化工原理讲稿第八章传质过程概论

合集下载

化工原理,第8-9章

化工原理,第8-9章

第八章 传质过程导论第一节 概述8-1 化工生产中的传质过程均相物系的分离(提纯,回收)1.吸收2.气体的减湿3.液-液萃取4.固-液萃取(浸沥,浸取)5.结晶6.吸附(脱附)7.干燥 8精馏 目的:湿分离或混合8-2 相组成的表示法1. 质量分率和摩尔分率m m a A A =m ma B B = mm a C C = ………. ......+++=C B A m m m mA,B 两组分 a a -1 n n x A A =n nx B B = nn x C C = ……. ......+++=C B A n n n n .......1+++=C B A x x x互换 A A A A A m m a m m x ==BB B m ma x = ……. ∑=++=i i i B B A A m a m m m a m m a n ...... ()....,,C B A i = 故 ∑==i iiAAA A m a m a n n x iiiA A A m x m a a ∑=2.质量比和摩尔比质量比 B A m m a /=摩尔比 B A n n X =()a a a -=1 ()x x X -=1()X X x -=13.浓度质量浓度 V m C A A = 3/m kg摩尔浓度 V n C A A = 3/m k m o l均相混合物的密度ρ即为各组分质量浓度的总和(体积与混合物相等)∑=++=i B A C C C ........ρρA V ma V m C A A A ===C x V n x V n C A A A A ===混合气体 RTp V n C A A A ==RTp M V n M V m C AA A A A A ===气体总摩尔浓度 RTpV n C ==摩尔分率与分压分率相等 pp n n y AA A ==气体混合物摩尔比可用分压比表示 BB AA B B A A B A M p M p M n M n n n Y ===第二节 扩散原理8-3 基本概念和费克定律分子扩散: 扩散速率与浓度梯度成正比 费克定律: 对双组分物系下表达为: dzdl D J AABA -= A J —分子A 的扩散通量 s m kmol ⋅2/ 方向与浓度样应相反 AB D —比例系数 组分A 在介质B 中的扩散系数 s m /2A c —组分A 浓度,3/m kmoldz dc A —组分A 的浓度梯度 4/m kmol RT p c A A =得 dzdp RT D J AAB A -= 定义A J 通过得截面是“分子对称”得,即有一个A 分子通过某一截面,就有一个B 分子反方向通过这一截面,填补原A 分子得空部位,这种分子对称面为固定时,较为简便。

化工原理(第二版)第八章-

化工原理(第二版)第八章-

中一
(8-11)
第二节 吸收过程的相平衡关系
(3)吸收平衡线 表明吸收过程中气、液相平衡关系 的图线称吸收平衡线。在吸收操作中,通常用图来表示。
图8-2吸收平衡线
第二节 吸收过程的相平衡关系
式(8-10)是用比摩尔分数表示的气液相平衡关系。
它在坐标系中是一条经原点的曲线,称为吸收平衡线,如 图8-2(a)所示;式(8-11)在图坐标系中表示为一条经 原点、斜率为m的直线。如图8-2(b)所示。
第二节 吸收过程的相平衡关系
相平衡关系随物系的性质、温度和压力而异,通常由 实验确定。图8-1是由实验得到的SO2和NH3在水中的溶解度 曲线,也称为相平衡曲线。图中横坐标为溶质组分(SO2 、 NH3)在液相中的摩尔分数 ,纵坐标为溶质组分在气相中 的分压 。从图中可见:在相同的温度和分压条件下, 不同的溶质在同一个溶剂中的溶解度不同,溶解度很大的 气体称为易溶气体,溶解度很小的气体称为难溶气体;同 一个物系,在相同温度下,分压越高,则溶解度越大;而 分压一定,温度越低,则溶解度越大。这表明较高的分压 和较低的温度有利于吸收操作。在实际吸收操作过程中, 溶质在气相中的组成是一定的,可以借助于提高操作压力 来提高其分压 ;当吸收温度较高时,则需要
(8-6) 式中 ——溶质在气相中的平衡分压,kPa;
——溶质在溶液中的摩尔分数; ——亨利系数,其单位与压力单位一致。 式(8-6)即为亨利定律的数学表达式,它表明稀溶 液上方的溶质平衡分压 与该溶质在液相中的摩尔分数 成正比,比例系数称为亨利系数。亨利系数的数值可由实 验测得,表8-1列出了某些气体水溶液的亨利系数值。
第二节 吸收过程的相平衡关系
1
分子扩散 物质以分子运动的方式通过静止流体

第八章 - 第二讲 -传质概论-分子扩散

第八章 - 第二讲 -传质概论-分子扩散

kg / m3
= i
对气体混合物(在总压不太高时)中A组分的质量浓度为
A
=
pAM A RT
kg / m3
三、浓度
2.摩尔浓度
指单位体积内的物质的量,对A组分
CA
=
nA V
mol / m3
c = ci
对于气体混合物(在总压不太高时),若其中组分A的分 压为PA,则可由理想气体定律计算其摩尔浓度
积分:z=z1 :PA =PA1 z=z2 :PA =PA2
NA
=
D
RT
(PA1

