2015-2016学年新人教版九年级数学第一学期期中试卷及答案

合集下载

2015-2016东丽区九年级数学(上)期中试卷及答案

2015-2016东丽区九年级数学(上)期中试卷及答案

∴△OAM≌△OCN(SAS) .∴∠AOM=∠CON.∴∠AOM= ×(90°﹣45°)=22.5°. ∴∠HOA=45°﹣22.5°=22.5°. ∴旋转过程中,当 MN 和 AC 平行时,正方形 OABC 旋转的度数为 22.5°. (3)在旋转正方形 OABC 的过程中,p 值不变化. 证明:∵△OME≌△OMN(已证) ,∴ME=MN.∵AE=CN, ∴MN=ME=AM+AE=AM+CN.∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4. ∴在旋转正方形 OABC 的过程中,p 值不变化,等于 4.
A. 0, 0
B. 1, 0
C. 1, 1
D. 2.5,0.5
11.如图,将矩形 ABCD 绕点 A 顺时针旋转得到矩形 AB ' C ' D ' 的位置,旋转角为
0 90 ,若 1=110, 则 (

A. 40
பைடு நூலகம்
B. 20
C. 25


1 ( x 3)2 1 交于点 A(1,3) ,过点 A 作 x 轴的平 2
行线,分别交两条抛物线于点 B,C,则以下结论:
①无论 x 取何值, y2 的值总是正数;② a 1 ;③当 x 0 时, y2 y1 4 ;④2AB=3AC. 其中正确的结论是_____________. 三、解答题(本大题共 7 小题,共 66 分) 19. 解方程: x2 2 x x 2 20. 已知:关于 x 的一元二次方程 2 x 2 kx 1 0 . (1)求证:方程有两个不相等的实数根; (2)若方程的一个根是 1 ,求另一个根及 k 的值.

2015-2016学年第一学期期末教学质量监测九年级数学试题附答案

2015-2016学年第一学期期末教学质量监测九年级数学试题附答案

2015-2016 学年第一学期期末教学质量监测九年级数学试题2016.1亲爱的考生:欢迎参加考试!请你认真审题,积极思考,仔细答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共 6 页,满分 150 分,考试时间 120 分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效. 3.答题前,请认真阅读答题纸上的《注意事项》 按规定答题. 4.本次考试不得使用计算器,请耐心解答.祝你成功!一、选择题(本大题共 10 小题,每小题 4 分,共 40 分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.下列函数的图象是双曲线的是( ▲ )A . y = 2 x - 1B . y =1C . y = xD . y = x 2x2.下列事件是随机事件的是( ▲ )A .火车开到月球上;B .抛出的石子会下落;C .明天临海会下雨;D .早晨的太阳从东方升起.3.二次函数 y =x 2+4x -5 的图象的对称轴为( ▲ )A .x =4B .x =﹣4C .x =2D .x =﹣24.如图,⊙O 是△ABC 的内切圆,D ,E ,F 是切点,∠A =50°,∠C =60°,则∠DOE =( ▲ )A .70°B .110°C .120°D .130°C B ′ CC ′E F OBD(第 4 题)A B(第 5 题)A△5.如图,把 ABC 绕着点 A 顺时针方向旋转 34°,得到△AB ′C ′,点 C 刚好落在边 B ′C ′上.则∠C ′=( ▲ )A .56°B .62°C .68°D .73°6.将抛物线 y =3x 2 先向左平移一个单位,再向上平移一个单位,两次平移后得到的抛物线解析式为( ▲ )A .y =3(x +1)2+1B .y =3(x +1)2-1C .y =3(x -1)2+1D .y =3(x -1)2-17.小洋用一张半径为 24 cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计), 如果做成的圆锥形小丑帽子的底面半径为 10 cm ,那么这张扇形纸板的面积是( ▲ )A .120 π cm 2B .240 π cm 2C .260 π cm 2D .480 π cm 224 cmy A nA 4 A 3 A 2 A 1…B nB 4C 3C 2B 3B 2C 1B 1O(第 10 题)x4 (1 + k )2 = 1 B . k + k 2 = 1 4 4 (1 + k )2 = 1(x - 1)2 = ( 2 ) ,所以 x8.用锤子以均匀的力敲击铁钉入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子的长度后一次为前一次的 k 倍(0<k <1).已知一个钉子受击 3 次后恰好全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的 4 7,设铁钉的长度为 1,那么符合这一事实的方程是( ▲ )A .4 4 7 7 74 4 4 C . + k + k 2 = 1 D . + 7 7 7 7 79.利用平方根去根号可以构造一个整系数方程.例如: x =2 + 1 时,移项得 x - 1 = 2 ,两边平方得22 - 2 x + 1 = 2 ,即 x 2 - 2 x - 1 = 0 .仿照上述构造方法,当 x =6 - 1 2时,可以构造出一个整系数方程是( ▲ )A . 4 x 2 + 4 x + 5 = 0B . 4 x 2 + 4 x - 5 = 0C . x 2 + x + 1 = 0D . x 2 + x - 1 = 010.如图,在 y 轴正半轴上依次截取 OA 1=A 1A 2=A 2A 3=…=A n-1A n (n 为正整数),过 A 1,A 2,A 3,…,A n 分别作 x 轴的平行线,与反比例函数 y =2 x(x >0)交于点 B 1,B 2,B 3,…,B n ,如图所示的 Rt △B 1C 1B 2,△Rt B 2C 2B 3,△Rt B 3C 3B 4,…,△Rt B n-1C n-1B n 面积分别记为 S 1,S 2,S 3,…,S n-1,则 S 1+S 2+S 3+…+S n-1=( ▲ )A .1B .2C .1﹣1 1D .2﹣n n二、填空题(本大题共 6 小题,每小题 5 分,共 30 分)11.点 A (1,19)与点 B 关于原点中心对称,则点 B 的坐标为▲ .12.如果反比例函数 y = m - 3x的图象在 x <0 的范围内,y 随 x 的增大而减小,那么 m 的取值范围是 ▲13.如图,点 O 是正五边形 ABCDE 的中心,则∠BAO 的度数为▲ .AyD CPBOEH GAOBC D(第 13 题)A E O FB x(第 15 题) (第 16 题)14.一个盒子中装有大小、形状一模一样的白色弹珠和黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是13.如果盒子中白色弹珠有4颗,则盒中有黑色弹珠▲颗.15.如图,正方形ABCD的顶点A,B与正方形EFGH的顶点G,H同在一段抛物线上,且抛物线的顶点同时落在CD和y轴上,正方形边AB与EF同时落在x轴上,若正方形ABCD的边长为4,则正方形EFGH的边长为▲.2-1-c-n-j-y16.如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=▲秒时,点P与点C中心对称,且对称中心在直径AB上.三、解答题(本大题共8小题,第17题10分,第18题7分,第19题8分,第20题9分,第21题10分,第22题10分,第23题12分,第24题14分,共80分)17.解方程:(1)4x2-20=0;(2)x2+3x-1=0.18.动手画一画,请把下图补成以A为对称中心的中心对称图形.A19.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD∥AC;(2)若BC=8,DE=3,求⊙O的直径.D CB EOA20.已知关于x的一元二次方程x2+2(k-1)x+k2-1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)x=0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.同时从袋中各随机摸出 1 个球,并计算摸出的这 2 个小球上数字之和,记录后都将小球放回袋中搅匀,进行重21.一只不透明的袋子中装有 4 个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x .甲、乙两人每次..复试验.实验数据如下表:摸球总次数“和为 8”出现的频数102 2010 3013 6024 9030 12037 18058 24082 330110 450150“和为 8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为 8”的频率将稳定在它的概率附近.估计出现“和为 8” 的概率是▲;(2)当 x =7 时,请用列表法或树状图法计算“和为 8”的概率;并判断 x =7 是否可能.22.如图是一种新型娱乐设施的示意图,x 轴所在位置记为地面,平台 AB ∥x 轴,OA =6 米,AB =2 米, BC 是反比例函数 y = k x的图象的一部分,CD 是二次函数 y =﹣x 2+mx +n 图象的一部分,连接点 C 为抛物线的顶点,且 C点到地面的距离为 2 米, D 点是娱乐设施与地面的一个接触点.(1)试求 k ,m ,n 的值;(2)试求点 B 与点 D 的水平距离.yA BCOD x23.如图 1,正方形 ABCD 与正方形 AEFG 的边 AB ,AE (AB <AE )在一条直线上,正方形 AEFG 以点 A 为旋转中心逆时针旋转,设旋转角为 α.在旋转过程中,两个正方形只有点 A 重合,其它顶点均不重合,连接 BE ,DG .(1)当正方形 AEFG 旋转至如图 2 所示的位置时,求证:BE =DG ;(2)如图 3,如果 α=45°,AB =2,AE =3 2 .①求 BE 的长;②求点 A 到 BE 的距离;(3)当点 C 落在直线 BE 上时,连接 FC ,直接写出∠FCD 的度数.GGADGADB CBCFABDCFE(图 1)FE(图 2)E(图 3)24.定义:把一个半圆与抛物线的一部分组成的封闭图形称为“蛋圆”.如图,抛物线 y =x 2-2x -3 与 x 轴交于点 A ,B ,与 y 轴交于点 D ,以 AB 为直径,在 x 轴上方作半圆交 y 轴于点 C ,半圆的圆心记为 M ,此时这个半圆与这条抛物线 x 轴下方部分组成的图形就称为“蛋圆”.(1)直接写出点 A ,B ,C 的坐标及“蛋圆”弦 CD 的长;A▲ ,B ▲ ,C ▲ , CD = ▲ ;(2)如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.①求经过点 C 的“蛋圆”切线的解析式;②求经过点 D 的“蛋圆”切线的解析式;(3)由(2)求得过点 D 的“蛋圆”切线与 x 轴交点记为 E ,点 F 是“蛋圆”上一动点,试问是否存在 S △CDE =△S CDF ,若存在请求出点 F 的坐标;若不存在,请说明理由;(4)点 P 是“蛋圆”外一点,且满足∠BPC =60°,当 BP 最大时,请直接写出点 P 的坐标.yC yCAO M B x A O M B xDD(备用图)9数学参考答案2016.1一、选择题(每小题4分,共40分)题号答案1B2C3D4B5D6A7B8C9B10C二、填空题(每小题 5 分,共 30 分)11.(﹣1,﹣19)12.m >3 13.54° 14.815. 2 5 - 216. 4914 22 32或 或 或9 9三、解答题(共 80 分)17.(10 分,每小题 5 分)(1)4x 2-20=0;(2)x 2+3x -1=0.4x 2=20a =1,b =3,c =﹣1x 2=5△=32-4×1×(﹣1)=13x = ± 5x =- 3 ± 13 218.(7 分)略(图形基本形状差不多就给分)19.(8 分)(1)∵AB 是⊙O 的直径∴∠C =90°∵OD ⊥BC∴∠OEB =∠C =90°∴OD ∥AC………4 分(2)令⊙O 的半径为 r ,根据垂径定理可得:r 2=42+(r -3)2,解得:r = 25 25,所以⊙O 的直径为 . ………8 分6 320.(9 分)(△1) =[2(k -1)]2-4(k 2-1)=﹣8k +8∵方程有两个不相等的实数根,∴﹣8k +8>0,解得:k <1.………4 分(2)把 x =0 代入方程得:k 2-1=0,解得:k =±1∵k <1 ∴k=﹣1 ∴x=0 可能是方程的一个根∴原方程为:x 2-4x =0 解得:x 1=0,x 2=4 ∴方程的另一个根为 4.………9 分21.(10 分)(1)13(或者 0.33) ………3 分(2)列表略,可得:P 和为 8= 2 1 1= ≠ ,所以 x 的值不可以取 7.………10 分12 6 322.(10 分)(1)把 B (2,6)代入 y =k 12,可得 y = . x x把 y =2 代入 y =12x, 可得 x =6,即 C 点坐标为(6,2).23.(12 分)(1)由题意可得: ⎨∠BAE = ∠DAG = a ⎪ A B = AD ⎩ y = x 2 - 2x - 3得: x 2-(2 +k)x =∵二次函数 y =﹣x 2+mx +n 的顶点为 C ,∴y =﹣(x -6)2+2,∴y =﹣x 2+12x -34. AE∴k =12,m =12,n =﹣34.………6 分C(2)把 y =0 代入 y =﹣(x -6)2+2,解得:x 1=6+ 2 ,x 2=6- 2 .点 B 与点 D 的距离为 6+ 2 -2=4+ 2 .………10 分ODB⎧ A E = AG ⎪⎩∴△ABE ≌△ADG (SAS )G∴BE =DG………4 分(2)①作 BN ⊥AE 于点 NANDF在△ABN 中可求得 AN =BN = 2 .在△BEN 中可求得 BE = 10 .………7 分MBCE(图 3)②作 AM ⊥BE 于点 M .S △ABE = 1 1⨯ AE ⨯ BN = ⨯ 3 2 ⨯ 2 =32 2又∵S △ABE = 1 1⨯ BE ⨯ AM = ⨯ 10 ⨯ AM2 21 3∴ ⨯ 10 ⨯ AM =3 ∴AM = 2 510即点 A 到 BE 的距离 3 510 .………10 分(3)∠FCD 的度数为 45°或 135°.………12 分(注:可以构造三垂直的基本图形求两个角度,也可用四点共圆求两个角度)24.(14 分)(1)A (﹣1,0),B (3,0),C (0,3 ),CD = 3+ 3………4 分(2)①如图 1,NC ⊥CM ,可求得 N (﹣3,0)yCN E A O M B x3∴经过点 C 的“蛋圆”切线的解析式为: y =x + 3 …7 分 3A②过点 D 的“蛋圆”切线的解析式为:y =kx -3D⎧ y = kx - 3 由 ⎨ ∵直线与抛物线只有一个交点,∴k =﹣2,(图 1) yCF 1∴经过点 D 的“蛋圆”切线的解析式为: y = -2 x - 3 .………10 分A EO M Q B x(3)如图 2∵经过点 D 的“蛋圆”切线的解析式为: y = -2 x - 3ADF 2,),F 2(, -).………12 分∴E 点坐标为( -∵S △CDE =S △CDF3 2,0),∴F 点的横坐标为 3 2,在 △Rt MQF 1 中可求得 F 1Q = 15 2,把 x = 3 15 代入 y =x 2-2x -3,可求得 y = - .2 4∴F 1( 3 2 2 2 4(4)如图 3,考虑到∠BPC =60°保持不变,因此点 P 在一圆弧上运动.yP此圆是以 K 为圆心(K 在 BC 的垂直 平分线上,且∠BKC =120°),BK 为半径. 当 BP 为直径时,BP 最大.在 △Rt PCR 中可求得 PR =1,RC = 3 . RC KA OM B x所以点 P 的坐标为(1,2 3 ).………14 分AD(图 3)。

2015-2016年度第一学期期中考试安排

2015-2016年度第一学期期中考试安排

什川中学二○一五至二○一六学年度
第一学期期中测试安排表
一.考试科目及时间
说明:①上午:8:00—10:00,10:20---12:00下午:2:30—4:30
②语、数、英120分钟,物理、化学100分钟
二.监考老师
三.试场安排
注:1、七、八年级各班对调,括号内上为七年级学生,下为八年级学
生。

