高考数学复习之函数的图像考点函数解析式与图象函数的奇偶性及周期性考点函数的奇偶性及周期性12
2025高考数学一轮总复习知识梳理第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性(含答案)
高考数学一轮总复习知识梳理:第三讲 函数的奇偶性与周期性知 识 梳 理知识点一 函数的奇偶性 偶函数 奇函数定义 如果对于函数f (x )的定义域内任意一个x 都有 f (-x )=f (x ) ,那么函数f (x )是偶函数 都有 f (-x )=-f (x ) ,那么函数f (x )是奇函数图象特征 关于 y 轴 对称关于 原点 对称 知识点二 函数的周期性1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有 f (x +T )=f (x ) ,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期如果在周期函数f (x )的所有周期中存在一个 最小的正数 ,那么这个 最小正数 就叫做f (x )的最小正周期.归 纳 拓 展1.奇(偶)函数定义的等价形式(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f -xf x =1(f (x )≠0)⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f -xf x =-1(f (x )≠0)⇔f (x )为奇函数.2.若y =f (x )为奇函数,y =g (x )为奇函数,在公共定义域内(1)y =f (x )±g (x )为奇函数;(2)y =f (x )g (x )与y =f xg x 为偶函数;(3)y =f [g (x )]与y =g [f (x )]为奇函数.同理若y =f (x )与y =g (x )在公共定义域内均为偶函数,则y =f (x )±g (x ),y =f (x )g (x ),y =f xg x ,y =f [g (x )],y =g [f (x )]均为偶函数.若y =f (x )为奇函数,y =g (x )为偶函数,则在公共定义域内y =f (x )g (x )与y =f xg x 均为奇函数,y =f [g (x )]与y =g [f (x )]为偶函数.3.对f (x )的定义域内任一自变量的值x ,最小正周期为T(1)若f (x +a )=-f (x ),则T =2|a |;(2)若f (x +a )=1f x ,则T =2|a |;(3)若f (x +a )=f (x +b ),则T =|a -b |.4.函数图象的对称关系(1)若函数f (x )满足关系f (a +x )=f (b -x ),则f (x )的图象关于直线x =a +b 2对称;(2)若函数f (x )满足关系f (a +x )=-f (b -x ),则f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,0对称.5.一些重要类型的奇偶函数(1)函数f (x )=a x +a -x 为偶函数,函数f (x )=a x -a -x为奇函数; (2)函数f (x )=a x -a -x a x +a -x =a 2x -1a 2x +1为奇函数;(3)函数f (x )=log a b -xb +x 为奇函数;(4)函数f (x )=log a (x +x 2+1)为奇函数.双 基 自 测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =x 2,x ∈(-2,2]是偶函数.( × )(2)若函数f (x )是奇函数,则必有f (0)=0.( × )(3)若函数y =f (x +a )是偶函数,则函数y =f (x )的图象关于直线x =a 对称.( √ )(4)若函数y =f (x +b )是奇函数,则函数y =f (x )的图象关于点(b,0)中心对称.( √ )(5)2π是函数f (x )=sin x ,x ∈(0,+∞)的一个周期.( × )(6)周期为T 的奇函数f (x ),一定有f ⎝ ⎛⎭⎪⎫T 2=0.( × )[解析] (6)举反例.函数f (x )=tan x ,T =π,f (T )=f (π)=0,f ⎝ ⎛⎭⎪⎫T 2=f ⎝ ⎛⎭⎪⎫π2无意义,所以f ⎝ ⎛⎭⎪⎫T 2=0不对.题组二 走进教材2.(多选题)(必修1P 85T2改编)给出下列函数,其中是奇函数的为( BC )A .f (x )=x 4B .f (x )=x 5C .f (x )=x +1xD .f (x )=1x 2[解析] 对于f (x )=x 4,f (x )的定义域为R ,由f (-x )=(-x )4=x 4=f (x ),可知f (x )=x 4是偶函数,同理可知f (x )=x 5,f (x )=x +1x 是奇函数,f (x )=1x 2是偶函数. 3.(必修1P 85T3改编)若函数y =f (x )(x ∈(a ,b ))为奇函数,则a +b = 0 .4.(必修1P 85T1改编)若函数y =f (x )(x ∈R )是奇函数,则下列坐标表示的点一定在函数y =f (x )图象上的是( B )A .(a ,-f (a ))B .(-a ,-f (a ))C .(-a ,-f (-a ))D .(a ,f (-a ))[解析] ∵函数y =f (x )为奇函数,∴f (-a )=-f (a ).即点(-a ,-f (a ))一定在函数y =f (x )的图象上.5. (必修1P 87T12改编)设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为_(-2,0)∪(2,5]__.[解析] 由图象可知,当0<x <2时,f (x )>0;当2<x ≤5时,f (x )<0,又f (x )是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].6.(必修1P 87T11改编)定义在R 上的奇函数f (x )以2为周期,则f (1)+f (2)+f (3)的值是( A )A .0B .1C .2D .3[解析] 根据函数的周期性和奇偶性得到f (3)=f (-1)=-f (1)、f (2)=f (0)=0,从而可求f (1)+f (2)+f (3).因为函数以2为周期,所以f (3)=f (-1),f (2)=f (0),因为函数是定义在R 上的奇函数,所以f (-1)=-f (1),f (0)=0,所以f (1)+f (2)+f (3)=f (1)+f (0)-f (1)=0,故选A.7.(必修1P 86T3改编)已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-3)= -7 .[解析] 因为f (x )为R 上的奇函数,所以f (0)=0,即f (0)=20+m =0,解得m =-1,故f (x )=2x-1(x ≥0),则f (-3)=-f (3)=-(23-1)=-7.题组三 走向高考8.(2023·新课标Ⅱ,4,5分)若f (x )=(x +a )·ln 2x -12x +1为偶函数,则a =( B )A .-1B .0 C.12 D .1 [解析] f (-x )=(-x +a )ln -2x -1-2x +1=(-x +a )ln 2x +12x -1=(x -a )ln 2x -12x +1,∵f (x )为偶函数,∴f (x )=f (-x ),∴x +a =x -a ,∴a =0.9.(2021·全国乙,4)设函数f (x )=1-x1+x ,则下列函数中为奇函数的是( B )A. f ()x -1-1B . f ()x -1+1 C. f ()x +1-1 D . f ()x +1+1[解析] 思路一:将函数f (x )的解析式分离常数,通过图象变换可得函数图象关于(0,0)对称,此函数即为奇函数;思路二:由函数f (x )的解析式,求出选项中的函数解析式,由函数奇偶性定义来判断.解法一:f (x )=-1+2x +1,其图象的对称中心为(-1,-1),将y =f (x )的图象沿x 轴向右平移1个单位,再沿y 轴向上平移1个单位可得函数f (x -1)+1的图象,关于(0,0)对称,所以函数f (x -1)+1是奇函数,故选B.解法二:选项A ,f (x -1)-1=2x -2,此函数为非奇非偶函数;选项B ,f (x -1)+1=2x ,此函数为奇函数;选项C ,f (x +1)-1=-2x -2x +2,此函数为非奇非偶函数;选项D ,f (x +1)+1=2x +2,此函数为非奇非偶函数,故选B.。
2024年高考数学总复习第二章《函数与基本初等函数》函数的奇偶性与周期性
2024年高考数学总复习第二章《函数与基本初等函数》§2.3函数的奇偶性与周期性最新考纲1.结合具体函数,了解函数奇偶性的含义.2.学会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.1.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数关于y 轴对称奇函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数关于原点对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.概念方法微思考1.如果已知函数f (x ),g (x )的奇偶性,那么函数f (x )±g (x ),f (x )·g (x )的奇偶性有什么结论?提示在函数f (x ),g (x )公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.已知函数f (x )满足下列条件,你能得到什么结论?(1)f (x +a )=-f (x )(a ≠0);(2)f (x +a )=1f (x )(a ≠0);(3)f (x +a )=f (x +b )(a ≠b ).提示(1)T =2|a |(2)T =2|a |(3)T =|a -b |题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =x 2,x ∈(0,+∞)是偶函数.(×)(2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×)(3)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√)题组二教材改编2.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x (1+x ),则f (-1)=________.答案-2解析f (1)=1×2=2,又f (x )为奇函数,∴f (-1)=-f (1)=-2.3.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )-4x 2+2,-1≤x <0,x ,0≤x <1,则f 32______.答案1解析f 32=f -124×-122+2=1.4.设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为________.答案(-2,0)∪(2,5]解析由图象可知,当0<x <2时,f (x )>0;当2<x ≤5时,f (x )<0,又f (x )是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].题组三易错自纠5.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是()A .-13 B.13C.12D .-12答案B 解析∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.6.偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)=________.答案3解析∵f (x )为偶函数,∴f (-1)=f (1).又f (x )的图象关于直线x =2对称,∴f (1)=f (3).∴f (-1)=3.题型一函数奇偶性的判断例1判断下列函数的奇偶性:(1)f (x )=36-x 2+x 2-36;(2)f (x )=ln (1-x 2)|x -2|-2;(3)f (x )2+x ,x <0,x 2+x ,x >0.解(1)-x 2≥0,2-36≥0,得x 2=36,解得x =±6,即函数f (x )的定义域为{-6,6},关于原点对称,∴f (x )=36-x 2+x 2-36=0.∴f (-x )=-f (x )且f (-x )=f (x ),∴函数f (x )既是奇函数又是偶函数.(2)-x 2>0,-2|≠2,得定义域为(-1,0)∪(0,1),关于原点对称.∴x -2<0,∴|x -2|-2=-x ,∴f (x )=ln (1-x 2)-x.又∵f (-x )=ln[1-(-x )2]x =ln (1-x 2)x =-f (x ),∴函数f (x )为奇函数.(3)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称.∵当x <0时,-x >0,则f (-x )=-(-x )2-x =-x 2-x =-f (x );当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知,对于定义域内的任意x ,总有f (-x )=-f (x ),∴函数f (x )为奇函数.思维升华判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.跟踪训练1(1)下列函数中,既不是奇函数也不是偶函数的是()A .f (x )=x +sin 2xB .f (x )=x 2-cos xC .f (x )=3x -13xD .f (x )=x 2+tan x答案D解析对于选项A ,函数的定义域为R ,f (-x )=-x +sin 2(-x )=-(x +sin 2x )=-f (x ),所以f (x )=x +sin 2x 为奇函数;对于选项B ,函数的定义域为R ,f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),所以f (x )=x 2-cos x 为偶函数;对于选项C ,函数的定义域为R ,f (-x )=3-x-13-x =-x f (x ),所以f (x )=3x -13x 为奇函数;只有f (x )=x 2+tan x 既不是奇函数也不是偶函数.故选D.(2)(2018·石景山模拟)下列函数中既是奇函数,又在区间(0,+∞)上单调递减的函数为()A .y =xB .y =-x 3C .y =12log xD .y =x +1x答案B解析由题意得,对于函数y =x 和函数y =12log x 都是非奇非偶函数,排除A ,C.又函数y=x +1x 在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,排除D ,故选B.题型二函数的周期性及其应用1.(2018·抚顺模拟)已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=________.答案-2解析f (7)=f (-1)=-f (1)=-2.2.已知定义在R上的函数f(x)满足f(2)=2-3,且对任意的x都有f(x+2)=1-f(x),则f(2020)=________.答案-2-3解析由f(x+2)=1-f(x),得f(x+4)=1-f(x+2)=f(x),所以函数f(x)的周期为4,所以f(2020)=f(4).因为f(2+2)=1-f(2),所以f(4)=-1f(2)=-12-3=-2- 3.故f(2020)=-2- 3.3.(2017·山东)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.答案6解析∵f(x+4)=f(x-2),∴f((x+2)+4)=f((x+2)-2),即f(x+6)=f(x),∴f(x)是周期为6的周期函数,∴f(919)=f(153×6+1)=f(1).又f(x)是定义在R上的偶函数,∴f(1)=f(-1)=6,即f(919)=6.4.设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x+2);③当0≤x<1时,f(x)=2x-1,则f(1)+f(2)+________.答案2-1解析依题意知:函数f(x)为奇函数且周期为2,则f(1)+f(-1)=0,f(-1)=f(1),即f(1)=0.∴f(1)+f(2)+=0+f(0)+=f(0)+=f(0)=122-1+20-1=2-1.思维升华利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.题型三函数性质的综合应用命题点1求函数值或函数解析式例2(1)设f (x )是定义在R 上周期为4的奇函数,若在区间[-2,0)∪(0,2]上,f (x )=ax +b ,-2≤x <0,ax -1,0<x ≤2,则f (2021)=________.答案-12解析设0<x ≤2,则-2≤-x <0,f (-x )=-ax +b .因为f (x )是定义在R 上周期为4的奇函数,所以f (-x )=-f (x )=-ax +1=-ax +b ,所以b =1.而f (-2)=f (-2+4)=f (2),所以-2a +b =2a -1,解得a =12,所以f (2021)=f (1)=12×1-1=-12.(2)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则f (x )=________.答案e-x -1-x ,x ≤0,e x -1+x ,x >0解析∵当x >0时,-x <0,∴f (x )=f (-x )=e x -1+x ,∴f (x )e -x -1-x ,x ≤0,e x -1+x ,x >0.