) PA2
同理:
NB
=
D
RT
(PB1

PB2
)
NA
=

D RT
PA1 z1
− −
PA2 z2
NA = −NB
净物质通量: N = N A + NB = 0
一、等分子反向扩散
注:
①液相:总浓度CM=CA+CB,则:
( ) N AL
= J AL
= D
L
CA1 − CA2
L
( ) NBL
=
J BL
=
D
L
CB1 − CB2
L
NAL = −NBL
②实际中少有等分子反向扩散,但对于二组分摩尔汽化潜 热相等的精馏过程,可视为此类型。
第一节 传质过程概述
3.质量浓度与摩尔浓度
组成 质量浓度 摩尔浓度
计算公式
Ci
=
mi V
=
M i pi RT
ci
= ni V
=
pi RT
换算公式
Ci = ai

《化工原理》8传质过程导论2

《化工原理》8传质过程导论2
N AR pD T ln p pz p p A A 1 2 R pD T ln p p B B z 1 2
College of Power Engineering NNU WANG Yanhua

pBm
pB2 pB1 l npB2
,
pB1
B组分在界面与主体间的对数平均分压
N AR PT D ln p p Z B B 1 2 R DT p P B m Z (pA 1pA 2)
思考:
气体的扩散系数随温度的升高而增示为P/pBm,它反映总体流动对传质的影响。
双组分气体A、B在进行稳定分子扩散,JA及NA分别表示在传 质方向上某截面溶质A的分子扩散通量与传质通量。当整个系
统为单向扩散时(B为停滞组分), J A = J B
N A >N B
JA+JB=0
n
Ji 0
i 1
DAB=DBA=D
College of Power Engineering NNU WANG Yanhua
简单回顾4:一维稳定分子扩散等摩尔相互扩散
传质速率(或物质通量)NA:单位时间通过单位固定截面的A物质量, 单位 kmol/(m2•s)
等摩尔相互扩散中(物系静止):
扩散方式 作用物
作用方式 作用对象
分子扩散 流体分子 热运动 静止、滞流
涡流扩散 流体质点 湍动和旋涡
湍流
College of Power Engineering NNU WANG Yanhua
费克定律
表 示 扩 散 方 向 与 浓 度 梯 度 方 向 相 反
JA DABddCAz
A 在 B 中 的 扩 散 系 数 m 2/s
气相
NAL D zLccsm cAqcA2 L

化工原理 第八章 传质过程导论.doc

化工原理 第八章 传质过程导论.doc

第八章传质过程导论第一节概述8-1 物质传递过程(传质过程)传质过程• 相内传质过程• 相际传质过程相内传质过程:物质在一个物相内部从浓度(化学位)高的地方向浓度(化学位)高的地方转移的过程。

实例:煤气、氨气在空气中的扩散,食盐在水中的溶解等等。

相际传质过程:物质由一个相向另一个相转移的过程。

相际传质过程是分离均相混合物必须经历的过程,其作为化工单元操作在工业生产中广泛应用,如蒸馏、吸收、萃取等等。

几种典型的相际传质过程●吸收:物质由气相向液相转移,如图8-1所示A图8-1 吸收传质过程●蒸馏:不同物质在汽液两相间的相互转移,如图8-2所示。

相界面AB图8-2 蒸馏传质过程●萃取,包括液-液萃取和液-固萃取液-液萃取:物质从一个相向另一个相转移。

例如用四氯化碳从水溶液中萃取碘。

液-固萃取:物质从固相向液相转移。

●干燥:液体(通常为水)由固相向气相转移其它相际传质过程:如结晶、吸附、气体的增湿、减湿等等。

传质过程与动量传递、热量传递过程比较有相似之处,但比后二者复杂。

例如与传热过程比较,主要差别为: (1)平衡差别传热过程的推动力为两物体(或流体)的温度差,平衡时两物体的温度相等;传质过程的推动力为两相的浓度差,平衡时两相的浓度不相等。

例如1atm,20ºC 下用水吸收空气中的氨,平衡时液相的浓度为0.582 kmol/m3 ,气相的浓度为3.28×10 - 4kmol/m3 ,两者相差5个数量级。

(2)推动力差别传热推动力为温度差,单位为ºC ,推动力的数值和单位单一;而传质过程推动力浓度有多种表示方法无(例如可用气相分压、摩尔浓度、摩尔分数等等表示),不同的表示方法推动力的数值和单位均不相同。