2、八年级物理考试对调入七年级的学生在一楼阶梯教室考试,七年级正常上课。

3、九年级单人单桌,分为三个考场,每个考场30人。

4、试卷必须按考试号顺序收取。

四.评卷工作
注:1、评卷、登分、统计、分析等工作须于11月6日上午前完成。

2、成绩分值按优秀率×20%+及格率×20%+均分×60%计算。

总负责人:王中德马宏
组织者:魏公桥
皋兰县什川中学
二○一五年十一月二日。

山东省聊城市莘县九年级数学上学期期中试题(含解析) 新人教版-新人教版初中九年级全册数学试题

山东省聊城市莘县九年级数学上学期期中试题(含解析) 新人教版-新人教版初中九年级全册数学试题

某某省聊城市莘县2016届九年级数学上学期期中试题一、选择题(共12小题,每小题3分,满分36分)1.下列说法正确的是( )A.所有的矩形都是相似形B.有一个角等于100°的两个等腰三角形相似C.对应角相等的两个多边形相似D.对应边成比例的两个多边形相似2.雨后初晴,一学生在运动场上玩耍,从他前面2米远一块小积水处,他看到旗杆顶端的倒影,如果旗杆底端到积水处的距离为40米,该生的眼部高度是1.5米,那么旗杆的高度是( )A.30米B.40米C.25米D.35米3.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为( )A.6.5米B.9米C.13米D.15米4.在正方形网格中,△ABC的位置如图所示,则cosB的值为( )A.B.C.D.5.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是( )A.4 B.8 C.D.6.以直角坐标系的原点O为圆心,以1为半径作圆.若点P是该圆上第一象限内的一点,且OP与x轴正方向组成的角为α,则点P的坐标为( )A.(cosα,1)B.(1,sinα)C.(sinα,cosα)D.(cosα,sinα)7.一条弦分圆为1:5两部分,则这条弦所对的圆周角的度数为( )A.30° B.150°C.30°或150°D.不能确定8.相邻两根电杆都用钢索在地面上固定,如图,一根电杆钢索系在离地面4米处,另一根电杆钢索系在离地面6米处,则中间两根钢索相交处点P离地面( )A.2.4米B.2.8米C.3米D.高度不能确定9.点P在⊙O内,OP=2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为( ) A.1cm B.2cm C.cm D.cm10.圆内接四边形ABCD中,∠A:∠B:∠C:∠D可以是( )A.1:2:3:4 B.1:3:2:4 C.4:2:3:1 D.4:2:1:311.在△ABC中,若角A,B满足|cosA﹣|+(1﹣tanB)2=0,则∠C的大小是( ) A.45° B.60° C.75° D.105°12.两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为( )A.B.C.sinαD.1二、填空题(共5小题,每小题3分,满分15分)13.如图,在△ABC中,DE∥BC,BC=6cm,S△ADE:S△ABC=1:4,则DE的长为__________.14.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为__________.15.如图所示,扇形AOB的圆心角为120°,半径为2,则图中阴影部分的面积为__________.16.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需__________米.17.已知,Rt△ABC中,∠C=90°,AC=6,AB=10,则三角形内切圆的半径为__________.三、解答题(共8小题,满分69分)18.计算(1)cos60°﹣sin245°+tan230°+cos230°﹣sin30°(2)cos245°﹣.19.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD.20.如图,OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD交OC于点E.求证:CD=CE.21.如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A 处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D 的仰角为30°.求该古塔BD的高度(结果保留根号).22.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC 于点E.求证:DE是⊙O的切线.23.如图,△ABC是一X锐角三角形的硬纸片.AD是边BC上的高,BC=40cm,AD=30cm.从这X硬纸片剪下一个长HG是宽HE的2倍的矩形EFGH.使它的一边EF在BC上,顶点G,H 分别在AC,AB上.AD与HG的交点为M.(1)求证:;(2)求这个矩形EFGH的周长.24.如图,BC为⊙O的直径,AD⊥BC,垂足为D,弧AB等于弧AF,BF和AD相交于E.求证:AE=BE.25.某居民小区有一朝向为正南的居民楼(如图),该居民楼的一楼是高为6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角是30°时.(1)超市以上的居民住房采光是否有影响,影响多高?(2)若要使采光不受影响,两楼相距至少多少米?(结果保留根号)2015-2016学年某某省聊城市莘县九年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列说法正确的是( )A.所有的矩形都是相似形B.有一个角等于100°的两个等腰三角形相似C.对应角相等的两个多边形相似D.对应边成比例的两个多边形相似【考点】相似图形.【分析】利用相似图形的判定方法分别判断得出即可.【解答】解:A、所有的矩形都是相似形,对应边的比值不一定相等,故此选项错误;B、有一个角等于100°的两个等腰三角形相似,此角度一定是顶角,即可得出两三角形相似,故此选项正确;C、对应角相等的两个多边形相似,对应边的比值不一定相等,故此选项错误;D、对应边成比例的两个多边形相似,对应角不一定相等,故此选项错误;故选:B.【点评】此题主要考查了相似图形的判定,熟练应用判定方法是解题关键.2.雨后初晴,一学生在运动场上玩耍,从他前面2米远一块小积水处,他看到旗杆顶端的倒影,如果旗杆底端到积水处的距离为40米,该生的眼部高度是1.5米,那么旗杆的高度是( )A.30米B.40米C.25米D.35米【考点】相似三角形的应用.【分析】因为学生和旗杆平行,且光的入射角等于反射角,因此△ABO∽△CDO,利用对应边成比例即可解答.【解答】解:∵CD⊥BD,AB⊥BD,∴∠D=∠B=90°,又∵∠COD=∠AOB,∴△ABO∽△CDO,∴=,∴=,∴AB=30m,∴旗杆的高度为30米.故选:A.【点评】此题主要考查了相似三角形的应用,利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度是解题关键.3.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为( )A.6.5米B.9米C.13米D.15米【考点】垂径定理的应用.【专题】压轴题.【分析】根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O.连接OA.根据垂径定理和勾股定理求解.【解答】解:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O连接OA.根据垂径定理,得AD=6设圆的半径是r,根据勾股定理,得r2=36+(r﹣4)2故选:A.【点评】此题综合运用了勾股定理以及垂径定理.注意构造由半径、半弦、弦心距组成的直角三角形进行有关的计算.4.在正方形网格中,△ABC的位置如图所示,则cosB的值为( )A.B.C.D.【考点】勾股定理;锐角三角函数的定义.【专题】压轴题;网格型.【分析】先设小正方形的边长为1,然后找个与∠B有关的RT△ABD,算出AB的长,再求出BD的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.【点评】本题考查了锐角三角函数的定义以及勾股定理的知识,此题比较简单,关键是找出与角B有关的直角三角形.5.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是( )A.4 B.8 C.D.【考点】切线长定理;等边三角形的判定与性质.【专题】压轴题.【分析】根据切线长定理知PA=PB,而∠P=60°,所以△PAB是等边三角形,由此求得弦AB的长.【解答】解:∵PA、PB都是⊙O的切线,∴PA=PB,又∵∠P=60°,∴△PAB是等边三角形,即AB=PA=8,故选B.【点评】此题主要考查的是切线长定理以及等边三角形的判定.6.以直角坐标系的原点O为圆心,以1为半径作圆.若点P是该圆上第一象限内的一点,且OP与x轴正方向组成的角为α,则点P的坐标为( )A.(cosα,1)B.(1,sinα)C.(sinα,cosα)D.(cosα,sinα)【考点】坐标与图形性质;圆的认识;锐角三角函数的定义.【专题】压轴题.【分析】作PA⊥x轴于点A.那么OA是α的邻边,是点P的横坐标,为cosα;PA是α的对边,是点P的纵坐标,为sinα.【解答】解:作PA⊥x轴于点A,则∠POA=α,sinα=,∴PA=OP•sinα,∵cosα=,∴OA=OP•cosα.∵OP=1,∴PA=sinα,OA=cosα.∴P点的坐标为(cosα,sinα)故选D.【点评】解决本题的关键是得到点P的横纵坐标与相应的函数和半径之间的关系.7.一条弦分圆为1:5两部分,则这条弦所对的圆周角的度数为( )A.30° B.150°C.30°或150°D.不能确定【考点】圆心角、弧、弦的关系;圆周角定理.【分析】一条弦把圆分成1:5两部分,可得两条弧的度数,弧的度数与它所对圆心角的度数相等,一条弧所对的圆周角等于它所对圆心角的一半.【解答】解:∵一条弦分圆为1:5两部分,∴两条弧分别是60°和300°,由弧的度数等于它所对圆心角的度数,而一条弧所对的圆周角等于它所对圆心角度数的一半,可知60°的弧所对的圆周角是30°,300°的弧所对的圆周角是150°.∴这条弦所对的圆周角的度数是30°或150°.故选C.【点评】考查弧的度数与圆心角的度数,同弧所对圆周角与圆心角的关系.8.相邻两根电杆都用钢索在地面上固定,如图,一根电杆钢索系在离地面4米处,另一根电杆钢索系在离地面6米处,则中间两根钢索相交处点P离地面( )A.2.4米B.2.8米C.3米D.高度不能确定【考点】相似三角形的应用.【专题】数形结合.【分析】易得△APB∽△CDP,可得对应高CE与BE之比,易得CD∥PE可得△BPE∽△BDC,利用对应边成比例可得比例式,把相关数值代入求解即可.【解答】解:∵CD∥AB,∴△APB∽△CDP,∴,∴=,∵CD∥PE,∴△BPE∽△BDC,∴=,=,解得PE=2.4.故选A.【点评】考查相似三角形的应用;用到的知识点为:平行于三角形一边的直线与三角形另两边相交,截得的两三角形相似;相似三角形的对应边成比例;对应高的比等于相似比;解决本题的突破点是得到CE与BE的比.9.点P在⊙O内,OP=2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为( ) A.1cm B.2cm C.cm D.cm【考点】垂径定理;勾股定理.【专题】计算题.【分析】过P作AB⊥OP交圆与A、B两点,连接OA,故AB为最短弦长,再解Rt△OPA,即可求得AB的长度,即过点P的最短弦的长度.【解答】解:过P作AB⊥OP交圆与A、B两点,连接OA,如下图所示:故AB为最短弦长,由垂径定理可得:AP=PB已知OA=3,OP=2在Rt△OPA中,由勾股定理可得:AP2=OA2﹣OP2∴AP==cm∴AB=2AP=2cm故此题选D.【点评】本题考查了最短弦长的判定以及垂径定理的运用.10.圆内接四边形ABCD中,∠A:∠B:∠C:∠D可以是( )A.1:2:3:4 B.1:3:2:4 C.4:2:3:1 D.4:2:1:3【考点】圆内接四边形的性质;多边形内角与外角.【分析】根据圆内接四边形的对角互补的性质即可求解.【解答】解:根据圆内接四边形的对角互补的性质知,∠A与∠C,∠B与∠D互补,故选D.【点评】本题考查了圆内接四边形的性质.11.在△ABC中,若角A,B满足|cosA﹣|+(1﹣tanB)2=0,则∠C的大小是( ) A.45° B.60° C.75° D.105°【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质得出cosA=,tanB=1,求出∠A和∠B的度数,继而可求得∠C 的度数.【解答】解:由题意得,cosA=,tanB=1,则∠A=30°,∠B=45°,则∠C=180°﹣30°﹣45°=105°.故选D.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.12.两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为( )A.B.C.sinαD.1【考点】菱形的判定与性质;解直角三角形.【分析】首先过A作AE⊥BC,AF⊥CD于F,垂足为E,F,证明△ABE≌△ADF,从而证明四边形ABCD是菱形,再利用三角函数算出BC的长,最后根据菱形的面积公式算出重叠部分的面积即可.【解答】解:如右图所示:过A作AE⊥BC,AF⊥CD于F,垂足为E,F,∴∠AEB=∠AFD=90°,∵AD∥CB,AB∥CD,∴四边形ABCD是平行四边形,∵纸条宽度都为1,∴AE=AF=1,在△ABE和△ADF中,∴△ABE≌△ADF(AAS),∴AB=AD,∴四边形ABCD是菱形.∴BC=AB,∵=sinα,∴BC=AB=,∴重叠部分(图中阴影部分)的面积为:BC×AE=1×=,故选:A.【点评】此题主要考查了菱形的判定与性质,以及三角函数的应用,关键是证明四边形ABCD 是菱形,利用三角函数求出BC的长.二、填空题(共5小题,每小题3分,满分15分)13.如图,在△ABC中,DE∥BC,BC=6cm,S△ADE:S△ABC=1:4,则DE的长为3cm.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,求证△ADE∽△ABC,利用相似三角形面积的比等于相似比的平方即可求得答案.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∵BC=6cm,∴DE=3cm,故答案为:3cm.【点评】本题考查了相似三角形的判定与性质.关键是利用平行线判断相似三角形,利用相似三角形的性质解题.14.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为5m.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡度为0.75求得竖直高度,再根据勾股定理求出相邻两树间的坡面距离即可.【解答】解:竖直高度=4×0.75=3,∴由勾股定理得:=5m.故答案为:5m.【点评】本题是基础题,考查了解直角三角形的应用坡度坡角问题,以及勾股定理的运用.15.如图所示,扇形AOB的圆心角为120°,半径为2,则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】过点O作OD⊥AB,先根据等腰三角形的性质得出∠OAD的度数,由直角三角形的性质得出OD的长,再根据S阴影=S扇形OAB﹣S△AOB进行计算即可.【解答】解:过点O作OD⊥AB,∵∠AOB=120°,OA=2,∴∠OAD==30°,∴OD=OA=×2=1,AD===.∴AB=2AD=2,∴S阴影=S扇形OAB﹣S△AOB=﹣×2×1=﹣.故答案为:﹣.【点评】本题考查的是扇形面积的计算及三角形的面积,根据题意得出S阴影=S扇形OAB﹣S△AOB 是解答此题的关键.16.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需2+2米.【考点】勾股定理的应用.【专题】压轴题.【分析】地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,因此根据勾股定理求出直角三角形两直角边即可.【解答】解:已知直角三角形的高是2米,根据三角函数得到:水平的直角边是2cos30°=2,则地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,则地毯的长是(2+2)米.【点评】正确计算地毯的长度是解决本题的关键.17.已知,Rt△ABC中,∠C=90°,AC=6,AB=10,则三角形内切圆的半径为2.【考点】三角形的内切圆与内心.【分析】先根据勾股定理计算出BC,然后利用直角边为a、b,斜边为c的三角形的内切圆半径为进行计算.【解答】解:∵∠C=90°,AC=6,AB=10,∴BC===8,∴△ABC的内切圆半径r==2.故答案是:2.【点评】本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.记住直角边为a、b,斜边为c的三角形的内切圆半径为.三、解答题(共8小题,满分69分)18.计算(1)cos60°﹣sin245°+tan230°+cos230°﹣sin30°(2)cos245°﹣.【考点】特殊角的三角函数值.【分析】(1)将特殊角的三角函数值代入求解;(2)将特殊角的三角函数值代入求解.【解答】解:(1)原式=﹣++﹣=;(2)原式=﹣2+++=﹣.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.19.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD.【考点】相似三角形的判定与性质;直角三角形斜边上的中线.【专题】证明题.【分析】(1)根据相似三角形的判定与性质,可得=,根据比例的性质,可得答案;(2)根据直角三角形的性质,可得CE与AE的关系,根据等腰三角形的性质,可得∠EAC=∠ECA,根据角平分线的定义,可得∠CAD=∠CAB,根据平行线的判定,可得答案.【解答】证明:(1)∵AC平分∠BAD,∴∠DAC=∠CAB.∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴=,AC2=AB•AD;(2)∵E是AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA.∵AC平分∠DAB,∴∠CAD=∠CAB,∴CAD=∠ECA,∴CE∥AD.【点评】本题考查了相似三角形的判定与性质,(1)利用了相似三角形的判定与性质,比例的性质;(2)利用了直角三角形的性质,等腰三角形的性质,平行线的判定.20.如图,OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD交OC于点E.求证:CD=CE.【考点】切线的性质.【专题】证明题.【分析】连接OD,根据切线性质求出∠ODC=90°,求出∠A+∠AEO=∠ODA+∠EDC=90°,求出∠CED=∠EDC,根据等腰三角形的判定推出即可.【解答】证明:连接OD,∵OA⊥OB,CD切⊙O于D,∴∠AOE=∠ODC=90°,∴∠A+∠AEO=90°,∠ODA+∠CDE=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠AEO=∠EDC,∵∠AEO=∠CED,∴∠CED=∠EDC,∴CD=CE.【点评】本题考查了切线的性质,等腰三角形的判定和性质,三角形内角和定理的应用,解此题的关键是能正确作出辅助线,并推出∠EDC=∠CED,题目比较好,难度适中.21.如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A 处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D 的仰角为30°.求该古塔BD的高度(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ABD和Rt△BCD中,分别解直角三角形,用BD表示AB和BC,然后根据BC ﹣AB=20m,可求得塔BD的高度.【解答】解:根据题意可知:∠BAD=45°,∠BCD=30°,AC=20m.在Rt△ABD中,∵∠BAD=∠BDA=45°,∴AB=BD.在Rt△BDC中,∵tan∠BCD=,∴=,则BC=BD,又∵BC﹣AB=AC,∴BD﹣BD=20,解得:BD==10+10(m).答:古塔BD的高度为()m.【点评】本题考查了解直角三角形的应用,解答本题的关键是利用仰角建立直角三角形,利用解直角三角形的知识分别用BD表示出AB、BC的长度.22.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC 于点E.求证:DE是⊙O的切线.【考点】切线的判定.【专题】证明题;压轴题.【分析】连接OD,只要证明OD⊥DE即可.【解答】证明:连接OD;∵OD=OB,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠C=∠ODB,∴OD∥AC,∴∠ODE=∠DEC;∴∠DEC=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.23.如图,△ABC是一X锐角三角形的硬纸片.AD是边BC上的高,BC=40cm,AD=30cm.从这X硬纸片剪下一个长HG是宽HE的2倍的矩形EFGH.使它的一边EF在BC上,顶点G,H 分别在AC,AB上.AD与HG的交点为M.(1)求证:;(2)求这个矩形EFGH的周长.【考点】相似三角形的判定与性质;矩形的性质.【专题】几何综合题.【分析】(1)根据矩形性质得出∠AHG=∠ABC,再证明△AHG∽△ABC,即可证出;(2)根据(1)中比例式即可求出HE的长度,以及矩形的周长.【解答】(1)证明:∵四边形EFGH为矩形,∴∠AHG=∠ABC,又∵∠HAG=∠BAC,∴△AHG∽△ABC,∴;(2)解:由(1)得:设HE=xcm,MD=HE=xcm,∵AD=30cm,∴AM=(30﹣x)cm,∵HG=2HE,∴HG=(2x)cm,可得,解得,x=12,故HG=2x=24所以矩形EFGH的周长为:2×(12+24)=72(cm).答:矩形EFGH的周长为72cm.【点评】此题主要考查了相似三角形的判定与性质,根据矩形性质得出△AHG∽△ABC是解决问题的关键.24.如图,BC为⊙O的直径,AD⊥BC,垂足为D,弧AB等于弧AF,BF和AD相交于E.求证:AE=BE.【考点】圆周角定理;圆心角、弧、弦的关系.【专题】证明题.【分析】首先连接AC,由BC为⊙O的直径,根据直径所对的圆周角是直角,可得∠BAC=90°,又由AD⊥BC,根据等角的余角相等,可得∠BAD=∠C,又由弧AB等于弧AF,证得∠BAD=∠ABF,继而证得结论.【解答】证明:连接AC,∵BC为⊙O的直径,∴∠BAC=90°,∴∠ABC+∠C=90°,∵AD⊥BC,∴∠BAD+∠ABD=90°,∴∠BAD=∠C,∵弧AB=弧AF,∴∠C=∠ABF,∴∠ABF=∠BAD,∴AE=BE.【点评】此题考查了圆周角定理以及等腰三角形的判定.注意准确作出辅助线是解此题的关键.25.某居民小区有一朝向为正南的居民楼(如图),该居民楼的一楼是高为6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角是30°时.(1)超市以上的居民住房采光是否有影响,影响多高?(2)若要使采光不受影响,两楼相距至少多少米?(结果保留根号)【考点】相似三角形的应用;平行投影.【专题】压轴题;探究型.【分析】(1)利用三角函数算出阳光可能照到居民楼的什么高度,和6米进行比较.(2)超市不受影响,说明30°的阳光应照射到楼的底部,根据新楼的高度和30°的正切值即可计算.【解答】解:(1)如图1所示:过F点作FE⊥AB于点E,∵EF=15米,∠AFE=30°,∴AE=5米,∴EB=FC=米.∵20﹣5>6,∴超市以上的居民住房采光要受影响;(2)如图2所示:若要使超市采光不受影响,则太阳光从A直射到C处.∵AB=20米,∠ACB=30°∴BC===20米答:若要使超市采光不受影响,两楼最少应相距20米.【点评】本题考查的是相似三角形的应用,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.。

2016届第一学期九年级数学期中试卷

2016届第一学期九年级数学期中试卷

B
A
第 23 题图
E
B
A
D
第 24 题图
C
密 封 线 内 不 准 答 题 ……………………………………………………………………………………………………………………………………… …………
24. 本题满分 12 分 在 Rt△ABC 中, ACB 90 ,D 是 AC 上一点, A , ABD ,若 tan
的高是 24, 则这个
3( a 2b) 2( a b)
角形的边长
高的比值是
12.如图, B D , AB 2 , CD 4 , BC 6 , AD 7 ,则 BO
C A O B D
A B
第 12 题 图 在△ABC 中,点 D、E 分别在边 AB、AC
三、解答题: 本大题共 7 题,满分 78 分 19. 本题满分 10 分 计算
tan 45 tan 30 sin 2 60 cos 2 60 . 1 tan 45 tan 30
20. 本题满分 10 分,第
1
题 6 分,第
2
题4分
AD 2 , DE//BC, 如果 AB a , , DB 3
B D
FC AD BC AB AD DE . AB BC
B
D
E
C F 第 2 题图
3. 在 Rt ABC 中,C 90, B , AB a , 那么 BC 的长为…………………… (A) a sin 4.已知非零向 A. a b 5.在 列 4×4 的

(B) a cos
13.已知
那么 S△ADE∶S△ABC =______. 14.如图,已知点 O 是 边形 ABCDEF 的中心,记 OD m , OF n ,那么 用向

河北区2015-2016 第一学期期中9年级数学试卷

河北区2015-2016 第一学期期中9年级数学试卷

河北区2015-2016学年度第一学期期中九年级质量检测数学本试卷满分100分一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)一元二次方程x 2-4x +5=0的根的情况是(A )有两个不相等的实数根(B )有两个相等的实数根(C )只有一个实数根(D )没有实数根(2)已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是(A )相离(B )相切(C )相交(D )无法判断(3)若二次函数2ax y 的图象经过点P (-3,4),则该图象必经过点(A )(-4,3)(B )(-3,-4)(C )(3,4)(D )(4,-3)(4)在下列标志中,既是轴对称图形,又是中心对称图形的是(A )(B )(C )(D )(5)在二次函数的图象中,若y随x的增大而增大,则x的取值范围是(A)(B)(C)(D)(6)如图,在⊙O中,∠CBO=50°,∠CAO=36°,则∠AOB的度数是(A)14°(B)28°(C)30°(D)36°(7)如图,在⊙O中,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8,CD=4,则⊙O的半径为(A)6(B)6(C)8(D)8(8)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是(A)100(1+x)2=81(B)100(1-x)2=81(C)100(1-x%)2=81(D)100x2=81(9)如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是(A)AG=BG(B)AB∥EF(C)AD∥BC(D)∠BCD=∠ADE(10)已知两点A(-5,y1),B(3,y2)均在抛物线上,点C(x0,y0)是该抛物线的顶点,若,则的取值范围是(A)(B)(C)(D)二、填空题:本大题共8个小题,每小题3分,共24分.答案填在题中横线上.(11)一元二次方程x2-x-2=0的解是__________________.(12)Rt△ABC中,∠C=90°,AC=3,BC=4,以C为圆心,r为半径作圆,若圆C与直线AB相切,则r的值为_____________.(13)抛物线y=x2+4x+6的顶点坐标是___________.(14)在正三角形、平行四边形、矩形、菱形、等腰梯形、直角梯形中,既是轴对称图形又是中心对称图形的是_________________.(15)如图,AB是⊙O的弦,BC与⊙O相切于点B,连OA、OB.若∠ABC=70°,则∠A等于__________.(16)已知关于x的一元二次方程x2+ax+b=0有一个非零根-b,则a-b的值为________________.(17)如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是___________________.(18)二次函数y=ax2+bx+c(a<0)的图象如图,给出下列四个结论:①4ac<b2;②4a<2b-c;③3b+2c<0;④m(am+b)≤a-b(m为任意实数).其中正确结论的序号是____________________.三、解答题:本大题共6个小题,共46分.解答应写出文字说明、证明过程或演算步骤.(19)(本小题满分5分)设a,b是方程2x2-3x-3=0的两个实数根,求a bb a 的值.(20)(本小题满分6分)如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P.连PC.求证:PC是半⊙O的切线.(21)(本小题满分7分)某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图象如图所示.(Ⅰ)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(Ⅱ)销售单价在什么范围时,该种商品每天的销售利润不低于16元?(22)(本小题满分8分)如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连DE,已知∠B=30°,⊙O的半径为3,DE=3.(Ⅰ)求证:DE∥BC;(Ⅱ)若AE=CF,求线段AB的长度.(23)(本小题满分10分)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连DE,BE,DF.如图1.(Ⅰ)求证:BE=CD;(Ⅱ)若AD⊥BC,如图2,求证:四边形BDFE为菱形.图1图2(24)(本小题满分10分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(12,m)和B(4,n),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(Ⅲ)求△PAC为直角三角形时点P的坐标.。

