七年级数学整式的加减
人教版数学七年级上册 整式的加减
小真没抄错题,但他们做出的结果却都一样,你知道这
是怎么回事吗?说明理由.
解:将原多项式化简后,得-b2+b+3. 因为这个式子的值与 a 的取值无关,所以即使把
ቤተ መጻሕፍቲ ባይዱ
a 的值抄错,最后的结果都会一样.
当堂练习
1. 已知一个多项式与
的和等于
,
则这个多项式是( A )
A.
B.
C.
D.
2. 长方形的一边长等于 3a + 2b,相邻边比它大 a - b, 那么这个长方形的周长是( A ) A.14a + 6b B.7a + 3b C.10a + 10b D.12a + 8b
2
3 23
3x y2.
→合并同类项
将式子化简
当x
2,y
2 3
时,
原式
3
(2)
2 3
2
6 4 9
6 4. 9
能力提升 有这样一道题“当 a=2,b=-2 时,求多项
式 3a3b3- 1 a2b+b-(4a3b3- 1 a2b-b2)+(a3b3+1 a2b)
2
4
4
-2b2+3 的值”,小虎做题时把 a=2 错抄成 a=-2,
6. 若 mn = m + 3,则 2mn + 3m - 5mn + 10 =__1__.
7.
计算:(1)
- 5 ab3
3
+
2a3b-
9 2
a2b-ab3-
1 2
a2b-a3b;
(2) (7m2-4mn-n2)-(2m2-mn+2n2);
(3)-3(3x + 2y)-0.3(6y-5x);
七年级数学整式的加减
七年级数学整式的加减(最新版)目录1.整式的概念和分类2.整式的加减运算法则3.整式的加减运算实例4.整式的加减运算技巧和注意事项正文一、整式的概念和分类在七年级数学中,我们学习了整式这个概念。
整式是由若干个单项式(数字和字母的乘积,且字母的指数为非负整数)通过加减运算组合而成的代数式。
整式可以分为一次整式、二次整式等,根据其中最高次单项式的次数来分类。
二、整式的加减运算法则整式的加减运算非常简单,只需要按照同类项(具有相同的字母和指数的单项式)相加减的原则进行。
具体步骤如下:1.找出同类项:观察多项式中的单项式,找出具有相同字母和指数的单项式。
2.合并同类项:将同类项的系数相加减,字母和指数保持不变。
3.化简整式:将合并后的同类项写在一起,如果系数为零,则可以省略该项。
三、整式的加减运算实例下面举一个例子来说明整式的加减运算:例:计算 (3x^2 + 2xy - xy) + (4x^2 - 2xy + 3xy)解:首先找出同类项,可以发现 3x^2 和 4x^2 是同类项,2xy 和-2xy 是同类项,3xy 和 xy 是同类项。
然后进行加减运算:(3x^2 + 2xy - xy) + (4x^2 - 2xy + 3xy) = (3x^2 + 4x^2) + (2xy - 2xy) + (3xy + xy) = 7x^2 + 4xy所以,原式等于 7x^2 + 4xy。
四、整式的加减运算技巧和注意事项在进行整式的加减运算时,需要注意以下几点:1.熟练掌握同类项的判断方法,以便快速找出需要合并的项。
2.注意运算顺序,应先合并同类项,再进行加减运算。
3.化简整式时,要检查是否有同类项被遗漏,以及系数是否为零。
7年级上册数学整式的加减
7年级上册数学整式的加减
7年级上册数学整式的加减,指的是在七年级上学期数学课程中,学习整式加减的内容。
整式加减是代数中的基础知识点,主要涉及单项式、多项式、同类项、合并同类项等概念,以及整式的加减运算。
整式加减的示例包括:
1.单项式的加减:例如,2x和3x的加法,结果为5x。
2.多项式的加减:例如,2x+3y和3x+4y的加法,结果为5x+7y。
3.同类项的合并:例如,2x+3x可以合并为5x,2y-2y可以合并为0。
4.整式的加减混合运算:例如,(2x+3y)-(-4x+5y)可以化简为6x-2y。
总结:7年级上册数学整式的加减指的是七年级上学期数学课程中学习的整式加减的知识点。
通过学习整式的加减,学生可以掌握单项式、多项式、同类项等概念,并能够进行整式的加减运算和化简。
这些知识点是代数学习的基础,对于培养学生的数学思维和解决问题的能力具有重要意义。
人教七年级数学上册-整式的加减(附习题)
练习1 若单项式-3amb2与单项式1 a3bn 是 3
同类项,则m=__3__,n=_2___.
知识点2 合并同类项的概念和法则
把多项式中的同类项合并成一项,叫做合并 同类项.
合并同类项后,所得项的系数是合并前 各同类项的系数的和,且字母连同它的指数 不变.
例如 4x2 2x 7 3x 8x2 2 4x2 8x2 2x 3x 7 2 (交换律) (4x2 8x2 ) (2 x 3 x) (7 2)(结合律) (4 8)x2 (2 3) x (7 2)(分配律)
(2)若x=5,y=3,求他的卫生间的面积.
解:(1)卧室面积为xy,厨房面积为 xy, 客厅面积为 × xy=xy. ∴卫生间面积为3xy-xy- xy-xy= xy. (2)当x=5,y=3时,
卫生间的面积= ×5×3=5 m2
课堂小结 所含字母相同,并且相同字母的指数也 相同的项叫做同类项.几个常数项也是同类项.
=2x2-2x2-3xy-2xy+5xy+y2-2y+1
=y2-2y+1 当x= 22 ,y=-1时,原式= 4
7
4. 某人购置了一套一室一厅的住宅,总面积为
3xy m2,其中卧室是长为x m,宽为y m的长方形,
客厅的面积为厨房的 3 ,厨房的面积是卧室
的
2 3
2
,还有一个卫生间.
(1)用x、y表示他的卫生间的面积.