8-2浓度及相组成的表示方法1. 质量分数和摩尔分数● 质量分数:用w 表示。

以A 、B 二组分混合物为例,有w A = (8-1)● 质量分数:用x 或y 表示。

以A 、B 二组分混合物为例,有x A = (8-2)2. 质量比与摩尔比 ● 质量比:混合物中一个组分的质量对另一个组分的质量之比,用w 表示。

化工原理第八章

化工原理第八章

N A dz D
0

C A2
C A1
dC A CA 1 CM
D CM 积分后 N A C (C A1 C A 2 ) BM
C BM
C B 2 C B1 CB2 ln C B1
CM C M 1 , 低浓度吸收 漂流因子 1 C BM C BM
例题:在一个大气压和0℃的条件下CO2沿某一方
y yi x i x y yi m ( x i x ) NA 1 1 1 m ky kx k y kx y ye NA K y ( y ye ) 1 m k y kx
总传质系数
Ky
1 1 m k y kx
同样 NA=KX (xe-x)
2 4
4 N K ( y y ) 2 . 2 10 0.03 传质速率 A y e 6 2 6.6 10 kmol / m s
N A K x ( xe x ) 4.4 10 0.015 6.6 10 kmol / m s
2
4
6
E ②总压增加后,由 m 可知 P P 101.3 m' m 2 1.25 P' 162
Kx
1 1 1 mk y k x
mK y
Ky
1 1 m k y kx
有什么条件?
y mx b
4.2 阻力控制
总阻力

1 1 m K y k y kx
气相阻力控制
1 m ky kx
Ky≈ky , Kx≈mky , yi≈ye 条件: m很小(溶解度很大), 例如:水吸收 NH3 ,HCl 等易溶气体
1.388104 (44 28) 2.221103 kg /(m2 .h)

化工原理课后答案(中国石化出版社) 第8章 传质过程导论

化工原理课后答案(中国石化出版社) 第8章 传质过程导论

本文由tiger2100贡献doc文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

第八章传质过程导论第八章传质过程导论1.含有 CCl 4 蒸汽的空气,由 101.3kPa(绝)、293K 压缩到 l013kPa(绝)后,进行冷却冷凝,测出 313K 下开始有 CCl 4 冷凝,混合气出冷凝器时的温度为 300K 求: (l)压缩前、压缩后开始冷凝前与出冷凝器时,CCl 4 蒸汽的质量分率、质量比和摩尔浓度。

(2)出冷凝器时 CCl 4 蒸汽冷凝的百分率。

四氯化碳的饱和蒸汽压数据如下: 273 283 288 T /K 293 89.8 300 123 313 210p / mmHg 33.7 注:1mmHg = 133.3 p a55.671.1解:(1)l013kPa(绝),313K 下开始有 CCl 4 冷凝,则210 × 101.3 760 y= = 0.0276 1013 0.0276 × 154 压缩前: a = = 0.131 0.0276 ×154 + (1 0.0276) × 29 0.0276 × 154 a= = 0.15 (1 0.0276) × 29 yp 0.0276 × 101.3 C= = = 1.15 × 10 3 kmol / m 3 RT 8.314 × 293 压缩后开始冷凝前: a = 0.131 , a = 0.15 yp 0.0276 × 1013 C= = = 1.07 × 10 2 kmol / m 3 RT 8.314 × 313 123 × 101.3 760 出冷凝器时: y ' = = 0.0162 1013 0.0162 × 154 a' = = 0.080 0.0162 × 154 + (1 0.0162) × 29 0.0162 × 154 a'= = 0.087 (1 0.0162) × 29第 1 页第八章传质过程导论yp 0.0162 × 1013 = = 6.58 × 10 3 kmol / m 3 RT 8.314 × 300 a a' 0.15 0.087 × 100% = 42% (2) × 100% = a 0.15 C=2.二氧化硫与水在 30℃下的平衡关系为: a (kgSO2 / 100kgH 2 O) 0.1 0.2 0.3 0.5 0.7 52 1.0 79 1.5 1254.7 11.8 19.5 36 试求总压为 101.3kPa(绝)下的 x y 关系,并作图。

化工单元操作-传质过程(吸收)

化工单元操作-传质过程(吸收)
• 吸收剂解吸了大部分被吸收的气体后,为了 使气体进一步解吸完全,有时向解吸塔中通 入水蒸气、空气等气体,降压液面上溶质气 体的分压,使吸收剂中溶质气体更完全的解 吸出来。这一过程称为汽提,所用的水蒸气 、空气等气体称为汽提气。
• 2.解吸方法 • 解吸方法有汽提解吸、减压解吸、加热解吸、
加热减压解吸。工程上很少采用单一的解吸方 法,往往是先升温再减压至常压,最后采用汽 提法解吸。 • (1)汽提解吸 也称为载气解吸法。 • 向解吸塔中通入不含溶质的惰性气体或溶剂蒸 气等气体,降压液面上溶质气体的分压,使吸 收剂中溶质气体更完全的解吸出来,常以空气 、氮气、二氧化碳、水蒸气、吸收剂蒸气作为 载气。
经济上:X 2L (1.1 ~ 2.0)Lmin
4、塔内返混
吸收塔内气液两相可因种种原因造成少量流体发生
与主流提方向相反的流动,这一现象称为返混。
传质设备发生返混会使传质推动力下降、效率降低
或填料层高度增加。
5、吸收剂是否再循环
吸收剂再循环会降低吸收推动力,使填料层 高度加大,但当喷淋密度不足以保证填料的 充分润湿时,必须采用溶剂再循环。
• 第五节 解吸和吸收流程
一、基本概念——解吸
• 从吸收液中分离岀已被吸收的气体吸收 质的操作称为解吸。显然,解吸与吸收 是相反的过程。生产中解吸的作用有两 个:一个是把吸收剂中吸收的气体重新 释放出来,获得高纯度的吸收质气体; 另一个是使吸收剂释放了被吸收的气体 ,使吸收剂从新具有吸收作用,再返回 吸收塔循环使用,节约操作费用。
1、液气比
操作线斜率L/V称为液气比,是吸收剂与惰性气体摩 尔流量之比,反映了单位气体处理量的吸收剂消 耗量的大小。
当气体处理量一定时,确定吸收剂用量就是确定液 气比,是一个重要参数。

