空间立体几何知识点

合集下载

立体几何的全部知识点

立体几何的全部知识点

立体几何的全部知识点立体几何是九年级数学中常见的概念,属于几何学知识,包括三维空间中各种形状和投影,以及它们之间的关系,有助于我们研究物体的结构和代数运算,为物体的准确表达提供帮助。

立体几何的知识点包括:一、定义和符号:(1)体积:体积V是在某一时刻,某一物体的容积所表示的实际大小。

(2)表面积:Surface Area S 是在某一时刻,某一物体的整个表面的面积总和。

(3)立体角:立体角也称为穹顶角,它由三条相交的边组成,表示物体上某一点到其他三面所角度的总和。

(4)体积和表面积的符号分别为V和S。

二、投影:(1)正投影:正投影是指沿着平面对物体进行投影,显示物体的各面的立体效果,物体被投影到平面上,形成新的三维形体。

(2)侧投影:侧投影是把物体投影到平面上,只显示物体上与投影面垂直的一部分,不会显示其上斜角或斜面。

三、变换:(1)平移:平移是把物体移动到新位置,沿着一个给定的方向进行移动。

(2)旋转:旋转是把物体局部或整体移动到新位置,沿着一定角度和指定的锥形旋转。

(1)水平投影:水平投影指通过把物体置于水平平面上来进行投影,表达投影物作为物体的一部分的立体视觉效果。

(3)正交投影:正交投影是将物体的正面以一个给定的垂线作为视轴,把物体投影到一个直角坐标系上,以呈现其真实模样。

(4) 仿射投影:仿射投影是把物体投射到平面上,同时保留物体形状和位置的相对关系,物体经过一个仿射变换,可以在平面上表示一种实体的完整的立体形状。

五、三角形几何:(1)三角形的周长:三角形的周长是指给定三角形的三条边之和。

(3)余弦定理:余弦定理是指在一个三角形中,要么是给定三条边,要么是两条边和夹角之间存在性质,充分表示相应之间关系。

(4)余切定理:余切定理是指在一个三角形中,无论如何,两条边的余切值都是一定的。

(5)三角函数:三角函数是以这三个角的正弦、余弦和正切为变量表示的函数,三角函数可以用来求解复杂的三角形。

立体几何知识点总结

立体几何知识点总结

立体几何知识点总结一、点、线、面的基本概念1. 点:在几何中,点是最基本的概念,它没有长度、宽度和高度,只有位置,可以用来确定物体的位置。

2. 线:由无数个点组成,是一维的几何图形,没有宽度和高度,只有长度,可以用来表示物体的轨迹或连接两个点。

3. 面:由无数条线组成,是二维的几何图形,有长度和宽度,没有高度,可以用来表示物体的表面。

二、立体几何的基本元素1. 点、线、面的组合:在立体几何中,可以通过将点、线、面进行组合和运算得到更复杂的几何体,如球体、立方体等。

2. 立体体积:立体体积是指一个物体所占据的空间大小。

常见的表示立体体积的单位有立方米、立方厘米等。

3. 立体表面积:立体表面积是指一个物体外表面的总面积。

通常用平方米、平方厘米等单位来表示。

4. 立体的投影:立体的投影是指立体在不同平面上的投影图形。

常见的投影有正投影和斜投影两种。

三、常见的立体几何图形1. 球体:球体是由所有到一个点的距离相等的点组成的几何图形。

它具有无限个面,其中每个面都是一个圆。

2. 圆柱体:圆柱体是由两个平行的圆面和一个连接这两个圆面的侧面组成的。

它的底面和顶面是圆,侧面是矩形。

3. 圆锥体:圆锥体是由一个圆面和一个连接这个圆面和一个点的侧面组成的。

它的底面是圆,侧面是三角形。

4. 立方体:立方体是由六个相等的正方形组成的几何图形。

它的六个面都是正方形,每个面都有相同的边长。

5. 正四面体:正四面体是由四个相等的三角形组成的几何图形。

它的四个面都是等边三角形,每个面都有相同的边长。

四、常见的立体几何性质1. 对称性:立体几何中的许多图形具有对称性,即通过某个中心轴或中心点将图形分为两个相互对称的部分。

2. 平行性:立体几何中的平面和直线可以平行,即它们在空间中不相交,且永远保持相同的距离。

3. 垂直性:立体几何中的直线和平面可以垂直,即它们相互垂直交于一个点,形成直角。

4. 相似性:在立体几何中,如果两个图形的形状相似,则它们的对应边长比相等,对应角度相等。

《空间几何体》基础的知识点

《空间几何体》基础的知识点

《空间几何体》知识点总结一、 空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体旋转体一一把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其 中,这条定直线称为旋转体的轴。

(2 )柱,锥,台,球的结构特征1.1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。

1.2圆柱一一以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何 体叫圆柱.2.1棱锥一一有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的 几何体叫做棱锥。

2.2圆锥一一以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所 围成的几何体叫圆锥。

3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台 3.2圆台一一用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台4.1球一一以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球二、 空间几何体的三视图与直观图1. 投影:区分中心投影与平行投影。