解:7x2-3x2-2x-2x2+5+6x =(7-3-2) x2+(-2+6)x+5 =2x2+4x+5
当x = -2时,原式=2×(-2)2+4×(-2)+5=5
初中七年级数学《整式的加减》教案3篇
初中七年级数学《整式的加减》教案3篇学问与技能:1、在现实情境中理解整式的加减实际就是合并同类项,有意识地培育他们有条理的思索和语言表达力量。
2、了解同类项的定义及合并法则,且会运用此法则进展整式加减运算。
3、知道在求多项式的值时,一般先合并同类项再代入数值进展计算。
过程与方法:通过详细情境的观看、思索、类比、探究、沟通和反思等数学活动培育学生创新意识和分类思想,使学生把握讨论问题的方法,从而学会学习。
情感与态度与价值观:通过学生自主学习探究出合并同类项的定义和法则,培育了学生的自学力量和探究精神,提高学习兴趣。
感受数学的形式美、简洁美,感受学数学是美的享受,爱学、乐学数学。
教学重点:娴熟地进展合并同类项,化简代数式。
教学难点;如何推断同类项,正确合并同类项。
教学用具:多媒体或小黑板、教学过程:一、创设情景问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余局部刷油漆,请依据图中的尺寸,算出:(1)甲乙油漆面积的和。
(2)甲比乙油漆面积大多少。
(处理方式:①学生思索片刻②找学生代表沟通自己的解答③教师汇总学生的解答)板书:(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )(2) (2ab-πr2)-(ab-πr2)(此时提问学生:这3个式子都是什么式子?在学生答复的根底上引出课题—从本节课开头来学习:2.3整式的加减。
并板书)二、探求新知教师自问:如何计算(1)和(2)两个式子呢?接着解答:本节课来学习2.2.1合并同类项(此时板书课题——1.合并同类项)1、同类项的概念观看多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点。
学生沟通、争论。
③师生总结:(这就是我们今日所要介绍的同类项,此时板书:1.同类项的概念)所含字母一样并且一样字母的指数也一样的项叫做同类项。
几个常数项也是同类项。
强调:①所含字母一样②一样字母的指数也一样简称“两同”。
整式的加减课件2024-2025学年人教版(2024版) 七年级数学上册_46424667
=6x+4y-5-2x-2y-x+3
=3x+2y-2
当x=y=-2时,A-B=3x+2y-2
=3×(-2)+2×(-2)-2
=-12
(2)A-2B的值与x、y的取值无关,理由如下:
∵A-2B=6x+4y-5-4x-4y-2x+6
=(6x-4x-2x)+(4y-4y)+(-5+6)
=1
∴A-2B的值与x、y的取值无关.
;
(2)若(2x-1,3)是“相伴有理数对”,求x的值;
( 3 ) 若 ( m , n ) 是 “ 相 伴 有 理 数 对 ” , 则 n-3mn +
为
.
[7mn- ( m+n ) ] 的 值
课堂小结
(1)本节课学了哪些主要内容?
(2)整式加减的一般步骤是什么?
(3)本节课主要运用了什么思想方法研究问
X代表艰苦的劳动,
Y代表正确的方法,
Z代表少说空话.
解:
复习巩固
①合并同类项法则的内容是什么?
②去括号法则的内容是什么?
复习巩固
去括号法则:
❖ 括号前面是正号,把括号和他前面的正号一
起去掉,括号内各项都不改变符号。
❖ 括号前面是负号,把括号和他前面的负号
一起去掉,括号内各项都改变符号。
讲授新课
合并同类项和去括号是进行整
式加减运算的基础,利用它们就可
(2)一般步骤是先去括号,再合并同类项:
(3)整式加减的结果还是整式。
随堂练习
1.先去括号,再合并同类项.
2.先化简,再求值:
1
1 2
人教版七年级数学上册《整式》整式的加减PPT课件
B.系数是1,次数是6; D.系数是-1,次数是6;
2.单项式 -4πr2 的系数及次数分别为( C )
A. -4,2
B.-4,3
C. 4π ,2
D. 4π ,3
当堂训练
3.如果 1 a2b2n1 是五次单项式,则n的值为( B )
2
A.1
B.2
C.3
D.4
课堂小结
单项式
概念:数或字母的积组成的式子 (包括单独的数或字母) 系数:单项式中的数字因数 次数:所有字母的指数的和
第四章 整式的加减
4.1 整式
第2课时 多项式和整式
学习目标
1. 掌握多项式、多项式的项、次数以及常数项 的概念. 2. 会准确迅速的确定一个多项式的项数和次数. 3. 归纳出整式的概念会区别单项式和多项式.
学习重难点
学习重点:理解多项式、多项式的项与次 数概念以及整式的概念.
学习难点:正确的找出多项式的项和次数.
单项式与多项式统称为整式。
巩固练习
用多项式填空,并指出它们的项和次数。
(1)一个长方形相邻两边长分别为a,b,则这个长方形的
周长为 2a+2b . (2)m为一个有理数,m的立方与2的差为 m3-2 .
(3)某公司向某地投放共享单车,前两年每年投放a辆,为环 保和安全起见,从第三年年初起不再投放,且每个月回b辆,第
课堂小结
巩固练习
练一练:判断下列代数式是否是单项式?
4b2
,
π,2+3m
,3xy
,
a 3
,
1 t
答:4b2
,
π,3xy
,
a 3
是单项式.
探究新知
学生活动二 【一起探究】
人教版七年级数学上册《整式的加减》课件(共12张PPT)
3、多项式 x-5xy2 与-3x+xy2 的和是 -2x-4xy2 ,它们的差 是 4x-6xy2 ,多项式 -5a+4ab3 减去一个多项 后是 2a ,则 这个多项式是 -7a+4ab3 。
整式的加减
知识回顾
用字母表示数
整
整 单项式: 系数、次数 、常数项
的
同类项: 定义、“两相同、两无关”
练习(二)
加
合并同类项: 定义、法则、步骤
去括号: 法 则 减
整式的加减: 步 骤
练习(三)
知识回顾
用字母表示数
整
整 单项式: 系数、次数 练习(一)
式
式 多项式: 项、次数、常数项
1 1
n n1
。
.....