命题点2求参数问题例3(1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =__________.答案1解析∵f (-x )=f (x ),∴-x ln(a +x 2-x )=x ln(x +a +x 2),∴ln[(a +x 2)2-x 2]=0.∴ln a =0,∴a =1.(2)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f 12=f 32,则a +3b 的值为________.答案-10解析因为f (x )是定义在R 上且周期为2的函数,所以ff (-1)=f (1),故从而12b +212+1=-12a +1,即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22,即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.(3)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=-x 2+ax -1-a ,若函数f (x )为R 上的减函数,则a 的取值范围是____________.答案[-1,0]解析因为函数f (x )是R 上的奇函数,所以f (0)=0,若函数f (x )为R 上的减函数,则满足当x >0时,函数为减函数,且-1-a ≤0-a -2=a 2≤0,1-a ≤0,≤0,≥-1,即-1≤a ≤0.命题点3利用函数的性质解不等式例4(1)(2018·聊城模拟)已知函数f (x )=|x |(10x -10-x ),则不等式f (1-2x )+f (3)>0的解集为()A .(-∞,2)B .(2,+∞)C .(-∞,1)D .(1,+∞)答案A解析由于f (-x )=-f (x ),所以函数为奇函数,且为单调递增函数,故f (1-2x )+f (3)>0等价于f (1-2x )>-f (3)=f (-3),所以1-2x >-3,x <2,故选A.(2)设函数f (x )=ln(1+|x |)-11+x2,解不等式f (x )>f (2x -1).解由已知得函数f (x )为偶函数,所以f (x )=f (|x |),由f (x )>f (2x -1),可得f (|x |)>f (|2x -1|).当x>0时,f(x)=ln(1+x)-11+x2,因为y=ln(1+x)与y=-11+x2在(0,+∞)上都单调递增,所以函数f(x)在(0,+∞)上单调递增.由f(|x|)>f(|2x-1|),可得|x|>|2x-1|,两边平方可得x2>(2x-1)2,整理得3x2-4x+1<0,解得13<x<1.所以符合题意的x思维升华解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.跟踪训练2(1)定义在R上的奇函数f(x)满足f(x),当x ,12时,f(x)=12log(1)x ,则f(x)()A.减函数且f(x)>0B.减函数且f(x)<0 C.增函数且f(x)>0D.增函数且f(x)<0答案D解析当x ,12时,由f(x)=12log(1-x)可知,f(x)单调递增且f(x)>0,又函数f(x)为奇函数,所以在区间-12,f(x)<0.由f(x)知,函数的周期为32,f(x)<0.故选D.(2)(2018·烟台模拟)已知偶函数f(x)在[0,+∞)上单调递增,且f(1)=-1,f(3)=1,则满足-1≤f(x-2)≤1的x的取值范围是()A.[3,5]B.[-1,1]C.[1,3]D.[-1,1]∪[3,5]答案D解析由偶函数f(x)在区间[0,+∞)上单调递增,则在区间(-∞,0)上单调递减,又f(1)=-1,f(3)=1,则f(-1)=-1,f(-3)=1,要使得-1≤f(x-2)≤1,即1≤|x-2|≤3,即1≤x-2≤3或-3≤x-2≤-1,解得-1≤x≤1或3≤x≤5,即不等式的解集为[-1,1]∪[3,5],故选D.(3)已知函数g(x)是R上的奇函数,且当x<0时,g(x)=-ln(1-x),函数f(x)3,x≤0,(x),x>0,解不等式f(6-x2)>f(x).解∵g(x)是奇函数,∴当x>0时,g(x)=-g(-x)=ln(1+x),易知f(x)在R上是增函数,由f(6-x2)>f(x),可得6-x2>x,即x2+x-6<0,∴-3<x<2.函数的性质函数的奇偶性、周期性及单调性是函数的三大性质,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.一、函数性质的判断例1(1)(2017·全国Ⅰ)已知函数f(x)=ln x+ln(2-x),则()A.f(x)在(0,2)上单调递增B.f(x)在(0,2)上单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称答案C解析f(x)的定义域为(0,2).f(x)=ln x+ln(2-x)=ln[x(2-x)]=ln(-x2+2x).设u=-x2+2x,x∈(0,2),则u=-x2+2x在(0,1)上单调递增,在(1,2)上单调递减.又y=ln u在其定义域上单调递增,∴f(x)=ln(-x2+2x)在(0,1)上单调递增,在(1,2)上单调递减.∴选项A,B错误;∵f(x)=ln x+ln(2-x)=f(2-x),∴f(x)的图象关于直线x=1对称,∴选项C正确;∵f(2-x)+f(x)=[ln(2-x)+ln x]+[ln x+ln(2-x)]=2[ln x+ln(2-x)],不恒为0,∴f(x)的图象不关于点(1,0)对称,∴选项D错误.故选C.(2)定义在R上的函数f(x)满足f(x)=f(-x),且f(x)=f(x+6),当x∈[0,3]时,f(x)单调递增,则f(x)在下列哪个区间上单调递减()A.[3,7]B.[4,5]C.[5,8]D.[6,10]答案B解析依题意知,f(x)是偶函数,且是以6为周期的周期函数.因为当x∈[0,3]时,f(x)单调递增,所以f(x)在[-3,0]上单调递减.根据函数周期性知,函数f(x)在[3,6]上单调递减.又因为[4,5]⊆[3,6],所以函数f(x)在[4,5]上单调递减.(3)定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,且f(4-x)=f(x).现有以下三个命题:①8是函数f(x)的一个周期;②f(x)的图象关于直线x=2对称;③f(x)是偶函数.其中正确命题的序号是________.答案①②③解析由f(x)+f(x+2)=0可得f(x+4)=-f(x+2)=f(x),∴函数f(x)的最小正周期是4,①对;由f(4-x)=f(x),可得f(2+x)=f(2-x),f(x)的图象关于直线x=2对称,②对;f(4-x)=f(-x)且f(4-x)=f(x),∴f(-x)=f(x),f(x)为偶函数,③对.二、函数性质的综合应用例2(1)(2018·全国Ⅱ)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)等于()A.-50B.0C.2D.50答案C解析∵f(x)是奇函数,∴f(-x)=-f(x),∴f(1-x)=-f(x-1).∵f(1-x)=f(1+x),∴-f(x-1)=f(x+1),∴f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴函数f(x)是周期为4的周期函数.由f(x)为奇函数且定义域为R得f(0)=0,又∵f(1-x)=f(1+x),∴f(x)的图象关于直线x=1对称,∴f(2)=f(0)=0,∴f(-2)=0.又f(1)=2,∴f(-1)=-2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0,∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2.故选C.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则()A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)答案D解析因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).(3)设偶函数f (x )满足f (x )=2x -4(x ≥0),则满足f (a -2)>0的实数a 的取值范围为__________.答案{a |a >4或a <0}解析∵偶函数f (x )满足f (x )=2x -4(x ≥0),∴函数f (x )在[0,+∞)上为增函数,f (2)=0,∴不等式f (a -2)>0等价于f (|a -2|)>f (2),即|a -2|>2,即a -2>2或a -2<-2,解得a >4或a <0.1.下列函数中,既是偶函数又在区间(1,2)内单调递减的是()A .f (x )=xB .f (x )=1x 2C .f (x )=2x +2-xD .f (x )=-cos x答案B解析函数f (x )=1x2是偶函数,且在(1,2)内单调递减,符合题意.2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)等于()A .-3B .-54C.54D .3答案A 解析由f (x )为R 上的奇函数,知f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.3.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是()①y =f (|x |);②y =f (-x );③y =xf (x );④y =f (x )+x .A .①③B .②③C .①④D .②④答案D解析由奇函数的定义f (-x )=-f (x )验证,①f (|-x |)=f (|x |),为偶函数;②f (-(-x ))=f (x )=-f (-x ),为奇函数;③-xf (-x )=-x ·[-f (x )]=xf (x ),为偶函数;④f (-x )+(-x )=-[f (x )+x ],为奇函数.可知②④正确,故选D.4.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f (1)等于()A .-2B .0C .2D .1答案A解析∵函数f (x )为定义在R 上的奇函数,且周期为2,∴f (1)=-f (-1)=-f (-1+2)=-f (1),∴f (1)=0,124=-2,∴f (1)=-2.5.(2018·惠州调研)已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为()A .(2,+∞)(2,+∞)(2,+∞)D .(2,+∞)答案B解析f (x )是R 上的偶函数,且在(-∞,0]上是减函数,所以f (x )在[0,+∞)上是增函数,所以f (log 2x )>2=f (1)⇔f (|log 2x |)>f (1)⇔|log 2x |>1⇔log 2x >1或log 2x <-1⇔x >2或0<x <12.6.(2018·海南联考)已知函数f (x )是定义在R 上的偶函数,f (x )=f (12-x ),当x ∈[0,6]时,f (x )=log 6(x +1),若f (a )=1(a ∈[0,2020]),则a 的最大值是()A .2018B .2010C .2020D .2011答案D解析由函数f (x )是定义在R 上的偶函数,f (x )=f (12-x ),可得f (-x )=f (12+x ),即f (x )=f (12+x ),故函数的周期为12.令log 6(a +1)=1,解得a =5,∴在[0,12]上f (a )=1的根为5,7;又2020=12×168+4,∴a 的最大值在[2004,2016]上,即2004+7=2011.故选D.7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.答案-32解析函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln 1+e 3x e 3x +e 6x =2ax =ln e 2ax,即1+e 3x e 3x +e 6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0恒成立,所以a =-32.8.已知函数f (x )是奇函数,当x >0时,f (x )=ln x ,则f ________.答案-ln 2解析由已知可得ln 1e2=-2,所以f (-2).又因为f (x )是奇函数,所以f (-2)=-f (2)=-ln 2.9.奇函数f (x )在区间[3,6]上是增函数,且在区间[3,6]上的最大值为8,最小值为-1,则f (6)+f (-3)的值为________.答案9解析由于f (x )在[3,6]上为增函数,所以f (x )的最大值为f (6)=8,f (x )的最小值为f (3)=-1,因为f (x )为奇函数,所以f (-3)=-f (3)=1,所以f (6)+f (-3)=8+1=9.10.若函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是单调递增的.如果实数t 满足f (ln t )+2f (1),那么t 的取值范围是________.答案1e,e 解析由于函数f (x )是定义在R 上的偶函数,所以f (ln t )=由f (ln t )+2f (1),得f (ln t )≤f (1).又函数f (x )在区间[0,+∞)上是单调递增的,所以|ln t |≤1,即-1≤ln t ≤1,故1e≤t ≤e.11.已知函数f (x )x 2+2x ,x >0,,x =0,2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)-2>-1,-2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].12.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式.(1)证明∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.∵f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].13.若定义在R 上的偶函数f (x )满足f (x )>0,f (x +2)=1f (x )对任意x ∈R 恒成立,则f (2023)=________.答案1解析因为f (x )>0,f (x +2)=1f (x ),所以f (x +4)=f [(x +2)+2]=1f (x +2)=11f (x )=f (x ),即函数f (x )的周期是4,所以f (2023)=f (506×4-1)=f (-1).因为函数f (x )为偶函数,所以f (2023)=f (-1)=f (1).当x =-1时,f (-1+2)=1f (-1),得f (1)=1f (1).由f (x )>0,得f (1)=1,所以f (2023)=f (1)=1.14.(2018·天津河西区模拟)设f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=x 2+1,0≤x <1,-2x ,x ≥1,若对任意的x ∈[m ,m +1],不等式f (1-x )≤f (x +m )恒成立,则实数m的最大值是()A .-1B .-13C .-12D.13答案B解析易知函数f (x )在[0,+∞)上单调递减,又函数f (x )是定义在R 上的偶函数,所以函数f (x )在(-∞,0)上单调递增,则由f (1-x )≤f (x +m ),得|1-x |≥|x +m |,即(1-x )2≥(x +m )2,即g (x )=(2m +2)x +m 2-1≤0在x ∈[m ,m +1]上恒成立,当m =-1时,g (x )=0,符合要求,当m ≠-1(m )=(3m -1)(m +1)≤0,(m +1)=(m +1)(3m +1)≤0,解得-1<m ≤-13,所以-1≤m ≤-13,即m 的最大值为-13.15.已知函数f (x )=sin x +x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为______________________________.答案2解析易知f (x )在R 上为单调递增函数,且f (x )为奇函数,故f (mx -2)+f (x )<0等价于f (mx -2)<-f (x )=f (-x ),则mx -2<-x ,即mx +x -2<0对所有m ∈[-2,2]恒成立,令h (m )=mx +x -2,m ∈[-2,2](-2)<0,(2)<0即可,解得-2<x <23.16.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,当x ∈(2,4)时,f (x )=|x -3|,求f (1)+f (2)+f (3)+f (4)+…+f (2020)的值.解因为f (x )为奇函数,f (x +1)为偶函数,所以f (x +1)=f (-x +1)=-f (x -1),所以f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数f(x)的周期为4,所以f(4)=f(0)=0,f(3)=f(-1)=-f(1).在f(x+1)=f(-x+1)中,令x=1,可得f(2)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)=0.所以f(1)+f(2)+f(3)+f(4)+…+f(2020)=0.。
高中 高考理科数学专项复习 函数的概念、基本初等函数(Ⅰ)及函数的应用 函数的奇偶性与周期性
2 3 1 1 1 解:f2=f2-2=f-2=-4×-2 +2=1.故填 1.
