fertility of Soils, 22, 141-148.Bernal M P, Paredes C, Sanchez-Monedero M A, Cegarra J. 1998. Maturity and stability parameters of composts prepared with a wide range of organic wastes.Bioresource Technology, 63, 91-99.Bremner J M. 1996. Methods of Soil Analysis. Part 3: Chemical Methods. SSSA, Madison.Cang L, Zhou D M, Wang Q Y, Wu D Y. 2009. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities. Journal of Hazardous Materials, 172, 1602-1607.Danenlouwerse H, Lijklema L, Coenraats M. 1993. Iron content of sediment and phosphate adsorption properties.Hydrobiologia, 253, 311-317.Doydora S A, Cabrera M L, Das K C, Gaskin J W, Sonon L S,Changes in Phosphorus Fractions and Nitrogen Forms During Composting of Pig Manure with Rice Straw 1863Miller W P. 2011. Release of nitrogen and phosphorus from poultry litter amended with acidified biochar.International Journal of Environmental Research and Public Health, 8, 1491-1502.Forbes M G, Dickson K L, Saleh F, Waller W T, Doyle R D, Hudak P. 2005. Recovery and fractionation of phosphorus retained by lightweight expanded shale and masonry sand used as media in subsurface flow treatment wetlands. Environmental Science & Technology, 39, 4621-4627.Haroun M, Idris A, Omar S. 2009. Analysis of heavy metals during composting of the tannery sludge using physicochemical and spectroscopic techniques. Journal of Hazardous Materials, 165, 111-119.He M M, Li W H, Liang X Q, Wu D L, Tian G M.2009. Effect of composting process on phytotoxicity and speciation of copper, zinc and lead in sewage sludge and swine manure. Waste Management, 29, 590-597.Hedley M J, Stewart J W B, Chauhan B S. 1982. Changes in inorganic and organic soil-phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46, 970-976.Hsu J H, Lo S L. 1999. Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure. Environmental Pollution, 104, 189-196.Huang G F, Wong J W C, Wu Q T, Nagar B B. 2004. Effect of C/N on composting of pig manure with sawdust.Waste Management, 24, 805-813.Huang S, Ma Y, Bao D, Guo D, Zhang S. 2011. Manures behave similar to superphosphate in phosphorus accumulation in long-term field soils. International Journal of Plant Production, 5, 135-146.Leytem A B, Bjorneberg D L, 2009. Changes in soil test phosphorus and phosphorus in runoff from calcareous soils receiving manure, compost, and fertilizer application with and without alum. Soil Science, 174, 445-455.Li H, Wang Y, Shi L Q, Mi J, Song D, Pan X J. 2012.Distribution and fractions of phosphorus and nitrogen in surface sediments from dianchi lake, China.International Journal of Environmental Research, 6, 195-208.Li Q, Li J M, Cui X L, We D P, Ma Y B. 2012. On-farm assessment of biosolids effects on nitrogen and phosphorus accumulation in soils. Journal of Integrative Agriculture, 11, 1545-1554.McCallister D L, Larson J A, Walters D T, Marx D B, Gossin C. 2010. Soil phosphorus distribution as affected by manure compost phosphorus concentration and incorporation. Communications in Soil Science and Plant Analysis, 41, 721-734.Morisaki N, Phae C G, Nakasaki K, Shoda M, Kubota H.1989. Nitrogen Transformation during thermophilic composting. Journal of Fermentation and Bioengineering, 67, 57-61.Paredes C, Roig A, Bernal M P, Sanchez-Monedero M A, Cegarra J. 2000. Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes. Biology and Fertility of Soils, 32, 222-227.Pereira M G, Valladares G S, dos Anjos L H C, Benites VD M, Espindula A, Ebeling A G. 2006. Organic carbondetermination in histosols and soil horizons with high organic matter content from Brazil. Scientia Agricola, 63, 187-193.Raut M P, William S P M P, Bhattacharyya J K, Chakrabarti T, Devotta S. 2008. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste-A compost maturity analysis perspective.Bioresource Technology, 99, 6512-6519.Redel Y, Rubio R, Godoy R, Borie F. 2008. Phosphorus fractions and phosphatase activity in an andisol under different forest ecosystems. Geoderma, 145, 216-221.Riffaldi R, Leviminzi R, Pera A, Debertoldi M. 1986.Evaluation of compost maturity by means of chemical and microbial analyses. Waste Management & Research, 4, 387-396.Roletto E, Barberis R, Consiglio M, Jodice R. 1985.Chemical-parameters for evaluating compost maturity.Biocycle, 26, 46-47.Ros M, Garcia C, Hernandez T. 2006. A full-scale study of treatment of pig slurry by composting: Kinetic changes in chemical and microbial properties. Waste Management, 26, 1108-1118.Roscoe R, Vasconcellos C A, Neto A E F, Guedes G A A, Fernandes L A. 2000. Urease activity and its relation to soil organic matter, microbial biomass nitrogen and urea-nitrogen assimilation by maize in a Brazilian Oxisol under no-tillage and tillage systems. Biology and Fertility of Soils, 32, 52-59.Sharpley A, Moyer B. 2000. Phosphorus forms in man-ure and compost and their release during simulated rainfall. Journal of Environmental Quality, 29, 1462-1469.Shen J, Li R, Zhang F, Fan J, Tang C, Rengel Z. 2004. Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crops Research, 86, 225-238.Stewart J W B, Tiessen H. 1987. Dynamics of soil organic phosphorus. Biogeochemistry, 4, 41-60.Turner B L, Leytem A B. 2004. Phosphorus compounds in sequential extracts of animal manures: chemical speciation and a novel fractionation procedure. Environ m ental Science & Technology, 38, 6101-6108. Vaddella V K, Ndegwa P M, Jiang A. 2011. An empirical。