平行投影分为正投影和斜投影。

2. 三视图一一正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而 画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3. 直观图:直观图通常是在平行投影下画出的空间图形。

4. 斜二测法:在坐标系 x'o'y'中画直观图时,已知图形中平行于坐标轴的线段保持平行性 不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线 段长度减半。

三、空间几何体的表面积与体积1、空间几何体的表面积① 棱柱、棱锥的表面积: 各个面面积之和2② 圆柱的表面积S = 2二「I • 2二r 2 ③圆锥的表面积 S =理「I •二r 2、空间几何体的体积 ④圆台的表面积S 二rl + Tt r 2 2 2 R ⑤球的表面积S = 4二R ⑥扇形的面积公式s 扇形 360^1|r (其中I 表示弧长,r 表示半径) ①柱体的体积 v = s 底②锥体的体积 1 VjS 底 h③台体的体积 v =丄(S 上S 上 S 下 • S 下)h ④球体的体积v3 知识赠送以下资料英语万能作文(模板型)Along with the adva nee of the society more and more problems arebrought to our atte nti on, one of which is that....随着社会的不断发展,出现了越来越多的问题,其中之一便是As to whether it is a blessing or a curse, however, people take differe nt attitudes.然而,对于此类问题,人们持不同的看法。

空间几何体知识点总结

空间几何体知识点总结

空间几何体
1.
2.
3.
棱柱的种类:
① :棱柱的底面可以是三角形、四边形、五边形…….我们把这样的棱柱分别叫做三棱柱、四棱锥、五棱柱…….

棱柱的性质:
① :棱柱的侧棱都相等,侧面都是平行四边形;
② :直棱柱的侧面都是矩形;
③ :正棱柱的侧面都是全等的矩形;
④ :棱柱的两个底面以及平行于底面的截面都是全等的多边形.
4.
棱锥的分类:
① :以底面边数分:三棱锥、四棱锥、五棱锥······
② :正棱锥:底面是正多边形,并且顶点在底面的射影是底面正多边形的中心.
正棱锥的性质:
①:各侧棱相等;
②:各侧面都是全等的等腰三角形;
③:各等腰三角形底边上的高相等,叫做正棱锥的斜高;
④:正棱锥的侧棱与底面所成角都相等.
5.
由三棱锥、四棱锥、五棱锥······截得的棱台分别叫做三棱台、四棱台、五棱台······
正棱台:由正棱锥截得的棱台称为正棱台.
正棱台的性质:
①正棱台的侧棱相等,侧面是全等的等腰梯形;
②各等腰梯形的高相等,它叫做正棱台的斜高;
③正棱台的两底面以及平行于底面的截面是相似正多边形.
6.
7.
8.
圆台也可以看成以直角梯形的直角腰所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体.9.球体:
球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.半圆的圆心叫做球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.
10.。

立体几何的知识点整理归纳

立体几何的知识点整理归纳

一、立体几何知识点归纳第一章空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。

旋转体一一把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2 )柱,锥,台,球的结构特征1.棱柱1.1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2相关棱柱几何体系列 (棱柱、斜棱柱、直棱柱、正棱柱)的关系:斜棱柱①棱柱棱垂直于底j 直棱柱底面是正多—正棱柱*夂[其他棱柱川② 四棱柱I 底面为平行四边形|平行六面体|侧棱垂直于底面|直平行六面体底面为矩形长方体底面为正方形■正四棱柱I 侧棱与底面边长相等.1.3棱柱的性质:① 侧棱都相等,侧面是平行四边形;② 两个底面与平行于底面的截面是全等的多边形; ③ 过不相邻的两条侧棱的截面是平行四边形; ④ 直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1.4长方体的性质:① 长方体一条对角线长的平方等于一个顶点上三条棱的 平方和;【如图】AC i 2二AB 2 • AD 2 • AA 2② (了解)长方体的一条对角线 AC 1与过顶点A 的三条 棱所成的角分别是:\, 那么cos 2 二 ' cos 2 : cos 2=1, sin 2 二 ' sin 2 “ - sin 2=2 ;③ (了解)长方体的一条对角线AC 1与过顶点A 的相邻三个面所成的角分别是 :-,则 cos 2 二'cos 2 : cos 2= 2, sin 2 口 " sin 2 : sin 2 = 1.1.5侧面展开图:正n 棱柱的侧面展开图是由 n 个全等矩形组成的以底面周长和侧棱长为邻 边的矩形.绻棱柱侧一C h卄亠土宀KW1.6面积、体积公式:‘(其中c 为底面周长,hS直棱柱全=ch +2S 底,《柱二S 底h为棱柱的高)2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴, 其 余各边旋转而形成的曲面所围成的几何体叫圆柱•2.2圆柱的性质:上、下底及平行于底面的截面都是 等圆;过轴的截面(轴截面)是全等的矩形2.3侧面展开图:圆柱的侧面展开图是以底面周长和 母线长为邻边的矩形•正方体底面B2.4面积、体积公式2 2 、 、,S 圆柱侧= 2- rh ; S 圆柱全=2irrh +2irr , V 圆柱=S 底h=ir r h (其中r 为底面半径,h 为圆柱高)3.棱锥离与顶点到底面的距离之比;② 正棱锥各侧棱相等,各侧面是全等的等腰三角形;③ 正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面 边长一半,构成四个直角三角形。