2006 (2)计算:1 122 133 1420 12 00 6 02007 7 .
2、小丽做一道数学题:“已知两个多项式A,B,B 为4x2-5x-6,求A+B.”,小丽把A+B看成A-B计 算结果是-7x2+10x+12.根据以上信息,你能求 出A+B的结果吗?
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月11日星期一2022/4/112022/4/112022/4/11 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/112022/4/112022/4/114/11/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/112022/4/11April 11, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
北师大版七年级数学上册 第三章3 整式的加减
用括号括起来。(2)整式加减的最后结果中:①不能含有同类项, 即要合并到不能再合并为止;②不能出现带分数,带分数要化 成假分数。
知识点2:整式化简求值的步骤(重难点) 一化:利用整式加减运算法则将整式化简;二代:把已知字母或某 个整式的值代入化简后的式子; 三计算:依据有理数的运算法则进行计算。
例4:一名同学做一道题,“已知两个多项式A、B,计算A+B” 时,
他误将A+B看成A-B,求得结果是9x2-2x+7,若B=x2+ 3x解:A=9x2-2x+7+x2+3x-2=10x2+x+5,所以A+B=
1-0x22,+求x+出5A++xB2+的3正x确-答2=案1。1x2+4x+3。
【题型三】整式加减运算中的无关型问题(拓展) 例5:已知代数式A=x2+xy-2y,B=2x2-2xy+x-1。
【题型一】整式的加减运算
例1:化简:(1)(7m2n-5m)-(4m2n-5m);(2)2x2{- 5x -1 ( x-3) 2
+ 2}x2 。
解:(1)原式=7m2n-5m-4m2n+5m=3m2n。(2)原式=2x2-5x +
12x-3-2x2=-92x-3。
例 2:先化简,再求值:21x2+2x2-3xy+13y2-332x2-2xy-19y2, 其中x,y满足(x-2)2+|y+3|=0。
如果用a,b分别表示一个两位数的十位数字和个位数字,那 么这个两位数可以表示为10a+b。交换这个两位数的十位 数字和个位数字,得到的数是10b+a,这两个数相加得 (10a+b)+(10b+a)=11a+11b
2.请同学们在完成上面任务后思考以下问题:
两个数相减后的结果有什么规律?这个规律对任意一个三位数都 成立吗? 规律是它们的差为百位数字与个位数字的差的99倍,对任意一个 三位数都成立
七年级数学《整式的加减》课件
计算(课本P70练习1、2题)
(1) 3xy 4xy 2xy ;
2 1 ab 1 a2 1 a2 2 ab ;
3 4 3 3
3 x 2x2 5 4x2 3 6x ; 4 3a2 ab 7 4a2 2ab 7
(1) 3xy 4xy 2xy ;
大纸盒的表面积是(6ab+8bc+6ca)cm2. (1)做这两个纸盒共用料(单位:cm2)
(2ab+2bc+2ca)+(6ab+8bc+6ca) = 2ab+2bc+2ca+6ab+8bc+6ca = 8ab+10bc+8ac. (2)做大纸盒比做小纸盒多用料(单位:cm2) (6ab+8bc+6ca)-(2ab+2bc+2ca) =6ab+8bc+6ca-2ab-2bc-2ca = 4ab+6bc+4ca
解 : 原 式 3xy 4xy 2xy
xy
2 1 ab 1 a 2 1 a 2 2 ab ;
3
4
3
3
解 : 原 式 1 ab 1 a 2 1 a 2 2 ab
3
4
3
3
1 ab 2 ab 1 a 2 1 a 2
3
3 4ቤተ መጻሕፍቲ ባይዱ
3
1 ab 1 a2
3
12
解:(3)原式=-x+2x2+5+4x2-3-6x =(2x2+4x2)+(-x-6x)+(5-3) =6x2-7x+2
例2(课本P69例8改编):小刚想利用数学综合实践活 动之机,为班集体制作大小不等的长方体粉笔纸盒,尺 寸如下(单位:cm)
七年级数学思维探究(5)整式的加减(含答案)
5.整式的加减解读课标代数式是用加、减、乘、除等运算符号把数或表示数的字母连接而成的式子,是后续学习中进行运算、解决问题的基础.在代数式中,我们把那些含相同的字母,并且相同字母的次数也分别相同的单项式看作一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项,整式的加减就是合并同类项. 代数式的化简求值是代数式研究的一个重要课题,解这类问题的基本方法有:将字母的值代入或字母间的关系整体代人,而关键是对代数式进行恰当变形,其中去括号、添括号能改变代数式的结构,是变形求解的常用工具. 问题解决例1甲、乙、丙三家超市为了促销一种定价为m 元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是____.试一试用m 的式子分别表示三家超市降价后的价格. 例2下列四个数中可以写成100个连续自然数之和的是( )A .1627384950B .2345678910C .3579111300D .4692581470 试一试用字母表示数,从揭示100个连续自然数之和的规律人手.例3已知关于x 的二次多项式()()3223325a x x x b x x x -++++-,当2x =时的值为17-,求当2x =-时该多项式的值.试一试设法求出a 、b 的值,解题的突破口是根据多项式降幂排列、多项式次数等概念隐含的关于a 、b 的等式.例4有这样的两位数,交换该数数码所得到的两位数与原数的和是一个完全平方数.例如,29就是这样的两位数,因为229 92 12111+==,请你找出所有这样的两位数. 试一试设原数为___ab ,发现______ab ba +的特点是解本例的出发点.例5如图,是用棋子摆成盼图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要______枚棋子,摆第n 个图案需要____枚棋子.…解法一 列表填数,观察数值,体会从特殊到一般的数学思想.1716116a ==+=+⨯()21916121126a ==++=++⨯; ()33716121811236a ==+++=+++⨯; ……猜想()2112346331na n n n =++++++⨯=++…,再将6n =代入该代数式得137.解法二数形结合,分解图形,感悟从部分研究整体的思想.