初中逻辑推理题
初中数学——简单逻辑推理
课程专题:简单逻辑推理的趣题例一:A、B、C三人对一块矿石作以下判断:A说这不是铁,不是锰; B说这不是铁,是锡;C说这不是锡,是铁;已知三人中一人全对,一人全错,一人半对,请问这到底是什么物质?分析:B、C两人说话矛盾,故他们两人一人全对,一人全错,物质不是锡就是铁,又A 半对,不是锰对,不是铁错,所以该物质就是铁。
该题还可以分类讨论:是铁时,是锰时,是锡时,A、B、C三人的话是否合乎条件。
例二:张三、李四、王五中有几个人说谎,几个人说真话?张三:“王五、李四都在说谎”;李四:“我没说谎”;王五:“李四在说谎”;分析:李四、王五说话矛盾,故一真一假,故张三也假,即两真一假;不过谁说真话谁说假话不知道。
推广1:张三、李四、王五三人中一人说谎,一人犯罪,请找出来。
张三:“是李四”;李四:“不是我”;王五:“不是张三,也不是李四”;分析:张三、李四说话矛盾,故一人假话,王五真话,故罪犯是王五,说谎是张三。
推广2:张三、李四、王五中三人中两人说谎,一人说真话,到底谁是罪犯?张三:“是李四”;李四:“不是我”;王五:“不是我”;分析:张三、李四说话矛盾,故一人真话一人假话,故王五假话,故罪犯是王五,李四说真话,张三、王五都说谎。
二、数学趣题1、请用两种方法4条线段把一个正方形分成10块(每块的大小可以不相等,形状也可以不同)答案如下:方法二2、井深8米,一只青蛙从井底往上跳,每次跳3米,又滑下2米,那么它要跳几次才能到达井口.答案:跳六次。
解题过程:设跳x次到达井口,则有3x-2(x-1)>=83、(人\鸡\狗\米过河问题)有一个人带着一只狗\一袋米\一只鸡过河,只能从河上面的一座桥上通过,但农夫每次只能带一样东西过河,并且如果人不把狗看着,狗和鸡在一起的话,那么狗就会把鸡吃掉,并且如果人不把鸡看着,鸡和米在一起的话,那么鸡就会把米吃掉,现在这个人要把鸡\狗\米顺利带过河,请问怎么办?答案:假设他们原先在岸边A,要到达对面岸边B第一趟 A-B 农夫鸡到达B后,农夫独自撑船返回A第二趟 A-B 农夫米到达B后,农夫带着鸡撑船返回A第三趟 A-B 农夫狗到达B后,到达B后,农夫独自撑船返回A第四趟 A-B 农夫鸡全部到达课堂讨论生活中的数学魔术生活中我们常常相信亲眼所见,但又常常为自己的眼睛所骗,魔术就是一个很好的例子。
初中数学竞赛之逻辑推理问题(含答案)
初中数学竞赛之逻辑推理问题1.41名运动员所穿运动衣号码是1,2,…,40,41这41个自然数,问:(1)能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数?(2)能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数?若能办到,请举一例;若不能办到,请说明理由.2.某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,证明至少有5人植树的株数相同.3.有50名同学站在操场上玩游戏,他们彼此间的距离都各不相等.每人手中有一把水枪,游戏规则是:每人都向离自己最近的人打一枪.试证明:每一个人至多挨了5枪.(提示:也就是要证明:假定有一个人至少挨6枪是不可能的)4.把1到3这三个自然数填入10×10的方格内,每格内填一个数,求证:无论怎样填法都能使在各行、各列、两条对角线上的数字和中,必有两个是相同的.5.一个口袋内有100个球,其中有红球28个,绿球20个,黄球12个,蓝球20个,白球10个,黑球10个.从袋中任意取球,如果要求一次取出的球中至少有15个球的颜色相同,那么至少要从袋中取出多少个球?6.环行跑道的一周插了若干红、黄两种颜色的彩旗,已知一共变色了46次(一个红旗与一个黄旗相邻或一个黄旗与一个红旗相邻,称为一次变色),现可将相邻的旗子对调,如果若干次对调后,变色次数减少为26次.试说明:在对调过程中,必有一个时刻,彩旗的变色次数恰好为28次.7.有17个科学家,他们中的每一个都和其他的科学家通信,在他们的通信中仅仅讨论三个问题,每一对科学家互相通信时,仅仅讨论同一个问题.证明至少有三个科学家关于同一个题目互相通信.8.对于平面上给定的25个点,如果其中任何3个点中都有某两个点的距离小于1,那么在这些给定的点中,一定可以找到13个点,这13个点都位于一个半径为1的圆内.9.如果三个完全平方数之和能被9整除,那么可以从这三个数中选出两个来,使得这两个完全平立数之差也能被9整除.10.某夏令营组织1987名营员去游览故宫、景山公园、北海公园,规定每人必须去一处,至多去两处游览.求证:至少有332人游览的地方完全相同.11.将2002张卡片分别标记1,2,3,…,2002的数,数字面朝上放在桌上.二位玩家轮流自桌上各取一张牌,直到桌上的牌取光为止.先计算每个人所有取的牌的数之总和,再比较这两个总和的个位数,较大者为胜方.请问两位玩家中哪一位有必胜之策略(无论对手如何对应)?如果有,这个必胜策略是什么?12.从1到100这100个自然数中,任意取出51个数,其中一定存在两个数,这两个数中的一个是另一个的整数倍.13.证明:在21﹣1,22﹣1,23﹣1,…,2n﹣1﹣1这n﹣1个数中,至少有一个数能被n整除(其中n为大于1的奇数).14.今有一角币一张,两角币一张,伍角币一张,一元币四张,伍元币两张,用这些纸币任意付款,可以付出不同数额的款共有多少种?15.圆周上有12个点,其中有一个是涂了红色,还有一个是涂了蓝色,其余10个是没有涂色,以这些点为顶点的凸多边形中,其顶点包含了红点及蓝点的多边形称为双色多边形,只包含红点(蓝点)的称为红色(蓝色)多边形,不包含红点及蓝点的称为无色多边形.试问以这12个点为顶点的所有凸多边形(边数从三角形到12边形)中,双色多边形的个数与无色多边形的个数哪一种多?多多少?16.有1997盏亮着的电灯,各有一个拉线开关控制着.现将其顺序编号为1,2,3,…,1997.将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,拉完后还有几盏灯是亮的?17.某班的全体学生进行了短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目都没有达到优秀,其余每人至少有一个项目达到优秀,这部分学生达到优秀的项目、人数如下表求这个班的学生数.18.把数、理、化、语、英5本参考书,排成一行放在书架上.(1)化学不放在第1位,共有多少种不同排法?(2)语文与数学必须相邻,共有多少种不同排法?(3)物理与化学不得相邻,共有多少种不同排法?(4)文科书与理科书交叉排放,共有多少种不同排法?19.山城电信大楼一架最多可以容纳32人的33层电梯出故障,只能在第2层至第33层中的某一层停一次.对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意.现有32个人在第一层,并且他们分别在第2至第33层的每一层办公.请你设计一个方案,使电梯停在某一层,使得这32个人的不满意总分达到最小,并求出这个最小值.注意:有些人可以不乘电梯而直接从楼梯上楼.20.如图所示,有一个正方体形的铁丝架,把它的侧棱中点I、J、K、L也用铁丝连上.(1)现在一个蚂蚁想沿着铁丝从A点爬到G点,问最近的路线一共有几条?并用字母把这些路线表示出来(用所经过的连接点字母表示,譬如蚂蚁从A点出发,经过I点L点,最后到达H点,这样的路线用AILH表示).(2)蚂蚁是否可能从A点出发,沿着铁丝经过每一个连接点,恰好一次最后到达G点?如果可能,请找出一条这样的路线;如果不可能,说明为什么?参考答案1.解:(1)能办到.注意到41与43都是质数,据题意,要使相邻两数的和都是质数,显然,它们不能都是奇数,因此,在这排数中只能一奇一偶相间排列,不妨先将奇数排成一排:1,3,5,7,41,在每两数间留有空档,然后将所有的偶数依次反序插在各空档中,得1,40,3,38,5,36,7,34,8,35,6,37,4,39,2,41,这样任何相邻两数之和都是41或43,满足题目要求.(2)不能办到.若把1,2,3,40,41排成一圈,要使相邻两数的和为质数,这些质数都是奇数,故圆圈上任何相邻两数必为一奇一偶,但现有20个偶数,21个奇数,总共有41个号码,由此引出矛盾,故不能办到.(注站成一排和站成一圈虽只一字之差,但却有着质的不同,因为一圈形成了首尾相接的情形.)2.证明:利用抽屉原理,按植树的多少,从50至100株可以构造51个抽屉,则问题转化为至少有5人植树的株数在同一个抽屉里;假设5人或5人以上植树的株数在同一个抽屉里,那只有4人以下植树的株数在同一个抽屉里,而参加植树的人数为204人,每个抽屉最多有4人,故植树的总株数最多有:4(50+51+52+…+100)=4×=15300<15301,得出矛盾.因此,至少有5人植树的株数相同.3.解:假定有一个人至少挨了6枪,设此人为A、若B射向A,C也射向A,则在△ABC中,BC边最长(如图).又由于三边不等,则角A应该大于60度.若有6个人都射向A,则从A出发的6个角都大于等于60度,从而周角就大于了360度,这是不可能的.4.证明:由于每个格内数字为1,2,3,则在各行、各列,两格对角线数字和中,最小的为10,最大的为30,共有21种取值,实际上,10行,10列,加2条对角线共22个和.所以由抽屉原理,必有两个和是相等的.5.解:最不利条件:前面取的球都没有达到15个球颜色相同的状况.也就是:黄球,白球,黑球全部都取完了(这些同颜色的都在15个球以下,全部取完也不会有15个球颜色相同),一共是12+10+10=32个球然后红球,绿球,蓝球各取14个.14×3=42个.依然没有15个球颜色相同.然后再取任意一个球,就能达到至少有15个球的颜色相同了,因此一共有32+42+1=75个球.6.解:首先说明,将相邻的旗子对调一次,变色次数或不变,或增加2次,或减少2次.显然,如果对调的两旗同色,则不改变变色数,以下为了方便,用⊙表示红色旗,用△表示黄色旗,可设对调前两旗为⊙△,因对调一次只可能影响这两旗相邻旗子的变色数,因此(考虑对称性),只需考虑如下几种对调前的情形:⊙⊙△△,⊙⊙△⊙,△⊙△⊙,△⊙△△(变色数依次为1,2,3,2),将中间两旗对调后变为⊙△⊙△,⊙△⊙⊙,△△⊙⊙,△△⊙△(变色数依次为3,2,1,2).由此可见,变色数或不变,或增加2次,或减少2次.由原来的变色数46,经过若干次增、减2,现在成为26,故必须经过46与26之间的所有偶数.所以在对调过程中,必有一个时刻,彩旗的变色次数恰好为28次.7.证明:从17个点中的一点,比如点A处作引16条线段,共三种颜色,由抽屉原理至少有6条线段同色,设为AB、AC、AD、AE、AF、AG且均为红色.若B、C、D、E、F、G这六个点中有两点连线为红线,设这两点为B、C,则△ABC是一个三边同为红色的三角形.若B、C、D、E、F、G这六点中任两点的连线不是红色,则考虑5条线段BC、BD、BE、BF、BG的颜色只能是两种,必有3条线段同色,设为BC、BD、BE均为黄色,再研究△CDE的三边的颜色,要么同为蓝色,则△CDE是一个三边同色的三角形,要么至少有一边为黄色,设这边为CD,则△BCD是一个三边同为黄色的三角形,即至少有三个科学家关于同一个题目互相通信.8.解:在给定的25个点中任取一点,记为A,以A为圆心,1为半径作圆,若⊙A盖住所有的点,则结论成立;若不然,则至少有一点B不在圆内,再以B为圆心,1为半径做圆,则所给的25个点中的任意一点要么在⊙A内,要么在⊙B内,否则,至少有一点C既不在⊙A内,又不在⊙B内,这样,所得三点A、B、C的连线AB、AC、BC的长都大于1,即在A、B、C三点中无两点距离小于1,与题设矛盾,因此⊙A、⊙B就可以盖住这25个点.把⊙A、⊙B作为两个抽屉,把25个点放进去,因为25=12×2+1,由抽屉原理可知,至少有一个圆内有12+1=13个点都位于一个半径为1的圆内.9.解:下面我们先来讨论任意的完全平方数被9除的余数.根据同余理论,我们知道,任何一个整数总可以表示成:9k,9k±1,9k±2,9k±3及9k±4这九种情况中的一种.现在将这九种情况分别平方,于是可得:(9k)2=9×9k2+0;(9k±1)2=9(9k2±2k)+1;(9k±2)2=9(9k2±4)+4;(9k±3)2=9(9k2±6k+1)+0及(9k±4)2=9(9k2±8k+1)+7.可见,任何一个完全平方数被9除的余数只可能是0,1,4,7这四种情况之一.