勾股定理16种经典证明方法
勾股定理16种经典证明方法
证法1】(课本的证明)
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正
方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即整理得.
【证法2】(邹元治证明)
以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于•把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上, C G D三点在一条直线上•
•/ Rt △ HAE 也Rt △ EBF,
••• / AHE = / BEF
•/ / AEH + / AHE = 90o,
•/ AEH + / BEF = 90 o.
•/ HEF = 180o—90o= 90 o.
•四边形EFGH是一个边长为c的
正方形. 它的面积等于c2.
•/ Rt △ GDH B Rt △ HAE,
•/ HGD = / EHA
•/ / HGD + / GHD = 90o,
•/ EHA + / GHD = 90o.
又••• / GHE = 90o,
•/ DHA = 90o+ 90 o= 180 o.
•ABCD是一个边长为a + b的正方形,它的面积等于.
【证法3】(赵爽证明)
以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于. 把这四个直角三角形拼成如图所示形状.
•/ Rt △ DAH 也Rt △ ABE,
•/ HDA = / EAB
•/ / HAD + / HAD = 90o,
勾股定理的十六种的证明方法
勾股定理的十六种的证明方法
【证法1】(课本的证明)
做g 个全等的宜角三角形,设它们的两条直角边长分别为注、b ,斜边长为6再做 三牛边长分别为已、氐C 的正方
形,把它们®上图那样拼成两个正方形*从图上可以看到,这两个正方形的边长都是& + b-所以面枳相筹•即
整理得/+护二口
f 证法21 (邹元治证明)
以包、b 为直角边,以亡为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于2 •把这四个宜角三角形拼成如图所示形状,使乩E. B 三点在一条直线上,B. F 、 C 三点在一条直线上,C 、S D 三点在一条直线上.
二
ZAHE 二 ZBEF. T ZAEH - ZAHE 二 90° , 二 ZAEH 」 -ZBEF 二 90\ :• ZHEF = 180=90〃二 9' 0\ 二四边形EFGH 是一个边长为亡的 正方形. 它的面积等于 T Rt i GDH 空 Rt 2 HAE, 二 ZHGD ZEHA. T ZHGD ZGHD - 9(r 二 ZEHA ZGHD 二 90\ 又丁 ZGHE
二 ZDHA QO° 亠%『二
T RtMJAE 空抵扣澱,
-ABCD是一个边长为a + b的正方形,它的面积等于W-
(fl +i) ' = 4x—di
■ a ♦2
【证法3】(赵爽证明〉
以弘b为直角边Cb>a),以C为斜边作四个全
等的直角三角形,则每个直角
图所示形状-
T RMDAH
■wr*AMjn*4UU.
二ZHDA 二
■ / ZHAD +
/. ZEAB +
二ABCD是一个边长为C的正方形,它的面积等于
勾股定理16种经典证明方法
ab c ab b a 21421422
2
⨯+=⨯++【证法1】(课本的证明)
做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 整理得 222c b a =+.
【证法2】(邹元治证明)
以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21
. 把这四个直角三
角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.
∵ Rt ΔHAE ≌ Rt ΔEBF,
∴ ∠AHE = ∠BEF .
∵ ∠AEH + ∠AHE = 90º,
∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.
∴ 四边形EFGH 是一个边长为c 的
正方形. 它的面积等于c 2.
∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .
∵ ∠HGD + ∠GHD = 90º,
∴ ∠EHA + ∠GHD = 90º.
又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2
b a +.
∴ ()2
2214c ab b a +⨯=+. ∴ 2
22c b a =+.
【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角
勾股定理16种证明方法
【证法1】(课本的证明)
勾股定理的证明
做8个全等的直角三角形,设它们的两条直角边长分别为 a 、b ,斜边长为c ,再做 三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是 a + b ,所以面积相等.即
2 2
1 2 1
a 2
b 2 4 ab 二
c 2 4 ab
2
2
, 整理得
【证法2】(邹元治证明)
以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积
ab
等于2 .把这四个直角三角形拼成如图所示形状, 使A E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C G D 三点在一条直线上.
v Rt △ HAE 坐 Rt △ EBF, ••• / AHE = / BEF
v / AEH + / AHE = 90o,
• / AEH + / BEF = 90o.