问题中“按照这样的方式摆下去”,何种方式并没有明确的界定,我们可以有不同的理解,如从平行四边形角度看,把图形分成三个平行四边形.如图,图的序列号:1,2,3,4,5,… 图中的点的数目:7,19,37,61,91,… ()171123a ==+⨯⨯;()2191233a ==+⨯⨯; ()3371343a ==+⨯⨯; ()4611453a ==+⨯⨯; ()5911563a ==+⨯⨯; ……猜想()2113331n a n n n n =++⨯=++⎡⎤⎣⎦整体思考整体思考是将问题看成一个完整的整体,从大处着眼,由整体入手,突出对问题的整体结构的分析与改造,从整体上把握问题的特征和解题方向,例6(1)已知当1x =时,22ax bx +的值为3,则当2x =时,28ax bx +-的值为___(2)把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为cm m ,宽为cm n )的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4cm mB .4cm nC .()2cm m n +D .()4cm m n -图1图2(3)记12n n S a a a =+++…,令12nn S S S T n+++=…,称n T 为1a ,2a ,…,n a 这列数的“理想数”,已知1a ,2a ,…,500a 的“理想数”为2004,求8,1a ,2a ,…,500a 的理想数试一试整体思考具体体现为:整体观察、整体变形、整体代入.对子(1),能求出a 、b 的值吗?对于(2),为表示图②中相关量,还需知道什么?对于(3),从理解“理想数”的意义人手,导出n T 与1a ,2a ,…,n a 的关系,要求的是501T 的值.数学冲浪 知识技能广场1.(1)若523m x y +与3n x y 的和是单项式,则n m =______.(2)有一组单项式:2a ,32a -,43a ,54a -,…请观察它们的构成规律,用你发现的规律写出10个单项式为_______.2.(1)如图,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用 含n 的等式表示第n 个正方形点阵中的规律是_______.1=11+3=223+6=326+10=42…(2)如图是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是______(用含n 的代数式表示). 3.数学翻译牛顿是举世闻名的伟大数学家、物理学家,他创立了微积分(另一个创立者是莱布尼茨)、经典力学,在代数学、光学、天文学等方面也作出了重要贡献.牛顿用数学的语言、方法描述和研究自然规律,他呕心沥血写成的光辉著作《自然哲学的数学原理》,照亮了人类科学文明的大道.牛顿在他的《普遍的算术》一书中写道:“要解答一个含有数量间的抽象关系的问题,只要把题目由日常的语言译成代数的语言就行了.”下表是由牛顿给出,的1个例子改写、简化而成的,请将表的空白补上(不必求出问题的最后答案).235a b -=1023a b -+(2)若m 、n 互为倒数,则()21mn n --的值为________.5.小王第一周每小时工资为a 元,工作b 小时.第二周每小时工资增加10%,工作总时间减少10%,则第二周工资总额与第一周工资总额相比( )A .增加1%B .减少1%C .减少1.5%D .不变 6.已知有理数a 、b 、c 在数轴上的位置如图b0c a 所示,且a b =,则代数式a c a c b b --+---的值为( ) A .2c - B .0 C .2c D .222a b c -+7.如果210x x +-=,那么代数式3227x x +-的值为( )A .6B .8C .6-D .8- 8.已知多项式239x x +的和等于2341x x +-,则这个多项式是( ) A .51x -- B .51x + C .131x -- D .131x + 9.已知多项式()()22262351x ax y bx x y +-+--+-.(1)若多项式的值与字母x 的取值无关,求a 、b 的值_____;(2)在(l )的条件下,求多项式()()2222323a ab b a ab b ---++的值;(3)在(1)的条件下,求()2222111239122389b a b a b a b a ⎛⎫⎛⎫⎛⎫+++⋅++⋅+++⋅ ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭… 10.如图所示,1925年数学家莫伦发现了世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形.如果图中标注的①、②正方形边长分别是x ,y ,那么你能计算出其他8个正方形的边长吗?思维方法天地11.已知多项式432434325132021213ax ax x x x bx bx x +--+++--是二次多项式,则22a b +=_______.12.已知381P xy x =-+,22Q x xy =--,当0x ≠时,327P Q -=恒成立,则y 的值为______. 13.(1)若0m n p +-=,则111111m n p n p m p m n ⎛⎫⎛⎫⎛⎫-+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值等于_______. (2)已知2004a b -=,2005b c -=-,2007c d -=,则()()a c b d a d---的值为______.14.如图是在正方形网格中按规律填成的阴影,根据此规律,则第n 个图中阴影部分小正方形的个数是________.第1个图第2个图第3个图15.当1x =-时,代数式3238ax bx -+的值为18,那么,代数式962b a -+=( ) A .28 B .28- C .32 D .32-16.关于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如3235=+,337911=++,3413151719,=+++…,若3m 分裂后,其中有一个奇数是2013,则m 的值是( )A .43B .44C .45D .4617.有甲、乙两种糖果,原价分别为每千克a 元和b 元.根据柜台组调查,将两种糖果按甲种糖果m 千克与乙种糖果n 千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价上涨%c ,乙种糖果单价下跌%d ,但按原比例混合的糖果单价恰好不变,那么mn等于( ) A .ac bd B .ad bc C .bc ad D .bdac18.