若函数 f(x)=xln(x+ a+x2)为偶函数,则 实数 a=____________.
解:∵函数 f(x)是偶函数,∴f(x)=f(-x), 即 xln(x+ a+x2)=-xln(-x+ a+x2), 1 2 ∴x+ a+x = 2,得 a=1.故填 1. -x+ a+x
第二章
函数的概念、基本初等函数(Ⅰ)及函数的应用
§2.3
函数的奇偶性与周期性
1.奇、偶函数的概念 (1)偶函数 一 般 地 , 如 果 对 于 函 数 f(x) 的 定 义 域 内 任 意 一 个 x , 都 有 ,那么函数 f(x)就叫做偶函数. (2)奇函数 一 般 地 , 如 果 对 于 函 数 f(x) 的 定 义 域 内 任 意 一 个 x , 都 有 ,那么函数 f(x)就叫做奇函数. 2.奇、偶函数的图象特征 偶函数的图象关于 对称; 奇函数的图象关于 对称.
解法二(图象法):作出函数 f(x)的图象,由图象关于原 点对称的特征知函数 f(x)为奇函数.
2 4 - x ≥0, (3)∵ ∴-2≤x≤2 且 x≠0, x≠0,
3.具有奇偶性函数的定义域的特点 具有奇偶性函数的定义域关于 于 ”是“一个函数具有奇偶性”的 4.周期函数的概念 (1)周期、周期函数 对于函数 f(x),如果存在一个 域内 的值时,都有 T,使得当 x 取定义 ,那么函数 f(x)就叫 ,即“定义域关 条件.
做周期函数.T 叫做这个函数的周期. (2)最小正周期 如 果 在 周 期 函 数 f(x)的 所 有 周 期 中 存 在 一 个 正数,那么这个最小正数就叫做 f(x)的最小正周期. 的
高考数学知识点汇总函数的奇偶性与周期性
高考数学知识点汇总函数的奇偶性与周期性高考数学知识点汇总函数的奇偶性与周期性知识要点:一、函数的奇偶性1.定义:关于函数f(x),假如关于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;关于函数f(x),假如关于定义域内任意一个x,都有f(-x)=f(x),那么f (x)为偶函数;2.性质:(1)函数依据奇偶性分类可分为:奇函数非偶函数,偶函数非奇函数,既奇且偶函数,非奇非偶函数;(2) f(x),g(x)的定义域为D;(3)图象特点:奇函数的图象关于原点对称;偶函数的图象关于原点对称;(4)定义域关于原点对称是函数具有奇偶性的必要不充分条件,奇函数f(x)在原点处有定义,则有f(0)=0;(5)任意一个定义域关于原点对称的函数f(x)总能够表示为一个奇函数与偶函数的和的形式:f(x)=g(x)+h(x),其中g(x)=-[f(x)+f(-x)]为偶函数,h(x) =-[f(x)-f(-x)]为奇函数;(6)奇函数在关于原点对称的区间具有相同的单调性,偶函数在关于原点对称的区间具有相反的单调性。
3.判定方法:(1)定义法(2)等价形式:f(-x)+f(x)=0,f(x)为奇函数;f(-x)-f(x)=0,f(x)为偶函数。
4.拓展延伸:(1)一样地,关于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2 b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;(2)一样地,关于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a -x),则它的图象关于x=a成轴对称。
二、周期性:1.定义:关于函数y=f(x),假如存在一个非零常数T,使得当自变量x 取定义域内的每一个值时,都有f(x)=f(x+T)成立,那么就称函数y=f(x)为周期函数。
2.图象特点:将函数y=f(x)的图象向左(右)平移的整数倍个单位,所得的函数图象与函数y=f(x)的图象重合。
艺术生高考数学专题讲义考点10函数的图象及其变换
艺术生高考数学专题讲义考点10函数的图象及其变换1.函数的图象函数的图象是函数y=f(x)的平面图形表示,通常用笛卡尔坐标系上的点(x,f(x))表示。
函数的图象可以帮助我们直观地了解函数的性质。
2.常见函数图象(1) 一次函数y=ax+b (a≠0) 的图象是一条直线,斜率为a,截距为b。
(2) 二次函数y=ax^2+bx+c (a≠0) 的图象是一条抛物线,开口方向由a的正负决定。
(3)幂函数y=x^a(a>0,a≠1)的图象是一条指数曲线,根据a的大小关系可以判断增减性。
(4) 对数函数y=loga(x) (a>0, a≠1) 的图象是一条反比例函数的图象。
3.函数图象的平移(1)向右平移h个单位:将x替换为x-h,则对应的函数图象向右平移h个单位。
(2)向左平移h个单位:将x替换为x+h,则对应的函数图象向左平移h个单位。
(3)向上平移k个单位:将y替换为y-k,则对应的函数图象向上平移k个单位。
(4)向下平移k个单位:将y替换为y+k,则对应的函数图象向下平移k个单位。
4.函数图象的伸缩(1) 横向伸缩:将x替换为kx (k>0),则对应的函数图象在x轴方向上缩短为原来的1/k倍;如果k<0,则函数图象在x轴方向上翻转。
(2) 纵向伸缩:将y替换为ky (k>0),则对应的函数图象在y轴方向上伸长为原来的k倍;如果k<0,则函数图象在y轴方向上翻转。
5.函数图象的对称(1)关于x轴对称:将y替换为-y,则对应的函数图象关于x轴对称。
(2)关于y轴对称:将x替换为-x,则对应的函数图象关于y轴对称。
(3)关于原点对称:先进行左右对称,再进行上下对称。
6.函数图象的综合变换根据需要,可以将平移、伸缩和对称等操作综合运用于函数的图象,从而得到更加复杂的函数图象。
7.相关考点(1)函数的性质与图象:通过观察函数的图象,可以判断函数的奇偶性、增减性等性质。
(2)函数的反函数:反函数的图象是原函数的图象关于直线y=x的镜像。
函数高考知识点梳理
函数高考知识点梳理函数是高中数学的重要内容,也是高考考点之一。
掌握函数的相关知识对于高考数学成绩的提升至关重要。
本文将对函数的相关知识点进行梳理和总结,帮助同学们更好地备考。
一、函数的定义和性质1. 函数的定义:函数是一种有序对的关系,是自变量与因变量之间的映射关系。
2. 定义域:函数中自变量的取值范围。
3. 值域:函数中因变量的取值范围。
4. 图像:函数在坐标系中的表示,通常用曲线表示。
5. 奇偶性:函数关于坐标原点对称称为偶函数,关于y轴对称称为奇函数,否则为无偶奇性。
6. 单调性:函数的增减趋势。
7. 有界性:函数在某个区间上是否有上下界。
二、函数的分类1. 初等函数:基本初等函数(常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数)以及它们的有限次四则运算、函数的复合和函数的构造所得的函数。
2. 反函数:与原函数满足互逆关系的函数。
3. 反比例函数:自变量与因变量之间呈现反比例关系的函数。
4. 分段函数:根据自变量的取值范围,函数表达式有不同的形式。
5. 参数方程:自变量和因变量均用参数表示的函数。
三、函数的性质与运算1. 函数的和、差、积、商:函数间的四则运算。
2. 复合函数:一个函数作为另一个函数的自变量时构成的函数。
3. 反函数的性质:反函数的定义域和值域与原函数的相反。
4. 函数的平移:函数图像在坐标系中的平移和拉伸。
5. 函数的复合:多个函数进行复合运算的结果仍然是一个函数。
6. 函数的解析式与图像的关系:函数图像与函数的解析式之间的对应关系。
四、应用题1. 函数在实际问题中的应用,如函数模型的建立、函数图像的解读等。
2. 函数方程的解:求解函数方程的解析式。
通过对函数的相关知识点进行梳理和总结,我们可以更加全面地了解函数的定义、性质和运算规律。
在高考数学备考中,熟练掌握函数的相关知识点,能够灵活运用函数解决实际问题,将会为我们取得更好的成绩提供有力的支持。
精确理解函数的定义、掌握函数的分类和性质、善于运用函数的运算、熟练应用函数解决实际问题,是我们备考高考数学时不可或缺的能力。
高考数学知识点精讲函数的奇偶性与周期性
高考数学知识点精讲函数的奇偶性与周期性高考数学知识点精讲:函数的奇偶性与周期性在高考数学中,函数的奇偶性与周期性是非常重要的知识点,理解并掌握它们对于解决函数相关问题具有关键作用。
接下来,咱们就一起来详细探讨一下这两个重要的概念。
一、函数的奇偶性1、奇函数如果对于函数 f(x) 的定义域内任意一个 x,都有 f(x) = f(x),那么函数 f(x) 就叫做奇函数。
比如说,常见的奇函数有 y = sin x ,y = x 等。
我们以 y = x 为例来直观地理解一下奇函数的特点。
当 x 取某个值时,比如 x = 3 ,那么 f(3) = 3 ;而当 x 取-3 时,f(-3) =-3 ,也就是 f(-3) = f(3) ,这就体现了奇函数的性质。
奇函数的图象关于原点对称。
这意味着,如果我们知道了函数在原点一侧的图象,就可以通过原点对称的方式得到另一侧的图象。
2、偶函数如果对于函数 f(x) 的定义域内任意一个 x,都有 f(x) = f(x),那么函数 f(x) 就叫做偶函数。
像 y = cos x ,y =|x| 等都是偶函数。
以 y =|x| 为例,当 x =3 时,f(3) = 3 ;当 x =-3 时,f(-3) = 3 ,即 f(-3) = f(3) ,这符合偶函数的定义。
偶函数的图象关于 y 轴对称。
同样,如果知道了函数在 y 轴一侧的图象,通过 y 轴对称就能得到另一侧的图象。
判断一个函数是奇函数还是偶函数,通常有以下几种方法:(1)定义法:就是根据奇函数和偶函数的定义,分别计算 f(x) 和f(x) 或者 f(x) ,看是否相等。
(2)图象法:通过观察函数的图象是否关于原点对称(奇函数)或者关于 y 轴对称(偶函数)来判断。
二、函数的周期性1、周期函数的定义对于函数 y = f(x) ,如果存在一个不为零的常数 T,使得当 x 取定义域内的每一个值时,f(x + T) = f(x) 都成立,那么就把函数 y = f(x) 叫做周期函数,周期为 T 。
高考数学知识考点精析3 函数的单调性、周期性、奇偶性、反函数
高考数学知识考点精析3 函数的单调性、周期性、奇偶性、反函数一、函数的单调性:1、定义:对于给定区间D 上的函数f(x),若对于任意x 1,x 2∈D,当x 1<x 2时,都有f(x 1) <f(x 2),则称f(x)是区间上的增函数,当x 1<x 2时,都有f(x 1)> f(x 2),则称f(x)是区间上的减函数。
如果函数y= f(x)在区间上是增函数或减函数,就说函数y= f(x)在区间D 上具有(严格的)单调性,区间D 称为函数f(x)的单调区间。
()()()()121200f x f x x x -><→-增减 任意x 1,x 2∈D 2、函数单调性的证明方法:通常根据定义,其步骤是:1)任取x 1,x 2∈D ,且x 1<x 2 2)作差f(x 1)- f(x 2)或作商()()()()0112≠x f x f x f ,并变形,(4)判定f(x 1)- f(x 2)的符号,或比较()()12x f x f 与1的大小, 4)根据定义作出结论。
有时也根据导数。
()()()()//,0D 0D x D f x f x f x f x ∈>⇒<⇒在上递增,在上递减。
(注:逆命题不成立)3、常见函数的单调性:(1) 一次函数y=kx+b (k ≠0) 1)当k>0时,f(x)在R 上是增函数。
2)当k<0时,f(x)在R 上是减函数。
(2) 二次函数y=ax 2+bx+c 1)当a>o 时,函数f(x)的图象开口向上,在(-∞,-a b 2)上是减函数,在[-ab 2,+∞)上是增函数,2) 当a<0时,函数f(x)的图象开口向下,在(-∞,-a b 2)上是增函数,在[-ab 2,+∞)是减函数。
(3) 反比例函数y=()0≠k xk 1) 当k>0时,f(x)在(-∞,0)与(0,+∞)上都是减函数,2) 当k<0时,f(x)在(-∞,0)与(0,+∞)上都是增函数但要注意在(-∞,0)∪(0,+∞)上f(x)没有单调性。
高考数学中的函数的奇偶性与周期性总结
高考数学中的函数的奇偶性与周期性总结函数是数学中一个十分重要的概念,而在高考数学中,函数的奇偶性和周期性更是具有重要的意义。
本文旨在对高考数学中函数的奇偶性与周期性进行总结,帮助学生更好地掌握这一知识点。
奇偶性首先,我们来看函数的奇偶性。
一个函数的奇偶性指的是函数在定义域上是否满足一定的对称性质。
定义域上的对称性质可以分为两种:奇对称和偶对称。
如果对于定义域上任意一个实数$x$,函数$f(x)$满足$f(-x)=-f(x)$,则称该函数在定义域上是奇对称的。
如果对于定义域上任意一个实数$x$,函数$f(x)$满足$f(-x)=f(x)$,则称该函数在定义域上是偶对称的。
有些函数既不是奇对称也不是偶对称,这样的函数称为一般函数。
下面我们来看一些具体的例子。
1. 奇函数最简单的奇函数当属平凡函数$y=x$。
因为对于任意实数$x$,有$(-x)=-x$,因此$f(-x)=-(-x)=x=f(x)$,故平凡函数是奇函数。
另一个常见的奇函数是正弦函数$y=\sin{x}$。
由于$\sin{(-x)}=-\sin{x}$,所以正弦函数是奇函数。
2. 偶函数最简单的偶函数当属常量函数$y=c$。
