2013届高考数学一轮复习课时检测 第二节 参数方程 理

合集下载

2013届高考数学一轮同步练习13.2参数方程理苏教版

2013届高考数学一轮同步练习13.2参数方程理苏教版

第二节参数方程强化训练当堂巩固1.把方程xy=1化为以t 参数的参数方程是( ) A. 1212x t y t ⎧⎪⎪⎨⎪-⎪⎩== B. sint 1y sint x =⎧⎪⎨=⎪⎩C. cost 1y cost x =⎧⎪⎨=⎪⎩D. tant 1y tant x =⎧⎪⎨=⎪⎩ 答案:D解析:xy=1,x 取非零实数,而A,B,C 中的x 的范围有各自的限制,不合题意,故选D.2.若点P(3,m)在以点F 为焦点的抛物线244x t y t⎧=,⎨=⎩ (t 为参数)上,则|PF|等于( )A.2B.3C.4D.5 答案:C 解析:抛物线为24y x =,准线为x=-1,|PF|为P(3,m)到准线x=-1的距离,即为4.3.直线 122112x t y t ⎧=-,⎪⎨⎪=-+⎩ (t 为参数)被圆224x y +=截得的弦长为 . 答案解析:直线为x+y-1=0,圆心到直线的距离d ==弦长的一半为=4.若直线3x+4y+m=0与圆 1cos y 2sin x θθ=+,⎧⎨=-+⎩(θ为参数)没有公共点,则实数m 的取值范围是 .答案:m<0或m>10解析:由圆的参数方程知圆心(1,-2),半径R=1,问题等价于圆与直线3x+4y+m=0无公共点,则圆心(1,-2)到直线3x+4y+m=0的距离1d r =>=,解得m<0或m>10.5.已知曲线1C : 32cos y 22sin x θθ=+,⎧⎨=+⎩ (θ为参数),曲线2C : 1314x t y t =+,⎧⎨=-⎩ (t 为参数),则1C 与2C 的位置关系为.答案:相离 解析:曲线1C 化为普通方程是22(3)(2)4x y -+-=,曲线2C 化为普通方程是4x+3y-7=0,圆心(3,2)到直线4x+3y-7=0的距离4332725d |⨯+⨯-|==.2>2,故1C 与2C 相离. 课后作业巩固提升见课后作业B题组一 参数方程的概念1.参数方程为 12x t t y ⎧=+,⎪⎨⎪=⎩ (t 为参数)表示的曲线是… ( )A.一条直线B.两条直线C.一条射线D.两条射线答案:D解析:∵y=2,∴它表示一条平行于x 轴的直线,而2x ≥,或2x ≤-.∴表示两条射线.2.已知F 是曲线 2cos y 1cos2x θθ=,⎧⎨=+⎩ (θ为参数θ,∈R )的焦点,点1(0)2M ,,则|MF|的值是 . 答案解析:由参数方程可得抛物线标准方程为22x y =,其焦点为1(0)2,,故|MF|=. 3.设y=tx(t 为参数),则圆2240x y y +-=的参数方程为 . 答案: 2224141t x t t y t ⎧=,⎪+⎨⎪=+⎩解析:22()40x tx tx +-=,当x=0时,y=0;当0x ≠时241t x t ,=+; 而y=tx,即2241t y t =,+得 2224141t x t t y t ⎧=,⎪+⎨⎪=.+⎩题组二 参数方程与普通方程的互化4.与参数方程x y ⎧⎪⎪⎨⎪⎪⎩== (t 为参数)等价的普通方程为( )A.2214y x += B.221(01)4y x x +=≤≤ C.221(02)4y x y +=≤≤ D.221(0102)4y x x y +=≤≤,≤≤ 答案:D解析:2222211144y y x t t x x =,=-=-,+=,由0≤t ≤1011t ,≤-≤,得02y ≤≤.故选D.5.直线 3445x t y t =+,⎧⎨=-⎩(t 为参数)的斜率为 . 答案:54- 解析:直线的斜率455344y t k x t --===--. 6.参数方程 t t t t e e y 2(e e )x --⎧=+,⎨=-⎩ (t 为参数)的普通方程为. 答案:221(2)416y x x -=≥ 解析: t t t t e e y e e 2x -⎧⎪⎪⎨⎪-⎪⎩=+=- ⇒ t t 2e 2y x 2e 2y x ⎧⎪⎪⎪⎨⎪-⎪⎪⎩+=-= ()()422y y x x ⇒+-=, 即221416y x -=.又x=e t +e 2t -≥.题组三 参数方程的应用7.已知直线l:x-y+4=0与圆C:12cos y 12sin x θθ=+,⎧⎨=+,⎩则C 上各点到l 的距离的最小值为 .答案:2-解析:方法一:圆方程为22(1)(1)4x y -+-=,∴d==.∴所求距离的最小值为2-.方法二:d==cos θ-sin )θ+|=|2cos ()4πθ++∴所求距离的最小值为2-.8.如果曲线2cosy a2sinx aθθ=+,⎧⎨=+⎩(θ为参数)上有且仅有两个点到原点的距离为2,则实数a的取值范围是 .答案:0a<<或0a-<<解析:由题可得以原点为圆心,以2为半径的圆与圆22()()4x a y a-+-=总相交,根据两圆相交的充要条件得204080a a<<⇒<<⇒<<或-<a<0.9.直线2413x ty t=-+,⎧⎨=--⎩(t为参数)被圆25cosy15sinxθθ=+,⎧⎨=+⎩(θ为参数)所截得的弦长为 .答案:6解析:在平面直角坐标系中,直线3x+4y+10=0到圆222(2)(1)5x y-+-=所截得的弦长,则圆心(2,1)到直线3x+4y+10=0的距离为23411045d|⨯+⨯+|==,半弦为3,弦长为6.10.曲线4cosyxθθ=,⎧⎪⎨=⎪⎩(θ为参数)上一点P到点A(-2,0)、B(2,0)距离之和为 .答案:8解析:曲线4cosyxθθ=,⎧⎪⎨=⎪⎩表示的椭圆的标准方程为216x+2112y=,可知点A(-2,0)、B(2,0)为椭圆的焦点,故|PA|+|PB|=2a=8.11.直线12xy⎧=,⎪⎨=⎪⎩(t为参数)上到点A(1,2)的距离为的点的坐标为 .答案:(-3,6)或(5,-2)解析:点P(x,y)为直线上的点|PA|==解得t=或t =-故P(-3,6)或(5,-2).12.已知点P(x,y)是圆222x y y +=上的动点,(1)求2x+y 的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围. 解:(1)设圆的参数方程为cos y 1sin x θθ=,⎧⎨=+⎩ (θ为参数),2x+y=2cos θ+sin 1θ+=()1θϕ++,其中tan 2ϕ=.∴121x y +≤+≤+.(2)x+y+a=cos θ+sin 10a θ++≥,∴(a ≥-cos θ+sin )1θ-=sin ()14πθ+-.∴1a ≥-.。

高考数学一轮复习 4.2 参数方程 理 新人教A版

高考数学一轮复习 4.2 参数方程 理 新人教A版

第2讲参数方程基础巩固1.(2012·广东卷,14)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和(t为参数),则曲线C1与C2的交点坐标为.【答案】(2,1)【解析】由曲线C1的参数方程可得x2+y2=5①,且由曲线C2的参数方程可得x=1+y②,由①②联立得2.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为ρ(cos θ-sin θ)+1=0,则C1与C2的交点个数为.【答案】2【解析】曲线C1的参数方程可化为+=1,曲线C2的极坐标方程ρ(cos θ-sinθ)+1=0化为直角坐标方程为x-y+1=0.因直线x-y+1=0过定点(0,1),位于椭圆C1内,故C1与C2有2个交点.3.若直线l1:(t为参数)与直线l2:(s为参数)垂直,则k= .【答案】-1【解析】直线l1:kx+2y=k+4,直线l2:2x+y=1.∵直线l1与l2垂直,∴2k+2=0,即k=-1.4.若直线2x+ky-1=0(k∈R)与曲线(θ为参数)相切,则k值为.【答案】【解析】把曲线的参数方程转化为普通方程为x2+(y+1)2=1.由题意得=1,解得k=.5.已知圆C的圆心是直线(t为参数)与x轴的交点,且圆C与直线x+y+3=0相切,求圆C的方程. 【解】因直线(t为参数)与x轴的交点为(-1,0),故圆C的圆心为(-1,0).又圆C与直线x+y+3=0相切,因此圆C的半径r==.故圆C的方程为(x+1)2+y2=2.6.已知直线l的斜率为k=-1,经过点M0(2,-1),点M0在直线l上,求直线l的参数方程.【解】∵直线l的斜率k=-1,∴其倾斜角α=.于是cos α=-,sin α=.故直线l的参数方程是(t为参数).7.已知O为坐标原点,点M(x0,y0)在曲线C:(θ为参数)上运动,点P(x,y)是线段OM的中点,求点P 的轨迹方程.【解】∵∴(x-1)2+y2=cos2θ+sin2θ=1.故曲线C的普通方程为(x-1)2+y2=1.∵点M(x0,y0)在曲线C上运动,∴(x0-1)2+=1.∵点P(x,y)是线段OM的中点,∴即因此(2x-1)2+(2y)2=1,即+y2=.故点P的轨迹方程为+y2=.8.已知圆的方程为y2-6ysin θ+x2-8xcos θ+7cos2θ+8=0.(1)求圆心轨迹的参数方程C;(2)点P(x,y)是(1)中曲线C上的动点,求2x+y的取值范围.【解】(1)将圆的方程整理得(x-4cos θ)2+(y-3sin θ)2=1.设圆心坐标为P(x,y),则θ∈[0°,360°).(2)由(1)可知2x+y=8cos θ+3sin θ=sin(θ+φ),其中sin φ=,cos φ=.故-≤2x+y≤,即2x+y的取值范围是[-,].9.已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.【解】(1)由已知,点M的极角为,且点M的极径等于,故点M的极坐标为.(2)因点M的直角坐标为,A(1,0),故直线AM的参数方程为(t为参数).10.(2012·福建卷,21(2))在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),,圆C的参数方程为(θ为参数).(1)设P为线段MN的中点,求直线OP的平面直角坐标方程;(2)判断直线l与圆C的位置关系.【解】(1)由题意知,M,N的平面直角坐标分别为(2,0),.又P为线段MN的中点,从而点P的平面直角坐标为,故直线OP的平面直角坐标方程为y=x.(2)因为直线l上两点M,N的平面直角坐标分别为(2,0),,所以直线l的平面直角坐标方程为x+3y-2=0.又圆C的圆心坐标为(2,-),半径r=2,圆心到直线l的距离d==<r,故直线l与圆C相交.拓展延伸11.在直角坐标系xOy中,曲线C1的参数方程为(α为参数).M是C1上的动点,P点满足=2,P点的轨迹为曲线C2.(1)求C2的方程;(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【解】(1)设P(x,y),则由条件知M.由于M点在曲线C1上,所以即从而曲线C2的参数方程为(α为参数).(2)曲线C1的极坐标方程为ρ=4sin θ,曲线C2的极坐标方程为ρ=8sin θ.射线θ=与曲线C1的交点A的极径为ρ1=4sin,射线θ=与曲线C2的交点B的极径为ρ2=8sin.故|AB|=|ρ2-ρ1|=2.。

2013届高考数学(文)一轮复习课件选修4-4.2参数方程(广东专版)

2013届高考数学(文)一轮复习课件选修4-4.2参数方程(广东专版)