若一个两位数恰等于它的各位数字之和的4倍,则这个两位数称为“巧数”,则不是“巧数”的两位数的个数是( )A .82B .84C .86D 8819.有一张纸,第1次把它分割成4片,第2次把其中的1片分割成4片,以后每一次都把前面所得的其中一片分割成4片,如此进行下去,试问: (1)经5次分割后,共得到多少张纸片? (2)经n 次分割后,共得到多少张纸片?(3)能否经若干次分割后共得到2003张纸片?为什么?20.已知:b 是最小的正整数且a 、b 、c 满足()250c a b -++=,试回答问题.(1)求a ,b ,c 的值;(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在1到2之间运动时(即12x ≤≤时),请化简式子:1125x x x +--+-;(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值. 应用探究乐园21. 一条公交线路上从起点到终点有8个站,一辆公交车从起点站出发,前6站上车100人,前7站下车80人.问从前6站上车而在终点站下车的乘客有多少人?22.在一次游戏中,魔术师请一个人随意想一个三位数abc (a 、b 、c 依次是这个数的百位、十位、个位数字),并请这个人算出5个数acb ,bac 、bca 、cab 与cba 的和N ,把N 告诉魔术师,于是魔术师就可以说出这个人所想的数abc .现在设3194N =,请你当魔术师,求出数abc 来. 自然数的排序把自然数1,2,3,…,n 按一定的方式排列顺序,可得到形式特异、内涵丰富的排序问题,融知识性与趣味性于一体.解这类问题的关键是:通过观察能发现排序后的数阵中的规律,如行或列中数的规律、特殊位置数的规律等.例1 将正整数按如图所示的规律排列下去,若用有序数对(),n m 表示第n 排、第m 个数,比如()4,3表示的数是9,则7,2表示的数是______.1 第1排2 3 第2排 4 5 6 第3排7 8 9 10 第4排 … …分析与解弄清题意是前提,找准规律是关键,正确表达尤重要,对于本例,最明显也对解题最有指导价值的规律是:第n 排有n 个数,要求(),n m 只需知道它是这个数中的第n 个数即可.前6排共有12345621+++++=个数,即第6排最后一个数是21,故()7,2表示的数是21223+=. 例2 正整数按如图所示的规律排列,请写出第二十行第二十一列的数字: 第一列 第二列 第三列 第四列 第五列 … 第一行 1 2 5 10 17 … ↓ ↓ ↓ ↓ 第二行 4 ← 3 6 11 18 …↓ ↓ ↓ 第三行 9 ← 8 ← 7 12 19 … ↓ ↓ 第四行 16 ← 15 ← 14 ← 13 20 … ↓ 第五行 25 ← 24 ← 23 ← 22 ← 21 …试一试这个自然数表的特点可从以下方面观察:第n 行的第一个数,第一行第n 个数,每行或每列数的增减性.例3 将正偶数按下表排列5列.第一列 第二列 第三列 第四列 第五列第一行 2 4 6 8 第二行 16 14 12 10 第三行 18 20 22 24 …… …… 28 26根据上面排规律,则2000应在( ) A .第125行,第1列 B .第125行,第2列 C .第250行,第1列 D .第250行,第2列试一试注意到每一行排4个数,奇数行空第一列,偶数行空第五列,只要计算出2000是第几个数即可.例4 将自然数按如图所示的顺序排列,在这样的排列下,数字3排在第二行第一列,13排在第三行第三列.问:1993排在第几行第几列? 1 2 6 7 15 16 …3 5 8 14 17 …4 9 13 …10 12 …11 ……试一试从斜行方向上看,奇数斜行中的数由下向上递增,偶数斜行中的数由上向下递增. 例5 将正整数从1开始按如图所示的规律排成一个数阵,其中,2在第一个拐弯处,3在第二个拐弯处,5在第三个拐弯处,7在第四个拐弯处……问:在第2007个拐弯处的数是多少. 试一试用n a 表示第n 次拐弯时所对应的数,从寻求n a 与n 之间的关系入手. (12345678910111213)141516171819202122练一练1.已知一列数:1,2-,3,4-,5,6-,7,…将这列数排成下列形式: 第1行 1 第2行 2- 3 第3行 4- 5 6- 第4行 7 8- 9 10- 第5行 11 12- 13 14- 15 …… ……按照上述规律排下去,那么第10行从左边数第5个数等于______. 2.将正奇数按下表排列:3.自然数1,2,3,…,按下表规律排列:横排为行,记数据1,2,3,4的那一行为第一行,依次记下面的各行分别是2行,第3行,….试问2011位于该表的第_____行,并对应于“启智杯竞赛有趣”中的汉字:_______.4+=123++=+45678+++=++9101112131415++++=+++161718192021222324…………由上,我们可知第100行的最后一个数是______.5.奇数宝塔东方传统建筑中的塔,千姿百态,造型各异,数学中的宝塔更是千变万化、不计其数.从1开始的奇数,按照规律排成下面形式的宝塔:第几行行中各数的和1131352327911333131********2123252729535313335373941636……………………观察行中各数的规律:前2行的各数之和332=++=+=;135123前3行的各数之和3332=+++++=++=;135**** ****前4行的各数之和33332…;=++++=+++=1 3 519 123410前5行的各数之和333332…;=++++=++++=135291234515因此,可推知前6行的各数之和333333…________;135********=++++=+++++=根据以上规律,猜想:333…=________.12n+++6.如图,数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.1234567891011121314151617181920212223242526272829303133343536………(1)表中第8行的最后一个数是____,它是自然数______的平方,第8行共有____ 个数. (2)用含n 的代数式表示:第n 行的第一个数是______,最后一个数是____,第n 行共有______个数.(3)求第n 行各数之和. 7.自然数按右表的规律排列:(1)求上起第十行、左起第十三列的数; (2)数127应在上起第几行、左起第几列?252423222120191817161514131211109876543215.