由于对于任意实数$x$,有$(-x)=x$,因此$f(-x)=f(x)$,故常量函数是偶函数。
另一个常见的偶函数是余弦函数$y=\cos{x}$。
由于$\cos{(-x)}=\cos{x}$,所以余弦函数是偶函数。
3. 一般函数最简单的一般函数当属同学们都非常熟悉的二次函数$y=ax^2+bx+c$。
显然,一般函数既不是奇函数也不是偶函数。
那么,大家可能会问,为什么要研究奇偶性呢?因为当我们知道一个函数的奇偶性之后,就可以轻松地求出函数的对称轴,从而更好地画出函数图像、解决一些简单的函数方程等问题。
周期性接下来,我们来看函数的周期性。
一个函数的周期性指的是函数在其自变量上是否具有一定的重复性或周期性。
定义域上的周期性可以分为两种:正周期和负周期。
高考数学复习考点题型专题讲解29 函数的图象与性质
高考数学复习考点题型专题讲解专题29 函数的图象与性质高考定位 1.以分段函数、二次函数、指数函数、对数函数为载体,考查函数的定义域、最值与值域、奇偶性和单调性;2.利用函数的性质推断函数的图象;3.利用图象研究函数性质、方程及不等式的解集,综合性较强.1.(2022·北京卷)已知函数f(x)=11+2x,则对任意实数x,有( )A.f(-x)+f(x)=0B.f(-x)-f(x)=0C.f(-x)+f(x)=1D.f(-x)-f(x)=1 3答案 C解析函数f(x)的定义域为R,f(-x)=11+2-x =2x1+2x,所以f(-x)+f(x)=2x1+2x+11+2x=1,故选C.2.(2022·全国甲卷)函数f(x)=(3x-3-x)·cos x在区间[-π2,π2]的图象大致为( )答案 A解析 法一(特值法) 取x =1,则y =(3-13)cos 1=83cos 1>0 ;取x =-1,则y =(13-3)cos(-1)=-83cos 1<0.结合选项知选A. 法二 令y =f (x ),则f (-x )=(3-x -3x )cos(-x )=-(3x -3-x )cos x =-f (x ), 所以函数y =(3x -3-x )cos x 是奇函数,排除B ,D ; 取x =1,则y =(3-13)cos 1=83cos 1>0,排除C.故选A.3.(2022·新高考Ⅱ卷)已知函数f (x )的定义域为R ,且f (x +y )+f (x -y )=f (x )f (y ),f (1)=1,则∑22k =1f (k )=( ) A.-3 B.-2 C.0 D.1 答案 A解析 因为f (1)=1,所以在f (x +y )+f (x -y )=f (x )f (y )中, 令y =1,得f (x +1)+f (x -1)=f (x )f (1), 所以f (x +1)+f (x -1)=f (x ),① 所以f (x +2)+f (x )=f (x +1).② 由①②相加,得f (x +2)+f (x -1)=0, 故f (x +3)+f (x )=0, 所以f (x +3)=-f (x ),所以f (x +6)=-f (x +3)=f (x ), 所以函数f (x )的一个周期为6. 在f (x +y )+f (x -y )=f (x )f (y )中, 令y =0,得f (x )+f (x )=f (x )f (0), 所以f (0)=2.令x =y =1,得f (2)+f (0)=f (1)f (1), 所以f (2)=-1. 由f (x +3)=-f (x ),得f (3)=-f (0)=-2,f (4)=-f (1)=-1,f (5)=-f (2)=1,f (6)=-f (3)=2,所以f (1)+f (2)+…+f (6)=1-1-2-1+1+2=0,根据函数的周期性知,∑22k =1f (k )=f (1)+f (2)+f (3)+f (4)=1-1-2-1=-3,故选A. 4.(2021·新高考Ⅰ卷)函数f (x )=|2x -1|-2ln x 的最小值为________. 答案 1解析 函数f (x )=|2x -1|-2ln x 的定义域为(0,+∞). ①当x >12时,f (x )=2x -1-2ln x ,所以f ′(x )=2-2x =2(x -1)x.当12<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,所以f (x )在⎝ ⎛⎭⎪⎫12,1上单调递减,在(1,+∞)上单调递增,所以f (x )min =f (1)=2-1-2ln 1=1; ②当0<x ≤12时,f (x )=1-2x -2ln x ,显然f (x )在⎝⎛⎦⎥⎤0,12上单调递减, 所以f (x )min =f ⎝ ⎛⎭⎪⎫12=-2ln 12=2ln 2=ln 4>ln e =1. 综上,f (x )min =1.热点一 函数的概念与表示1.复合函数的定义域(1)若f (x )的定义域为[m ,n ],则在f (g (x ))中,由m ≤g (x )≤n 解得x 的范围即为f (g (x ))的定义域.(2)若f (g (x ))的定义域为[m ,n ],则由m ≤x ≤n 得到g (x )的范围,即为f (x )的定义域. 2.分段函数分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数值域的并集.例1 (1)(2022·济宁质检)已知函数f (x )=⎩⎨⎧21-x ,x ≤0,log 12x ,x >0,则f (f (-1))=()A.-2B.2C.-12D.12(2)已知函数f (x )=x 1-2x,则函数f (x -1)x +1的定义域为( )A.(-∞,1)B.(-∞,-1)C.(-∞,-1)∪(-1,0)D.(-∞,-1)∪(-1,1) 答案 (1)A (2)D解析(1)∵f (x )=⎩⎨⎧21-x ,x ≤0,log 12x ,x >0,∴f (-1)=22=4,∴f (f (-1))=f (4)=log 124=-2,故选A.(2)令1-2x >0,即2x <1,即x <0. ∴f (x )的定义域为(-∞,0). ∴函数f (x -1)x +1中,有⎩⎨⎧x -1<0,x +1≠0,解得x <1且x ≠-1. 故函数f (x -1)x +1的定义域为(-∞,-1)∪(-1,1).规律方法 1.形如f (g (x ))的函数求值时,应遵循先内后外的原则.2.对于分段函数的求值(解不等式)问题,必须依据条件准确地找出利用哪一段求解. 训练1 (1)设D 是含数1的有限实数集,f (x )是定义在D 上的函数.若f (x )的图象绕原点按逆时针方向旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( ) A.3B.32C.33D.0 (2)(2022·南京模拟)设函数f (x )=⎩⎨⎧-e x,x >0,x 2+2x +4,x ≤0.若f (f (a ))=4,则a =________.答案 (1)B (2)ln 2解析 (1)根据题设知,函数f (x )的图象绕原点按逆(顺)时针方向旋转k π6(k =0,1,…,11)后仍与原图象重合.若f (1)=0,即点A (1,0)是f (x )的图象上的点,将其分别绕原点按逆(顺)时针方向旋转π6,得到点A ′⎝ ⎛⎭⎪⎫32,12和A ″⎝ ⎛⎭⎪⎫32,-12两点,它们都在f (x )的图象上, 即f ⎝ ⎛⎭⎪⎫32=±12,与函数的定义矛盾,所以排除D ;类似地,若f (1)=33,将点⎝ ⎛⎭⎪⎫1,33绕原点按顺时针方向旋转π3,可得f (1)=-33;若f (1)=3,可得f (1)=-3,都不符合函数的定义,故选B. (2)∵x >0时,f (x )=-e x <0,x ≤0时,f (x )=x 2+2x +4=(x +1)2+3≥3, ∴由f (x )=4,得x 2+2x +4=4(x ≤0),解得x =0或x =-2, ∴f (a )=0不存在,舍去,∴f (a )=-2,则-e a =-2,解得a =ln 2. 热点二 函数的性质1.函数的奇偶性(1)定义:若函数的定义域关于原点对称,则有:f (x )是偶函数⇔f (-x )=f (x )=f (|x |); f (x )是奇函数⇔f (-x )=-f (x ).(2)判断方法:定义法、图象法、奇偶函数性质法(如奇函数×奇函数是偶函数). 2.函数单调性判断方法:定义法、图象法、导数法. 3.函数图象的对称中心或对称轴(1)若函数f (x )满足关系式f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b 2对称.(2)若函数f (x )满足关系式f (a +x )+f (a -x )=2b ,则函数y =f (x )的图象关于(a ,b )对称.考向1 奇偶性与单调性例2 若定义在R 上的奇函数f (x )在(-∞,0)上单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是( )A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3] 答案 D解析 因为函数f (x )为定义在R 上的奇函数,则f (0)=0.又f (x )在(-∞,0)上单调递减,且f (2)=0,画出函数f (x )的大致图象如图(1)所示, 则函数f (x -1)的大致图象如图(2)所示.当x ≤0时,要满足xf (x -1)≥0, 则f (x -1)≤0,得-1≤x ≤0. 当x >0时,要满足xf (x -1)≥0, 则f (x -1)≥0,得1≤x ≤3.故满足xf (x -1)≥0的x 的取值范围是[-1,0]∪[1,3]. 考向2 奇偶性、周期性与对称性例3 (1)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=ax 2+b .若f (0)+f (3)=6,则f ⎝ ⎛⎭⎪⎫92=( )A.-94B.-32C.74D.52(2)(2022·全国乙卷)已知函数f (x ),g (x )的定义域均为R ,且f (x )+g (2-x )=5,g (x )-f (x -4)=7.若y =g (x )的图象关于直线x =2对称,g (2)=4,则∑22k =1f (k )=( ) A.-21 B.-22 C.-23 D.-24 答案 (1)D (2)D解析 (1)由于f (x +1)为奇函数, 所以函数f (x )的图象关于点(1,0)对称, 即有f (x )+f (2-x )=0,所以f (1)+f (2-1)=0,得f (1)=0, 即a +b =0.①由于f (x +2)为偶函数,所以函数f (x )的图象关于直线x =2对称, 即有f (x )-f (4-x )=0,所以f (0)+f (3)=-f (2)+f (1)=-4a -b +a +b =-3a =6.② 根据①②可得a =-2,b =2, 所以当x ∈[1,2]时,f (x )=-2x 2+2.根据函数f (x )的图象关于直线x =2对称,且关于点(1,0)对称,可得函数f (x )的周期为4,所以f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫12=-f ⎝ ⎛⎭⎪⎫32=2×⎝ ⎛⎭⎪⎫322-2=52.(2)由y =g (x )的图象关于直线x =2对称, 可得g (2+x )=g (2-x ).由g (x )-f (x -4)=7得g (2+x )-f (x -2)=7, 又f (x )+g (2-x )=5即f (x )+g (2+x )=5, 所以f (x )+f (x -2)=-2,由f (x )+f (x -2)=-2得f (x -2)+f (x -4)=-2, 所以f (x -4)=f (x ),所以函数f (x )是以4为周期的周期函数. 由f (x )+g (2-x )=5可得f (0)+g (2)=5,又g (2)=4,所以可得f (0)=1, 又f (x )+f (x +2)=-2, 所以f (0)+f (2)=-2,f (-1)+f (1)=-2,得f (2)=-3,f (1)=f (-1)=-1, 又f (3)=f (-1)=-1,f (4)=f (0)=1,所以∑22k =1f (k )=6f (1)+6f (2)+5f (3)+5f (4)=6×(-1)+6×(-3)+5×(-1)+5×1=-24.故选D.规律方法 1.若f (x +a )=-f (x )⎝ ⎛⎭⎪⎫或f (x +a )=1f (x ),其中f (x )≠0,则f (x )的周期为2|a |.2.若f (x )的图象关于直线x =a 和x =b 对称,则f (x )的周期为2|a -b |.3.若f (x )的图象关于点(a ,0)和直线x =b 对称,则f (x )的周期为4|a -b |.训练2 (1)(2022·西安模拟)设y =f (x )是定义在R 上的函数,若下列四条性质中只有三条是正确的,则错误的是( ) A.y =f (x )为[0,+∞)上的减函数 B.y =f (x )为(-∞,0]上的增函数 C.y =f (x +1)为偶函数 D.f (0)不是函数的最大值(2)(2022·台州模拟)已知f (x )是定义域为R 的偶函数,f (5.5)=2,g (x )=(x -1)f (x ).