空间立体几何知识点

空间立体几何知识点

立体几何(空间的直线和平面)1、平面的基本性质:公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

说明:公理1是判定直线在平面内的依据,用符号表示为:ααα⊂⇒⎩⎨⎧∈∈∈∈l B l B A l A ,,,以“直线在平面内”的意义为依据,我们常用下面的推理判定“点在平面内”:αα∈⇒⊂∈A l l A ,。

简而言之:点在线上,线在面内,则点在面内。

公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

说明:公理2是判定两个平面相交的依据,即a A a A A ∈=⋂⇒∈∈且,,βαβα,进而有AB B B A A =⋂⇒∈∈∈∈βαβαβα,,,。

以“两平面相交的意义”为依据,常用下面的推理判定“点在直线上”:a A a A A ∈⇒=⋂∈∈,,βαβα且。

公理3 经过不在同一条直线上的三点,有且只有一个平面。

推论1经过一条直线和这条直线外的一点,有且只有一个平面。

推论2经过两条相交直线,有且只有一个平面。

推论3经过两条平行直线,有且只有一个平面。

联想:公理3及其3个推论,是确定平面的依据,是我们将空间图形问题转化到平面问题来解决的重要前提。

在立体几何中,如果我们所研究的点线等能确定是同一平面内的,那么我们就可不加证明地运用平面几何中的定义、公理、定理等,公理3及其3个推论也是证明两平面重合的依据,如:重合与不共线βαβα⇒∈∈C B A C B A C B A ,,,,,,,,。

斜二测画法——斜二测画法的规则是:(见书本)说明:画水平放置的直观图时,坐标原点的选取是任意的,但通常取中心对称图形的中心为坐标原点,或者取轴对称图形一边与轴的交点为原点等。

2、空间两条直线异面直线:不同在任何一个平面内的两条直线叫做异面直线。

空间两直线的位置关系有三种:相交直线、平行直线和异面直线。

异面直线的判定定理:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线。

空间几何体知识点总结

空间几何体知识点总结

空间几何体知识点总结在几何学中,空间几何体是研究三维空间中的物体的一门学科。

它涉及了许多基本概念、定理和性质。

这篇文章将对一些常见的空间几何体进行知识点总结。

一、点、线和面在空间几何体中,最基本的元素是点、线和面。

点是空间中没有大小的对象,它只有位置。

线是由无数点组成的,它有长度和方向。

面是由无数线组成的,它有长度和宽度,并且是平坦的。

二、多面体1、正多面体正多面体是指所有面都是正多边形,并且每个顶点相同的几何体。

最常见的正多面体有四面体、六面体和八面体。

四面体有四个面,六面体有六个面,八面体有八个面。

2、长方体长方体是一种有六个面的几何体,每个面都是矩形。

长方体的长度、宽度和高度各不相同。

3、正方体正方体是一种特殊的长方体,它有六个面,每个面都是正方形。

正方体的长度、宽度和高度相等。

4、棱柱和棱锥棱柱是一种有两个平行且等大的多边形作为底面的几何体,底面间的连线都垂直于底面。

棱锥是一种有一个底面和一个顶点的几何体,顶点到底面上的任意点的连线都是斜线。

5、圆台和圆锥圆台是一种有一个圆作为底面、一个平面作为顶面和连接两个底面的曲面的几何体。

圆锥是一种有一个顶点和一个底面的几何体,顶点到底面上的任意点的连线都是斜线。

三、球体和圆球球体是由一个圆绕着它的直径旋转而得到的空间几何体,它的内部和外部都被称为球面。

圆球是球体的一个特殊情况,它的直径和半径相等。

四、二维和三维的关系在空间几何中,我们经常会将二维的图形放在三维的空间中来研究。

例如,我们可以将一个平面上的正方形伸展成一个正方体,或者将一个圆从平面延伸成一个球体。

五、空间几何体的性质空间几何体有许多有趣的性质。

例如,正多面体具有对称性,长方体的对角线长度相等,正方体的对角线长度为边长的平方根,球面的曲率处处相等等等。

总结起来,空间几何体是我们研究三维空间中物体的一门学科。

通过对点、线、面、多面体、球体等几何体的研究,我们可以了解它们的性质和相互之间的关系。

(完整版)立体几何知识点总结完整版

(完整版)立体几何知识点总结完整版

立体几何知识点【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。

2、 空间两条直线的三种位置关系,并会判定。

3、 平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线 平行及角相等的方法。

4、 异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范 围,会求异面直线的所成角。

5•理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算 ;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6•了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念•掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图, 能识别上述的三视图所表示的立体模型, 会用斜二测法画出它们的直观图•7•空间平行与垂直关系的论证 •8.掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题 ,进一步掌握异面直线所成角的求解方法,熟练解决有关问题9•理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转 化法、向量法)•对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离。