宁波市江北实验中学2015-2016年九年级上期中数学试卷及答案

宁波市江北实验中学2015-2016年九年级上期中数学试卷及答案

江北实验中学2015-2016学年第一学期期中教学质量检测九年级数学一、选择题(本题有12小题,每小题4分,共48分) 1. 二次函数2(1)2y x =--的顶点坐标是( )A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2) 2. 且它们的面积比为94,则周长比是( ) A .8116B.32 C.94D.233. 地球上陆地与海洋面积的比是3∶7,宇宙中一块陨石进入地球,落在陆地的概率是( )A. 37B. 310C. 13D. 124. 一条弧所对的圆心角为60°,那么这条弧所对的圆周角为( ) A. 30° B. 60° C. 120° D. 150° 5.已知32yx =,那么下列式子中一定成立的是( ) A .5=+y x B .y x 32= C .23=y x D .32=y x 6.已知正n 边形的每一个内角都等于144°,则n 为( )A .9B .10C .12D .15 7. 从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )A .B .C .D .8.下列命题中,①正五边形是中心对称图形;②在同圆或等圆中,相等的弧所对的圆周角相等; ③三角形有且只有一个外接圆;④平分弦的直径垂直于弦,并且平分弦所对的两条弧. 其中是真命题的有( )A .1B .2C .3D .4 9.如图9,抛物线y=c bx x ++-2的部分图像如图所示,当y >0, 则x 的取值范围是( )A .14<<-xB .13<<-xC .14>-<x x 或D .13>-<x x 或 第9题10.如图10,一根木棒AB 的长为2m 斜靠在与地面垂直的墙上,与地面的倾斜角∠ABO 为60°,ABC DEF △∽△当木棒沿墙壁向下滑动至A ’,AA ’= 23-,B 端沿地面向右滑动至点B ’,则木棒中点从P 随之运动至P ’所经过的路径长为( ) A .1 B .3 C .6πD .12π11、如图11,直线y=kx+c 与抛物线y=ax 2+bx+c 的图象都经过y 轴上的D 点,抛物线与x 轴交于A 、B 两点,其对称轴为直线x=1,且OA=OD .直线y=kx+c 与x 轴交于点C (点C 在点B 的右侧).则下列命题中正确命题的个数是( )①abc >0; ②3a+b >0; ③﹣1<k <0; ④k <a+b ; ⑤ac+k >0. A .1 B .2 C .3 D .4 12.定义符号min{a ,b}的含义为:当a≥b 时min{a ,b}=b ;当a <b 时min{a ,b}=a .如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则{}2min 1,x x -+-的最大值是( ) A .512- B .512+C .1D .0二、填空题(每小题4分,共24分)13.已知⊙O 的半径是4cm ,点A 到圆心O 的距离为3cm ,则点A 在 (填“圆内”、“圆上”或“圆外”)14. 已知点A (4,y 1),B (-2,y 2)都在二次函数2(x 2)1y =--的图象上,则y 1、y 2的大小关系是 _____ .(用“<”连接)15.在圆心角为120°的扇形中,半径为6,则扇形的面积是16. 如图16,在平面直角坐标系中,抛物线y=x 2经过平移得到y=x 2-2x , 其对称轴与两抛物线所围成的阴影部分面积为 .第16题 第17题 第18题17. 如图17,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E 、F 分别是AC 、BC的中点,直线EF 与⊙O 交于G 、H 两点,若⊙O 的半径为7,则GE+FH 的最大值为 ____ . 18. 如图18,一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),记为C 1,它与x 轴交于点O 、A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2; 将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3; ……如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m= . 三、解答题(本大题8题,共78分) 19.(本题6分)已知23=b a ,求下列算式的值. (1)b b a +; (2) ba ba 232-+ 20. (本题8分)在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m 58 96 116 295 484 601 摸到白球的频率0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近 ;(精确到0.1) (2)试估算口袋中白种颜色的球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少? 21. (本题满分8分)已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C ,D (如图). (1)求证:AC=BD ;(2)若大圆的半径R=10,小圆的半径r=8,且圆O 到直线AB 的距离为6,求AC 的长. 第21题 22. (本题满分10分)抛物线2(1)y x m x m =-+-+与y 轴交于点(0,3). (1)求抛物线的解析式;(2)求抛物线与x 轴的交点坐标;(3)①当x 取什么值时,y >0?②当x 取什么值时,y 的值随x 的增大而减小?23. (本题满分10分)如图,已知⊙O 的弦CD 垂直于直径AB ,点E 在CD 上,且EC = EB .(1)求证:△CEB ∽ △CBD ;(2)若CE = 3,CB = 5 ,求DE 的长.第23题24.(本题满分10分)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,有如下探讨:甲同学:我发现这种多边形不一定是正多边形.如圆内接矩形不一定是正方形.乙同学:我知道,边数为3时,它是正三角形;边数为5时,它可能也是正五边形…丙同学:我发现边数为6时,它也不一定是正六边形.如图2,△ABC 是正三角形,弧AD 、弧BE 、弧CF 均相等,这样构造的六边形ADBECF 不是正六边形.(1)如图1,若圆内接五边形ABCDE 的各内角均相等,则∠ABC= ,请简要说明圆内接五边形ABCDE 为正五边形的理由.(2)如图2,请证明丙同学构造的六边形各内角相等.(3)根据以上探索过程,就问题“各内角都相等的圆内接多边形是否为正多边形”的结论与“边数n(n≥3,n 为整数)”的关系,提出你的猜想(不需证明).25、(满分本题12分)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (﹣1,0),B (3,0)两点,与y 轴交于点C (0,﹣3).(1)求该抛物线的解析式及顶点M 坐标; (2)求△BCM 的面积 ;(3)若P 是x 轴上一个动点,过P 作射线PQ ∥AC 交抛物线于点Q ,随着P 点的运动,在抛物线上是否存在这样的点Q ,使以A ,P ,Q ,C 为顶点的四边形为平行四边形?若存在,请直接写出Q 点坐标;若不存在,请说明理由.26. (本题满分14分)定义一种变换:平移抛物线F 1得到抛物线F 2,使F 2经过F 1的顶点A .我们设F 2的对称轴分别交F 1,F 2于点D ,B ,且点C 是点A 关于直线BD 的对称点, 点C 在点A 右侧.(1)如图1,若F 1:y =x 2,经过变换后,得到F 2:y =x 2+bx ,点C 的坐标为(2,0),则 ①b 的值等于__________; ②四边形ABCD 为( );A .平行四边形B .矩形C .菱形D .正方形(2)如图2,若F 1:y =ax 2+c ,经过变换后,点B 的坐标为(2,c -1),求△ABD 的面积;(3)如图3,若F 1:y =31x 2-32x +37,经过变换后,AC =32,点P 是直线AC 上的动点,请直接写出点D 的坐标,以及点P 到点D 的距离和到直线AD 的距离之和的最小值.江北实验中学2015-2016学年第一学期期中教学质量检测九年级数学参考答案一、选择题(每小题4分,共48分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBADBBBBDCB二、填空题(每小题4分,共24分)13、 圆内 . 14、 . 15、 12 . 16、 1 . 17、 10.5 . 18、 2 .三、解答题(本题有8小题,共78分) 19、(本题6分) (1)25 (2)58π21y y <20、(本题8分)解:(1)答案为:0.6;(2)由(1)摸到白球的概率为0.6,所以可估计口袋中白种颜色的球的个数为:5×0.6=3(只); (3)画树状图为:-------4分(有一个错误不给分)共有20种等可能的结果数,其中两只球颜色不同占12种, 所以两只球颜色不同的概率=532012=. 21、(本题8分)解:(1)证明:作OE ⊥AB ,垂足为E∵AE=BE ,CE=DE , ∴BE ﹣DE=AE ﹣CE ,即AC=BD ; (其它解法相应给分)(2)∵由(1)可知,OE ⊥AB 且OE ⊥CD ,连接OC ,OA ,∴OE=6,∴,72682222=-=-=OE OC CE86102222=-=-=OE OA AE∴AC=AE ﹣CE=8﹣2.22、(本题10分)解:(1)将点(0,3)代入抛物线y=﹣x 2+(m ﹣1)x+m ,m=3,∴抛物线的解析式y=﹣x 2+2x+3;(2)令y=0,﹣x 2+2x+3=0,解得x 1=3,x 2=﹣1;与x 轴交点:A (3,0)、B (﹣1,0); (3)抛物线开口向下,对称轴x=1;∴①当﹣1<x <3时,y >0; ②当x≥1时,y 的值随x 的增大而减小.23、(本题10分)解:(1)证明:∵CD 垂直于直径AB , ∴AB 垂直平分于CD (垂径定理),∴BD=BC (垂直平分线到线段两端的距离相等), ∴∠C=∠D ,∵EB=EC , ∴∠C=∠EBC , ∵∠C=∠D ,∠C=∠EBC , ∴△CEB ∽△CBD.(2)∵△CEB ∽△CBD,∴CD CD CB CB CE 553===, ∴325=CD ,EDE=CD -CE=3163325=-. 24. (本题10分)解:(1)∵五边形的内角和=(5﹣2)×180°=540°,∴∠ABC=5540︒=108°. 故答案为:108° 理由:如图1, ∵∠A=∠B∴=∴﹣=﹣,∴=, ∴BC=AE .同理可得:BC=DE ,DE=AB ,AB=CD ,CD=AE , ∴BC=DE=AB=CD=AE.∴五边形ABCDE 是正五边形 (2)证明:如图2,∵△ABC 是正三角形,∴∠ABC=∠ACB=∠BAC=60°, ∵四边形ABCF 是圆内接四边形, ∴∠ABC+∠AFC=180°, ∴∠AFC=120°. 同理可得:∠ADB=120°,∠BEC=120°. ∵∠ADB=120°, ∴∠DAB+∠ABD=60°.∵=,∴∠ABD=∠CAF , ∴∠DAB+∠CAF=60°,∴∠DAF=∠DAB+∠CAF+∠BAC=120°. 同理可得:∠DBE=120°,∠ECF=120°,∴∠AFC=∠ADB=∠BEC=∠DAF=∠DBE=∠ECF=120°, 故图2中六边形各角相等;(3)由(1)、(2)可提出以下猜想:当n(n≥3,n 为整数)是奇数时,各内角都相等的圆内接多边形是正多边形; 当n(n≥3,n 为整数)是偶数时,各内角相等的圆内接多边形不一定是正多边形.25、(本题10分)解:(1)抛物线解析式为y =(x +1)(x ﹣3)=x 2﹣2x ﹣3,M (1,4). (2)如图1,连接BC 、BM 、CM ,作MD ⊥x 轴于D ,S △BCM =S 梯形OCMD +S △BMD ﹣S △BOC=•(3+4)•1+•2﹣4﹣•3•3=+﹣=3 (3)存在。

2015~2016学年度第一学期期末教学质量检测九年级数学试卷附答案

2015~2016学年度第一学期期末教学质量检测九年级数学试卷附答案

2015~2016学年度第一学期期末教学质量检测九年级数学试卷说明:1、全卷共4页,五道大题。

2、考试时间100分钟,满分120分。

一、单项选择题(共10小题,每小题3分,共30分)1、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A B C D2、下列事件是必然事件的是()A、明天太阳从西边升起B、掷出一枚硬币,正面朝上C、打开电视机,正在播放“新闻联播”D、任意画一个三角形,它的内角和等于180°3、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋里随机摸出一个球,摸出的球是红色的概率是()A 、B 、 C、D 、4、在半径为6的⊙O中,60°圆心角所对的弧长是()A、 B、2 C、4 D、65、用配方法解方程x2+10x+9=0,配方后可得()A、(x+5)2=16B、(x+5)1=1C、(x+10)2=91D、(x+10)2=1096、若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为()A、-1B、-2C、-3D、-47、如图,∠O =30°,C为OB上的一点,且OC=6,以点C为圆心、半径为3的圆与OA的位置关系是()A、相离B、相交C、相切D、以上三种情况均有可能8、如图,在⊙O中直径垂直于弦AB,若∠C=25°则∠BOD的度数是()A、25°B、30°C、40°D、50°9、某校准备修建一个面积为180平方米的矩形活动场所,它的长比宽多11米,设场地的宽为x米,则可列出的方程为()A、x(x-11)=180B、2x+2(x-11)=180C、x(x+11)=180D、2x+2(x+11)=18010、二次函数y=ax2+bx+c(a≠0)的大致图像见如图,关于该函数的说法错误的是()A、函数有最小值第7题图第8B 、对称轴是直线x=1/2C 、当x ﹤1/2,y 随x 增大而减小D 、当-1﹤x ﹤2时,y ﹥0二、填空题(共6小题,每小题4分,共24分)11、如图,将△ABC 绕点A 按顺时针方向旋转60°,得△ADE ,则∠BAD= 度。

山东省菏泽市单县九年级数学上学期期中试卷(含解析) 新人教版-新人教版初中九年级全册数学试题

山东省菏泽市单县九年级数学上学期期中试卷(含解析) 新人教版-新人教版初中九年级全册数学试题

2015-2016学年某某省某某市单县九年级(上)期中数学试卷一、选择题(本大题共8个小题,每小题3分,共24分。

在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项选出来并填在该题相应的括号内)1.如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1:D.2:12.在△ABC中,∠C=90°,sinA=,则sinB的值是()A.B.C.D.3.如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15° B.30° C.60° D.75°4.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.45.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.7.如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=4,PB=2,那么线段BC的长等于()A.3 B.4 C.5 D.68.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③ B.①②③④ C.②③④D.①③④二、填空题(本大题共6个小题,每小题3分,共18分,只要求填写最后结果,每小题填对得3分)9.等腰三角形底边长10cm,周长为36cm,则一底角的正切值为.10.弧长为6π的弧所对的圆心角为60°,则该弧所在圆的半径是.11.将一副三角尺如图所示叠放在一起,则的值是.12.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,则=.13.如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC=度.14.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为.三、解答题(本大题共7个小题,共78分)解答应写出必要的证明过程或演算步骤15.计算:tan30°•sin60°+cos230°﹣sin245°•tan45°.16.如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,求BC的长.17.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,求AC的长.18.如图,△ABC的三顶点分别为A(4,4),B(﹣2,2),C(3,0).请画出一个以原点O为位似中心,且与△ABC相似比为的位似图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(只需画出一种情况,A1B1:AB=)19.如图1表示一个时钟的钟面垂直固定与水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直与桌面,A点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A点距离桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为多少公分?20.如图,小明为测量某铁塔AB的高度,他在离塔底B的10米C处测得塔顶的仰角α=43°,已知小明的测角仪高CD=,求铁塔AB的高.(精确到)(参考数据:sin43°=0.6820,cos43°=0.7314,tan43°=0.9325)21.如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.22.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)23.在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.24.(12分)如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.(1)求证:AE⊥DE;(2)计算:AC•AF的值.2015-2016学年某某省某某市单县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分。

初三数学上册期中考试试卷及答案

初三数学上册期中考试试卷及答案

第一学期九年级数学期中考试题卷一、选择题:(每小题4分;共32分) 1、下列图形中;是中心对称图形的是2、下列等式成立的是() A .9494+=+ B .3327= C . 3333=+ D .4)4(2-=-3、下列各式中是一元二次方程的是( ) A .x x 112=+ B .1)1)(1(2+=--+x x x x C .1322-+x x D .1212=+x x 4、下列二次根式中属于最简二次根式的是( )A .44+aB .48C .14D .ba5有意义;则x 的取值范围是( ) ≥﹣25 ≤25 C. x ≥25 D. x ≤- 256、关于关于x 的一元二次方程220x x +-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法判断7、三角形两边的长分别是8和6;第三边的长是方程x ²-12x +20=0的一个实数根;则三角形的周长是( )A . 24B . 26或16C . 26D . 168、某旅游景点三月份共接待游客25万人次;五月份共接待游客64万人次;设每月的平均增长率为x ;则可列方程为( )A 、225(1)64x +=B 、225(1)64x -=C 、264(1)25x +=D 、264(1)25x -=二、填空题二填空(每小题4分;共20分)9、若点A (a –2;3)与点B (4;–3)关于原点对称;10、已知x =‐1是方程x 2-ax +6=0的一个根;11.若2<x<3;化简x x -+-3)2(212.如图(11);△ABC 绕点A 旋转后到达△ADE 若∠BAC =120°;∠BAD =30°;则∠DAE =__________;∠CAE =__________。

A B DC13、对于任意不相等的两个数a ;b ;定义一种运算※如下:a ※b =ba ba -+;如3※2=52323=-+.那么12※4= 。

浙江省绍兴市嵊州市剡城中学2016届九年级数学上学期期中试题(含解析) 新人教版

浙江省绍兴市嵊州市剡城中学2016届九年级数学上学期期中试题(含解析) 新人教版

浙江省绍兴市嵊州市剡城中学2016届九年级数学上学期期中试题一.选择题(每小题4分,共40分)1.10件衬衣中,有2个不合格,现从中任意抽取1件进行检测,抽到不合格衬衣的概率是( )A.B.C.D.2.三角形的外心具有的性质是( )A.到三边的距离相等 B.外心一定在三角形外C.到三个顶点的距离相等 D.外心一定在三角形内3.二次函数y=﹣x2﹣2x+7的图象的对称轴是( )A.直线x=2 B.直线x=﹣2 C.直线x=1 D.直线x=﹣14.如图,O是圆心,半径OC⊥弦AB于点D,AB=8,OD=3,则CD等于( )A.2 B.3 C.2 D.25.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=80°,则∠BOD=( )A.45° B.80° C.100°D.160°6.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是( )A.x<0 B.x<﹣1或1<x<2 C.﹣1<x<1或x>2 D.x>﹣17.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P22 是直径MN 上一动点,则PA+PB 的最小值为( )A .B .1C .2D .28.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD .已知DE=6,∠BAC+∠EAD=180°,则弦BC 的弦心距等于( )A .B .C .4D .39.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2>0;②2a ﹣b=0;③4a+c <2b ;④3b+2c <0;⑤m (am+b )<a ﹣b (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个10.边长为1的正方形OA 1B 1C 1的顶点A 1在x 轴的正半轴上,如图将正方形OA 1B 1C 1绕顶点O顺时针旋转75°得正方形OABC ,使点B 恰好落在函数y=ax 2(a <0)的图象上,则a 的值为( )A .B .C .﹣2D .二.填空题(每小题5分,共30分)11.三张完全相同的卡片上分别写有函数y=2x 、、y=x2,从中随机抽取一张,则所得卡片上函数的图象在第一象限内y随x的增大而增大的概率是__________.12.将抛物线y=x2+6先右平移动2个单位,再向下平移4个单位后得到一个新的抛物线,那么新的抛物线的解析式是__________.(用顶点式表示)13.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB=__________.14.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则方程ax2+bx+c﹣2=0__________实数根.15.半径相等的圆内接正三角形、正方形、正六边形的边长之比为__________.16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),扇形的圆心角是60°,若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数取值范围是__________.3三、解答题(本大题共8小题,共80分)17.现有两个不透明的乒乓球盒,甲盒中装有1个白球和2个红球,乙盒中装有2个白球和若干个红球,这些小球除颜色不同外,其余均相同.若从乙盒中随机摸出一个球,摸到红球的概率为.(1)求乙盒中红球的个数;(2)若先从甲盒中随机摸出一个球,再从乙盒中随机摸出一个球,请用树形图或列表法求两次摸到不同颜色的球的概率.18.如图,四边形ABCD内接于⊙O,并且AD是⊙O的直径,C是弧BD的中点,AB和DC的延长线交⊙O外一点E.求证:BC=EC.19.如图,在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与y轴的负半轴相交于点C,点C的坐标为(0,﹣3),且BO=CO.(1)求出B点坐标;(2)求这个二次函数的解析式以及函数的最小值;(3)写出y随x的增大而减小的自变量x的取值范围.20.如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.(1)请写出三条与BC有关的正确结论;44(2)当∠D=30°,BC=1时,求圆中阴影部分的面积.21.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22.如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准碟形,线段AB称为碟宽,顶点M称为蝶顶,点M到线段AB 的距离称为碟高.(1)抛物线y=2x2对应的碟宽为__________;抛物线y=ax2对应的碟宽为__________;抛物线y=a(x﹣2)2+4(a>0)对应的碟宽为__________.(2)抛物线y=ax2﹣4ax ﹣(a>0)对应的碟宽为6,且在x轴上,求a的值.23.如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l 与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.524.(14分)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.662015-2016学年浙江省绍兴市嵊州市剡城中学九年级(上)期中数学试卷一.选择题(每小题4分,共40分)1.10件衬衣中,有2个不合格,现从中任意抽取1件进行检测,抽到不合格衬衣的概率是( )A .B .C .D .【考点】概率公式.【分析】10件衬衣中,有2个不合格产品,直接利用概率公式求解即可求得答案.【解答】解:∵10件衬衣中,有2个不合格产品,∴现从中任意抽取1个进行检测,抽到不合格产品的概率是:=.故选B.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.2.三角形的外心具有的性质是( )A.到三边的距离相等 B.外心一定在三角形外C.到三个顶点的距离相等 D.外心一定在三角形内【考点】三角形的外接圆与外心.【分析】根据三角形外心的定义和性质得出A、B、D错误,C正确即可.【解答】解:A、∵三角形的外心是三角形三条边垂直平分线的交点,∴到三边的距离相等不一定相等,故本选项错误;B、∵锐角三角形的外心在三角形的内部,∴外心不一定在三角形外,故本选项错误;C、∵三角形的外心是三角形三条边垂直平分线的交点,∴到三个顶点的距离相等相等,故本选项正确;D、∵钝角三角形的外心在三角形的外部,∴外心不一定在三角形内,故本选项错误.故选:C.【点评】本题考查的是三角形的外接圆与外心;熟知三角形外接圆的圆心是三角形三条边垂直平分线的交点是解答此题的关键.3.二次函数y=﹣x2﹣2x+7的图象的对称轴是( )A.直线x=2 B.直线x=﹣2 C.直线x=1 D.直线x=﹣1【考点】二次函数的性质.【分析】由题意可知a=﹣1,b=﹣2,然后依据x=﹣计算即可.【解答】解:题意可知a=﹣1,b=﹣2.∵x=﹣,788 ∴x=﹣=﹣1.故选:D . 【点评】本题主要考查的是二次函数的性质,熟记抛物线的对称轴方程为x=﹣是解题的关键.4.如图,O 是圆心,半径OC⊥弦AB 于点D ,AB=8,OD=3,则CD 等于( )A .2B .3C .2D .2【考点】垂径定理;勾股定理.【分析】连接OA ,先根据垂径定理求出AD 的长,再由勾股定理求出OA 的长,进而可得出结论.【解答】解:连接OA ,∵半径OC⊥弦AB 于点D ,AB=8,∴AD=4, ∴OA===5,∴CD=OC﹣OD=5﹣3=2.故选A .【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.如图,四边形ABCD 内接于⊙O,若它的一个外角∠DCE=80°,则∠BOD=( )A.45° B.80° C.100°D.160°【考点】圆内接四边形的性质;解一元二次方程-直接开平方法.【分析】根据圆内接四边形的性质可得∠A+∠BCD=180°,然后再计算出∠BCD的度数,进而可得∠A的度数,再根据圆周角定理可得答案.【解答】解:∵四边形ABCD内接于⊙O,∴∠A+∠BCD=180°,∵∠DCE=80°,∴∠BCD=100°,∴∠A=80°,∴∠BOD=160°,故选:D.【点评】此题主要考查了圆内接四边形的性质,以及圆周角定理,关键是掌握圆内接四边形的性质:圆内接四边形的对角互补.( )6.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是A.x<0 B.x<﹣1或1<x<2 C.﹣1<x<1或x>2 D.x>﹣1【考点】二次函数与不等式(组).【分析】当y<0时x的范围,就是图象中函数图象在x轴下方部分自变量的取值范围,据此即可求解.【解答】解:当y<0时,x的范围是:﹣1<x<1或x>2.故选C.【点评】本题考查了函数的图象,理解当y<0时x的范围,就是求图象中函数图象在x轴下方部分自变量的取值范围是关键.7.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P( )是直径MN上一动点,则PA+PB的最小值为A .B.1 C.2 D.2【考点】轴对称-最短路线问题;勾股定理;垂径定理.【分析】作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,根据轴对称确定最短路线问题可得AB′与MN的交点即为PA+PB的最小时的点,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠AON=60°,然后求出∠BON=30°,再根据对称性可得910 10 ∠B′ON=∠BON=30°,然后求出∠AOB′=90°,从而判断出△AOB′是等腰直角三角形,再根据等腰直角三角形的性质可得AB′=OA ,即为PA+PB 的最小值.【解答】解:作点B 关于MN 的对称点B′,连接OA 、OB 、OB′、AB′,则AB′与MN 的交点即为PA+PB 的最小时的点,PA+PB 的最小值=AB′,∵∠AMN=30°,∴∠AON=2∠AMN=2×30°=60°,∵点B 为劣弧AN 的中点, ∴∠BON=∠AON=×60°=30°,由对称性,∠B′ON=∠BON=30°,∴∠AOB′=∠AON+∠B′ON=60°+30°=90°,∴△AOB′是等腰直角三角形, ∴AB′=OA=×1=,即PA+PB 的最小值=. 故选:A .【点评】本题考查了轴对称确定最短路线问题,在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍的性质,作辅助线并得到△AOB′是等腰直角三角形是解题的关键.8.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC 的弦心距等于( )A .B .C .4D .3【考点】圆周角定理;勾股定理;旋转的性质.【专题】计算题.【分析】作AH⊥BC 于H ,作直径CF ,连结BF ,先利用等角的补角相等得到∠DAE=∠BAF,再证明△ADE≌△ABF,得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH ,易得AH 为△CBF 的中位线,然后根据三角形中位线性质得到AH=BF=3.【解答】解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴=,∴DE=BF=6,∵AH⊥BC,∴CH=BH,而CA=AF,∴AH为△CBF的中位线,∴AH=BF=3.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.9.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2>0;②2a﹣b=0;③4a+c<2b;④3b+2c<0;⑤m(am+b)<a﹣b(m≠﹣1),其中正确结论的个数是( )A.4个B.3个C.2个D.1个【考点】二次函数图象与系数的关系.【专题】探究型.【分析】根据二次函数的图象可知抛物线与x轴有两个交点,对称轴为x=﹣1,二次函数图象具有对称性,从而可以判断题目中的结论是否正确.【解答】解:∵由图象可知,当y=0时,图象与x轴有两个交点,∴ax2+bx+c=0时,b2﹣4ac>0.∴4ac﹣b2<0.(故①错误)∵二次函数的对称轴:,∴b=2a.∴2a﹣b=0.(故②正确)∵由图象可知,x=0时和x=﹣2时函数值相等,都大于零,∴x=﹣2时,y=4a﹣2b+c>0.∴4a+c>2b.(故③错误)∵由图象可知x=1时,y=a+b+c<0,b=2a,∴.∴3b+2c<0.(故④正确)∵由图象可知x=﹣1时该二次函数取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.(故⑤正确)故选B.【点评】本题考查二次函数图象与系数的关系,解题的关键是能看懂图象,利用数形结合的思想解答.10.边长为1的正方形OA1B1C1的顶点A1在x轴的正半轴上,如图将正方形OA1B1C1绕顶点O 顺时针旋转75°得正方形OABC,使点B恰好落在函数y=ax2(a<0)的图象上,则a的值为( )A .B . C.﹣2 D .【考点】二次函数综合题.【分析】过点B向x轴引垂线,连接OB,可得OB的长度,进而得到点B的坐标,代入二次函数解析式即可求解.【解答】解:如图,作BE⊥x轴于点E,连接OB,∵正方形OABC绕顶点O顺时针旋转75°,∴∠AOE=75°,∵∠AOB=45°,∴∠BOE=30°,∵OA=1,∴OB=,∵∠OCB=90°,∴BE=OB=,∴OE=,∴点B 坐标为(,﹣),12代入y=ax2(a<0)得a=﹣,∴y=﹣.故选D.【点评】本题考查用待定系数法求函数解析式,关键是利用正方形的性质及相应的三角函数得到点B的坐标.二.填空题(每小题5分,共30分)11.三张完全相同的卡片上分别写有函数y=2x、、y=x2,从中随机抽取一张,则所得卡片上函数的图象在第一象限内y随x的增大而增大的概率是.【考点】二次函数的性质;一次函数的性质;反比例函数的性质;概率公式.【专题】数形结合.【分析】函数y=2x的图象是经过第一、三象限的直线,由于k=2>0,所以y随x的增大而增大,函数的图象位于第一、三象限,k=3>0,y随x的增大而减小;函数y=x2的图象开口向上,顶点在原点,在第一象限y随x的增大而增大,所以三个函数中符合要求的有两个,故可以利用列举法求出概率值.【解答】解:函数y=2x、、y=x2的图象的草图如图所示,由图可知,图象在第一象限内y随x的增大而增大的函数是y=2x、y=x2,故P=.故答案为:.【点评】本题是函数与统计初步中的综合题型,熟悉二次函数的性质,数形结合是解题的关键,同时应熟悉各种概率问题的题型特点和求解方法.12.将抛物线y=x2+6先右平移动2个单位,再向下平移4个单位后得到一个新的抛物线,那么新的抛物线的解析式是y=(x﹣2)2+2.(用顶点式表示)【考点】二次函数图象与几何变换.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=x2+6向右平移动2个单位所得直线解析式为:y=(x﹣2)2+6;再向下平移4个单位为:y=(x﹣2)2+6﹣4,即y=(x﹣2)2+2.故答案为y=(x﹣2)2+2.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB=30°.【考点】圆周角定理.【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,即可得出答案.【解答】解:由题意得,∠AOB=60°,则∠APB=∠AOB=30°.故答案为:30°.【点评】本题考查了圆周角定理的知识,解答本题的关键是熟练掌握圆周角定理的内容.14.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则方程ax2+bx+c﹣2=0有两个相等实数根.【考点】抛物线与x轴的交点.【分析】抛物线y=ax2+bx+c向下平移2个单位得到y=ax2+bx+c﹣2,顶点D的坐标为(﹣1,2)从而可知y=ax2+bx+c﹣2的顶点在x轴上,从而可得到方程的解得情况.【解答】解:令y=ax2+bx+c﹣2.∵y=ax2+bx+c向下平移2个单位得到y=ax2+bx+c﹣2,且抛物线y=ax2+bx+c顶点D的坐标为(﹣1,2),14∴抛物线y=ax2+bx+c﹣2的顶点坐为(﹣1,0).∴方程ax2+bx+c﹣2=0有两个相等的实数根.故答案为:有两个相等.【点评】本题主要考查的是抛物线与x轴的交点坐标,将方程问题转化为函数问题是解题的关键.15.半径相等的圆内接正三角形、正方形、正六边形的边长之比为::1.【考点】正多边形和圆.【分析】根据题意画出图形,设出圆的半径,再由正多边形及直角三角形的性质求解即可.【解答】解:设圆的半径为R,如图(一),连接OB,过O作OD⊥BC于D,则∠OBC=30°,BD=OB•cos30°=R,故BC=2BD=R;如图(二),连接OB、OC,过O作O E⊥BC于E,则△OBE是等腰直角三角形,2BE2=OB2,即BE=,故BC=R;如图(三),连接OA、OB,过O作OG⊥AB,则△OAB是等边三角形,故AG=OA•cos60°=R,AB=2AG=R,故圆内接正三角形、正方形、正六边形的边长之比为R:R:R=::1.【点评】本题考查的是圆内接正三角形、正方形及正六边形的性质,根据题意画出图形,作出辅助线构造出直角三角形是解答此题的关键.16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),扇形的圆心角是60°,若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数取值范围是.【考点】二次函数综合题.【分析】根据∠AOB=60°求出直线OA的解析式,然后与抛物线解析式联立求出有一个公共点时的k值,即为一个交点时的最大值,再求出抛物线经过点B时的k的值,即为一个交点时的最小值,然后写出k的取值范围即可.【解答】解:由图可知,∠AOB=60°,∴直线OA的解析式为y=x,联立,消掉y得,x2﹣x+k=0,△=(﹣)2﹣4×1×k=0,即k=时,抛物线与OA有一个交点,解得:x=,即交点的横坐标为,∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为(1,),∵<1,∴交点在线段AO上;当抛物线经过点B(2,0)时,4+k=0,解得k=﹣4,∴要使抛物线y=x2+k与扇形OAB的边界总有两个公共点,实数k的取值范围是:﹣4<k <.故答案为:﹣4<k <.【点评】本题考查了二次函数的性质,主要利用了联立两函数解析式确定交点个数的方法,16根据图形求出有一个交点时的最大值与最小值是解题的关键.三、解答题(本大题共8小题,共80分)17.现有两个不透明的乒乓球盒,甲盒中装有1个白球和2个红球,乙盒中装有2个白球和若干个红球,这些小球除颜色不同外,其余均相同.若从乙盒中随机摸出一个球,摸到红球的概率为.(1)求乙盒中红球的个数;(2)若先从甲盒中随机摸出一个球,再从乙盒中随机摸出一个球,请用树形图或列表法求两次摸到不同颜色的球的概率.【考点】列表法与树状图法;概率公式.【专题】计算题.【分析】(1)设乙盒中红球的个数为x,根据概率公式由从乙盒中随机摸出一个球,摸到红球的概率为可得到方程得=,然后解方程即可;(2)先列表展示所有15种等可能的结果数,再找出两次摸到不同颜色的球占7种,然后根据概率公式即可得到两次摸到不同颜色的球的概率.【解答】解:(1)设乙盒中红球的个数为x,根据题意得=,解得x=3,所以乙盒中红球的个数为3;(2)列表如下:共有15种等可能的结果,两次摸到不同颜色的球有7种,所以两次摸到不同颜色的球的概率=.【点评】本题考查了列表法与树状图法:先利用列表法或树状图法展示所有等可能的结果数n,再找出其中某事件所占有的结果数m,然后根据概率公式得到这个事件的概率=.18.如图,四边形ABCD内接于⊙O,并且AD是⊙O的直径,C是弧BD的中点,AB和DC的延长线交⊙O外一点E.求证:BC=EC.【考点】圆内接四边形的性质.【专题】证明题.【分析】连接AC,先根据直径所对的角是直角,圆内接四边形的性质和等弧所对的圆周角相等得到∠E=∠D,∠EBC=∠E,从而根据等角对等边可证BC=EC.【解答】证明:连接AC.∵AD是⊙O的直径,∴∠ACD=90°=∠ACE.∵四边形ABCD内接于⊙O,∴∠D+∠ABC=180°,又∠ABC+∠EBC=180°,∴∠EBC=∠D.∵C是弧BD的中点,∴∠1=∠2,∴∠1+∠E=∠2+∠D=90°,∴∠E=∠D,∴∠EBC=∠E,∴BC=EC.【点评】主要考查了圆内接四边形的性质和圆、等腰三角形的有关性质.根据圆内接四边形的性质和等弧所对的圆周角相等得到∠EBC=∠E是解题的关键.19.如图,在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与y轴的负半轴相交于点C,点C的坐标为(0,﹣3),且BO=CO.(1)求出B点坐标;(2)求这个二次函数的解析式以及函数的最小值;(3)写出y随x的增大而减小的自变量x的取值范围.18【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数的最值.【专题】计算题.【分析】(1)由已知点C的坐标为(0,﹣3),且BO=CO,点B在x轴的正半轴,可知B(3,0);(2)将B(3,0),C(0,﹣3)两点坐标代入y=x2+bx+c中,解方程组求b、c,可得二次函数解析式,用配方法求函数最小值;(3)根据对称轴及开口方向求y随x的增大而减小时,自变量x的取值范围.【解答】解:(1)∵C(0,﹣3),且BO=CO,且点B在x轴的正半轴,∴B(3,0);(2)把B(3,0),C(0,﹣3)两点坐标代入y=x2+bx+c中,得,解得,∴y=x2﹣2x﹣3,即y=(x﹣1)2﹣4,故函数最小值﹣4;(3)由(2)可知,抛物线开口向上,对称轴为x=1,∴当x≤1时,y随x的增大而减小.【点评】本题考查了用待定系数法求二次函数解析式的方法,二次函数性质的运用,关键是根据条件确定抛物线解析式的形式,再求其中的待定系数.20.如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.(1)请写出三条与BC有关的正确结论;(2)当∠D=30°,BC=1时,求圆中阴影部分的面积.【考点】扇形面积的计算;垂径定理;圆周角定理.【分析】(1)根据垂径定理和圆周角定理及其推论进行分析,得到结论;(2)连接OC,阴影部分的面积即是扇形OAC的面积减去三角形AOC的面积.根据圆周角定理发现30°的直角三角形ABC,从而得到扇形所在的圆心角的度数以及半径的长,再根据扇形的面积公式和三角形的面积公式计算.【解答】解:(1)答案不唯一,只要合理均可.例如:①BC=BD;②OF∥BC;③∠BCD=∠A;④△BCE∽△OAF;⑤BC2=BE•AB;⑥BC2=CE2+BE2;⑦△ABC是直角三角形;⑧△BCD是等腰三角形.(2)连接OC,则OC=OA=OB,∵∠D=30°,=,∴∠A=∠D=30°,∴∠COB=2∠A=60°∴∠AOC=120°,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,BC=1,∴AB=2,AC=,∵OF⊥AC,∴A F=CF,∵OA=OB,∴OF是△ABC的中位线,∴OF=BC=,∴S△AOC =AC •OF=××=,S扇形AOC =π×OA2=,∴S阴影=S扇形AOC﹣S△AOC =.【点评】要熟练运用垂径定理、圆周角定理及其推论、等弧对等弦以及30°的直角三角形的性质.21.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?20【考点】二次函数的应用.【专题】方程思想.【分析】本题是通过构建函数模型解答销售利润的问题.依据题意易得出平均每天销售量(y)与销售价x(元/箱)之间的函数关系式为y=90﹣3(x﹣50),然后根据销售利润=销售量×(售价﹣进价),列出平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.【解答】解:(1)由题意得:y=90﹣3(x﹣50)化简得:y=﹣3x+240;(2)由题意得:w=(x﹣40)y(x﹣40)(﹣3x+240)=﹣3x2+360x﹣9600;(3)w=﹣3x2+360x﹣9600∵a=﹣3<0,∴抛物线开口向下.当时,w有最大值.又x<60,w随x的增大而增大.∴当x=55元时,w的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.22.如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准碟形,线段AB称为碟宽,顶点M称为蝶顶,点M到线段AB 的距离称为碟高.(1)抛物线y=2x2对应的碟宽为1;抛物线y=ax2对应的碟宽为;抛物线y=a(x﹣2)2+4(a>0)对应的碟宽为.(2)抛物线y=ax2﹣4ax﹣(a>0)对应的碟宽为6,且在x轴上,求a的值.【考点】二次函数综合题.【分析】(1)根据定义易算出含具体值的抛物线y=2x2的碟宽,利用端点(第一象限)横纵坐标的相等.推广至含字母的抛物线y=ax2(a>0),类似.而抛物线y=a(x﹣2)2+4(a>0)为顶点式,可看成y=ax2平移得到,则发现碟宽只和a有关.(2)根据(1)的结论,根据碟宽易得关于a 的方程=6,解方程即可求得a的值.【解答】解:(1)∵a>0,∴y=ax2的图象大致如下:其必过原点O,记AB为其碟宽,AB与y轴的交点为C,连接OA,OB.∵△OAB为等腰直角三角形,AB∥x轴,∴OC⊥AB,∴∠AOC=∠BOC=∠AOB=×90°=45°,∴△ACO与△BCO亦为等腰直角三角形,∴AC=OC=BC,∴x A=y A,x B=y B,代入y=ax2,∴A(﹣,),B (,),C(0,),∴AB=,OC=,即y=ax2的碟宽为.①抛物线y=2x2对应的a=2,得碟宽为1;②抛物线y=ax2(a>0),碟宽为;③抛物线y=a(x﹣2)2+4(a>0)可看成y=ax2向右平移2个单位长度,再向上平移4个单位长度后得到的图形,∵平移不改变形状、大小、方向,∴抛物线y=a(x﹣2)2+4(a>0)的准碟形≌抛物线y=ax2的准碟,22∵抛物线y=ax2(a>0),碟宽为,∴抛物线y=a(x﹣2)2+4(a>0),碟宽为.(2)∵y=ax2﹣4ax﹣=a(x﹣2)2﹣(4a+),∴同(1),其碟宽为,∵y=ax2﹣4ax﹣的碟宽为6,∴=6,解得a=.故答案为:1;;.【点评】本题考查二次函数综合题,题目中主要涉及特殊直角三角形,二次函数解析式与图象性质,解题的关键是由抛物线y=ax2(a>0),得到碟宽只和a有关,即碟宽为.23.如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l 与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.【考点】圆的综合题.【专题】压轴题.【分析】(1)连接PA,运用垂径定理及勾股定理即可求出圆的半径,从而可以求出B、C两点的坐标.(2)由于圆P是中心对称图形,显然射线AP与圆P的交点就是所需画的点M,连接MB、MC。