若g (x +1)是偶函数,则g (-0.5)=( ) A.-3 B.-2 C.2 D.3答案(1)A (2)D解析(1)由y=f(x+1)为偶函数,得函数y=f(x)的图象关于x=1对称,假设A,B正确,则有f(x)max=f(0),所以D错误,y=f(x+1)不可能为偶函数,由此判断出C,D错误,与已知矛盾,由此判断答案A,B中一个正确一个错误,C,D正确,而A,C矛盾,由此确定A错误.(2)因为g(x)=(x-1)f(x),g(x+1)是偶函数,所以g(x+1)=xf(x+1)是偶函数,因为y=x是奇函数,所以f(x+1)是奇函数,所以f(-x+1)=-f(x+1),用-x-1替换x,得f(x+2)=-f(-x),又f(x)为R上偶函数,∴f(x+2)=-f(x),∴f[(x+2)+2]=-f(x+2)=f(x),∴f(x+4)=f(x),∴f(x)是周期为4的周期函数,所以g(-0.5)=-1.5f(-0.5)=1.5f(1.5)=1.5f(5.5)=1.5×2=3.热点三函数的图象1.作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.2.利用函数图象可以判断函数的单调性、奇偶性,解不等式、求解函数的零点等问题.例4 (1)(2022·上饶二模)函数f(x)=x2x+2-x的大致图象为( )(2)已知函数f(x)=2x-x-1,则不等式f(x)>0的解集是( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(0,1)D.(-∞,0)∪(1,+∞)答案(1)B (2)D解析(1)f(-x)=-x2-x+2x=-f(x),函数为奇函数,排除C;0<f(2)=222+2-2<24=12,排除AD,故选B.(2)在同一平面直角坐标系中画出h(x)=2x,g(x)=x+1的图象如图. 由图象得交点坐标为(0,1)和(1,2).又f(x)>0等价于2x>x+1,结合图象,可得x<0或x>1.故f(x)>0的解集为(-∞,0)∪(1,+∞).规律方法 确定函数图象的主要方法是利用函数的性质,如定义域、奇偶性、单调性等,特别是利用一些特殊点排除不符合要求的图象.训练3 (1)(2022·全国乙卷)如图是下列四个函数中的某个函数在区间[-3,3]的大致图象,则该函数是( )A.y =-x 3+3x x 2+1B.y =x 3-x x 2+1C.y =2x cos x x 2+1D.y =2sin xx 2+1(2)(2022·佛山质检)函数f (x )=2(x -b )2a的图象如图所示,则( )A.a >0,0<b <1B.a >0,-1<b <0C.a <0,-1<b <0D.a <0,0<b <1 答案 (1)A (2)D解析 (1)对于选项B ,当x =1时,y =0,与图象不符,故排除B ; 对于选项D ,当x =3时,y =15sin 3>0,与图象不符,故排除D ;对于选项C ,当0<x <π2时,0<cos x <1,故y =2x cos x x 2+1<2x x 2+1≤1,与图象不符,所以排除C.故选A.(2)由题图可知,f (0)=2b 2a <1=20,故b 2a <0,故a <0, 函数f (x )=2(x -b )2a的图象关于直线x =b 对称,由题图可知,0<b <1,故选D.一、基本技能练1.(2022·重庆八中测试)已知函数f (x )的定义域为(0,+∞),则函数F (x )=f (x +2)+3-x 的定义域为( ) A.(-2,3] B.[-2,3] C.(0,3] D.(0,3) 答案 A解析 函数F (x )=f (x +2)+3-x 有意义需满足⎩⎨⎧x +2>0,3-x ≥0,解得-2<x ≤3.2.(2022·海南模拟)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( ) A.y =ln x B.y =|x |+1 C.y =-x 2+1 D.y =3-|x | 答案 B解析 对于A ,函数y =ln x 定义域是(0,+∞),不是偶函数,A 不是; 对于B ,函数y =|x |+1定义域为R ,是偶函数且在(0,+∞)上单调递增,B 是; 对于C ,函数y =-x 2+1定义域为R ,是偶函数且在(0,+∞)上单调递减,C 不是; 对于D ,函数y =3-|x |定义域为R ,是偶函数且在(0,+∞)上单调递减,D 不是.故选B.3.已知函数f (x )=⎩⎨⎧x 2-2x +2,x >0,-x +a ,x ≤0的值域为[1,+∞),则a 的最小值为( )A.1B.2C.3D.4 答案 A 解析 由已知得当x >0时,f (x )=x 2-2x +2=(x -1)2+1,值域为[1,+∞); 当x ≤0时,f (x )=-x +a ,值域为[a ,+∞); ∵函数f (x )的值域为[1,+∞), ∴a ≥1,则a 的最小值为1.故选A.4.函数f (x )=ln |x |+1+cos x 在[-π,π]上的大致图象为( )答案 C解析 由题知f (x )的定义域为R ,f (-x )=f (x ),所以f (x )是偶函数,排除A ;f (π)=ln π+1-1<ln e -1=0,排除B ,D.故选C.5.(2022·梅州二模)设函数f (x )=⎩⎨⎧log 2(6-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 26)=( ) A.2 B.6C.8D.10 答案 B解析 因为f (x )=⎩⎨⎧log 2(6-x ),x <1,2x -1,x ≥1.所以f (-2)=log 28=3,f (log 26)=2log 26-1=3, 所以f (-2)+f (log 26)=6.故选B.6.已知函数f (x )=-x |x |,且f (m +2)+f (2m -1)<0,则实数m 的取值范围为( ) A.⎝ ⎛⎭⎪⎫-∞,-13B.(-∞,3)C.(3,+∞)D.⎝ ⎛⎭⎪⎫-13,+∞答案 D解析 对f (x )=-x |x |,其定义域为R ,且f (-x )=x |x |=-f (x ),故f (x )为R 上的奇函数;又当x >0时,f (x )=-x 2,其在(0,+∞)单调递减; 当x <0时,f (x )=x 2,其在(-∞,0)单调递减; 又f (x )是连续函数,故f (x )在R 上是单调递减函数; 则f (m +2)+f (2m -1)<0, 即f (m +2)<f (1-2m ),则m +2>1-2m ,解得m >-13.故选D.7.(2022·金华质检)已知定义域为R 的偶函数f (x )满足f (1+x )=f (1-x ),f ⎝ ⎛⎭⎪⎫12=1,则f ⎝ ⎛⎭⎪⎫-32=( )A.-32B.-1C.1D.32答案 C解析 因为函数f (x )是定义域为R 的偶函数,所以f (x )=f (-x ), 又因为f (1+x )=f (1-x ), 所以f (2-x )=f (x ),则f (2-x )=f (-x ),即f (2+x )=f (x ), 所以f (x )的周期为T =2. f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫-32+2=f ⎝ ⎛⎭⎪⎫12=1. 8.定义在R 上的奇函数f (x ),满足f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (x )≥12的解集为( ) A.⎣⎢⎡⎭⎪⎫12,+∞B.⎣⎢⎡⎦⎥⎤12,32 C.⎣⎢⎡⎦⎥⎤4k +12,4k +32(k ∈Z )D.⎣⎢⎡⎦⎥⎤2k +12,2k +32(k ∈Z )答案 C解析 由题意,函数f (x )满足f (x +2)=-f (x ),可得f (x )=f (x +4), 所以函数f (x )是周期为4的函数, 又由f (x )为R 上的奇函数, 可得f (-x )=-f (x ), 所以f (x +2)=f (-x ),可得函数f (x )的图象关于x =1对称, 因为当0≤x ≤1时f (x )=x , 可得函数f (x )的图象,如图所示,当x ∈[-1,3]时,令f (x )=12,解得x =12或x =32,所以不等式f (x )≥12的解集为⎣⎢⎡⎦⎥⎤4k +12,4k +32(k ∈Z ).故选C.9.(多选)(2022·漳州一模)已知函数f (x )=2xx 2+9,则( )A.f (x )的定义域为RB.f (x )是偶函数C.函数y =f (x +2 022)的零点为0D.当x >0时,f (x )的最大值为13答案 AD解析 对A ,由解析式可知f (x )的定义域为R ,故A 正确;对B ,因为f (x )+f (-x )=2x x 2+9+-2xx 2+9=0,可知f (x )是奇函数,故B 不正确;对C ,y =f (x +2 022)=2(x +2 022)(x +2 022)2+9=0,得x =-2 022,故C 不正确;对D ,当x >0时,0<f (x )=2x x 2+9=2x +9x≤22x ·9x=13,当且仅当x =3时取等号,故D 正确.故选AD.10.(多选)对于函数f (x )=x |x |+x +1,下列结论中错误的是( ) A.f (x )为奇函数B.f (x )在定义域上是单调递减函数C.f (x )的图象关于点(0,1)对称D.f (x )在区间(0,+∞)上存在零点 答案 ABD解析 f (x )=⎩⎨⎧-x 2+x +1,x <0,x 2+x +1,x ≥0,由图象可知,图象关于点(0,1)对称,因此不是奇函数,在定义域内函数为增函数,在(0,+∞)上没有零点. 故选ABD.11.(2022·盐城质检)已知函数f (x )是定义域为R 的奇函数,当x <0时,f (x )=2x,则f (log 27)=________. 答案 -17解析 因为函数f (x )是定义域为R 的奇函数,且当x <0时,f (x )=2x ,所以f (log 27)=-f (-log 27)=-f ⎝⎛⎭⎪⎫log 217=-2log 217=-17.12.(2022·赤峰模拟)写出一个同时具有下列性质①②③的函数f (x )=________. ①f (-x )=f (x );②当x ∈(0,+∞)时,f (x )>0;③f (x 1x 2)=f (x 1)·f (x 2). 答案 x 2(答案不唯一)解析 由题意,要求f (x )为偶函数且值域为(0,+∞). 若满足f (x 1x 2)=f (x 1)·f (x 2),则f (x )可以为幂函数,则有f (x )=x 2满足条件. 二、创新拓展练13.(多选)(2022·沈阳模拟)已知y =f (x )是定义域为R 的奇函数,且y =f (x +2)为偶函数,若当x ∈[0,2]时,f (x )=12log 3(x +a 2),下列结论正确的是( )A.a =1B.f (1)=f (3)C.f (2)=f (6)D.f (2 022)=-12答案 BD解析 根据题意,f (x )是定义域为R 的奇函数, 则f (-x )=-f (x ), 又由函数f (x +2)为偶函数,则函数f (x )的图象关于直线x =2对称, 则f (-x )=f (4+x ), 即有f (x +4)=-f (x ), 即f (x +8)=-f (x +4)=f (x ),所以f(x)是周期为8的周期函数,当x∈[0,2]时,f(x)=12log3(x+a2),可得f(0)=12log3a2=0,所以a2=1,a=±1,A错;由f(x+4)=f(-x),可得f(1)=f(3),B正确;f(6)=f(-2)=-f(2),C错;f(2 022)=f(252×8+6)=f(6)=f(-2)=-f(2)=-12log3(2+1)=-12,D正确.故选BD.14.(多选)(2022·济南二模)已知函数f(x)为偶函数,且f(x+2)=-f(2-x),则下列结论一定正确的是( )A.f(x)的图象关于点(-2,0)中心对称B.f(x)是周期为4的周期函数C.f(x)的图象关于直线x=-2轴对称D.f(x+4)为偶函数答案AD解析因为f(x+2)=-f(2-x),所以f(x)的图象关于点(2,0)中心对称,又因为函数f(x)为偶函数,所以f(x)是周期为8的周期函数,且它的图象关于点(-2,0)中心对称和关于直线x=4轴对称,所以f(x+4)为偶函数.故选AD.15.(多选)(2022·泰州模拟)已知定义在R上的单调递增函数f(x)满足:任意x∈R,有f(1-x)+f(1+x)=2,f(2+x)+f(2-x)=4,则( )A.x∈Z时,f(x)=xB.任意x∈R,f(-x)=-f(x)C.存在非零实数T,使得任意x∈R,f(x+T)=f(x)D.