整式的加减答案问题解决例1 乙例2A 设自然数从1a +开始,这100个连续自然数的和为()()()12100a a a ++++++…1005050a =+例3 1-原多项式整理得()()()321235a x b a x b a x ++-++-由题意得10a +=从而1a =-,1b =-例4()()1010a b b a +++()11a b =+因而a b +是11的倍数,即11a b k +=⋅,且k 是完全平方数,由于a ≤9,9b ≤,得18a b +≤,1k =,从而11a b +=.推得这样的两位数有8个:29,38,47,56,65,74,83,92. 例6(1)由条件得23a b +=,原式2=-;(2)设小长方形的长为a ,宽为b∴上面的阴影周长为:()2n a m a -+-,下面的阴影周长为:()222m b n b -+-∴总周长为:()44442m n n a b +--+又∵2a b m +=∴()4442m n a b +-+4n =故选B(3)由定义得()()()112123121n n T a a a a a a a a a n ⎡⎤=++++++++++⎣⎦…… 即()()12311122n n n T na n a n a a a n -=+-+-++-⎡⎤⎣⎦… 又[]50012349950015004994982500T a a a a a =+++++… 1234995005004994982a a a a a +++++…2004500=⨯故8,1a ,2a ,……,500a 的“理想数” 为[]501123499500150185004994982501T a a a a a =⨯++++++… []150182004500501=⨯+⨯2008=数学冲浪1.(1)4 (2)1110a - 2.(1)()()21122n n n n n -++= (2)42n -3.(1)()()11147004700333x x ⎡⎤-+-⎢⎥⎣⎦ ()41470033x ⎡⎤=-⎢⎥⎣⎦(2)()41470033x ⎡⎤-⎢⎥⎣⎦x =4.(1)5; (2)15.B 6.A 7.C 8.A9.(1)3a =-,1b =;(2)原式17=(3)原式62=10.③的边长为①、②边长之和:x y +;⑨的边长为③、②边长之和:()2y x y x y ++=+;⑧的边长为⑨、②边长之和:()23y x y x y =++=+;⑦的边长为⑧的边长加上②与①边长之差:()()34x y x y y ++-=;⑥的边长为⑦的边长减去①边长:4y x -;④的边长为⑥的边长减去①与③边长这客:()()4y x x x y --++33y x =-;⑤的边长为④、⑥边长之和:()()433y x y x -+-74y x =-;⑩的边长为⑤、④边长之和:()()7433y x y x -+-107y x =-11.2213a b +=由条件可得210a b --=且513a b +-0=12.2代入化简得()1320x y -=20y -=13.(1)3-(2)11003-14.22n n ++15.C 16.C 3m 分裂后的第一个数是()11m m -+,共有m 个奇数,由()4545111981⨯-+=()464612071⨯-=,得45m =17.D18.C 90486-=(个)19.(1)共得到13516+⨯=张纸片;(2)经n 次分割,共得到()13n +张纸片.(3)若能分得2003张纸片,则132003n +=,32002n =,无整数解,所以不可能经若干次分割后得到2003张纸片.20.(1)1a =-,1b =,5c =(2)原式122x =-(3)32AB t =+,34BC t =+,2BC AB -=,不随时间t 的改变而改变21.设前7站上车的乘客数量依次为1a ,2a ,3a ,4a ,5a ,6a ,7a 人,从第2站到第8站下车的乘客数量依次为2b ,3b ,4b ,5b ,6b ,7b ,8b 人,则1234567a a a a a a a ++++++2345678b b b b b b b =++++++又123456100a a a a a a +++++=,23456780b b b b b b +++++=,即7810080a b +=+,8720b a -=22.将abc 也加到和N 上,由于a 、b 、c 在每一位上都恰好出现两次, 所以()222abc N a b c +=++①从而()100031942223194a b c +>++>,于是1518a b c ++≤≤因为222153194136⨯-=,222163194358⨯-=,222173194580⨯-=,222183194802⨯-=.其中只有35816++=满足要求,即能使①成立,故358abc =.自然数的排序例2第n 行第一列数字为2n ,第1n +列数字为2n n +,故第二十行第二十一列的数字为22020420+=例3C 由22000n =,得1000n =,又10004250÷=例4第n 斜行中共有n 个连续的自然数,其中最大的数是()12n n +, 第62斜行的最大数是()6262119532+=, 第63斜行的最大数是()6363120162+=, 因此,1933位于第63斜行.又第63斜行中的数是由下向上递增的,左边第一个数是1954,则1993是位于第63斜行的由下向上数第199********-+=个位置的数,换数成原图中行和列是第6340124-+=行、第40列.例512a =,23a =,35a =,47a =,510a =,613a =,717a =,821a =,……, 又313a a =+,535a a =+,757a a =+,……即后一拐弯数=前一拐弯数+后一拐弯次数. 故200720052003200720052007a a a =+=++3572007a ==++++……2352007=++++…()11352007=+++++…()12007100412+⨯=+ 210041=+1008017=故第2007个拐弯处的数是1008017.练一练1.50-提示:前9行的数的个数和为123945++++=…,故第10行数为46-,47,48-,49,50-,51,……2.251,5参见例33.575;杯2011被7除得商287(为奇数),余数24.10200第k 行的最后一个数是()211k +-5.221;()2123n ++++…6.(1)64;8;15(2)222n n -+;2n ;21n -(3)设第n 行各数之和为S ,则()()()222212223n S n n n n n -=-++-+++项…()()()222212223n n n n n n -=-++-+++项…()()2222221n n n n =-++-322331n n n =-+-7.