另一方面,由于所选的三个完全平方数之和能被9整除,因此这三个数的余数之和也一定能被9整除;而从0、1、4、7这四个数中选出三个,其和要能被9整除,只可能是{0,0,0}、{1,1,7}、{1,4,4}或{4,7,7}这四种情况中的一种.而在上面这四种可能的余数组合中,每一组都至多有两种余数,因此至少有两个完全平方数被所9除的余数相同,从而这两个余数相同的完全平方数之差就一定能被9整除.10.解:因为营员所去地方可分为(故宫),(景山),(北海),(故宫,北海),(故宫,景山),(北海,景山),共6种,构造为6个抽屉,而营员共有1987名.由抽屉原理可知,必有人游览的地方相同,所以至少有332人游览的地方完全相同.11.解:由题目可知,胜负的关键在于这个位数的大小,于是只考虑这个位数,试着将范围缩小,从2002缩小到22,∵2002=2000+2,同理:22=20+2,得到排列:1 2 3 4 5 6 7 8 9 1020 19 18 17 16 15 14 13 12 1121 22由上面的排列不难看出上面的两排数将其以横的相加,所得总和的个位数会一样,那么先取的人拿到22,再根据对称性拿,就可以必胜.将其推广:先取的人拿到2002,再根据对称性拿,就可以必胜.12.证明:由于任何一个自然数都可以表示成一个奇数与2n和乘积的形式,而且这种表示方法是惟一的.因此,我们可以按下面的方法来构造50个抽屉:{1,1×2,1×22,1×23,1×26};{3,3×2,3×22,3×23,3×24,3×25};{5,5×2,5×22,5×23,5×24};…;{49,49×2};{51};{53};…;{99}.于是从这50个抽屉中任取51个数,根据抽屉原则,其中一定存在至少两个数属于同一个抽屉,即命题得证.13.证明:用数学归纳法来证明.(1)当n=2时成立.(2)假设,当n=k时,成立.(3)证明:当n=k+1时也成立.(31)2n﹣1个互不相同的整数中n个整数的和,有C(n,2n﹣1)种互不相同的可能性.(32)这C(n,2n﹣1)种互不相同的可能性,落在[0,(2n﹣1)•n]区间内.在这个区间内,不能被n整除的整数个数是(2n﹣1)•(n﹣1)个.(33)证明C(n,2n﹣1)>(2n﹣1)•(n﹣1).(34)原命题得证.14.解:∵不管怎么组合都不会重复,∴共有3×5×2×2×2﹣1=120﹣1=119种.故可以付出不同数额的款共有119种.15.解:对于任何一个双色n(n≥5)边形,显然去掉红、蓝顶点后,得到一个无色n﹣2边形,不同的双色n边形去掉红蓝顶点后,得到的是不同的无色n﹣2边形.反过来,对任一无色多边形,添上红蓝顶点后,总可以得到一个双色多边形,由此可知,无色多边形(从三角形到十边形)的个数与双色多边形(从五边形到十二边形)的个数相等.因此,双色多边形的个数多,多出来的数目恰是双色三角形和双色四边形的数目.双色三角形有10个.双色四边形有×10×9=45个.这是由于每对应一个双色三角形,可以有九个双色四边形,而在90个双色四边形中,两两相重,故只有45个双色四边形.∴双色多边形比无色多边形多55个.16.解:①.被拉了三次的灯,为2、3、5的最小公倍数,也就是=66②.被拉了两次的灯,也就是求2和3、3和5、2和5的最小公倍数的和,这里注意要扣除被重复拉的灯(也就是2、3、5三个数的最小公倍数):++﹣3×66=466③.被拉了一次的灯,++﹣2×466﹣3×66=932那么最后亮着的灯的数量:1997﹣66﹣932=99917.解:有4名学生在这三个项目都没有达到优秀,在每个单项上达到优秀的人数分别是17,18,15,因而,总人数是17+18+15+4=54,但其中有人获得两项优秀,所以上面的计数产生了重复,重复人数应当减去,即总人数变为:54﹣6﹣6﹣5=37,又考虑到获得三项优秀的人,他们一开始被重复计算了三次,但在后来又被重复减去了三次,所以最后还要将他们加进去.即这个班学生数为:37+2=39.18.解:(1)4×4×3×2×1=96种.故化学不放在第1位,共有96种不同排法.(2)2×4×3×2×1=48种.故语文与数学必须相邻,共有48种不同排法.(3)(5×4﹣2×4)×3×2×1=72种.故物理与化学不得相邻,共有72种不同排法.(4)3×2×1×2×1=12种.故文科书与理科书交叉排放,共有12种不同排法.19.解:将人群分成三组,A组:直接上楼;B组:从电梯下楼;C组:从电梯上楼;由于各种组合是有限的,因此最小值是存在的,那么在达到最小值时,下楼的人数是一个确定的值m,除了1人不需要上下楼,上楼的人数为31﹣m,这31﹣m个人分在A,C两组,由于A,C两组的地位均等,因此要达到最小值人数要相等,但涉及到整数有可能相差1人,设A组的人有n,那么爬得最高的人要爬n层,3n分,如果C组的人比A组的人数多2个以上,则C组爬得最高的人>=3(n+2),这样如果我们从C组中移1个人到A组,将至少减少3(n+2)分,而A组增加1人增加的分是3(n+1),显然会使总分减少,同时B组的人数没有变动,分值没有变化,由此说明了A,C组人数应当相等或相差1人,基于以上分析,先考虑AC组人数相等的情况:设A,C组人数均为x,B组人数为31﹣2x,总分S==5x2﹣60x+496,当x==6,S最小=316.20.解:(1)一共有12条:ABCKG、ABJKG、ABJFG、ADCKG、ADLKG、ADLHG、AIJKG、AIJFG、AILKG、AILHG、AIEFG、AIEHG;(2)不可能.用反证法证明.假设可能,那么将所有连接点染上黑、白两色,凡与黑点相邻的都是白点,凡与白点相邻的都是黑点.若A是白点,则黑白点的分布如下表:.由于A与G都是白点,所以蚂蚁从A点出发,依次经过其它各点,到达G点的路线应为白→黑→白→黑→…→黑→白.其中有奇数个白点,这与图中共有偶数个白点相矛盾.∴蚂蚁不可能从A点出发沿着铁丝经过每一个连接点恰好一次,最后到达G点.。
初中逻辑思维图形推理题解析
初中逻辑思维图形推理题解析逻辑思维图形推理是数学中的一个重要内容,也是初中阶段逻辑思维培养的重要环节之一。
通过解决逻辑思维图形推理题,我们能够提高学生的逻辑思维能力和图形推理能力,培养学生的分析和解决问题的能力。
本文将结合几个典型的初中逻辑思维图形推理题,为大家解析其中的解题思路和方法。
首先,我们来看一下一道常见的逻辑思维图形推理题。
题目如下:【题目】请根据下图的规律,选择出与图(5)中相同规律的图案。
(见文章末尾图示)【解析】这是一道典型的图形推理题。
我们需要观察给出的图形序列,找出其中的规律,并根据规律选择出与图(5)中相同规律的图案。
通过观察给出的图形序列,我们可以发现以下规律:1. 图形中的实心圆与三角形相互交替出现;2. 实心圆和三角形的个数逐渐递增。
根据以上规律,我们可以得出图(6)应该是一个实心圆和三角形个数更多的图案。
因此,正确答案为图(6)。
通过以上思路,我们可以很好地解决这道推理题,并且还能够培养学生的观察力和分析能力。
接下来,我们来看一道稍微复杂一些的逻辑思维图形推理题。
题目如下:【题目】请根据下图的规律,选择出与题图中相同规律的图案。
(见文章末尾图示)【解析】这道题目相较于之前的题目要难一些。
我们需要更加仔细地观察图形序列,寻找可能存在的规律。
通过仔细观察,我们可以得出以下规律:1. 图形序列中的每个图形都有一个“握手”的操作;2. 图形序列中的每个图形都具有一定的对称关系。
根据以上规律,我们可以得出,题图中第一个图案(图A)具有三次握手,第二个图案(图B)具有两次握手,第三个图案(图C)具有一次握手,而第四个图案(图D)没有握手操作。
因此,根据规律推测,第五个图案(图E)应该具有四次握手的操作。
所以,答案应为图E。
通过这个例题,我们可以看到,在解决复杂的逻辑思维图形推理题时,我们需要更加仔细地观察图形的形状、数量、对称性等方面的特征,并从中寻找规律进行推理。
在解决逻辑思维图形推理题时,还需注意以下一些技巧:1. 注意观察图形的外观特征,比如数量、形状、对称性等;2. 注意观察图形的变换规律,比如旋转、翻转、位置关系等;3. 运用逻辑思维,推理出可能存在的规律,并运用推理得出正确答案。
发展逻辑思维初中数学推理练习题
发展逻辑思维初中数学推理练习题数学是一门需要逻辑思维的学科,而逻辑思维能力的培养则是中学数学教育的重要任务之一。
通过适当的练习题,学生能够锻炼自己的逻辑思维能力,提高解题的准确性和速度。
接下来,将为大家提供一些适合初中生的数学推理练习题,帮助大家发展逻辑思维。
1. 推理题(1) 小明是班级的优秀学生,小红也是班级的优秀学生。
请推理出以下结论:- 小明和小红是同学。
- 班级中至少有两个学生。
(2) 以下是一份选修课的名单,每位学生只能选一门选修课:- 小明选了音乐课。
- 小红选了美术课。
- 小亮选了体育课。
请判断以下结论的真假:- 小红和小亮至少有一门选修课是相同的。
- 小明和小红选修课的相同数量比小明和小亮选修课的相同数量多。
2. 推理题解答(1) 根据题目中的信息可知,小明和小红都是班级的优秀学生。
因此,可以推断出小明和小红是同学。
另外,由于小明和小红都是班级的优秀学生,班级中至少有两个学生。
(2) 根据题目中的信息可知,小明选了音乐课,小红选了美术课,小亮选了体育课。
因此推断出小红和小亮至少有一门选修课是相同的。
再者,小明和小红选修课的相同数量是0,小明和小亮选修课的相同数量也是0,所以小明和小红选修课的相同数量并不多。
通过这些推理题,学生需要根据给定的信息进行逻辑推理和判断,从而得出正确答案。
在解题过程中,学生需分析和提取题目中的关键信息,并运用逻辑思维进行推理和判断。
除了上述的推理题,还可以通过以下类型的数学推理练习题来进一步发展逻辑思维能力:3. 数字推理题(1) 请写出下一个数字:2, 4, 6, 8, ...(2) 填写问号处的数字:5, 10, ?, 20, 25在数字推理题中,学生需要观察数列中的规律,并运用逻辑思维推断下一个数字或填写问号处的数字。
这样的题目能够帮助学生锻炼对数学规律的敏感度以及推理能力。
通过以上的数学推理练习题,可以帮助中学生发展他们的逻辑思维能力。
这些题目既考验了学生的数学知识,又锻炼了他们的推理和判断能力。
最新初中数学逻辑推理练习题教案资料
数学逻辑推理练习题1、三个朋友住进了一家宾馆。
结账时,账单总计3000美元。
三个朋友每人分摊1000美元,并把这3000美元如数交给了服务员,委托他代到总台交账,但在交账时,正逢宾馆实施价格优惠,总台退还给服务员500美元,实收2500美元,服务员从这500美元退款中扣下了200美元,只退还三客人300美元,三客人平分了这300美元,每人取回了100美元,这样,三个客人每人实际支付900美元,共支付2700美元,加上服务员扣的200美元,共计2900美元,那么这100美元的差额到哪里去了?2、逻辑推理:谁打破了玻璃四个小孩在校园内踢球,“砰”的一声,不知是谁踢的球把课堂窗户的玻璃打破了,王老师跑出来一看,问:“是谁打破了玻璃?”小张说:“是小强打破的.”小强说:“是小胖打破的.”小明说:“我没有打破窗户的玻璃.”小胖说:“王老师,小强在说谎,不要相信他.”这四个小孩只有一个说了老实话.请判断:说实话的是谁,是谁打破窗户的玻璃?3、硬币游戏如果你和你的对手准备依次轮流地将硬币放在一个长方形桌子上,使得这些硬币不重叠。
最后放上硬币的人为胜者,在开始时你有权决定先放还是后放。
为了能赢得这场比赛,你决定先放还是后放呢?4、高速问题一个人从 A 地出发,以每小时30公里的速度到达 B 地,问他从 B 地回到 A 地的速度要达到多少?才能使得往返路程的平均速度达到每小时60公里?5、登山问题某人上午八点从山下的营地出发,沿着一条山间小路登山,下午五点到达山顶;次日上午八点又从山顶开始下山(沿同一条小路)返回,下午五点又到达了山下的营地。
问:是否能找到一个地点来回时刻是相同的?6、我有一堆绳子,这些绳子之间粗细长短各不相同,每一条绳子本身各处的粗细长短也各不相同。
但是每条绳子的燃烧时间都是60秒,试问我要测量15秒的时间,我该如何做?7、有一堆垃圾,规定要由张王李三户人家清理。
张户因外出没能参加,留下9元钱做代劳费。
那些让人欲罢不能的逻辑推理题
这也侧面说明有很多人都是对这种逻辑推理题感兴趣的。
今天,我为大家准备了六道有趣的、难度逐步递增的逻辑推理题,来看一下你能闯到第几关吧!首先来看一下小学生难度的:小学生难度:御医和宰相的故事在很远很远的地方,有一个出产各种毒药的国家。
不过,那里的物理法则和我们有些不一样。
在这个国家,如果有人喝下了致命的毒药,那么他只要在毒性完全发作前喝下另一瓶毒性更强的毒药,就可以让两种毒药的药性中和。