【答案】 (1,25 5)
4.(2011·湖南高考)在直角坐标系 xOy 中,曲线 C1 的参数方程为
x=2cos α y= 3sin α
(α 为参数).在极坐标系(与直角坐标系 xOy 取相同的长
度单位,且以原点 O 为极点,以 x 轴正半轴为极轴)中,曲线 C2 的方 程为 ρ(cos θ-sin θ)+1=0,则 C1 与 C2 的交点个数为________.
【答案】 点(a,b)或圆(x-a)2+(y-b)2=t2,
x=2cos θ 已知参数方程y=2sin θ ,θ∈[0,2π).则点 A(1, 3)________方 程的曲线上;点 B(2,1)________方程的曲线上(填“在”或“不在”).
【解析】 将参数方程化为普通方程,x2+y2=4. 将A、B坐标代入得 12+()2=4,22+12=5≠4. ∴A点在曲线上,B点不在曲线上. 【答案】 在 不在,
【答案】
(1)x=1+2t 且
y=2+
3 2t
(2)4,
直线 l 过点 M0(1,5),倾斜角是π3,且与直线 x-y-2 3=0 交于 M,则|MM0|的长为________.
【解析】 由题意知,直线 l 的参数方程是
x=1+tcosπ3, y=5+tsinπ3.
x=1+2t ,
为参数).
(1)化 C1、C2 的方程为普通方程,并说明它们分别表示什么曲线; (2)若 C1 上的点 P 对应的参数为 t=π2,Q 为 C2 上的动点,求 PQ
中点 M 到直线 C3:yx==-3+2+2t t (t 为参数)距离的最小值为

【思路点拨】 (1)将曲线C1、C2的参数方程化为普通方程,然后说明 曲线;(2)将直线的参数方程化为普通方程,根据点到直线的距离公式

高考数学(理)一轮复习课后检测:选修《参数方程》

高考数学(理)一轮复习课后检测:选修《参数方程》

选修4-4-2 参数方程一、填空题 1.曲线的参数方程是⎩⎪⎨⎪⎧ x =1-1t y =1-t 2(t 是参数,t ≠0),它的普通方程是__________. 答案:y =x (x -2)(x -1)22.已知点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t 2,y =4t (t 为参数)上,则|PF |=__________. 解析:将抛物线的参数方程化为普通方程为y 2=4x ,则焦点F (1,0),准线方程为x =-1,又P (3,m )在抛物线上,由抛物线的定义知|PF |=3-(-1)=4.答案:43.已知圆C 的参数方程为⎩⎪⎨⎪⎧ x =-1+cos αy =1+sin α(α为参数),当圆心到直线kx +y +4=0的距离最大时,k 的值为__________.答案:-154.已知O 为原点,参数方程⎩⎪⎨⎪⎧ x =3cos θy =3sin θ(θ为参数)上的任意一点为A ,则|OA →|=__________. 答案:35.若直线l :y =kx 与曲线C :⎩⎪⎨⎪⎧ x =2+cos θy =sin θ(θ为参数)有唯一的公共点,则实数k =__________.答案:±336.如果曲线C :⎩⎪⎨⎪⎧x =a +2cos θy =a +2sin θ(θ为参数)上有且仅有两个点到原点的距离为2,则实数a 的取值范围是__________.答案:(-22,0)∪(0,22)7.在极坐标系中,直线l 1的极坐标方程为ρ(2cos θ+sin θ)=2,直线l 2的参数方程为⎩⎪⎨⎪⎧x =1-2t y =2+kt (t 为参数),若直线l 1与直线l 2垂直,则k =__________. 答案:-18.求直线⎩⎨⎧ x =1+45t y =-1-35t (t 为参数)被曲线ρ=2cos ⎝⎛⎭⎫θ+π4所截的弦长为__________. 答案:75 9.已知点P (x ,y )在曲线⎩⎪⎨⎪⎧x =-2+cos θy =sin θ(θ为参数,θ∈[π,2π])上,则y x 的取值范围是__________.答案: ⎣⎡⎦⎤0,33 三、解答题10.(2013·辽宁卷)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧ x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值. 解析:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4.直线C 2的直角坐标方程x +y -4=0.由⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧ x 1=0,y 1=4或⎩⎪⎨⎪⎧x 2=2,y 2=2.∴C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4. 注:极坐标系下点的表示不唯一.(2)由(1)可得P 点与Q 点的直角坐标分别为(0,2),(1,3),故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab 2+1. ∴⎩⎨⎧b 2=1,-ab 2+1=2,解得a =-1,b =2. 11.在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程.解析:(1)圆C 1的极坐标方程为ρ=2,圆C 2的极坐标方程为ρ=4cos θ.解⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ得ρ=2,θ=±π3, 故圆C 1与圆C 2交点的坐标为⎝⎛⎭⎫2,π3,⎝⎛⎭⎫2,-π3. (2)解法一:由⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ,得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3). 故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =t ,-3≤t ≤ 3. ⎝ ⎛⎭⎪⎪⎫或参数方程写成⎩⎪⎨⎪⎧ x =1,y =y ,-3≤y ≤3 解法二:将x =1代入⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ, 得ρcos θ=1,从而ρ=1cos θ. 于是圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧ x =1,y =tan θ,-π3≤θ≤π3. 12.已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos φy =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 以逆时针次序排列,点A 的极坐标为⎝⎛⎭⎫2,π3. (1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|P A |2+|PB |2+|PC |2+|PD |2的取值范围.解析:(1)由已知可得A ⎝⎛⎭⎫2cos π3,2sin π3, B ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+π2,2sin ⎝⎛⎭⎫π3+π2, C ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+π,2sin ⎝⎛⎭⎫π3+π, D ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+3π2,2sin ⎝⎛⎭⎫π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1).(2)设P (2cos φ,3sin φ),令S =|P A |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ.因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].。

高三理科数学一轮复习试题选编坐标系与参数方程含答案

高三理科数学一轮复习试题选编坐标系与参数方程含答案

广东省2014届高三理科数学一轮复习试题选编25:坐标系与参数方程一、填空题1 .(广东省茂名市2013届高三第一次模拟考试数学(理)试题)(坐标系与参数方程选做题)已知曲线C 的参数方程为2cos sin x y θθ=+⎧⎨=⎩ (θ为参数),则曲线C 上的点到直线3x —4y +4=0的距离的最大值为______________【答案】3;2 .(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )设M 、N 分别是曲线2sin 0ρθ+=和s ()4in πρθ+=上的动点,则M 、N 的最小距离是______13 .(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))(坐标系与参数方程选做题)已知曲线1C:ρ=和曲线2C:cos()4πρθ+=,则1C 上到2C 的距离等于的点的个数为__________。

【答案】3;将方程ρ=与cos()4πρθ+=222x y +=与20x y --=,知1C 为圆心在坐标原点,半径为的圆,2C 为直线,因圆心到直线20x y --=的距离为2,故满足条件的点的个数3n =。

4 .(广东省揭阳一中2013届高三第三次模拟考试数学(理)试题)在极坐标系中,圆4cos ρθ=上的点到直线(sin cos )2ρθθ-=的最大距离为__________。

【答案】222+5 .( 2013届广东省高考压轴卷数学理试题)已知曲线1C 的参数方程为(0≤θ<π),直线l 的极坐标方程为4πθ=,()R ρ∈,则它们的交点的直角坐标为_______。

【答案】3030)66在直角坐标系中:曲线()221:105x C y y +=≥,直线:l y x =6 .(广东省汕头市2013届高三3月教学质量测评数学(理)试题)已知直线l 方程是22x ty t =+⎧⎨=-⎩(t 为参数),以坐标原点为极点.x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=2,则圆C 上的点到直线l 的距离最小值是___ 【答案】222-7 .(广东省湛江一中等“十校"2013届高三下学期联考数学(理)试题)已知抛物线C 的参数方程为⎩⎨⎧==ty t x 882(t 为参数),若斜率为1的直线经过抛物线C 的焦点,且与圆222(4)(0)x y r r -+=>相切,则半径r =________.【答案】28 .(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)(坐标系与参数方程选做题)在极坐标系中,定点32,2A π⎛⎫⎪⎝⎭,点B 在直线cos sin 0ρθθ=上运动,当线段AB 最短时,点B 的极坐标为_______.【答案】1116,π⎛⎫⎪⎝⎭答案可以是:11126k k ,(ππ⎛⎫+∈ ⎪⎝⎭Z )。

高考真题理科——参数方程(2013年-2015年)

高考真题理科——参数方程(2013年-2015年)
1.(2013 课标全国Ⅰ,理)已知曲线 C1 的参数方程为
x 4 5cos t , (t y 5 5sin t
为参数), 以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系, 曲线 C2 的极坐标方程为ρ = 2sinθ. (1)把 C1 的参数方程化为极坐标方程; (2)求 C1 与 C2 交点的极坐标(ρ ≥0,0≤θ <2π ).
2.(2013 课标全国Ⅱ,理)已知动点 P、Q 都在曲线 C:
x 2cos t (t y 2sin t
为参数)上,对应参数分别为 t=α 与 t=2α (0<α <2π ),M 为 PQ 的中点. (1)求 M 的轨迹的参数方程; (2)将 M 到坐标原点的距离 d 表示为 α 的函数,并判断 M 的轨迹 是否过坐标原点.
5. (2015 课标全国Ⅰ, 理)在直角坐标系 xOy 中。 直线 C1 : x 2 , 圆 C2 :
x 1 y 2
2
2
1 ,以坐标原点为极点, x 轴的正半轴为极轴建立极
坐标系。 1) 求 C1 , C2 的极坐标方程; 2) 若直线 C3 的极坐标方程为 R ,设 C2 与 C3 的交点为
π 点 P 的极坐标为 4, ,则|CP|=__________. 3
4. (2014 天津,理)在以 O 为极点的极坐标系中,圆 4sin 和直线
sin a 相交于 A, B 两点.若 AOB 是等边三角形,则 a 的值为
___________.
二、 解答题
3. (2014 课标全国Ⅰ,理)已知曲线 C : ( t 为参数).
x 2 t x2 y 2 1 ,直线 l : 4 9 y 2 2t

广东高考导与练文科数学一轮复习课时训练13.2参数方程(含答案详析)

广东高考导与练文科数学一轮复习课时训练13.2参数方程(含答案详析)