• / HEF = 180o — 90o= 90o. •四边形EFGH 是一个边长为c 的 正方形.它的面积等于c 2. v Rt △ GDH 坐 Rt △ HAE,
D b G a C b
F a B
v / HGD + / GHD = 98,
• / EHA + / GHD = 98. 又v /
GHE = 90o,
• / DHA = 90o+ 90o= 180o.
2
• ABCD 是一个边长为a + b 的正方形,它的面积等于(a +
a b 2 =4 -ab c 2
2
【证法3】(赵爽证明)
以a 、b 为直角边(b>a ), a 2 =c 2
a
勾股定理的16种证明方法
【证法I)(课本的证
明)
做8个全等的宜角三角形•设它们的两条直角边长分別为」b •斜边长为c・再做三个边长分别为黑b. c的正方形.把它们像上图那样拼成衲个正方形.
从图上可以石到•这两个正方形的边长都是a + b.所以面积相等・即
(=+4x 丄ab »
2 •整理得卅+尸二代
【证法2】(邹元治证明)
以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角•把这四个直角三角形拼成如图所示形状,使A、E. B三点
形0勺面积等于严在一条直线上,B、F、C三点在一条亘线上,C、G、D三点在一条直线上.
VRt A HAE 竺Rf A EBF, :.ZAHE= ZBEF.
I ZAEH+ ZAHE = 90°, ••• ZAEH+ ZBEF = 90°. ••
ZHEF= 180°-90°= 90° •
•・四边形EFGH是一个边长为c的正方
形・它的血积等于
•R“GDH 竺Rt A HAE,
•ZHGD= ZEHA.
•ZHGD+ ZGHD = 90°,
•ZEHA+ ZGHD = 90°.
•ZGHE = 90°f
•ZDHA=90°+90°= 180°.
• ABCD是一个边长为a + b的正方形,它的面积等于G +疔.
(a + 方)+ c 2
2
【证法3】(赵爽证明)
以a 、b 为直角边(b>a ),以c 为斜边作 四个全
等的直角三角形,则每个直角
成如图所示形状.
I Rt A DAH 今 Rt A ABE,
:.ZHDA= ZE AB.
…ZHAD+ ZHAD = 90°,
••• ABCD 是一个边长为c 的正方形,它的血积等于心
勾股定理16种证明方法
勾股定理的证明
【证法1】(课本的证明)
做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即
ab
c ab b a 21
4214222⨯+=⨯++, 整理得 222c b a =+.
【证法2】(邹元治证明)
以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积
等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、
C 三点在一条直线上,C 、G 、
D 三点在一条直线上. ∵ Rt ΔHA
E ≌ Rt ΔEBF, ∴ ∠AHE = ∠BE
F .
∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.
∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.
∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .
∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2
b a +.
∴
()2
22
14c ab b a +⨯=+. ∴ 2
22c b a =+.
【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角
勾股定理16种经典证明方法
ab c ab b a 21421422
2⨯+=⨯++【证法1】〔课本的证明〕
做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 整理得 2
22c b a =+.
【证法2】〔邹元治证明〕
以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21
. 把这四个直角三
角形拼成如下图形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.
∵ Rt ΔHAE ≌ Rt ΔEBF,
∴ ∠AHE = ∠BEF .
∵ ∠AEH + ∠AHE = 90º,
∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.
∴ 四边形EFGH 是一个边长为c 的
正方形. 它的面积等于c 2
.
∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .
∵ ∠HGD + ∠GHD = 90º,
∴ ∠EHA + ∠GHD = 90º.
又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2
b a +.
∴
()2
2
21
4c ab b a +⨯=+. ∴ 2
22c b a =+.
【证法3】〔赵爽证明〕 以a 、b 为直角边〔b>a 〕, 以c 为斜 边作四个全等的直角三角形,则每个直角
勾股定理16种经典证明方法
ab
c ab b a 21421422
2⨯+=⨯++【证法1】(课本的证明)
做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即
整理得 222c b a =+.
【证法2】(邹元治证明)
以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab
21
. 把这四个直角三
角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.
∵ Rt ΔHAE ≌ Rt ΔEBF,
∴ ∠AHE = ∠BEF .
∵ ∠AEH + ∠AHE = 90º,
∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.
∴ 四边形EFGH 是一个边长为c 的
正方形. 它的面积等于c 2.
∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .
∵ ∠HGD + ∠GHD = 90º,
∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2
b a +.
∴ ()2
2214c ab b a +⨯=+. ∴ 2
22c b a =+.
【证法3】(爽证明)
以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角
勾股定理16种证明方法
勾股定理16种证明方
法
-CAL-FENGHAI.-(YICAI)-Company One1
2
勾股定理的证明
【证法1】(课本的证明)
? ? ? ? ? ?
?
?
a 、
b ,斜边长为
c ,再做
三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即
ab
c ab b a 21
4214222⨯+=⨯++, 整理得 222c b a =+.
【证法2】(邹元治证明)
以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积
等于ab
21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、
F 、C
三点在一条直线上,C 、G 、D 三点在一条直线上.
∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .
∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o . ∴ ∠HEF = 180o ―90o= 90o .
∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2.
∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .
∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o . 又∵ ∠GHE = 90o,
∴ ∠DHA = 90o+ 90o= 180o .
∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2
b a +.
∴
()2
22
14c ab b a +⨯=+. ∴ 222c b a =+.
证明勾股定理的16种方法
勾股定理证明十六种方法方法一:赵爽弦图证法
方法二:毕达哥拉斯证法
方法三:书本证明方法
法四:利用三角形相似推导
方法五:切割线定理证明
方法六:托勒密定理证明
方法七:利用切线长定理
方法八:总统证法
方法九:八法变式
方法十和方法十一:
总结:上述方法是非常常见的方法,当然同学们可以总结出,用到最多的还是面积法,对于面积法无论证明方法如何变化,图形如何变化,方法都有一种熟悉感。同时,还有很多其它与圆相关的定理应用,要理解它们,同学们要掌握更多的相关知识。以下方法,只展示图片,同学们可以自行感悟。
方法十二:
方法十三:面积法
方法十四:拼接法1
方法十五:拼接法2
方法十六:射影定理
勾股定理的十六种证明方法
勾股定理的十六种证明方法
1.几何法:构造一个直角三角形,利用勾股定理求出斜边长。
2. 代数法:将直角三角形三边的长度带入勾股定理的公式中,证明等式成立。
3. 数学归纳法:证明当斜边长为n时,勾股定理成立,再证明当斜边长为n+1时,勾股定理仍然成立。
4. 三角函数法:利用正弦、余弦、正切等三角函数的定义,证明勾股定理。
5. 相似三角形法:利用相似三角形的性质,证明勾股定理。
6. 矩形法:将一个直角三角形内切于一矩形中,从而证明勾股定理。
7. 差积公式法:利用差积公式(a+b)(a-b)=a-b,证明勾股定理。
8. 面积法:利用直角三角形的两条直角边构成一个矩形,证明勾股定理。
9. 旋转法:将一个直角三角形绕其斜边旋转,证明勾股定理。
10. 图像法:将勾股定理表示为x+y=z的图像,证明勾股定理。
11. 平行四边形法:将直角三角形内切于一个平行四边形中,从而证明勾股定理。
12. 三角形面积法:利用直角三角形的面积公式1/2ab,证明勾股定理。
13. 坐标法:将直角三角形的三个顶点的坐标表示出来,利用距离公式证明勾股定理。
14. 行列式法:利用行列式公式证明勾股定理。
15. 夹角法:通过两向量的夹角关系推导出勾股定理。
16. 对数法:利用对数函数的性质,证明勾股定理。
勾股定理16种证明方法
勾股定理的证明
【证法1】(课本的证明)
做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即
ab
c ab b a 21
4214222⨯+=⨯++, 整理得 222c b a =+.
【证法2】(邹元治证明)
以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积
等于ab 21.
把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、
C 三点在一条直线上,C 、G 、
D 三点在一条直线上. ∵ Rt ΔHA
E ≌ Rt ΔEBF, ∴ ∠AHE = ∠BE
F .
∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.
∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.
∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .
∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2
b a +.
∴
()2
22
14c ab b a +⨯=+. ∴ 2
22c b a =+.【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜
勾股定理16种证明方法
勾股定理的证明
【证法1】(课本的证明)
?
?
?
?
?
?
?
?
?
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即
,整理得.
【证法2】(邹元治证明)
以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C 三点在一条直线上,C、G、D三点在一条直线上.