学习_第八章传质过程导论

学习_第八章传质过程导论

与热平衡不同之处:
▲达到相平衡时,一般两 相
浓度不相等。
▲ 相 平 衡 属 动 态 平 衡 -----达到相平衡时,传质过程 仍在进行,只不过通过相 界面的某一组分的净传质 量为零。
pG 气相主体
相界面 pi
Ci
空气+氨气 吸收
水 液相主体 传质方向
CL
6/3 6
第一节 概述
三、相组成的表示方法
摩尔分数
N A,z J A,z xA N A,z
N B,z J B,z x B N A,z N B,z
NA
相界面
单向扩散
N A,z (1 x A ) J A,z
D dcA dz
20/ 36
2.单向扩散
在 z1 ,cA1 , z2 , cA2 范围内积分得:
DAB 7.4 1015
M B 1/ 2T
V
0.6 A
固体中的扩散系数需靠实验确定。
T , , D
如何解释此规律?
返回上13页56/
菲克定律的另一种常用形式----- NA,z与 JA,z的 关系式
绝对扩散通量NA、 NB、N----相对于静止面的摩尔传质速率,
kmol/m2s

pA P
c n P V RT
A

mA V

M AnA V

pA M A RT
通用气体常数 R 8314J / kmol K
返回第7页
9/3 6
第一节 概述
四.传质方式
分子扩
散---发生在静止流体、层流流动的流体 传质的两种方式 中,
对流靠传分质子(运给动质进过行程的。

化工原理

化工原理
挥发性小(减少损失,减少污染:对环境及对气体产品B)、 粘度小(有利于流动及汽、液两相充分接触)、腐蚀小(延长设 备寿命)无毒,具有化学稳定性等。
最终需综合考虑,一般以“经济性”为指标考虑,往后可能转 变为“环境性”“安全性”等。
1.4 吸收的类型与例子
分类:
1. ① 多组分吸收:A1,A2…——同时被吸收(计算关键组分); ② 单组分吸收:
其型式与描述动量传递过程的牛顿粘性定律、描述 热量传递过程的傅利叶热传导定律相类似。
双组分一维稳定的分子扩散
1、等分子反向扩散:
N
A=J
A=-D
dCA dZ
N B=J B=-J A
N=N A+N B=0
气相:N

A
D
RT
PA1-PA2
液相:N
AL=
D
L
CA1-CA2
L
双组分一维稳定的分子扩散
x

A
nA n

A
mA m
(无量纲)
2、摩尔比、质量比(以二元为例)
xA= nA nB
A= mA
mB
3、摩尔浓度、质量浓度
(无量纲)
CA=
nA V
(kmol/m3)
CA=
mA V
(kg/m3)
第一节 传质过程概述
研究传质过程的四个工具:
1、传质速率方程--传质过程的快慢
传质速率=传质推动力=传质系数 传质阻力
静止流体或与层流运动方向相垂直的方向上可认为是单纯的 分子扩散。
❖ 对流传质:(与对流传热类似)
由分子扩散和涡流扩散共同作用的流体与相界面之间的传质。 涡流扩散是由于宏观流体流动而实现的物质传递现象。

化工原理传质过程导论

化工原理传质过程导论

DP P pA2 NA ln RT z2 z1 P pA1
z z2 z1
P pA1 pB1
pA2 pB2
DP pB2 NA ln RTz pB1
过 程 原 理 与 装 备
DP pB2 pB2 pB1 Dp NA ln RTz RTz pB1 p p B1 B2
2014年1月18日星期六
JA
PA2 PB2
组分A从Ⅰ向Ⅱ扩散净 量等于组分B从Ⅱ向Ⅰ 扩散净量。 F—分子对称面(固定)