存在非零实数c,使得任意x∈R,|f(x)-cx|≤1答案ABD解析对于A,令t=1-x,则x=1-t,则f(t)+f(2-t)=2,即f(x)+f(2-x)=2,又f(2+x)+f(2-x)=4,∴f(x+2)=4-f(2-x)=4-(2-f(x))=f(x)+2;令x=0,得f(1)+f(1)=2,f(2)+f(2)=4,∴f(1)=1,f(2)=2,则由f(x+2)=f(x)+2可知:当x∈Z时,f(x)=x,A正确;对于B,令t=-(1-x),则x=1+t,则f(-t)+f(2+t)=2,即f(-x)+f(2+x)=2,∴f(-x)=2-f(2+x)=2-(4-f(2-x))=f(2-x)-2,由A的推导过程知:f(2-x)=2-f(x),∴f(-x)=2-f(x)-2=-f(x),B正确;对于C,∵f(x)在R上的增函数,∴当T>0时,x+T>x,则f(x+T)>f(x);当T<0时,x+T<x,则f(x+T)<f(x),∴不存在非零实数T,使得任意x∈R,f(x+T)=f(x),C错误;对于D,当c=1时,|f(x)-cx|=|f(x)-x|;由f(1-x)+f(1+x)=2,f(2+x)+f(2-x)=4知,f(x)关于(1,1),(2,2)成中心对称,则当a∈Z时,(a,a)为f(x)的对称中心;当x∈[0,1]时,∵f(x)为R上的增函数,f(0)=0,f(1)=1,∴f(x)∈[0,1],∴|f(x)-x|≤1;由图象对称性可知:此时对任意x∈R,存在非零实数c,|f(x)-cx|≤1,D正确.故选ABD.16.(多选)(2022·杭州质检)已知函数f(x)=lg(x2-2x+2-x+1),g(x)=2x+62x+2,则下列说法正确的是( )A.f(x)是奇函数B.g(x)的图象关于点(1,2)对称C.若函数F(x)=f(x)+g(x)在x∈[1-m,1+m]上的最大值、最小值分别为M,N,则M +N=4D.令F(x)=f(x)+g(x),若F(a)+F(-2a+1)>4,则实数a的取值范围是(-1,+∞)答案BCD解析对于A,因为x2-2x+2-x+1=(x-1)2+1-(x-1)>0恒成立,所以函数f(x)的定义域为R.因为f(0)=lg(2+1)≠0,所以f(x)不是奇函数,故A选项错误;对于B,将g(x)的图象向下平移2个单位长度得y=2x+62x+2-2=2-2x2+2x,再向左平移1个单位长度得h(x)=2-2x+12+2x+1=1-2x1+2x,h (-x )=1-2-x 1+2-x =2x -12x +1=-h (x ), 所以h (x )的图象关于(0,0)对称,所以g (x )的图象关于(1,2)对称,所以B 正确;对于C ,将f (x )的图象向左平移1个单位长度得m (x )=lg(x 2+1-x ).因为m (-x )+m (x )=lg(x 2+1+x )+lg(x 2+1-x )=lg 1=0,所以m (x )是奇函数,则f (x )关于(1,0)对称,所以F (x )=f (x )+g (x )若在1+m 处取得最大值,则F (x )在1-m 处取得最小值,则F (1+m )+F (1-m )=f (1+m )+f (1-m )+g (1+m )+g (1-m )=0+4=4,所以C 正确; 对于D ,F (a )+F (-2a +1)>4⇔f (a )+f (1-2a )+g (a )+g (1-2a )>4,f (x )=lg[(x -1)2+1-(x -1)].设m (x )=lg(x 2+1-x ),t =x 2+1-x , 因为t ′=x x 2+1-1=-x 2+1+x x 2+1<0, 所以t =x 2+1-x 为减函数,所以m (x )=lg(x 2+1-x )为减函数,所以f (x )为减函数.又g (x )=2x+62x +2=1+42x +2为减函数,所以F (x )为减函数. 由C 项知F (x )关于点(1,2)对称,所以F (a )+F (-2a +1)>4=F (a )+F (2-a ),所以F (-2a +1)>F (2a ),则-2a +1<2-a ,解得a >-1,所以D 正确,故选BCD.17.(2022·全国乙卷)若f (x )=ln ⎪⎪⎪⎪⎪⎪a +11-x +b 是奇函数,则a =______,b =______.答案 -12ln 2 解析 f (x )=ln|a +11-x|+b ,若a =0,则函数f (x )的定义域为{x |x ≠1}, 不关于原点对称,不具有奇偶性,所以a ≠0.由函数解析式有意义可得:x ≠1且a +11-x ≠0, 所以x ≠1且x ≠1+1a. 因为函数f (x )为奇函数,所以定义域必须关于原点对称,所以1+1a =-1,解得a =-12, 所以f (x )=ln ⎪⎪⎪⎪⎪⎪1+x 2(1-x )+b ,定义域为{x |x ≠1且x ≠-1}. 由f (0)=0,得ln 12+b =0,所以b =ln 2, 即f (x )=ln ⎪⎪⎪⎪⎪⎪-12+11-x +ln 2=ln ⎪⎪⎪⎪⎪⎪1+x 1-x , 在定义域内满足f (-x )=-f (x ),符合题意.18.(2022·金华模拟)设函数f (x )=⎩⎨⎧e x -1,x ≤0,-x 2+x ,x >0,则f (f (-ln 2))=________;当x ∈(-∞,m ]时,函数f (x )的值域为⎝ ⎛⎦⎥⎤-1,14,则m 的取值范围是________.答案 e -12-1 ⎣⎢⎡⎭⎪⎫12,1+52解析 ∵-ln 2<0,∴f (-ln 2)=e -ln 2-1=12-1=-12, 又-12<0,f (f (-ln 2))=f ⎝ ⎛⎭⎪⎫-12=e -12-1或e e -1; 当x ≤0时,f (x )∈(-1,0],当x >0时,f (x )∈⎝⎛⎦⎥⎤-∞,14, 且在x =12时,函数f (x )取得最大值14, 根据函数表达式,绘制函数图象如下:当f (x )=-1时,-x 2+x =-1,解得x =1+52, 要使f (x )的值域在x ∈(-∞,m ]时是⎝ ⎛⎦⎥⎤-1,14,则必须m ∈⎣⎢⎡⎭⎪⎫12,1+52.。
高考数学一轮复习函数的奇偶性与周期性
答案 (2)-e-x+1
目录
|解题技法|
函数奇偶性的应用类型及解题奇偶性求
出f(x)的解析式,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f
(x)的解析式;
(2)应用:根据函数的周期性,可以由函数局部的性质得到函数的整体性
质,即周期性与奇偶性都具有将未知区间上的问题转化到已知区间的功能.
在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)
也是函数的周期.
目录
1.定义在R上的奇函数f(x),满足f(x+4)=-f(x),且当x∈[0,2]时,f
)
A.b<a<c
B.c<b<a
C.b<c<a
D.a<b<c
解析:A 由结论3知,函数f(x)关于直线x=1对称,当1<x1<x2时,[f(x1)
-f(x2)](x1-x2)>0,则f(x2)>f(x1),∴函数f(x)为(1,+∞)上的
增函数,∴a=f
1
−
2
=f
3
1−
2
=f 1 +
3
2
=f
5
2
5
,∵3> >2>1,因此,b<a<
x+2·
-x,所以f(x)=3x+3-x.
ቊ
两式相加得,2f(x)=2·
3
3
()−() = 2·3− ,
答案:3x+3-x
目录
函数的周期性
【例3】 (1)(2021·全国甲卷)设f(x)是定义域为R的奇函数,且f(1+
x)=f(-x).若f
1
−
3
1
5
= ,则f
高考数学(文科)复习第二单元 第10讲 函数的图像
=ln13+sin12=sin12-ln
3<0,故排除选项
A.故选
B.
课堂考点探究
[总结反思] 利用性质识别函数图像是辨图的主要方法,采用的性质主要是定义域、值 域、函数整体的奇偶性、函数局部的单调性等.当然,对于一些更为复杂的函数图像的判 断,还可能与特殊点法结合起来使用.
课堂考点探究
考向3 图像变换法
2.【考向 1】[2018·广西陆川模拟] 函数 f(x)=������22+������ 1的图像 大致是 ( )
[答案] A [解析] f(x)=������22+������ 1,当 x=0 时,f(0)=0,排除选项 D;当 x>0
时,f(x)>0,排除选项 B,C.故选 A.
图 2-10-7
课前双基巩固 对点演练
1.判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)将函数 y=f(-x)的图像向右平移 1 个单位长度得到函数
y=f(-x-1)的图像. ( )
(2)函数
f(x)=
������-1 与
������-1
g(x)=
������-1的图像相同.
(
)
(3)若函数 f(x)满足 f(x+a)=f(a-x),则函数 f(x)图像的对称轴
图 2-10-2
课堂考点探究
例 2 [2019·合肥调研] 函数 f(x)=x3+ln( ������2 + 1-x)的 图像大致为 ( )
图 2-10-2
[答案] B [解析] 由题 意,f(-x)=(-x)3+ln( ������2 + 1+x)=-f(x), 所以函数 f(x)是奇函数.又 f(1)=1+ln( 2-1)>0,f(2)=8+ln( 52)>0,故选 B.
高考数学复习第2章 函数的奇偶性与周期性
反”).
(2)在公共定义域内
(ⅰ)两个奇函数的和函数是⑨________,两个奇函数的积函数是⑩
奇函数
________.
偶函数
偶函数
(ⅱ)两个偶函数的和函数、积函数是⑪________.
奇函数
(ⅲ)一个奇函数与一个偶函数的积函数是⑫________.
(3)若f(x)是奇函数且在x=0处有意义,则f(0)=⑬________.
称.定义域关于原点对称是判断函数具有奇偶性的一个必要条件.
2.判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)
=-f(x)或f(-x)=f(x),而不能说存在x0 使f(-x0)=-f(x0)、f(-x0)=
f(x0).
【小题热身】
一、判断正误
1.判断下列说法是否正确(请在括号中打“√”或“×”).
2
∴a=-3.
考点一 函数的奇偶性[分层深化型]
考向一:判断函数的奇偶性
1.[2021·成都市高三阶段考试]已知y=f(x)是定义在R上的奇函数,
则下列函数中为奇函数的是(
)
①y=f(|x|);②y=f(-x);③y=xf(x);④y=f(x)+x.
A.①③
B.②③
C.①④
D.②④
解析:因为y=f(x)是定义在R上的奇函数,所以f(-x)=-f(x),由f(|
-x|)=f(|x|),知①是偶函数;由f[-(-x)]=f(x)=-f(-x),知②是奇函
数;由y=f(x)是定义在R上的奇函数,且y=x是定义在R上的奇函数,奇
×奇=偶,知③是偶函数;由f(-x)+(-x)=-[f(x)+x],知④是奇函
C.y=|ln x|
函数的奇偶性、指数函数、对数函数-高考数学专题复习
函数的奇偶性、指数函数、对数函数知识精要一、函数的奇偶性一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x ,都有f(-x)=f(x)那么函数f(x)就叫做偶函数。
(2)如果对于函数定义域内的任意一个x ,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(3)如果对于函数定义域内的任意一个x ,都有f(-x)=-f(x)和f(-x)=f(x),(x∈D,且D 关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x ,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言。
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义。
④如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。
奇偶函数图像的特征定理 奇函数的图像关于原点成中心对称图形,偶函数的图像关于y 轴的轴对称图形。
f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y )→(-x,-y ) f(x)为偶函数<=>f(x)的图像关于Y 轴对称 点(x,y )→(-x,y ) 奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
利用一些已知函数的奇偶性及以下准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。
高中数学基础之函数的奇偶性与周期性
D.
考点二 函数奇偶性的应用
【例 2】 (1)(2019·全国卷Ⅱ)设 f(x)为奇函数,且当 x≥0 时,f(x)=ex-1,则
当 x<0 时,f(x)=( D ) A.e-x-1
B.e-x+1
C.-e-x-1
D.-e-x+1
(2)(2020·长沙第一中学期末)若函数 f(x)=xln(x+ a+x2)为偶函数,则 a= ___1_____.
又 x<0,∴-x>0. ∵x≥0 时,f(x)=ex-1,∴-y=e-x-1, ∴y=-e-x+1(x<0),即 f(x)=-e-x+1(x<0). 解法三(赋值法):∵f(x)是奇函数,且 x≥0 时,f(x)=ex-1, ∴f(-1)=-f(1)=-(e1-1)=1-e,即 f(-1)=-e+1,只有 D 符合. (2)因为 f(x)-f(-x)=xln(x+ a+x2)+xln(-x+ a+x2)=xln(a+x2-x2)=xlna =0,所以 a=1.