第2节参数方程课时训练练题感提知能【选题明细表】A组填空题1. (2013年高考广东卷)已知曲线C的极坐标方程为ρ=2cos θ.以极点为原点,极轴为x轴的正半轴建立直角坐标系,则曲线C的参数方程为.解析:由ρ=2cos θ知ρ2=2ρcos θ,因此曲线C的直角坐标方程为x2+y2=2x,即(x-1)2+y2=1,故曲线C的参数方程为(φ为参数).答案:(φ为参数)2.(2013年高考陕西卷)圆锥曲线(t为参数)的焦点坐标是.解析:由消去参数t得x=,即y2=4x,则焦点坐标为(1,0).答案:(1,0)3.(2013陕西师大附中高三第四次模拟)直线l1:(t为参数)与圆C2:(θ为参数)的位置关系是.解析:直线l1的普通方程为xsin α-ycos α-sin α=0,圆C2的普通方程为x2+y2=1,圆心到直线的距离为d=<1,因此直线l1与圆C2相交.答案:相交4.(2013湛江市高考测试(二))在直角坐标系xOy中,曲线C的参数方程是(α∈[0,2π),α为参数),若以O为极点,x轴正半轴为极轴,则曲线C的极坐标方程是.解析:曲线C的普通方程为(x-2)2+y2=4,即x2+y2=4x,化为极坐标方程为ρ2=4ρcos θ,即ρ=4cos θ.答案:ρ=4cos θ5.(2012年高考北京卷)直线(t为参数)与曲线(α为参数)的交点个数为.解析:由已知得直线的普通方程为x+y-1=0,曲线的普通方程为x2+y2=9,表示以原点为圆心,半径为3的圆,而直线x+y-1=0过点(1,0),且点(1,0)显然在圆x2+y2=9内,∴直线与曲线一定有2个交点.答案:26.(2013广州六校高三第四次联考)曲线(θ为参数)上一点P到点A(-2,0),B(2,0)的距离之和为.解析:曲线表示椭圆,且标准方程为+=1,可知点A(-2,0),B(2,0)为椭圆的焦点,故+=2a=8.答案:87.(2013华南师大附中高三综合测试)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知圆的方程是ρ=4cos θ,则它的圆心到直线l:(t为参数)的距离等于.解析:圆在直角坐标系中的方程为(x-2)2+y2=4,直线l化为普通方程为x+y=1,∴d==.答案:8.(2013深圳市期末检测)已知曲线C的极坐标方程为ρ=6sin θ,直线l的参数方程为(t为参数),则直线l与曲线C相交所得弦长为.解析:曲线C的直角坐标方程为x2+y2=6y,即x2+(y-3)2=9,圆心C(0,3),半径r=3.直线l的普通方程为x-2y+1=0.所以点C到l的距离d==.故所求弦长为2=2=4.答案:49.(2013韶关市高三调研)在直角坐标系xOy中,圆C1的参数方程为(α为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴的正半轴为极轴)中,圆C2的极坐标方程为ρ=4sin θ,则C1与C2的位置关系是.(在“相交、相离、内切、外切、内含”中选择一个你认为正确的填上).解析:圆C1的普通方程为x2+(y-1)2=1,圆C2的直角坐标方程为x2+y2=4y,即为x2+(y-2)2=4,所以圆心距为1,等于半径之差,故圆C1与C2的位置关系是内切.答案:内切10.(2013肇庆一模)已知直线l1:(t为参数)与直线l2:2x-4y=5相交于点B,又点A(1,2)则|AB|= .解析:将l1的参数方程代入l2方程中得2(1+3t)-4(2-4t)=5,即t=.于是B(,0),所以|AB|==.答案:11.(2013湖南十二校联考)设极点与坐标原点重合,极轴与x轴正半轴重合,已知直线l的极坐标方程为ρsin(θ-)=a,a∈R.圆C的参数方程是(θ为参数),若圆C关于直线l对称,则a= .解析:圆C的圆心坐标为(2,2),其极坐标为(4,),由题意知点(4,)在直线l上,于是4sin(-)=a,即a=-2.答案:-212.若直线l的极坐标方程为ρcos=3,圆C:(θ为参数)上的点到直线l的距离为d,则d的最大值为.解析:∵ρcos(θ-)=3,∴ρcos θ+ρsin θ=6,∴直线l的直角坐标方程为x+y=6.由圆C的参数方程知圆C的圆心为C(0,0),半径r=1.圆心C(0,0)到直线l的距离为=3.+1.∴d答案:3+1B组13.(2012年高考天津卷)已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p= .解析:∵y=2pt,∴y2=4p2t2.又∵t2=,∴y2=4p2×=2px(p>0).∵|EF|=|MF|,|MF|=|ME|,∴△EMF是等边三角形,过点F作FA⊥ME交ME于A,则A为ME的中点,且x A=.∴x M+x E=2x A(其中,x A、x M、x E分别为点A、M、E的横坐标),∴3+=2×,∴p=2.答案:214.(2013年高考湖北卷)在直角坐标系xOy中,椭圆C的参数方程为(ϕ为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为ρsin(θ+)=m(m为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为.解析:将椭圆C的参数方程(ϕ为参数,a>b>0)化为普通方程为+=1(a>b>0).又直线l的极坐标方程为ρsin(θ+)=m(m为非零常数),即ρ(sin θ·+cos θ·)=m,则该直线的直角坐标方程为y+x-m=0.圆的极坐标方程为ρ=b,其直角坐标方程为x2+y2=b2.∵直线与圆O相切,∴=b,|m|= b.又∵直线l经过椭圆C的焦点,∴|m|=c.∴c=b,c2=2b2.∵a2=b2+c2=3b2,∴e2==.∴e=.答案:。

高考数学一轮复习课时跟踪检测参数方程理

高考数学一轮复习课时跟踪检测参数方程理

课时跟踪检测(六十九) 参数方程1.已知P为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴,建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程. 解:(1)由已知,点M 的极角为π3,且点M 的极径等于π3,故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3. (2)由(1)知点M 的直角坐标为⎝⎛⎭⎪⎫π6,3π6,A (1,0).故直线AM 的参数方程为⎩⎪⎨⎪⎧x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t(t 为参数).2.在平面直角坐标系xOy 中,曲线C 1过点P (a,1),其参数方程为⎩⎨⎧x =a +2t ,y =1+2t(t为参数,a ∈R).以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|PA |=2|PB |,求实数a 的值.解:(1)∵曲线C 1的参数方程为⎩⎨⎧x =a +2t ,y =1+2t ,∴其普通方程为x -y -a +1=0.∵曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0, ∴ρ2cos 2θ+4ρcos θ-ρ2=0, ∴x 2+4x -x 2-y 2=0,即曲线C 2的直角坐标方程为y 2=4x .(2)设A ,B 两点所对应的参数分别为t 1,t 2,将曲线C 1的参数方程代入曲线C 2的直角坐标方程,化简得2t 2-22t +1-4a =0.∴Δ=(-22)2-4×2(1-4a )>0,即a >0,t 1+t 2=2,t 1·t 2=1-4a2. 根据参数方程的几何意义可知|PA |=2|t 1|,|PB |=2|t 2|, 又|PA |=2|PB |可得2|t 1|=2×2|t 2|, 即t 1=2t 2或t 1=-2t 2.∴当t 1=2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=3t 2=2,t 1·t 2=2t 22=1-4a2,解得a =136,符合题意.当t 1=-2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=-t 2=2,t 1·t 2=-2t 22=1-4a 2,解得a =94,符合题意.综上,实数a =136或a =94.3.(2018·贵阳模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+3cos t ,y =5+3sin t (t为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)求曲线C 1的普通方程和C 2的直角坐标方程;(2)若A ,B 分别为曲线C 1,C 2上的动点,求当AB 取最小值时△AOB 的面积. 解:(1)由⎩⎪⎨⎪⎧x =4+3cos t ,y =5+3sin t(t 为参数)得C 1的普通方程为(x -4)2+(y -5)2=9,由ρ=2sin θ,得ρ2=2ρsin θ, 将x 2+y 2=ρ2,y =ρsin θ代入上式, 得C 2的直角坐标方程为x 2+(y -1)2=1.(2)如图,当A ,B ,C 1,C 2四点共线,且A ,B 在线段C 1C 2上时,|AB |取得最小值,由(1)得C 1(4,5),C 2(0,1),则kC 1C 2=5-14-0=1,∴直线C 1C 2的方程为x -y +1=0, ∴点O 到直线C 1C 2的距离d =12=22, 又|AB |=|C 1C 2|-1-3=4-02+5-12-4=42-4,∴S △AOB =12d |AB |=12×22×(42-4)=2- 2.4.(2018·广州综合测试)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-t ,y =1+t (t为参数).在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=22cos ⎝⎛⎭⎪⎫θ-π4. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值. 解:(1)由⎩⎪⎨⎪⎧x =3-t ,y =1+t(t 为参数)消去t 得x +y -4=0,所以直线l 的普通方程为x +y -4=0.由ρ=22cos ⎝ ⎛⎭⎪⎫θ-π4=22⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2cos θ+2sin θ,得ρ2=2ρcos θ+2ρsin θ.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入上式, 得x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2. 所以曲线C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)法一:设曲线C 上的点P (1+2cos α,1+2sin α), 则点P 到直线l 的距离d =|1+2cos α+1+2sin α-4|2=|2sin α+cos α-2|2=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫α+π4-22.当sin ⎝⎛⎭⎪⎫α+π4=-1时,d max =2 2.所以曲线C 上的点到直线l 的距离的最大值为2 2. 法二:设与直线l 平行的直线l ′:x +y +b =0, 当直线l ′与圆C 相切时,|1+1+b |2=2,解得b =0或b =-4(舍去), 所以直线l ′的方程为x +y =0.因为直线l 与直线l ′的距离d =|0+4|2=2 2.所以曲线C 上的点到直线l 的距离的最大值为2 2. 5.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cosθ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎪⎫32,32. (2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.6.已知直线L的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数),以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=21+3cos 2θ.(1)求直线L 的极坐标方程和曲线C 的直角坐标方程;(2)过曲线C 上任意一点P 作与直线L 夹角为π3的直线l ,设直线l 与直线L 的交点为A ,求|PA |的最大值.解:(1)由⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数),得L 的普通方程为2x +y -6=0,令x =ρcos θ,y =ρsin θ,得直线L 的极坐标方程为2ρcos θ+ρsin θ-6=0, 由曲线C 的极坐标方程,知ρ2+3ρ2cos 2θ=4, 所以曲线C 的直角坐标方程为x 2+y 24=1.(2)由(1),知直线L 的普通方程为2x +y -6=0, 设曲线C 上任意一点P (cos α,2sin α), 则点P 到直线L 的距离d =|2cos α+2sin α-6|5.由题意得|PA |=d sinπ3=415⎪⎪⎪⎪⎪⎪2sin ⎝⎛⎭⎪⎫α+π4-315,所以当sin ⎝ ⎛⎭⎪⎫α+π4=-1时,|PA |取得最大值,最大值为4153+215. 7.(2018·石家庄一模)在平面直角坐标系中,将曲线C 1上的每一个点的横坐标保持不变,纵坐标缩短为原来的12,得到曲线C 2.以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,已知曲线C 1的极坐标方程为ρ=2.(1)求曲线C 2的参数方程;(2)过坐标原点O 且关于y 轴对称的两条直线l 1与l 2分别交曲线C 2于A ,C 和B ,D ,且点A 在第一象限,当四边形ABCD 的周长最大时,求直线l 1的普通方程.解:(1)由ρ=2,得ρ2=4,所以曲线C 1的直角坐标方程为x 2+y 2=4. 故由题意可得曲线C 2的直角坐标方程为x 24+y 2=1.所以曲线C 2的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数).(2)设四边形ABCD 的周长为l ,点A (2cos θ,sin θ), 则l =8cos θ+4sin θ=45sin(θ+φ),⎝⎛⎭⎪⎫其中sin φ=25,cos φ=15 所以当θ+φ=2k π+π2(k ∈Z)时,l 取得最大值,最大值为45,此时θ=2k π+π2-φ(k ∈Z),所以2cos θ=2sin φ=45,sin θ=cos φ=15, 此时A ⎝ ⎛⎭⎪⎫45,15.所以直线l 1的普通方程为x -4y =0.8.(2018·成都诊断)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =3-32t ,y =3+12t (t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,过极点O 的射线与曲线C 相交于不同于极点的点A ,且点A 的极坐标为(23,θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π.(1)求θ的值;(2)若射线OA 与直线l 相交于点B ,求|AB |的值. 解:(1)由题意知,曲线C 的普通方程为x 2+(y -2)2=4, ∵x =ρcos θ,y =ρsin θ,∴曲线C 的极坐标方程为(ρcos θ)2+(ρsin θ-2)2=4, 即ρ=4sin θ. 由ρ=23,得sin θ=32, ∵θ∈⎝⎛⎭⎪⎫π2,π,∴θ=2π3.(2)易知直线l 的普通方程为x +3y -43=0,∴直线l 的极坐标方程为ρcos θ+3ρsin θ-43=0. 又射线OA 的极坐标方程为θ=2π3(ρ≥0),联立⎩⎪⎨⎪⎧θ=2π3ρ≥0,ρcos θ+3ρsin θ-43=0,解得ρ=4 3.∴点B 的极坐标为⎝ ⎛⎭⎪⎫43,2π3,∴|AB |=|ρB -ρA |=43-23=2 3.。

2013年理科全国各省市高考真题——坐标系与参数方程(解答题带答案)

2013年理科全国各省市高考真题——坐标系与参数方程(解答题带答案)