2015-2016学年第一学期期末考试九年级数学附答案

2015-2016学年第一学期期末考试九年级数学附答案
14.某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为每平方米7800元,设该楼盘这两年房价平均降低率为x,根据题意可列方程为▲.
15.如图,四边形ABCD内接于⊙O,若⊙O的半径为6,∠A=130°,则扇形OBAD的面积为▲.
16.某数学兴趣小组研究二次函数y=mx2-2mx+1(m≠0)的图像时发现:无论m如何变化,该图像总经过两个定点(0,1)和(▲,▲).
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(8分)(1)解方程:3x(x-2)=x-2(2)x2-4x-1=0
18.(6分)如图,利用标杆BE测量建筑物的高度,如果标杆BE长1.2m,测得AB=1.6m,BC=8.4m,楼高CD是多少?
25.(8分)如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:≈2.236).
26.(10分)如图①,A、B、C、D四点共圆,过点C的切线CE∥BD,与AB的延长线交于点E.
2015-2016学年第一学期期末考试九年级数学
(满分:120分考试时间:120分钟)
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.方程x(x+2) =0的解是(▲)
A.-2
B.0,-2
C.0,2
D.无实数根
2.两个相似三角形的相似比是2:3,则这两个三角形的面积比是(▲)

湖北省黄石市大冶市九年级数学上学期期中试题(含解析)-人教版初中九年级全册数学试题

湖北省黄石市大冶市九年级数学上学期期中试题(含解析)-人教版初中九年级全册数学试题

某某省某某市大冶市2016届九年级数学上学期期中试题一、选择题(本题共10小题,每小题3分,共30分)1.下列等式中,一定是一元二次方程的是( )A.x2=1 B.x2++1=0C.x2+y=0 D.ax2+c=0(a、c为常数)2.抛物线y=﹣2x2+1的对称轴是( )A.直线 B.直线C.y轴D.直线x=23.下列电视台的台标,是中心对称图形的是( )A.B. C.D.4.如图,AB是⊙O的弦,OC⊥AB于点C,若AB=4,OC=1,则⊙O的半径为( )A.B.C.D.65.在某次聚会上每两个人都握了一次手,所有人共握手28次.设有x人参加这次聚会,则列出方程正确的是( )A.x(x﹣1)=28 B.x(x﹣1)=28C.x(x+1)=28 D.x(x+1)=286.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A′C′B′=30°,则∠BCA′的度数是( )A.80° B.60° C.50° D.30°7.如图,A、B、C在⊙O上,∠OAB=22.5°,则∠ACB的度数是( )A.11.5°B.112.5°C.122.5°D.135°8.若二次函数y=x2﹣6x+m的图象经过A(﹣1,a),B(2,b),C(4.5,c)三点,则a、b、c的大小关系是( )A.a>b>c B.c>a>b C.b>a>c D.a>c>b9.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为( )A.7 B.C.D.910.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A 点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.一元二次方程x2﹣x=0的根是__________.12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为__________.13.已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是__________.14.已知实数m满足(m2﹣m)2﹣4(m2﹣m)﹣21=0,则代数式m2﹣m的值为__________.15.如图,∠AOB=30°,P点在∠AOB内部,M点在射线OA上,将线段PM绕P点逆时针旋转90°,M点恰好落在OB上的N点(OM>ON),若PM=,ON=8,则OM=__________.16.二次函数y=的函数图象如图,点A0位于坐标原点,点A1,A2,A3…A2015在y轴的正半轴上,点B1,B2,B3…B2015在二次函数位于第一象限的图象上,△A0B1A1,△A1B2A2,△A2B3A3…△A2014B2015A2015都为等边三角形,则△A2014B2015A2015的边长为__________.三、(本大题共9小题,共72分)17.计算:|﹣3|﹣﹣0+()﹣1.18.先化简,再求值:÷(﹣1),其中x=2﹣.19.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.20.解方程组:.21.一个小球以5m/s的速度开始向前滚动,并且均匀减速,滚动10m后小球停下来.(1)小球滚动了多少时间?(2)平均每秒小球的运动速度减少多少?(3)小球滚动到5m时大约用了多少时间?22.如图,四边形的对角线AC、BD互相垂直,AC+BD=10,当AC、BD的长是多少时,四边形ABCD的面积最大?23.某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量(件)与时间(天)的关系如下表:时间(天) 1 3 6 10 36 …94 90 84 76 24 …日销售量(件)(元/件)与时间t(天)的函数关系是y1=(1≤t≤40未来40天内,前20天每天的价格y1,且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系是y2=﹣(21≤t≤40且t为整数).(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数、反比例函数的只是确定一个满足这些数据之间的函数关系式;(2)请预测未来40天的哪一天销售利润最大?最大日销售的利润是多少?(3)在实际销售的前20天中,该公司决定销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值X围.24.若△ABC和△ADE均为等边三角形,M、N分别是BE、CD的中点.(1)当△ADE绕A点旋转到如图①的位置时,求证:CD=BE,△AMN是等边三角形;(2)如图②,当∠EAB=30°,AB=12,AD=时,求AM的长.25.抛物线y=ax2(a是常数,a≠0)过点(2,﹣1),与过点D(0,﹣1)的直线y=kx+b 交于M、N两点(M在N的左边).(1)求抛物线的解析式;(2)如图1,当k=时,点P是直线MN上方的抛物线上一动点,当S△MNP最大时,求带点P 的坐标;(3)求证:无论k取何值,直线y=1总与以MN为直径的圆相切.2015-2016学年某某省某某市大冶市九年级(上)期中数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.下列等式中,一定是一元二次方程的是( )A.x2=1 B.x2++1=0C.x2+y=0 D.ax2+c=0(a、c为常数)【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、正确;B、不是整式方程,则不是一元二次方程,选项错误;C、含有两个未知数,则不是一元二次方程,选项错误;D、当a=0时,不是一元二次方程,选项错误;故选A.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.抛物线y=﹣2x2+1的对称轴是( )A.直线 B.直线C.y轴D.直线x=2【考点】二次函数的性质.【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标及对称轴.【解答】解:∵抛物线y=﹣2x2+1的顶点坐标为(0,1),∴对称轴是直线x=0(y轴),故选C.【点评】主要考查了求抛物线的顶点坐标与对称轴的方法.3.下列电视台的台标,是中心对称图形的是( )A.B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断得出.【解答】解:A、因为此图形旋转180°后能与原图形重合,所以此图形是中心对称图形,故A正确;B、因为此图形旋转180°后不能与原图形重合,所以此图形不是中心对称图形,故B错误;C、因为此图形旋转180°后不能与原图形重合,所以此图形不是中心对称图形,故C错误;D、因为此图形旋转180°后不能与原图形重合,所以此图形不是中心对称图形,故D错误.故选:A.【点评】此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.4.如图,AB是⊙O的弦,OC⊥AB于点C,若AB=4,OC=1,则⊙O的半径为( )A.B.C.D.6【考点】垂径定理;勾股定理.【分析】根据垂径定理求出AC,根据勾股定理求出OA,即可得出答案.【解答】解:∵OC⊥AB,OC过O,∴CD=AB,∵AB=4,∴AC=2,在Rt△AOC中,由勾股定理得:OA==,即⊙O的半径是,故选:B.【点评】本题考查了垂径定理和勾股定理的应用,主要考查学生的推理能力和计算能力.5.在某次聚会上每两个人都握了一次手,所有人共握手28次.设有x人参加这次聚会,则列出方程正确的是( )A.x(x﹣1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x+1)=28【考点】由实际问题抽象出一元二次方程.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:x(x﹣1)次;已知“所有人共握手28次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:(x﹣1)次,根据题意得:x(x﹣1)=28.故选B.【点评】此题主要考查了由实际问题抽象一元二次方程的应用,关键是理清题意,找对等量关系,需注意的是本题中“每两人都握了一次手”的条件,类似于球类比赛的单循环赛制.6.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A′C′B′=30°,则∠BCA′的度数是( )A.80° B.60° C.50° D.30°【考点】旋转的性质.【专题】计算题.【分析】根据旋转的性质得∠BCB′=50°,然后利用∠BCA′=∠BCB′+∠A′CB′进行计算即可.【解答】解:∵△ABC绕着点C顺时针旋转50°后得到△A′B′C,∴∠BCB′=50°,∵∠A′CB′=30°,∴∠BCA′=∠BCB′+∠A′CB′=50°+30°=80°.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7.如图,A、B、C在⊙O上,∠OAB=22.5°,则∠ACB的度数是( )A.11.5°B.112.5°C.122.5°D.135°【考点】圆周角定理.【分析】由条件可求得∠AOB=135°,在优弧AB上任取点E,则可求得∠AEB,再由圆内接四边形对角互补可求得∠ACB.【解答】解:∵OA=OB,∴∠OAB=∠OBA=22.5°,∴∠AOB=135°,在优弧AB上任取点E,连接AE、BE,则∠AEB=∠AOB=67.5°,又∵∠AEB+∠ACB=180°,∴∠ACB=112.5°,故选B.【点评】本题主要考查圆周角定理及圆内接四边形的性质,掌握圆心角和圆周角之间的关系是解题的关键.8.若二次函数y=x2﹣6x+m的图象经过A(﹣1,a),B(2,b),C(4.5,c)三点,则a、b、c的大小关系是( )A.a>b>c B.c>a>b C.b>a>c D.a>c>b【考点】二次函数图象上点的坐标特征.【分析】先求出二次函数的对称轴,然后根据二次函数的增减性和对称性解答即可.【解答】解:二次函数的对称轴为直线x==3,∵a=1>0,∴x<3时,y随x的增大而减小,x>3时,y随x的增大而增大,∵﹣1到3的距离为4,2到3的距离为1,4.5到3的距离为1.5,∴a、b、c的大小关系a>c>b.故选D.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性和对称性,求出对称轴是解题的关键.9.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为( )A.7 B.C.D.9【考点】解直角三角形;全等三角形的判定;圆心角、弧、弦的关系;圆周角定理.【专题】综合题.【分析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=7.【解答】解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易证△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:设AF=BG=X,BC=8,AC=6,得8﹣x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).∴CD=7.故选B.【点评】本题综合考查了圆周角的性质,圆心角、弧、弦的对等关系,全等三角形的判定,角平分线的性质等知识点的运用.此题是一个大综合题,难度较大.10.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A 点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】首先根据正方形的边长与动点P、Q的速度可知动点Q始终在AB边上,而动点P 可以在BC边、CD边、AD边上,再分三种情况进行讨论:①0≤x≤1;②1<x≤2;③2<x≤3;分别求出y关于x的函数解析式,然后根据函数的图象与性质即可求解.【解答】解:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=x2;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=AP•BQ,解y=•(9﹣3x)•x=x﹣x2;故D选项错误.故选:C.【点评】本题考查了动点问题的函数图象,正方形的性质,三角形的面积,利用数形结合、分类讨论是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.一元二次方程x2﹣x=0的根是x1=0,x2=1.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为8.【考点】抛物线与x轴的交点.【分析】由抛物线y=ax2+bx+c的对称轴为直线x=2,交x轴于A、B两点,其中A点的坐标为(﹣2,0),根据二次函数的对称性,求得B点的坐标,再求出AB的长度.【解答】解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.【点评】此题考查了抛物线与x轴的交点.此题难度不大,解题的关键是求出B点的坐标.13.已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是相交.【考点】直线与圆的位置关系.【分析】设圆的半径为r,点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离,从而得出答案.【解答】解:设圆的半径为r,点O到直线l的距离为d,∵d=5,r=6,∴d<r,∴直线l与圆相交.故答案为:相交.【点评】本题考查的是直线与圆的位置关系,解决此类问题的关键是通过比较圆心到直线距离d与圆半径大小关系完成判定.14.已知实数m满足(m2﹣m)2﹣4(m2﹣m)﹣21=0,则代数式m2﹣m的值为7.【考点】换元法解一元二次方程;解一元二次方程-因式分解法.【分析】在解此题时要把m2﹣m当成一个整体来考虑,而后借助于一元二次方程的因式分解法进行解答.【解答】解:∵(m2﹣m)2﹣4(m2﹣m)﹣21=0∴[(m2﹣m)﹣7][(m2﹣m)+3]=0∴m2﹣m=7或m2﹣m=﹣3.∵m2﹣m=﹣3,即m2﹣m+3=0,△=12﹣4×3=﹣11<0,无解,故舍去,∴代数式m2﹣m的值为7.故答案为:7.【点评】因式分解法是解一元二次方程的一种简便方法,要会灵活运用.15.如图,∠AOB=30°,P点在∠AOB内部,M点在射线OA上,将线段PM绕P点逆时针旋转90°,M点恰好落在OB上的N点(OM>ON),若PM=,ON=8,则OM=4+2.【考点】旋转的性质.【专题】计算题.【分析】连结MN,作NH⊥OA于H,如图,根据旋转的性质得∠MPN=90°,PN=PM=,可判断△PMN为等腰直角三角形,则MN=PM=2,在Rt△OHN中,根据含30度的直角三角形三边的关系得NH=ON=4,OH=NH=4,然后在Rt△MNH中根据勾股定理计算出MH=2,由此得到OM=OH+HM=4+2.【解答】解:连结MN,作NH⊥OA于H,如图,∵线段PM绕P点逆时针旋转90°,M点恰好落在OB上的N点,∴∠MPN=90°,PN=PM=,∴△PMN为等腰直角三角形,∴MN=PM=2,在Rt△OHN中,∵∠NOH=30°,ON=8,∴NH=ON=4,OH=NH=4,在Rt△MNH中,∵NH=4,MN=2,∴MH==2,∴OM=OH+HM=4+2.故答案为4+2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质和含30度的直角三角形三边的关系.16.二次函数y=的函数图象如图,点A0位于坐标原点,点A1,A2,A3…A2015在y轴的正半轴上,点B1,B2,B3…B2015在二次函数位于第一象限的图象上,△A0B1A1,△A1B2A2,△A2B3A3…△A2014B2015A2015都为等边三角形,则△A2014B2015A2015的边长为2015.【考点】二次函数图象上点的坐标特征;等边三角形的性质.【专题】规律型.【分析】根据等边三角形的性质可得∠A1A0B1=60°,然后表示出A0B1的解析式,与二次函数解析式联立求出点B1的坐标,再根据等边三角形的性质求出A0A1,同理表示出A1B2的解析式,与二次函数解析式联立求出点B2的坐标,再根据等边三角形的性质求出A1A2,同理求出B3的坐标,然后求出A2A3,从而得到等边三角形的边长为从1开始的连续自然数,与三角形所在的序数相等.【解答】解:∵△A0B1A1是等边三角形,∴∠A1A0B1=60°,∴A0B1的解析式为y=x,联立,解得,(为原点,舍去),∴点B1(,),∴等边△A0B1A1的边长为×2=1,同理,A1B2的解析式为y=x+1,联立,解得,(在第二象限,舍去),∴B2(,2),∴等边△A1B2A2的边长A1A2=2×(2﹣1)=2,同理可求出B3(,),所以,等边△A2B3A3的边长A2A3=2×(﹣1﹣2)=3,…,以此类推,系列等边三角形的边长为从1开始的连续自然数,△A2014B2015A2015的边长A2014A2015=2015.故答案为:2015.【点评】本题考查了二次函数图象上点的坐标特征,等边三角形的性质,主要利用了联立两函数解析式求交点坐标,根据点B系列的坐标求出等边三角形的边长并且发现系列等边三角形的边长为从1开始的连续自然数是解题的关键.三、(本大题共9小题,共72分)17.计算:|﹣3|﹣﹣0+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】原式第一项利用绝对值的代数意义化简,第二项利用立方根定义计算,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=3﹣﹣2﹣1+3=3﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:÷(﹣1),其中x=2﹣.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷=﹣•=﹣x+2,当x=2﹣时,原式=﹣2++2=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.【考点】切线的判定;含30度角的直角三角形;圆周角定理.【分析】(1)根据圆周角定理求得∠ADB=90°,然后解直角三角形即可求得BD,进而求得BC即可;(2)要证明直线DE是⊙O的切线只要证明∠EDO=90°即可.【解答】证明:(1)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ABC=30°,AB=4,∴BD=2,∵D是BC的中点,∴BC=2BD=4;(2)证明:连接OD.∵D是BC的中点,O是AB的中点,∴DO是△ABC的中位线,∴OD∥AC,则∠EDO=∠CED又∵DE⊥AC,∴∠CED=90°,∠EDO=∠CED=90°∴DE是⊙O的切线.【点评】此题主要考查了切线的判定以及含30°角的直角三角形的性质.解题时要注意连接过切点的半径是圆中的常见辅助线.20.解方程组:.【考点】高次方程.【分析】由①得2x=﹣y﹣2,两边平方得出4x2=5y2+20y+20③,把③代入②,整理得7y2+10y﹣8=0,求出y的值,把y的值代入②求出x,即可得出方程组的解.【解答】解:由①得2x=﹣y﹣2,两边平方得:4x2=5y2+20y+20③,把③代入②,整理得7y2+10y﹣8=0,解得:y1=﹣2或y2=,代入②得x1=0或x2=﹣,故原方程组的解为或.【点评】本题考查了解二元二次方程组,主要考查学生能否把高次方程组转化成二元一次方程组或一元二次方程或一元一次方程,题目比较好,但是有一定的难度.21.一个小球以5m/s的速度开始向前滚动,并且均匀减速,滚动10m后小球停下来.(1)小球滚动了多少时间?(2)平均每秒小球的运动速度减少多少?(3)小球滚动到5m时大约用了多少时间?【考点】一元二次方程的应用.【分析】(1)求小球滚动了多少时间,关键是求出小球的平均速度,即开始速度与终点时速度的平均值,进而求出小球滚动速度;(2)从滚动到停下平均每秒速度减少值为:速度变化÷小球运动速度变化的时间,(3)小球滚动到5m时大约用了多少时间,需要求出小球滚动到5m时的速度,这样能求出这一过程的平均速度,路程除以速度即得到行驶时间.【解答】解:(1)依题意可知,小球滚动的平均速度为最大速度与最小速度的平均值,即,从滚动到停下所用的时间为10÷2.5=4(s);(2)从滚动到停下平均每秒速度减少值为:速度变化÷小球运动速度变化的时间,即5÷4=1.25(m/s),(3)设小球滚动到5m时所用的时间为xs,由(2)可知,∵从滚动到停下平均每秒速度减少值为1.25(m/s),∴小球滚动到5m时所用的时间为xs,原速度为5m/s,∴这时小球滚动的速度为:(5﹣1.25x)m/s,这段时间内平均速度为:,即m/s,由速度×时间=路程,得x=5,整理得x2﹣8x+8=0,得x=.即x1=4+2≈6.8(不合题意舍去),x2=4﹣2≈1.2,答:小球滚动到5米时约用了1.2秒.【点评】此题主要考查了匀速运动的小球,平均速度的求法,以及即时速度的求法,综合性较强,有一定抽象性.22.如图,四边形的对角线AC、BD互相垂直,AC+BD=10,当AC、BD的长是多少时,四边形ABCD的面积最大?【考点】二次函数的最值.【分析】根据已知设四边形ABCD面积为S,AC为x,则BD=10﹣x,进而求出S=﹣x2+5x,再求出最值即可.【解答】解:设AC=x,四边形ABCD面积为S,则BD=10﹣x,S=x(10﹣x)=﹣x2+5x,∵﹣<0,∴抛物线开口向下,当x=﹣=5时,S最大=﹣×52+5×5=,即当AC=5,BD=5时,四边形ABCD面积最大,最大值为.【点评】此题主要考查了二次函数的应用,根据已知正确得出二次函数关系是解题关键.23.某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量(件)与时间(天)的关系如下表:时间(天) 1 3 6 10 36 …日销售量94 90 84 76 24 …(件)(元/件)与时间t(天)的函数关系是y1=(1≤t≤40未来40天内,前20天每天的价格y1,且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系是y2=﹣(21≤t≤40且t为整数).(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数、反比例函数的只是确定一个满足这些数据之间的函数关系式;(2)请预测未来40天的哪一天销售利润最大?最大日销售的利润是多少?(3)在实际销售的前20天中,该公司决定销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值X围.【考点】二次函数的应用.【分析】(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式,运用待定系数法求出即可;(2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a的取值X围【解答】解:(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式,设一次函数为y=kt+b,将(36,24)和(10,76)代入一次函数y=kt+b中,有,解得:.故所求函数解析式为y=﹣2t+96;(2)设销售利润为W,则W=配方得W=,当1≤t≤20,t=14时W最大=578,当21≤t≤40时,W随x增大而减小,故当t=21时,W最大=513,综上知,当t=14时,利润最大,最大利润是578元.(3)由题意得:W=(﹣2t+96)(t+5﹣a)(1≤t≤20)配方得:W=﹣[t﹣2(a+7)]2+2(a﹣17)2(1≤t≤20),要使日销售利润随时间t增大而增大,则要求对称轴x=2(a+7)≥20解得x≥3;又题目要求a<4,故3≤a<4.【点评】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.24.若△ABC和△ADE均为等边三角形,M、N分别是BE、CD的中点.(1)当△ADE绕A点旋转到如图①的位置时,求证:CD=BE,△AMN是等边三角形;(2)如图②,当∠EAB=30°,AB=12,AD=时,求AM的长.【考点】旋转的性质;全等三角形的判定与性质;等边三角形的性质;勾股定理.【专题】代数几何综合题;压轴题.【分析】(1)先证明△ABE≌△ACD(SAS),再证明△ABM≌△A(SAS),可得∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠CAB=60°,即可证明结论;(2)作EF⊥AB于点F,可得EF=,作MH⊥AB于点H,M是BE中点,得MH=EF=,在Rt△MPH中,利用勾股定理可求得.【解答】(1)证明:∵△ABC和△ADE均为等边三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=60°,∵∠BAE=∠BAC﹣∠EAC,∠DAC=∠EAD﹣∠EAC,∴∠BAE=∠DAC,∴△ABE≌△ACD,∴CD=BE,∠ABE=∠ACD,∵M、N分别是BE、CD的中点,即BM=BE,=CD,∴BM=.又AB=AC,∴△ABM≌△A,∴AM=AN,∠MAB=∠NA C,∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠CAB=60°,∴△AMN是等边三角形.(2)解:作EF⊥AB于点F,在Rt△AEF中,∵∠EAB=30°,AE=AD=,∴EF=,∵M是BE中点,作MH⊥AB于点H,∴MH∥EF,MH=EF=,取AB中点P,连接MP,则MP∥A E,MP=AE,∴∠MPH=30°,MP=,∴在Rt△MPH中,PH=,∴AH=AP+PH=,在Rt△AMH中,AM==.【点评】本题考查了全等三角形的判定和性质、等边三角形的性质和勾股定理的应用,属综合性较强的题目,本题作好辅助线,构建含30°角的直角三角形是解答的关键.25.抛物线y=ax2(a是常数,a≠0)过点(2,﹣1),与过点D(0,﹣1)的直线y=kx+b 交于M、N两点(M在N的左边).(1)求抛物线的解析式;(2)如图1,当k=时,点P是直线MN上方的抛物线上一动点,当S△MNP最大时,求带点P 的坐标;(3)求证:无论k取何值,直线y=1总与以MN为直径的圆相切.【考点】二次函数综合题.【分析】(1)直接把已知点的坐标代入到二次函数的解析式即可确定其二次项系数a的值,从而确定二次函数的解析式;(2)根据直线与抛物线有唯一公共点即可得到联立之后的方程组有唯一解,从而得到有关一元二次方程有两个相等的实数根,从而利用根的判别式求得n的值,从而确定直线的解析式;(3)取MN的中点E,取AB的中点C,分别过点M、N作直线y=1的垂线,垂足分别为A、B,连EC、MC并延长MC交NB的延长线于点H,首先得到AMC≌△BHC,然后设M(x1,y1)N(x2,y2),得到y1=﹣x12,y2=﹣x22,利用勾股定理得到MA=MD和NB=ND,从而得到MN=MA+NB=2CE,最后根据CE∥NB∥AM得到CE⊥直线y=1,从而得到无论K取何值,直线y=1总与以MN为直径的圆相切.【解答】(1)解:把(2,﹣1)代入得:4a=﹣1解得:a=﹣,∴所求抛物线解析式为:y=﹣x2;(2)解:过P点作直线m∥MN则k m=,设直线m的解析式为:y=+n,当直线m与抛物线y=﹣x2相切时,S△MNP最大,即:有唯一解则:方程﹣x2=+n有两个相等的实数根,∴x2+3x+4n=0 有两个相等的实数根∴△=9﹣16n=0,∴n=,则x1=x2=﹣,∴P点坐标为:(﹣,﹣),(3)如图2,取MN的中点E,取AB的中点C,分别过点M、N作直线y=1的垂线,垂足分别为A、B,连EC、MC并延长MC交NB的延长线于点H∴MA∥NB∠MAB=∠ABH=90°,∠AMC=∠BHC,AC=BC∴△AMC≌△BHC∴AM=BH,MC=HC在△MHN中∵MC=HCME=EN∴CE∥BN且CE=NH=(AM+BN),设M(x1,y1)N(x2,y2),则y1=﹣x12,y2=﹣x22,∴MA=1+x12,NB=1+x22,过M作MG⊥y轴于G在Rt△MDG中由勾股定理得MD2=MG2+DG2,=x12+(﹣1+x22)2,=1+x12+x14=(1+x12)2=MA2∴MA=MD,同理NB=ND,∴MN=MA+NB=2CE,∵CE∥NB∥AM,∴∠MAB=∠ECB=90°,∴CE⊥直线Y=1∴d=r∴无论K取何值,直线y=1总与以MN为直径的圆相切.【点评】本题考查了二次函数的综合知识,题目中还涉及到了待定系数法、勾股定理等知识,综合性较强,难度较大.。