【知识络构建】<— 翅MJL 何体的峯构特征一袞间几何怀的表面锲和体枳 —I 吩间儿何体的三视图和吒现图 空何向話的槪念线性运算空间向园数呈积理和坐标运算【重点知识整合】1. 空间几何体的三视图专间儿何体空问点仁n线、平面ft置关系宀VIHI向虽与<体儿何(1) 正视图:光线从几何体的前面向后面正投影得到的投影图;(2) 侧视图:光线从几何体的左面向右面正投影得到的投影图;(3) 俯视图:光线从几何体的上面向下面正投影得到的投影图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.2. 斜二测画水平放置的平面图形的基本步骤(1) 建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox, Oy,建立直角坐标系;(2) 画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox', Oy',使/ x Oy = 45。

空间立体几何知识点归纳(文科)

空间立体几何知识点归纳(文科)

第一章 空間幾何體知識點歸納1、空間幾何體の結構:空間幾何體分為多面體和旋轉體和簡單組合體⑴常見の多面體有:棱柱、棱錐、棱臺;常見の旋轉體有:圓柱、圓錐、圓臺、球。

簡單組合體の構成形式: 一種是由簡單幾何體拼接而成,一種是由簡單幾何體截去或挖去一部分而成。

⑵棱柱:有兩個面互相平行,其餘各面都是四邊形,並且每相鄰兩個四邊形の公共邊都互相平行,由這些面所圍成の多面體叫做棱柱。

⑶棱臺:用一個平行於棱錐底面の平面去截棱錐,底面與截面之間の部分,這樣の多面體叫做棱臺。

1、空間幾何體の三視圖和直觀圖投影:中心投影 平行投影(1)定義:幾何體の正視圖、側視圖和俯視圖統稱為幾何體の三視圖。

(2)三視圖中反應の長、寬、高の特點:“長對正”,“高平齊”,“寬相等”2、空間幾何體の直觀圖(表示空間圖形の平面圖). 觀察者站在某一點觀察幾何體,畫出の圖形.3、斜二測畫法の基本步驟:①建立適當直角坐標系xOy (盡可能使更多の點在坐標軸上) ②建立斜坐標系'''x Oy ∠,使'''x O y ∠=450(或1350),注意它們確定の平面表示水準平面;③畫對應圖形,在已知圖形平行於X 軸の線段,在直觀圖中畫成平行於X ‘軸,且長度保持不變;在已知圖形平行於Y 軸の線段,在直觀圖中畫成平行於Y ‘軸,且長度變為原來の一半;一般地,原圖の面積是其直觀圖面積の22倍,即22S S 原图直观=4、空間幾何體の表面積與體積⑴圓柱側面積;l r S ⋅⋅=π2侧面⑵圓錐側面積:l r S ⋅⋅=π侧面 ⑶圓臺側面積:()S r R l π=+侧面⑷體積公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()13V h S S S S =+⋅+下下台体上上⑸球の表面積和體積:32344R V R S ππ==球球,.一般地,面積比等於相似比の平方,體積比等於相似比の立方。

O 2O 1h lrR第二章 點、直線、平面之間の位置關係及其論證1 、公理1:如果一條直線上兩點在一個平面內,那麼這條直線在此平面內,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩公理1の作用:判斷直線是否在平面內2、公理2:過不在一條直線上の三點,有且只有一個平面。