相对F截面,A扩散通量:
JA JB
DAB dpA RT dz DBA dpB RT dz
同理,B扩散通量:
分子对称面,大小相等,方向相反
J B J A
0 dP A dP B
1)扩散通量:单位时间内通过垂直于扩散方向的单位 截面积扩散的物质量,J 表示, kmol/(m2· s)。 2)Fick定律:对双组分体系,在稳态下组分A在扩散方 向上任一点处的扩散通量与该处A的浓度梯度成正比。
J A DAB dc A dz
过 程 原 理 与 装 备
JA——组分A扩散速率(扩散通量), kmol/(m2· s); DAB——组分A在B组分中的扩散系数,m2/s。
dc A dz
—组分A在扩散方向z上的浓度梯度(kmol/m3)/m;
负号:表示扩散方向与浓度梯度方向相反,扩散沿着浓度降低的 方向进行。
2014年1月18日星期六
对理想气体,常用分压梯度来表示
cA
pA RT
T 0 如果沿传质Z方向无温度梯度变化,即 z
过 程 原 理 试分析与Fourier’s Law、Newton’s Viscosity Law的区别及 与 联系。 装 du t 备 dQ dA dy n

第八章 传质过程导论(化工原理)

第八章  传质过程导论(化工原理)

第八章 传质过程导论第一节 概述8-1 化工生产中的传质过程均相物系的分离(提纯,回收)1.吸收2.气体的减湿3.液-液萃取4.固-液萃取(浸沥,浸取)5.结晶6.吸附(脱附)7.干燥 8精馏 目的:湿分离或混合8-2 相组成的表示法1. 质量分率和摩尔分率mm a A A =mm a B B =mm a C C =……….......+++=C B A m m m mA,B 两组分 a a -1 nn x A A =nn x B B =nn x C C =…….......+++=C B A n n n n .......1+++=C B A x x x互换 A A AA A m m a m m x ==BB B m m a x =…….∑=++=iii B B A A m a m m m a m m a n ...... ()....,,C B A i =故 ∑==iii AA A A m a m a nn xi iiAA A m xm a a ∑=2.质量比和摩尔比质量比 B A m m a /=摩尔比 B A n n X =()a a a -=1 ()x x X -=1)X X x -=13.浓度质量浓度 V m C A A = 3/m kg摩尔浓度 V n C A A = 3/m k m o l均相混合物的密度ρ即为各组分质量浓度的总和(体积与混合物相等)∑=++=iB A CC C ........ρρA V m a V m C A A A ===C x V n x V n C A A A A ===混合气体 RTp V n C A A A ==RTp MVn M Vm C AAAA A A ===气体总摩尔浓度 RTp Vn C ==摩尔分率与分压分率相等 pp nn y A A A ==气体混合物摩尔比可用分压比表示 BB A A BB A A BA Mp M p Mn M n n n Y ===第二节 扩散原理8-3 基本概念和费克定律分子扩散: 扩散速率与浓度梯度成正比 费克定律: 对双组分物系下表达为: dzdl D J A ABA -=A J —分子A 的扩散通量 s m kmol ⋅2/ 方向与浓度样应相反 AB D —比例系数 组分A 在介质B 中的扩散系数 s m /2A c —组分A 浓度,3/m kmoldz dc A —组分A 的浓度梯度 4/m kmol RTp c A A =得 dzdp RTD J AAB A -=定义A J 通过得截面是“分子对称”得,即有一个A 分子通过某一截面,就有一个B 分子反方向通过这一截面,填补原A 分子得空部位,这种分子对称面为固定时,较为简便。

《化工原理》8传质过程导论1.

《化工原理》8传质过程导论1.



D RT
dpA dz
将上式中的p、z 对应积分,整理得:
D
NA RTz (pA1 pA2 )
同理,组分B有
D
NB
JB
RTz
pB1 pB2
若为液相,则有
D
N A z cA1 cA2
D
NB z cB1 cB2
例1. 氨气(A)与氮气(B)在一等径管两端相互扩散,管 子各处的温度均为298K,总压均为1.013×105Pa。在端点 1处,氨气的摩尔分数yA1=0.15;在端点2处,yA2=0.06, 点1、2间的距离为1m。已知此时扩散系数DAB=2.3×105m2/s。试求A组分的传质通量。
§8-1-2 相组成的表示方法
1、质量分数和摩尔分数
质量分数
wA

mA m
wB

mB m
wi 1
摩尔分数
xA

nA n
xB

nB n
xi 1
相互换算关系:
wA
xA M A
wi
i Mi
(一般液相用x,气相用y)
wA xAM A
xi M i
i
2、质量比和摩尔比(常见于双组分物系)
扩散:物质在单一相内的传递过程
流体中物质扩散的基本方式:
扩散方式 分子扩散 涡流扩散
作用物 流体分子 流体质点
作用方式 热运动 湍动和旋涡
作用对象 静止、滞流
湍流
分子扩散:
推动力 浓度差 物质传递 简称为扩散
终点: 浓度差为〇
扩散快慢?
College of Power Engineering NNU WANG Yanhua