注意,一定是要毒性更强的毒药才能作为解药!正因为存在着这样的物理法则,这个国家的国王迫切地想要得到全世界毒性最强的毒药。
这样一来,他就再也不用担心别人对他下毒了。
因为如果有人对他下毒的话,他只要马上喝下这种最强毒药就可以了。
既然是最强的毒药,那么当然可以中和一切其他毒药。
为了搞到这种毒药,国王想了一个点子。
他给自己的御医和宰相下了命令,让他们一个月后各自带着自己弄到的最毒的毒药到王宫来。
然后,他们每个人要先喝下对方的毒药,然后再喝下自己带来的毒药。
这样一来,带来的毒药较强的那个人会平安无事,毒药较弱的那个人则会当场死亡。
国王觉得自己简直是太聪明了。
因为事关自己的性命,宰相和御医都一定会拼命找到最毒的毒药带到王宫里来。
宰相和御医接到这么一个倒霉的任务,也没有办法,只好抓紧时间去弄毒药。
在接下来的一个月里,宰相在全国四处奔波,高价收购各种毒药,然后挑出了其中最毒的一种。
但在进王宫的前一天晚上,宰相越想越不对劲。
全国制毒水平最高的人当然非御医莫属,自己在市场上买来的毒药,怎么可能有御医调制出来的毒药强呢?想到这里,宰相感到无比地绝望,他明天是死定了。
但在半夜的时候,宰相突然想到了一个巧妙的方法可以让自己赢得明天的对决。
在这之后,他满意地睡觉去了。
与此同时,御医也在做着最后的准备。
他非常自信自己调制出来的一定是全国毒性最强的毒药。
但就在他准备上床睡觉的时候,他也突然觉得不对劲。
宰相难道不知道自己调制出来的毒药一定比他的强吗?那个老滑头怎么可能这么轻易就被自己毒死?对方一定会采取其他的对策。
初中数学竞赛之逻辑推理问题(含答案)
初中数学竞赛之逻辑推理问题1.41名运动员所穿运动衣号码是1,2,…,40,41这41个自然数,问:(1)能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数?(2)能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数?若能办到,请举一例;若不能办到,请说明理由.2.某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,证明至少有5人植树的株数相同.3.有50名同学站在操场上玩游戏,他们彼此间的距离都各不相等.每人手中有一把水枪,游戏规则是:每人都向离自己最近的人打一枪.试证明:每一个人至多挨了5枪.(提示:也就是要证明:假定有一个人至少挨6枪是不可能的)4.把1到3这三个自然数填入10×10的方格内,每格内填一个数,求证:无论怎样填法都能使在各行、各列、两条对角线上的数字和中,必有两个是相同的.5.一个口袋内有100个球,其中有红球28个,绿球20个,黄球12个,蓝球20个,白球10个,黑球10个.从袋中任意取球,如果要求一次取出的球中至少有15个球的颜色相同,那么至少要从袋中取出多少个球?6.环行跑道的一周插了若干红、黄两种颜色的彩旗,已知一共变色了46次(一个红旗与一个黄旗相邻或一个黄旗与一个红旗相邻,称为一次变色),现可将相邻的旗子对调,如果若干次对调后,变色次数减少为26次.试说明:在对调过程中,必有一个时刻,彩旗的变色次数恰好为28次.7.有17个科学家,他们中的每一个都和其他的科学家通信,在他们的通信中仅仅讨论三个问题,每一对科学家互相通信时,仅仅讨论同一个问题.证明至少有三个科学家关于同一个题目互相通信.8.对于平面上给定的25个点,如果其中任何3个点中都有某两个点的距离小于1,那么在这些给定的点中,一定可以找到13个点,这13个点都位于一个半径为1的圆内.9.如果三个完全平方数之和能被9整除,那么可以从这三个数中选出两个来,使得这两个完全平立数之差也能被9整除.10.某夏令营组织1987名营员去游览故宫、景山公园、北海公园,规定每人必须去一处,至多去两处游览.求证:至少有332人游览的地方完全相同.11.将2002张卡片分别标记1,2,3,…,2002的数,数字面朝上放在桌上.二位玩家轮流自桌上各取一张牌,直到桌上的牌取光为止.先计算每个人所有取的牌的数之总和,再比较这两个总和的个位数,较大者为胜方.请问两位玩家中哪一位有必胜之策略(无论对手如何对应)?如果有,这个必胜策略是什么?12.从1到100这100个自然数中,任意取出51个数,其中一定存在两个数,这两个数中的一个是另一个的整数倍.13.证明:在21﹣1,22﹣1,23﹣1,…,2n﹣1﹣1这n﹣1个数中,至少有一个数能被n整除(其中n为大于1的奇数).14.今有一角币一张,两角币一张,伍角币一张,一元币四张,伍元币两张,用这些纸币任意付款,可以付出不同数额的款共有多少种?15.圆周上有12个点,其中有一个是涂了红色,还有一个是涂了蓝色,其余10个是没有涂色,以这些点为顶点的凸多边形中,其顶点包含了红点及蓝点的多边形称为双色多边形,只包含红点(蓝点)的称为红色(蓝色)多边形,不包含红点及蓝点的称为无色多边形.试问以这12个点为顶点的所有凸多边形(边数从三角形到12边形)中,双色多边形的个数与无色多边形的个数哪一种多?多多少?16.有1997盏亮着的电灯,各有一个拉线开关控制着.现将其顺序编号为1,2,3,…,1997.将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,拉完后还有几盏灯是亮的?17.某班的全体学生进行了短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目都没有达到优秀,其余每人至少有一个项目达到优秀,这部分学生达到优秀的项目、人数如下表求这个班的学生数.18.把数、理、化、语、英5本参考书,排成一行放在书架上.(1)化学不放在第1位,共有多少种不同排法?(2)语文与数学必须相邻,共有多少种不同排法?(3)物理与化学不得相邻,共有多少种不同排法?(4)文科书与理科书交叉排放,共有多少种不同排法?19.山城电信大楼一架最多可以容纳32人的33层电梯出故障,只能在第2层至第33层中的某一层停一次.对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意.现有32个人在第一层,并且他们分别在第2至第33层的每一层办公.请你设计一个方案,使电梯停在某一层,使得这32个人的不满意总分达到最小,并求出这个最小值.注意:有些人可以不乘电梯而直接从楼梯上楼.20.如图所示,有一个正方体形的铁丝架,把它的侧棱中点I、J、K、L也用铁丝连上.(1)现在一个蚂蚁想沿着铁丝从A点爬到G点,问最近的路线一共有几条?并用字母把这些路线表示出来(用所经过的连接点字母表示,譬如蚂蚁从A点出发,经过I点L点,最后到达H点,这样的路线用AILH表示).(2)蚂蚁是否可能从A点出发,沿着铁丝经过每一个连接点,恰好一次最后到达G点?如果可能,请找出一条这样的路线;如果不可能,说明为什么?参考答案1.解:(1)能办到.注意到41与43都是质数,据题意,要使相邻两数的和都是质数,显然,它们不能都是奇数,因此,在这排数中只能一奇一偶相间排列,不妨先将奇数排成一排:1,3,5,7,41,在每两数间留有空档,然后将所有的偶数依次反序插在各空档中,得1,40,3,38,5,36,7,34,8,35,6,37,4,39,2,41,这样任何相邻两数之和都是41或43,满足题目要求.(2)不能办到.若把1,2,3,40,41排成一圈,要使相邻两数的和为质数,这些质数都是奇数,故圆圈上任何相邻两数必为一奇一偶,但现有20个偶数,21个奇数,总共有41个号码,由此引出矛盾,故不能办到.(注站成一排和站成一圈虽只一字之差,但却有着质的不同,因为一圈形成了首尾相接的情形.)2.证明:利用抽屉原理,按植树的多少,从50至100株可以构造51个抽屉,则问题转化为至少有5人植树的株数在同一个抽屉里;假设5人或5人以上植树的株数在同一个抽屉里,那只有4人以下植树的株数在同一个抽屉里,而参加植树的人数为204人,每个抽屉最多有4人,故植树的总株数最多有:4(50+51+52+…+100)=4×=15300<15301,得出矛盾.因此,至少有5人植树的株数相同.3.解:假定有一个人至少挨了6枪,设此人为A、若B射向A,C也射向A,则在△ABC中,BC边最长(如图).又由于三边不等,则角A应该大于60度.若有6个人都射向A,则从A出发的6个角都大于等于60度,从而周角就大于了360度,这是不可能的.4.证明:由于每个格内数字为1,2,3,则在各行、各列,两格对角线数字和中,最小的为10,最大的为30,共有21种取值,实际上,10行,10列,加2条对角线共22个和.所以由抽屉原理,必有两个和是相等的.5.解:最不利条件:前面取的球都没有达到15个球颜色相同的状况.也就是:黄球,白球,黑球全部都取完了(这些同颜色的都在15个球以下,全部取完也不会有15个球颜色相同),一共是12+10+10=32个球然后红球,绿球,蓝球各取14个.14×3=42个.依然没有15个球颜色相同.然后再取任意一个球,就能达到至少有15个球的颜色相同了,因此一共有32+42+1=75个球.6.解:首先说明,将相邻的旗子对调一次,变色次数或不变,或增加2次,或减少2次.显然,如果对调的两旗同色,则不改变变色数,以下为了方便,用⊙表示红色旗,用△表示黄色旗,可设对调前两旗为⊙△,因对调一次只可能影响这两旗相邻旗子的变色数,因此(考虑对称性),只需考虑如下几种对调前的情形:⊙⊙△△,⊙⊙△⊙,△⊙△⊙,△⊙△△(变色数依次为1,2,3,2),将中间两旗对调后变为⊙△⊙△,⊙△⊙⊙,△△⊙⊙,△△⊙△(变色数依次为3,2,1,2).由此可见,变色数或不变,或增加2次,或减少2次.由原来的变色数46,经过若干次增、减2,现在成为26,故必须经过46与26之间的所有偶数.所以在对调过程中,必有一个时刻,彩旗的变色次数恰好为28次.7.证明:从17个点中的一点,比如点A处作引16条线段,共三种颜色,由抽屉原理至少有6条线段同色,设为AB、AC、AD、AE、AF、AG且均为红色.若B、C、D、E、F、G这六个点中有两点连线为红线,设这两点为B、C,则△ABC是一个三边同为红色的三角形.若B、C、D、E、F、G这六点中任两点的连线不是红色,则考虑5条线段BC、BD、BE、BF、BG的颜色只能是两种,必有3条线段同色,设为BC、BD、BE均为黄色,再研究△CDE的三边的颜色,要么同为蓝色,则△CDE是一个三边同色的三角形,要么至少有一边为黄色,设这边为CD,则△BCD是一个三边同为黄色的三角形,即至少有三个科学家关于同一个题目互相通信.8.解:在给定的25个点中任取一点,记为A,以A为圆心,1为半径作圆,若⊙A盖住所有的点,则结论成立;若不然,则至少有一点B不在圆内,再以B为圆心,1为半径做圆,则所给的25个点中的任意一点要么在⊙A内,要么在⊙B内,否则,至少有一点C既不在⊙A内,又不在⊙B内,这样,所得三点A、B、C的连线AB、AC、BC的长都大于1,即在A、B、C三点中无两点距离小于1,与题设矛盾,因此⊙A、⊙B就可以盖住这25个点.把⊙A、⊙B作为两个抽屉,把25个点放进去,因为25=12×2+1,由抽屉原理可知,至少有一个圆内有12+1=13个点都位于一个半径为1的圆内.9.解:下面我们先来讨论任意的完全平方数被9除的余数.根据同余理论,我们知道,任何一个整数总可以表示成:9k,9k±1,9k±2,9k±3及9k±4这九种情况中的一种.现在将这九种情况分别平方,于是可得:(9k)2=9×9k2+0;(9k±1)2=9(9k2±2k)+1;(9k±2)2=9(9k2±4)+4;(9k±3)2=9(9k2±6k+1)+0及(9k±4)2=9(9k2±8k+1)+7.可见,任何一个完全平方数被9除的余数只可能是0,1,4,7这四种情况之一.另一方面,由于所选的三个完全平方数之和能被9整除,因此这三个数的余数之和也一定能被9整除;而从0、1、4、7这四个数中选出三个,其和要能被9整除,只可能是{0,0,0}、{1,1,7}、{1,4,4}或{4,7,7}这四种情况中的一种.而在上面这四种可能的余数组合中,每一组都至多有两种余数,因此至少有两个完全平方数被所9除的余数相同,从而这两个余数相同的完全平方数之差就一定能被9整除.10.解:因为营员所去地方可分为(故宫),(景山),(北海),(故宫,北海),(故宫,景山),(北海,景山),共6种,构造为6个抽屉,而营员共有1987名.由抽屉原理可知,必有人游览的地方相同,所以至少有332人游览的地方完全相同.11.