空间几何体知识点总结

空间几何体知识点总结

空间几何体知识点总结一、点、线、面1. 点:点是空间的基本要素,没有长、宽、高,只有位置,用字母表示,如A、B、C等。

2. 线:由无限多个点组成的集合,是一种没有宽度只有方向的图形,分为直线和曲线两种。

- 直线:不含任何弯曲的线段,用两个点表示。

- 曲线:含有至少一段弯曲的线段。

3. 面:是由无限多个线组成的集合,是一种有长和宽但没有高度的图形,可以分为平面和曲面两种。

- 平面:没有限定的表面,如白纸的一面。

- 曲面:有曲度且没有边界的平面,常见的如球面、圆柱面等。

二、多面体1. 三棱锥和四棱锥:三棱锥和四棱锥是由底面和三个(四个)三角形面组成的几何体,具有尖顶和底部的多面体,如金字塔就是一种三棱锥。

2. 正多面体:正多面体是每个面都是正多边形的多面体,常见的有正立体角、正方体和正十二面体等。

3. 钝角多面体:钝角多面体是有一些面是钝角形的多面体,常见的有十二面体和二十面体等。

三、棱柱和棱台1. 棱柱:棱柱是以一个多边形为底面,侧面为平行四边形的几何体,根据底面形状的不同,可以分为三棱柱、四棱柱等。

2. 棱台:棱台是以一个多边形为底面,上下底面平行且相等的多面体,也根据底面形状的不同可以分为三棱台、四棱台等。

四、球面1. 球:球是一种特殊的曲面,就是一个没有边界、厚度的曲面,是由所有到一个给定点(球心)距离不大于给定半径的点的集合组成。

2. 球面积和体积:球面积和体积的计算公式分别是4πr^2和(4/3)πr^3,其中r为球的半径。

五、坐标系1. 直角坐标系:直角坐标系是用坐标轴构成的平面直角坐标系,通常用x、y轴表示,原点为坐标轴的交点,可以表示二维平面上的点。

2. 三维坐标系:三维坐标系是在直角坐标系的基础上加上z轴,表示三维空间内的点。

六、平行线、平行面、垂直线1. 平行线:平行线是两条直线在同一个平面内,且没有交点的直线。

2. 平行面:平行面是在三维空间内没有交点的两个平面。

3. 垂直线:垂直线是两条直线的夹角为90°,表示两条线在空间的相互关系。

高中数学立体几何知识点归纳

高中数学立体几何知识点归纳

高中数学立体几何知识点归纳
点:没有长度、宽度和高度的几何基本元素。

线:由一组点组成,具有长度但没有宽度和高度。

面:由一组线组成,具有长度和宽度但没有高度。

三棱柱:底面为三角形,侧面为三个矩形。

四棱柱:底面为四边形,侧面为四个矩形。

圆柱:底面为圆形,侧面为矩形。

锥:底面为任意多边形,侧面为三角形。

圆锥:底面为圆形,侧面为三角形。

球:所有点到球心的距离相等。

圆球:球的表面。

体积:立体几何体所占的空间大小。

表面积:立体几何体表面的总面积。

基本公式:
三棱柱体积公式:V = 底面积 * 高
四棱柱体积公式:V = 底面积 * 高
圆柱体积公式:V = 底面积 * 高
锥体积公式:V = 1/3 * 底面积 * 高
圆锥体积公式:V = 1/3 * 底面积 * 高
球体积公式:V = 4/3 * π * 半径³
圆球表面积公式:A = 4 * π * 半径²
正投影:由平行光线投射而成,可得到等比例的图形。

斜投影:由斜光线投射而成,图形会产生放大或缩小的效果。

直线与平面的关系:
相交:直线与平面交于一点。

平行:直线不与平面相交。

共面:直线在平面上。

线面垂直:直线与平面相交,且相交点在平面上。

同位角:以同一边为边的两个角。

对顶角:两个相对角。

互补角:两个角的和为90度。

相邻补角:两个角的和为180度。

立体几何知识点总结(全)

立体几何知识点总结(全)

立体几何知识点总结(全)垂直直线:相交成直角的直线。

三.点与平面的位置关系点在平面上:点在平面内部;点在平面外:点在平面的一侧;点在平面上方或下方:只有在三维空间中才有,点在平面上方或下方的判断需要借助向量的概念。

四.直线与平面的位置关系直线在平面上:直线的每一个点都在平面上;直线与平面相交:有且只有一个交点;直线与平面平行:没有交点,且方向与平面的法向量垂直;直线与平面垂直:直线方向与平面的法向量相同或相反。

五.平面与平面的位置关系两个平面相交:有且只有一条公共直线;两个平面平行:没有公共直线;两个平面重合:所有点都相同。

改写:一。

空间几何体的三视图在空间几何体中,正视图是指光线从几何体的前面向后面正投影得到的投影图,反映了物体的高度和长度。

侧视图是指光线从几何体的左面向右面正投影得到的投影图,反映了物体的高度和宽度。

俯视图是指光线从几何体的上面向下面正投影得到的投影图,反映了物体的长度和宽度。

三视图中反应的长、宽、高的特点有“长对正”,“高平齐”,“宽相等”。

二。

空间几何体的直观图斜二测画法的基本步骤包括建立适当的直角坐标系xOy (尽可能使更多的点在坐标轴上)、建立斜坐标系x'O'y',使x'O'y'=45(或135)以及画对应图形。

在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半。

直观图与原图形的面积关系为S直观图= S原图/4.三。

空间几何体的表面积与体积圆柱侧面积为S侧面=2πr×l,圆锥侧面积为S侧面=πr×l,圆台侧面积为S侧面=πr×l+πR×l。

柱体的体积为V柱体=S×h,锥体的体积为V锥体=S×h/3,台体的体积为V台体=S上+S下+√S上×S下×h/3.球的表面积和体积分别为S=4πR2和V球=4πR3/3.正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥,正四面体是每个面都是全等的等边三角形的三棱锥。

空间立体几何知识点归纳

空间立体几何知识点归纳

第一章 空间几何体知识点归纳1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

简单组合体的构成形式: .⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

1、空间几何体的三视图和直观图投影:中心投影 平行投影(1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图. (2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图)。

观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x Oy ∠,使'''x O y ∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:()S r R l π=+侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()13V h S S =+下台体上⑸球的表面积和体积:32344R V R S ππ==球球,。

一般地,面积比等于相似比的平方,体积比等于相似比的立方.第二章 点、直线、平面之间的位置关系及其论证1 、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面.若A ,B ,C 不共线,则A ,B,C 确定平面α若Al ∉,则点A 和l 确定平面α推论2:过两条相交直线有且只有一个平面若mn A =,则,m n 确定平面α推论3:过两条平行直线有且只有一个平面若m n ,则,m n 确定平面α公理2及其推论的作用:确定平面;判定多边形是否为平面图形的依据。