人教版九年级上册数学期中考试数学试卷带答案

人教版九年级上册数学期中考试数学试卷带答案

人教版九年级上册期中考试数学试卷一、选择题(每小题3分,共36分)1.(3分)下列安全标志图中,是中心对称图形的是()A. B.C.D.2.(3分)用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=253.(3分)抛物线y=﹣2(x+3)2﹣4的顶点坐标是()A.(﹣4,3)B.(﹣4,﹣3)C.(3,﹣4)D.(﹣3,﹣4)4.(3分)平面直角坐标系内的点A(﹣2,3)关于原点对称的点的坐标是()A.(3,2) B.(2,﹣3)C.(2,3) D.(﹣2,﹣3)5.(3分)把抛物线y=3x2向左平移2个单位,再向上平移1个单位,所得的抛物线的解析式是()A.y=3(x﹣2)2+1 B.y=3(x﹣2)2﹣1 C.y=3(x+2)2+1 D.y=3(x+2)2﹣16.(3分)函数y=2x2﹣3x+4经过的象限是()A.一,二,三象限B.一,二象限 C.三,四象限 D.一,二,四象限7.(3分)一元二次方程x2﹣2x+2=0的根的情况是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根 D.有两个相等的实数根8.(3分)近年来某市加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元,该市投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3600 B.2500(1+x)2=3600C.2500(1+x%)2=3600 D.2500(1+x)+2500(1+x)2=36009.(3分)如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A.55° B.45° C.40° D.35°10.(3分)已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0()A.没有实根B.只有一个实根C.有两个实根,且一根为正,一根为负D.有两个实根,且一根小于1,一根大于211.(3分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y212.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac其中正确的结论的有()A.1个B.2个C.3个D.4个二.填空题:(每小题4分,共24分)13.(4分)抛物线y=﹣x2﹣x﹣1的对称轴是.14.(4分)点A(a﹣1,﹣4)与点B(﹣3,1﹣b)关于原点对称,则a+b的值为.15.(4分)抛物线y=x2﹣2x﹣3与x轴的交点坐标为.16.(4分)已知二次函数y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围.17.(4分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则+= .18.(4分)某商品进货单价为30元,按40元一个销售能卖40个;若销售单价每涨1元,则销量减少1个.为了获得最大利润,此商品的最佳售价应为元.三.(共9小题,共90分)19.(6分)解方程:x2﹣4x﹣1=0.20.(8分)已知关于的一元二次方程x2﹣6x+2m﹣1=0有两个相等的实数根,求m的值及方程的根.21.(8分)已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.22.(10分)用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2.(1)求出y与x的函数关系式.(2)当边长x为多少时,矩形的面积最大,最大面积是多少?23.(10分)抛物线y=﹣2x2+8x﹣6.(1)求抛物线的顶点坐标和对称轴;(2)x取何值时,y随x的增大而减小?(3)x取何值时,y=0;x取何值时,y>0;x取何值时,y<0.24.(10分)宜春三中学校团委爱心社组织学生为高三学生进行献爱心活动,学生踊跃捐款.初三年级第一天收到捐款1000元,第三天收到1210元.(1)求这两天收到捐款的平均增长率.(2)按照(1)中的增长速度,第四天初三年级能收到多少捐款?25.(12分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕原点O旋转180°后的△A2B2C2.26.(12分)如图,在△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O逆时针方向旋转90°得到△OA1B1.(1)线段A1B1的长是,∠AOA1的度数是;(2)连结AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.27.(14分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求抛物线的解析式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A,C,D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积.参考答案一、选择题(每小题3分,共36分)1.(3分)(2014•抚州)下列安全标志图中,是中心对称图形的是()A. B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不符合题意;D、不是中心对称图形,故此选项不合题意;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(3分)(2015秋•连城县期中)用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=25【分析】方程移项后,利用完全平方公式配方即可得到结果.【解答】解:方程x2+8x+9=0,整理得:x2+8x=﹣9,配方得:x2+8x+16=7,即(x+4)2=7,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.(3分)(2011•苍南县校级一模)抛物线y=﹣2(x+3)2﹣4的顶点坐标是()A.(﹣4,3)B.(﹣4,﹣3)C.(3,﹣4)D.(﹣3,﹣4)【分析】直接根据顶点式的特点写出顶点坐标.【解答】解:因为y=﹣2(x+3)2﹣4是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(﹣3,﹣4).故选D.【点评】主要考查了求抛物线的顶点坐标的方法.4.(3分)(2010•綦江县)平面直角坐标系内的点A(﹣2,3)关于原点对称的点的坐标是()A.(3,2) B.(2,﹣3)C.(2,3) D.(﹣2,﹣3)【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)”解答即可.【解答】解:根据中心对称的性质,得点A(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选B.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题,记忆方法是结合平面直角坐标系的图形记忆.5.(3分)(2016秋•遵义期中)把抛物线y=3x2向左平移2个单位,再向上平移1个单位,所得的抛物线的解析式是()A.y=3(x﹣2)2+1 B.y=3(x﹣2)2﹣1 C.y=3(x+2)2+1 D.y=3(x+2)2﹣1【分析】根据二次函数图象的平移规律(左加右减,上加下减)进行解答即可.【解答】解:抛物线y=3x2向左平移2个单位,再向上平移1个单位y=3(x+2)2+1.故选:C.【点评】本题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.6.(3分)(2009秋•滁州校级期末)函数y=2x2﹣3x+4经过的象限是()A.一,二,三象限B.一,二象限 C.三,四象限 D.一,二,四象限【分析】利用公式法先求顶点坐标,再判断经过的象限.【解答】解:∵y=ax2+bx+c的顶点坐标公式为(,),∴y=2x2﹣3x+4的顶点坐标为(,),而a=2>0,所以抛物线过第一,二象限.故选B.【点评】本题考查抛物线的顶点坐标和开口方向,能确定这两样,抛物线经过的象限就容易确定了.7.(3分)(2010•富顺县校级模拟)一元二次方程x2﹣2x+2=0的根的情况是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根 D.有两个相等的实数根【分析】根据根的判别式△=b2﹣4ac的符号来判定一元二次方程x2﹣2x+2=0的根的情况.【解答】解:∵一元二次方程x2﹣2x+2=0的二次项系数a=1,一次项系数b=﹣2,常数项c=2,∴△=b2﹣4ac=4﹣8=﹣4<0,∴一元二次方程x2﹣2x+2=0没有实数根;故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(2016春•高邮市校级期末)近年来某市加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元,该市投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3600 B.2500(1+x)2=3600C.2500(1+x%)2=3600 D.2500(1+x)+2500(1+x)2=3600【分析】设该市投入教育经费的年平均增长率为x,根据:2013年投入资金给×(1+x)2=2015年投入资金,列出方程即可.【解答】解:设该市投入教育经费的年平均增长率为x,根据题意,可列方程:2500(1+x)2=3600,故选:B.【点评】本题主要考查根据实际问题列方程的能力,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.9.(3分)(2008•无锡)如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD 等于()A.55°B.45°C.40°D.35°【分析】本题旋转中心为点O,旋转方向为逆时针,观察对应点与旋转中心的连线的夹角∠BOD即为旋转角,利用角的和差关系求解.【解答】解:根据旋转的性质可知,D和B为对应点,∠DOB为旋转角,即∠DOB=80°,所以∠AOD=∠DOB﹣∠AOB=80°﹣45°=35°.故选:D.【点评】本题考查旋转两相等的性质:即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.10.(3分)(2016秋•遵义期中)已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0()A.没有实根B.只有一个实根C.有两个实根,且一根为正,一根为负D.有两个实根,且一根小于1,一根大于2【分析】首先根据图象求出抛物线y=ax2+bx+c的图象与x轴的交点横坐标取值范围,进而写出一元二次方程ax2+bx+c=0的解的情况.【解答】解:由图可知:抛物线y=ax2+bx+c的图象与x轴的交点横坐标的取值范围是0<x1<1,2<x2<3,则一元二次方程ax2+bx+c=0有两个实根,且一根小于1,一根大于2.故选D.【点评】本题考查的是抛物线与x轴的交点问题的知识,根据抛物线与x轴的交点求出一元二次方程的两个根是解答此题的关键,此题难度不大.11.(3分)(2016秋•秀峰区校级期中)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2【分析】根据二次函数的对称性,可利用对称性,找出点A的对称点A′,再利用二次函数的增减性可判断y值的大小.【解答】解:∵函数的解析式是y=﹣(x+1)2+1,∴对称轴是x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选A.【点评】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,12.(3分)(2016秋•秀峰区校级期中)已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac其中正确的结论的有()A.1个B.2个C.3个D.4个【分析】根据二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x 轴交点的个数确定解答.【解答】解:开口向下,则a<0,与y轴交于正半轴,则c>0,∵﹣>0,∴b>0,则abc<0,①正确;∵﹣=1,则b=﹣2a,∵a﹣b+c<0,∴3a+c<0,②错误;∵b=﹣2a,∴2a+b=0,④正确;∴b2﹣4ac>0,∴b2>4ac,⑤正确,故选:D.【点评】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二.填空题:(每小题4分,共24分)13.(4分)(2012•沈河区模拟)抛物线y=﹣x2﹣x﹣1的对称轴是直线x=﹣.【分析】根据抛物线对称轴公式进行计算即可得解.【解答】解:对称轴为直线x=﹣=﹣=﹣,即直线x=﹣故答案为:直线x=﹣.【点评】本题考查了二次函数的性质,主要利用了对称轴公式,比较简单.14.(4分)(2016秋•遵义期中)点A(a﹣1,﹣4)与点B(﹣3,1﹣b)关于原点对称,则a+b的值为 1 .【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”列方程求出a、b的值,然后相加计算即可得解.【解答】解:∵点A(a﹣1,﹣4)与点B(﹣3,1﹣b)关于原点对称,∴a﹣1=3,1﹣b=4,解得a=4,b=﹣3,所以,a+b=4+(﹣3)=1.故答案为:1.【点评】本题考查了关于原点对称的点的坐标,关于原点对称的点,横坐标与纵坐标都互为相反数.15.(4分)(2015秋•淅川县期末)抛物线y=x2﹣2x﹣3与x轴的交点坐标为(3,0),(﹣1,0).【分析】要求抛物线与x轴的交点,即令y=0,解方程.【解答】解:令y=0,则x2﹣2x﹣3=0,解得x=3或x=﹣1.则抛物线y=x2﹣2x﹣3与x轴的交点坐标是(3,0),(﹣1,0).故答案为(3,0),(﹣1,0).【点评】本题考查了抛物线与x轴的交点.求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.16.(4分)(2015•铁力市二模)已知二次函数y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围k≥﹣且k≠0 .【分析】由于二次函数与x轴有交点,故二次函数对应的一元二次方程kx2﹣7x﹣7=0中,△≥0,解不等式即可求出k的取值范围,由二次函数定义可知,k≠0.【解答】解:∵二次函数y=kx2﹣7x﹣7的图象和x轴有交点,∴,∴k≥﹣且k≠0.故答案为k≥﹣且k≠0.【点评】本题考查了抛物线与x轴的交点,不仅要熟悉二次函数与x轴的交点个数与判别式的关系,还要会解不等式.17.(4分)(2016•遵义)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则+= ﹣2 .【分析】利用韦达定理求得x1+x2=2,x1•x2=﹣1,然后将其代入通分后的所求代数式并求值.【解答】解:∵一元二次方程x2﹣2x﹣1=0的两根为x1、x2,x1+x2=2,x1•x2=﹣1,∴+==﹣2.故答案是:﹣2.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.18.(4分)(2016秋•遵义期中)某商品进货单价为30元,按40元一个销售能卖40个;若销售单价每涨1元,则销量减少1个.为了获得最大利润,此商品的最佳售价应为55 元.【分析】根据题意,总利润=销售量×每个利润,设售价为x元,总利润为W元,则销售量为40﹣1×(x﹣40),每个利润为(x﹣30),据此表示总利润,利用配方法可求最值.【解答】解:设售价为x元,总利润为W元,则W=(x﹣30)[40﹣1×(x﹣40)]=﹣x2+110x﹣2400=﹣(x﹣55)2+100,则x=55时,获得最大利润为100元,故答案为:55.【点评】本题考查二次函数的应用、构建二次函数是解决问题的关键,搞清楚利润、销售量、成本、售价之间的关系,属于中考常考题型.三.(共9小题,共90分)19.(6分)(2011•清远)解方程:x2﹣4x﹣1=0.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:∵x2﹣4x﹣1=0,∴x2﹣4x=1,∴x2﹣4x+4=1+4,∴(x﹣2)2=5,∴x=2±,∴x1=2+,x2=2﹣.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.20.(8分)(2016秋•遵义期中)已知关于的一元二次方程x2﹣6x+2m﹣1=0有两个相等的实数根,求m的值及方程的根.【分析】首先根据原方程根的情况,利用根的判别式求出m的值,即可确定原一元二次方程,进而可求出方程的根.【解答】解:∵关于x的一元二次方程x2﹣6x+2m﹣1=0有两个相等的实数根,∴△=b2﹣4ac=(﹣6)2﹣4×1×(2m﹣1)=36﹣8m+4=40﹣8m=0,∴m=5,∴关于x的一元二次方程是x2﹣6x+9=0,∴(x﹣3)2=0,解得x1=x2=3.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解法.21.(8分)(2014秋•静宁县期末)已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.【分析】已知二次函数的顶点坐标为(1,4),设抛物线的顶点式为y=a(x﹣1)2+4(a≠0),将点(﹣2,﹣5)代入求a即可.【解答】解:设此二次函数的解析式为y=a(x﹣1)2+4(a≠0).∵其图象经过点(﹣2,﹣5),∴a(﹣2﹣1)2+4=﹣5,∴a=﹣1,∴y=﹣(x﹣1)2+4=﹣x2+2x+3.【点评】本题考查了用顶点式求抛物线解析式的一般方法,必须熟练掌握抛物线解析式的几种形式.22.(10分)(2014秋•景洪市校级期末)用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2.(1)求出y与x的函数关系式.(2)当边长x为多少时,矩形的面积最大,最大面积是多少?【分析】(1)已知一边长为xcm,则另一边长为(20﹣2x).根据面积公式即可解答.(2)把函数解析式用配方法化简,得出y的最大值.【解答】解:(1)已知一边长为xcm,则另一边长为(10﹣x).则y=x(10﹣x)化简可得y=﹣x2+10x(2)y=10x﹣x2=﹣(x2﹣10x)=﹣(x﹣5)2+25,所以当x=5时,矩形的面积最大,最大为25cm2.【点评】本题考查的是二次函数的应用,难度一般,重点要注意配方法的运用.23.(10分)(2016秋•遵义期中)抛物线y=﹣2x2+8x﹣6.(1)求抛物线的顶点坐标和对称轴;(2)x取何值时,y随x的增大而减小?(3)x取何值时,y=0;x取何值时,y>0;x取何值时,y<0.【分析】(1)根据配方法的步骤要求,将抛物线解析式的一般式转化为顶点式,可确定顶点坐标和对称轴;(2)由对称轴x=﹣2,抛物线开口向下,结合图象,可确定函数的增减性;(3)判断函数值的符号,可以令y=0,解一元二次方程求x,再根据抛物线的开口方向,确定函数值的符号与x的取值范围的对应关系.【解答】解:(1)∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴顶点坐标为(2,2),对称轴为直线x=2;(2)∵a=﹣2<0,抛物线开口向下,对称轴为直线x=2,∴当x>2时,y随x的增大而减小;(3)令y=0,即﹣2x2+8x﹣6=0,解得x=1或3,抛物线开口向下,∴当x=1或x=3时,y=0;当1<x<3时,y>0;当x<1或x>3时,y<0.【点评】本题考查了抛物线和x轴交点的问题,对于抛物线顶点坐标,与x轴的交点坐标的求法及其运用,必须熟练掌握.24.(10分)(2016秋•遵义期中)宜春三中学校团委爱心社组织学生为高三学生进行献爱心活动,学生踊跃捐款.初三年级第一天收到捐款1000元,第三天收到1210元.(1)求这两天收到捐款的平均增长率.(2)按照(1)中的增长速度,第四天初三年级能收到多少捐款?【分析】(1)设捐款的增长率为x,则第三天的捐款数量为10000(1+x)2元,根据第三天的捐款数量为12100元建立方程求出其解即可.(2)根据(1)求出的增长率列式计算即可.【解答】解:(1)捐款增长率为x,根据题意得:10000(1+x)2=12100,解得:x1=0.1,x2=﹣2.1(舍去).则x=0.1=10%.答:捐款的增长率为10%.(2)根据题意得:12100×(1+10%)=13310(元).答:第四天该校能收到的捐款是13310元.【点评】此题考查了一元二次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程,注意把不合题意的解舍去.25.(12分)(2016秋•遵义期中)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕原点O旋转180°后的△A2B2C2.【分析】(1)利用关于x轴对称的点的坐标特征写出点A、B、C的对称点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用关于原点对称的点的坐标特征写出点A、B、C的对称点A2、B2、C2的坐标,然后描点即可得到△A2B2C2.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应点的连线段的夹角都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.26.(12分)(2016秋•秀峰区校级期中)如图,在△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O逆时针方向旋转90°得到△OA1B1.(1)线段A1B1的长是 6 ,∠AOA1的度数是90°;(2)连结AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.【分析】(1)根据旋转的性质即可直接求解;(2)根据旋转的性质以及平行线的判定定理证明B1A1∥OA且A1B1=OA即可证明四边形OAA1B1是平行四边形;(3)利用平行四边形的面积公式求解.【解答】解:(1)A1B1=AB=6,∠AOA1=90°.故答案是:6,90°;(2)∵A1B1=AB=6,OA1﹣OA=6,∠OA1B1=∠OAB=90°,∠AOA1=90°,∴∠OA1B1=∠AOA1,A1B1=OA,∴B1A1∥OA,∴四边形OAA1B1是平行四边形;(3)S=OA•A1O=6×6=36.即四边形OAA1B1的面积是36.【点评】本题考查了旋转的性质以及平行四边形的判定和面积公式,证明B1A1∥OA是关键.27.(14分)(2016秋•遵义期中)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求抛物线的解析式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A,C,D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积.【分析】(1)根据A与B坐标设出抛物线解析式,将C坐标代入即可求出;(2)过点D作DH⊥AB于点H,交直线AC于点G,连接DC,AD,如图所示,利用待定系数法求出直线AC解析式,设D横坐标为m,则有G横坐标也为m,表示出DH与GH,由DH﹣GH表示出DG,三角形ADC面积=三角形ADG面积+三角形DGC面积,表示出面积与m的关系式,利用二次函数性质确定出面积的最大值,以及此时m的值,即此时D的坐标即可.【解答】解:(1)根据题意设抛物线解析式为y=a(x+4)(x﹣2),把C(0,2)代入得:﹣8a=2,即a=﹣,则抛物线解析式为y=﹣(x+4)(x﹣2)=﹣x2﹣x+2;(2)过点D作DH⊥AB于点H,交直线AC于点G,连接DC,AD,如图所示,设直线AC解析式为y=kx+t,则有,解得:,∴直线AC解析式为y=x+2,设点D的横坐标为m,则G横坐标也为m,∴DH=﹣m2﹣m+2,GH=m+2,∴DG=﹣m2﹣m+2﹣m﹣2=﹣m2﹣m,∴S△ADC=S△ADG+S△CDG=DG•AH+DG•OH=DG•AO=2DG=﹣m2﹣2m=﹣(m2+4m)=﹣[(m+2)2﹣4]=﹣(m+2)2+2,当m=﹣2时,S△ADC取得最大值2,此时y D=﹣×(﹣2)2﹣×(﹣2)+2=2,即D(﹣2,2).【点评】此题考查了抛物线与x轴的交点,二次函数的最值,以及待定系数法求二次函数解析式,熟练掌握二次函数的性质是解本题的关键.人教版九年级上册期中考试数学试卷一、选择题(每小题3分,共36分)1.(3分)下列安全标志图中,是中心对称图形的是()A. B.C.D.2.(3分)用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=253.(3分)抛物线y=﹣2(x+3)2﹣4的顶点坐标是()A.(﹣4,3)B.(﹣4,﹣3)C.(3,﹣4)D.(﹣3,﹣4)4.(3分)平面直角坐标系内的点A(﹣2,3)关于原点对称的点的坐标是()A.(3,2) B.(2,﹣3)C.(2,3) D.(﹣2,﹣3)5.(3分)把抛物线y=3x2向左平移2个单位,再向上平移1个单位,所得的抛物线的解析式是()A.y=3(x﹣2)2+1 B.y=3(x﹣2)2﹣1 C.y=3(x+2)2+1 D.y=3(x+2)2﹣16.(3分)函数y=2x2﹣3x+4经过的象限是()A.一,二,三象限B.一,二象限 C.三,四象限 D.一,二,四象限7.(3分)一元二次方程x2﹣2x+2=0的根的情况是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根 D.有两个相等的实数根8.(3分)近年来某市加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元,该市投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3600 B.2500(1+x)2=3600C.2500(1+x%)2=3600 D.2500(1+x)+2500(1+x)2=36009.(3分)如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A.55° B.45° C.40° D.35°10.(3分)已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0()A.没有实根B.只有一个实根C.有两个实根,且一根为正,一根为负D.有两个实根,且一根小于1,一根大于211.(3分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y212.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac其中正确的结论的有()A.1个B.2个C.3个D.4个二.填空题:(每小题4分,共24分)13.(4分)抛物线y=﹣x2﹣x﹣1的对称轴是.14.(4分)点A(a﹣1,﹣4)与点B(﹣3,1﹣b)关于原点对称,则a+b的值为.15.(4分)抛物线y=x2﹣2x﹣3与x轴的交点坐标为.16.(4分)已知二次函数y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围.17.(4分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则+= .18.(4分)某商品进货单价为30元,按40元一个销售能卖40个;若销售单价每涨1元,则销量减少1个.为了获得最大利润,此商品的最佳售价应为元.三.(共9小题,共90分)19.(6分)解方程:x2﹣4x﹣1=0.20.(8分)已知关于的一元二次方程x2﹣6x+2m﹣1=0有两个相等的实数根,求m的值及方程的根.21.(8分)已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.22.(10分)用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2.(1)求出y与x的函数关系式.(2)当边长x为多少时,矩形的面积最大,最大面积是多少?23.(10分)抛物线y=﹣2x2+8x﹣6.(1)求抛物线的顶点坐标和对称轴;(2)x取何值时,y随x的增大而减小?(3)x取何值时,y=0;x取何值时,y>0;x取何值时,y<0.24.(10分)宜春三中学校团委爱心社组织学生为高三学生进行献爱心活动,学生踊跃捐款.初三年级第一天收到捐款1000元,第三天收到1210元.(1)求这两天收到捐款的平均增长率.(2)按照(1)中的增长速度,第四天初三年级能收到多少捐款?25.(12分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕原点O旋转180°后的△A2B2C2.26.(12分)如图,在△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O逆时针方向旋转90°得到△OA1B1.(1)线段A1B1的长是,∠AOA1的度数是;(2)连结AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.27.(14分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求抛物线的解析式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A,C,D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积.制定学习目标的三个原则——适当、明确、具体人生在世,谁都希望获得成功,而世界公认的成功定义是:成功就是逐步实现一个有意义的既定目标。