解:由题目可知,胜负的关键在于这个位数的大小,于是只考虑这个位数,试着将范围缩小,从2002缩小到22,∵2002=2000+2,同理:22=20+2,得到排列:1 2 3 4 5 6 7 8 9 1020 19 18 17 16 15 14 13 12 1121 22由上面的排列不难看出上面的两排数将其以横的相加,所得总和的个位数会一样,那么先取的人拿到22,再根据对称性拿,就可以必胜.将其推广:先取的人拿到2002,再根据对称性拿,就可以必胜.12.证明:由于任何一个自然数都可以表示成一个奇数与2n和乘积的形式,而且这种表示方法是惟一的.因此,我们可以按下面的方法来构造50个抽屉:{1,1×2,1×22,1×23,1×26};{3,3×2,3×22,3×23,3×24,3×25};{5,5×2,5×22,5×23,5×24};…;{49,49×2};{51};{53};…;{99}.于是从这50个抽屉中任取51个数,根据抽屉原则,其中一定存在至少两个数属于同一个抽屉,即命题得证.13.证明:用数学归纳法来证明.(1)当n=2时成立.(2)假设,当n=k时,成立.(3)证明:当n=k+1时也成立.(31)2n﹣1个互不相同的整数中n个整数的和,有C(n,2n﹣1)种互不相同的可能性.(32)这C(n,2n﹣1)种互不相同的可能性,落在[0,(2n﹣1)•n]区间内.在这个区间内,不能被n整除的整数个数是(2n﹣1)•(n﹣1)个.(33)证明C(n,2n﹣1)>(2n﹣1)•(n﹣1).(34)原命题得证.14.解:∵不管怎么组合都不会重复,∴共有3×5×2×2×2﹣1=120﹣1=119种.故可以付出不同数额的款共有119种.15.解:对于任何一个双色n(n≥5)边形,显然去掉红、蓝顶点后,得到一个无色n﹣2边形,不同的双色n边形去掉红蓝顶点后,得到的是不同的无色n﹣2边形.反过来,对任一无色多边形,添上红蓝顶点后,总可以得到一个双色多边形,由此可知,无色多边形(从三角形到十边形)的个数与双色多边形(从五边形到十二边形)的个数相等.因此,双色多边形的个数多,多出来的数目恰是双色三角形和双色四边形的数目.双色三角形有10个.双色四边形有×10×9=45个.这是由于每对应一个双色三角形,可以有九个双色四边形,而在90个双色四边形中,两两相重,故只有45个双色四边形.∴双色多边形比无色多边形多55个.16.解:①.被拉了三次的灯,为2、3、5的最小公倍数,也就是=66②.被拉了两次的灯,也就是求2和3、3和5、2和5的最小公倍数的和,这里注意要扣除被重复拉的灯(也就是2、3、5三个数的最小公倍数):++﹣3×66=466③.被拉了一次的灯,++﹣2×466﹣3×66=932那么最后亮着的灯的数量:1997﹣66﹣932=99917.解:有4名学生在这三个项目都没有达到优秀,在每个单项上达到优秀的人数分别是17,18,15,因而,总人数是17+18+15+4=54,但其中有人获得两项优秀,所以上面的计数产生了重复,重复人数应当减去,即总人数变为:54﹣6﹣6﹣5=37,又考虑到获得三项优秀的人,他们一开始被重复计算了三次,但在后来又被重复减去了三次,所以最后还要将他们加进去.即这个班学生数为:37+2=39.18.解:(1)4×4×3×2×1=96种.故化学不放在第1位,共有96种不同排法.(2)2×4×3×2×1=48种.故语文与数学必须相邻,共有48种不同排法.(3)(5×4﹣2×4)×3×2×1=72种.故物理与化学不得相邻,共有72种不同排法.(4)3×2×1×2×1=12种.故文科书与理科书交叉排放,共有12种不同排法.19.解:将人群分成三组,A组:直接上楼;B组:从电梯下楼;C组:从电梯上楼;由于各种组合是有限的,因此最小值是存在的,那么在达到最小值时,下楼的人数是一个确定的值m,除了1人不需要上下楼,上楼的人数为31﹣m,这31﹣m个人分在A,C两组,由于A,C两组的地位均等,因此要达到最小值人数要相等,但涉及到整数有可能相差1人,设A组的人有n,那么爬得最高的人要爬n层,3n分,如果C组的人比A组的人数多2个以上,则C组爬得最高的人>=3(n+2),这样如果我们从C组中移1个人到A组,将至少减少3(n+2)分,而A组增加1人增加的分是3(n+1),显然会使总分减少,同时B组的人数没有变动,分值没有变化,由此说明了A,C组人数应当相等或相差1人,基于以上分析,先考虑AC组人数相等的情况:设A,C组人数均为x,B组人数为31﹣2x,总分S==5x2﹣60x+496,当x==6,S最小=316.20.解:(1)一共有12条:ABCKG、ABJKG、ABJFG、ADCKG、ADLKG、ADLHG、AIJKG、AIJFG、AILKG、AILHG、AIEFG、AIEHG;(2)不可能.用反证法证明.假设可能,那么将所有连接点染上黑、白两色,凡与黑点相邻的都是白点,凡与白点相邻的都是黑点.若A是白点,则黑白点的分布如下表:.由于A与G都是白点,所以蚂蚁从A点出发,依次经过其它各点,到达G点的路线应为白→黑→白→黑→…→黑→白.其中有奇数个白点,这与图中共有偶数个白点相矛盾.∴蚂蚁不可能从A点出发沿着铁丝经过每一个连接点恰好一次,最后到达G点.。
初中智力测试题及答案
初中智力测试题及答案【测试目的】本测试旨在评估初中生的逻辑思维能力、数学推理能力、空间想象能力以及问题解决能力。
【测试说明】请仔细阅读每一道题目,并在规定时间内完成作答。
每题的分值为1分,共10题,满分为10分。
【测试题目】1. 逻辑推理题:如果所有的苹果都是水果,而所有的水果都含有维生素C,那么苹果含有维生素C吗?A. 是的B. 不一定C. 不含有D. 无法确定2. 数学推理题:如果3个苹果加上2个香蕉等于14元,2个苹果加上3个香蕉等于13元,那么1个苹果和1个香蕉各多少钱?A. 苹果3元,香蕉2元B. 苹果4元,香蕉3元C. 苹果5元,香蕉2元D. 苹果2元,香蕉3元3. 空间想象题:一个立方体的每个面都是边长为1米的正方形,如果将这个立方体从中间切开,分成两个相同的部分,那么这两个部分的表面积总和是多少平方米?B. 7C. 8D. 94. 问题解决题:一个班级有40名学生,如果每5名学生组成一个小组,那么至少需要多少个小组?A. 8B. 9C. 10D. 115. 逻辑推理题:如果所有的狗都是哺乳动物,而小明的宠物是一只狗,那么小明的宠物是哺乳动物吗?A. 是的B. 不一定C. 不是D. 无法确定6. 数学推理题:一个数的三倍加上5等于这个数的两倍减去3,这个数是多少?A. 4B. 5C. 6D. 77. 空间想象题:一个长方体的长、宽、高分别是2米、1米和0.5米,如果将这个长方体的长和高都增加1米,那么新长方体的体积是多少立方米?A. 3B. 4D. 68. 问题解决题:一个班级有30名学生,如果每3名学生组成一个小组,那么可以组成多少个小组?A. 10B. 9C. 8D. 79. 逻辑推理题:如果所有的鸟都会飞,而企鹅是一种鸟,那么企鹅会飞吗?A. 是的B. 不一定C. 不会D. 无法确定10. 数学推理题:一个数的一半加上3等于这个数的两倍减去9,这个数是多少?A. 6B. 12C. 18D. 24【答案解析】1. 答案:A. 是的。
数学初中竞赛逻辑推理专题训练(含答案)
数学初中竞赛逻辑推理专题训练一.选择题1.某校九年级6名学生和1位老师共7人在毕业前合影留念(站成一行),若老师站在中间,则不同的站位方法有()A.6种B.120种C.240种D.720种2.钟面上有十二个数1,2,3,…,12.将其中某些数的前面添上一个负号,使钟面上所有数之代数和等于零,则至少要添n个负号,这个数n是()A.4 B.5 C.6 D.73.仪表板上有四个开关,每个开关只能处于开或者关状态,如果相邻的两个开关不能同时是开的,那么所有不同的状态有()A.6种B.7种C.8种D.9种4.小明训练上楼梯赛跑.他每步可上2阶或3阶(不上1阶),那么小明上12阶楼梯的不同方法共有()(注:两种上楼梯的方法,只要有1步所踏楼梯阶数不相同,便认为是不同的上法.)A.15种B.14种C.13种D.12种5.如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种6.﹣2和2对应的点将数轴分成3段,如果数轴上任意n个不同的点中至少有3个在其中之一段,那么n的最小值是()A.5 B.6 C.7 D.87.计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取出按照“先进后出’’的原则.如图,堆栈(1)的2个连续存储单元已依次存入数据b,a,取出数据的顺序是a,b;堆栈(2)的3个连续存储单元已依次存人数据e,d,c,取出数据的顺序则是c,d,e,现在要从这两个堆栈中取出这5个数据(每次取出1个数据),则不同顺序的取法的种数有()A.5种B.6种C.10种D.12种8.用六根火柴棒搭成4个正三角形(如图),现有一只虫子从点A出发爬行了5根不同的火柴棒后,到了C点,则不同的爬行路径共有()A.4条B.5条C.6条D.7条9.将四边ABCD的每个顶点涂上一种颜色,并使每条边的两端异色,若共有3种颜色可供使用(并不要求每种颜色都用上),则不同的涂色方法为()种.A.6 B.12 C.18 D.2410.如图所示,韩梅家的左右两侧各摆了3盆花,韩梅每次按照以下规则往家中搬一盆花,先选择左侧还是右侧,然后搬该侧离家最近的,要把所有的花搬到家里,共有()种不同的搬花顺序.A.8 B.12 C.16 D.2011.如图,在一块木板上均匀钉了9颗钉子,用细绳可以像图中那样围成三角形,在这块木板上,还可以围成x个与图中三角形全等但位置不同的三角形,则x的值为()A.8 B.12 C.15 D.1712.初二(1)班有37名学生,其中参加数学竞赛的有30人,参加物理竞赛的有20人,有4人没有参加任何一项竞赛,则同时参加这两项竞赛的学生共有()人.A.16 B.17 C.18 D.19二.填空题13.湖南卫视推出的电视节目《我是歌手第三季》于3月27日落下帷幕,歌手韩红夺得歌王称号.在这个节目中,每场比赛7位歌手的成绩排位顺序是由现场500位大众评委投票决定的,每场比赛每位大众评委有3张票(必须使用)以投给不同的3位歌手.在某一场比赛中,假设全部票都有效,也不会产生并列冠军,那么要夺得冠军至少要获得张票.14.如图,在一个4×4的方格棋盘的A格里放一枚棋子,如果规定棋子每步只能向上、下或左、右走一格,那么这枚棋子走28步后到达B处.(填“一定能”或“一定不能”或“可能”)15.将红、白、黄三种小球,装入红、白、黄三个盒子中,每个盒子中装有相同颜色的小球.已知:(1)黄盒中的小球比黄球多;(2)红盒中的小球与白球不一样多;(3)白球比白盒中的球少.则红、白、黄三个盒子中装有小球的颜色依次是.16.在表达式S=中,x1、x2、x3、x4是1、2、3、4的一种排列(即:x1、x 2、x3、x4取1、2、3、4中的某一个数,且x1、x2、x3、x4互不相同).则使S为实数的不同排列的种数有种.17.如图,一个田字形的区域A、B、C、D栽种观赏植物,要求同一个区域中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,那么有种栽种方案.18.6名乒乓球运动员穿着4种颜色的服装进行表演赛,其中2人穿红色的,2人穿黄色的,1人穿蓝色的,1人穿黑色的.每次表演选3人出场,且仅在服装颜色不同的选手间对局比赛,具体规则是:(1)出场的“3人组”中若服装均不相同,则每两人都进行1局比赛,且比赛过的2名选手在不同的“3人组”中再相遇时还要比赛.(2)出场的“3人组”中若有服装相同的2名选手,则这2名选手之间不比赛,并且只派1人与另1名选手进行1局比赛.按照这样的规则,当所有不同的“3人组”都出场后,共进行了局比赛.19.将1、2、3、…、64填入右图8×8的表格中,每格一个数.如果某格所填的数至少大于同行中的5个,且至少大于同列的5个,那么就将这个格子涂上红色.涂上红色的格子最多个.三.解答题20.120人参加数学竞赛,试题共有5道大题,已知第1、2、3、4、5题分别有96、83、74、66、35人做对,如果至少做对3题便可获奖,问:这次竞赛至少有几人获奖?21.某校一间宿舍里住有若干位学生,其中一人担任舍长.元旦时,该宿舍里的每位学生互赠一张贺卡,并且每人又赠给宿舍楼的每位管理员一张贺卡,每位宿舍管理员也回赠舍长一张贺卡,这样共用去了51张贺卡.问这间宿舍里住有多少位学生.22.世界杯足球赛每个小组共有四个队参加比赛,采用单循环赛制(即每两个队之间要进行一场比赛),每场比赛获胜的一方得3分,负的一方得0分,如果两队战平,那么双方各得1分,小组赛结束后,积分多的前两名从小组出线.