化工原理(第四版)谭天恩 第八章 传质过程导论-dm

化工原理(第四版)谭天恩 第八章 传质过程导论-dm
一、分子扩散机理:
靠分子或原子的无规则热运动
A B A B B A 组分B的扩散量JB,z A B 质量中心面 B B A B 组分A的扩散量JA,z B B B
JA,z------相对扩散通量,kmol/m2s
A
11/36
《化工原理》电子教案/第八章
第二节 分子扩散
二.菲克定律
表示扩散方向与浓度梯度方向相反
组分A的扩散量JA,z A B A B A A B 质量中心面 B B A B A B 14/36 B A A
组分B的扩散量JB,z
《化工原理》电子教案/第八章
一.菲克定律
说明: (3)DA,B是物性。
DA, B f ( P , T , x)
转下页
DA,B(气) 10-5m2/s DA,B(液) 10-9m2/s DA,B(固) <10-10m2/s (4)对二元体系,扩散系数的下标 可去掉。即 对气体体系有:DA,B= DB,A 对液体体系有:DA,B DB,A
dcA DAB dz
13/36
《化工原理》电子教案/第八章
一.菲克定律
说明: (1)JA,z、 JB,z是相对扩散通量 (绝对扩散通量用NA,z表示) 组分A移走后,出现空位,其他 分子(可能是A也可能是B)将会 补位,若A、B分子量不等,那么 质量中心会局部发生漂移。JA,z、 JB,z是为了使JA,z+ JB,z=0而定义的 ,即JA,z、 JB,z是相对于一个移动的 扩散面而定义的扩散通量。 (2)JA,z=- JB,z 由JA,z+ JB,z=0可证得。
18/36
《化工原理》电子教案/第八章
二.双组分、一维稳态分子扩散举例
1.等摩尔相互扩散
特点:N A, z N B, z 常数

化工原理(第八章传质基础)

化工原理(第八章传质基础)
D2 = D1 ( T2µ1 ) T1µ 2
3、生物物质的扩散系数 化 工 原 理 对于水溶液中生物溶质扩散系数的估算,当溶质的分子量 小于1000或其分子体积小于500 cm3/mol 时,可用下式计 算:
DAB
1/ T (φM B )T2 −15 = 7.4 ×10 µVA0.6
m2 / s
吉 首 大 学
吉 首 大 学
JA pA1 pB1 JB pA2 pB2
由于总压p=pA+pB为常数,微分则有:0=dpA+dpB DAB=DBA=D
二、扩散系数 化 工 原 理 扩散系数是衡量物质扩散能力的物理性质,单位:m2/s 1、气体中的扩散系数 气体中的扩散系数与其系统、温度和压力有关,其数量级为 10-5m2/s 对于二元气体扩散系数的估算,通常使用富勒(Fuller)公 式:
固相 C
固相 B+A
气相 C+A
液相 A
汽相 精 馏
干 燥
B+A A+B B
三、相组成的表示方法 化 工 原 理 1.质量分率和摩尔分率 混合物中某组分A的质量mA占混合物总重量m的分率,称为 组分A的质量分率 。即: wA= mA/m 混合物中某组分A的摩尔数nA占混合物总摩尔数n的分率,称 为组分A的质量分率 。即: xA= nA/n 2.质量比和摩尔比 以B为参照组分,则质量比:w = mA/mB,摩尔比:X = nA/nB 3.质量浓度和摩尔浓度 单位体积溶液中溶质的质量,称为质量浓度,即: CA=mA/V 单位体积溶液中溶质的摩尔数,称为摩尔浓度,即: cA=nA/V
C (C -C ) A Ai CBm
CA CAi CAi’
δ δ’
’ D’ C (C’ C ) Ai- ’ A C’ δ’ Bm

化工原理09-传质概论

化工原理09-传质概论
质量分率 a
A组分
aA=WA/W
摩尔分率 x, y
气相yAg=nAg/ng 液相 xAl= Al/nl
B组分
aB=WB/W
yBg=nBg/ng xBl=nBl/nl
备注
WA+ WB=W( kg); aA + aB=1
nAg+ nBg= ng( kmol); nAl+ nBl= nl( kmol)
yA+yB=1; xA+xB=1;
解:氨在气相的摩尔浓度CAG按式8 6计算, 其中分压单位为mmHg时的R由表8 1查得 为62.36mmHgm3 / kmolK, CAG pA / RT 6 / 62.36 293 0.00328kmol/ m3 100kg水含氨1kg,由于氨水很稀,密度可视为与水相同。 其体积为(100 1)/1000 0.101m3;氨为1/17kmol; CAG (1/17) / 0.101 0.582kmol/ m3
负号 —— 扩散沿浓度降低的方向进行。
化工原理下册——传质概论
注意:D不绝对是物性常数
对气体:D = f ( 一对组分,T,P),D是物性常数;
对液体: D = f ( 一对组分,T,C),D不是物性常数;
对稀溶液: D ⋍ f ( 一对组分,T),D可近似视为物
性常数。 1-2、涡流扩散:
JA
三者串联过程。
气相内部 界面 液相内部 传质 传质 传质
化工原理下册——传质概论
复习
一、扩散 JA
分子扩散
JA - DAB
dCA dZ
涡流扩散 JA - De
dCA dZ
二、两种基本 传质过程 NA
等摩尔反向传质 NA = - NB =JA NA= D/d (CA1-CA2) = kc(CA1-CA2)