2015-2016年天津市东丽区九年级上期中数学试卷含答案解析

2015-2016年天津市东丽区九年级上期中数学试卷含答案解析

2015-2016年天津市东丽区九年级上期中数学试卷含答案解析一.选择题(本大题共12小题,每小题3分,共36分)1.下列函数中,是二次函数的是()A.B.y=(x+2)(x﹣2)﹣x2 C.D.2.方程(x+3)(x﹣2)=0的解是()A.x1=3,x2=2 B.x1=﹣3,x2=2 C.x1=3,x2=﹣2 D.x1=﹣3,x2=﹣23.如果2是一元二次方程x2=c的一个根,那么常数c是()A.2 B.﹣2 C.4 D.﹣44.一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2﹣4ac满足的条件是()A.b2﹣4ac=0 B.b2﹣4ac>0 C.b2﹣4ac<0 D.b2﹣4ac≥05.是关于x的一元二次方程,则m的值应为()A.m=2 B.C.D.无法确定6.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1 B. C.D.﹣27.关于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.48.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAE C.∠EAF D.∠BAF9.下列讲法正确的是()A.旋转改变图形的大小和形状B.旋转中,图形的每个点移动的距离相同C.通过旋转,图形的对应线段、对应角分不相等D.通过旋转,图形的对应点的连线平行且相等10.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标差不多上整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0) B.(1,0)C.(1,﹣1)D.(2.5,0.5)11.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10° B.20°C.25°D.30°12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判定:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④二、填空题(本大题共6小题,每小题3分,共18分)13.一元二次方程3x2+2x﹣5=0的一次项系数是.14.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是.15.按照图中的抛物线能够判定:当x时,y随x的增大而减小;当x=时,y有最小值.16.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是.17.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③不管m 取何值,方程都有一个负数解,其中正确的是(填序号).18.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分不交两条抛物线于点B,C.则以下结论:①不管x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4④2AB=3AC.其中正确结论是.三、解答题(本大题共7小题,共66分)19.解方程:x2﹣2x=x﹣2.20.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.21.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在那个旋转过程中:①旋转中心是什么?②若旋转角为45°,边CD与A′D′交于F,求DF的长度.22.按照下列条件求m的取值范畴.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大;(2)函数y=(2m﹣1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同.23.某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发觉,这种商品的销售单价每提升1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?24.在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C 分不在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB 边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.25.如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,通过点A、C、B的抛物线的一部分C1与通过点A、D、B 的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣),点M是抛物线C2:y=mx2﹣2mx﹣3 m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请讲明理由;(3)当△BDM为直角三角形时,求m的值.2015-2016学年天津市东丽区九年级(上)期中数学试卷参考答案与试题解析一.选择题(本大题共12小题,每小题3分,共36分)1.下列函数中,是二次函数的是()A.B.y=(x+2)(x﹣2)﹣x2 C.D.【考点】二次函数的定义.【分析】整理一样形式后,按照二次函数的定义判定即可.【解答】解:A、函数式整理为y=x2﹣x,是二次函数,正确;B、函数式整理为y=﹣4,不是二次函数,错误;C、是正比例函数,错误;D、是反比例函数,错误.故选A.【点评】本题考查二次函数的定义.2.方程(x+3)(x﹣2)=0的解是()A.x1=3,x2=2 B.x1=﹣3,x2=2 C.x1=3,x2=﹣2 D.x1=﹣3,x2=﹣2【考点】解一元二次方程-因式分解法.【专题】运算题.【分析】先观看再确定方法解方程.按照左边乘积为0的特点应用因式分解法.【解答】解:按照题意可知:x+3=0或x﹣2=0;即x1=﹣3,x2=2.故选B.【点评】此题较简单,只要同学们明白有理数的乘法法则即可,即两数相乘等于0,那么其中一个数必定等于0.3.如果2是一元二次方程x2=c的一个根,那么常数c是()A.2 B.﹣2 C.4 D.﹣4【考点】一元二次方程的解.【分析】一元二次方程的根确实是一元二次方程的解,确实是能够使方程左右两边相等的未知数的值.即用那个数代替未知数所得式子仍旧成立.【解答】解:把x=2代入方程x2=c可得c=4,故本题选C.【点评】本题考查的是一元二次方程的根即方程的解的定义.4.一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2﹣4ac满足的条件是()A.b2﹣4ac=0 B.b2﹣4ac>0 C.b2﹣4ac<0 D.b2﹣4ac≥0【考点】根的判不式.【分析】已知一元二次方程的根的情形,就可知根的判不式△=b2﹣4a c值的符号.【解答】解:∵一元二次方程有两个不相等的实数根,∴△=b2﹣4ac>0.故选:B.【点评】总结:一元二次方程根的情形与判不式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.是关于x的一元二次方程,则m的值应为()A.m=2 B.C.D.无法确定【考点】一元二次方程的定义.【专题】运算题.【分析】按照一元二次方程的定义,令2m﹣1=2,求出m的值即可.【解答】解:∵是关于x的一元二次方程,∴2m﹣1=2,∴m=,故选C.【点评】本题考查了一元二次方程的概念.要明白,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程.6.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1 B. C.D.﹣2【考点】二次函数图象上点的坐标特点.【专题】压轴题;数形结合.【分析】按照图象开口向下可知a<0,又二次函数图象通过坐标原点,把原点坐标代入函数解析式解关于a的一元二次方程即可.【解答】解:由图可知,函数图象开口向下,∴a<0,又∵函数图象通过坐标原点(0,0),∴a2﹣2=0,解得a1=(舍去),a2=﹣.故选C.【点评】本题考查了二次函数图象上点的坐标特点,观看图象判定出a 是负数且通过坐标原点是解题的关键.7.关于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.4【考点】二次函数的性质.【分析】按照二次函数的性质对各小题分析判定即可得解.【解答】解:①∵a=﹣<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选C.【点评】本题考查了二次函数的性质,要紧利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性.8.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAE C.∠EAF D.∠BAF【考点】旋转的性质.【分析】旋转后任意一对对应点与旋转中心的连线所成的角差不多上旋转角.【解答】解:∵点B与点E是一对对应点,点C与点F是一对对应点.∴旋转角为∠BAE或∠CAF.故选:A.【点评】本题要紧考查的是旋转角的定义,把握旋转角的定义是解题的关键.9.下列讲法正确的是()A.旋转改变图形的大小和形状B.旋转中,图形的每个点移动的距离相同C.通过旋转,图形的对应线段、对应角分不相等D.通过旋转,图形的对应点的连线平行且相等【考点】旋转的性质.【分析】按照旋转的性质对各选项进行判定.【解答】解:A、旋转不改变图形的大小和形状,因此A选项错误;B、旋转中,图形的每个点移动的距离不一定相同,因此B选项错误;C、通过旋转,图形的对应线段、对应角分不相等,因此C选项正确;D、通过旋转,图形的对应点的连线不一定平行或相等,因此D选项错误.故选C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标差不多上整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0) B.(1,0)C.(1,﹣1)D.(2.5,0.5)【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】先按照旋转的性质得到点A的对应点为点D,点B的对应点为点E,再按照旋转的性质得到旋转中心在线段AD的垂直平分线,也在线段BE的垂直平分线,即两垂直平分线的交点为旋转中心,而易得线段BE 的垂直平分线为直线x=1,线段AD的垂直平分线为以AD为对角线的正方形的另一条对角线所在的直线.【解答】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,∴点A的对应点为点D,点B的对应点为点E,作线段AD和BE的垂直平分线,它们的交点为P(1,﹣1),∴旋转中心的坐标为(1,﹣1).故选C.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的专门性质来求出旋转后的点的坐标.常见的是旋转专门角度如:30°,45°,60°,90°,180°.11.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10° B.20°C.25°D.30°【考点】旋转的性质.【分析】由∠B=∠D′=90°,可知:∠2+∠D′AB=180°,从而可求得∠D′AB=70°,∠α=∠DAD′=90°﹣∠D′AB.【解答】解:如图所示:∵∠B=∠D′=90°,∴∠2+∠D′AB=180°.∴∠D′AB=180°﹣∠2=180°﹣110°=70°.∵∠α=∠DAD′,∴∠α=90°﹣∠D′AB=90°﹣70°=20°.故选:B.【点评】本题要紧考查的是旋转的性质、四边形的内角和是360°,求得∠BAD′=70°是解题的关键.12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判定:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④【考点】二次函数图象与系数的关系.【专题】压轴题;数形结合.【分析】利用二次函数图象的有关知识与函数系数的联系,需要按照图形,逐一判定.【解答】解:∵抛物线的对称轴是直线x=﹣1,∴﹣=﹣1,b=2a,∴b﹣2a=0,故①正确;∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0),∴抛物线和x轴的另一个交点是(﹣4,0),∴把x=﹣2代入得:y=4a﹣2b+c>0,故②错误;∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,又∵b=2a,∴c=﹣4a﹣2b=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,故③正确;按照图象,可知抛物线对称轴的右边y随x的增大而减小,∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1,∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1),∵(,y2),1<,∴y1>y2,故④正确;即正确的有①③④,故选:B.【点评】此题要紧考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,专门点的关系,也要把握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意专门点的运用.二、填空题(本大题共6小题,每小题3分,共18分)13.一元二次方程3x2+2x﹣5=0的一次项系数是2.【考点】一元二次方程的一样形式.【分析】一元二次方程的一样形式是:ax2+bx+c=0(a,b,c是常数且a≠0),其中a,b,c分不叫二次项系数,一次项系数,常数项.按照定义即可求解.【解答】解:一元二次方程3x2+2x﹣5=0的一次项系数是:2.故答案为:2.【点评】一元二次方程的一样形式是:ax2+bx+c=0(a,b,c是常数且a≠0)专门要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一样形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分不叫二次项系数,一次项系数,常数项.14.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【考点】关于原点对称的点的坐标.【专题】数形结合.【分析】按照平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【解答】解:按照平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).【点评】本题要紧考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小.15.按照图中的抛物线能够判定:当x<1时,y随x的增大而减小;当x=1时,y有最小值.【考点】二次函数的性质.【分析】要确定抛物线的单调性第一要明白其对称轴,然后按照对称轴来确定x的取值范畴.【解答】解:按照图象可知对称轴为x=(﹣1+3)÷2=1,因此当x<1时,y随x的增大而减小;当x=1时,y有最小值.故填空答案:<1;=1.【点评】此题要紧考查了函数的单调性与对称性.16.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是﹣2.【考点】一元二次方程的一样形式.【分析】按照题意可得m2﹣4=0,且m﹣2≠0,再解即可.【解答】解:由题意得:m2﹣4=0,且m﹣2≠0,解得:m=﹣2,故答案为:﹣2.【点评】此题要紧考查了一元二次方程的一样形式,关键是注意不要漏掉二次项系数不能等于0这一条件.17.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③不管m 取何值,方程都有一个负数解,其中正确的是①③(填序号).【考点】根的判不式;一元一次方程的解.【专题】分类讨论.【分析】分不讨论m=0和m≠0时方程mx2+x﹣m+1=0根的情形,进而填空.【解答】解:当m=0时,x=﹣1,方程只有一个解,①正确;当m≠0时,方程mx2+x﹣m+1=0是一元二次方程,△=1﹣4m(1﹣m)=1﹣4m+4m2=(2m﹣1)2≥0,方程有两个实数解,②错误;把mx2+x﹣m+1=0分解为(x+1)(mx﹣m+1)=0,当x=﹣1时,m﹣1﹣m+1=0,即x=﹣1是方程mx2+x﹣m+1=0的根,③正确;故答案为①③.【点评】本题要紧考查了根的判不式以及一元一次方程的解的知识,解答本题的关键是把握根的判不式的意义以及分类讨论的思想.18.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分不交两条抛物线于点B,C.则以下结论:①不管x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4④2AB=3AC.其中正确结论是①④.【考点】二次函数综合题.【分析】按照与y2=(x﹣3)2+1的图象在x轴上方即可得出y2的取值范畴;把A(1,3)代入抛物线y1=a(x+2)2﹣3即可得出a的值;由抛物线与y轴的交点求出y2﹣y1的值;按照两函数的解析式直截了当得出AB与AC的关系即可.【解答】解:①∵抛物线y2=(x﹣3)2+1开口向上,顶点坐标在x 轴的上方,∴不管x取何值,y2的值总是正数,故本小题正确;②把A(1,3)代入,抛物线y1=a(x+2)2﹣3得,3=a(1+2)2﹣3,解得a=,故本小题错误;③由两函数图象可知,抛物线y1=a(x+2)2﹣3解析式为y1=(x+2)2﹣3,当x=0时,y1=(0+2)2﹣3=﹣,y2=(0﹣3)2+1=,故y2﹣y 1=+=,故本小题错误;④∵物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),∴y1的对称轴为x=﹣2,y2的对称轴为x=3,∴B(﹣5,3),C(5,3)∴AB=6,AC=4,∴2AB=3AC,故本小题正确.故答案为:①④.【点评】本题考查的是二次函数综合题,涉及到二次函数的性质,按照题意利用数形结合进行解答是解答此题的关键,同时要熟悉二次函数图象上点的坐标特点.三、解答题(本大题共7小题,共66分)19.解方程:x2﹣2x=x﹣2.【考点】解一元二次方程-因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.20.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.