空间几何体知识点归纳

空间几何体知识点归纳

第一章空间几何体(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱ABCDE -A'B'C'D'E'或用对角线的端点字母,如五棱柱AD' 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥P-A'B'C'D'E'几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台P-A'B'C'D'E'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

高中数学立体几何知识点

高中数学立体几何知识点

高中数学立体几何知识点(大全)一、【空间几何体结构】1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。

2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。

棱柱(1):棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。

底面是几边形就叫做几棱柱。

(2):棱柱中除底面的各个面。

(3):相邻侧面的公共边叫做棱柱的侧棱。

(4):侧面与底面的公共顶点叫做棱柱的顶点棱柱的表示:用表示底面的各顶点的字母表示。

如:六棱柱表示为ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥。

棱锥4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱(1):旋转轴叫做圆柱的轴。

(2):垂直于轴的边旋转而成的圆面叫做圆柱的底面。

(3):平行于轴的边旋转而成的曲面叫做圆柱的侧面。

(4):无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

圆柱用表示它的轴的字母表示,如:圆柱O’O(注:棱柱与圆柱统称为柱体)5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。

圆锥(1):作为旋转轴的直角边叫做圆锥的轴。

(2):另外一条直角边旋转形成的圆面叫做圆锥的底面。

(3):直角三角形斜边旋转形成的曲面叫做圆锥的侧面。

(4):作为旋转轴的直角边与斜边的交点。

(5):无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。

圆锥可以用它的轴来表示。

如:圆锥SO(注:棱锥与圆锥统称为锥体)二、【棱台和圆台的结构特征】1.棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。

棱台(1):原棱锥的底面和截面分别叫做棱台的下底面和上底面。

空间立体几何知识点归纳(几何版)

空间立体几何知识点归纳(几何版)

空间立体几何知识点归纳(几何版)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 空间几何体知识点归纳1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

简单组合体的构成形式:⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

1、空间几何体的三视图和直观图 :(1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上)②建立斜坐标系'''x O y ∠,使'''x O y ∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:()S r R l π=+侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()13V h S S =+下台体上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。

第二章 点、直线、平面之间的位置关系及其论证1 、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩ 公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。

空间立体几何知识点

空间立体几何知识点

空间立体几何知识点1. 空间几何基础- 点、线、面在空间中的关系- 空间直角坐标系- 向量的概念与运算- 向量的加法、数乘、向量积(叉乘)、点积(内积) - 向量的模、方向余弦、单位向量- 向量方程及其应用2. 平面与直线- 平面的方程- 点法式方程- 一般式方程- 截距式方程- 直线的方程- 点向式方程- 两点式方程- 一般式方程- 投影与斜线- 平面与直线的关系- 平面内直线的方程- 平面与直线的交点- 平面与直线的夹角- 直线与直线的关系- 异面直线- 相交直线- 平行直线3. 多面体- 多面体的定义与分类- 棱柱、棱锥的结构与性质- 多面体的表面积与体积计算- 正多面体- 正四面体- 正六面体- 正十二面体、正二十面体4. 旋转体- 旋转体的定义与分类- 圆柱、圆锥、圆台的结构与性质 - 球的结构与性质- 旋转体的表面积与体积计算5. 空间曲线- 空间曲线的方程- 空间曲线的参数方程- 空间曲线的切线与法线- 螺旋线的性质与方程6. 坐标系变换与二次曲面- 坐标变换- 旋转变换- 平移变换- 二次曲面的一般方程- 常见二次曲面- 椭球面- 抛物面- 双曲面- 椭圆锥面7. 空间几何的度量- 空间中的距离公式- 点到直线、点到平面的距离- 直线与直线、直线与平面、平面与平面之间的距离- 空间角的计算- 两条直线间的夹角- 直线与平面的夹角- 两个平面间的夹角8. 空间几何的应用- 空间几何在建筑学中的应用- 空间几何在工程学中的应用- 空间几何在物理学中的应用- 空间几何在计算机图形学中的应用以上是空间立体几何的主要知识点概述。

在实际应用中,这些知识点需要通过具体的数学公式和图形来深入理解和掌握。

教学时,通常会结合图形演示、实际测量和计算练习来加深学生对空间立体几何概念的理解。

在解决具体问题时,还需要运用逻辑推理和空间想象能力,以及熟练掌握相关的数学工具和计算方法。

空间立体几何基本知识点

空间立体几何基本知识点

空间立体几何基本知识点公理1:如果一条直线上的两点在一个平面上,那么公理2:不共线的三点推论1:直线和直线外的一点可以推论2:两条相交的直线可以推论3:两条平行直线可以公理3:如果两个不重合的平面有一个公共点,那么它们有且只有公理4:平行于同一条直线的两条直线等角定理:空间中如果两个角的两边分别对应平行,那么这两个角不同在任何一个平面内的两条直线称为直线与平面平行的判定定理:,那么这条直线和这个平面平行。