(化工原理)单相内传质的基本的方式

(化工原理)单相内传质的基本的方式

传质的应用和实际生产中的应用
传质在化工生产中有着广泛的应用。我们将探索传质在实际生产中的应用案例,并了解如何利用传质过程来提 高生产效率和产品质量。
化工原理:单相内传质的 基本方式
这个演示文稿将介绍单相内传质的基本方式。通过传质定义、模型ቤተ መጻሕፍቲ ባይዱ方程以 及质量传递的不同方式,我们将深入探讨传质的机理、影响因素,以及其在 实际生产中的应用。
传质定义与相关概念介绍
通过定义和概念的介绍,我们将建立起对传质过程的基本认识。了解传质的 定义和相关术语对于我们深入学习传质的基本方式至关重要。
质量传递系数是评估传质效率的重要参数。我们将学习计算质量传递系数的 方法和公式,并了解如何应用它们来优化传质过程。
质量传递的增强方式
在某些情况下,我们需要增强质量传递过程以提高效率。本节将介绍一些常 用的增强传质方式,并探讨它们的原理和实际应用。
界面传质与端头效应
界面传质和端头效应是传质过程中的重要现象。我们将研究界面传质的特点和机制,并探讨端头效应对传质过 程的影响。
传质模型与基本方程
传质模型和基本方程为我们理解和计算传质过程提供了基础。掌握这些模型 和方程将让我们能够更好地分析和解决各种传质问题。
质量传递方式
质量传递方式涵盖了传质过程中的各种机制。我们将探索分子扩散、对流传 质和热量扩散传质等不同的传递方式,并了解它们的特点和应用场景。
质量传递系数的计算

传质概述 - 化工原理第三版王志魁编课程课件

传质概述 - 化工原理第三版王志魁编课程课件

二、相平衡 --------相际间传质的最终状态
与热平衡不同之处:
▲达到相平衡时,一般两相浓度 pG
不相等。
气相主体
▲达到相平衡时,传质过程仍在 进行,只不过通过相界面的某一 组分的净传质量为零,因此属动 态平衡。
相界面 pi Ci
空气+氨气
水 液相主体
传质方向 CL
吸收
三、相组成的表示方法
摩尔分率
四.传质方式
分 子 扩 散 : 静 止 的 或 层流 流 动 的 流 体 中 ,



式对




靠分子运动来 在 湍 流 流 动中 ,



质的



靠 流 体 质 点 的 脉 动 来 进行 传 质 的 方 式
第六章 吸 收
重点:双膜理论、传质基本方程、操作线方程 难点:双膜理论
第二节 物质传递机理
物质传递的三个步骤:
1 扩散物质从一相的主体扩散到两相界面(单相中的扩散); 2 在界面上的扩散物质从一相进入另一相(相际间传质);
3 进入另一相的扩散物质从界面向该相的主体扩散(单相中的 扩散);
界面
气相 组分 主体
组分
液相 主体
物质在单相中的扩散
物质在单相中的传递靠扩散,发生在流体中的扩 散有分子扩散和对流扩散两种。
2、亨利定律
当总压不高(<5×105Pa)时,在一定温度下,稀溶液上方 溶质的平衡分压与其在液相中的浓度之间存在着如下的关系:
p* =E·x
式中: p* ---------溶质在气相中的平衡分压, kPa; x----------溶质在液相中的摩尔分率 E----------享利系数, kPa
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•精馏:利用液体混合物中各组分饱和蒸汽压或沸点或挥发 性的差异而将各组分分离开来;
•吸收:利用气体混合物中的各组分在某种溶剂中的溶解度 不同而将各组分分离开来;
•增(减)湿:不饱和气相与温度比它高的热水接触为增湿 ;含水蒸气的饱和湿气体与温度比它低的冷水接触为减湿 。
•第一节 概 述 (Introduction)
• 对于气体,在总压不太高的条件下,组分在气相中的 摩尔浓度可用分压来表示。即
第二节 扩散与单相传质
•因此
• 这两个通量方向相反,大小相等,若以A的传递方向 (Z)为正方向,则可写出下式:
•由于总压是常数,所以 •因此
第二节 扩散与单相传质
• 传质速率的定义:在任一固定的空间位置上,A在单位时 间内通过单位面积的物质的量,称为A的传质速率,用NA表示 。 •在等分子反向扩散中:
•结晶:溶质的过饱和溶液与溶质固体相接触。
•第一节 概 述 (Introduction)
•和传热速率一样,传质速率也可表示成