2013年全国各省市理科数学—坐标系与参数方程 1、2013重庆理T15.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系。

若极坐标方程为cos 4ρθ=的直线与曲线23x t y t⎧=⎪⎨=⎪⎩(t 为参数)相交于,A B 两点,则______AB =2、2013天津理T11.已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = .3、2013广东理14.(坐标系与参数方程选讲选做题)已知曲线C的参数方程为x t y t⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________.4、2013陕西理T15.C. (坐标系与参数方程选做题)如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为 R y x ∈⎩⎨⎧⋅==θθθθ,sin cos cos 2 .x5、2013湖南理T9.在平面直角坐标系xoy 中,若,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a 的值为 .6、2013湖北理16、在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b θθ=⎧⎨=⎩()0a b ϕ>>为参数,。

在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为sin 4πρθ⎛⎫+= ⎪⎝⎭()m 为非零常数与b ρ=。

若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为 。

7、2013新课标I 理T23.(本小题满分10分)选修4—4:坐标系与参数方程 已知曲线1C 的参数方程式⎩⎨⎧+=+=ty t x sin 55cos 54(t 为参数),以坐标原点为极点,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为θρsin 2=.(Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标(0≥ρ,π20<≤θ)8、2013新课标Ⅱ理T23.(本小题满分10分)选修4——4;坐标系与参数方程 已知动点P Q 、都在曲线2cos ,:2sin x t C y t =⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02απ<<),M 为PQ 的中点。

苏教版高中数学选修高考一轮理参数方程一轮复习限时提分训练基础到提升含精细解析Word含答案

苏教版高中数学选修高考一轮理参数方程一轮复习限时提分训练基础到提升含精细解析Word含答案

参数方程分层训练A 级 基础达标演练 (时间:30分钟 满分:60分)1.(2012·南通调研)P 为曲线C 1:⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数)上一点,求它到直线C 2:⎩⎪⎨⎪⎧x =1+2t ,y =2(t 为参数)距离的最小值.解 将曲线C 1化成普通方程是(x -1)2+y 2=1,圆心是(1,0), 直线C 2化成普通方程是y -2=0,则圆心到直线的距离为2. 所以曲线C 1上点到直线的最小距离为1.2.(2008·江苏卷)在平面直角坐标系xOy 中,点P (x ,y )是椭圆x 23+y 2=1上的一个动点,求S =x +y 的最大值.解 ∵椭圆x 23+y 2=1的参数方程为⎩⎨⎧x =3cos φ,y =sin φ(φ为参数),故可设动点P 的坐标为(3cos φ,sin φ),其中0≤φ<2π.因此S =x +y =3cos φ+sin φ= 2⎝⎛⎭⎪⎫32cos φ+12sin φ=2sin ⎝ ⎛⎭⎪⎫φ+π3,∴当φ=π6时,S 取得最大值2.3.(2012·南通市模拟)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =m +2cos α,y =2sin α(α为参数),曲线D 的参数方程为⎩⎪⎨⎪⎧x =2-4t ,y =3t -2(t 为参数).若曲线C 、D 有公共点,求实数m 的取值范围.解 曲线C 的普通方程为(x -m )2+y 2=4. 曲线D 的普通方程为3x +4y +2=0.因为曲线C 、D 有公共点,所以|3m +2|5≤2,|3m +2|≤10.解得-4≤m ≤83,即m 的取值范围是⎣⎢⎡⎦⎥⎤-4,83. 4.(2012·镇江市期末考试)已知极坐标方程为ρcos θ+ρsin θ-1=0的直线与x 轴的交点为P ,与椭圆⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)交于点A ,B ,求PA ·PB 的值.解 由题意,直线经过点P (1,0), 其参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =22t (t 为参数), ①又椭圆方程为x 24+y 2=1,②将①代入②,整理,得5t 2-22t -6=0; 所以PA ·PB =|t 1t 2|=65.5.(2012·南京、盐城调研一,21)在极坐标系中,圆C 的方程为ρ=42cos ⎝ ⎛⎭⎪⎫θ-π4,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =t -1(t 为参数),求直线l 被⊙C 截得的弦AB 的长度.解 ⊙C 的方程可化为ρ=4cos θ+4sin θ,两边同乘ρ,则ρ2=4ρcos θ+4ρsinθ.由ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ,得x 2+y 2-4x -4y =0. 圆心C 的坐标为(2,2),圆的半径r =2 2. 又由题设知直线l 的普通方程为x -y -2=0, 故圆心C 到直线l 的距离d =|-2|2= 2.∴弦AB 长度等于2222-22=2 6.6.已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合.若曲线C 1的方程为ρ2=8ρsin θ-15,曲线C 2的方程为⎩⎨⎧x =22cos α,y =2sin α(α为参数).(1)将C 1的方程化为直角坐标方程;(2)若C 2上的点Q 对应的参数为α=3π4,P 为C 1上的动点,求PQ 的最小值.解 (1)x 2+y 2-8y +15=0.(2)当α=3π4时,得Q (-2,1),点Q 到C 1的圆心(0,4)的距离为13,所以PQ 的最小值为13-1.分层训练B 级 创新能力提升1.(2012·泰州调研一)已知曲线C 的极坐标方程为ρ=6sin θ,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =12t ,y =32t +1(t 为参数),求直线l 被曲线C 截得的线段长度.解 将曲线C 的极坐标方程化为直角坐标方程为x 2+y 2-6y =0,即x 2+(y -3)2=9,它表示以(0,3)为圆心,3为半径的圆,直线方程l 的普通方程为y =3x +1, 圆C 的圆心到直线l 的距离d =1,故直线l 被曲线C 截得的线段长度为232-12=4 2.2.(2012·南京调研二)在平面直角坐标系xOy 中,判断曲线C :⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)与直线l :⎩⎪⎨⎪⎧x =1+2t ,y =1-t(t 为参数)是否有公共点,并证明你的结论.解 直线l 与曲线C 没有公共点.证明如下: 直线l 的普通方程为x +2y -3=0,把曲线C 的参数方程代入l 的方程x +2y -3=0,得 2cos θ+2sin θ-3=0,即2sin ⎝ ⎛⎭⎪⎫θ+π4=32.∵2sin ⎝ ⎛⎭⎪⎫θ+π4∈[-2,2],而32∉[-2,2],∴方程2sin ⎝ ⎛⎭⎪⎫θ+π4=32无解,即曲线C 与直线l 没有公共点.3.已知直线l的参数方程为⎩⎪⎨⎪⎧x =4-2t ,y =t -2(t 为参数),P 是椭圆x 24+y 2=1上任意一点,求点P 到直线l 的距离的最大值.解 将直线l 的参数方程⎩⎪⎨⎪⎧x =4-2ty =t -2(t 为参数)转化为普通方程为x +2y =0,因为P 为椭圆x 24+y 2=1上任意一点,故可设P (2cos θ,sin θ),其中θ∈R . 因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫θ+π45, 所以当θ=k π+π4,k ∈Z 时,d 取得最大值2 105.4.(2013·南京模拟)过点P (-3,0)且倾斜角为30°的直线和曲线⎩⎪⎨⎪⎧x =t +1t,y =t -1t (t 为参数)相交于A 、B 两点,求线段AB 的长. 解 直线的参数方程为⎩⎪⎨⎪⎧x =-3+32s ,y =12s (s 为参数),又曲线⎩⎪⎨⎪⎧x =t +1t,y =t -1t(t 为参数)可以化为x 2-y 2=4,将直线的参数方程代入上式,得s 2-63s +10=0,设A 、B 对应的参数分别为s 1,s 2. ∴s 1+s 2=63,s 1s 2=10 ∴|AB |=|s 1-s 2|=s 1+s 22-4s 1s 2=217.5.(2012·苏锡常镇调研)已知极坐标系的极点与直角坐标系的原点O 重合,极轴与x 轴的正半轴重合.曲线C 1:ρcos ⎝ ⎛⎭⎪⎫θ+π4=22与曲线C 2:⎩⎪⎨⎪⎧x =4t 2,y =4t(t 为参数,t ∈R )交于两个不同的点A 、B .求证:OA ⊥OB .证明 曲线C 1的直角坐标方程是x -y =4, 曲线C 2的直角坐标方程是抛物线y 2=4x . 联立以上两个方程,消去x ,得y 2-4y -16=0. 设A (x 1,y 1),B (x 2,y 2),则y 1.2=2±2 5. ∴A (6-25,2-25),B (6+25,2+25). ∵k OA ·k OB =2-256-25×2+256+25=4-2036-20=-1,∴OA ⊥OB .6.已知圆锥曲线⎩⎨⎧x =2cos θ,y =3sin θ(θ是参数)和定点A (0,3),F 1、F 2是圆锥曲线的左、右焦点.(1)求经过点F 1且垂直于直线AF 2的直线l 的参数方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求直线AF 2的极坐标方程.解 (1)圆锥曲线⎩⎨⎧x =2cos θ,y =3sin θ化为普通方程x 24+y 23=1,所以F 1(-1,0),F 2(1,0),则直线AF 2的斜率k =-3,于是经过点F 1且垂直于直线AF 2的直线l 的斜率k ′=33,直线l 的倾斜角是30°, 所以直线l 的参数方程是⎩⎪⎨⎪⎧x =-1+t cos 30°,y =t sin 30°(t 为参数),即⎩⎪⎨⎪⎧x =32t -1,y =12t (t 为参数).(2)直线AF 2的斜率k =-3,倾斜角是120°, 设P (ρ,θ)是直线AF 2上任一点, 则ρsi n 60°=1sin120°-θ,ρsin(120°-θ)=sin 60°,则ρsin θ+3ρcos θ= 3.。

2013届高考数学一轮复习课时检测 第二节 参数方程 理

2013届高考数学一轮复习课时检测 第二节 参数方程 理

选修4-4 第二节 参数方程1.(2011·江苏高考)在平面直角坐标系xOy中,求过椭圆⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t (t 为参数)平行的直线的普通方程.解:由题设知,椭圆的长半轴长a =5,短半轴长b =3,从而c =a 2-b 2=4,所以右焦点为(4,0).将已知直线的参数方程化为普通方程:x -2y +2=0.故所求直线的斜率为12,因此其方程为y =12(x -4),即x -2y -4=0.2.在椭圆x 29+y 24=1上求一点M ,使点M 到直线x +2y -10=0的距离最小,并求出最小距离.解:因为椭圆的参数方程为⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数),所以可设点M 的坐标为(3cos φ,2sin φ). 由点到直线的距离公式,得到点M 到直线的距离为d =|3cos φ+4sin φ-10|5=|5cos φ·35+sin φ·45-10|5=15|5cos(φ-φ0)-10|, 其中φ0满足cos φ0=35,sin φ0=45.由三角函数的性质知,当φ-φ0=0时,d 取最小值 5. 此时,3cos φ=3cos φ0=95,2sin φ=2sin φ0=85.因此,当点M 位于(95,85)时,点M 到直线x +2y -10=0的距离取最小值 5.3.已知曲线C 的极坐标方程是ρ=2sin θ,直线l 的参数方程是 ⎩⎪⎨⎪⎧x =-35t +2,y =45t(t 为参数).(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设直线 l 与x 轴的交点是M ,N 是曲线C 上一动点,求|MN |的最大值. 解:(1)曲线C 的极坐标方程可化为ρ2=2ρsin θ, 又x 2+y 2=ρ2,x =ρcos θ,y =ρsin θ, 所以曲线C 的直角坐标方程为x 2+y 2-2y =0. (2)将直线l 的参数方程化为普通方程, 得y =-43(x -2),令y =0得x =2, 即M 点的坐标为(2,0).又曲线C 为圆,且圆心坐标为(0,1),半径r =1, 则|MC |= 5.所以|MN |≤|MC |+r =5+1. 即|MN |的最大值为5+1.4.已知圆M :⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数)的圆心F是抛物线E :⎩⎪⎨⎪⎧x =2pt 2,y =2pt的焦点,过焦点F 的直线交抛物线于A 、B 两点,求AF ·FB 的取值范围.解:圆M :⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ的普通方程是(x -1)2+y 2=1,所以F (1,0).抛物线E :⎩⎪⎨⎪⎧x =2pt 2,y =2pt的普通方程是y 2=2px ,所以p2=1,p =2,抛物线的方程为y 2=4x . 设过焦点F 的直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos θy =t sin θ,(t 为参数),代入y 2=4x ,得t 2sin 2θ-4t cos θ-4=0.所以AF ·FB =|t 1t 2|=4sin 2θ.因为0<sin 2θ≤1,所以AF ·FB 的取值范围是[4,+∞).5.(2012·厦门模拟)在平面直角坐标系xOy 中,已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =sin α(α为参数).以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos(θ-π4)=2 2.(1)求直线l 的直角坐标方程;(2)点P 为曲线C 上的动点,求点P 到直线l 距离的最大值. 解:(1)ρcos(θ-π4)=22化简ρcos θ+ρsin θ=4,∴直线l 的直角坐标方程为x +y =4; (2)设点P 的坐标为(2cos α,sin α), 得P 到直线l 的距离d =|2cos α+sin α-4|2,即d =|5sin α+φ-4|2,其中cos φ=15,sin φ=25.当sin(α+φ)=-1时,d max =22+102. 6.(2012·福建高考)在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos αy =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,π2),判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 解: (1)把极坐标系下的点P (4,π2)化为直角坐标,得P (0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上. (2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos α+π6+42=2cos(α+π6)+2 2.由此得,当cos(α+π6)=-1时,d 取得最小值,且最小值为 2.7.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)由ρ=25sin θ,得x 2+y 2-25y =0, 即x 2+(y -5)2=5.(2)法一:将l 的参数方程代入圆C 的直角坐标方程, 得(3-22t )2+(22t )2=5, 即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根, 所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),故由上式及t 的几何意义得|PA |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2. (2)法二:因为圆C 的圆心为(0,5),半径r =5, 直线l 的普通方程为:y =-x +3+ 5.由⎩⎨⎧x 2+y -52=5,y =-x +3+ 5.得x 2-3x +2=0.解得:⎩⎨⎧x =1,y =2+ 5.或 ⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5), 又点P 的坐标为(3,5), 故|PA |+|PB |=8+2=3 2. 8.已知椭圆⎩⎪⎨⎪⎧x =4cos φ,y =5sin φ.(φ为参数)上相邻两个顶点为A 、C ,又B 、D 为椭圆上两个动点,且分别在直线AC 的两侧,求四边形ABCD 面积的最大值.解:设相邻两个顶点A (4,0)、C (0,5)、AC 所在直线方程为5x +4y -20=0.又设B (4cos α,5sin α),D (4cos β,5sin β),其中α∈(0,π2),β∈(π2,2π).点B 到AC 距离d 1=2041|cos α+sin α-1|=2041|2sin(α+π4)-1|≤2041(2-1)(当α=π4时取等号).点D 到AC 的距离d 2=2041|2sin(β+π4)-1|≤2041(2+1)(当α=54π时取等号).∴所求S 四边形ABCD 的最大值为12AC ·[2041(2-1)+2041(2+1)]=20 2。

参数方程检测题(带解析高考数学一轮)【推荐下载】

参数方程检测题(带解析高考数学一轮)【推荐下载】

参数方程检测题(带解析高考数学一轮)参数方程检测题(带解析2015高考数学一轮)1.(2013陕西)圆锥曲线x=t2,y=2t(t为参数)的焦点坐标是________.解析:把参数方程化为普通方程为y2=4x,表示焦点在x轴上的抛物线,其焦点坐标为(1,0).答案:(1,0)2.(2013广东)已知曲线C的极坐标方程为ρ=2cos θ.以极点为原点,极轴为x轴的正半轴建立直角坐标系,则曲线C的参数方程为________.解析:由极坐标方程与直角坐标方程互化公式可得,曲线C的直角坐标方程为(x-1)2+y2=1,故曲线C对应的参数方程可写为x=1+cosθ,y=sin θ(θ为参数).答案:x=1+cos θy=sin θ(θ为参数)3.(2013重庆)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,若极坐标方程为ρcosθ=4的直线与曲线x=t2,y=t3(t为参数)相交于A,B两点,则|AB|=________.解析:极坐标方程ρcosθ=4的普通方程为x=4,代入x=t2,y=t3,得t=±2,当t=2时,y=8;当t=-2时,y=-8.两个交点坐标分别为(4,8),(4,-8).从而|AB|=16.答案:164.(2014广东中山二模)在直角坐标系中,参数方程为x=2+32t,y=12t(t为参数)的直线l被以原点为极点、x轴的正半轴为极轴、极坐标方程为ρ=2cos θ的曲线C所截,则所截得的弦长是________.解析:由题意知,直线l的倾斜角为30°,并过点A(2,0),曲线C是以(1,0)为圆心,半径为1的圆,且圆C也过点A(2,0),设直线l与圆C 的另一个交点为B,在Rt△OAB中,|AB|=2cos 30°=3.答案:35.(2014湖南十二校第二次联考)设极点与坐标原点重合,极轴与x轴正半轴重合,已知直线l的极坐标方程为:ρsinθ-π3=a,a∈R,圆C的参数方程是x=23+2cos θ,y=2+2sin θ(θ为参数).若圆C关于直线l对称,则a=________.解析:由极坐标系与直角坐标系互化关系可知直线l对应的直角坐标方程为3x-y+2a=0.由圆的参数方程可知圆心C的坐标为(23,2),若圆C 关于直线l对称,则直线l过圆心C,所以3×23-2+2a=0,解得a=-2.答案:-26.(2014西安模拟)若直线l1:x=1-2t,y=2+kt(t为参数)与直线l2:x=s,y=1-2s(s为参数)垂直,则k=________.解析:直线l1的方程为y=-k2x+4+k2,斜率为-k2;直线l2的方程为y=-2x+1,斜率为-2.∵l1与l2垂直,∴-k2×(-2)=-1k=-1.答案:-17.(2014上海奉贤区模拟)已知点P(3,m)在以点F为焦点的抛物线x=4t2,y=4t(t为参数)上,则|PF|=________.解析:将抛物线的参数方程化为普通方程为y2=4x,则焦点F(1,0),准线方程为x=-1,又P(3,m)在抛物线上,由抛物线的定义知|PF|=3-(-1)=4.答案:48.直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线C1:x=3+cos θ,y=4+sin θ(θ为参数)和曲线C2:ρ=1上,求|AB|的最小值为________.解析:消去参数θ,得到C1的普通方程(x-3)2+(y-4)2=1,表示以(3,4)为圆心,以1为半径的圆;C2的直角坐标方程为x2+y2=1表示的是单位圆,|AB|的最小值为32+42-1-1=3.答案:39.(2013课标全国Ⅱ)已知动点P、Q都在曲线C:x=2cos t,y=2sin t(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.解:(1)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α),因此M(cos α+cos 2α,sin α+sin 2α).M的轨迹的参数方程为x=cos α+cos 2α,y=sin α+sin 2α(α为参数,0<α<2π).(2)M点到坐标原点的距离d=x2+y2=2+2cosα(0。

2013版高三新课标理科数学一轮复习课时提能演练 选修4-4.2 参数方程

2013版高三新课标理科数学一轮复习课时提能演练 选修4-4.2 参数方程

课时提能演练1。

直线x t 1(t )y t 1=+⎧⎨=-⎩为参数的纵截距为______. 2。

曲线x 8cos ,()y 10sin =θ⎧θ⎨=θ⎩为参数的焦距为______. 3。

曲线2x 2t (t )y t=⎧⎨=⎩为参数的焦点坐标为______. 4。

若直线x 12t (t )y 23t=-⎧⎨=+⎩为参数与直线4x+ky=1垂直,则常数k=______。

5.直线x 1t ,(t )y 2=-⎧⎪⎨=-⎪⎩为参数的倾斜角等于______. 6。

将参数方程22x 2sin ()y sin ⎧=+θ⎪θ⎨=θ⎪⎩为参数化为普通方程为______。

7。

曲线x cos ()y 1sin =⎧⎨=+⎩为参数φφφ的极坐标方程为______.8.过点P(—3,0)且倾斜角为30°的直线与双曲线x 2-y 2=4交于A ,B 两点,则|AB|=______。

9.参数方程t t t t x e e (t )y 2e e --⎧=+⎪⎨=-⎪⎩为参数()化为普通方程为______。

10。

椭圆22x y 11612+=上到直线x —2y —12=0的距离取得最小值的点的坐标为______.11.(2011·陕西高考)直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:x 3cos ()y 4sin =+θ⎧θ⎨=+θ⎩为参数 和曲线C 2:ρ=1上,则|AB |的最小值为______.12.在平面直角坐标系中,点P(x,y )是椭圆22x y 13+=上的一个动点,则S=x+y 的最大值是______.13.直线l 的参数方程为x a t (t )y b t=+⎧⎨=+⎩为参数,且直线l 上的点P 1对应的参数是t 1,则点P 1与点P (a,b)之间的距离是______.14.曲线x 3cos ()y 4sin =-θ⎧θ⎨=-θ⎩为参数上的点到坐标轴的最近距离为______。

2013届高考数学理一轮复习同步测试卷2函数的概念与性质

2013届高考数学理一轮复习同步测试卷2函数的概念与性质

【解析】(1)h(x)=x(1+x)2, ∴h′(x)=(1+x)(1+3x), 令h′(x)=0有x=-1或x=-31. 当x∈(-∞,-1)时,h′(x)>0, 当x∈(-1,-13)时,h′(x)<0; 当x∈(-31,+∞)时,h′(x)>0; ∴h(x)的递增区间为(-∞,-1),(-13,+∞), 递减区间为(-1,-13).
⑤令x1=x,x2=-x, 由|f(x1)-f(x2)|≤2|x1-x2| 得|f(x)-f(-x)|≤2|x-(-x)|=4|x|, 又∵f(x)是R上的奇函数. ∴f(-x)=-f(x), ∴|f(x)|≤2|x|, ∴⑤中的f(x)是F函数,故填①④⑤.
三、解答题(本大题共3小题,共50分.解答应写出文 字说明、证明过程或演算步骤.)
2013 高考第一轮总复习同步测试卷 理科数学(二)
(函数的概念与性质) 时间:60分钟 总分:100分
一、选择题(本大题共6小题,每小题5分,共30分. 每小题所给的四个选项中,只有一项是符合题目要 求的.) 1.集合A={0,1,2,3,4},B={x|0≤x≤2},给出集合 A到集合B的下列对应,其中是A到B上的函数的是 (C )
A.y=x3
C.y=
1 x2
B.y=ln|x| D.y=cosx
【解析】y=x3不是偶函数
y= 1 在(0,+∞)上单调递减, x2
y=cosx在(0,+∞)有增有减,故选B.
4.已知函数f(x)=
log3 x, 2x , x
x 0

0
,则f(f(19))=(
B
)
A.4
1 B.4
C.-4
10.已知函数f(x)的定义域为R,若存在常数m>0,对 任意的x∈R,有|f(x)|≤m|x|,则称f(x)为F函数.

【名师金典】版高考数学大一轮复习 第2节 参数方程课时检(选修4-4)

【名师金典】版高考数学大一轮复习 第2节 参数方程课时检(选修4-4)

课时检测 参数方程(建议用时:45分钟)1.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,求曲线C 的极坐标方程.【解】 将⎩⎪⎨⎪⎧x =t ,y =t 2化为普通方程为y =x 2,由于ρcos θ=x ,ρsin θ=y ,所以化为极坐标方程为ρsin θ=ρ2cos 2θ,即ρcos 2θ-sin θ=0.2.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.【解】 将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝ ⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.3.已知动点P 、Q 都在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 【解】 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点.4.(2015·福州调研)在平面直角坐标系中, 以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.【解】 (1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝ ⎛⎭⎪⎫θ-π4=a 上,可得a =2,所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1. 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交. 5.已知P为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程. 【解】 (1)∵M 点的极角为π3,且M 点的极径等于π3, 故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3.(2)M 点的直角坐标为⎝ ⎛⎭⎪⎫π6,3π6,A (1,0),故直线AM 的参数方程为⎩⎪⎨⎪⎧x =1+⎝⎛⎭⎪⎫π6-1t ,y =3π6t (t 为参数).6.(2014·湖南高考改编)在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,求直线l 的极坐标方程.【解】 消去曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α中的参数α,得(x -2)2+(y -1)2=1.由于|AB |=2,因此|AB |为圆的直径. ∴直线l 过曲线C 的圆心C (2,1). 又直线l 的倾斜角为π4,则k =tan π4=1.所以直线l 的方程为y -1=x -2,即x -y -1=0.将x =ρcos θ,y =ρsin θ代入上式,得ρcos θ-ρsin θ=1. 因此直线l 的极坐标方程ρ(cos θ-sin θ)=1.7.(2015·沈阳质检)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎪⎫θ-π4=2 2.(1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值.【解】 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧x 2+y -2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝ ⎛⎭⎪⎫4,π2,⎝ ⎛⎭⎪⎫22,π4.注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0, 由参数方程可得y =b 2x -ab2+1.所以⎩⎪⎨⎪⎧b2=1,-ab2+1=2,解得⎩⎪⎨⎪⎧a =-1,b =2.8.(2014·重庆高考改编)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t (t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),若直线l 与曲线C 的公共点为M ,求点M 的极径.【解】 参数方程⎩⎪⎨⎪⎧x =2+t ,y =3+t 化为普通方程为y =x +1.由ρsin 2θ-4cos θ=0,得ρ2sin 2θ-4ρcos θ=0, 其对应的直角坐标方程为y 2-4x =0,即y 2=4x . 由⎩⎪⎨⎪⎧y =x +1,y 2=4x ,得⎩⎪⎨⎪⎧x =1,y =2.∴直线l 和曲线C 的交点M (1,2), 因此点M 的极径ρ=12+22= 5.9.(2015·郑州质检)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数,a >b >0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin ⎝ ⎛⎭⎪⎫θ+π4=22m (m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆O 相切,求椭圆C 的离心率.【解】 由已知可得椭圆标准方程为x 2a 2+y 2b2=1(a >b >0).由ρsin ⎝ ⎛⎭⎪⎫θ+π4=22m 可得ρsin θ+ρcos θ=m ,即直线的普通方程为x +y =m . 又圆的普通方程为x 2+y 2=b 2,不妨设直线l 经过椭圆C 的右焦点(c,0),则得c =m . 又因为直线l 与圆O 相切,所以|m |2=b ,因此c =2b ,即c 2=2(a 2-c 2).整理,得c 2a 2=23,故椭圆C 的离心率为e=63. 10.已知曲线C 的极坐标方程为ρ=4cos θ,直线l 的参数方程是:⎩⎪⎨⎪⎧x =-5+22t ,y =5+22t (t 为参数).(1)求曲线C 的直角坐标方程,直线l 的普通方程;(2)将曲线C 横坐标缩短为原来的12,再向左平移1个单位,得到曲线C 1,求曲线C 1上的点到直线l 距离的最小值.【解】 (1)将曲线C :ρ=4cos θ化为普通方程为x 2+y 2=4x , ∴曲线C 的方程为(x -2)2+y 2=4. 直线l 的普通方程是x -y +25=0.(2)将曲线C :(x -2)2+y 2=4横坐标缩短为原来的12,得到曲线的方程为(2x -2)2+y2=4,即4(x -1)2+y 2=4,再向左平移1个单位,得到曲线C 1的方程为4x 2+y 2=4,即x 2+y 24=1.设曲线C 1上的任意一点为(cos θ,2sin θ),它到直线l 的距离为d =|cos θ-2sin θ+25|2=|25-5θ+φ2,当sin(θ+φ)=1时,d 取得最小值52=102, ∴曲线C 1上的点到直线l 距离的最小值为102.。

2013届高考一轮数学复习理科课时同步3-3

2013届高考一轮数学复习理科课时同步3-3

课时作业(十五)1.函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则( )A .a -2b =0B .2a -b =0C .2a +b =0D .a +2b =0答案 D解析 y ′=3ax 2+2bx ,据题意,0、13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.2.(2012·江南十校)当函数y =x ·2x 取极小值时,x =( ) A.1ln2 B .-1ln2 C .-ln2 D .ln2答案 B解析 由y =x ·2x 得y ′=2x +x ·2x ·ln2, 令y ′=0得2x (1+x ·ln2)=0, ∵2x>0,∴x =-1ln2.3.函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则( ) A .0<b <1 B .b <1 C .b >0 D .b <12答案 A解析 f (x )在(0,1)内有极小值,则f ′(x )=3x 2-3b 在(0,1)上先负后正,∴f ′(0)=-3b <0,∴b >0,f ′(1)=3-3b >0,∴b <1 综上,b 的范围为0<b <14.连续函数f (x )的导函数为f ′(x ),若(x +1)·f ′(x )>0,则下列结论中正确的是( )A .x =-1一定是函数f (x )的极大值点B .x =-1一定是函数f (x )的极小值点C .x =-1不是函数f (x )的极值点D .x =-1不一定是函数f (x )的极值点 答案 B解析 x >-1时,f ′(x )>0,x <-1时,f ′(x )<0. ∴连续函数f (x )在(-∞,-1)单减,在(-1,+∞)单增, ∴x =-1为极小值点.5.(2012·潍坊调研)已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32B .m >32C .m ≤32 D .m <32答案 A解析 因为函数f (x )=12x 4-2x 3+3m ,所以f ′(x )=2x 3-6x 2, 令f ′(x )=0,得x =0或x =3, 经检验知x =3是函数的最小值点, 所以函数的最小值为f (3)=3m -272, 不等式f (x )+9≥0恒成立, 即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32.6.函数f (x )的导函数f ′(x )的图像,如下图所示,则( )A .x =1是最小值点B .x =0是极小值点C .x =2是极小值点D .函数f (x )在(1,2)上单增 答案 C解析 由导数图像可知,x =0,x =2为两极值点,x =0为极大值点,x =2为极小值点,选C.7.已知函数f (x )=12x 3-x 2-72x ,则f (-a 2)与f (-1)的大小关系为( )A .f (-a 2)≤f (-1)B .f (-a 2)<f (-1)C .f (-a 2)≥f (-1)D .f (-a 2)与f (-1)的大小关系不确定 答案 A解析 由题意可得f ′(x )=32x 2-2x -72.由f ′(x )=12(3x -7)(x +1)=0,得x =-1或x =73.当x <-1时,f (x )为增函数;当-1<x <73时,f (x )为减函数.所以f (-1)是函数f (x )在(-∞,0]上的最大值,又因为-a 2≤0,故f (-a 2)≤f (-1).8.函数f (x )=e -x ·x ,则( ) A .仅有极小值12eB .仅有极大值12eC .有极小值0,极大值12eD .以上皆不正确答案 B解析 f ′(x )=-e -x·x +12x ·e -x =e -x(-x +12x )=e -x·1-2x2x.令f ′(x )=0,得x =12. 当x >12时,f ′(x )<0;当x <12时,f ′(x )>0.∴x =12时取极大值,f (12)=1e ·12=12e.9.(2011·西城区)若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________.答案 -23 -16 解析 y ′=ax +2bx +1.由已知⎩⎪⎨⎪⎧a +2b +1=0a2+4b +1=0,解得⎩⎪⎨⎪⎧a =-23b =-16.10.已知函数f (x )=13x 3-bx 2+c (b ,c 为常数).当x =2时,函数f (x )取得极值,若函数f (x )只有三个零点,则实数c 的取值范围为________.答案 0<c <43解析 ∵f (x )=13x 3-bx 2+c ,∴f ′(x )=x 2-2bx ,∵x =2时,f (x )取得极值,∴22-2b ×2=0,解得b =1.∴当x ∈(0,2)时,f (x )单调递减,当x ∈(-∞,0) 或x ∈(2,+∞)时,f (x )单调递增.若f (x )=0有3个实根,则⎩⎪⎨⎪⎧f (0)=c >0f (2)=13×23-22+c <0,,解得0<c <4311.设m ∈R ,若函数y =e x +2mx (x ∈R )有大于零的极值点,则m的取值范围是________.答案 m <-12解析 因为函数y =e x +2mx (x ∈R )有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图像可得-2m >1,即m <-12.12.已知函数f (x )=x 3-px 2-qx 的图像与x 轴相切于(1,0),则极小值为________.答案 0解析 f ′(x )=3x 2-2px -q , 由题知f ′(1)=3-2p -q =0. 又f (1)=1-p -q =0,联立方程组,解得p =2,q =-1. ∴f (x )=x 3-2x 2+x ,f ′(x )=3x 2-4x +1. 由f ′(x )=3x 2-4x +1=0, 解得x =1或x =13,经检验知x =1是函数的极小值点,∴f (x )极小值=f (1)=0. 三、解答题13.(2010·安徽)设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.解析 由f (x )=sin x -cos x +x +1,0<x <2π, 知f ′(x )=cos x +sin x +1, 于是f ′(x )=1+2sin(x +π4).令f ′(x )=0,从而sin(x +π4)=-22,得x =π,或x =3π2. 当x 变化时,f ′(x ),f (x )的变化情况如下表:因此,由上表知f (x )的单调递增区间是(0,π)与(3π2,2π),单调递减区间是(π,3π2),极小值为f (3π2)=3π2,极大值为f (π)=π+2.14.已知函数f (x )=x 2-1-2a ln x (a ≠0).求函数f (x )的极值. 解析 因为f (x )=x 2-1-2a ln x (x >0),所以f ′(x )=2x -2a x =2(x 2-a )x ,当a <0时,因为x >0,且x 2-a >0,所以f ′(x )>0对x >0恒成立,所以f (x )在(0,+∞)上单调递增,f (x )无极值;当a >0时,令f ′(x )=0,解得x 1=a ,x 2=-a (舍去), 所以当x >0时,f ′(x ),f (x )的变化情况如下表:所以当x =a 时,f (x )取得极小值,且f (a )=(a )2-1-2a ln a =a -1-a ln a .综上,当a <0时,函数f (x )在(0,+∞)上无极值. 当a >0时,函数f (x )在x =a 处取得极小值a -1-a ln a . 15.(2012·沧州七校联考)已知函数f (x )=-x 2+ax +1-ln x . (1)若f (x )在(0,12)上是减函数,求a 的取值范围;(2)函数f (x )是否既有极大值又有极小值?若存在,求出a 的取值范围;若不存在,请说明理由.解析 (1)f ′(x )=-2x +a -1x ,∵f (x )在(0,12)上为减函数,∴x ∈(0,12)时-2x +a -1x <0恒成立,即a <2x +1x 恒成立.设g (x )=2x +1x ,则g ′(x )=2-1x 2.∵x ∈(0,12)时1x 2>4,∴g ′(x )<0,∴g (x )在(0,12)上单调递减,g (x )>g (12)=3,∴a ≤3.(2)若f (x )既有极大值又有极小值,则f ′(x )=0必须有两个不等的正实数根x 1,x 2,即2x 2-ax +1=0有两个不等的正实数根.故a 应满足⎩⎨⎧Δ>0a2>0⇒⎩⎪⎨⎪⎧a 2-8>0a >0⇒a >22,∴当a >22时, f ′(x )=0有两个不等的实数根, 不妨设x 1<x 2,由f ′(x )=-1x (2x 2-ax +1)=-2x (x -x 1)(x -x 2)知,0<x <x 1时f ′(x )<0,x 1<x <x 2时f ′(x )>0,x >x 2时f ′(x )<0,∴当a >22时f (x )既有极大值f (x 2)又有极小值f (x 1).1.函数y =x 3-2ax +a 在(0,1)内有极小值,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫0,32解析 令y ′=3x 2-2a =0,得x =±2a3(a >0,否则函数y 为单调增函数).若函数y =x 3-2ax +a 在(0,1)内有极小值,则2a3<1,∴0<a <32.2.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为________.答案 -37解析 ∵f ′(x )=6x 2-12x =6x (x -2),∴f (x )在(-2,0)上为增函数,在(0,2)上为减函数, ∴当x =0时,f (x )=m 最大.∴m =3,从而f (-2)=-37,f (2)=-5.∴最小值为-37.3. 已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为 1,则a 的值等于________.答案 1解析 ∵f (x )是奇函数,∴f (x )在(0,2)上的最大值为-1,当x ∈(0,2)时,f ′(x )=1x -a ,令f ′(x )=0得x =1a ,又a >12,∴0<1a <2. 令f ′(x )>0,则x <1a ,∴f (x )在(0,1a )上递增; 令f ′(x )<0,则x >1a ,∴f (x )在(1a ,2)上递减, ∴f (x )max =f (1a )=ln 1a -a ·1a =-1,∴ln 1a =0,得a =1.4.设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值.(1)求a 、b 的值;(2)若对任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围. 解析 (1)f ′(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2时取得极值, 则有f ′(1)=0,f ′(2)=0,即⎩⎨⎧6+6a +3b =0,24+12a +3b =0.解得a =-3,b =4.(2)由(1)可知,f (x )=2x 3-9x 2+12x +8c , f ′(x )=6x 2-18x +12=6(x -1)(x -2).当x ∈(0,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0; 当x ∈(2,3)时,f ′(x )>0.所以,当x =1时,f (x )取得极大值f (1)=5+8c . 又f (0)=8c ,f (3)=9+8c ,则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以9+8c <c 2,解得c <-1或c >9.因此c 的取值范围为(-∞,-1)∪(9,+∞). 5.(2010·全国卷Ⅱ)已知函数f (x )=x 3-3ax 2+3x +1. (1)设a =2,求f (x )的单调区间;(2)设f (x )在区间(2,3)中至少有一个极值点,求a 的取值范围.解析 (1)当a =2时,f (x )=x 3-6x 2+3x +1,f ′(x )=3(x -2+3)(x -2-3).当x ∈(-∞,2-3)时f ′(x )>0,f (x )在(-∞,2-3)上单调增加; 当x ∈(2-3,2+3)时f ′(x )<0,f (x )在(2-3,2+3)上单调减少;当x ∈(2+3,+∞)时f ′(x )>0,f (x )在(2+3,+∞)上单调增加. 综上,f (x )的单调增区间是(-∞,2-3)和(2+3,+∞),f (x )的单调减区间是(2-3,2+3).(2)f ′(x )=3[(x -a )2+1-a 2].当1-a 2≥0时,f ′(x )≥0,f (x )为增函数,故f (x )无极值点; 当1-a 2<0时,f ′(x )=0有两个根, x 1=a -a 2-1,x 2=a +a 2-1.由题意知,2<a -a 2-1<3, ①或2<a +a 2-1<3. ②①式无解.②式的解为54<a <53. 因此a 的取值范围是(54,53).1.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是( )A .-173B .-103C .-4D .-643答案 A解析 f ′(x )=x 2+2x -3,f ′(x )=0,x ∈[0,2]只有x =1. 比较f (0)=-4,f (1)=-173,f (2)=-103. 可知最小值为-173.2.已知某质点的运动方程为s (t )=t 3+bt 2+ct +d ,如图所示是其运动轨迹的一部分,若t ∈[12,4]时,s (t )<3d 2恒成立,则d 的取值范围为________.答案 d >43或d <-1解析 ∵质点的运动方程为s (t )=t 3+bt 2+ct +d , ∴s ′(t )=3t 2+2bt +c .由图可知,s (t )在t =1和t =3处取得极值,则s ′(1)=0,s ′(3)=0,即⎩⎨⎧3+2b +c =0,27+6b +c =0,∴⎩⎨⎧b =-6,c =9.∴s ′(t )=3t 2-12t +9=3(t -1)(t -3). ∴s (t )在(-∞,1),(3,+∞)上单增, ∴t ∈[12,4]时,S (t )max =max{(s (1),s (4)}, ∴S (t )max =14+d ,∴3d 2>d +14.解之得d >43或d <-1.3.函数f (x )=x 3+2ax 2+3[(a +2)x +1]有极大值又有极小值,则a 的取值范围是________.答案 a >2或a <-1解析 ∵f (x )=x 3+3ax 2+3[(a +2)x +1], ∴f ′(x )=3x 2+6ax +3(a +2).令3x 2+6ax +3(a +2)=0,即x 2+2ax +a +2=0. ∵函数f (x )有极大值和极小值,∴方程x 2+2ax +a +2=0有两个不相等的实根. 即Δ=4a 2-4a -8>0,∴a >2或a <-1.4.已知a 是实数,求函数f (x )=x 2(x -a )在区间[0,2]上的最大值. 解析 令f ′(x )=0,解得x 1=0,x 2=2a3.当2a3≤0,即a ≤0时,f (x )在[0,2]上单调递增,从而f (x )max =f (2)=8-4a .当2a3≥2,即a ≥3时,f (x )在[0,2]上单调递减,从而 f (x )max =f (0)=0.当0<2a 3<2,即0<a <3时,f (x )在[0,2a 3]上单调递减,在[2a3,2]上单调递增,从而f (x )max =⎩⎨⎧8-4a ,0<a ≤20,2<a <3综上所述,f (x )max =⎩⎨⎧8-4a ,a ≤20,a >25.(2011·合肥质检)“我们称使f (x )=0的x 为函数y =f (x )的零点.若函数y =f (x )在区间[a ,b ]上是连续的、单调的函数,且满足f (a )·f (b )<0,则函数y =f (x )在区间[a ,b ]上有唯一的零点”.对于函数f (x )=6ln(x +1)-x 2+2x -1,(1)讨论函数f (x )在其定义域内的单调性,并求出函数极值. (2)证明连续函数f (x )在[2,+∞)内只有一个零点.解析 (1)解:f (x )=6ln(x +1)-x 2+2x -1定义域为(-1,+∞),且f ′(x )=6x +1-2x +2=8-2x 2x +1,f ′(x )=0⇒x =2(-2舍去).由表可知,f(x)值在区间(-1,2]上单调递增,在[2,+∞)上单调递减.∴当x=2时,f(x)的极大值为f(2)=6ln3-1.(2)证明:由(1)知f(2)=6ln3-1>0,f(x)在[2,7]上单调递减,又f(7)=6ln8-36=18(ln2-2)<0,∴f(2)·f(7)<0.∴f(x)在[2,7]上有唯一零点.当x∈[7,+∞)时,f(x)≤f(7)<0,故x∈[7,+∞)时,f(x)不为零.∴y=f(x)在[7,+∞)上无零点.∴函数f(x)=6ln(x+1)-x2+2x-1在定义域内只有一个零点.6.已知函数f(x)=-x3+3x2+9x+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.思路本题考查多项式的导数公式及运用导数求函数的单调区间和函数的最值,题目中需注意应先比较f(2)和f(-2)的大小,然后判定哪个是最大值从而求出a.解析 (1)f ′(x )=-3x 2+6x +9. 令f ′(x )<0,解得x <-1,或x >3,∴函数f (x )的单调递减区间为(-∞,-1),(3,+∞). (2)∵f (-2)=8+12-18+a =2+a , f (2)=-8+12+18+a =22+a , ∴f (2)>f (-2).∵在(-1,3)上f ′(x )>0, ∴f (x )在(-1,2]上单调递增.又由于f (x )在[-2,-1)上单调递减, ∴f (-1)是f (x )的极小值,且f (-1)=a -5.∴f (2)和f (-1)分别是f (x )在区间[-2,2]上的最大值和最小值,于是有22+a =20,解得a =-2.∴f (x )=-x 3+3x 2+9x -2. ∴f (-1)=a -5=-7,即函数f (x )在区间[-2,2]上的最小值为-7.7.已知函数g (x )=ax 3+bx 2+cx (a ∈R 且a ≠0),g (-1)=0,且g (x )的导函数f (x )满足f (0)f (1)≤0.设x 1、x 2为方程f (x )=0的两根.(1)求ba 的取值范围;(2)若当|x 1-x 2|最小时,g (x )的极大值比极小值大43,求g (x )的解析式.解析 (1)∵g (x )=ax 3+bx 2+cx ,∴g (-1)=-a +b -c =0,即c =b -a .又f (x )=g ′(x )=3ax 2+2bx +c ,由f (0)f (1)≤0,得c (3a +2b +c )≤0,即(b -a )(3b +2a )≤0.∵a ≠0,∴(b a -1)(3·b a +2)≤0,解得-23≤ba ≤1. 又∵方程f (x )=3ax 2+2bx +c =0(a ≠0)有两根,∴Δ≥0.而Δ=(2b )2-4×3a ×c =4b 2-12a (b -a )=4(b -32a )2+3a 2>0恒成立,于是,b a 的取值范围是[-23,1].(2)∵x 1、x 2是方程f (x )=0的两根,即3ax 2+2bx +c =0的两根为x 1、x 2,∴x 1+x 2=-2b 3a ,x 1x 2=c 3a =b -a 3a =b 3a -13.∴|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=(-2b 3a )2-4(b 3a -13)=49·(b a )2-43·b a +43=49(b a -32)2+13.∵-23≤b a ≤1,∴当且仅当ba =1,即a =b 时,|x 1-x 2|2取最小值,即|x 1-x 2|取最小值.此时,g (x )=ax 3+ax 2,f (x )=3ax 2+2ax =ax (3x +2). 令f (x )=0,得x 1=-23,x 2=0.若a >0,当x 变化时,f (x )、g (x )的变化情况如下表:由上表可知,g (x )的极大值为g (-23)=427a ,极小值为g (0)=0. 由题设,知427a -0=43,解得a =9,此时g (x )=9x 3+9x 2; 若a <0,当x 变化时,f (x )、g (x )的变化情况如下表:由上表可知,g (x )的极大值为g (0)=0,极小值为g (-23)=427a .由题设知0-427a =43,解得a =-9,此时g (x )=-9x 3-9x 2. 点评 本题的难点是第(2)问,有两处值得思考:①|x 1-x 2|取得最小值时,会有怎样的结论?②怎样求出g (x )的极大值、极小值?在问题的求解过程中,由根与系数的关系建立|x 1-x 2|2关于ba 的函数关系式,由第(1)问中b a ∈[-23,1]求得|x 1-x 2|2取最小值,即|x 1-x 2|取得最小值时的条件是a =b .然后在求g (x )的极大值、极小值时,需要对a 分a >0、a <0进行讨论,得到相应的极大值、极小值.。