(符号语言:)平面与平面平行的判定定理:,那么这两个平面平行。

(符号语言:)线面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的与该直线(符号语言:)面面平行的性质定理:性质1:如果两个平面同时和第三个平面相交,那么它们的交线(符号语言:)性质2:夹在两个平行平面间的平行线段性质3:两条直线被三个平行平面所截,截得对应的线段性质4:两个平面平行,其中一个平面内的任何一条直线另一个平面性质5:经过平面外一点,有且仅有一个平面与已知平面线面垂直的判定定理:一条直线与平面内两条直线,则该直线垂直于这个平面。

(符号语言:)面面垂直的判定定理:一个平面过另一个平面的,则这两个平面垂直。

(符号语言:)面面垂直的第二判定定理:两个平行平面垂直于第三个平面,则另一个平面也垂直于线面平行的性质:垂直于同一个平面的两直线。

(符号语言:)面面垂直的性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面(符号语言:)结论1:若两个平面垂直,过一个平面内的一点作另一个平面的垂线,垂足必在上。

结论2:如果两个平面垂直,那么经过第一个平面内的一点并且垂直于第二个平面的直线必然在内。

结论3:如果两个平面垂直,那么与其中一个平面平行的平面另一个平面。

结论4:如果两个平面垂直,那么与其中一个平面平行的直线另一个平面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何(空间的直线和平面)1、平面的基本性质:公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

说明:公理1是判定直线在平面内的依据,用符号表示为:ααα⊂⇒⎩⎨⎧∈∈∈∈l B l B A l A ,,,以“直线在平面内”的意义为依据,我们常用下面的推理判定“点在平面内”:αα∈⇒⊂∈A l l A ,。

简而言之:点在线上,线在面内,则点在面内。

公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

说明:公理2是判定两个平面相交的依据,即a A a A A ∈=⋂⇒∈∈且,,βαβα,进而有AB B B A A =⋂⇒∈∈∈∈βαβαβα,,,。

以“两平面相交的意义”为依据,常用下面的推理判定“点在直线上”:a A a A A ∈⇒=⋂∈∈,,βαβα且。

公理3 经过不在同一条直线上的三点,有且只有一个平面。

推论1经过一条直线和这条直线外的一点,有且只有一个平面。

推论2经过两条相交直线,有且只有一个平面。

推论3经过两条平行直线,有且只有一个平面。

联想:公理3及其3个推论,是确定平面的依据,是我们将空间图形问题转化到平面问题来解决的重要前提。

在立体几何中,如果我们所研究的点线等能确定是同一平面内的,那么我们就可不加证明地运用平面几何中的定义、公理、定理等,公理3及其3个推论也是证明两平面重合的依据,如:重合与不共线βαβα⇒∈∈C B A C B A C B A ,,,,,,,,。

斜二测画法——斜二测画法的规则是:(见书本)说明:画水平放置的直观图时,坐标原点的选取是任意的,但通常取中心对称图形的中心为坐标原点,或者取轴对称图形一边与轴的交点为原点等。

2、空间两条直线异面直线:不同在任何一个平面内的两条直线叫做异面直线。

空间两直线的位置关系有三种:相交直线、平行直线和异面直线。

异面直线的判定定理:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线。

空间四边形:四个顶点不共面的四边形叫做空间四边形。

三线平行公理(公理4)平行于同一条直线的两条直线互相平行。

等角定理:若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等。

等角定理的推论:若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等。

两条异面直线所成的角的范围:(]0090,0 ,两条异面直线互相垂直、公垂线和距离的定义。

金点子:(1)证明两直线是异面直线的常用方法是“判定定理”和“反证法”,其中“反证法”最常用;(2)求异面直线所成的角,常用平移转化法,即平移一条(或两条)作出夹角,在解三角形。

3、空间的直线与平面直线与平面平行的定义、位置关系(在平面内、和平面相交、和平面平行——其中直线和平面相交或平行的情况统称为直线在平面外)直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

用符号表示:ααα////,,ababa⇒⊂⊄直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行,用符号表示:babaa//,,//⇒=⋂⊂βαβα直线和平面垂直的定义:直线和平面垂直的判定定理:定理1如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面,用符号表示:ααα⊥⇒⊥⊥=⋂⊂⊂lnlmlBnmnm,,,,定理2如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面,用符号表示:αα⊥⇒⊥baba,//直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行,用符号表示:baba//,⇒⊥⊥αα点到平面的距离、直线到平面的距离、点在平面上的射影、平面的斜线、斜线在平面上的射影等的定义:垂线段、斜线段、射影的关系定理:从平面外一点向这个平面所引的垂线段和斜线段中:(1)射影相等的两条斜线段相等,射影较长的斜线段也较长(2)相等的斜线段的射影也相等,较长的斜线段的射影也较长(3)垂线段比任何一条斜线段都短。

直线与平面所成的角的范围[]0 090,最小角定理:斜线和平面所成的角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角。