传质速率=传质系数×浓度差
传质过程的进行:
•物质由一相内部扩散至两相界面; •物质穿过相界面; •物质由相界面扩散至另一相的内部主体
•第一节 概 述 (Introduction)
•第二节 扩散与单相传 •2.扩散通质量
• 扩散通量:是指在单位时间内单位面积上扩散传递的物质 的量,其单位为kmol/(m2·S),以J表示。
3.费克定律(Fick’s law) • 在恒温恒压下,A在混合物中沿Z方向作稳定分子扩散时 ,其扩散通量与扩散系数及在扩散方向的浓度梯度成正比。
•扩散 面
(二)质量比和摩尔比 •若双ห้องสมุดไป่ตู้分物系由A、B两组分组成,则 •1.质量比
•质量比和质量分率的换算关系如下
•第一节 概 述 (Introduction)
2.摩尔比 •摩尔比和摩尔分率的换算关系如下
•本书中用X表示液相组成,Y表示气相组成。
•第一节 概 述 (Introduction)
(三)摩尔浓度和质量浓度 •1.摩尔浓度 •指单位体积内的物质的量,对A组分
二、相组成的表示方法 •(一)质量分率和摩尔分率
•1.质量分率
•质量分率为混合物中某组分的质量占总质量的分率或百分率
•第一节 概 述 (Introduction)
2.摩尔分率
• 指混合物中某组分的摩尔数占总摩尔数的分率或百分率 。
•3.质量分率与摩尔分率的换算
•第一节 概 述 (Introduction)
•DAB─A的扩散系数,m2/s
•Z
•第二节 扩散与单相传 二、双组分混质合物中的一维稳定分子扩散
•1.等分子反向扩散
•pA1 •pB1 •1 •P
•A •B
•F •F’
•pA2 •pB2 •2 •P
第二节 扩散与单相传质
•对任一截面FF’来说,根据费克定律,A的扩散通量 为:
•同理,B的扩散通量为
• 摩尔汽化潜热接近相等的二元混合物进行精馏操作时 ,在汽、液两相的接触过程中,易挥发的A组分由液相进 入汽相的速率与难挥发的B组分从汽相进入液相的速率大 体相同。因此,无论在汽相中,或者在液相中进行的传质 过程都可视为等分子反向扩散
•第二节 扩散与单相传质
• 如例图题所8-示2:,氨气(A)与氮气(B)在长0.1m的直 径均匀的联接管中相互扩散。总压p=101.3kPa, 温度T=298K,点1处pA1=10.13kPa、点2处 PA2=5.07kPa,扩散系数D=2.30x10-5m2/S。 试求稳态下的扩散通量JA、JB及传质速率NA、NB 。
•第一节 概 述 (Introduction)
三、传质设备简介 •(一)填料塔
第一节 概 述 (Introduction)
•(二)板式塔
第二节 扩散与单相传质
•单相内传质机理
•分子扩散 •对流传质
•一、分子扩散与费克定律 •1.分子扩散(molecular diffusion)
• 定义:单一相内、在有浓度差异存在的条件下,分子 的无规则运动造成的物质传递现象。
• 对于气体混合物(在总压不太高时),若其中组分A的分 压为PA,则可由理想气体定律计算其摩尔浓度
•第一节 概 述 (Introduction)
2.质量浓度
•指单位体积内的物质的质量,对A组分
•对气体混合物(在总压不太高时)中A组分的质量浓度为
•3.浓度与其他组成方法的换算
•根据组成方法的定义换算(略)
•pA1 •pB1 •1 •P
•A •B
•F •F’
•(2)气-固接触传质过程 •干燥:含水分(或可挥发性液体)的固体与比 较干燥的气体接触。
•气体吸附:物质从气相进入固相表面。
•(3)液-液接触传质过程 •液-液萃取:利用液体混合物中各组分在某种 溶剂中的溶解度差异而将各组分分离开来。
•第一节 概 述 (Introduction)
•(4)液-固接触传质过程 •固-液萃取:浸取、浸沥。应用溶剂将固体原 料中的可溶组分提取出来。 •液相吸附:如活性炭脱去蔗糖粗溶液中的有色 物质。
• 2.传质过程的应用 • 主要用于均相物系的分离,根据分离的物系不同,有 不同的单元操作,如常见的蒸馏,吸收,萃取等等,是石油 和化学工业最常用的工业过程。 • 例如乙烯及汽、煤、柴油的制备; • SO2、H2S的吸收等。
第一节 概 述 (Introduction)
•3.分类 •(1)气(汽)-液接触传质过程
化工原理讲稿第八章传 质过程概论
2020年6月3日星期三
•第八章 传质过程概论
主要内容:
•第一节 概述 •第二节 扩散与单相传质 •第三节 质量、热量和动量传递类比
第一节 概 述 (Introduction)
•一、传质过程及其分类
• 1.什么是传质? • 当不平衡的两相进行接触时,就会有一个或多个组分从 一个相传入另一个相中,物质从一相传递到另一相中的过程 称为相间质量传递,简称传质。
•将上式改写为
•扩散初终截面处的积分限为
第二节 扩散与单相传质
•积分后得到 •令
•同理,组分B的传质速率为
第二节 扩散与单相传质
• 等分子反向扩散,通过接管中任一截面的净物质通量 N为零。
第二节 扩散与单相传质
• 对于液相中的等分子反向扩散,若总浓度为常数,同 理可积分而得到组分A的传质速率:
相关文档
最新文档