【考点】解一元二次方程-因式分解法;根与系数的关系.【专题】运算题;证明题.【分析】若方程有两个不相等的实数根,则应有△=b2﹣4ac>0,故运算方程的根的判不式即可证明方程根的情形,第二小题能够直截了当代入x =﹣1,求得k的值后,解方程即可求得另一个根.【解答】证明:(1)∵a=2,b=k,c=﹣1∴△=k2﹣4×2×(﹣1)=k2+8,∵不管k取何值,k2≥0,∴k2+8>0,即△>0,∴方程2x2+kx﹣1=0有两个不相等的实数根.解:(2)把x=﹣1代入原方程得,2﹣k﹣1=0∴k=1∴原方程化为2x2+x﹣1=0,解得:x1=﹣1,x2=,即另一个根为.【点评】本题是对根的判不式与根与系数关系的综合考查,一元二次方程根的情形与判不式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时本题考查了一元二次方程的解的定义,已知方程的一个根求方程的另一根与未知系数是常见的题型.21.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在那个旋转过程中:①旋转中心是什么?②若旋转角为45°,边CD与A′D′交于F,求DF的长度.【考点】旋转的性质.【分析】①将正方形绕顶点B旋转,故旋转中心为B点;②由正方形的性质可知∠ABD=45°,由旋转角为45°可知∠ABA′= 45°,从而可知点B、A′、D三点在一条直线上,先利用勾股定理求得B D的长,从而可求得A′D的长,在Rt△A′DF中利用勾股定理可求得D F的长度.【解答】解:①旋转中心为B点.②如图所示:∵旋转角为45°,∴∠ABA′=45°.∵四边形ABCD为正方形,∴∠ABD=45°,∠A′DF=45°.∴∠ABA′=∠ABD.∴点B、A′、D三点在一条直线上.在Rt△ABD中,BD===2.∵A′D=BD﹣BA′,∴A′D=2﹣2.在Rt△A′DF中,DF==4﹣2.【点评】本题要紧考查的是正方形的性质、旋转的性质、勾股定理的应用,依据正方形的性质和旋转的性质证得点B、A′、D三点在一条直线上,从而求得A′D的长度是解题的关键.22.按照下列条件求m的取值范畴.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大;(2)函数y=(2m﹣1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同.【考点】二次函数的性质.【分析】(1)由当x>0时,y随x的增大而减小,当x<0时,y随x 的增大而增大,可知m+3<0,进一步求得m的取值范畴即可;(2)二次函数有最小值,讲明抛物线开口向上,即2m﹣1>0,进一步求得m的取值范畴即可;(3)两个抛物线的形状相同,讲明二次项系数相同,即m+2=﹣,求得m的数值即可.【解答】解:(1)∵函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大,∴m+3<0,解得m<﹣3;(2)∵函数y=(2m﹣1)x2有最小值,∴2m﹣1>0,解得:m>;(3)∵抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同,∴m+2=﹣,解得:m=﹣.【点评】本题考查了二次函数的性质,能按照解析式推知函数图象是解题的关键,另外要能准确判定出函数的对称轴.23.某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发觉,这种商品的销售单价每提升1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?【考点】二次函数的应用.【专题】运算题.【分析】按照题意列出二次函数,将函数化简为顶点式,便可知当x= 14时,所获得的利润最大.【解答】解:设销售单价定为x元(x≥10),每天所获利润为y元,则y=[100﹣10(x﹣10)]•(x﹣8)=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360因此将销售定价定为14元时,每天所获销售利润最大,且最大利润是360元【点评】本题要紧考查了二次函数的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解决咨询题的关键,属于中档题.24.在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C 分不在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【考点】坐标与图形变化-旋转;全等三角形的判定;正方形的性质;扇形面积的运算.【专题】综合题;压轴题.【分析】(1)按照扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,按照正方形一个内角的度数求出∠AOM 的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.【解答】解:(1)∵A点第一次落在直线y=x上时停止旋转,直线y= x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=(∠AOC﹣∠MON)=(90°﹣45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°﹣22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠A OM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.【点评】本题用到的知识点是:扇形面积=,求一些线段的长度或角的度数,总要整理到已知线段的长度上或已知角的度数上.25.如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,通过点A、C、B的抛物线的一部分C1与通过点A、D、B 的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣),点M是抛物线C2:y=mx2﹣2mx﹣3 m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请讲明理由;(3)当△BDM为直角三角形时,求m的值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)将y=mx2﹣2mx﹣3m化为交点式,即可得到A、B两点的坐标;(2)先用待定系数法得到抛物线C1的解析式,过点P作PQ∥y轴,交BC于Q,用待定系数法得到直线BC的解析式,再按照三角形的面积公式和配方法得到△PBC面积的最大值;(3)先表示出DM2,BD2,MB2,再分两种情形:①DM2+BD2=MB 2时;②DM2+MB2=BD2时,讨论即可求得m的值.【解答】解:(1)y=mx2﹣2mx﹣3m=m(x﹣3)(x+1),∵m≠0,∴当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)设C1:y=ax2+bx+c,将A、B、C三点的坐标代入得:,解得,故C1:y=x2﹣x﹣.如图:过点P作PQ∥y轴,交BC于Q,由B、C的坐标可得直线BC的解析式为:y=x﹣,设P(x,x2﹣x﹣),则Q(x,x﹣),PQ=x﹣﹣(x2﹣x﹣)=﹣x2+x,S△PBC=S△PCQ+S△PBQ=PQ•OB=×(﹣x2+x)×3=﹣(x ﹣)2+,当x=时,S△PBC有最大值,Smax=,×()2﹣﹣=﹣,P(,﹣);(3)y=mx2﹣2mx﹣3m=m(x﹣1)2﹣4m,顶点M坐标(1,﹣4m),当x=0时,y=﹣3m,∴D(0,﹣3m),B(3,0),∴DM2=(0﹣1)2+(﹣3m+4m)2=m2+1,MB2=(3﹣1)2+(0+4m)2=16m2+4,BD2=(3﹣0)2+(0+3m)2=9m2+9,当△BDM为Rt△时有:DM2+BD2=MB2或DM2+MB2=BD2.①DM2+BD2=MB2时有:m2+1+9m2+9=16m2+4,解得m=﹣1(∵m<0,∴m=1舍去);②DM2+MB2=BD2时有:m2+1+16m2+4=9m2+9,解得m=﹣(m=舍去).综上,m=﹣1或﹣时,△BDM为直角三角形.【点评】考查了二次函数综合题,涉及的知识点有:抛物线的交点式,待定系数法求抛物线的解析式,待定系数法求直线的解析式,三角形的面积公式,配方法的应用,勾股定理,分类思想的运用,综合性较强,有一定的难度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年第一学期期中考试九年级数学试卷考生须知:1. 全卷满分150分,考试时间120分钟,试题卷共4页,有三大题,共24小题。

2. 全卷答案必须做在答题卷的相应位置上,做在试题卷上无效。

3. 本次考试不使用计算器。

参考公式:二次函数)0(2≠++=a c bx ax y 图象的顶点坐标是⎪⎪⎭⎫⎝⎛-a b ac a b 44,22-。

一、 选择题(本题有10小题,每小题4分,共40分,请选出各题中唯一的正确选项,不选、多选、错选,均不得分) 1.抛物线3212-=x y 的顶点坐标是( ) A .(21,-3) B .(-3,0) C .(0,-3) D .(0,3) 2.在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为( ) A .116B .18C .14D .123.如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( )A .6B .5C .4D .34.半径为2cm 的⊙O 中有长为的弦AB ,则弦AB 所对的圆周角度数为 ( )A .600B .900C . 600或1200D .450或9005.已知⊙O 的半径为5厘米,A 为线段OP 的中点,当OP=6厘米时,点A 与⊙O 的位置关系是( )A .点A 在⊙O 内B .点A 在⊙O 上 C6.如图,已知AB 是△ABC 外接圆的直径,∠A =35°,则∠B 的度数是() A .35°B .45°C .55°D . 65°7.若扇形的半径为6,圆心角为120°,则此扇形的弧长是( ) A .3π B .4π C .5π D .6π(第6题)(第3题) AB(第10题)NM8.设A (﹣2,1y ),B (1,2y ),C (2,3y )是抛物线2(1)3y x =-++上的三点, 则123,,y y y 的大小关系为( )A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >> 9.已知二次函数2y ax bx c =++的图象如图,其对称轴1x =-,给出下列结果①24b ac >; ②0abc >;③20a b +=;④15c a >-,则正确的结论个数是( ) A . 1 B .2 C .3 D .410.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,点B 为劣弧AN 的中点.点P 是直径MN 上一动点,则PA+PB 的最小值为( ) A . B . 1 C .2 D .2二、填空题(本题有6小题,每小题5分,共30分)11.抛物线2243y x x =-++的开口向_____,顶点坐标是________ .12.有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车,则两人同坐2号车的概率为 . 13.将抛物线3)3(22+-=x y 向右平移2个单位后,再向下平移5个单位,所得抛物线的顶点坐标为_________ .14.在半径为5cm 的圆内有两条互相平行的弦,一条弦长为8cm ,另一条弦长为6cm ,则两弦之间的距离为 _________ cm .15.参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x 人参加同学聚会。

列方程得 . 16.如图,AB 为半圆O 的直径,以AO 为直径作半圆M ,C 为OB 的中点,D 在半圆M 上,且CD ⊥MD ,延长AD 交⊙O 于点E ,若AB=4,则图中阴影部分的面积为 .三、解答题(本题有8小题,第17~20题每小题8分,第21题10分,第22,23题每小题12分,第24题14分,共80分)17.一个不透明的袋中装有5个黄球、13个黑球和22个红球,它们除颜色外都相同. (1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于31,问至少取出了多少个黑球?18.已知二次函数当x =1时,y 有最大值为5,且它的图象经过点(2,3),求二次函数的关系式.(第16题图)O19.已知二次函数2(1)4y x =--+(1)求出二次函数的顶点坐标及与x 轴交点坐标,结合开口方向再在网格中画出图象。

(2)观察图象确定:x 取何值时,y 随着x 的增大而增大,当x 取何值时,y 随着x 的增大而减少。

(3)观察图象确定:x 取何值时,①y >0,②y <020.如图AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连结AC 、OC 、BC .(1)求证:∠ACO=∠BCD(2)若EB=8cm ,CD=24cm ,求⊙O 的直径.21.如图 ⊙O 中,AB 、CD 是两条直径,弦CE∥AB, EC 的度数是40°,求∠BOD 的度数。

22.如图,已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C ,D . (1)求证:AC =BD ;(2)若大圆的半径R =10,小圆的半径r =8,且圆O 到直线AB 的距离为6,求AC 的长.23.某公司营销A ,B 两种产品,根据市场调研,发现如下信息:ADCBA信息1:销售A 种产品所获利润y(万元)与所售产品x (吨)之间存在二次函数关系2y ax bx =+。

当1x =时, 1.4y =;当3x =时, 3.6y =。

信息2:销售B 种产品所获利润y (万元)与所售产品x (吨)之间存在正比例函数关系0.3y x =。

根据以上信息,解答下列问题: (1)求二次函数解析式;(2)该公司准备购进A ,B 两种产品共10吨,请设计一个营销方案,使销售A ,B 两种产品获得的利润之和最大,最大利润是多少?24.已知二次函数图象的顶点坐标为M(1,0),直线y x m =+与该二次函数的图象交于A ,B 两点,其中A 点的坐标为(3,4),B 点在y 轴上. (1)求m 的值及这个二次函数的解析式;(2)在x 轴上找一点Q ,使△QAB 的周长最小,并求出此时Q 点坐标;(3)若P (,0)a 是x 轴上的一个动点,过P 作x 轴的垂线分别与直线AB 和二次函数的图象交于D 、E 两点.①当03a <<时,求线段DE 的最大值;②若直线AB 与抛物线的对称轴交点为N ,问是否存在一点P ,使以M 、N 、D 、E 为顶点的四边形是平行四边形?若存在,请求出此时P答题卷一、选择题(共10小题,每小题4分,满分40分)二、填空题(共6小题,每小题5分,满分30分)11. 12. 13. 14. 15. 16.三、解答题(本题有8小题,第17~20题每小题8分,第21题10分,第22,23题每小题12分,第24题14分,共80分)17.一个不透明的袋中装有5个黄球、13个黑球和22个红球,它们除颜色外都相同. (1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于31,问至少取出了多少个黑球?18.已知二次函数当x =1时,y 有最大值为5,且它的图象经过点(2,3),求二次函数的关系式.19.已知二次函数2(1)4y x =--+(1)求出二次函数的顶点坐标及与x 轴交点坐标,结合开口方向再在网格中画出图象。

(2)观察图象确定:x 取何值时,y 随着x 的增大而增大,当x 取何值时,y 随着x 的增大而减少。

(3)观察图象确定:x 取何值时,①y >0,②y <020.如图AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连结AC 、OC 、BC .(1)求证:∠ACO=∠BCD(2)若EB=8cm ,CD=24cm ,求⊙O 的直径.21.如图 ⊙O 中,AB 、CD 是两条直径,弦CE∥AB, EC的度数是40°, 求∠BOD 的度数。

22.如图,已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C ,D . (1)求证:AC =BD ;(2)若大圆的半径R =10,小圆的半径r =8,且圆O 到直线AB 的距离为6,求AC 的长.ADCAB23.某公司营销A ,B 两种产品,根据市场调研,发现如下信息:信息1:销售A 种产品所获利润y(万元)与所售产品x (吨)之间存在二次函数关系2y ax bx =+。

当1x =时, 1.4y =;当3x =时, 3.6y =。

信息2:销售B 种产品所获利润y (万元)与所售产品x (吨)之间存在正比例函数关系0.3y x =。

根据以上信息,解答下列问题: (1)求二次函数解析式;(2)该公司准备购进A ,B 两种产品共10吨,请设计一个营销方案,使销售A ,B 两种产品获得的利润之和最大,最大利润是多少?24.已知二次函数图象的顶点坐标为M(1,0),直线y x m =+与该二次函数的图象交于A ,B 两点,其中A 点的坐标为(3,4),B 点在y 轴上. (1)求m 的值及这个二次函数的解析式;(2)在x 轴上找一点Q ,使△QAB 的周长最小,并求出此时Q 点坐标;(3)若P (,0)a 是x 轴上的一个动点,过P 作x 轴的垂线分别与直线AB 和二次函数的图象交于D 、E 两点.①当03a <<时,求线段DE 的最大值;②若直线AB 与抛物线的对称轴交点为N ,问是否存在一点P ,使以M 、N 、D 、E 为顶点的四边形是平行四边形?若存在,请求出此时P参考答案及评分标准一、选择题(共10小题,每小题4分,满分40分)二、填空题(共6小题,每小题5分,满分30分)(备用图2)11. 下 (2分)(1,5) (3分) 12.1413. (5,-2) 14. 7或1 (少一个得3分) 15.(1)452x x -= 16.23π+ 三、解答题(本题有8小题,第17~20题每小题8分,第21题10分,第22,23题每小题12分,第24题14分,共80分) 17.(1)51408P ==黄球………………………4分 (2)9个黑球………………………………4分18.设这个函数解析式为2(1)5y a x =-+, …………………………3分 把点(2,3)代入,23(21)5a =-+,解得2a =- ………………3分 ∴这个函数解析式是22(1)5y x =--+ ……………………………2分 19.(1)顶点坐标(1,4)…………………………1分 令2(1)40x --+= 解得123,1x x ==-∴与x 轴的交点坐标为(3,0),(-1,0)…2分图象如右图……………………………………1分 (2)当1x ≤时,y 随x 的增大而增大。

相关文档
最新文档