三垂线定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直。

三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。

巧思妙想:(1)求直线和平面的距离时,应先找出或作出表示这个距离的线段,并证明,然后再计算,三个步骤缺一不可。

做—证—算(2)求线面角时,常根据定义找出斜线与射影所成的角(垂足的位置需确定),然后在斜线、射影构成的直角三角形中求解。

(3)三垂线定理及其逆定理的应用:a、证明两条异面直线垂直b、确定二面角的平面角c、确定点到直线的垂线段。

4、空间两个平面两个平面平行的定义、空间两个平面的位置关系(平行和相交)两个平面平行的判定定理;定理1如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,用符号表示:βαααβ////,//,,⇒=⋂⊂baAbaba、定理2垂直于同一条直线的两个平面平行,即βαβα//,⇒⊥⊥aa两个平面平行性质定理:定理1两个平面平行,其中一个平面内的直线必平行于另一个平面。

定理2若两个平行平面同时和第三个平面相交,则它们的交线平行。

定理3一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

两个平行平面的公垂线、两个平行平面间的距离:定理4夹在两个平行平面间的平行线段相等。

定理5经过平面外一点有且只有一个平面和已知平面平行。

二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

说明:二面角的大小可以用它的平面角来度量,二面角的平面角是几度,就说这个二面角是几度,棱为AB,面为βα,的二面角,记作βα--AB,若棱用a表示则记作βα--a几种常见的求二面角的平面角的方法:(1)定义法:利用二面角的平面角的定义,直接构造出二面角的平面角(2)三垂线定理法:利用三垂线定理及逆定理构造平面角(3)作棱垂面法:通过作二面角的棱的垂面构造平面角。

两个平面垂直的判定定理:若一个平面经过另一个平面内的一条垂线,则这两个平面互相垂直,即βαβα⊥⇒⊂⊥aa,两个平面垂直的性质定理:定理1若两个平面垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面,即αββαβα⊥⇒⊥⊂=⋂⊥babba,,,定理2 若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内,即αβαβα⊂⇒⊥∈∈⊥aaaPP,,,异面直线上两点间的距离公式:已知两条异面直线a,b所成的角为θ,它们的公垂线段AA’的长度为d,E、F分别为a、b上的点,且A’E=m,AF=n,θcos2222mnnmdEF±++=5、空间的直线和平面知识点拨:规律一:共点、共线、共面问题证线共点:证线共点,基本途径是先确定两条直线的交点,其次再证其他直线也经过这个点,一般说来,共点的这些直线常常是平面的交线。

证点共线:基本途径是先证这些点均落在两个相交的平面内,再依公理2,它们必落在其交线上。

证点共面、线共面:基本途径有两条:其一是先由某些元素确定一个平面,再证其余元素都在这一平面内;其二是先证这些元素分别在两个或多个平面内,再证这些平面重合。

规律二:证明两直线平行的方法定义:在同一平面内两条直线无公共点。

公理4若a//c,b//c,则a//bbaba//,⇒⊥⊥ααb a b a a //,,//⇒=⋂⊂βαααb a b a //,,//⇒=⋂=⋂βγαγβα规律三:判断两条直线是异面直线的方法依定义采用反证法异面直线的判定定理应用异面直线的判定定理时,要注意定理的四个要素。

例 正方体ABCD-A1B1C1D1中,求证:AC 与BD1是异面直线。

证明:ABCD AC D C B A B ABCD D ABCD B 平面,直线平面平面平面⊂∉∉∈11111,, 是异面直线与1BD AC ⇒规律四:三垂线定理的应用证两条异面直线垂直;求作二面角的平面角。

例 在四面体ABCD 中,已知AB ⊥CD ,AC ⊥BD ,求证:AD ⊥BC分析:要证明AD ⊥BC ,根据三垂线定理,只需证明AD 在平面BCD 内的射影和BC 垂直,因此,可作AO ⊥平面BCD 于O 点,问题即转化为证明OD ⊥BC规律五:线面、面面间的平行和垂直关系证明直线与平面平行可有下列方法:a 、应用线面平行的判定定理与面面平行的性质定理直接推证。

b 利用反证法证明:假设直线与平面不平行,则直线与平面相交或直线在平面内,通过推导,设法得出矛盾。

证明平面与平面平行可有下列方法:a 、应用面面平行的判定定理,把面面平行问题转化为证线面平行或线线平行的问题。

b 应用“垂直于同一条直线的两个平面平行”,把面面平行问题转化为证线面的垂直问题。

规律六:空间角的解题规律异面直线所成角的主要方法是通过平移转化法做出异面直线所成角,然后利用三角形边角关系求角的大小。

线与平面所成角的一般过程是:a 、通过射影转化法,做出直线与平面所成角。

b 在三角形中求角的大小。

关于线线角、线面角,下面的两个结论经常用到。

A 、已知PA 与PB 分别是平面α 的垂线和斜线,在平面α内过斜足B 任意引一直线BC ,设21,θθ=∠=∠ABC PBA 21cos cos cos ,θθθθ⋅==∠有PBC ;B 、经过一个角的顶点作这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线。

求二面角大小的三个步骤:a 、找出或做出二面角的平面角(本着先找后做的原则)b 、证明其符合定义。

C 、指出某角即为所求二面角的平面角并计算。

作二面角的平面角,最常用的方法是根据三垂线定理,用三垂线定理作二面角的平面角,关键是作“面的垂线”,一旦做出面的垂线,再作棱的垂线,然后连接两垂足即得。

相关文档
最新文档