高三北师大数学理一轮复习限时规范训练 选修44 第2讲 参数方程

高三北师大数学理一轮复习限时规范训练 选修44 第2讲 参数方程

第2讲 参数方程(时间:30分钟 满分:60分)一、填空题(每小题5分,共40分)1.(2013·深圳模拟)直线⎩⎨⎧x =-2-2t ,y =3+2t(t 为参数)上与点A (-2,3)的距离等于2的点的坐标是________.解析 由题意知(-2t )2+(2t )2=(2)2,所以t 2=12,t =±22,代入⎩⎪⎨⎪⎧x =-2-2t ,y =3+2t(t 为参数),得所求点的坐标为(-3,4)或(-1,2). 答案 (-3,4)或(-1,2)2.(2013·东莞模拟)若直线l :y =kx 与曲线C :⎩⎨⎧x =2+cos θ,y =sin θ(参数θ∈R )有唯一的公共点,则实数k =________.解析 曲线C 化为普通方程为(x -2)2+y 2=1,圆心坐标为(2,0),半径r =1.由已知l 与圆相切,则r =|2k |1+k 2=1⇒k =±33.答案 ±333.直线3x +4y -7=0截曲线⎩⎨⎧x =cos α,y =1+sin α(α为参数)的弦长为________.解析 曲线可化为x 2+(y -1)2=1,圆心到直线的距离d =|0+4-7|9+16=35,则弦长l =2r 2-d 2=85.答案 854.已知直线l 1:⎩⎨⎧ x =1-2t ,y =2+kt (t 为参数),l 2:⎩⎨⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k =________;若l 1⊥l 2,则k =________.解析 将l 1、l 2的方程化为直角坐标方程得l 1:kx +2y -4-k =0,l 2:2x +y -1=0,由l 1∥l 2,得k 2=21≠4+k1⇒k =4,由l 1⊥l 2,得2k +2=0⇒k =-1. 答案 4 -15.(2013·湛江调研)参数方程⎩⎨⎧x =3+3cos θ,y =-3+3sin θ(θ为参数)表示的图形上的点到直线y =x 的最短距离为________.解析 参数方程⎩⎪⎨⎪⎧x =3+3cos θ,y =-3+3sin θ化为普通方程为(x -3)2+(y +3)2=9,圆心坐标为(3,-3),半径r =3,则圆心到直线y =x 的距离d =|3-(-3)|2=32,则圆上点到直线y =x 的最短距离为d -r =32-3=3(2-1). 答案 3(2-1)6.(2011·陕西)直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎨⎧x =3+cos θ,y =sin θ(θ为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________.解析 消掉参数θ,得到关于x 、y 的一般方程C 1:(x -3)2+y 2=1,表示以(3,0)为圆心,以1为半径的圆;C 2:x 2+y 2=1,表示的是以原点为圆心的单位圆,|AB |的最小值为3-1-1=1.答案 17.已知在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与曲线C :⎩⎨⎧x =2cos θ,y =sin θ(θ是参数)有两个不同的交点P 和Q ,则k 的取值范围为________.解析 曲线C 的参数方程:⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ是参数)化为普通方程:x 22+y2=1,故曲线C 是一个椭圆.由题意,利用点斜式可得直线l 的方程为y =kx +2,将其代入椭圆的方程得x 22+(kx +2)2=1,整理得⎝ ⎛⎭⎪⎫12+k 2x 2+22kx +1=0,因为直线l 与椭圆有两个不同的交点P 和Q ,所以Δ=8k 2-4×⎝ ⎛⎭⎪⎫12+k 2=4k 2-2>0,解得k <-22或k >22.即k 的取值范围为 ⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞. 答案 ⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞8.如果曲线C :⎩⎨⎧x =a +2cos θ,y =a +2sin θ(θ为参数)上有且仅有两个点到原点的距离为2,则实数a 的取值范围是________.解析 将曲线的参数方程转化为普通方程,即(x -a )2+(y -a )2=4,由题意可知,以原点为圆心,以2为半径的圆与圆C 总相交,根据两圆相交的充要条件,得0<2a 2<4,∴0<a 2<8,解得0<a <22或-22<a <0. 答案 (-22,0)∪(0,22) 二、解答题(共20分)9.(10分)(2012·新课标全国)已知曲线C 1的参数方程是⎩⎨⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3.(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|P A |2+|PB |2+|PC |2+|PD |2的取值范围. 解 (1)由已知可得A ⎝ ⎛⎭⎪⎫2cos π3,2sin π3, B ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π2,2sin ⎝ ⎛⎭⎪⎫π3+π2, C ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π,2sin ⎝ ⎛⎭⎪⎫π3+π, D ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+3π2,2sin ⎝ ⎛⎭⎪⎫π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1). (2)设P (2cos φ,3sin φ), 令S =|P A |2+|PB |2+|PC |2+|PD |2, 则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ. 因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].10.(10分)(2012·福建)在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N 的极坐标分别为(2,0),⎝ ⎛⎭⎪⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数). (1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解 (1)由题意知,M ,N 的平面直角坐标分别为(2,0), ⎝⎛⎭⎪⎫0,233.又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝ ⎛⎭⎪⎫1,33,故直线OP 的直角坐标方程为y =33x .(2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0),⎝ ⎛⎭⎪⎫0,233, 所以直线l 的平面直角坐标方程为3x +3y -23=0. 又圆C 的圆心坐标为(2,-3),半径r =2, 圆心到直线l 的距离d =|23-33-23|3+9=32<r .故直线l 与圆C 相交.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修4-4 第二节 参数方程
1.(2011·江苏高考)在平面直角坐标系xOy
中,求过椭圆⎩
⎪⎨
⎪⎧
x =5cos φ,
y =3sin φ(φ为参
数)的右焦点,且与直线⎩
⎪⎨
⎪⎧
x =4-2t ,
y =3-t (t 为参数)平行的直线的普通方程.
解:由题设知,椭圆的长半轴长a =5,短半轴长b =3,从而c =a 2
-b 2
=4,所以右焦点为(4,0).将已知直线的参数方程化为普通方程:x -2y +2=0.
故所求直线的斜率为12,因此其方程为y =1
2(x -4),
即x -2y -4=0.
2.在椭圆x 29+y 2
4=1上求一点M ,使点M 到直线x +2y -10=0的距离最小,并求出最小
距离.
解:因为椭圆的参数方程为⎩⎪⎨
⎪⎧
x =3cos φ,
y =2sin φ
(φ为参数),
所以可设点M 的坐标为(3cos φ,2sin φ). 由点到直线的距离公式,得到点M 到直线的距离为
d =
|3cos φ+4sin φ-10|5
=|5cos φ·35+sin φ·4
5
-10|
5

1
5
|5cos(φ-φ0)-10|, 其中φ0满足cos φ0=35,sin φ0=4
5.
由三角函数的性质知,
当φ-φ0=0时,d 取最小值 5. 此时,3cos φ=3cos φ0=9
5,
2sin φ=2sin φ0=8
5.
因此,当点M 位于(95,8
5
)时,
点M 到直线x +2y -10=0的距离取最小值 5.
3.已知曲线C 的极坐标方程是ρ=2sin θ,直线l 的参数方程是 ⎩⎪⎨⎪⎧
x =-3
5t +2,y =45t
(t 为参数).
(1)将曲线C 的极坐标方程化为直角坐标方程;
(2)设直线 l 与x 轴的交点是M ,N 是曲线C 上一动点,求|MN |的最大值. 解:(1)曲线C 的极坐标方程可化为ρ2
=2ρsin θ, 又x 2
+y 2
=ρ2
,x =ρcos θ,y =ρsin θ, 所以曲线C 的直角坐标方程为x 2
+y 2
-2y =0. (2)将直线l 的参数方程化为普通方程, 得y =-4
3(x -2),
令y =0得x =2, 即M 点的坐标为(2,0).
又曲线C 为圆,且圆心坐标为(0,1),半径r =1, 则|MC |= 5.
所以|MN |≤|MC |+r =5+1. 即|MN |的最大值为5+1.
4.已知圆M :⎩⎪⎨


x =1+cos θ,y =sin θ
(θ为参数)的圆心F
是抛物线E :⎩⎪⎨


x =2pt 2
,y =2pt

焦点,过焦点F 的直线交抛物线于A 、B 两点,求AF ·FB 的取值范围.
解:圆M :⎩
⎪⎨
⎪⎧
x =1+cos θ,
y =sin θ的普通方程是(x -1)2+y 2
=1,
所以F (1,0).
抛物线E :⎩⎪⎨
⎪⎧
x =2pt 2

y =2pt
的普通方程是y 2
=2px ,
所以p
2
=1,p =2,抛物线的方程为y 2
=4x . 设过焦点F 的直线的参数方程为⎩⎪⎨
⎪⎧
x =1+t cos θ
y =t sin θ
,(t 为参数),
代入y 2
=4x ,得
t 2sin 2θ-4t cos θ-4=0.
所以AF ·FB =|t 1t 2|=4
sin 2θ
.
因为0<sin 2
θ≤1,
所以AF ·FB 的取值范围是[4,+∞).
5.(2012·厦门模拟)在平面直角坐标系xOy 中,已知曲线C 的参数方程为

⎪⎨
⎪⎧
x =2cos α,y =sin α(α为参数).以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐
标系,直线l 的极坐标方程为ρcos(θ-π
4
)=2 2.
(1)求直线l 的直角坐标方程;
(2)点P 为曲线C 上的动点,求点P 到直线l 距离的最大值. 解:(1)ρcos(θ-π
4)=22化简ρcos θ+ρsin θ=4,
∴直线l 的直角坐标方程为x +y =4; (2)设点P 的坐标为(2cos α,sin α), 得P 到直线l 的距离d =|2cos α+sin α-4|
2

即d =|5sin α+φ-4|2,其中cos φ=15,sin φ=25.
当sin(α+φ)=-1时,d max =22+
10
2
. 6.(2012·福建高考)在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨

x =3cos αy =sin α
(α为参数).
(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,π
2
),判断点P 与直线l 的位置关系;
(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 解: (1)把极坐标系下的点P (4,π
2
)化为直角坐标,得P (0,4).
因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上. (2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线
l 的距离为
d =|3cos α-sin α+4|
2=2cos α+π
6+4
2
=2cos(α+π
6
)+2 2.
由此得,当cos(α+π
6)=-1时,d 取得最小值,且最小值为 2.
7.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨
⎪⎧
x =3-2
2
t ,y =5+2
2
t (t 为参数).在极
坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.
(1)求圆C 的直角坐标方程;
(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)由ρ=25sin θ,得x 2
+y 2
-25y =0, 即x 2
+(y -5)2
=5.
(2)法一:将l 的参数方程代入圆C 的直角坐标方程, 得(3-
22t )2+(2
2
t )2=5, 即t 2-32t +4=0.
由于Δ=(32)2
-4×4=2>0,故可设t 1,t 2是上述方程的两实根, 所以⎩⎨

t 1+t 2=32,t 1·t 2=4.
又直线l 过点P (3,5),
故由上式及t 的几何意义得|PA |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2. (2)法二:因为圆C 的圆心为(0,5),半径r =5, 直线l 的普通方程为:y =-x +3+ 5.
由⎩⎨

x 2+y -52=5,y =-x +3+ 5.得x 2
-3x +2=0.
解得:⎩⎨

x =1,y =2+ 5.
或 ⎩⎨

x =2,y =1+ 5.
不妨设A (1,2+5),B (2,1+5), 又点P 的坐标为(3,5), 故|PA |+|PB |=8+2=3 2.
8.已知椭圆⎩⎪⎨
⎪⎧
x =4cos φ,
y =5sin φ.(φ为参数)上相邻两个顶点为A 、C ,又B 、D 为椭圆上
两个动点,且分别在直线AC 的两侧,求四边形ABCD 面积的最大值.
解:设相邻两个顶点A (4,0)、C (0,5)、AC 所在直线方程为5x +4y -20=0.
又设B (4cos α,5sin α),D (4cos β,5sin β), 其中α∈(0,π2),β∈(π
2
,2π).点B 到AC 距离
d 1=
2041
|cos α+sin α-1|

20
41|2sin(α+π4)-1|≤20
41
(2-1)
(当α=π
4时取等号).
点D 到AC 的距离
d 2=
20
41|2sin(β+π4)-1|≤2041
(2+1)(当α=5
4π时取等号).
∴所求S 四边形ABCD 的最大值为
12AC ·[2041(2-1)+20
41(2+1)]=20 2。

相关文档
最新文档