1.(2020·福州市高三期末)下列函数为偶函数的是( B )
A.y=tan(x+π4)
B.y=x2+e|x|
C.y=xcosx
D.y=ln|x|-sinx
[解析] 对于选项 A,易知 y=tan(x+π4)为非奇非偶函数;对于选项 B,设 f(x)
=x2+e|x|,则 f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以 y=x2+e|x|为偶函数;对于选
ቤተ መጻሕፍቲ ባይዱ
B.最小正周期为 2π 的奇函数
C.最小正周期为 π 的偶函数
D.最小正周期为 2π 的偶函数
(2)(2020·河南南阳模拟)已知函数 f(x)是定义在 R 上的偶函数,并且满足 f(x+
高考数学复习 专题02 函数与导数 函数的奇偶性与周期性考点剖析
函数的奇偶性与周期性主标题:函数的奇偶性与周期性副标题:为学生详细的分析函数的奇偶性与周期性的高考考点、命题方向以及规律总结。
关键词:函数,奇偶性,周期性难度:3重要程度:5考点剖析:1.结合具体函数,了解函数奇偶性的含义.2.会运用函数的图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.命题方向:高考对本内容的考查主要有:①利用函数的图象与性质求函数定义域、值域与最值,尤其是考查对数函数的定义域、值域与最值问题;②借助基本初等函数考查函数单调性与奇偶性的应用,尤其是考查含参函数的单调性问题或借助单调性求参数的范围,主要以解答题的形式考查;③求二次函数的解析式、值域与最值,考查二次函数的最值、一元二次方程与不等式的综合应用;④在函数与导数的解答题中,考查指数函数、对数函数的求导、含参函数单调性的讨论、函数的极值或最值的求解等.规律总结:1.正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件;(2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.2.奇偶函数的定义是判断函数奇偶性的主要依据.为了便于判断函数的奇偶性,有时需要先将函数进行化简,或应用定义的等价形式:f (-x )=±f (x )⇔f (-x )±f (x )=0⇔f -x f x=±1(f (x )≠0).3.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.知 识 梳 理1.函数的奇偶性(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(填“相同”、“相反”).(2)在公共定义域内①两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数.②两个偶函数的和函数、积函数是偶函数.③一个奇函数,一个偶函数的积函数是奇函数.(3)若函数f(x)是奇函数且在x=0处有定义,则f(0)=0.3.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.。
高考数学第一轮复习:《函数的图象》
高考数学第一轮复习:《函数的图象》最新考纲1.在实际情境中,会根据不同的需要选择图象法、列表法、解析法表示函数.2.会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式的解的问题.【教材导读】若函数y=f(x+a)是偶函数(奇函数),那么y=f(x)的图象的对称性如何?提示:由y=f(x+a)是偶函数可得f(a+x)=f(a-x),故f(x)的图象关于直线x=a对称(由y=f(x+a)是奇函数可得f(x+a)=-f(a-x),故f(x)的图象关于点(a,0)对称).1.利用描点法作函数图象其基本步骤是列表、描点、连线.首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.图象变换(1)平移变换(2)对称变换①y=f(x)与y=-f(x)关于x轴对称;②y=f(x)与y=f(-x)关于y轴对称;③y=f(x)与y=-f(-x)关于原点对称;④y=a x(a>0且a≠1)与y=log a x(a>0且a≠1)关于y=x对称.(3)翻折变换①y=f(x)――→保留x轴上方图象将x轴下方图象翻折上去y=|f(x)|.②y=f(x)――→保留y轴右边图象,并作其关于y轴对称的图象y=f(|x|).(4)伸缩变换①y=f(x) y=f(ax).②y=f(x)――→a>1,纵向伸长为原来的a倍0<a<1,纵向缩短为原来的a倍y=af(x).【重要结论】1.对于函数y=f(x)定义域内任意一个x的值,若f(a+x)=f(b-x),则函数f(x)的图象关于直线x=a+b2对称.特别地,若f(a+x)=f(a-x),则函数f(x)的图象关于直线x=a对称.2.对于函数y=f(x)定义域内任意一个x的值,若f(a+x)=-f(b-x),则函数f(x)的图象关于点a+b2,0中心对称.特别地,若f(a+x)=-f(a-x),则函数f(x)的图象关于点(a,0)中心对称.1.为了得到函数y=lg x+310的图象,只需把函数y=lg x的图象上所有的点()(A)向左平移3个单位长度,再向上平移1个单位长度(B)向右平移3个单位长度,再向上平移1个单位长度(C)向左平移3个单位长度,再向下平移1个单位长度(D)向右平移3个单位长度,再向下平移1个单位长度答案:C2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车行驶的路程s看作时间t的函数,其图象可能是()答案:B3.函数f(x+2)的图象关于直线x=2对称,则函数f(x)的图象关于()(A)原点对称(B)直线x=2对称(C)直线x=0对称(D)直线x=4对称答案:D4.已知下图(1)中的图象对应的函数为y=f(x),则下图(2)中的图象对应的函数在下列给出的四个式子中,可能是________(填序号).①y=f(|x|);②y=|f(x)|;③y=-f(|x|);④y=f(-|x|).答案:④5.使log2(-x)<x+1成立的x的取值范围是________.答案:x∈(-1,0)考点一作函数的图象作出下列函数的图象.(1)y=x2-2x(|x|>1);(2)y=|x-2|·(x+2);(3)y=2x-1x-1;(4)y=|log2x-1|.解:(1)因为|x|>1,所以x<-1或x>1,图像是两段曲线,如图.(2)函数式可化为y =⎩⎪⎨⎪⎧x 2-4,x ≥2,-x 2+4,x <2,其函数图像如图(3)y =2x -1x -1=2+1x -1,故函数图像可由函数y =1x 的图像向右平移1个单位长度,再向上平移2个单位长度得到,如图.(4)先作出函数y =log 2x 的图像,再将该图像向下平移1个单位长度,保留x 轴上方的部分,将x 轴下方的图像翻折到x 轴上方,即得到y =|log 2x -1|的图像,如图.【反思归纳】 画函数图象的一般方法(1)直接法.当函数表达式(或变形后的表达式)是熟悉的基本初等函数时,就可根据这些函数的特征直接作出.(2)图象变换法.若函数图象可由某个基本初等函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序.对不能直接找到熟悉的基本初等函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.提醒:可先化简函数解析式,再利用图象的变换作图. 【即时训练】 作出下列函数的图象: (1)y =sin |x |;(2)y =e ln x .解:(1)当x ≥0时,y =sin |x |与y =sin x 的图象完全相同, 又y =sin |x |为偶函数,其图象关于y 轴对称,其图象如图.(2)因为函数的定义域为{x |x >0}且y =e ln x =x (x >0), 所以其图像如图所示.考点二 函数图象的识别(1)函数f (x )=ln ⎝ ⎛⎭⎪⎫x -1x 的图象是( )(2)如图,已知l1⊥l2,圆心在l1上、半径为1 m的圆O在t=0时与l2相切于点A,圆O 沿l1以1 m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cos x,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为()解析:(1)B(2)如图,设∠MON=α,由弧长公式知x=α,在Rt△AOM中,由0≤t≤1,知|AO|=1-t,cos x2=|OA||OM|=1-t,∴y=cos x=2cos2x2-1=2(t-1)2-1.故选B.【反思归纳】知式选图的策略(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性(有时可借助导数判断),判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特殊点(与坐标轴的交点、经过的定点、极值点等),排除不合要求的图象.提醒:注意联系基本初等函数图象的模型,当选项无法排除时,代特殊值,或从某些量上寻找突破口.【即时训练】(2018全国Ⅱ卷)函数f(x)=e x-e-xx2的图象大致为()A BC DB解析:∵y=e x-e-x是奇函数,y=x2是偶函数,∴f(x)=e x-e-xx2是奇函数,图象关于原点对称,排除A选项.当x=1时,f(1)=e-e-11=e-1e>0,排除D选项.又e>2,∴ 1e <12,∴ e -1e >1,排除C 选项. 故选B.考点三 函数图象的应用(高频考点) 考查角度1:研究函数的性质.(2016高考全国卷Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )(A)各月的平均最低气温都在0 ℃以上 (B)七月的平均温差比一月的平均温差大 (C)三月和十一月的平均最高气温基本相同 (D)平均最高气温高于20 ℃的月份有5个 解析:依据给出的雷达图,逐项验证.对于选项A ,由图易知各月的平均最低气温都在0 ℃以上,A 正确;对于选项B ,七月的平均最高气温点与平均最低气温点间的距离大于一月的平均最高气温点与平均最低气温点间的距离,所以七月的平均温差比一月的平均温差大,B 正确;对于选项C ,三月和十一月的平均最高气温均为10 ℃,所以C 正确;对于选项D ,平均最高气温高于20 ℃的月份有七月、八月,共2个月份,故D 错误.【反思归纳】 知图选式或选性质的策略(1)从图象的左右、上下分布,观察函数的定义域、值域; (2)从图象的变化趋势,观察函数的单调性; (3)从图象的对称性方面,观察函数的奇偶性; (4)从图象的循环往复,观察函数的周期性; (5)从图象与x 轴的交点情况,观察函数的零点. 利用上述方法,排除、筛选错误与正确的选项. 考查角度2:确定函数零点(方程根)的个数.已知a >0,且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,恒有f (x )<12,则实数a 的取值范围是________.解析:由题意知,当x ∈(-1,1)时,f (x )=x 2-a x <12,即x 2-12<a x .在同一平面直角坐标系中分别作出二次函数y =x 2-12,指数函数y =a x 的图像(图略).当x ∈(-1,1)时,要使指数函数的图像恒在二次函数图像的上方,则⎩⎪⎨⎪⎧a -1≥12,a ≥12,a ≠1,所以12≤a ≤2且a ≠1.故实数a 的取值范围是12≤a <1或1<a ≤2.答案:[12,1)∪(1,2]【反思归纳】 构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.考查角度3:求参数的取值范围.已知函数f (x )=⎩⎨⎧1-|x +1|,x ∈[-2,0]f x -2,x ∈0,+∞,若函数g (x )=13x -f (x )+b 在区间[-2,6]内有3个零点,则实数b 的取值范围是________.解析:若0≤x ≤2,则-2≤x -2≤0,∴f(x)=f(x-2)=1-|x-2+1|=1-|x-1|,0≤x≤2. 若2≤x≤4,则0≤x-2≤2,∴f(x)=f(x-2)=1-|x-2-1|=1-|x-3|,2≤x≤4. 若4≤x≤6,则2≤x-2≤4,∴f(x)=f(x-2)=1-|x-2-3|=1-|x-5|,4≤x≤6. ∴f(1)=1,f(2)=0,f(3)=1,f(5)=1,设y=f(x)和y=13x+b,则方程f(x)=13x+b在区间[-2,6]内有3个不等实根,等价为函数y=f(x)和y=13x+b在区间[-2,6]内有3个不同的零点.作出函数f(x)和y=13x+b的图象,如图:当直线经过点F(4,0)时,两个图象有2个交点,此时直线y=13x+b为y=13x-43,当直线经过点D(5,1),E(2,0)时,两个图象有3个交点;当直线经过点O(0,0)和C(3,1)时,两个图象有3个交点,此时直线y=13x+b为y=13x,当直线经过点B(1,1)和A(-2,0)时,两个图象有3个交点,此时直线y=13x+b为y=1 3x+2 3,∴要使方程f(x)=13x+b,在区间[-2,6]内有3个不等实根,两个图象有3个交点,则b ∈(-43,23], 故答案为:(-43,23].【反思归纳】 由函数零点的个数或由方程根的个数确定参数的取值(范围),常常转化为两函数图象交点个数问题;利用数形结合可求出参数取值(范围).考查角度4:求不等式的解集.已知f (x )=⎩⎨⎧-x -a 2,x ≥0,-x 2-2x -3+a ,x <0,若∀x ∈R ,f (x )≤f (0)恒成立,则实数a 的取值范围为________.解析:由题意,若∀x ∈R ,f (x )≤f (0)即函数f (x )max =f (0)=-a 2, 要使得函数的最大值为-a 2,当x ≥0时,f (x )=-(x -a )2,此时函数的对称轴x =a ≤0,当x <0时,f (x )=-x 2-2x -3+a ,开口向下,对称的方程x =-1, 则f (-1)=-1+2-3+a ≤-a 2,即a 2+a -2≤0,解得-2≤a ≤1, 综上所述,实数a 的取值范围是[-2,0]. 答案:[-2,0]【反思归纳】 当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.利用函数的变化趋势识别函数图象函数y =2|x |sin 2x 的图象可能是( )(A)(B)(C)(D) 审题指导关键点所获信息函数的解析式函数的奇偶性解题突破:用解析式找出函数图象的特殊点.解析:由y=2|x|sin 2x知函数的定义域为R,令f(x)=2|x|sin 2x,则f(-x)=2|-x|sin (-2x)=-2|x|sin 2x.∵f(x)=-f(-x),∴f(x)为奇函数.∴f(x)的图象关于原点对称,故排除A,B.令f(x)=2|x|sin 2x=0,解得x=kπ2(k∈Z),∴当k=1时,x=π2,故排除C.故选D.答案:D命题意图:本题主要考查函数的奇偶性及函数的特殊点坐标,考查学生的识图、读图以及转化能力.课时作业基础对点练(时间:30分钟)1.已知函数y =ax 2+bx +c ,如果a >b >c ,且a +b +c =0,那么它的图象可能是( )答案:D2.若当x ∈R 时,y =1-a |x |均有意义,则函数y =log a |1x |的图象大致是( )答案:B3.已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是( ) (A)0<a -1<b <1 (B)0<b <a -1<1 (C)0<b -1<a <-1 (D)0<a -1<b -1<1答案:A4.若直角坐标平面内A 、B 两点满足条件:①点A 、B 都在f (x )的图象上;②点A 、B 关于原点对称,则对称点对(A ,B )是函数的一个“兄弟点对”(点对(A ,B )与(B ,A )可看作一个“兄弟点对”).已知函数f (x )=⎩⎨⎧cos x x ≤0,lg x x >0,则f (x )的“兄弟点对”的个数为( )(A)2 (B)3 (C)4 (D)5 D解析:设P (x ,y )(x <0),则点P 关于原点的对称点为(-x ,-y ),于是cos x =-lg(-x ),只要判断方程根的个数,即y =cos x 与y =-lg(-x )(x <0)图象的交点个数,在同一个坐标系中作出它们的图象,如图所示.所以f (x )的“兄弟点对”的个数为5.故选D. 5.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,log 13x ,x >1,则y =f (2-x )的图象大致是( )A 解析:由题可得y =f (2-x )=⎩⎨⎧32-x ,x ≥1,log 132-x ,x <1,故函数y =f (2-x )仍是分段函数,且以x =1为界分段,只有A 符合条件.6.已知函数f (x )=⎩⎪⎨⎪⎧1x-x ,x <0|ln x |,x >0,则关于x 的方程[f (x )]2-f (x )+a =0(a ∈R )的实根个数不可能为( )(A)2 (B)3 (C)4 (D)5A 解析:当x <0时,f ′(x )=-1x 2-1<0, ∴f (x )在(-∞,0)上是减函数,当x >0时,f (x )=|ln x |=⎩⎪⎨⎪⎧-ln x ,0<x <1ln x ,x ≥1,∴f (x )在(0,1)上是减函数,在[1,+∞)上是增函数,做出f (x )的大致函数图象如图所示:设f (x )=t ,则当t <0时,方程f (x )=t 有一解, 当t =0时,方程f (x )=t 有两解, 当t >0时,方程f (x )=t 有三解. 由[f (x )]2-f (x )+a =0,得t 2-t +a =0.若方程t 2-t +a =0有两解t 1,t 2,则 t 1+t 2=1, ∴方程t 2-t +a =0不可能有两个负实数根, ∴方程[f (x )]2-f (x )+a =0,不可能有2个解. 故选A.7.设函数f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,x 12, x >0若f (x 0)>1,则x 0的取值范围是________.解析:在同一直角坐标系中,作出函数y =f (x )的图象和直线y =1,它们相交于(-1,1)和(1,1)两点,由f (x 0)>1,得x 0<-1或x 0>1.答案:(-∞,-1)∪(1,+∞)8.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________________.解析:当-1≤x ≤0时, 设解析式为y =kx +b , 则⎩⎪⎨⎪⎧ -k +b =0,b =1,得⎩⎪⎨⎪⎧k =1,b =1. 所以y =x +1.当x >0时,设解析式为y =a (x -2)2-1, 因为图象过点(4,0), 所以0=a (4-2)2-1, 得a =14,所以y =14(x -2)2-1. 答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14x -22-1,x >09.设函数y =2x -1x -2,关于该函数图象的命题如下:①一定存在两点,这两点的连线平行于x 轴; ②任意两点的连线都不平行于y 轴; ③关于直线y =x 对称; ④关于原点中心对称. 其中正确的是________.解析:y =2x -1x -2=2x -2+3x -2=2+3x -2, 图象如图所示.可知②③正确. 答案:②③10.已知函数f (x )=⎩⎪⎨⎪⎧|log 2x |,0<x <2x +22x ,x ≥2,若0<a <b <c ,且f (a )=f (b )=f (c ),则abfc 的范围为________.解析:函数图象如图:若f (a )=f (b )=f (c ),则|log 2a |=|log 2b |,即-log 2a =log 2b ,∴log 2(ab )=0,ab =1,f (c )∈(12,1), ∴abf c ∈(1,2). 答案:(1,2)能力提升练(时间:15分钟)11.函数f (x )=ax +bx +c 2的图象如图所示,则下列结论成立的是( )(A)a >0,b >0,c <0 (B)a <0,b >0,c >0 (C)a <0,b >0,c <0 (D)a <0,b <0,c <0C 解析:由图可知-c >0,∴c <0,令x =0,f (0)=b c 2>0,∴b >0,令y =0,x =-ba >0,∴a <0,故选C.12.已知定义在R 上的函数f (x )满足f (x +2)=2f (x ),当x ∈[0,2]时,f (x )=⎩⎨⎧x ,x ∈[0,1]-x 2+2x ,x ∈[1,2],则函数y =f (x )在[2,4]上的大致图象是( )A 解析:当2≤x <3,0≤x -2<1. ∵f (x +2)=2f (x ), ∴f (x )=2f (x -2)=2x -4; 当3≤x ≤4,1≤x -2≤2. ∵f (x +1)=2f (x ),∴f (x )=2f (x -2)=-2(x -2)2+4(x -2)=-2x 2+12x -16; ∴f (x )=⎩⎪⎨⎪⎧2x -4,x ∈[2,3,-2x 2+12x -16,x ∈[3,4].故选A.13.函数f (x )=-x ⎝ ⎛⎭⎪⎫1e cos(π+x )(x ∈[-π,π])的图象大致是( )B 解析:因为f (x )=-x ⎝ ⎛⎭⎪⎫1e cos(π+x )=-x e cos x ,则f (-x )=x e cos(-x )=x e cos x =-f (x ),所以函数f (x )=-x ⎝ ⎛⎭⎪⎫1e cos(π+x )为奇函数,根据图象排除A 、C ;由于f ⎝ ⎛⎭⎪⎫π2=-π2f (π)=-πe ,即f ⎝ ⎛⎭⎪⎫π2<f (π),排除D ,故选B.14.(2019新余二模)函数y =2xln|x |的图象大致为( )B 解析:函数y =2xln|x |的定义域为{x |x ≠0且x ≠±1},故排除A. ∵f (-x )=-2xln|x |=-f (x ),排除C. 当x =2时,y =4ln 2>0,排除D.故选B.15.已知函数y =|x 2-1|x -1的图象与函数y =kx 的图象恰有两个交点,则实数k 的取值范围是________. 解析:y =|x 2-1|x -1=|x +1x -1|x -1=⎩⎪⎨⎪⎧-x -1,x ∈-1,1,x +1,x ∈-∞,-1]∪1,+∞,函数图象如图实线部分所示,结合图象知k ∈(0,1)∪(1,2).答案:(0,1)∪(1,2)16.(2019银川模拟)已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=x 2·[f (x )-a ],且g (x )在区间[1,2]上为增函数.求实数a 的取值范围.解:(1)设f (x )的图象上任一点的坐标为P (x ,y ),点P 关于点A (0,1)的对称点P ′(-x,2-y )在h (x )的图象上,∴2-y =-x +1-x +2,∴y =x +1x ,即f (x )=x +1x . (2)g (x )=x 2·[f (x )-a ]=x 3-ax 2+x ,又g (x )在区间[1,2]上为增函数,∴g ′(x )=3x 2-2ax +1≥0在[1,2]上恒成立,即2a ≤3x +1x 在[1,2]上恒成立,注意到函数r (x )=3x +1x 在[1,2]上单调递增.故r (x )min =r (1)=4.于是2a ≤4,a ≤2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+a|,∴ a= 0.
答案: 0
D.2
所以 f(3) - f(4) = f(- 2)- f(- 1),
又 f(x) 为 R 上的奇函数,
∴ f(- 2)- f(- 1)=- f(2)+ f(1)=- 2+ 1=- 1.
答案: A 11 若函数 f(x)= x2- |x+ a|为偶函数,则实数 a= ________. 解析: 由题意知, 函数 f( x)= x2- |x+ a|为偶函数, 则 f(1)= f(- 1),∴ 1- |1+ a|= 1- |- 1
以表示为 y=[x+103] .
答案: B 9 设 f(x)为定义在 R 上的奇函数. 当 x≥ 0 时,f(x)= 2x+2x+ b(b 为常数 ),则 f(- 1)= ( )
A .- 3
B.- 1
C.1
D.3
解析: 因为 f(x)为定义在 R 上的奇函数,所以有 f(0) = 20+ 2× 0+b= 0,解得 b=- 1,
+f (6)= 1+2- 1+ 0-1+ 0= 1,所以 f(1) +f(2)+ … +f(2 012)=f(1) + f(2) +335× 1=1+ 2+ 335= 338.
答案 :B
6.设函数 f( x)和 g(x)分别是 R 上的偶函数和奇函数,则下列结论恒成立的是
()
A . |f(x)|- g(x)是奇函数
B. |f(x)|+ g(x)是偶函数
C.f (x)- |g(x)|是奇函数
D. f( x)+ |g( x)|是偶函数
解析:设 F (x)= f( x)+ |g(x)|,由 f(x)和 g(x)分别是 R 上的偶函数和奇函数, 得 F( -x) =f(-
x)+ |g( -x)|= f(x)+ |g(x)|= F (x),∴ f(x)+ |g(x)|是偶函数,又可判断其他选项不恒成立. 答案: D
4
4
P 点落在 x 轴上,即 P 点到 x 轴的距离为 0,故选 C.
法二: 由题意知
P(2cos(t
-π4),
2sin(
t
-
π 4))
,
∴ P 点到 x 轴的距离为
d=
|y0|=
2|sin(
t-
π 4)|,
当 t= 0 时, d= 2; 当 t= π时, d= 0.故选 C.
4
答案: C
8.某学校要召开学生代表大会,规定各班每
x+ 5 D .y= [ 10 ]
解析: 当各班人数除以 10 的余数大于 6 时再增选一名代表,可以看作先用该班人数除
以 10 再用这个余数与 3 相加, 若和大于等于 10 就增选一名代表, 将二者合并便得到推选代
表人数 y 与该班人数 x 之间的函数关系,用取整函数 y= [x]([ x] 表示不大于 x 的最大整数 )可
A . 335
B. 338
C.1 678
D. 2 012
解析 :由 f(x+ 6)= f(x)可知,函数 f(x)的周期为 6,所以 f (- 3)= f(3)=- 1, f(- 2)= f(4)
=0,f(- 1)= f(5) =- 1,f(0)= f(6) =0,f(1)= 1,f(2) = 2,所以在一个周期内有 f(1) +f(2)+ …
因为当 x≥ 0 时, f(x)= 2x+ 2x-1,所以 f(- 1)=- f(1)=- (21+ 2×1- 1)=- 3.
答案: A
10 若 f(x)是 R 上周期为 5 的奇函数,且满足 f(1)= 1, f (2)= 2,则 f (3)- f(4) = ( )
A .- 1
B.1
C.- 2 解析: 由于函数 f(x)的周期为 5,
f(x)为奇函
数知 f( - 1)=- f(1) =- 2.
答案: D 2.定义域为 R 的四个函数 y=x3,y= 2x,y= x2+ 1,y= 2sin x 中,奇函数的个数是 ( )
A.4
B.3
C.2
D .1
解析: 本题考查函数的奇偶性, 考查考生对函数性质 —— 奇偶性的了解. 由奇函数的概 念可知, y= x3, y= 2sin x 是奇函数.
10 人推选一名代表,当各班人数除以 10
的余数大于 6 时再增选一名代表. 那么, 各班可推选代表人数 y 与该班人数 x 之间的函数关
系用取整函数 y= [ x]([ x]表示不大于 x 的最大整数 )可以表示为 ( )
x A . y= [ 10]
x+ 3 B . y= [ 10 ]
x+ 4 C.y= [ 10 ]
7.如图,质点 P 在半径为 2 的圆周上逆时针运动,其初始位置为 P0( 2,- 2) ,角速 度为 1,那么点 P 到 x 轴的距离 d 关于时间 t 的函数图象大致为 ( )
解析: 法一 : (排除法 )当 t= 0 时, P 点到 x 轴的距离为 2,排除 A 、 D,由角速度为 1
知,当 t= π或 t= 5π时,
高考数学复习之 函数的图像考点 函数解析式与图象 函数的奇
偶性及周期性考 点 函数的奇偶性及周期性
1.已知函数 f(x) 为奇函数,且当 x>0 时, f( x) = x2+1x,则 f(- 1)= (
)
A.2
B.1
C.0
D .- 2
解析: 本题主要考查函数奇偶性的应用,考查运算求解能力和转化思想.由
答案: C
3.函数
y=
x3 3x-
1的图象大致是
(
)
解析: 本题考查函数的图象及其性质, 意在考查考生对函数的定义域及值域等知识的理 解与掌握. 因为函数的定义域是非零实数集, 所以 A 错;当 x<0 时,y>0,所以 B 错; 当 x→ +∞时, y→ 0,所以 D 错,故选 C.
答案: C
4.已知函数 f(x) = x- 1.若 f(a)= 3,则实数 a= ________. 解析: 本题主要考查函数的概念与函数值的计算, 属于简单题, 意在考查考生对基础知
识的掌握程度.由 f(a)= a-1= 3,得 a= 10.
答案: 10 5.定义在 R 上的函数 f(x)满足 f( x+6)= f(x).当- 3≤ x<- 1 时, f(x)=- (x+ 2)2;当- 1
≤x<3 时, f(x)= x.则 f(1) + f(2)+ f(3)+…+ f(2 012)= ( )