∵ RtΔHAE ≌ RtΔEBF,
∴∠AHE = ∠BEF.
∵∠AEH + ∠AHE = 90o,
∴∠AEH + ∠BEF = 90o.
∴∠HEF = 180o―90o= 90o.
∴四边形EFGH是一个边长为c的
正方形. 它的面积等于c2.
∵ RtΔGDH ≌ RtΔHAE,
∴∠HGD = ∠EHA.
∵∠HGD + ∠GHD = 90o,
∴∠EHA + ∠GHD = 90o.
又∵∠GHE = 90o,
∴∠DHA = 90o+ 90o= 180o.
∴ ABCD是一个边长为a + b的正方形,它的面积等于.
∴. ∴.
【证法3】(赵爽证明)
以a、b 为直角边(b>a),以c为斜
边作四个全等的直角三角形,则每个直角
三角形的面积等于. 把这四个直角三
角形拼成如图所示形状.
∵ RtΔDAH ≌ RtΔABE,
∴∠HDA = ∠EAB.
∵∠HAD + ∠HAD = 90o,
∴∠EAB + ∠HAD = 90o,
勾股定理16种证明方法
【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a²+b²+4x1/2ab=c²+4x1/2ab,整理得a²+b²=c²。
1. 2
【证法2】(邹元治证明)以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角1ab2形的面积等于. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵RtΔHAE ≌RtΔEBF, ∴∠AHE = ∠BEF.∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o.∴四边形EFGH是一个边长为c的正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE,∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o,∴∠EHA + ∠GHD = 90o.又∵∠GHE = 90o,∴∠DHA = 90o+ 90o= 180o.∴ ABCD是一个边长为a + b的正方形,它的面积等于(a+b)².∴(a+b)²=4x1/2ab+c²∴ a²+b²=c²。
2. 3
【证法3】(赵爽证明)以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角 1ab2三角形的面积等于. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE,∴∠HDA = ∠EAB.∵∠HAD + ∠HAD = 90o,∴∠EAB + ∠HAD = 90o, 2∴ ABCD是一个边长为c的正方形,它的面积等于c.∵ EF = FG =GH =HE = b―a ,∠HEF = 90o.∴ EFGH是一个边长为b―a的正方形,它的面积等于(b-a)².∴(b-a)²=4x1/2ab+c²∴ a²+b²=c²。
勾股定理16种证明途径
勾股定理16种证明途径
勾股定理是数学中一条重要的几何定理,它指出在直角三角形中,直角边的平方和等于斜边的平方。本文将介绍勾股定理的16种证明途径。
1. 几何证明
通过构造几何图形,利用平行线、相似三角形等几何性质来证明勾股定理。
2. 代数证明
通过代数运算和方程的求解,将勾股定理转化为数学问题并证明。
3. 向量证明
利用向量运算和向量的性质来证明勾股定理成立。
4. 科学计算证明
利用计算机科学的方法,通过数值计算和模拟实验来论证勾股定理的正确性。
5. 几何相似证明
通过几何相似的定义及相关性质,推导出勾股定理。
6. 枚举证明
通过穷举直角三角形的边长组合,证明勾股定理在所有情况下都成立。
7. 数学归纳法证明
通过归纳论证,证明勾股定理在特定情况下成立后,再扩展到所有情况。
8. 黎曼积分证明
通过计算勾股定理中的三角函数的积分,证明定理的正确性。
9. 复数证明
利用复数的性质和运算,推导出勾股定理成立。
10. 微积分证明
通过对直角三角形某一边长的导数和其他边长的关系进行求导证明。
11. 数学逻辑证明
通过数学逻辑推理,推导出勾股定理的正确性。
12. 平行四边形证明
通过利用平行四边形的性质,将勾股定理转化为平行四边形的关系来证明。
13. 矩阵证明
利用矩阵的乘法和特性,将勾股定理转化为矩阵运算的问题来证明。
14. 动态几何证明
通过动态几何软件进行几何运算和构造,反复演示直角三角形的变化来证明定理。
15. 平面拓扑证明
通过平面拓扑的理论,引入拓扑性质讨论直角三角形构造和斜边的关系。
16. 微分几何证明
通过微分几何的定理和公式,推导出勾股定理的正确性。
勾股定理16种证明方式
【证法1】(讲义的证明)
做8个全等的直角三角形,设它们的两条直角边长别离为b,斜边长为c 再做三个边长别离为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.