如果积分相同,两队可以通过比净胜球或其他如抽签等方式决定谁是第二名,确保有两支队伍出线.(1)某队小组比赛后共得6分,是否一定从小组出线?(2)某队小组比赛后共得3分,能从小组出线吗?(3)某队小组比赛后共得2分,能从小组出线吗?(4)某队小组比赛后共得1分,有没有出线的可能?23.把一条宽为1厘米的长方形纸片对折n次,得到一个小长方形,宽仍然是1厘米,长是整数厘米.然后,从小长方形的一端起,每隔1厘米剪一刀,最后得到一些面积为1平方厘米的正方形纸片和面积为2平方厘米的长方形纸片.如果这些纸片中恰好有1282块正方形,那么,对折的此数n共有多少种不同的数值?24.圆周上的十个点将圆周十等分,连接间隔两个点的等分点,共得到圆的十条弦,它们彼此相交,构成各种几何图形.图中有多少个平行四边形?25.足球的球面由若干个五边形和正六边形拼接而成,已知有12块正五边形,则正六边形的块数是?26.在m (m ≥2)个不同数的排列P 1P 2P 3…P m 中,若1≤i <j ≤m 时,P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数.记排列(n +1)n (n ﹣1)…321的逆序数为a n ,如排列21的逆序数a 1=1,排列4321的逆序数a 3=6.(1)求a 4、a 5,并写出a n 的表达式(用n 表示,不要求证明); (2)令b n =+﹣2,求b 1+b 2+…b n 并证明b 1+b 2+…b n <3,n =1,2,….参考答案一.选择1.解:老师在中间,故第一位同学有6种选择方法,第二名同学有5种选法,第三名同学有4种选法,第四名同学有3种选法,第五名同学有2种选法,第六名同学有1种选法, 所以共有6×5×4×3×2×1=720种. 故选:D .2.解:因为1+2+3+…+11+12=78,所以78÷2=39,也就是添上负号的数的和为﹣39,其余数的和为39使代数和等于零, 要填负号最少,首先从大数前面加负号, 因此﹣10﹣11﹣12=﹣33,﹣33﹣6=﹣39, 由此得到至少要添4个负号. 故选:A .3.解:我们用O 表示开的状态,F 表示关的状态,则各种不同的状态有OOOO ,OOOF ,OOFO ,OFOO ,FOOO ,FOFO ,OFOF ,FOOF 共8种状态. 故选:C .4.解:设小明上n 阶楼梯有a n 种上法,n 是正整数,则a 1=0,a 2=1,a 3=1. 由加法原理知a n =a n ﹣2+a n ﹣3,n ≥4. 递推可得a 4=a 2+a 1=1,a 5=a 3+a 2=2, a 6=a 4+a 3=2, a 7=a 5+a 4=3, a 8=a 6+a 5=4, a 9=a 7+a 6=5, a 10=a 8+a 7=7, a 11=a 9+a 8=9, a 12=a 10+a 9=12.故选:D .5.解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.6.解:∵令每个抽屉最多有2个点,则最多有6个点,∴n≥7.故选:C.7.解:先取出堆栈(1)的数据首次取出的只能是a,可以有下列情况,abcde,acbde,acdbe,acdeb四种情况;先取出堆栈(2)的数据首次取出的只能是c,可以有下列情况,cdeab,cdabe,cdaeb,cabde,caedb,cadeb六种情况,综上所知,共10种取法.故选:C.8.解:从点A出发爬行了5根不同的火柴棒后,到了C点,不同的爬行路径有:①AB﹣BC ﹣CA﹣AD﹣DC;②AB﹣BC﹣CD﹣DA﹣AC;③AC﹣CB﹣BA﹣AD﹣DC;④AC﹣CD﹣DA﹣AB﹣BC;⑤AD﹣DC﹣CA﹣AB﹣BC;⑥AD﹣DC﹣CB﹣BA﹣AC.共有6条.故选:C.9.解:设供选用的颜色分别为1,2,3;当A选1时,有两种情况:①C与A的颜色相同时,B、D的选法有:一、B选2,D选3;二、B选3,D选2;三、B选2,D选2;四、B选3,D选3;共4种涂色方法;②C与A的颜色不同时,选法有:一、C选2,B、D选3;二、C选3,B、D选2;共2种涂色方法;因此当A选1时,共有2+4=6种涂色方法;而A可选1、2、3三种颜色;因此总共有3×6=18种涂色方法.故选C.10.解:韩梅每次只能选择搬左侧或者右侧的花,左侧和右侧分别只能选择三次,我们将三个左和三个右组成的排列(例如:左左右左右右是一种情况)分别对应一种搬花的顺序,并且不同的排列对应不同的搬花顺序,所以三个左和三个右组成的排列的个数与搬花顺序的个数相同,故只需考虑所以三个左和三个右组成的排列的个数,对于这种排列只需要考虑在6个位置中选择三个为左的个数,这样的个数一共有=20.故选:D.11.解:如图所示:将图形分成①、②、③、④四部分,第①个小正方形中符合题意的三角形有3个;第②个小正方形中符合题意的三角形有4个;第③个小正方形中符合题意的三角形有4个;第④个小正方形中符合题意的三角形有4个;综上可得共有15个与图中三角形全等但位置不同的三角形,即x=15.故选:C.12.解:设同时参加两项竞赛的学生有x人,根据题意可列出方程:37=30+20+4﹣x,解得x=17(人);故选:B.二.填空13.解:∵(500×3)÷7=214(张)…2(张),又∵全部票都有效,也不会产生并列冠军,∴夺得冠军至少要获得票数=214+2=216(张)故答案为:216.14.解:棋子每走一步都有2一4种可能的选择,所以该棋子走完28步后,可能出现的情况十分复杂.如果把棋盘上的方格分成黑白相间的两类,且使每个黑格的四周都是白格,那么,棋子从黑色A格出发,第一步必定进人白格;第二步必定进人黑格,第三步又进入白格…也就是说棋子走奇数步时进人白格;走偶数步时,进人黑格,所以当棋子从A格出发28步后,必定落在黑格.故这枚棋子走28步后可能到达B处.故答案为:可能.15.解:由条件(2)知红盒不装白球,由条件(3)知白盒不装白球,故黄盒装白球.假设白盒装黄球,由条件(3)知白球比黄球少,这与条件(1)矛盾,故白盒装红球,红盒装黄球.故答案为:黄、红、白.16.解:∵x1﹣x2+x3﹣x4≥0,∴x1+x3≥x2+x4;符合条件的排列数是:P44﹣C42P22=24﹣8=16(种)故答案为:16.17.解:若A,C种同一种植物,则A,C有4×1种栽种方法,B,D都有3种栽种法,共有4×3×3=36种栽种方案;若A ,C 种不同的植物,则有4×3种栽种法,B ,D 都有2种栽种法,一共有4×3×2×2=48种栽种法.所以共有36+48=84种.故答案为:84.18.解:将穿红色服装的2名选手表示为平行直线l 1、l 2;将穿黄色服装的2名选手表示为另两条平行直线l 3、l 4;将穿蓝色、黑色服装的选手表示为相交直线l 5、l 6、且与l 1、l 2、l 3、l 4均相交,这就得到了图1,图中无三线共点.(1)“3人组”的服装均不相同时,按规则,对应着3条直线两两相交,其比赛局数恰为图中的线段数(图2)因为l 1、l 2、l 3、l 4上各有4个交点,每条直线有6条线段,共有24条线段.(2)当“3人组”有2人服装相同,按规则,其比赛局数恰好为图中的线段数(图3)因为l 5、l 6上各有5个交点,每条直线上都有10条线段,共得20条线段.两种情况合计,总比赛局数为44局.故答案为:44.19.解:因为一行有8个数,至多有3个数可以大于同行的5个数,只有当这两个数分别同时大于所在列的5个数时,涂上红色,所以一行最多有3个涂上红色,8行最多有3×8=24个涂上红色,如图所示:1所在位置,都可以涂成红色.故答案为:24.三.解答20.解:将这120人分别编号为P 1,P 2,…,P 120,并视为数轴上的120个点,用A k 表示这120人之中未答对第k 题的人所成的组, |A k |为该组人数,k =1,2,3,4,5,则|A 1|=24,|A 2|=37,|A 3|=46,|A 4|=54,|A 5|=85,将以上五个组分别赋予五种颜色,如果某人未做对第k 题,则将表示该人点染第k 色,k =1,2,3,4,5,问题转化为,求出至少染有三色的点最多有几个?由于|A 1|+|A 2|+|A 3|+|A 4|+|A 5|=246,故至少染有三色的点不多于=82个,图是满足条件的一个最佳染法,即点P 1,P 2,…,P 85这85个点染第五色;点P 1,P 2,…,P 37这37个点染第二色;点P 38,P 39,…,P 83这46个点染第四色;点P 1,P 2,…,P 24这24个点染第一色;点P 25,P 26,…,P 78这54个点染第三色;于是染有三色的点最多有78个.因此染色数不多于两种的点至少有42个,即获奖人数至少有42个人(他们每人至多答错两题,而至少答对三题,例如P 79,P 80,…,P 120这42个人).答:获奖人数至少有42个人.21.解:设有x个学生,y个管理员.该宿舍每位学生与赠一张贺卡,那么每个人收到的贺卡就是x﹣1张,那么总共就用去了x(x﹣1)张贺卡;每个人又赠给每一位管理员一张贺卡,那么就用去了xy张贺卡;每位管理员也回赠舍长一张贺卡,那么就用去了y张贺卡;∴x(x﹣1)+xy+y=51,∴51=x(x﹣1)+xy+y=x(x﹣1)+y(x+1)≥x(x﹣1)+x+1=x2+1(当y=1时取“=”),解得,x≤7;x(x﹣1)+(x+1)y=51∵51是奇数,而x和x﹣1中,有一个是偶数,∴x(x﹣1)是偶数,∴(x+1)y是奇数,∴x是偶数,而x≤7,所以x只有2 4 6三种情况;当x=2时,y=(不是整数,舍去);当x=4时,y=(不是整数,舍去);当x=6时,y=3.所以这个宿舍有6个学生.22.解:(1)不一定.设四个球队分别为A、B、C、D,如四个球队的比赛结果是A战胜了B,D,而B战胜了C,D,C战胜了A,D,D在3场比赛中都输了,这样,小组赛之后,ABC三个球队都得6分,D队积0分,因此小组中的第三名积分是6分,∴不能出线;(2)有可能出线.如A在3场比赛中获得全胜,而B战胜了C,C战胜了D,D战胜了B,这样,小组赛之后,A积9分,B、C、D都积3分,因此这个小组的第二名,一定是3分出线;(3)有可能出线.如A队三战全胜,B、C、D之间的比赛都战平,这样这个小组的第二名的积分一定是2分,自然有出线的可能.(4)不可能出线.如果只得1分,说明他的3场比赛成绩是1平2负,而他负的两个球队的积分至少是3分,他就不可能排到小组的前两名,必然被淘汰.23.解:设长方形的长为a,若n=1,即对折一次,按题中操作可得1平方厘米的正方形纸片个数为:(﹣1)×2=a﹣2=1282,解得:a=1284,2|1284,符合条件;若n=2,即对折2次,按题中操作可得1平方厘米的正方形纸片个数为:(﹣1)×2+(﹣2)×(4﹣2)=a﹣6=1282,解得:a=1288,4|1288,符合条件;若n=3,即对折3次,按题中操作可得1平方厘米的正方形纸片个数为:(﹣1)×2+(﹣2)×(8﹣2)=a﹣2×(8﹣1)=1282,解得:a=1296,8|1296,符合条件;对一般的n,得到的正方形个数为;a﹣2×(2n﹣1),另a﹣2×(2n﹣1)=1282,解得:a=2×(2n﹣1)+1282=2×2n+1280,若2n|a,则符合条件,显然,当2n|1280时符合条件,1280=28×5,∴n可取1到8,对折的次数n共有8种不同的可能数值.24.解:连接圆周上的十个等分点的“对径点”,则可得5条直径,因为每条直径是一个平行四边形的较长的那条对角线,所以可得5个平行四边形.即图中有5个平行四边形.25.解:设正六边形有5x块,则正五边形有3x块,由题意得:共有12块正五边形,即3x=12,解得:x=4,5x=20.即正六边形的块数是20块.26.解:(1)由排列21的逆序数a1=1,排列4321的逆序数a3=6,得a4=4+3+2+1=10,a5=5+4+3+2+1=15,∴a n=n+(n﹣1)+…+2+1=;(2)∵a n=n+(n﹣1)+…+2+1=,b n=+﹣2,∴b n=+﹣2=+﹣2=﹣,∴b1+b2+…+b n=2[(﹣)+(﹣)+…+(﹣)]=3﹣﹣;又∵n=1,2,…,∴b1+b2+…b n=3﹣﹣<3.。
初中生智商测试题
初中生智商测试题
1. 数学逻辑题:
- 题目:如果一个数字加上它的两倍等于45,那么这个数字是多少? - 答案:15
2. 语言理解题:
- 题目:请解释“一石二鸟”这个成语的意思。
- 答案:用一种方法同时解决两个问题。
3. 空间推理题:
- 题目:如果一个立方体的每个面上都画有一个圆,当立方体被切
成27个小立方体后,有多少个小立方体至少有一个圆?
- 答案:8个
4. 记忆测试题:
- 题目:请观察下面的数字序列10秒钟,然后复述它们:3, 7, 9, 2, 5, 8, 4, 6, 1。
- 答案:3, 7, 9, 2, 5, 8, 4, 6, 1
5. 逻辑推理题:
- 题目:如果所有的猫都怕水,而Tom是一只猫,那么Tom怕水吗? - 答案:是的,Tom怕水。
6. 数列推理题:
- 题目:请找出数列的规律并填写下一个数字:2, 4, 8, 16,
____
- 答案:32(每个数字是前一个数字的两倍)
7. 词汇关联题:
- 题目:请找出与“教师”和“医生”都相关的词汇。
- 答案:专业人士
8. 判断题:
- 题目:如果今天是星期三,那么后天是星期五吗?
- 答案:是的
9. 数学应用题:
- 题目:一个班级有40名学生,如果每4名学生组成一个小组,那么可以组成多少个小组?
- 答案:10个
10. 抽象思维题:
- 题目:如果“苹果”代表“红色”,“香蕉”代表“黄色”,那么“橙子”可能代表什么颜色?
- 答案:橙色(答案不唯一,根据抽象思维能力而定)。
【初中数学竞赛】 专题06 逻辑推理竞赛综合-50题真题专项训练(全国竞赛专用)原卷版
【初中数学竞赛】专题06 逻辑推理竞赛综合-50题真题专项训练(全国竞赛专用)1.(2021·全国·九年级竞赛)有一个黑盒和8个分别标上1,2,…,8的白盒,8个白盒中共有8个球,允许进行如下操作A :若标号为k 的白盒内恰有k 个球,则取出这k 个球,分别放入黑盒及标号为1,2,…,1k -的白盒中各一个球.证明:存在唯一一种放法,使得8个球开始都在白盒中,经过有限次操作A 后,使球全部在黑盒中. 2.(2022·福建·九年级统考竞赛)已知矩形ABCD 的边AB =21,BC =19,r 是给定的小于1的正实数.(1)在矩形ABCD 内任意放入114个直径为1的圆.证明:在矩形ABCD 内一定还可以放入一个直径为r 的圆,它和这114个圆都没有交点(也不在某个圆的内部);(2)在矩形ABCD 内任意放入95个单位正方形(边长为1的正方形).证明:在矩形ABCD 内一定还可以放入一个直径为r 的圆,它和这95个正方形都没有交点(也不在某个正方形的内部).3.(2021·全国·九年级竞赛)表(1)是一个英文字母显示盒,每一次操作可以使一行4个字母同时改变或者使某列4个字母同时改变,改变的规则是按照英文字母表的顺序,每个字母变成它们下一个字母(即A 变成B ,B 变成C ,…,Y 变成Z ,Z 变成A ).问能否经过有限次操作,使表(1)变成表(2)?如果能,请写出变化过程;如果不能,请说明理由. S OB R K B D S T Z F PH E Z G H O C NR T B S A D V Z C F YA (1) (2)4.(2021·全国·九年级竞赛)正五边形的每个顶点对应一个整数,使得5个整数的和为正数,若其中相邻3个顶点上的整数依次为x ,y ,z 且0y <,则要进行以下调整:整数x ,y ,z 分别换成x y +,y -,z y +.要是5个整数中至少还有一个是负数,这种变换还要继续下去.问:这样的变换进行有限次后是否必然终止?5.(2021·全国·九年级竞赛)假设黑板上已写一个数2,然后甲、乙两人轮流写数,若刚才写的数为l ,则接着写的人可以写1l +至21l -中任意一个数,若甲先写,谁先写出2010则谁获胜.问谁有必胜策略?6.(2021·全国·九年级竞赛)A ,B ,C 三人做游戏,规则如下:三张牌每张上写一个正整数,这三个数是,,p q r ,且p q r <<,三张牌混合后再分给三个人,使每人各得一张,再按牌上的数分得小球,接着将牌收回重发,但分得的小球仍留在各人手中,这个游戏(发牌、分球、收牌)至少要进行两次,最后一次结束后,A ,B ,C 分别得20,10,9个球,还知道B 在最后一次游戏中得r 个球问:谁在第一次得q 个球?7.(2021·全国·九年级竞赛)甲、乙两人轮流做如下游戏:甲每次可将平面上某点标以红色,乙接着将平面内10个未染色的点标以绿色.甲先开始,如果到某步有3个红点成为一个等边三角形的三个顶点,那么甲获胜问:是否乙总可以做到不让甲获胜? 8.(2021·全国·九年级竞赛)这里有8个人在说话,他们说的话包括自己在内,请认真读他们说的话,然后回答下列问题:张一:“我们中间至少有1个人说的是正确的.”王二:“我们中间至少有2个人说的是正确的.”赵三:“我们中间至少有3个人说的是正确的.”李四:“我们中间至少有4个人说的是正确的.”钱五:“我们中间至少有1个人说的是错误的.”徐六:“我们中间至少有2个人说的是错误的.”亚七:“我们中间至少有3个人说的是错误的.”孙八:“我们中间至少有4个人说的是错误的.”说错话的是谁(有几个人就画上几个记号,如果没有就回答没有)9.(2021·全国·九年级竞赛)某大学的四位学生张亮、胡佳、李坤和王勇分别来自北京、上海、湖南和黑龙江,他们学的专业分别是数学、物理、计算机和英语.除此以外,还知道:(1)张亮学习的专业是数学和物理中一门,不是南方人;(2)胡佳是南方人,学的专业既不是数学也不是物理;(3)李坤和北京来的学生及学数学专业的学生三人同住在一栋宿舍;(4)湖南来的学生学的专业不是计算机;(5)王勇不是北京来的学生,年龄比黑龙江来的学生以及学计算机的学生这二人都小. 根据这些情况,你能否判断这四位学生各来自什么地方各学习什么专业?10.(2021·全国·九年级竞赛)世界杯足球赛第一轮比赛中,每个小组有4支球队,每两队之间各赛一场,胜者得3分,负者得零分,平局时两队各得1分,每个小组总分多的两个队出线,进入第二轮比赛.(1)有人说:“得6分的队一定出线,得2分的队一定不出线.”请判断并说明对错; (2)如果小组比赛中至少有一场平局,那么上述说法是否正确?11.(2021·全国·九年级竞赛)甲、乙、丙、丁四个人比赛乒乓球,每两人都要赛一场,结果甲胜了丁,并且甲、乙、丙胜的场数相同.问丁胜了几场?12.(2021·全国·九年级竞赛)能否找到这样的四个正整数,使得它们中任意两个之积与2002的和是完全平方数?若能够,请举出一例;若不能够,请说明理由. 13.(2021·全国·九年级竞赛)13位小运动员,他们身穿运动服的号码分别是1~13号,问这13名运动员能否站成一个圆圈,使任意相邻两名运动员的号码数之差的绝对值不小于3且不大于5.如果能,试举一例;如果不能,说明理由.14.(2021·全国·九年级竞赛)证明:在平面直角坐标系中,不存在以整点为顶点的正三角形.15.(2021·全国·九年级竞赛)100名运动员参加赛跑,已知其中任意12人中总有2人是彼此熟悉的,求证:运动的号码不论如何编排(未必是从1到100),总可以找到两个彼此熟悉的运动员,他们的号码的最高数位的数字相同.16.(2021·全国·九年级竞赛)在一次马拉松长跑比赛上,有100位选手参加,大会准备了100块标有整数1到100的号码布,分发给每位选手,选手们被要求在比赛结束时,将自己的号码布上的数与到达终点时的名次相加,并将这个和数交上去.问:这样交上去的100个数的末2位数字是否可能都不同?请回答可能或不可能,并清楚地说明理由(注 没有同时到达终点的选手).17.(2021·全国·九年级竞赛)(1)是否存在正整数,m n 使(2)(1) m m n n +=+? (2)设(3)k k ≥是给定的正整数,是否存在正整数,m n 使()(1)m m k n n +=+? 18.(2021·全国·九年级竞赛)设甲有一条长为k 的线段,乙有一条长为l 的线段,甲先将自己的线段分成3段.然后乙也将自己的线段分成3段,如果可用分得的6条线段组成两个三角形,则乙胜;否则甲胜.问甲、乙两人谁能根据比值k l的大小保证自己获胜?他该如何进行?19.(2021·全国·九年级竞赛)在六张纸片的正面分别写上整数1,2,3,4,5,6,打乱次序后,将纸片翻过来,在它的反面也随意分别写上1~6这六个整数,然后计算每张纸片正面与反面所写数之差的绝对值.请你证明:所得的六个数中至少有两个是相同的. 20.(2021·全国·九年级竞赛)已知平面内任意四点,其中任意三点不共线.试问:是否一定能从这样的四点中选出三点构成一个三角形,使得这个三角形至少有一个内角不大于45︒?请证明你的结论.21.(2021·全国·九年级竞赛)在1,4,7,10,13,,97,100中任选20个不同的数,其中至少有4个不同的数a b c d ,,,使得104a b c d +=+=.22.(2021·全国·九年级竞赛)一群小朋友购买售价是3元和5元的两种商品,每人购买的商品最少是1件,他们也可以购买相同的商品,但每人购买的总金额不超过15元.若小朋友中至少有三人购买的两种商品的数量完全相同,问这群小朋友最少有多少人? 23.(2021·全国·九年级竞赛)将数字1,2,3,4,5,6,7,8任意填在八边形1238A A A A 的顶点处,每个顶点上恰填一个数字,记12,,i i i A A A ++上所填3个数字之和为()911021,2,,8,,i S i A A A A ===. (1)试给出一种填法,使每个(1,2,,8)i S i =都大于或等于12; (2)请证明任何填法都不可能使每个(1,2,,8)i S i =都大于或等于13. 24.(2021·全国·九年级竞赛)证明:10个互不相同的两位数中,一定可选出两组数,使这两组没有公共的数,而且两组中各数的和相等.25.(2021·全国·九年级竞赛)一个书架有五层,从下到上依次为第一层,第二层,…,第五层.今把15册图书分放在书架的各层上,有些层可不放.证明:无论怎样放法,书架每层上的图书册数以及相邻两层上图书册数之和,这些数中至少有两个是相等的.26.(2021·全国·九年级竞赛)某学生为了准备参加数学竞赛,连续做了5周习题,他每天至少做一道习题,每周至多做10道习题.证明:他一定在连续若干天内恰做了19道习题.27.(2021·全国·九年级竞赛)从正整数1,2,3,,2008中任取n 个数.(1)求证:当1007n =时,无论怎样选取n 个数,总存在其中4个数的和等于4017; (2)当1006n ≤(n 是正整数),上述结论是否成立?请说明理由.28.(2021·全国·九年级竞赛)平面内任给5个点,其中任意3点不共线证明:这5点中必有4点构成一个凸四边形的四个顶点.29.(2021·全国·九年级竞赛)桌上放着2010根火柴,甲、乙两人轮流从中取走火柴,每次可取走1根或2根火柴,甲先取.谁先取到最后一根火柴谁获胜.问谁有获胜策略?他应该怎样操作?30.(2021·全国·九年级竞赛)(1)将从1到2010的正整数任意分为10组1210,,,A A A ,使得每个数恰属于一组.证明:存在两个正整数,()a b a b >属于同一组且11200a b ≤+; (2)试将从1到2009的正整数适当地分成10组1210,,,A A A ,使每个数恰属于一组且不存在两个正整数,()a b a b >属于同一组且满足11200a b ≤+. 31.(2021·全国·九年级竞赛)20个球队比赛若干场后发现每两个队至多比赛了一场,并且任意3个队中必有两个队比赛了一场.证明:这时至少比赛了90场,并请安排一种比赛方法使得20个队之间恰比赛了90场并且每两个队至多比赛一场,而每3个队中必有两个队比赛了一场.32.(2021·全国·九年级竞赛)一个盒子内装有200根火柴,甲、乙两人轮流从盒子内取火柴,每次至少取1根火柴,至多取20根火柴,且拿到最后一根火柴的人获胜问是先取火柴的甲还是后取火柴的乙有必胜策略?33.(2021·全国·九年级竞赛)在1100⨯的方格纸带的最左端的小方格内放一枚棋子,甲、乙两人轮流移动这枚棋子,每移动一次只允许棋子向右移1格,10格或11格,谁把棋子移到最右端方格内,则谁赢.问是先走的甲还是后走的乙有必胜策略?34.(2021·全国·九年级竞赛)将正2010边形的顶点相间染红、蓝两色,甲、乙两人轮流画两端点同色的对角线,但不能与自己前面画的对角线相交,也不能画已经画过的对角线.甲先画,谁不能画了就算谁输.问甲必胜还是乙必胜?35.(2021·全国·九年级竞赛)甲、两人进行如下游戏,甲先开始两人轮流从1,2,3,…,100,101中每次任意勾去9个数,经过11次勾掉后,还剩两个数,这时所余两数之差即为甲得的分数.试证不论乙怎么做,甲可保证自己至少得55分.36.(2021·全国·九年级竞赛)已知30个数1,2,3,…,30.甲、乙两人轮流将“+”号或“-”号放在这些数的前面(放的顺序不限),30步后计算代数和的绝对值S .甲要使S 尽量小.而乙则要使S 尽量大,乙能保证S 的最大值是多少?37.(2021·全国·九年级竞赛)甲、乙两人在一个55⨯的方格纸上玩填数游戏:甲先填且两人轮流在空格中填数,甲每次选择一个空格写上数字1,乙每次选择一个空格写上数字0,填完后计算每个33⨯正方形内9个数之和,并将这些和数中的最大数记为A .甲尽量使A 增大,乙尽量使A 减小,问甲可使A 获得的最大值是多少?38.(2021·全国·九年级竞赛)将4粒围棋子均匀放在一个圆周上,若相邻两粒棋子同色,则在它们之间放一粒黑子,若相邻两粒棋子不同色,则在它们之间放一粒白子,然后把原来的4粒棋子拿走.证明:经过若干次这样操作以后,所有棋子都为黑子,并且这样的操作至多进行4次.39.(2021·全国·九年级竞赛)黑板上写有n 个实数,允许从中擦去两个数,例如a 和b ,而写上另一个数1()4a b +,这种操作进行n 1-次,最后黑板上只剩下一个数.已知开始时黑板上写的n 个数都是1,求证:最后剩下的那个数不小于1n .40.(2021·全国·九年级竞赛)在凸n 边形的顶点处放置一些火柴,每次操作允许将某个顶点处的两根火柴移动,分别放到它两侧相邻的顶点处各1根.求证:如果若干次移动后,各顶点处的火柴数恢复到和原来的一样,那么操作次数为n 的倍数.41.(2021·全国·九年级竞赛)6只盘子排成一行,每次操作任取两只盘子将它们移动到相邻(或左或右)的位置上,盘子可以重叠,问能否经过有限次操作使6只盘子叠在一起?42.(2021·全国·九年级竞赛)已知黑板上写着两个数:1和2,现允许按如下规则写出新的数:当黑板上有a 和b 时,可以写上数ab a b ++.试问:能否在黑板上写出数13121和12131?43.(2021·全国·九年级竞赛)将4个数1,9,8,8写成一行并进行如下操作:对每一对相邻的数,用右边的数减去左边的数,然后将所得之差写在这两个数之间,算是完成了一次操作,然后再对这个由7个数排成的数进行同样的操作.如此继续下去,共操作100次,求最后得到的一行数的和.44.(2021·全国·九年级竞赛)现有一个正方体和2种颜色:红色和绿色.甲、乙两人做如下游戏:甲先选取正方体的3条棱,并将它们涂上红色,乙从尚未涂色的棱中选取3条棱,并将它们涂上红色,最后乙将剩下的3条涂上绿色.谁能首先把一面的四条棱涂成相同的颜色,谁就获胜.问甲有必胜策略吗?45.(2021·全国·九年级竞赛)甲、乙两人轮流在2525⨯的方格棋盘上放置棋子,甲执白先放,乙执黑后放.每颗棋子都放于空格之中,但若一空格的4个邻格(即有公共边的方格)已被同色棋子占领,则禁止在其中再放此种颜色的棋子.若轮到某人着棋时无处下子,则此人告负,问当双方都采取正确策略时,谁能获胜?46.(2021·全国·九年级竞赛)甲乙两人轮流在一张1994⨯的方格表上进行游戏,每次每人可涂黑一个以网格线为边的(119)k k k ⨯≤≤的正方形,但该正方形中不能有已被涂黑的部分,即每个小方格只能被涂黑一次.甲先开始且两人轮流进行,谁涂黑了最后一个小方格,谁就获胜.问在两人都正确操作的情况下,谁有必胜策略?说明理由. 47.(2021·全国·九年级竞赛)在1993⨯的矩形方格纸的左下角的方格中放有一枚棋子,甲、乙两人进行如下游戏:甲先且两人轮流移动棋子,每次可将棋子向上或向右移动若干格,最后无法移动棋子者为负方.问谁有必胜策略?说明理由.48.(2021·全国·九年级竞赛)在33⨯方格表中每一方格内任意写上1+或1-中一个数,然后允许进行如下操作:每格中的数用所有与它相邻的方格(有公共边的方格)中的数之积代替.问能否经过有限步操作使小格中的数都变成1+?49.(2021·全国·九年级竞赛)有三堆石子数分别是19,8,9,现进行如下操作:从三堆中的任意二堆中分别取出1个石头,然后把这两个石头都放入第三堆中.试问:能否经过这样有限次操作使得(1)三堆的石子数分别为2,12,22?(2)三堆的石子数均为12?50.(2022·福建·九年级统考竞赛)将1,2,3,…,16这16个数分成8组112288()()()a b a b a b ⋯,,,,,,,若11228862a b a b a b -+-++-=.求222112288()()()a b a b a b -+-++-的最小值. 必要时可以利用排序不等式(又称排序原理):设12n x x x ≤≤≤,12n y y y ≤≤≤为两组实数,12n z z z ≤≤≤是12n y y y ≤≤≤的任一排列,则12111221122n n n n n n n x y x y x y x z x z x z x y x y x y -++≤++≤++.。
如何应对初中数学中的逻辑推理题
如何应对初中数学中的逻辑推理题初中数学中的逻辑推理题是一个需要一定思维能力和推理技巧的考察点。
在解答这类题目时,学生需要运用自己的逻辑思维、分析能力和数学知识,准确地找到解题的思路和方法。
下面将从以下几个方面介绍如何应对初中数学中的逻辑推理题。
一、理解题目要求和背景知识在解决逻辑推理题之前,首先需要仔细阅读题目,理解题目的要求和背景知识。
有时候逻辑推理题可能涉及到一些特定概念或条件,对于这些概念或条件的理解和识别是解题的关键。
同时,还需要注意理解题目中的限定条件和关系,并将其综合考虑在解题过程中。
二、确定问题的思路和步骤对于逻辑推理题,我们需要确定解题的思路和步骤。
常见的思路包括:正向推理、逆向推理、假设推理等。
针对不同的思路,我们可以运用不同的方法去解答题目。
在解题过程中,应该根据具体的题目情况选择合适的方法,作出恰当的假设和分析。
三、举例和画图辅助分析在解题过程中,我们可以通过举例和画图等方式来辅助分析。
通过具体的例子可以更好地理解题意和关系,从而更有针对性地寻找解题思路和方法。
画图也可以帮助我们形象地表示问题和解题过程,更清晰地把握逻辑思路和推理关系。
四、抓住关键信息和逻辑矛盾点有时候,逻辑推理题会给出一些关键信息或存在一些逻辑矛盾点。
我们需要通过细致观察,准确抓住这些信息或矛盾点,从而找到解题思路。
在解题过程中,可以通过排除法和递推法等方法,逐渐缩小答案的范围,找到正确答案。
五、反复练习和总结经验解题能力需要通过反复的练习来提高。
在解答逻辑推理题的过程中,需要不断总结解题方法和经验,积累解题的技巧和思维方式。
可以通过做题、讨论和学习优秀解题经验等方式,提高自己的解题水平。
六、注意时间掌握和答题技巧在考试中解答逻辑推理题时,应根据题目难易程度和自己的掌握情况合理安排时间。
对于简单的题目可快速解答,而对于较难的题目则需耐心思考。
此外,还需要注意答题技巧,如根据选项特征进行分析、排除或确认答案等。
中考数学专项训练逻辑推理题(含答案)
中考数学专项训练逻辑推理题(含答案)逻辑推理问题是一类非常规的数学问题,涉及数学专门知识少,考查的是思维能力和数学素养。
逻辑推理问题不仅是当今公务员招考的专利,这类问题在历年中考试卷中屡见不鲜,参加中考的考生不可忽视。
一、选择题:1、世界杯足球赛小组赛,每个小组4个队进行单循环比赛,每场比赛胜队得3分,败队得0分,平局时两队各得1分,小组赛完以后,总积分最高的两个队出线进入下轮比赛,如果总积分相同,还要按净胜球排序,一个队要保证出线,这个队至少要积( )A. 6分B. 7分C. 8分D. 9分2、甲、乙、丙三人比赛象棋,每局比赛后,若是和棋,则这两个人继续比赛,直到分出胜负,负者退下,由另一个与胜者比赛,比赛若干局后,甲胜4局,负2局;乙胜3局,负3局,如果丙负3局,那么丙胜( )A. 0局B. 1局C. 2局D. 3局3、已知四边形ABCD 从下列条件中①AB ∥CD ②BC ∥AD ③AB =CD ④BC =AD ⑤∠A =∠C ⑥∠B =∠D ,任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况有( )A. 4种B. 9种C. 13种D. 15种4、正整数n 小于100,并且满足等式n n n n =⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡632,其中[]x 表示不超过x 的最大整数,这样的正整数n 有( )个A. 2B. 3C. 12D. 165、周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,张老师和8个学生跳舞……依次下去,一直到何老师,他和参加跳舞的所有学生跳过舞,这个晚会上参加跳舞的学生人数是( )A. 15B. 14C. 13D. 126、一副扑克牌有4种花色,每种花色有13张,从中任意抽牌,最小要抽( )张才能保证有4张牌是同一花色的。
A. 12B. 13C. 14D. 157、如图某三角形展览馆由25个正三角形展室组成,每两个相邻展室(指有公共边的小三角形)都有门相通,若某参观者不愿返回已参观过的展室(通过每个房间至少一次),那么他至多能参观( )个展室。
培养初中生思维逻辑能力初中数学逻辑推理练习题
培养初中生思维逻辑能力初中数学逻辑推理练习题培养初中生思维逻辑能力:初中数学逻辑推理练习题思维逻辑是人类思考和推理的基础,对于初中生来说,培养良好的思维逻辑能力对于学习各个学科都至关重要。
在初中数学中,逻辑推理是数学思维的一部分,通过适当的练习题可以有效提升学生的思维逻辑能力。
本文将介绍一些适合初中生的数学逻辑推理练习题,并分析其培养思维能力的作用。
一、选择题1、某班级有70名学生,其中40人学习了音乐,45人学习了美术。
那么至少有几个学生同时学习音乐和美术?A)5B)10C)15D)20解析:根据集合的交集概念,两个集合的交集元素个数不能超过两个集合中元素个数的最小值。
所以,至少有40+45-70=15个学生同时学习音乐和美术。
选C)15。
2、小明比小红高10厘米,小王比小明高15厘米,那么小王比小红高几厘米?A)5B)10C)15D)20解析:根据题意可得,小王比小红高10+15=25厘米。
选D)20。
二、填空题1、如果2x + 5 = 15,那么x的值为______。
解析:将等式两边都减去5得2x = 10,再除以2得x = 5。
2、如果a:b = 3:4,且b:c = 5:6,那么a:c = ______:______。
解析:由比例的性质,a:c = a:b × b:c = 3:4 × 5:6 = 15:24。
三、解答题1、一个长方形的长是宽的2倍,它的周长是24米,求长和宽各是多少米?解析:设长为l,宽为w,则根据题意可得l = 2w,且2(l + w) = 24。
将l = 2w代入得2(2w + w) = 24,化简得5w = 12,解得w = 12/5 = 2.4。
所以,长为l = 2 × 2.4 = 4.8。
长和宽分别为4.8米和2.4米。
2、某数的1/4减去1/5,然后再减去1/6,等于7,求该数。
解析:设该数为x,则根据题意可得x/4 - x/5 - x/6 = 7。
逻辑推理题张老师的生日答案及详解
逻辑推理题张老师的生日答案及详解某天,在某个班级中,学生们得知了他们班主任张老师即将过生日,为了给张老师一个特别的惊喜,他们想要猜出张老师的生日。
于是,他们开始研究张老师给出的线索,希望能够正确地推理出张老师的生日。
首先,张老师和学生们共享了一张表格,表格上标注有12个月份与31个日期,学生们注意到张老师在该表格上画下了两个圈圈,一个圈圈包含了一个月份,另一个圈圈包含了一个日期。
学生们之间展开了讨论,试图找出这两个圈圈所代表的具体日期。
在进行推理之前,学生们必须先排除一些不可能的日期。
首先,学生们知道2月份没有31号,所以圈圈中的日期不可能为31。
接着,他们又注意到张老师注明了月份是“不连续的”,即月份与日期没有直接的数学关系。
通过细致的观察和逻辑推理,学生们逐步缩小了日期范围。
首先,学生们发现月份的范围可以被缩小到7、8、10和12这四个月份中。
这是因为只有这四个月份中的日期可以出现在31号之后。
接下来,学生们找到了进一步的线索。
他们还知道,通过第一次的线索,他们可以将日期的范围缩小到18、19、20和21这四个日期中。
这是因为只有这四个号码在大部分月份中都出现了。
此外,学生们还了解到,通过第二个线索,他们可以将月份的范围缩小到7和8这两个月份中。
这是因为只有在这两个月份中,日期范围与其他月份的区别才变得明显。
最后,学生们既然已经找到了限制日期和月份范围的线索,他们只需进一步观察,通过第三个线索即可得出准确的结果。
他们发现,张老师的生日是8月20日。
为了更好地解释这个答案,让我们回顾一下推理过程。
首先,学生们排除了年份和2月份的31号,并发现了4个有可能的月份(7、8、10和12)。
其次,他们缩小了日期的范围为(18、19、20和21)。
然后,学生们发现,只有7月和8月这两个月份的日期范围存在明显差异。
最后,通过最后一个线索,他们得出了准确的生日答案:8月20日。
在这个推理题中,学生们通过仔细观察线索,并进行逻辑推理,成功地猜测出了张老师的生日。
初中数学逻辑推理题解题技巧
初中数学逻辑推理题解题技巧数学逻辑推理题在初中数学考试中占有重要的比重,它旨在考察学生的逻辑思维能力和解题技巧。
掌握一些有效的解题技巧,能够帮助我们更好地应对这类题目。
本文将介绍几种常见的数学逻辑推理题解题技巧,希望能为你提供一些帮助。
一、用归纳法解题归纳法是解决数学问题的重要方法,也适用于数学逻辑推理题。
当我们遇到一道逻辑推理题时,可以尝试通过观察和归纳来找出规律,并据此进行推理。
例如,题目中给出的一组数列,要求找出其规律并计算下一个数的值。
我们可以先观察数列中的数字是否在增加或减少,然后找出这种增减的规律。
根据规律,我们可以预测下一个数的值,并验证答案是否正确。
二、利用逻辑关系解题在数学逻辑推理题中,常常能够通过逻辑关系来解决问题。
我们需要根据已知条件进行推理,找出问题的解答。
例如,有一道题目给出了一些条件,如“A比B高,B比C高,C比D高”,要求确定这些人的身高顺序。
我们可以通过观察这些条件,利用逻辑关系来推断出每个人的身高顺序。
根据已知条件,我们可以得出结论:D最矮,C次之,B再次之,A最高。
三、分析四种情况解题有些数学逻辑推理题需要考虑多种情况,这时我们可以采用分析四种情况的方法进行解题。
例如,有一道题目给出两个条件:“如果A是真的,那么B也是真的”和“如果C是假的,那么D也是假的”,要求判断ABCD哪些是真的,哪些是假的。
我们可以分析四种情况:A为真,B为真;A为真,B为假;A为假,B为真;A为假,B为假。
通过分析这四种情况,我们可以得出ABCD的真假情况。
四、套用逻辑规律解题数学逻辑推理题中有一些常见的逻辑规律,我们可以通过套用这些规律来解题。
例如,有一道题目给出了一段文字,要求我们判断其中的逻辑错误。
我们可以先学习一些常见的逻辑错误,如“陷阱”、“唱反调”、“玩文字游戏”等,然后通过分析题目中的文字,找出其中的逻辑错误。
通过掌握上述的数学逻辑推理题解题技巧,我们能够更有把握地解决这类题目,提高解题的准确性和效率。
初中数学逻辑推理考试试题
初中数学逻辑推理考试试题首先,我将按照题目要求给出一个初中数学逻辑推理考试试题,然后进一步展开解答。
---------------------------------------------初中数学逻辑推理考试试题有甲、乙、丙三名学生正在参加数学逻辑推理考试。
根据提供的信息,请推断每位学生最终的得分和考试排名。
已知:1. 甲得了80分,乙没拿第一。
2. 丙得分比甲高,但没有拿满分。
3. 至少有一位学生得了70分。
请问,每位学生的得分以及他们的考试排名是怎样的?---------------------------------------------根据所给的信息,我们可以逐步进行推理解答。
首先,根据第一条信息,甲得了80分,乙没有拿第一。
说明乙的得分肯定不高于80分。
根据第二条信息,丙的得分比甲高,但没有拿满分。
因此丙的得分在80分以上,且不足满分。
根据第三条信息,至少有一位学生得了70分。
由此可推断,丙的得分至少是70分,而且甲和乙的得分也可能达到70分以上。
综上所述,我们可以得出以下可能的情况:1. 甲得分80分,乙得分70分,丙得分在80分和满分之间。
考试排名:乙 > 甲 > 丙2. 甲得分80分,乙得分在70分和80分之间,丙得分在80分和满分之间。
考试排名:甲 > 乙 > 丙3. 甲得分在70分和80分之间,乙得分在70分和80分之间,丙得分在80分和满分之间。
考试排名:无法确定具体排名4. 甲得分70分,乙得分70分,丙得分在80分和满分之间。
考试排名:乙 = 甲 > 丙需要注意的是,根据题目要求,试题解答并没有明确的格式要求,因此上述推理过程可以以段落形式展示。
这样更能使论述结构清晰、语句通顺,同时也方便读者理解和阅读。
最后用一个小结来总结解答结果即可。
综上所述,根据题目给出的信息,我们可以确定每位学生的得分可能情况和考试排名。
具体情况可能有多种,但都符合所给条件。
初三中考逻辑推理练习题
初三中考逻辑推理练习题1. 现有一排相同高度的箱子,每个箱子上都标有一个数字,且数字都是不重复的。
根据以下提示,请你推理出每个箱子上标有的数字。
提示:- A箱子的数字比D箱子的数字大4。
- C箱子的数字比B箱子的数字小2。
- D箱子的数字比E箱子的数字小1。
- B箱子的数字比A箱子的数字小3。
- E箱子的数字比C箱子的数字大5。
解题思路:根据题目提示,我们可以逐步推理出每个箱子上标有的数字。
假设A箱子上的数字为x,那么D箱子上的数字为x+4,B箱子上的数字为x-3,C箱子上的数字为x-1,E箱子上的数字为x-1+5=x+4。
根据上面的推理,我们可以得出每个箱子上标有的数字如下:- A箱子的数字为x- B箱子的数字为x-3- C箱子的数字为x-1- D箱子的数字为x+4- E箱子的数字为x+42. 下面是一个逻辑谜题,请你根据题目描述推理出正确的答案。
某城市有红色、黄色、蓝色、绿色四辆出租车,车牌上分别写着A、B、C、D四个字母,且每辆车颜色和字母都不相同。
根据以下线索,请你判断每辆出租车的颜色和车牌上的字母。
线索:- 红色车牌上的字母是A或B。
- 黄色车牌上的字母是B或C。
- 绿色车牌上的字母是D。
- 蓝色车牌上的字母不是C。
解题思路:首先我们可以根据线索推理出:- 红色车牌上的字母不能是C或D,所以红色车牌上的字母是A或B。
- 黄色车牌上的字母不能是A或D,所以黄色车牌上的字母是B或C。
- 绿色车牌上的字母是D。
- 蓝色车牌上的字母不是C。
根据以上推理,我们可以得出每辆出租车的颜色和车牌上的字母如下:- 红色车牌上的字母是A,所以红色车的颜色是A。
- 黄色车牌上的字母是C,所以黄色车的颜色是C。
- 绿色车牌上的字母是D,所以绿色车的颜色是D。
- 蓝色车牌上的字母是B,所以蓝色车的颜色是B。
通过以上推理,我们得到了每辆出租车的颜色和车牌上的字母。
- 红色车的颜色是A,车牌上的字母是A。
- 黄色车的颜色是C,车牌上的字母是C。
初中数学逻辑推理练习题
数学逻辑推理练习题1、三个朋友住进了一家宾馆。
结账时,账单总计3000美元。
三个朋友每人分摊1000美元,并把这3000美元如数交给了服务员,委托他代到总台交账,但在交账时,正逢宾馆实施价格优惠,总台退还给服务员500美元,实收2500美元,服务员从这500美元退款中扣下了200美元,只退还三客人300美元,三客人平分了这300美元,每人取回了100美元,这样,三个客人每人实际支付900美元,共支付2700美元,加上服务员扣的200美元,共计2900美元,那么这100美元的差额到哪里去了?2、逻辑推理:谁打破了玻璃四个小孩在校园内踢球,“砰”的一声,不知是谁踢的球把课堂窗户的玻璃打破了,王老师跑出来一看,问:“是谁打破了玻璃?”小张说:“是小强打破的.”小强说:“是小胖打破的.”小明说:“我没有打破窗户的玻璃.”小胖说:“王老师,小强在说谎,不要相信他.”这四个小孩只有一个说了老实话.请判断:说实话的是谁,是谁打破窗户的玻璃?3、硬币游戏如果你和你的对手准备依次轮流地将硬币放在一个长方形桌子上,使得这些硬币不重叠。
最后放上硬币的人为胜者,在开始时你有权决定先放还是后放。
为了能赢得这场比赛,你决定先放还是后放呢?4、高速问题一个人从 A 地出发,以每小时30公里的速度到达 B 地,问他从 B 地回到 A 地的速度要达到多少?才能使得往返路程的平均速度达到每小时60公里?5、登山问题某人上午八点从山下的营地出发,沿着一条山间小路登山,下午五点到达山顶;次日上午八点又从山顶开始下山(沿同一条小路)返回,下午五点又到达了山下的营地。
问:是否能找到一个地点来回时刻是相同的?6、我有一堆绳子,这些绳子之间粗细长短各不相同,每一条绳子本身各处的粗细长短也各不相同。
但是每条绳子的燃烧时间都是60秒,试问我要测量15秒的时间,我该如何做?7、有一堆垃圾,规定要由张王李三户人家清理。
张户因外出没能参加,留下9元钱做代劳费。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
个性化辅导教案
学科数学学生年级授课时间 2014 年 12 月日授课教师汪
例 1. 某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在甲、乙、丙三人之外;(2)丙作案时总得有乙作从犯;(3)甲不会开车。在此案中能肯定的作案对象是( )
A.嫌疑犯甲
B.嫌疑犯乙
C.嫌疑犯丙
D.嫌疑犯乙和丙
例 2. 甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”[来源:学&科&网Z&X&X&K]
甲说:“是乙不小心闯的祸.”
乙说:“是丙闯的祸.”
丙说:“乙说的不是实话.”
丁说:“反正不是我闯的祸.”
如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的祸
A.甲
B. 乙
C.丙
D.丁
个性化辅导学案
学科数学学生年级授课时间 2014 年 12 月日授课教师汪
例 1. 某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在甲、乙、丙三人之外;(2)丙作案时总得有乙作从犯;(3)甲不会开车。在此案中能肯定的作案对象是( )
A.嫌疑犯甲
B.嫌疑犯乙
C.嫌疑犯丙
D.嫌疑犯乙和丙
例 2. 甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”[来源:学&科&网Z&X&X&K]
甲说:“是乙不小心闯的祸.”
乙说:“是丙闯的祸.”
丙说:“乙说的不是实话.”
丁说:“反正不是我闯的祸.”
如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的祸
A.甲
B. 乙
C.丙
D.丁
例 3. 在一个童话故事里,狮子每逢星期一、二、三撒谎,老虎每逢星期四、五、六撒谎,某天狮子和老虎进行了一段对话。狮子说:“昨天是我的撒谎日。”老虎说:“昨天也是我的撒谎日。”
根据以上对话,判断当天是星期( )
A.五
B.四
C.三
D.二
例4. 甲、乙、丙、丁四人进行象棋比赛,每两人比一场,其中已知甲胜丁,并且甲、乙、丙三人胜的场数相同,问,丁胜了几场?()
A.零场
B.一场
C.两场
D.三场。