提示:经观察可得这个自然表的排列特点:①第一列的每一个数都是完全平方数, 并且恰好等于它所在行数的平方,即第n 行的第一个数为2n ;②第一行第n 个数是()211n -+;③第n 行中从第一个数至第n 个数依次递减1;④第n 列中从第一个数至第n 个数次递增1.这样可求:(1)上起第十行,左起第十三列的数应是第十三列的第10个数,即()213119154⎡⎤-++=⎣⎦ (2)数127满足关系式2127116=+()212115⎡⎤=-++⎣⎦即127在左起十二列,上起第六行的位置供应站的最佳位置的确定例1即在数轴上找出表示x 的点,使它到表示1,2,…,617各点距离之和最小, 当309x =时,原式的值最小,最小值是:309130923093080309310309311309616309617-+-++-++-+-++-+-…… 308307112308=+++++++……95127=例2∵213x x ++-≥516y y -++≥ ∴213x x ++-=516y y -++=得21x -≤≤,15y -≤≤故x y +的最大值为6,最小值为3-.练一练1.放B 、C (含B 、C )之间任一处2.253.0,1-由条件得23x ≤≤,原式2x =-4.D 只要3x <,1y <,4z <中至少有一个成立,则229x y z x y z -+++<≤, 这与条件矛盾,从而得3x =,1y =,4z =,3x =,1y =-,4z =或3x =-,1y =,4z =-5.B 各线段间的距离如图.首先排除选择点A 和D ,然后比较C 点和G 点.6.A 原式1111111.5 2.5 3.5 4.5 5.5 6.535791113x x x x x x =-+-+-+-+-+- 该式子可以看成数轴上的某点到13,15,…,113各个点的距离乘以相应系数后积的和. 因为1.5 2.5 3.5 4.5+++5.56.5=+,所以该点在111和19之间时,和最小. 7.(1)5;(2)500000提示:当10001002x ≤≤时,原式有最小值,这个最小值为:()()()100221004420001000500000-+-++-=… 8.最大值为11,最小值为5-乘方美谈练一练1.略2.(1)520082008、20092009的个位数字分别与42008、2009的个位数字相同(2)9910109.9109.9910 1.0110 1.110⨯<⨯<⨯<⨯3.823⎛⎫ ⎪⎝⎭4.11312- 5.(1)()10077125⨯++ ()10088125⨯++(2)()100125n n ⨯++(3)39800256.C 7.A 8.C 9.B 10.B11.(1)6提示:1222n n n +-=(2)64729 12.(1)因为20024500233⨯+=,20024500244⨯+=,所以20023与200024的个位数字分别与23、24的个位数字相同,即9,6,从而2002200234+的个位数字为5,因此,20022000234+是5的位数.(2)41k n n +-一定是10的倍数,原式()()()()()2005200520051111n n n n n n ⎡⎤⎡⎤=+-++-+---⎣⎦⎣⎦每个括号里的数都能被10整除,所以全式也能被10整除.13.设金片数为n 时的移动次数为n a ,21n n a =-,完成64片金片的转移总共需要的时间为64215849365246060-=⨯⨯⨯(亿年),而太阳系的寿命是100亿~150亿年,等到那时宇宙早已毁灭.。
人教版七年级数学上册《整式》整式的加减PPT精品课件
∴购买25个排球应付25a×0.8=20a(b元; ②当b>10时,应付0.8ab元.
2.1 整式
第2课时
复习导入
1.什么是单项式?单项式的系数和次数? 表示数或字母的积的式子叫做单项式.
注意:单独的一个数或一个字母也是单项式. 一个单项式中,所有字母的指数的和,叫做这
⑥x2+√13x.
其中属于多项式的有( C )
A.2 个 B.3 个 C.4 个 D.5 个
2.多项式2x4+5x2-6的项是____2_x_4_,___5_x_2__,_-_,6 常数项是 ______-. 6
课堂小结
(1)利用定义判定多项式,其关键是看式子是否是单项式的和,是 哪几个单项式的和; (2)多项式是由单项式组成的,但不能说多项式包含单项式,它们 是两个不同的概念,没有从属关系.
属于单项式的是___①__②___⑤__⑦________(填序号). 属于多项式的是____④__⑥___⑧_________(填序号). 属于整式的是_①___②___④__⑤___⑥__⑦___⑧___(填序号).
课堂小结
1.几个单项式的和叫做多项式 2.在多项式中,每个单项式叫做多项式的项 3.不含字母的项叫做常数项 4.多项式里次数最高项的次数就是多项式的次数
=392.5 这个圆环的面积是392.5 cm2.
应用提高
如图,文化广场上摆了一些桌子,若并排摆n张桌 子,可同时容纳多少人?当n=20时,可同时容纳多
少人?
……
1张桌子
2张桌子
3张桌子
解:并排摆n张桌子,可同时容纳(4n+2)人. 当n=20时, 4n+2=4×20+2=82
此时,可同时容纳82人.
【初中数学】+整式的加减运算课件+人教版数学七年级上册
解:原式= 12x-2x+23y2-32x+13y2 【方法总结】整式化简求值的步骤
=-312x+y2 当x=-2,y=23时,
(1)一化:利用整式加减的运算法则 将整式化简; (2)二代:把已知字母或某个整式的
原式=(-3)×(-2)+(23)2
值代入化简后的式子;
4
=6+9
4
(3)三计算:依据有理数的运算法则 进行计算.
=69
巩固练习1(教材P101)
1.计算: (1)-13ab-4a2+3a2-(-23ab); 解:原式=-13ab-4a2+3a2+23ab
=13ab-a2
11
(3)3a-2(a-8b-12c)+3(-2c+2b); 解:原式=13a-12a+4b+6c-6c+6b
1
=6a+10b
(2)x3 - (x2-x+1) –2(x3-x2-1)-1 解:原式= x3 - x2+x-1 -2x3+2x2+2-1
能力提升
1.已知x+2y=5,3a-4b=7,则代数式(9a﹣4y)-2(6b+x)的值为
.
(9a-4y)-2(6b+x)=9a-4y-12b-2x =(9a-12b)-(2x+4y) =3(3a-4b)-2(x+2y) =3×7-2×5 =21-10 =11
2.数轴上,有理数a,b,-a,c的位置如图,则化简|a+c|+|a+b|+|c-b|
解:原式= 2x – 3y + 5x + 4y = 7x + y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
博锐教育七年级数学——整式及其加减
一、选择题.
1.下列说法中正确的是( )。
A .t 2不是整式;
B .33y x -的次数是4;
C .4ab 与4xy 是同类项;
D .1y
是单项式 2.ab 减去22b ab a +-等于 ( )。
A .222b ab a ++;
B .222b ab a +--;
C .222b ab a -+-;
D .222b ab a ++-
3.下列各式中与a-b-c 的值不相等的是( )
A .a-(b+c ) B.a-(b-c ) C.(a-b )+(-c ) D.(-c )-(b-a )
4.将2(x+y)-3(x-y)-4(x+y)+5(x-y)-3(x-y)合并同类项得( )
A.-3x-y
B.-2(x+y)
C.-x+y
D.-2(x+y)-(x-y)
5.若-4x2y 和-23xmyn 是同类项,则m ,n 的值分别是( )
A.m=2,n=1
B.m=2,n=0
C.m=4,n=1
D.m=4,n=0
6.下列各组中的两项属于同类项的是( )
A. 52 x2y 与32-xy3 ;
B.-8a2b 与5a2c ;
C. 14 pq 与52
-qp ;D.19abc 与-28ab 7.下列各式中,去括号正确的是( )
A.x2-(2y-x+z)= x2-2y2-x+z
B.3a-[6a-(4a-1)]=3a-6a-4a+1
C.2a+(-6x+4y-2)=2a-6x+4y-2
D.-(2x2-y)+(z-1)=-2x2-y-z-1
8.已知多项式2222z y x A -+=, 222234z y x B ++-=且A+B+C=0,则C 为( )
(A )2225z y x -- (B )22253z y x -- (C )22233z y x -- (D )22253z y x +-二、
二、填空题.
1.请任意写出2313
y x z 的两个同类项: , ; 2.已知x+y=3,则7-2x-2y 的值为 ;
3.如果m b a 2232与4223b
a n 是同类项,那么m= ;n= ;
4.当2y –x=5时,()()6023252
-+---y x y x = ; 5.一个多项式加上-3+x-2x2 得到x2-1,那么这个多项式为 ;
6.在代数式-2x +8x-5+3
22x +6x+2中,-x2和 是同类项,8x 和 是同类项,
2和 是同类项.
7.已知31323m x y -与521
14n x y +-是同类项,则5m+3n 的值是 .
8.写一个代数式 ,使其至少含有三项,且合并同类项后的结果为23ab
三、解答题.
1.计算:
(1)()()
233233543x x x
x +---+
(2)(3x 2-xy -2y 2)—2(x 2+xy —2 y 2)
2.先化简,再求值: ()()()()y x y x y x y x 3235326132213231-----+-,其中2=x ,1=y 。
3.一个多项式加上2352-+x x 的2倍得x x +-231,求这个多项式 .
4.已知m 、x 、y 满足:(1)0)5(2=+-m x , (2)12+-y ab 与34ab 是同类项.求代数式:)93()632(2222y xy x m y xy x +--+-的值.
四、拓广探索.
a +(b-2)2=0,A=3a2-6ab+b2,B=-a2-5,求A-B的值.
1.(1)若1
(2)试说明:无论x,y取何值时,代数式
(x3+3x2y-5xy+6y3)+(y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)的值是常数.
2. 一根弹簧,原来的长度为8厘米,当弹簧受到拉力F时(F在一定范围内),弹簧的长度用l表示,测得有关数据如下表:
(1)写出用拉力F表示弹簧的长度l的公式;
(2)若挂上8千克重的物体,则弹簧的长度是多少?
(3)需挂上多重的物体,弹簧长度为13厘米?
提升能力,超越自我
1.为节约用水,某市规定三口之家每月标准用水量为15立方米,超过部分加价收费,假设不超过部分水费为
1.5元/立方米,超过部分水费为3元/立方米.
(1)请用代数式分别表示这家按标准用水和超出标准用水各应缴纳的水费;
(2)如果这家某月用水20立方米,那么该月应交多少水费?
2.李老师给学生出了一道题:当a=0.35,b= -0.28时,
求3323323
76336310a a b a b a a b a b a -+++--的值.题目出完后,小聪说:“老师给的条件a=0.35,b= -0.28是多余的.”小明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?
参考答案
跟踪反馈,挑战自我
一、1.B ;2.C ;3.B ;4.D ;5.A ;6.C ;7.C ;8.B
二、1.如5x2yz3、12x2yz3;2.1;3.m=2,n=1;
4.45;5.x2-x+2;6.23
x2;+6x ;-5;7.13;8.所写的代数式很多,如:2434a ab a
-++或22264ab ab ab +-等.
三、1.(1)-6x3+7;(2) x2-3xy+2y2;
2.化简得 )32(y x --,当x=2,y=1时,原式= -1;
3.-13x2-5x+5;
5.x =5,y =2,m=0;原式= 44
四、1.(1)解:∵A=3a2-6ab+b2,B=-a2-5,∴A-B=(3a2-6ab+b2)-(-a2-5)=4a2-6ab+b2+5. 又∵1-a +(b-2)2=0,∴A-B=4×12-6×1×2+22+5=1.
(2)原式化简值结果不含x ,y 字母,即原式=0.∴无论x,y 取何值,原式的值均为常数0.
2.解:(1)用拉力F 表示弹簧的长度l 的公式是l=8+0.5F.
(2)当F=8千克时,l=8+0.5×8=12(厘米).∴挂上8千克重的物体时,弹簧长度是12厘米.
(3)当l=13厘米时,有8+0.5F=13,∴F=10(千克).∴挂上10千克重的物体时,弹簧长度为13厘米.
提升能力,超越自我
1.(1)标准用水水费为:1.5a (0<a ≤15);超标用水水费:3a-22.5 (a >15)
(2)37.5
2.解:原式=
332(7310)(66)(33)0a a b a b +-+-++-=,合并得结果为0,与a 、b 的取值无关,所以小明说的有道理.。