从图上能够看到,这两个正方形的边长都是a + b,因此而积相等.即
a 2 +
b 2 +4x —ab =
c 2 +4x — ab 2 2 【证法2】(邹元治证明)
以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每一个直角三角形 的而积等于2 .把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直 线上,B 、F 、C 三点在一条直线上,C. G 、D 三点在一条直线上.
/ Rt A HAE 9 Rt A EBF,
・•・ ZAHE = ZBEF.
・• ZAEH + ZAHE 二 90°,
•・ ZAEH + ZBEF = 90°.
•・ ZHEF = 180°-90°= 90°.
•・四边形EFGH 是一个边长为c
的 正方形.它的面积等于cl
/ Rt A GDH 9 RtAHAE,
•• ZHGD 二 ZEHA.
/ ZHGD + ZGHD = 90°,
•• ZEHA + ZGHD 二 90°.
•• ABCD 是一个边长为a + b 的正方形,它的面积等于(d + 疔.
.(a + b )2 =4x^-ab + c 2 . … 2 •• a +b =c
【证法3】(赵爽证明)
以a 、b 为直角边(b 冶),以c 为斜 边
作四个全等的直角三角形,则每一个直角
勾股定理的证明
整理得/+沪=二
XV ZGHE
•• ZDHA 90°, 90°+ 90° 二 180°.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理的证明
【证法1】
做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即
ab
c ab b a 21
4214222⨯+=⨯++, 整理得 222c b a =+.
【证法2】(邹元治证明)
以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab
21
. 把这四个直角三
角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF,
∴ ∠AHE = ∠BEF .
∵ ∠AEH + ∠AHE = 90º,
∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.
∴ 四边形EFGH 是一个边长为c 的
正方形. 它的面积等于c 2.
∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .
∵ ∠HGD + ∠GHD = 90º,
∴ ∠EHA + ∠GHD = 90º.
又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2
b a +.
∴ ()2
2214c ab b a +⨯=+. ∴ 2
22c b a =+.
【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角
三角形的面积等于ab 21. 把这四个直角三
角形拼成如图所示形状.
∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .
∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,
∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2
.
∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.
∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2
a b -.
∴ ()2
2
214c a b ab =-+⨯.
∴ 2
2
2
c b a =+.
【证法4】(1876年美国总统Garfield 证明)
以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21
. 把这两个直角三
角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.
∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .
∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º.
∴ ΔDEC 是一个等腰直角三角形,
它的面积等于221c
.
又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD ∥BC .
∴ ABCD 是一个直角梯形,它的面积等于()2
21
b a +.
∴ ()2
2212122
1
c ab b a +⨯=+. ∴ 2
2
2
c b a =+.
【证法5】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .
∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED ,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c , ∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º.
∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD . ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º,
BC = BD = a . ∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则
,
21
222ab S b a ⨯+=+ ab
S c 21
22⨯+=,
∴ 2
22c b a =+.
【证法6
】(项明达证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.
过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N .
∵ ∠BCA = 90º,QP ∥BC ,
∴ ∠MPC = 90º,
∵ BM ⊥PQ ,
∴ ∠BMP = 90º,
∴ BCPM 是一个矩形,即∠MBC = 90º.
∵ ∠QBM + ∠MBA = ∠QBA = 90º, ∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,
又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c ,
∴ Rt ΔBMQ ≌ Rt ΔBCA . 同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)
做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结 BF 、CD . 过C 作CL ⊥DE ,
交AB 于点M ,交DE 于点 L .
∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD ,
∵ ΔFAB 的面积等于2
21a ,
ΔGAD 的面积等于矩形ADLM
的面积的一半,
∴ 矩形ADLM 的面积 =2
a .
同理可证,矩形MLEB 的面积 =2
b .
∵ 正方形ADEB 的面积
= 矩形ADLM 的面积 + 矩形MLEB ∴ 2
2
2
b a
c += ,即 2
2
2
c b a =+【证法8】(利用相似三角形性质证明) 【证法9】(杨作玫证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .
∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC . 又∵ ∠DHA = 90º,∠BCA = 90º,
AD = AB = c , ∴ Rt ΔDHA ≌ Rt ΔBCA . ∴ DH = BC = a ,AH = AC = b .
由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .