新苏教版2019学年八年级数学下册期末试卷含有答案(共10套)
苏科版八年级数学下册期末复习专题练习《平行四边形》(含答案)
八年级数学期末复习专题练习《平行四边形》一.选择题(共4小题)1.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB,BD 于M,N两点.若AM=4,则线段ON的长为()A.2B.C.2D.22.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.B.C.D.23.如图,在菱形ABCD中,∠BAD=60°,点M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是9,则AB的长是()A.6B.3C.9D.4.54.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE =4,AF=6,则AC的长为()A.4B.6C.2D.二.填空题(共4小题)5.如图,已知在△ABC中,点D是边AC的中点,且DE∥BC.若DE=BC,CE=3,则AB=.6.如图,在矩形纸片ABCD中,AB=3,BC=5,点E、F分别在线段AB、BC上,将△BEF 沿EF折叠,点B落在B′处.如图,当B′在AD上时,B′在AD上可移动的最大距离为;如图,当B′在矩形ABCD内部时,AB′的最小值为.7.如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE =2.若∠EOF=45°,则F点的坐标是.8.在四边形ABCD中,对角线AC⊥BD且AC=4,BD=8,E、F分别是边AB、CD的中点,则EF=.三.解答题(共10小题)9.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.10.如图,矩形ABCD中,点P在BC边上,PE⊥AC,PF⊥BD,AB=6,BC=8,运用上述结论,求PE+PF的值.11.将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG,(1)试判断四边形DHBG为何种特殊的四边形,并说明理由;(2)若AB=8,AD=4,求四边形DHBG的面积.12.△ABC中,点O是AC上一动点,过点O作直线MN∥BC,若MN交∠BCA的平分线于点E,交∠DCA的平分线于点F,连接AE、AF.(1)说明:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形,证明你的结论;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF为正方形.13.如图,四边形ABCD是菱形,对角线AC⊥x轴,垂足为A.反比例函数y=的图象经过点B,交AC于点E.已知菱形的边长为,AC=4.(1)若OA=4,求k的值;(2)连接OD,若AE=AB,求OD的长.14.如图1,点C在线段AB上,分别以AC、BC为边在线段AB的同侧作正方形ACDE和正方形BCMN,连结AM、BD.(1)AM与BD的关系是:.(2)如果将正方形BCMN绕点C顺时针旋转锐角α,其它不变(如图2).(1)中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB、DM,若AC=4,BC=2,求AB2+DM2的值.15.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0),D(﹣7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.16.如图,O为△ABC边AC的中点,AD∥BC交BO的延长线于点D,连接DC,DB平分∠ADC,作DE⊥BC,垂足为E.(1)求证:四边形ABCD为菱形;(2)若BD=8,AC=6,求DE的长.17.如图,在四边形ABCD中,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,当AB、CD满足什么条件时,有EF⊥GH?请说明你的理由.18.如图,在▱ABCD中,E,F分别是AB,CD上的动点,AF与DE交于点G,CE与BF 交于点H,连接GH.(1)当E,F分别运动到AB,CD的中点时,判断四边形EHFG的形状,并说明理由;(2)试探究:①当AE,CF满足什么条件时,一定有GH∥CD,且GH=CD?②当AE,CF满足什么条件时,四边形EHFG是平行四边形?答案与解析一.选择题(共4小题)1.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB,BD 于M,N两点.若AM=4,则线段ON的长为()A.2B.C.2D.2【分析】过M点作MH⊥AC,根据等腰直角三角形的性质求出HM长,再根据角平分线性质可得BM长,由此得到正方形的边长,求出OC和HC长,根据ON∥HM得到,从而可求ON长.【解答】解:过M点作MH⊥AC,∵∠HAM=45°,∴AH=HM=AM=4.∵CM平分∠ACB,HM⊥AC,MB⊥CB,∴BM=HM=4.∴正方形边长AB=4+,∴正方形对角线AC=4+8,OC=AC=2+4.∴HC=AC﹣AH=4+4.∵ON∥HM,∴.∴,解得ON=2.故选:C.2.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.B.C.D.2【分析】连接AC、CF,如图,根据正方形的性质得∠ACD=45°,∠FCG=45°,AC =,CF=3,则∠ACF=90°,再利用勾股定理计算出AF=2,然后根据直角三角形斜边上的中线求CH的长.【解答】解:连接AC、CF,如图,∵四边形ABCD和四边形CEFG都是正方形,∴∠ACD=45°,∠FCG=45°,AC=BC=,CF=CE=3,∴∠ACF=45°+45°=90°,在Rt△ACF中,AF==2,∵H是AF的中点,∴CH=AF=.故选:A.3.如图,在菱形ABCD中,∠BAD=60°,点M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是9,则AB的长是()A.6B.3C.9D.4.5【分析】连接BD,得出△ABD是等边三角形,由于菱形的对角线互相垂直平分,所以PD=BP,连接MD,由等边三角形的性质可知DM⊥AB,再根据∠ADM=30°即可求出AB的长.【解答】解:如图所示,连接DP,则根据菱形的对角线互相垂直平分,可得PD=BP,当点M,P,D三点共线时,BP+MP=DP+MP=DM=9(最短),连接BD,根据∠BAD=60°,可得△ABD是等边三角形,∵点M是AB的中点,∴DM⊥AB,∴∠ADM=30°,∵AM==3,∴AD=2AM=6,∴AB=6,故选:A.4.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE =4,AF=6,则AC的长为()A.4B.6C.2D.【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=6,得出AE=CE=6,BC=BE+CE=10,由勾股定理求出AB的长,再由勾股定理求出AC即可.【解答】解:如图,连接AE,设EF与AC交点为O,∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=6,∴AE=CE=6,BC=BE+CE=4+6=10,∴AB===2,∴AC===2,故选:C.二.填空题(共4小题)5.如图,已知在△ABC中,点D是边AC的中点,且DE∥BC.若DE=BC,CE=3,则AB=6.【分析】延长ED交AB于F,根据三角形中位线定理得到DF=BC,证明四边形FBCE 为平行四边形,根据平行四边形的性质计算即可.【解答】解:延长ED交AB于F,∵DE∥BC,点D是边AC的中点,∴点F是边AB的中点,∴DF=BC,∵DE=BC,∴EF=BC,又EF∥BC,∴四边形FBCE为平行四边形,∴FB=CE=3,∴AB=2FB=6,故答案为:6.6.如图,在矩形纸片ABCD中,AB=3,BC=5,点E、F分别在线段AB、BC上,将△BEF 沿EF折叠,点B落在B′处.如图,当B′在AD上时,B′在AD上可移动的最大距离为2;如图,当B′在矩形ABCD内部时,AB′的最小值为﹣5.【分析】根据翻折变换,当点F与点C重合时,点B′到达最左边,当点E与点A重合时,点B′到达最右边,所以点B′就在这两个点之间移动,分别求出这两个位置时AB′的长度,然后两数相减就是最大距离;点B′在AC上时AB′最小,利用勾股定理列式求出AC,然后根据AB′=AC﹣B′C计算即可.【解答】解:如图1,当点F与点C重合时,根据翻折对称性可得B′C=BC=5,在Rt△B′CD中,B′C2=B′D2+CD2,即52=(5﹣AB′)2+32,解得AB′=1,如图2,当点E与点A重合时,根据翻折对称性可得AB′=AB=3,∵3﹣1=2,∴点B′在AD边上可移动的最大距离为2;如图3,B′在矩形ABCD内部时,AB′的最小值,由翻折的性质可得B′C=BC=5,由勾股定理得,AC===,∴AB′=AC﹣B′C=﹣5.故答案为:2;﹣5.7.如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE =2.若∠EOF=45°,则F点的坐标是(4,).【分析】延长BA使AD=CE,连接EF,OD.由题意可证△OCE≌△OAD,可得∠EOC =∠AOD,OD=OE,可证∠FOD=∠EOF,即可证△EOF≌△DOF,可得EF=FD,根据勾股定理可求AF的长,即可求点F的坐标.【解答】解:如图:延长BA使AD=CE,连接EF,OD.∵四边形ABCO是正方形,点B(4,4)∴OC=BC=AB=4=OA∵OE=2,OC=4∴CE=2∴BE=2∵CE=AD=2,OA=OC=4,∠OCB=∠OAD=90°∴△OCE≌△OAD(SAS)∴∠EOC=∠AOD,OD=OE∵∠EOF=45°,∠COA=90°∴∠COE+∠AOF=45°∴∠AOF+∠AOD=45°∴∠FOD=45°=∠EOF,且OF=OF,OD=OE∴△EOF≌△DOF(SAS)∴EF=FD在Rt△BEF中,EF2=BE2+BF2.∴(AF+2)2=4+(4﹣AF)2.∴AF=∴点F(4,)故答案为:(4,)8.在四边形ABCD中,对角线AC⊥BD且AC=4,BD=8,E、F分别是边AB、CD的中点,则EF=2.【分析】取BC的中点G,连接EG、FG,根据三角形的中位线平行于第三边并且等于第三边的一半求出EG、FG,并求出EG⊥FG,然后利用勾股定理列式计算即可得解.【解答】解:如图,取BC的中点G,连接EG、FG,∵E、F分别是边AB、CD的中点,∴EG∥AC且EG=AC=×4=2,FG∥BD且FG=BD=×8=4,∵AC⊥BD,∴EG⊥FG,∴EF=.故答案为:2三.解答题(共10小题)9.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)连接DF,由AAS证明△AFE≌△DBE,得出AF=BD,即可得出答案;(2)根据平行四边形的判定得出平行四边形ADCF,求出AD=CD,根据菱形的判定得出即可;【解答】(1)证明:连接DF,∵E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴EF=BE,∵AE=DE,∴四边形AFDB是平行四边形,∴BD=AF,∵AD为中线,∴DC=BD,∴AF=DC;(2)四边形ADCF的形状是菱形,理由如下:∵AF=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AC⊥AB,∴∠CAB=90°,∵AD为中线,∴AD=BC=DC,∴平行四边形ADCF是菱形;10.如图,矩形ABCD中,点P在BC边上,PE⊥AC,PF⊥BD,AB=6,BC=8,运用上述结论,求PE+PF的值.【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OB=OC=5,S△AOD=S矩形ABCD=12,然后由S△BOC=S△BOP+S△COP=OB(PE+PF)=12,即可求得答案.【解答】解:连接OP,如图所示:∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC=AC,OB=OD=BD,AC=BD,∠ABC=90°,∴OB=OC=AC,AC==10,∴S△BOC=S矩形ABCD=12,OB=OC=5,∴S△BOC=S△BOP+S△COP=OB•PE+OC•PF=OB(PE+PF)=×5×(PE+PF)=12,∴PE+PF=.11.将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG,(1)试判断四边形DHBG为何种特殊的四边形,并说明理由;(2)若AB=8,AD=4,求四边形DHBG的面积.【分析】(1)由四边形ABCD、FBED是完全相同的矩形,可得出△DAB≌△DEB(SAS),进而可得出∠ABD=∠EBD,根据矩形的性质可得AB∥CD、DF∥BE,即四边形DHBG 是平行四边形,再根据平行线的性质结合∠ABD=∠EBD,即可得出∠HDB=∠HBD,由等角对等边可得出DH=BH,由此即可证出▱DHBG是菱形;(2)设DH=BH=x,则AH=8﹣x,在Rt△ADH中,利用勾股定理即可得出关于x的一元一次方程,解之即可得出x的值,再根据菱形的面积公式即可求出菱形DHBG的面积.【解答】解:(1)四边形DHBG是菱形.理由如下:∵四边形ABCD、FBED是完全相同的矩形,∴∠A=∠E=90°,AD=ED,AB=EB.在△DAB和△DEB中,,∴△DAB≌△DEB(SAS),∴∠ABD=∠EBD.∵AB∥CD,DF∥BE,∴四边形DHBG是平行四边形,∠HDB=∠EBD,∴∠HDB=∠HBD,∴DH=BH,∴▱DHBG是菱形.(2)由(1),设DH=BH=x,则AH=8﹣x,在Rt△ADH中,AD2+AH2=DH2,即42+(8﹣x)2=x2,解得:x=5,即BH=5,∴菱形DHBG的面积为HB•AD=5×4=20.12.△ABC中,点O是AC上一动点,过点O作直线MN∥BC,若MN交∠BCA的平分线于点E,交∠DCA的平分线于点F,连接AE、AF.(1)说明:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形,证明你的结论;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF为正方形.【分析】(1)由已知MN∥BC,CE、CF分别平分∠BCO和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得EO=CO=FO.(2)由(1)得出的EO=CO=FO,点O运动到AC的中点时,则由EO=CO=FO=AO,所以这时四边形AECF是矩形.(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,所以四边形AECF是正方形.【解答】(1)证明:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,又∵CE平分∠BCO,CF平分∠DCO,∴∠OCE=∠BCE,∠OCF=∠DCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴OE=OF;(2)解:当点O运动到AC的中点时,四边形AECF是矩形.理由如下:∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形;(3)解:当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,已知MN∥BC,当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.13.如图,四边形ABCD是菱形,对角线AC⊥x轴,垂足为A.反比例函数y=的图象经过点B,交AC于点E.已知菱形的边长为,AC=4.(1)若OA=4,求k的值;(2)连接OD,若AE=AB,求OD的长.【分析】(1)利用菱形的性质得出AH的长,再利用勾股定理得出BH的长,得出B点坐标即可得出答案;(2)首先表示出B,E两点坐标进而利用反比例函数图象上的性质求出D点坐标,再利用勾股定理得出DO的长.【解答】解:(1)连接BD交AC于点H,∵四边形ABCD是菱形,AC=4,∴BD⊥AC,AH=2,∵对角线AC⊥x轴,∴BD∥x轴,∴B、D的纵坐标均为2,在Rt△ABH中,AH=2,AB=,∴BH=,∵OA=4,∴B点的坐标为:(,2),∵点B在反比例函数y=的图象上,∴k=11;(2)设A点的坐标为(m,0),∵AE=AB=,CE=,∴B,E两点的坐标分别为:(m+,2),(m,).∵点B,E都在反比例函数y=的图象上,∴(m+)×2=m,∴m=6,作DF⊥x轴,垂足为F,∴OF=,DF=2,D点的坐标为(,2),在Rt△OFD中,OD2=OF2+DF2,∴OD=.14.如图1,点C在线段AB上,分别以AC、BC为边在线段AB的同侧作正方形ACDE和正方形BCMN,连结AM、BD.(1)AM与BD的关系是:AM=BD且AM⊥BD.(2)如果将正方形BCMN绕点C顺时针旋转锐角α,其它不变(如图2).(1)中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB、DM,若AC=4,BC=2,求AB2+DM2的值.【分析】(1)利用正方形的性质和已知条件证明△AMC≌△DBC,从而求出AM与BD 相等且垂直;(2)如果将正方形BCMN绕点C逆时针旋转锐角α,其它不变(1)中所得的结论任然成立,先求出∠ACM=∠DCB,然后利用“边角边”证明△AMC和△DBC全等,再根据全等三角形对应边相等即可得证;(3)根据AM⊥BD,得相交的角为直角,由勾股定理计算可得结论.【解答】解:(1)∵四边形ACDE和四边形BCMN都为正方形,∴AC=DC,∠ACD=∠BCD=90°,BC=CM,在△AMC和△DBC中,,∴△AMC≌△DBC(SAS).∴AM=BD,∠CAM=∠CDB,延长AM交BD于F,∵∠AMC=∠DMF,∴∠ACM=∠DFM=90°,∴AM⊥BD;故答案为:AM=BD且AM⊥BD;(2)如果将正方形BCMN绕点C逆时针旋转锐角α,其它不变,(1)中所得的结论仍然成立,理由如下:在正方形ABCE和正方形BCMN中,AC=CD,CM=BC,∠ACD=∠MCB =90°,∵∠ACM=90°+∠MCD,∠DCB=90°+∠MCD,∴∠ACM=∠DCB,在△ACM和△DCB中,,∴△AMC≌△DBC(SAS).∴AM=BD,∠CAM=∠CDB,∵∠AFC=∠DFG,∴∠ACF=∠DGF=90°,∴AM⊥BD.(3)如图2,连接AD、BM,∵AC=4,BC=2,由勾股定理得:AD2=42+42=32,BM2=22+22=8,∵AM⊥BD,∴∠AGB=∠DGM=∠AGD=∠BGM=90°,∴AB2+DM2=AG2+BG2+DG2+GM2,∵AD2+BM2=AG2+DG2+BG2+MG2=32+8=40,∴AB2+DM2=40.15.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0),D(﹣7,3),点B、C在第二象限内.(1)点B的坐标(﹣3,1);(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.【分析】(1)过点D作DE⊥x轴于点E,过点B作BF⊥x轴于点F,由正方形的性质结合同角的余角相等即可证出△ADE≌△BAF,从而得出DE=AF,AE=BF,再结合点A、D的坐标即可求出点B的坐标;(2)设反比例函数为y=,根据平行的性质找出点B′、D′的坐标,再结合反比例函数图象上点的坐标特征即可得出关于k、t的二元一次方程组,解方程组解得出结论;(3)假设存在,设点P的坐标为(m,0),点Q的坐标为(n,).分B′D′为对角线或为边考虑,根据平行四边形的性质找出关于m、n的方程组,解方程组即可得出结论.【解答】解:(1)过点D作DE⊥x轴于点E,过点B作BF⊥x轴于点F,如图1所示.∵四边形ABCD为正方形,∴AD=AB,∠BAD=90°,∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°,∴∠ADE=∠BAF.在△ADE和△BAF中,有,∴△ADE≌△BAF(AAS),∴DE=AF,AE=BF.∵点A(﹣6,0),D(﹣7,3),∴DE=3,AE=1,∴点B的坐标为(﹣6+3,0+1),即(﹣3,1).故答案为:(﹣3,1).(2)设反比例函数为y=,由题意得:点B′坐标为(﹣3+t,1),点D′坐标为(﹣7+t,3),∵点B′和D′在该比例函数图象上,∴,解得:t=9,k=6,∴反比例函数解析式为y=.(3)假设存在,设点P的坐标为(m,0),点Q的坐标为(n,).以P、Q、B′、D′四个点为顶点的四边形是平行四边形分两种情况:①当B′D′为对角线时,∵四边形B′PD′Q为平行四边形,∴,解得:,∴P(,0),Q(,4);②当B′D′为边时.∵四边形PQB′D′为平行四边形,∴,解得:,∴P(7,0),Q(3,2);∵四边形B′QPD′为平行四边形,∴,解得:.综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为P(,0)、Q(,4)或P(7,0)、Q(3,2)或(﹣7,0)、(﹣3,﹣2).16.如图,O为△ABC边AC的中点,AD∥BC交BO的延长线于点D,连接DC,DB平分∠ADC,作DE⊥BC,垂足为E.(1)求证:四边形ABCD为菱形;(2)若BD=8,AC=6,求DE的长.【分析】(1)由ASA证明△OAD≌△OCB得出OD=OB,得出四边形ABCD是平行四边形,在证出∠CBD=∠CDB,得出BC=DC,即可得出四边形ABCD是菱形;(2)由菱形的性质得出OB=BD=4,OC=AC=3,AC⊥BD,由勾股定理得出BC ==5,证出△BOC∽△BED,得出=,即可得出结果.【解答】(1)证明:∵O为△ABC边AC的中点,AD∥BC,∴OA=OC,∠OAD=∠OCB,∠ADB=∠CBD,在△OAD和△OCB中,,∴△OAD≌△OCB(ASA),∴OD=OB,∴四边形ABCD是平行四边形,∵DB平分∠ADC,∴∠ADB=∠CDB,∴∠CBD=∠CDB,∴BC=DC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OB=BD=4,OC=AC=3,AC⊥BD,∴∠BOC=90°,∴BC==5,∵DE⊥BC,∴∠E=90°=∠BOC,∵∠OBC=∠EBD,∴△BOC∽△BED,∴=,即=,∴DE=.17.如图,在四边形ABCD中,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,当AB、CD满足什么条件时,有EF⊥GH?请说明你的理由.【分析】当AB=CD时,有EF⊥GH,连接GE、GF、HF、EH,根据三角形的中位线定理即可证得EG=GF=FH=EH,则四边形EFGH是菱形,利用菱形的性质即可证得.【解答】解:当AB=CD时,有EF⊥GH,连接GE、GF、HF、EH.∵E、G分别是AD、BD的中点,∴EG=AB,同理HF=CD,FG=CD,EH=CD,又∵AB=CD∴EG=GF=FH=EH∴四边形EFGH是菱形.∴EF⊥GH.18.如图,在▱ABCD中,E,F分别是AB,CD上的动点,AF与DE交于点G,CE与BF 交于点H,连接GH.(1)当E,F分别运动到AB,CD的中点时,判断四边形EHFG的形状,并说明理由;(2)试探究:①当AE,CF满足什么条件时,一定有GH∥CD,且GH=CD?②当AE,CF满足什么条件时,四边形EHFG是平行四边形?【分析】(1)由在▱ABCD中,点E、F分别是AB、CD的中点,易证得△AEG≌△FDG (AAS),可得EG=DG,同理可证得EH=CH,即可得GH是△ECD的中位线,继而推知四边形EHFG是平行四边形;(2)①由在▱ABCD中,点E、F分别是AB、CD的中点,易证得△AEG≌△FDG(AAS),可得EG=DG,同理可证得EH=CH,即可得GH是△ECD的中位线,继而证得结论GH ∥CD,且GH=CD;②通过证明两组对边分别平行,可得四边形EHFG是平行四边形.【解答】(1)证明:如图1,∵ABCD为平行四边形,∴DC∥AB,DC=AB,∵E、F分别为AB、CD的中点,∴DF=CF=DC,AE=BE=AB,∴FC=AE,∵FC∥AE,∴四边形AECF为平行四边形,∴AF∥EC,且AF=EC.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠GAE=∠GFD,∵AE=DF,在△AEG和△FDG中,,∴△AEG≌△FDG(AAS),∴EG=DG,即点G是AF的中点.同理:点H是EC的中点.∴GF=EH.∴四边形EHFG是平行四边形;(2)当AE=CF=AB时,一定有GH∥CD,且GH=CD.理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠GAE=∠GFD,∵点E、F分别是AB、CD的中点,∴AE=DF,在△AEG和△FDG中,,∴△AEG≌△FDG(AAS),∴EG=DG,同理:EH=CH,∴GH∥DC且GH=DC.②AE=CF时,四边形EHFG是平行四边形.理由如下:∵四边形ABCD是平行四边形,∴AE∥CF,AB=CD,∵AE=CF,∴四边形AECF是平行四边形,∴AF∥CE.同理可得DE∥BF,∴四边形FGEH是平行四边形.。
2019年苏教版八年级(下)期末考试数学试卷(附答案详解)
2019年苏教版八年级(下)期末考试数学试卷本次考试范围;苏科版八年级数学下册加九年级下册《相似形》;考试题型:选择、填空、解答三大类;考试时间:120分钟;考试分值:130分。
一、选择题:(本大题共有10小题,每小题3分,共30分)1.如图,在▱ABCD中,O是对角线AC,BD的交点,下列结论错误的是()A.AB∥CD B.AB=CD C.AC=BD D.OA=OC2.反比例函数y=﹣的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则x1与x2的大小关系是()A.x1>x2;B.x1=x2;C.x1<x2;D.不确定3.下列电视台的台标,是中心对称图形的是()A.;B.C.D.4.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是()A.;B.;C.;D.5.在某次义务植树活动中,10名同学植树的棵树整理成条形统计图如图所示,他们植树的棵树的平均数为a,中位数为b,众数为c,则下列结论正确的是()A.a=b B.b>a C.b=c D.c>b(第1题)(第5题)6.已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 ;B.4;C.5 ;D.67.甲、乙、丙、丁四位同学最近五次数学成绩统计如表,如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加即将举行的中学生数学竞赛,那么应选()A .甲8.如图,E 是边长为4的正方形ABCD 的对角线BD 上一点,且BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BR 于点R ,则PQ +PR 的值是( )A .2; B .2; C .2; D .9.有3个正方形如图所示放置,阴影部分的面积依次记为S 1,S 2,则S 1:S 2等于( )A .1:B .1:2C .2:3D .4:9(第8题)(第9题)10. 如图,在平面直角坐标系中,已知点A (―3,6)、B (―9,一3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点A 的对应点A ′的坐标是( )A .(―1,2);B .(―9,18);C .(―9,18)或(9,―18);D .(―1,2)或(1,―2)(第10题)(第12题)二、填空题,每小题3分,共24分.11.有一组勾股数,知道其中的两个数分别是17和8,则第三个数是_______. 12.如图,在菱形ABCD 中,已知AB =10,AC =16,那么菱形ABCD 的面积为_______.13.反比例函数y = 的图象经过点(2,3),则k = .14.在某校举办的队列比赛中,A 班的单项成绩如表所示:若按着装占10%、队形占60%、精神风貌占30%,计算参赛班级的综合成绩,则A 班的最后得分是_______.15.如图,点A 在双曲线y =5x 上,点B 在双曲线y =8x上,且AB ∥x 轴,则△OAB 的面积等于______.16.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角形的斜边上,AC 与DM ,DN 分别交于点E 、F ,把△DEF 绕点D 旋转到一定位置,使得DE =DF ,则∠BDN 的度数是_______.(第15题)(第16题)17.已知关于x 的分式方程1k x ++1x k x +-=1的解为负数,则k 的取值范围是 . 18.如图,在矩形ABCD 中,AB =5,BC =7,点E 为BC 上一动点,把△ABE 沿AE 折叠,当点B 的对应点B ′落在∠ADC 的角平分线上时,则点B ′到BC 的距离为_______.(第18题)(第22题)三、解答题(共10小题,满分76分)19.计算:(1(041-; (2⎛ ⎝; 20..当a =﹣1时,代数式 的值21. 某校学生利用双休时间去距学校10km 的炎帝故里参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.22.如图,四边形ABCD是平行四边形,∠ABC=65°,BE平分∠ABC且交AD于E,DF∥BE,交BC于F.求∠CDF的大小.23.为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项)根据统计图提供的信息解决下列问题:(1)求图②中“科技类”所在扇形的圆心角α的度数(2)该市2012年抽取的学生中,参加体育类与理财类社团的学生共有多少人?(3)该市2014年共有50000名学生,请你估计该市2014年参加社团的学生人数.24.如图所示,△ABC为任意三角形,若将△ABC绕点C顺时针旋转180°得到△DE C.(1)试猜想AE与BD有何关系?并且直接写出答案.(2)若△ABC的面积为4cm2,求四边形ABDE的面积;(3)请给△ABC添加条件,使旋转得到的四边形ABDE为矩形,并说明理由.25.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1)k的值是;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,求b的值.26.太仓港区市为了打造绿色公园、共享发展理念,在郑河公园中建起了“望海阁”.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望海阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望海阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM 上的对应位置为点C ,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D 时,看到“望海阁”顶端点A 在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED =1.5米,CD =2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D 点沿DM 方向走了16米,到达“望海阁”影子的末端F 点处,此时,测得小亮身高FG 的影长FH =2.5米,FG =1.65米.如图,已知AB ⊥BM ,ED ⊥BM ,GF ⊥BM ,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望海阁”的高AB 的长度.27.如图,在Rt ABC △中,90BAC ∠=°,AD BC ⊥于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE OB ⊥交BC 边于点E . (1)求证: ABF COE △∽△; (2)当O 为AC 边中点,2AC AB =时,如图2,求OFOE的值;(3)当O 为AC 边中点,AC n AB =时,请直接写出OFOE的值.28.如图,直线122y x =+分别交轴于A 、C ,点P 是该直线与反比例函数在第一象限内的一个交点,PB ⊥x 轴于B ,且9ABP S ∆=. (1) 求证:△AOC ∽△ABP ; (2)求点P 的坐标;(3)设点R 与点P 在同一个反比例函数的图象上,且点R 在直线PB 的右侧,作RT ⊥x 轴于T ,当△BRT 与△AOC 相似时,求点R 的坐标.参考答案与试题解析一、选择题,每小题3分共30分1.【考点】平行四边形的性质.【分析】根据平行四边形的性质推出即可. 【解答】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,OA =OC ,BBAACOE D DEC O F 图1图2F第27题图但是AC和BD不一定相等,故选C.2.【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数的增减性进而分析得出答案.【解答】解:∵反比例函数y=﹣的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,∴每个分支上y随x的增大而增大,∵﹣2>﹣3,∴x1>x2,故选:A.3.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.4.【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、72+242=252,152+202≠242,222+202≠252,故A不正确;B、72+242=252,152+202≠242,故B不正确;C、72+242=252,152+202=252,故C正确;D、72+202≠252,242+152≠252,故D不正确.故选:C.5.【考点】众数;条形统计图;加权平均数;中位数.【分析】根据条形统计图计算平均数、中位数和众数并加以比较.【解答】解:平均数a=(3×7+8×3+9×4)÷10=8.1,中位数b=(8+8)÷2=8,众数c=9,所以c>a>b.故选D.6.解:在反比例函数y=中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y==2;当x=1时,y==6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.7.【考点】方差;算术平均数.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的运动员参赛.【解答】解:由于乙的方差较小、平均数较大,故选乙.故选:B.8.【考点】正方形的性质.【分析】连接BP,设点C到BE的距离为h,然后根据S△BCE=S△BCP+S△BEP求出h=PQ+PR,再根据正方形的性质求出h即可.【解答】解:如图,连接BP,设点C到BE的距离为h,则S△BCE=S△BCP+S△BEP,即BE •h =BC •PQ +BE •PR ,∵BE =BC ,∴h =PQ +PR ,∵正方形ABCD 的边长为4,∴h =4×=2.故答案为:2.9.【考点】一次函数的应用.【分析】从图象可以看出甲队完成工程的时间不到6天,故工作效率为100米,乙队挖2天后还剩300米,4天完成了200米,故每天是50米,当x =4时,甲队完成400米,乙队完成400米,甲队完成所用时间是6天,乙队是8天,通过以上的计算就可以得出结论.【解答】解:由图象,得①600÷6=100米/天,故①正确; ②÷4=50米/天,故②正确;③甲队4天完成的工作量是:100×4=400米, 乙队4天完成的工作量是:300+2×50=400米, ∵400=400,∴当x =4时,甲、乙两队所挖管道长度相同,故③正确; ④由图象得甲队完成600米的时间是6天, 乙队完成600米的时间是:2+300÷50=8天, ∵8﹣6=2天,∴甲队比乙队提前2天完成任务,故④正确;故选D .10. 【解析】方法一:∵△ABO 和△A ′B ′O 关于原点位似,∴△ ABO ∽△A ′B ′O 且OA ′OA =13.∴A ′E AD =OE OD =13.∴A ′E =13AD =2,OE =13OD =1.∴A ′(-1,2).同理可得A ′′(1,―2). 方法二:∵点A (―3,6)且相似比为13,∴点A 的对应点A ′的坐标是(―3×13,6×13),∴A ′(-1,2).∵点A ′′和点A ′(-1,2)关于原点O 对称,∴A ′′(1,―2).故选择D .【点拨】每对对应点的连线所在的直线都相交于一点的相似图形叫做位似图形.位似图形对应点到位似中心的距离比等于位似比(相似比);在平面直角坐标系中,如果位似图形是以原点为位似中心,那么位似图形对应点的坐标比等于相似比.注意:本题中,△ABO以原点O为位似中心的图形有两个,所以本题答案有两解.二、填空题,每小题3分,共24分.11.【考点】勾股数.【分析】设第三个数为x根据勾股定理的逆定理:∴①x2+82=172,②172+82=x2.再解x即可.【解答】解:设第三个数为x,∵是一组勾股数,∴①x2+82=172,解得:x=15,②172+82=x2,解得:x=(不合题意,舍去),故答案为:15.12.【考点】菱形的性质.【分析】根据菱形的性质利用勾股定理求得OB的长,从而得到BD的长,再根据菱形的面积公式即可求得其面积.【解答】解:连接DB,于AC交与O点∵在菱形ABCD中,AB=10,AC=16,∴OB===6∴BD=2×6=12,∴菱形ABCD的面积=×两条对角线的乘积=×16×12=96.13.【考点】反比例函数图象上点的坐标特征.【分析】根据点的坐标以及反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵反比例函数y=的图象经过点(2,3),∴k﹣1=2×3,解得:k=7.故答案为:7.14.【考点】加权平均数.【分析】根据加权平均数的计算方法列出算式,再进行计算即可.【解答】解:A班的最后得分是:90×10%+94×60%+92×30%=93(分);故为:93分.15.[考点]反比例函数,三角形的面积公式。
新八年级(下)数学期末考试题及答案
新八年级(下)数学期末考试题及答案一、选择题(本大题含10 个小题,每小题3 分,共30 分)1.若a >b ,则下列不等式成立的是A.33a b >B. a +5<b +5C. -5a >-5bD. a -2<b -2【答案】 A【考点】不等式的性质。
【解析】不等式的两边同时除以一个正数,不等号的方向不变,故A 正确。
不等式的两边同时加上或减去一个数,不等号的方向不变,故B 、D 错误;不等式的两边同时乘以一个负数,不等号的方向改变,故C 错误。
2.当分式236x x -+有意义时,则x 的取值范围是 A. x ≠2 B. x ≠-2 C.x ≠12 D.x ≠-12 【答案】 B【考点】分式的意义。
【解析】分式中分母不能为0,所以,3 x +6≠0,解得:x ≠-2,选B 。
3.下列因式分解正确的是【答案】C【考点】因式分解。
【解析】A 错误,提负x 后,括号里应变号;B 错误,左边第3项没有x 可以提取;C 正确,注意:y -x =-(x -y );D 错误,左边是一个完全平方式,不是平方差。
故选C 。
4.已知四边形ABCD 中,AB∥CD,添加下列条件仍不能判断四边形ABCD 是平行四边形的是A. AB=CDB. AD=BCC. AD∥BCD. ∠A+∠B=180°【答案】B【考点】平行四边形的判定。
【解析】对于A,一组对边平行且相等的四边形是平行边形,故正确;对于B,一组对边平行,另一组对边相等,可能是等腰梯形,故错误;对于C,两组对边分别平行的四边形是平行四边形,故正确;对于D,由∠A+∠B=180,可得:AD∥BC,故正确;选B。
5.下列运算正确的是【答案】D【考点】分式的加减运算。
【解析】A错误,正确的结果应为:a b m+;B错误,因为:y-x=-(x-y),故原式=2a a ax y x y x y+=---;C错误,11 11aa++=;D正确,因为y+x=x+y 选D。
苏教版2018-2019学年八年级(下)期末考试数学试卷(含答案详解)
2018~2019学年第二学期期末调研 初二数学本试卷由选择题、填空题和解答题三大题组成,共29小题,满分100分.考试时间120分钟. 注意事项:1. 答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 2. 答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3. 考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1. 下面四个黑体字母中,既是轴对称图形,又是中心对称图形的果A. XB. LC. CD. Z 2. 若分式23x x +-的值为零,则 A.3x = B.3x =- C.2x = D.2x =-3. 一只不透明的袋子中装有一些红球和白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是A.确定事件B.必然事件C.不可能事件D.随机事件 4. 为了解我市老年人的健康状况,下列抽样调查最合理的是 A.在公园调查部分老年人的健康状况 B.在医院调查部分老年人的健康状况 C.利用户籍网调查部分老年人的健康状况 D.在周围邻居中调查部分老年人的健康状况 5. 下列各式成立的是A.2= 3= C.22(3=- 3=6. 若(2)2m =⨯-,则有 A.21m -<<- B.10m -<< C.01m << D.12m <<7. ①平行四边形,②矩形,③菱形,④正方形中,对角线的交点到各边中点的距离都相等的是A. ①②B. ③④C. ②③D.②④8. 在反比例函数2ky x-=的图像上有两点11(,)A x y 、22(,)B x y 。
2018-2019年苏州市八年级下学期期末考试数学试卷及参考答案
OF E D CB A 八年级下学期期末考试 数学试卷及参考答案一、选择题(每题3分,共30分)1.下列二次根式中,与3是同类二次根式的是( ) A .8 B .12 C 18. D .6 2.下列各数中,无理数是 ( )A .—3.14B .3125C .︳—6︳D .—29 3.已知点P (a,b ),点P 关于x 轴对称的点的坐标为 ( ) A .(a,—b ) B .(—a,b ) C .(—a, —b ) D .(a,b ) 4.一次函数y = —x + 1的图象一定经过 ( )A .一、二、三象限.B 。
一、三、四象限.C .二、三、四象限.D .一、二、四象限. 5.以下图形哪一种图形永远是相似的 ( )A .矩形B .菱形C .等腰三角形D .正方形6.如图,CD 是Rt ⊿ABC 斜边AB 上的高,AD=4cm ,BD=9 cm ,则CD=( ) A .6cm B .36cm C .213cm D .5cm7.小明有四双样式相同、大小相同的袜子,其中两双为蓝色, 问至多取几次就能保证取得同样颜色的一双袜子。
( )A .2次B .3次C .4次D .5次 8.正比例函数y=kx 与反比例函数y=xk在同一坐标系中的大致图象只可能是( )9.已知一直角三角形两条边的长分别为3 cm 和4 cm ,则第三边的长为( )cm A .5 B .5 和7 C .7 D .不能确定10.梯形ABCD 中,对角线AC 、BD 相交与点O ,过O 点的直线分别交上、下底于E 、F ,则在图中与OE :OF 的比值相等的线段比有( )A .4个B .5个C .7个D .8个二、填空题(每题2分,共16分)。
11.251的平方根是 。
X 55100150T S R QP12.直线y= — x + 3向下平移5个单位,得到的直线是 。
13.如图,QS//RT ,则x= 米。
14.已知点A (a+2 , a –3)在y 轴上,则a= 。
苏教版八年级数学下册期末考前必做题(解答题)
八年级数学下期末考前必做题(解答题)1.解分式方程:=.2.解分式方程:﹣1=.3.化简:(﹣4)÷.4.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.(﹣)÷5.先化简(1+)÷,再从不等式组的整数解中选一个合适的x的值代入求值.6.为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了名学生,两幅统计图中的m=,n=.(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.7.某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A、B、C、D、E,由调查所得数据绘制了如图所示的不完整的统计图表.类别频率A mB0.35C0.20D nE0.05(1)求本次调查的小型汽车数量及m,n的值;(2)补全频数分布直方图;(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.8.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.9.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?10.端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?11.如图,已知反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交一次函数y=﹣x+b的图象于点M,交反比例函数y=上的图象于点N.若PM>PN,结合函数图象直接写出a的取值范围.12.如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.13.汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.x/h02468101214161820 y/m141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.14.如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2.(1)求平行四边形ABCD的面积;(2)求证:BD⊥BC.15.如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.16.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.17.在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).18.如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.19.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.20.如图,在▱ABCD中,对角线AC,BD相交于点O,且OA=OB.(1)求证:四边形ABCD是矩形;(2)若AD=4,∠AOD=60°,求AB的长.21.如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.22.如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF =90°,FG⊥AD,垂足为点G.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.23.如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE 沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE 的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.24.如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.25.如图1,在正方形ABCD中,点E是CD上一点(不与C,D两点重合),连接BE,过点C作CH⊥BE于点F,交对角线BD于点G,交AD边于点H,连接GE,(1)求证:△DHC≌△CEB;(2)如图2,若点E是CD的中点,当BE=8时,求线段GH的长;(3)设正方形ABCD的面积为S1,四边形DEGH的面积为S2,当的值为时,的值为.26.已知:如图,在菱形ABCD中,AC=2,∠B=60°.点E为边BC上的一个动点(与点B、C不重合),∠EAF=60°,AF与边CD相交于点F,联结EF交对角线AC于点G.设CE=x,EG=y.(1)求证:△AEF是等边三角形;(2)求y关于x的函数解析式,并写出x的取值范围;(3)点O是线段AC的中点,联结EO,当EG=EO时,求x的值.27.已知△ABC为等边三角形.点D为直线BC上的一动点(点D不与B、C重合),以AD 为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在线投BC上时,求证:AC=CF+CD;(2)如图2,当点D在线投BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由,28.综合与实践:折纸中的数学问题情境:在矩形ABCD中,AD=12,点M、N分别是AD、BC的中点,点E、F分别在AB、CD 上,且AE=CF,将△AEM沿EM折叠,点A的对应点为点P,将△NCF沿NF折叠,点C的对应点为点Q,且点P、Q均落在矩形ABCD的内部.数学思考:(1)判断PM与NQ是否平行,并说明理由;(2)当AB长度是多少时,存在点E,使四边形PNQM是有一个内角为60°的菱形?直接写出AB的长度及菱形PNQM的面积.29.如图,已知,点E在正方形ABCD的BC边上(不与点B,C重合),AC是对角线,延长BC到点F,使CF=BE,过点E作AC的垂线,垂足为G,连接BG,DF.(1)根据题意补全图形,并证明GC=GE;(2)①用等式表示线段BG与DF的数量关系,并证明;②用等式表示线段AG,BG,CG之间的数量关系,并证明.30.旋转是图形变化的方法之一,借助旋转知识可以解决线段长、角的大小、取值范围、判断三角形形状等问题,在实际生活中也有十分重要的地位和作用.问题背景:一块等边三角形建筑材料内一点到三角形三个顶点的距离满足一定条件时,我们可以用所学的知识帮助工人师傅在没有刻度尺的情况下求出等边三角形的边长.数学建模如图1,等边三角形ABC内有一点P,已知P A=2,PB=4,PC=2.问题解决(1)如图2,将△ABP绕点B顺时针旋转60°得到△CBP',连接PP',易证∠BP'P =°,△为等边三角形,∠=90°,∠BP A=°:(2)点H为直线BP'上的一个动点,则CH的最小值为;(3)求AB长;拓展延伸已知:点P在正方形ABCD内,点Q在平面,BP=BQ=1,BP⊥BQ.(4)在图3中,连接P A、PC、PQ、QC,AP=,若点A、P、Q在一条直线上,则cos∠PCQ=;(5)若AB=2,连接DP,则≤DP<;连接PQ,当D、P、Q三点同一条直线上时,△BDQ的面积为.31.如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;Q从点C开始沿CB边向B以3cm/s 的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动.(1)当运动时间为t秒时,用含t的代数式表示以下线段的长:AP=BQ=;(2)当运动时间为多少秒时,四边形PQCD为平行四边形?(3)当运动时间为多少秒时,四边形ABQP为矩形?32.如图,在平行四边形ABCD中,点E为AC上一点,点E,点F关于CD对称.(1)若ED∥CF,①求证:四边形ECFD是菱形.②若点E为AC的中点,求证:AD=EF.(2)连结BD,BE,BF,若四边形ABCD是正方形,△BDF是直角三角形,求的值.33.在▱ABCD中,∠ADC的平分线交AB于点F,交CB的延长线于点E.(1)如图1,若AD=2,BE=1,则CD=(直接写出结果).(2)如图2,若∠ADC=90°,G为EF的中点,连接CA,CG,求的值.(3)如图3,若∠ADC=60°,EH∥AB,EH=EB,连接CH,求的值.5.先化简(1+)÷,再从不等式组的整数解中选一个合适的x的值代入求值.【分析】首先进行分式的加减运算,进而利用分式的混合运算法则进而化简,再解不等式组,得出x的值,把已知数据代入即可.【解答】解:原式=×=,解不等式组得﹣2<x<4,∴其整数解为﹣1,0,1,2,3,∵要使原分式有意义,∴x可取0,2.∴当x=0 时,原式=﹣3,(或当x=2 时,原式=﹣).6.为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了200名学生,两幅统计图中的m=84,n=15.(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.【分析】(1)用喜欢阅读“A”类图书的学生数除以它所占的百分比得到调查的总人数;用喜欢阅读“B”类图书的学生数所占的百分比乘以调查的总人数得到m的值,然后用30除以调查的总人数可以得到n的值;(2)用3600乘以样本中喜欢阅读“A”类图书的学生数所占的百分比即可;(3)画树状图展示所有6种等可能的结果数,找出被选送的两名参赛者为一男一女的结果数,然后根据概率公式求解.【解答】解:(1)68÷34%=200,所以本次调查共抽取了200名学生,m=200×42%=84,n%=×100%=15%,即n=15;(2)3600×34%=1224,所以估计该校喜欢阅读“A”类图书的学生约有1224人;(3)画树状图为:共有6种等可能的结果数,其中被选送的两名参赛者为一男一女的结果数为4,所以被选送的两名参赛者为一男一女的概率==.7.某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A、B、C、D、E,由调查所得数据绘制了如图所示的不完整的统计图表.类别频率A mB0.35C0.20D nE0.05(1)求本次调查的小型汽车数量及m,n的值;(2)补全频数分布直方图;(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.【分析】(1)由C类别数量及其对应的频率可得总数量,再由频率=频数÷总数量可得m、n的值;(2)用总数量乘以B、D对应的频率求得其人数,从而补全图形;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的小型汽车数量为32÷0.2=160(辆),m=48÷160=0.3,n=1﹣(0.3+0.35+0.20+0.05)=0.1;(2)B类小汽车的数量为160×0.35=56,D类小汽车的数量为0.1×160=16,补全图形如下:(3)估计其中每车只乘坐1人的小型汽车数量为5000×0.3=1500(辆).8.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【分析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.9.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.【分析】(1)利用待定系数法即可求得;(2)根据图象可解.【解答】解:(1)∵反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A(1,3),B(3,1)两点,∴3=,3=﹣1+b,∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=,y=﹣x+4;(2)由图象可得:当1<a<3时,PM>PN.12.如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.【分析】根据描点的趋势,猜测函数类型,发现当0<x<8时,y与x可能是一次函数关系:当x>8时,y与x就不是一次函数关系:通过观察数据发现y与x的关系最符合反比例函数.【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得解得:k=,b=14,y与x的关系式为:y=x+14,经验证(2,15),(4,16),(6,17)都满足y=x+14因此放水前y与x的关系式为:y=x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×14.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=x+14 (0<x<8)和.(x>8)(3)当y=6时,6=,解得:x=24,因此预计24h水位达到6m.14.如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2.(1)求平行四边形ABCD的面积;(2)求证:BD⊥BC.【分析】(1)作CE⊥AB交AB的延长线于点E,设BE=x,由勾股定理列出关于x的方程,解方程求出平行四边形的高,进而即可求出其面积;(2)利用全等三角形的判定与性质得出AF=BE=,BF=5﹣=,DF=CE=,从而求出BD的长,在△BCD中利用勾股定理的逆定理即可证明两直线垂直.【解答】解:(1)作CE⊥AB交AB的延长线于点E,如图:设BE=x,CE=h在Rt△CEB中:x2+h2=9①在Rt△CEA中:(5+x)2+h2=52②联立①②解得:x=,h=∴平行四边形ABCD的面积=AB•h=12;(2)作DF⊥AB,垂足为F∴∠DF A=∠CEB=90°∵平行四边形ABCD∴AD=BC,AD∥BC∴∠DAF=∠CBE又∵∠DF A=∠CEB=90°,AD=BC∴△ADF≌△BCE(AAS)∴AF=BE=,BF=5﹣=,DF=CE=在Rt△DFB中:BD2=DF2+BF2=()2+()2=16∴BD=4∵BC=3,DC=5∴CD2=DB2+BC2∴BD⊥BC.15.如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.【分析】(1)由SAS证明△ABE≌△BCF得出AE=BF,∠BAE=∠CBF,由平行线的性质得出∠CBF=∠CEG,证出AE⊥EG,即可得出结论;(2)延长AB至点P,使BP=BE,连接EP,则AP=CE,∠EBP=90°,证明△APE ≌△ECG得出AE=EG,证出EG=BF,即可得出结论.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∴∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵EG∥BF,∴∠CBF=∠CEG,∵∠BAE+∠BEA=90°,∴∠CEG+∠BEA=90°,∴AE⊥EG,∴AE⊥BF;(2)延长AB至点P,使BP=BE,连接EP,如图所示:则AP=CE,∠EBP=90°,∴∠P=45°,∵CG为正方形ABCD外角的平分线,∴∠ECG=45°,∴∠P=∠ECG,由(1)得∠BAE=∠CEG,在△APE和△ECG中,,∴△APE≌△ECG(ASA),∴AE=EG,∵AE=BF,∴EG=BF,∵EG∥BF,∴四边形BEGF是平行四边形.∴OD=BD=5,在Rt△DOE中,根据勾股定理,有DE2 ﹣OD2=OE2,∴OE=,∴EF=2OE=.17.在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).【分析】(1)首先证明四边形DEFC是平行四边形,再根据有一个角是直角的平行四边形是矩形即可判断.(2)连接EC,DF交于点O,作射线BO即可.【解答】(1)证明:∵D,E,F分别是AC,AB,BC的中点,∴DE∥FC,EF∥CD,∴四边形DEFC是平行四边形,∵∠DCF=90°,∴四边形DEFC是矩形.(2)连接EC,DF交于点O,作射线BO,射线BO即为所求.18.如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.20.如图,在▱ABCD中,对角线AC,BD相交于点O,且OA=OB.(1)求证:四边形ABCD是矩形;(2)若AD=4,∠AOD=60°,求AB的长.【分析】(1)由▱ABCD得到OA=OC,OB=OD,由OA=OB,得到;OA=OB=OC=OD,对角线平分且相等的四边形是矩形,即可推出结论;(2)根据矩形的性质借用勾股定理即可求得AB的长度.【解答】(1)证明:在□ABCD中,OA=OC=AC,OB=OD=BD,又∵OA=OB,∴AC=BD,∴平行四边形ABCD是矩形.(2)∵四边形ABCD是矩形,∴∠BAD=90°,OA=OD.又∵∠AOD=60°,∴△AOD是等边三角形,∴OD=AD=4,∴BD=2OD=8,在Rt△ABD中,AB=.21.如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.【分析】根据正方形的性质对角线垂直且平分,得到OB=OA,根据AM⊥BE,即可得出∠MEA+∠MAE=90°=∠AFO+∠MAE,从而证出Rt△BOE≌Rt△AOF,得到OE=OF.【解答】证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.22.如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF =90°,FG⊥AD,垂足为点G.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.【分析】(1)过点F作FM⊥AB交BA的延长线于点M,可证四边形AGFM是矩形,可得AG=MF,AM=FG,由“AAS”可证△EFM≌△CEB,可得BE=MF,ME=BC=AB,可得BE=MA=MF=AG=FG;(2)延长GH交CD于点N,由平行线分线段成比例可得,且CH=FH,可得GH=HN,NC=FG,即可求DG=DN,由等腰三角形的性质可得DH⊥HG.【解答】解:(1)AG=FG,理由如下:如图,过点F作FM⊥AB交BA的延长线于点M∵四边形ABCD是正方形∴AB=BC,∠B=90°=∠BAD∵FM⊥AB,∠MAD=90°,FG⊥AD∴四边形AGFM是矩形∴AG=MF,AM=FG,∵∠CEF=90°,∴∠FEM+∠BEC=90°,∠BEC+∠BCE=90°∴∠FEM=∠BCE,且∠M=∠B=90°,EF=EC ∴△EFM≌△CEB(AAS)∴BE=MF,ME=BC∴ME=AB=BC∴BE=MA=MF∴AG=FG,(2)DH⊥HG理由如下:如图,延长GH交CD于点N,∵FG⊥AD,CD⊥AD∴FG∥CD∴,且CH=FH,∴GH=HN,NC=FG∴AG=FG=NC又∵AD=CD,∴GD=DN,且GH=HN∴DH⊥GH∵BC﹣CG=GN﹣CG,∴BG=CN,∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°,∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH,∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH 是∠EGM的平分线.24.如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.【分析】(1)由四边形ABCD是正方形知∠D=∠ECQ=90°,由E是CD的中点知DE =CE,结合∠DEP=∠CEQ即可得证;(2)①由PB=PQ知∠PBQ=∠Q,结合AD∥BC得∠APB=∠PBQ=∠Q=∠EPD,由△PDE≌△QCE知PE=QE,再由EF∥BQ知PF=BF,根据Rt△P AB中AF=PF=BF 知∠APF=∠P AF,从而得∠P AF=∠EPD,据此即可证得PE∥AF,从而得证;②设PD=x,则AP=1﹣x,由(1)知△PDE≌△QCE,据此得CQ=PD=x,BQ=BC+CQ∴AP≠PE,∴四边形AFEP不是菱形.25.如图1,在正方形ABCD中,点E是CD上一点(不与C,D两点重合),连接BE,过点C作CH⊥BE于点F,交对角线BD于点G,交AD边于点H,连接GE,(1)求证:△DHC≌△CEB;(2)如图2,若点E是CD的中点,当BE=8时,求线段GH的长;(3)设正方形ABCD的面积为S1,四边形DEGH的面积为S2,当的值为时,的值为.【分析】(1)可得∠CHD=∠BEC,根据AAS可证明△DHC≌△CEB.(2)可得.则GC=2GH,可求出GH的长;(3)设S△DGH=9a,则S△BCG=49a,S△DCG=21a,求出S1和S2即可得出答案.【解答】证明(1)∵四边形ABCD是正方形,∴CD=BC,∠HDC=∠BCE=90°,∴∠DHC+∠DCH=90°,∵CH⊥BE,∴∠EFC=90°,∴∠ECF+∠BEC=90°,∴∠CHD=∠BEC,∴△DHC≌△CEB(AAS).(2)解:∵△DHC≌△CEB,∴CH=BE,DH=CE,∵CE=DE=CD,CD=CB,∴DH=BC,∵DH∥BC,∴.∴GC=2GH,设GH=x,则,则CG=2x,∴3x=8,∴x=.即GH=.(3)解:∵,∴,∵DH=CE,DC=BC,∴,∵DH∥BC,∴,∴,,设S△DGH=9a,则S△BCG=49a,S△DCG=21a,∴S△BCD=49a+21a=70a,∴S1=2S△BCD=140a,∵S△DEG:S△CEG=4:3,∴S△DEG=12a,∴S2=12a+9a=21a.∴.故答案为:.26.已知:如图,在菱形ABCD中,AC=2,∠B=60°.点E为边BC上的一个动点(与点B、C不重合),∠EAF=60°,AF与边CD相交于点F,联结EF交对角线AC于点G.设CE=x,EG=y.(1)求证:△AEF是等边三角形;(2)求y关于x的函数解析式,并写出x的取值范围;(3)点O是线段AC的中点,联结EO,当EG=EO时,求x的值.【分析】(1)根据菱形的性质得AB=BC,而∠B=60°,则可判定△ABC为等边三角形,得到∠BAC=60°,AC=AB,易得∠ACF=60°,∠BAE=∠CAF,然后利用“ASA”可证明△AEB≌△AFC,得出AE=AF,则结论可得出;(2)过点A作AH⊥BC于点H,求出AE,证明△BAE∽△CEG,得出,则可得出答案;(3)证明△COE∽△CEA,由比例线段可得出答案.【解答】(1)证明:∵四边形ABCD为菱形,∴AB=BC,∵∠B=60°,∴△ABC为等边三角形,∴∠BAC=60°,AC=AB,∴∠BAE+∠EAC=60°,∵AB∥CD,∴∠BAC=∠ACF=60°,∵∠EAF=60°,即∠EAC+∠CAF=60°,∴∠BAE=∠CAF,在△AEB和△AFC中,,∴△AEB≌△AFC(ASA),∴AE=AF,∴△AEF为等边三角形;(2)解:过点A作AH⊥BC于点H,∵△AEF为等边三角形,∴AE=EF=,∠AEF=60°,∵∠ABH=60°,∴,BH=HC=1,∴EH=|x﹣HC|=|x﹣1|,∴EF==,∵∠AEF=∠B=60°,∴∠CEG+∠AEB=∠AEB+∠BAE=120°,∴∠CEG=∠BAE,∵∠B=∠ACE=60°,∴△BAE∽△CEG,∴,∴,∴y=EG=(0<x<2),(3)解:∵AB=2,△ABC是等边三角形,∴AC=2,∴OA=OC=1,∵EG=EO,∴∠EOG=∠EGO,∵∠EGO=∠ECG+∠CEG=60°+∠CEG,∠CEA=∠CEG+∠AEF=60°+∠CEG,∴∠EGO=∠CEA,∴∠EOG=∠CEA,∵∠ECA=∠OCE,∴△COE∽△CEA,∴,∴CE2=CO•CA,∴x2=1×2,∴x=(x=﹣舍去),即x=.27.已知△ABC为等边三角形.点D为直线BC上的一动点(点D不与B、C重合),以AD 为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在线投BC上时,求证:AC=CF+CD;(2)如图2,当点D在线投BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由,【分析】(1)根据已知得出AF=AD,AB=BC=AC,∠BAC=∠DAF=60°,得出∠BAD =CAF,证明△BAD≌△CAF(SAS),推出CF=BD即可得出结论;(2)求出∠BAD=∠CAF,根据SAS证△BAD≌△CAF,推出BD=CF即可得出AC=CF﹣CD.【解答】(1)证明:∵菱形AFED,∴AF=AD,∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°=∠DAF,∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,即∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴CF=BD,∴CF+CD=BD+CD=BC=AC,即AC=CF+CD.(2)解:AC=CF+CD不成立,AC、CF、CD之间存在的数量关系是AC=CF﹣CD,理由是:由(1)知:AB=AC=BC,AD=AF,∠BAC=∠DAF=60°,∴∠BAC+∠DAC=∠DAF+∠DAC,即∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∴CF﹣CD=BD﹣CD=BC=AC,即AC=CF﹣CD.28.综合与实践:折纸中的数学问题情境:在矩形ABCD中,AD=12,点M、N分别是AD、BC的中点,点E、F分别在AB、CD 上,且AE=CF,将△AEM沿EM折叠,点A的对应点为点P,将△NCF沿NF折叠,点C的对应点为点Q,且点P、Q均落在矩形ABCD的内部.数学思考:(1)判断PM与NQ是否平行,并说明理由;(2)当AB长度是多少时,存在点E,使四边形PNQM是有一个内角为60°的菱形?直接写出AB的长度及菱形PNQM的面积.【分析】(1)分图①、图②两种情况,证明△EAM≌△FCN,根据全等三角形的性质得到∠AME=∠CNF,根据平行线的性质得到∠AQN=∠CNQ,根据平行线的判定定理证明;(2)根据菱形的性质、等边三角形的性质分别求出菱形的对角线,得到AB的长,根据菱形的面积公式求出菱形PNQM的面积.【解答】解:(1)PM∥NQ,理由如下:如图①,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠A=∠C=90°,∵点M,N分别是AD,BC的中点,∴AM=NC,∵AE=CF,∴△EAM≌△FCN(SAS),∴∠AME=∠CNF,∵∠AME=∠EMP,∠CNF=∠FNQ,∴∠AMP=∠QNC,∵AD∥BC,∴∠AQN=∠CNQ,∴∠AMP=∠AQN,∴PM∥QN;如图②,延长NQ交AD的延长线于H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠A=∠C=90°,∵点M,N分别是AD,BC的中点,∴AM=NC,∴PM=NQ,∵AE=CF,∴△EAM≌△FCN(SAS),∴∠AME=∠CNF,∵∠AME=∠EMP,∠CNF=∠FNQ,∴∠AMP=∠QNC,∵AD∥BC,∴∠AHN=∠CNH,∴∠AMP=∠AHN,∴PM∥QN;(2)如图③,连接MN、PQ,∵四边形PNQM是有一个内角为60°的菱形,∴MN⊥PQ,△PMN为等边三角形,∴MN=MP=AM=6,∴PQ=6,∴菱形PNQM的面积=×6×6=18,∴当AB=6或6时,四边形PNQM是有一个内角为60°的菱形,菱形PNQM的面积为18.29.如图,已知,点E在正方形ABCD的BC边上(不与点B,C重合),AC是对角线,延长BC到点F,使CF=BE,过点E作AC的垂线,垂足为G,连接BG,DF.(1)根据题意补全图形,并证明GC=GE;(2)①用等式表示线段BG与DF的数量关系,并证明;②用等式表示线段AG,BG,CG之间的数量关系,并证明.【分析】(1)证明△EGC是等腰直角三角形即可得出结论;(2)①连接DG、FG,先证明△BEG≌△FCG(SAS),得出BG=GF,得出EF=BC=DC,证明△GEF≌△GCD(SAS),得出∠EGC=∠DGF=90°,FG=GD,则△DGF 是等腰直角三角形,从而得出DF=GF=BG;②连接AE,证四边形AEFD是平行四边形,得出AE=DF,由DF=BG,则AE=BG,结合CG=EG,∠AGE=90°得出AG2+EG2=AE2,从而得出答案.【解答】解:(1)补全图形如图1所示,∵四边形ABCD是正方形,AC是对角线,∴∠ACB=45°,∵EG⊥AC,∴△EGC是等腰直角三角形,。
苏教版2018-2019学年八年级(下)期末考试数学试卷(附答案详解)
苏教版2018-2019学年八年级(下)期末考试数学试卷一、选择题(每小题3分,共24分)1.若式子在实数范围内有意义,则a的取值范围是()A.a>3 B.a≥3C.a<3 D.a≤32.要反映一个家庭在教育方面支出占总收入的比,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图3.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则()A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大4.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,结果书法、绘画、舞蹈及其他的频数分别为8、11、12、9,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.35.反比例函数y=的图象经过点M(﹣1,2),则反比例函数的解析式为()A.y=﹣B.y=C.y=﹣D.y=6.根据分式的基本性质,分式可以变形为()A.B.C.﹣D.﹣7.若关于x的方程+=0有增根,则m的值是()A.﹣2 B.﹣3 C.5 D.38.如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.50°B.55°C.60°D.45°二、填空题(每小题4分,共40分)9.为了解淮安市八年级学生的身高情况,从中任意抽取2000名学生的身高进行统计,在这个问题中,样本容量是.10.小红说:“明天下雨”,你认为这是(填“随机事件”、“不可能事件”或“必然事件”).11.化简的结果为.12.化简+=.13.已知反比例函数y=,当1<x≤3时,则y的取值范围是.14.反比例函数在第一象限内的图象如图所示,点P是图象上的一点PQ⊥x轴,垂足为Q,△OPQ的面积为2,则k=.15.如图,点D、E是AB、AC边的中点,AH是△ABC的高,DE=a,AH=b,△ABC的面积为12,则a与b的函数关系式是:.16.已知四边形ABCD为平行四边形,要使得四边形ABCD为矩形,则可以添加一个条件为.17.如图,▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为.18.如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB 为边在第一象限作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线在第一象限的分支上,则a的值是.三、解答题(共86分)19.计算:(1)+(2)(+)×(﹣)20.化简:(1)÷(2)(﹣)×.21.解方程:(1)+3=(2)﹣=1.22.请在方格内画出△ABC,使它的顶点都在格点上,且三边长1,,,①求△ABC的面积;②求出最长边上的高.23.某校九年级(1)班所有学生参加2019年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是,等级C对应的圆心角的度数为;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有人.24.如图1,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如表x(cm)10 15 20 25 30y(g)30 20 15 12 10(1)把表中(x,y)的各组对应值作为点的坐标,在图2的坐标系中描出相应的点,用平滑曲线连接这些点;(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式;(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少?25.果品店刚试营业,就在批发市场购买某种水果销售,第一次用500元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用660元所购买的数量比第一次多10千克.仍以原来的单价卖完.求第一次该种水果的进价是每千克多少元?26.如图,在▱ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=C B.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.27.如图1,已知点A(﹣1,0),点B(0,﹣2),AD与y轴交于点E,且E为AD的中点,双曲线y=经过C,D两点且D(a,4)、C(2,b).(1)求a、b、k的值;(2)如图2,线段CD能通过旋转一定角度后点C、D的对应点C′、D′还能落在y=的图象上吗?如果能,写出你是如何旋转的,如果不能,请说明理由;(3)如图3,点P在双曲线y=上,点Q在y轴上,若以A、B、P、Q为顶点的四边形为平行四边形,试求满足要求的所有点P、Q的坐标.参考答案与试题解析一、选择题(每小题3分,共24分)1.若式子在实数范围内有意义,则a的取值范围是()A.a>3 B.a≥3C.a<3 D.a≤3【考点】72:二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,a﹣3≥0,解得a≥3.故选B.2.要反映一个家庭在教育方面支出占总收入的比,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图【考点】VE:统计图的选择.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:由统计图的特点,知要反映一个家庭在教育方面支出占总收入的比,宜采用扇形统计图.故选:B.3.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则()A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大【考点】X2:可能性的大小.【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:A、因为袋中扑克牌的花色不同,所以无法确定抽取的扑克牌的花色,故本选项错误;B、因为黑桃的数量最多,所以抽到黑桃的可能性更大,故本选项正确;C、因为黑桃和红桃的数量不同,所以抽到黑桃和抽到红桃的可能性不一样大,故本选项错误;D、因为红桃的数量小于黑桃,所以抽到红桃的可能性小,故本选项错误.故选B.4.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,结果书法、绘画、舞蹈及其他的频数分别为8、11、12、9,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.3【考点】V6:频数与频率.【分析】根据各小组频数之和等于数据总和.频率=,可得答案.【解答】解:∵书法兴趣小组的频数是8,∴频率是8÷40=0.2,故选:C.5.反比例函数y=的图象经过点M(﹣1,2),则反比例函数的解析式为()A.y=﹣B.y=C.y=﹣D.y=【考点】G7:待定系数法求反比例函数解析式;G6:反比例函数图象上点的坐标特征.【分析】首先把M点坐标代入y=,可得k的值,进而可得函数解析式.【解答】解:∵反比例函数y=的图象经过点M(﹣1,2),∴2=,k=﹣2,∴反比例函数的解析式为y=﹣,故选:C.6.根据分式的基本性质,分式可以变形为()A.B. C.﹣D.﹣【考点】65:分式的基本性质.【分析】根据分式的基本性质即可求出答案.【解答】解:原式==故选(A)7.若关于x的方程+=0有增根,则m的值是()A.﹣2 B.﹣3 C.5 D.3【考点】B5:分式方程的增根.【分析】根据分式方程增根的定义进行选择即可.【解答】解:∵关于x的方程+=0有增根,∴x﹣5=0,∴x=5,∴2﹣x+m=0,∴m=3,故选D.8.如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.50°B.55°C.60°D.45°【考点】L8:菱形的性质.【分析】首先延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而不难求得∠FPC的度数.【解答】解:延长PF交AB的延长线于点G.如图所示:在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴EF=PG,∵PF=PG,∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=80°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE==50°,∴∠FPC=50°;故选:A.二、填空题(每小题4分,共40分)9.为了解淮安市八年级学生的身高情况,从中任意抽取2000名学生的身高进行统计,在这个问题中,样本容量是2000.【考点】V3:总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:从中任意抽取2000名学生的身高进行统计,在这个问题中,样本容量是2000,故答案为:2000.10.小红说:“明天下雨”,你认为这是随机事件(填“随机事件”、“不可能事件”或“必然事件”).【考点】X1:随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:小红说:“明天下雨”,你认为这是随机事件,故答案为:随机事件.11.化简的结果为3.【考点】73:二次根式的性质与化简.【分析】根据二次根式的性质即可求出答案.【解答】解:原式=3故答案为:312.化简+=﹣1.【考点】6B:分式的加减法.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣==﹣1,故答案为:﹣113.已知反比例函数y=,当1<x≤3时,则y的取值范围是≤y<1.【考点】G4:反比例函数的性质.【分析】利用反比例函数的增减性即可求得答案.【解答】解:∵y=,∴当x>0时,y随x的增大而减小,当x=1时,y=2,当x=3时,y=,∴当1<x≤3时,≤y<1,故答案为:≤y<1.14.反比例函数在第一象限内的图象如图所示,点P是图象上的一点PQ⊥x轴,垂足为Q,△OPQ的面积为2,则k=4.【考点】G5:反比例函数系数k的几何意义;G2:反比例函数的图象;G6:反比例函数图象上点的坐标特征.【分析】先设反比例函数的解析式为y=(k≠0),根据△POQ的面积为2,得出|k|=2,k=±4,再根据反比例函数y=在第一象限内,即可求出k.【解答】解:设反比例函数的解析式为y=(k≠0),∵△POQ的面积为2,∴|k|=2,|k|=2,k=±4,∵反比例函数y=在第一象限内,∴k=4;故答案为4.15.如图,点D、E是AB、AC边的中点,AH是△ABC的高,DE=a,AH=b,△ABC的面积为12,则a与b的函数关系式是:ab=12.【考点】KX:三角形中位线定理.【分析】利用三角形的中位线定理求出BC,根据三角形的面积公式列出等式即可解决问题.【解答】解:∵AD=DB,AE=EC,∴BC=2DE=2a,∵S△ABC=12,AH⊥BC,∴•2a•b=12,∴ab=12.故答案为ab=12.16.已知四边形ABCD为平行四边形,要使得四边形ABCD为矩形,则可以添加一个条件为∠BAD=90°.【考点】LC:矩形的判定;L5:平行四边形的性质.【分析】根据矩形的判定方法:已知平行四边形,再加一个角是直角填空即可.【解答】解:∵四边形ABCD是平行四边形,∠BAD=90°,∴四边形ABCD是矩形,故答案为:∠BAD=90°(答案不唯一).17.如图,▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为8.【考点】L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO==4,∴AE=2AO=8.故答案为:8.18.如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB 为边在第一象限作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度后,点C 恰好落在双曲线在第一象限的分支上,则a的值是3.【考点】G6:反比例函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征;G4:反比例函数的性质;LE:正方形的性质;Q3:坐标与图形变化﹣平移.【分析】如图作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,CN交反比例函数于H,利用三角形全等,求出点C、点H坐标即可解决问题.【解答】解:如图,作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,CN交反比例函数于H.∵直线y=﹣4x+4与x轴、y轴分别交于A、B两点,∴点B(0,4),点A(1,0),∵四边形ABCD是正方形,∴AB=AD=DC=BC,∠BAD=90°,∵∠BAO+∠ABO=90°,∠BAO+∠DAM=90°,∴∠ABO=∠DAM,在△ABO和△DAM中,,∴△ABO≌△DAM,∴AM=BO=4,DM=AO=1,同理可以得到:CF=BN=AO=1,DF=CN=BO=4,∴点F(5,5),C(4,1),D(5,1),设点D在双曲线y=(k≠0)上,则k=5,∴反比例函数为y=,∴直线CN与反比例函数图象的交点H坐标为(1,5),∴正方形沿x轴负方向平移a个单位长度后,顶点C恰好落在双曲线y=上时,a=4﹣1=3,故答案为3.三、解答题(共86分)19.计算:(1)+(2)(+)×(﹣)【考点】79:二次根式的混合运算.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算.【解答】解:(1)原式=2+=;(2)原式=3﹣2=1.20.化简:(1)÷(2)(﹣)×.【考点】6C:分式的混合运算.【分析】(1)原式利用除法法则变形,约分即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:(1)原式=÷=•=;(2)原式=[﹣]•=﹣•=﹣=.21.解方程:(1)+3=(2)﹣=1.【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)+3=,方程两边同乘以(x﹣2),得:1+3(x﹣2)=x﹣1,去括号得:1+3x﹣6=x﹣1,称项得:3x﹣x=﹣1﹣1+6,合并同类项得:2x=4,系数化为1得:x=2,经检验:x=2不是原方程的解,原方程无解;(2)﹣=1,方程两边同乘以(x﹣1)(x+1),得:(x+1)2﹣2=x2﹣1,去括号得:x2+2x+1﹣2=x2﹣1,称项得:2x=﹣1﹣1+2,合并同类项得:2x=0,系数化为1得:x=0,经检验:x=0是原方程的解,∴原方程的解为:x=0.22.请在方格内画出△ABC,使它的顶点都在格点上,且三边长1,,,①求△ABC的面积;②求出最长边上的高.【考点】N4:作图—应用与设计作图;KQ:勾股定理.【分析】①所作△ABC如图所示,延长BA,过点C作CP⊥AP交BA延长线于点P,根据三角形的面积公式求解可得;②作AH⊥BC,由S△ABC=BC•AH=且BC=可得AH的长.【解答】解:①如图所示,△ABC即为所求,其中AB=1、AC=、BC=,延长BA,过点C作CP⊥AP交BA延长线于点P,S△ABC=×AB×CP=×1×1=;②如图,过点A作AH⊥BC于点H,∵S△ABC=BC•AH=,且BC=,∴AH=,∴最长边上的高为.23.某校九年级(1)班所有学生参加2019年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有50人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是40%,等级C对应的圆心角的度数为72°;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有595人.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由A等的人数和比例,根据总数=某等人数÷所占的比例计算;(2)根据“总数=某等人数÷所占的比例”计算出D等的人数,总数﹣其它等的人数=C等的人数;(3)由总数=某等人数÷所占的比例计算出B等的比例,由总比例为1计算出C等的比例,对应的圆心角=360°×比例;(4)用样本估计总体.【解答】(1)总人数=A等人数÷A等的比例=15÷30%=50人;(2)D等的人数=总人数×D等比例=50×10%=5人,C等人数=50﹣20﹣15﹣5=10人,如图:(3)B等的比例=20÷50=40%,C等的比例=1﹣40%﹣10%﹣30%=20%,C等的圆心角=360°×20%=72°;(4)估计达到A级和B级的学生数=(A等人数+B等人数)÷50×850=(15+20)÷50×850=595人.24.如图1,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如表x(cm)10 15 20 25 30y(g)30 20 15 12 10(1)把表中(x,y)的各组对应值作为点的坐标,在图2的坐标系中描出相应的点,用平滑曲线连接这些点;(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式;(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少?【考点】GA:反比例函数的应用.【分析】(1)根据各点在坐标系中分别描出即可得出平滑曲线;(2)观察可得:x,y的乘积为定值300,故y与x之间的函数关系为反比例函数,将数据代入用待定系数法可得反比例函数的关系式;(3)把y=24代入解析式求解,可得答案.【解答】解:(1)如图所示:(2)由图象猜测y与x之间的函数关系为反比例函数,∴设y=(k≠0),把x=10,y=30代入得:k=300,∴y=,将其余各点代入验证均适合,∴y与x的函数关系式为:y=;(3)把y=24代入y=得:x=12.5,∴当砝码的质量为24g时,活动托盘B与点O的距离是12.5cm.25.果品店刚试营业,就在批发市场购买某种水果销售,第一次用500元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用660元所购买的数量比第一次多10千克.仍以原来的单价卖完.求第一次该种水果的进价是每千克多少元?【考点】B7:分式方程的应用.【分析】第一次该种水果的进价是每千克x元,第二次该种水果的进价是每千克1.2x元.根据用660元所购买的数量比第一次多10千克,列出方程即可解决问题.【解答】解:第一次该种水果的进价是每千克x元,第二次该种水果的进价是每千克1.2x 元.由题意:﹣=10,解方程得到:x=5,经检验:x=5是用方程的解,且符合题意.答:第一次该种水果的进价是每千克5元26.如图,在▱ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=C B.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.【考点】L7:平行四边形的判定与性质;KD:全等三角形的判定与性质.【分析】(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立.证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=A B.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CF B.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FC B.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形.27.如图1,已知点A(﹣1,0),点B(0,﹣2),AD与y轴交于点E,且E为AD的中点,双曲线y=经过C,D两点且D(a,4)、C(2,b).(1)求a、b、k的值;(2)如图2,线段CD能通过旋转一定角度后点C、D的对应点C′、D′还能落在y=的图象上吗?如果能,写出你是如何旋转的,如果不能,请说明理由;(3)如图3,点P在双曲线y=上,点Q在y轴上,若以A、B、P、Q为顶点的四边形为平行四边形,试求满足要求的所有点P、Q的坐标.【考点】GB:反比例函数综合题.【分析】(1)如图1,过点D做DP⊥y轴于点P,由△PDE≌△OAE(ASA),PD=OA,求出点D坐标,即可解决问题;(2)能,点C、D绕点O顺时针旋转180度时,点C′、D′落在y=图象上.或点C、D关于原点中心对称的点在图象上;(3)分两种情形分别求解①当AB为边时,如图1中,若四边形ABPQ为平行四边形,则=0;如图2中,若四边形ABQP是平行四边形时,AP=BQ,且AP∥BQ,求点P坐标,即可解决问题;②如图3中,当AB为对角线时,AP=BQ,AP∥BQ,求出点P坐标,即可解决问题.【解答】解:(1)如图1,过点D做DP⊥y轴于点P,∵点E为AD的中点,∴AE=DE.又∵DP⊥y轴,∠AOE=90°,∴∠DPE=∠AEO.∵在△PDE与△OAE中,,∴△PDE≌△OAE(ASA),∴PD=OA,∵A(﹣1,0),∴PD=1,∴D(1,4).∵点D在反比例函数图象上,∴k=xy=1×4=4.∵点C在反比例函数图象上,C的坐标为(2,b),∴b==2,∴a=1,k=4,b=2;(2)能,点C、D绕点O顺时针旋转180度时,点C′、D′落在y=图象上.或点C、D关于原点中心对称的点在图象上;(3)∵由(1)可知k=4,∴反比例函数的解析式为y=,∵点P在y=上,点Q在y轴上,∴设Q(0,y),P(x,).①当AB为边时,如图1中,若四边形ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6).如图2中,若四边形ABQP是平行四边形时,AP=BQ,且AP∥BQ,此时P2(﹣1,﹣4),Q2(0,﹣6).②如图3中,当AB为对角线时,AP=BQ,AP∥BQ,此时P3(﹣1,﹣4),Q3(0,2),综上所述,满足条件的P、Q坐标分别为P1(1,4),Q1(0,6);P2(﹣1,﹣4),Q2(0,﹣6);P3(﹣1,﹣4),Q3(0,2).。
2019-2020年江苏省八年级下学期数学期末试卷(有答案)
2019-2020年江苏省八年级下学期数学期末试卷(有答案)2019-2020江苏省八年级下学期数学期末试卷一、选择题(本大题10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则 x 的值为 A。
-1 B。
0 C。
±1 D。
12.下列计算中,正确的是 A。
23+42=65 B。
27÷3=3 C。
33×32=36 D。
(-3)2=-93.如图,菱形 OABC 的顶点 C 的坐标为 (3,4),顶点 A 在x 轴的正半轴上。
反比例函数 y=k/x (x>0) 的图象经过顶点 B,则 k 的值为 A。
12 B。
20 C。
24 D。
324.如图,AB 是⊙O 的直径,∠AOC=110°,则∠D 的度数等于 A。
25° B。
35° C。
55° D。
70°5.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆。
将卡片背面朝上洗匀,从中随机抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是 A。
1/5 B。
2/5 C。
3/5 D。
4/56.若最简二次根式 a2+3 与 5a-3 是同类二次根式,则 a 为A。
a=6 B。
a=2 C。
a=3 或 a=2 D。
a=17.如图,在矩形 ABCD 中,AB=2,BC=4,对角线 AC 的垂直平分线分别交 AD、AC 于点 E、D,连接 CE,则 CE 的长为 A。
3 B。
3.5 C。
2.5 D。
2.88.已知 y=x-5+10-2x-3,则 xy= A。
-15 B。
-9 C。
9 D。
09.如图,AB 切⊙O 于点 B,OB=2,∠OAB=36°,弦 BC ∥ OA,劣弧 BC 的弧长为 A。
π/5 B。
2π/5 C。
3π/5 D。
江苏省2019年八年级下期末考试数学试题及答案
第二学期期末考试初二数学试卷本试卷由填空题、选择题和解答题三大题组成.共29小题.满分130分.考试时间120分钟.注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持纸面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中.只有一项是符合题目要求的,请将选择题的答案写在答题纸相应的位置上.1.若二次根式2x-有意义,则x的取值范围是A.x<2 B.x≠2 C.x ≤2 D.x≥22.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是A.正三角形B.正方形C.等腰直角三角形D.平行四边形3.对于函数y=6x,下列说法错误的是A.它的图像分布在第一、三象限B.它的图像与直线y=-x无交点C.当x>0时,y的值随x的增大而增大D.当x<0时,y的值随x的增大而减小4.下列运算正确的是A.x y x yx y x y---=-++B.()222a b a ba ba b--=+-C.21111xx x-=-+D.()222a b a ba ba b-+=--5.下列各根式中与是同类二次根式的是A.9B.13C.18D.306.关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为12”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在12附近,正确的说法是A.①④B.②③C.②④D.①③7.如图,点F是□ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是A .ED DFEA AB = B .DE EFBC FB = C .BC BFDE BE=D .BF BCBE AE= 8.如图,矩形AOBC 中,顶点C 的坐标(4,2),又反比例函数y =kx的图像经过矩形的对角线的交点P ,则该反比例函数关系式是A .y =8x (x>0) B .y =2x (x>0) C .y =4x(x>0)D .y =1x(x>0)9.计算2221146450--的值为A .0B .25C .50D .8010.如图,在△ABC 中,∠C =90°,B C =6,D ,E 分别在AB ,AC 上, 将△ADE 沿DE 翻折后,点A 落在点A'处,若A'为CE 的中点,则 折痕DE 的长为A .1B .2C .4D .6二、填空题 本大题共8小题.每小题3分,共24分.把答案直接填在答题纸相对应的位置上. 11.若分式21a +有意义,则a 的取值范围是 ▲ . 12.袋中共有2个红球,2个黄球,4个紫球,从中任取—个球是白球,这个事件是 ▲ 事件.13.化简121+= ▲ .14.小丽同学想利用树影测量校园内的树高,她在某一时刻测得小树高为时,其影长为 m ,此时她测量教学楼旁的一棵大树影长为5m ,那么这棵大树高约 ▲ m . 15.如图,在△ABC 中,∠ACB =90°,∠A =35°,若以点C 为旋转中心,将△ABC 旋转θ°到△DEC 的位置,使点B 恰好落在边DE 上,则θ值等于 ▲ .16.如图,等腰梯形ABC D 中,AD ∥BC ,AD =2,BC =4,高DF =2.腰DC 的长等于 ▲ . 17.如图,点A 、B 在反比例函数y =kx(k>0,x>0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,S △BNC =2,则k 的值为 ▲ . 18.已知n 是正整数,189n 是整数,则n 的最小值是 ▲ .三、解答题 本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分8分,每小题4分)计算:(1)226912414421x x x x x x -+-÷+++ (2)222412a a a a a ---÷+20.(本题满分8分,每小题4分)计算:(1)5231512⎛⎫-⨯ ⎪ ⎪⎝⎭(2)()2182284022xx x x x x +--≥21.(本题满分5分)解方程:42511x xx x +-=--.22.(本题满分5分)如图,E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE =DF (1)求证:四边形AECF 是平行四边形;(2)若BC =10,∠BAC =90°,且四边形AECF 是菱形, 求BE 的长.23.(本题满分5分)如图,“优选1号”水稻的实验田是边长为a m(a>1)的正方形去掉一个边长为1m 的正方形蓄水池后余下的部分;“优选2号”水稻的实验田是边长为(a -1)m 的正方形,两块试验田的水稻都收了600 kg . (1)优选 ▲ 号水稻的单位面积产量高;(2)“优选2号”水稻的单位面积产量是“优选1号”水稻的单位面积产量的多少倍24.(本题满分6分)如图,在□ABCD 中,点E 在BC 上,∠CDE =∠DAE . (1)求证:△ADE ∽△DEC ;(2)若AD =6,DE =4,求BE 的长.25.(本题满分6分)“初中生骑电动 车上学”的现象越来越受到社会 的关注,某校利用“五一”假期, 随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了的统计图,请回答下列问题: (1)这次抽查的家长总人数是多少(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生,则抽到持哪一类态度学生的可能性大26.(本题满分8分)已知320m n -+-=(1)求16m n+的值; (2)将如图等腰三角形纸片沿底边BC 上的高AD 剪成两个三角形,其中AB =AC =m ,BC =n .用这两个三角形你能拼成多少种平 行四边形分别求出它们对角线的长(画出所拼成平行四边形 的示意图)27.(本题满分8分)如图,在平面直角坐标系中,双曲线经过点B ,连结OB .将OB 绕点O 按顺时针方向旋转90°并延长至A ,使OA =2OB ,且点A 的坐标为(4,2). (1)求过点B 的双曲线的函数关系式;(2)根据反比例函数的图像,指出当x<-1时,y 的取值范 围;(3)连接AB ,在该双曲线上是否存在一点P ,使得S △ABP = S △ABO ,若存在,求出点P 坐标;若不存在,请说明理由.28.(本题满分8分)喝绿茶前需要烧水和泡茶两个工序,即需要 将电热水壶中的水烧到100℃,然后停止烧水,等水温降低 到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min) 成一次函数关系;停止加热过了1分钟后,水壶中水的温度 y (℃)与时间x (min )近似于反比例函数关系(如图). 已知水壶中水的初始温度是20℃,降温过程中水温不低于 20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x 的取值范围;(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间29.(本题满分9分)如图①,两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形,对角线均在坐标轴上,已知菱形E FGH与菱形ABCD的相似比为1:2,∠BAD=120°,其中AD=4.(1)点D坐标为▲,点E坐标为▲;(2)固定图①中的菱形ABCD,将菱形EFCH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q,如图②所示,①当α=30°时,求点P的坐标;②试探究:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形若存在,请推断出α的值;若不存在,说明理由;。
2019年春苏教版八年级下第16章《二次根式》单元测试题附答案答案
2019年春人教版八年级下册数学第16章《二次根式》单元测试题一.选择题(共10小题)1.下列各式中,不属于二次根式的是()A.B.C.D.2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤53.若=﹣a,则a的取值范围是()A.﹣3≤a≤0B.a≤0C.a<0D.a≥﹣34.下列二次根式中,是最简二次根式的是()A.B.C.D.5.下列运算结果正确的是()A.=﹣9B.C.D.6.若a=+、b=﹣,则a和b互为()A.倒数B.相反数C.负倒数D.有理化因式7.下列各式中,与是同类二次根式的是()A.B.C.D.8.下列计算正确的是()A.+=B.﹣=C.×=6D.=49.下列计算正确的是()A.B.C.D.10.如图,从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,则余下部分的面积为()A.78 cm2B.cm2C.cm2D.cm2二.填空题(共8小题)11.二次根式中,x的取值范围是.12.若a、b为实数,且b=+4,则a+b=.13.计算:()2=.14.观察下列等式:=1+﹣=1=1++=1=1+﹣=1…请你根据以上规律,写出第n个等式.15.若a<1,化简=.16.计算(﹣2)2018(+2)2019=.17.计算:(3+)()=.18.不等式x﹣2<x的解集是.三.解答题(共7小题)19.化简:(1)﹣+(2)×+(1﹣)0+|﹣2|﹣()﹣120.已知x、y是实数,且x=+1,求9x﹣2y的值.21.已知实数a、b、c在数轴上的位置如图所示,化简:﹣|a+b|++|b+c|.22.求+的值解:;设x=+,两边平方得:x2=()2+()2+2,即x2=3++3﹣+4,x2=10∴x=±.∵+>0,∴+=请利用上述方法,求+的值.23.(1)计算(2)解不等式组24.(1)化简:+()()(2)如图,数轴上点A和点B表示的数分别是1和.若点A是BC的中点.求点C所表示的数.25.在解决问题“已知a=,求2a2﹣8a+1的值”时,小明是这样分析与解答的:∵a===2∴a﹣2=﹣,∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:(1)化简:(2)若a=,求3a2﹣6a﹣1的值.2019年春人教版八年级下册数学第16章《二次根式》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列各式中,不属于二次根式的是()A.B.C.D.【分析】根据二次根式的定义(当a≥0时,式子叫二次根式)进行判断即可.【解答】解:当a≥0时,式子叫二次根式.A、它属于二次根式,故本选项错误;B、﹣2<0,不属于二次根式,故本选项正确;C、它属于二次根式,故本选项错误;D、x2+1>0,属于二次根式,故本选项错误;故选:B.【点评】本题主要考查了二次根式的定义,当a≥0时,式子叫二次根式,解题的关键是对熟练掌握二次根式的定义.2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤5【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,5x﹣1≥0,解得,x≥,故选:B.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.若=﹣a,则a的取值范围是()A.﹣3≤a≤0B.a≤0C.a<0D.a≥﹣3【分析】根据二次根式的概念列出不等式,解不等式即可.【解答】解:由题意得,a≤0,a+3≥0,解得,a≤0,a≥﹣3,则a的取值范围是﹣3≤a≤0,故选:A.【点评】本题考查的是二次根式的性质和化简,掌握二次根式的被开方数是非负数是解题的关键.4.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念判断即可.【解答】解:=,A不是最简二次根式;B,是最简二次根式;=3,C不是最简二次根式;=a,D不是最简二次根式;故选:B.【点评】本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.5.下列运算结果正确的是()A.=﹣9B.C.D.【分析】直接利用二次根式的性质以及二次根式除法运算法则计算得出答案.【解答】解:A、=9,故此选项错误;B、(﹣)2=2,正确;C、÷=,故此选项错误;D、=5,故此选项错误;故选:B.【点评】此题主要考查了二次根式的性质以及二次根式除法运算,正确掌握运算法则是解题关键.6.若a=+、b=﹣,则a和b互为()A.倒数B.相反数C.负倒数D.有理化因式【分析】根据二次根式的运算法则即可求出答案.【解答】解:由于a+b≠0,ab≠±1,∴a与b不是互为相反数,倒数、负倒数,故选:D.【点评】本题考查二次根式,解题的关键是正确理解倒数、相反数、负倒数的概念,本题属于基础题型.7.下列各式中,与是同类二次根式的是()A.B.C.D.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、=2与是同类二次根式,故本选项正确;B、=2与不是同类二次根式,故本选项错误;C、=2与不是同类二次根式,故本选项错误;D、=3与不是同类二次根式,故本选项错误;故选:A.【点评】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.8.下列计算正确的是()A.+=B.﹣=C.×=6D.=4【分析】根据二次根式的加减法则进行计算即可.【解答】解:A、与不是同类项,不能合并,故本选项错误;B、﹣=﹣=,故本选项正确;C、×=,故本选项错误;D、==2,故本选项错误.故选:B.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.9.下列计算正确的是()A.B.C.D.【分析】直接利用二次根式的加减运算法则计算得出答案.【解答】解:A、+无法计算,故此选项错误;B、2+无法计算,故此选项错误;C、2﹣,无法计算,故此选项错误;D、﹣=,正确.故选:D.【点评】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.10.如图,从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,则余下部分的面积为()A.78 cm2B.cm2C.cm2D.cm2【分析】根据题意求出阴影部分的面积进而得出答案.【解答】解:从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,大正方形的边长是+=+4,留下部分(即阴影部分)的面积是(+4)2﹣30﹣48=8=24(cm2).故选:D.【点评】此题主要考查了二次根式的应用,正确求出阴影部分面积是解题关键.二.填空题(共8小题)11.二次根式中,x的取值范围是x≥﹣1.【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x+1≥0,解得x≥﹣1,故答案为x≥﹣1.【点评】本题考查二次根式有意义的条件,解题的关键是掌握二次根式中的被开方数必须是非负数,本题属于基础题型.12.若a、b为实数,且b=+4,则a+b=5或3.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b的值,根据有理数的加法,可得答案.【解答】解:由被开方数是非负数,得,解得a =1,或a =﹣1,b =4, 当a =1时,a +b =1+4=5, 当a =﹣1时,a +b =﹣1+4=3, 故答案为:5或3.【点评】本题考查了二次根式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.13.计算:()2=.【分析】直接利用二次根式的乘法运算法则求出即可.【解答】解:()2=.故答案为:.【点评】此题主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键. 14.观察下列等式:=1+﹣=1=1++=1=1+﹣=1…请你根据以上规律,写出第n 个等式=1+﹣=1+ .【分析】根据已知算式得出规律,根据规律求出即可. 【解答】解:∵观察下列等式:=1+﹣=1=1++=1=1+﹣=1…∴第n个等式是=1+﹣=1+,故答案为:=1+﹣=1+.【点评】本题考查了二次根式的性质的应用,关键是能根据题意得出规律.15.若a<1,化简=﹣a.【分析】=|a﹣1|﹣1,根据a的范围,a﹣1<0,所以|a﹣1|=﹣(a﹣1),进而得到原式的值.【解答】解:∵a<1,∴a﹣1<0,∴=|a﹣1|﹣1=﹣(a﹣1)﹣1=﹣a+1﹣1=﹣a.故答案为:﹣a.【点评】本题考查了二次根式的性质与化简,对于化简,应先将其转化为绝对值形式,再去绝对值符号,即.16.计算(﹣2)2018(+2)2019=+2.【分析】先根据积的乘方得到原式=[(﹣2)(+2)]2018•(+2),然后利用平方差公式计算.【解答】解:原式=[(﹣2)(+2)]2018•(+2)2019=(5﹣4)2018•(+2)=+2,故答案为+2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.计算:(3+)()=+1.【分析】利用多项式乘法展开,然后合并即可.【解答】解:原式=3﹣6+7﹣2=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.不等式x﹣2<x的解集是x>﹣2﹣2.【分析】不等式移项合并,把x系数化为1,即可求出解集.【解答】解:x﹣2<x,(﹣1)x>﹣2,x>﹣,x>﹣2﹣2.故答案为:x>﹣2﹣2.【点评】此题考查了解一元一次不等式和分母有理化,熟练掌握运算法则是解本题的关键.三.解答题(共7小题)19.化简:(1)﹣+(2)×+(1﹣)0+|﹣2|﹣()﹣1【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)根据二次根式的乘法法则和零指数幂的意义计算.【解答】解:(1)原式=2﹣4+=﹣;(2)原式=+1+2﹣2=3+1=4.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.已知x、y是实数,且x=+1,求9x﹣2y的值.【分析】根据被开方数大于等于0列式求出x的值,再求出y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,y﹣5≥0,5﹣y≥0∴y=5 x=1∴9x﹣2y=9×1﹣2×5=﹣1∴9x﹣2y的值为﹣1【点评】本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.21.已知实数a、b、c在数轴上的位置如图所示,化简:﹣|a+b|++|b+c|.【分析】根据数轴判断a、a+b、c﹣a、b+c与0的大小关系即可求出答案.【解答】解:由数轴可知:a>0,a+b<0,c﹣a<0,b﹣c>0,∴原式=a+a+b﹣(c﹣a)﹣b﹣c=a+a+b﹣c+a﹣b﹣c=3a﹣2c.【点评】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.22.求+的值解:;设x=+,两边平方得:x2=()2+()2+2,即x2=3++3﹣+4,x2=10∴x=±.∵+>0,∴+=请利用上述方法,求+的值.【分析】根据题意给出的解法即可求出答案.【解答】解:设x=+,两边平方得:x2=()2+()2+2,即x2=4++4﹣+6,x2=14∴x=±.∵+>0,∴x=【点评】本题考查二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.23.(1)计算(2)解不等式组【分析】(1)按二次根式的乘除法法则,从左往右依次算起;(2)分别解组中的两个方程,再得到不等式组的解集.【解答】解:(1)原式=27÷×=27××(÷×)=45;(2),解①,得x>﹣2,解②,得x≤﹣5∴原不等式组无解.【点评】本题考查了二次根式的乘除运算和一元一次不等式组的解法.掌握二次根式的乘除法法则和不等式组的解法是解决本题的关键24.(1)化简:+()()(2)如图,数轴上点A和点B表示的数分别是1和.若点A是BC的中点.求点C所表示的数.【分析】(1)根据二次根式的除法法则和平方差公式计算;(2)先计算出AB的长,再利用线段中点定义得到CA的长,然后计算出OC的长则可表示出点C 所表示的数.【解答】解:(1)原式=﹣+5﹣3=﹣2+2=;(2)∵数轴上点A和点B表示的数分别是1和,∴OA=1,AB=OB﹣OA=﹣1,∵点A是BC的中点.∴CA=BA=﹣1,∴OC=CA﹣OA=﹣1﹣1=﹣2,∴点C所表示的数为2﹣.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了数轴.25.在解决问题“已知a=,求2a2﹣8a+1的值”时,小明是这样分析与解答的:∵a===2∴a﹣2=﹣,∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:(1)化简:(2)若a=,求3a2﹣6a﹣1的值.【分析】(1)将原式分母有理化后,得到规律,利用规律求解;(2)将a分母有理化得a=+1,移项并平方得到a2﹣2a=1,变形后代入求值.【解答】解:(1)==;(2)∵a==+1,∴a﹣1=,∴a2﹣2a+1=2,∴a2﹣2a=1∴3a2﹣6a=3∴3a2﹣6a﹣1=2.【点评】本题主要考查了分母有理化、完全平方公式以及代数式的变形,变形各式后利用a2﹣2a=1,是解决本题的关键.。
2019学年江苏省八年级下学期期末考试数学试卷【含答案及解析】
2019学年江苏省八年级下学期期末考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 要使二次根式有意义,字母x应满足的条件为()A.x>2 B.x<2 C.x≥2 D.x>-22. 把分式中的分子、分母的、同时扩大2倍,那么分式的值()A.扩大2倍 B.缩小2倍 C.改变为原来的 D.不变3. 两个相似等腰直角三角形的面积比是4:1,则它们的周长比是()A.4:1 B.2:1 C.8:1 D.16:14. 在Rt△ABC中,∠C=90o,∠A=∠B,则sinA的值是()A. B. C. D.15. 函数y=x和在同一直角坐标系中的图象大致是()6. 、已知点A(,y1)、B(5,y2)、C (3,y3)都在反比例函数的图象上,则()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y37. 已知:如图,小明在打网球时,要使球恰好能打过而且落在离网5米的位置上(网球运行轨迹为直线),则球拍击球的高度h应为()A.0.9m B.1.8m C.2.7m D.6m8. 兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.5米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为()A.9.5米 B.10.75米 C.11.8米 D.9.8米二、填空题9. .当时,分式的值为0.10. 在比例尺为1∶4000000的中国地图上,量得扬州市与2008年奥运会举办地北京市相距27厘米,那么扬州市与北京市两地实际相距千米.11. “两直线平行,同位角相等”的逆命题是.12. 在一次数学兴趣小组的活动中,大家想编这样一道题:写出一个反比例函数,在x<0时,y随x的增大而减小.请你写出一个符合这些条件的函数解析式:.13. 如图:使△AOB∽△COD,则还需添加一个条件是:.(写一个即可)14. 一张圆桌旁有四个座位,A先坐在如图所示的位置上,B、C、D三人随机坐到其他三个座位上,则A与B不相邻而座的概率为.15. 已知反比例函数的图象通过点(,),则当时,.16. 若方程有增根,则.17. 如图,,,点在上,且=3,点在上运动,连接,若△AMN与△ABC相似,则=.18. 已知不等式2x-a<0的正整数解只有2个,则a的取值范围是.19. 如图,直线y=k和双曲线y=相交于点P,过点P作 PA0垂直于x轴,垂足为A0,x 轴上的点A0,A1,A2,……An的横坐标是连续整数,过点A1,A2,……An:分别作x轴的垂线,与双曲线y=(k>0)及直线y=k分别交于点B1,B2,……Bn和点C1,C2,……Cn则的值为.三、解答题20. (本题满分10分)解方程:21. (本题满分10分)解不等式组:22. (本题满分12分)如图,∠ABC=∠CDB=90°,AC=a,BC=b.(1)当BD与a、b之间满足怎样的关系时,△ABC∽△CDB?(2)过A作BD的垂线,与DB的延长线交于点E,若△ABC∽△CDB.求证四边形AEDC为矩形(自己完成图形).23. (本题满分12分)小美有红色、白色、蓝色上衣各一件,黄色、黑色长裤各一条.(1)请用画树状图或列表的方法分析小美上衣和长裤有多少种不同的搭配情况;(2)其中小美穿蓝色上衣的概率是多少?24. (本题满分12分)如图,已知A(-4,2)、B(n,-4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求此反比例函数的解析式及n的值;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.25. (本题满分12分)如图,已知的中垂线交于点,交于点,有下面3个结论:①是等腰三角形;②∽;③点D是线段AC的黄金分割点.请你从以上结论中只选一个加以证明(友情提醒:证明①得8分,证明②得10分,证明③得12分).26. (本题满分12)我们课本中有这样一段叙述:“要比较与的大小,可先求出与的差,再看这个差是正数、负数还是零.”由此可见,要判断两个代数式值的大小,只要考虑它们的差就可以了.试问:甲、乙两人两次同时在同一粮店购买粮食(假设两次购买粮食的单价不相同),甲每次购买粮食100千克,乙每次购粮用去100元.(1)假设分别表示两次购粮的单价(单位:元/千克),试用含的代数式表示:甲两次购买粮食共需付款元,乙两次购买千克粮食;若甲两次购粮的平均单价为每千克Q1元,乙两次购粮的平均单价为每千克Q2元,则Q1 = 元,Q2= 元.(2)规定:谁两次购粮的平均单价低,谁的购粮方式就更合算.请你判断甲、乙两人的购粮方式哪一个更合算些,并说明理由.27. (本题10分)我校八年级举行英语风采演讲比赛,派两位老师去超市购买笔记本作为奖品.据了解,该超市的甲、乙两种笔记本的价格分别是10元和6元,他们准备购买这两种笔记本共30本.(1)若这两位老师计划用220元购买奖品,则能买这两种笔记本各多少本?(2)若他们根据演讲比赛的设奖情况,决定所购买的甲种笔记本的数量不多于乙种笔记本数量的,但又多于乙种笔记本数量的,若设他们买甲种笔记本x本,买这两种笔记本共花费y元.①求出y(元)关于x(本)的函数关系式;②问购买这两种笔记本各多少时,花费最少,此时的花费是多少元?28. 如图,在平面直角坐标系xOy中,矩形OEFG的顶点E坐标为(4,0),顶点G坐标为(0,2).将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.(1)判断△OGA和△NPO是否相似,并说明理由;(2)求过点A的反比例函数解析式;(3)若(2)中求出的反比例函数的图象与EF交于B点,请探索:直线AB与OM是否垂直,并说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】。
2018-2019学年苏教版八年级(下)期末考试数学试卷含答案详解
2018-2019学年苏教版八年级(下)期末考试数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,只有一项是符合题目要求的)21.下列式子中,为最简二次根式的是( ) A .4 B .10 C .D .2.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( ) A .至少有2个球是黑球B .至少有1个球是白球C .至少有1个球是黑球D .至少有2个球是白球 3.与分式﹣的值相等的是( ) A .﹣B .﹣C .D .4.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分∠BED ,AB =2,∠ABE =45°,则DE 的长为( )2第4题第5题第11题A .2-2 B .-1 C . -1D .2-5.反比例函数的图象如图所示,则这个反比例函数的解析式可能是( ) A . xy 2=B .x y 6=C .x y 7=D .xy 9= 6.若分式方程+1=有增根,则a 的值是( ) A .4B .0或4C .0D .0或﹣4二、填空题:(本大题共10小题,每小题3分,计30分) 7.使22-x 有意义的x 的取值范围是______.8.分式392--x x 的值为0,那么x 的值为______;9.某班级40名学生在期中学情分析考试中,分数段在90~100分的频率为0.2,则该班级在这个分数段内的学生有 人.10.若一元二次方程ax 2-(b -1)x ﹣2017=0有一根为x =﹣1,则a +b 的值为______;11.如图,在Rt △ABC 中,∠ACB =90°,点D 、E 、F 分别为AB 、AC 、BC 的中点.若CD =5,则EF 的长为______.12.如图,在Rt △ABC 中,∠ABC =90°,AB =BC ,将△ABC 绕点C 逆时针旋转α(0°<α<90°),得到△MNC ,连接BM ,当 BM ⊥AC ,则旋转角α的度数为______.13.已知菱形的周长为40cm ,两条对角线之比3:4,则菱形面积为______________cm 2.14.一次函数y =-x +1与反比例函数xky =(k <0)中,x 与y 的部 分对应值如下表:x -3 -2 -1 1 2 3 y =-x +143 2 0 -1 -2xk y =32 12-2-132- 则不等式1-+x x>0的解集为____________________________. 15.已知关于x 的方程=3的解是正数,那么m 的取值范围为___________16.正方形ABCD 中,直线l 经过点A ,过点B 、D 分别作直线l 的垂线,垂足分别为E 、F ,若BE =7,DF =4,则DE 的长度为___________________________. 三、解答题:(本大题共10小题,计78分) 17.(3分×2=6分)化简与计算: (1)( x ≥0,y ≥0); (2)×+÷.18.(4分×2=8分) 解方程:(1) (x -2)(x -5)=-2 (2)xx x 101317=-++19.(6分)先化简,再求值:(a a 112--)÷1222+-+a a aa ,其中a 2+a -2=0.20.(8分) 某学校校园读书节期间,学校准备购买一批课外读物.为使购买的课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别对部分同学进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息解答下列问题:(1) 本次抽样调查一共抽查了_______名同学;(2) 条形统计图中,m=_______,n=_______;(3) 扇形统计图中,艺术类读物所在扇形的圆心角是_______度;(4) 学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?21.(6分)已知关于x的方程x2﹣4mx+4m2﹣9=0.(1) 求证:此方程有两个不相等的实数根;(2) 设此方程的两个根分别为x1,x2,其中x1<x2.若2x1=x2+1,求m的值.ABCD E第22题图22.(6分)如图,在△ABC 中,AB =AC ,D 为边BC 上一点,将线段AB 平移至DE ,连接AE 、AD 、E C . (1) 求证:AD =EC ; (2) 当点D 是BC 的中点时, 求证:四边形ADCE 是矩形.23.(8分)一儿童服装商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六·一”儿童节,商店决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?x24.(8分)如图,点B 在反比例函数y =4x(x >0)的图像上,点A 、C 分别在x 轴、y 轴正 半轴上,且四边形OABC 为正方形. (1) 求点B 的坐标; (2) 点P 是y =x4在第一象限的图像上点B 右侧一动点, 且S △POB =S △AOB ,求点P 的坐标.25.(10分)四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.2·1·c·n·j·y(1) 如图1,求证:矩形DEFG是正方形;(2) 若AB=2,CE=2,求CG的长度;(3) 当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.26.(12分)如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,8),点P 在边BC 上以每秒1个单位长的速度由点C 向点B 运动,同时点Q 在边AB 上以每秒a 个单位长的速度由点A 向点B 运动,运动时间为t 秒(t >0).(1) 若反比例函数xm y 图像经过P 点、Q 点,求a 的值;(2) 若OQ 垂直平分AP ,求a 的值;(3) 当Q 点运动到AB 中点时,是否存在a 使△OPQ 为直角三角形?若存在,求出a 的值;若不存在,请说明理由;参考答案1.B 2.C 3.D 4.A 5.C 6.A 7.X ≥1 8.- 3 9.8 10.2018 11.5 12.6013.24 14.-1<x <0或x >2 15.m >-6且m ≠-4 16.5或137 17.(1)5xy x 3 (2)1118.(1)x 1=3, x 2=4 (2)x =25(不检验扣1分) 19.21aa -(3分) a =-2 (a =1舍去)(2分) 43-(1分)20.(1)200 (2)m =40, n =60 (3) 72 (4)900 (每题2分)21.(1)证明(略) (2分) (2)x 1=2m -3 x 2=2m +3 (判断1分共2分)m =5 (2分)w 22.(1)证明(略)(3分)(2)证明(略)(3分) 23.设每件童装应降价x 元,根据题意得(40-x )(20+2x )=1200 (4分) x 1=20 x 2=10 (2分)因为要尽快减少库存,则x =10舍去则x =20 (1分) 答:每件童装应降价20元.(1分)(其他方法参照执行)224. (1)B (2,2) (4分) (2) P (1+, 1-+) (4分)25.(1)证明(略) (3分) (2) CG =2 (3分) (3)120°或30°(4分)【 26.(1)a =54(2分) (2)a =65(4分)(3)①当t >0时∠POQ <∠AOB =90°,则∠POQ 不为直角; (1分) ②当∠OPQ =90°时, OP 2+PQ 2=OQ 2∴82+t 2+42+(10-t )2=42+102 t 2-10t +32=0此方程无实数解,则∠OPQ 不为直角 (2分) ③当∠OQP =90°时OP 2=PQ 2+OQ 2 ∴82+t 2=42+(10-t )2+42+102t =542(2分)∵at =4 ∴a =2110(1分)。
2018-2019学年苏教版八年级第二学期期末考试数学试卷(含答案详解)
2018-2019学年苏教版八年级第二学期期末考试数学试卷注意:1.本试卷共4页,满分为150分,考试时间为120分钟.2.考生答题前,务必将本人的学校、班级、姓名、学号填写在答题纸相应的位置. 3.考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共有6小题,每小题3分,共18分) 1.二次根式x -2有意义,则x 的取值范围是( )A .2>xB .2<xC .2≥xD .2≤x 2.分式x--11可变形为( ) A .11--x B .x +-11 C .x +11 D .11-x 3.在平面直角坐标系xoy 中,⊙O 的半径为4,点P 的坐标为(3,4),则点P 的位置为( ) A.在⊙A 外 B. 在⊙A 上 C. 在⊙A 内 D.不确定 4.对于反比例函数xy 2=,下列说法不正确的是( ) A .点(21)--,在它的图像上B .它的图像在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小5.我市“菜花节”观赏人数逐年增加,据有关部门统计,2017年约为20万人次,2019年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ) A .2012)28.8x +=( B .228.81)20x +=(C .2201)28.8x +=(D .220201)201)28.8x x ++++=(( 6.有下列五个命题:①半圆是弧,弧是半圆;②周长相等的两个圆是等圆;③半径相等的两个半圆是等弧;④直径是圆的对称轴;⑤直径平分弦与弦所对的弧. 其中正确的有( ) A .1个 B .2个 C . 3个 D . 4个二、填空题(本大题共有10小题,每小题3分,共30分) 7.当a = 时,分式32a a +-的值为-4. 8.分式25x y 和52x y 的最简公分母是 . 9.比较大小:1(填“﹤”,“=”,“﹥”).10.以3、-5为根且二次项系数为1的一元二次方程是 . 11.当1<P <2时,代数式22)2()1(p p -+-的值为 .12. 已知y 是x 的反比例函数,且当x =2时,y =-3. 则当y =2时,x = .13.关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 .14.如图,已知⊙O 的半径为5,点P 是弦AB 上的一动点,且弦AB 的长为8.则OP 的取值范围为 .15. 用配方法求得代数式2367x x +-的最小值是 .16.若直角三角形的两边a 、b 是方程27120x x -+=的两个根,则该直角三角形的内切圆的半径r=.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(本题满分12分) 计算:(1⎛⎝ (2)012017222-⨯;(第14题图)18.(本题满分8分)解方程:(1)0)3(3=+-+x x x . (2)41622222-=-+-+-x x x x x .19.(本题满分8分)先化简,再求值:)2(222ab ab a a b a --÷-,其中32+=a ,32-=b .20.(本题满分8分)小明用12元买软面笔记本,小丽用21元买硬面笔记本,已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?21.(本题满分10分)已知反比例函数1kyx-=的图像经过点A(2,-4).(1)求k的值;(2)它的图像在第象限内,在各象限内,y随x增大而;(填变化情况)(3)当-2 ≤ x ≤-12时,求y的取值范围.22.(本题满分10分)如图,已知BC 是⊙O 的直径,A 是⊙O 上一点,AD ⊥BC ,垂足为D ,⌒AE =⌒AB ,BE 交AD 于点F .(1)∠ACB 与∠BAD 相等吗?为什么? (2)判断△FAB 的形状,并说明理由.C B(第22题图)23.(本题满分10分)花鸟市场一家店铺正销售一批兰花,每盆进价100元,售价为140元,平均每天可售出20盆.为扩大销量,增加利润,该店决定适当降价.据调查,每盆兰花每降价1元,每天可多售出2盆. 要使得每天利润达到1200元,则每盆兰花售价应定为多少元?24.(本题满分10分)关于x 的二次方程21)220k x kx -++=( . (1)求证:无论k 为何值,方程总有实数根.(2)设1x 、2x 是方程21)220k x kx -++=(的两个根,记S =2112x x x x +12x x ++,S 的值能为2吗?若能,求出此时k 的值.若不能,请说明理由.25.(本题满分12分)如图,在△ABC中,⊙O经过A、B两点,圆心O在BC边上,且⊙O与BC边交于点E,在BC上截取CF=AC,连接AF交⊙O 于点D,若点D恰好是⌒BE的中点.(1)求证:AC是⊙O的切线;(2)若BF=17,DF=13,求⊙O的半径r;(3)若∠ABC=30°,动直线l从与点A、O重合的位置开始绕点O顺时针旋转,到与OC重合时停止,设直线l与AC的交点为F,点Q为OF的中点,过点F作FG⊥BC于G,连接AQ、QG.请问在旋转过程中,∠AQG的大小是否变化?若不变,求出∠AQG的度数;若变化,请说明理由.BB(第25题图) (备用图)26.(本题满分14分)如图1,正方形ABCD顶点A、B在函数y=kx(k﹥0)的图像上,点C、D分别在x轴、y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)若点A的横坐标为3,求点D的纵坐标;(2)如图2,当k=8时,分别求出正方形A′B′C′D′的顶点A′、B′ 两点的坐标;(3)当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,求k的取值范围.图1 图2(第26题图)参考答案与评分标准一、选择题(本大题共有6小题,每小题3分,共18分) 1.D ;2.D ;3.A ;4.C ;5.C ;6.B.二、填空题(本大题共有10小题,每小题3分,共30分)7.1; 8.510x ; 9. ﹥; 10. 01522=-+x x ; 11.1; 12.-3; 13.-2; 14. 3≤OP ≤5; 15.-10; 16. 1或712- 三、解答题(共10题,102分.下列答案仅供参考........,有其它答案或解法.......,参照标准给分.......) 17.(本题满分12分)(1)(本小题6分)原式=335--(3分,每对1个得1分)=5-(3分); (2)(本小题6分)原式=122122++-+(4分,每对1个得1分)=32(2分). 18.(本题满分8分)(1)(本小题4分)(3)1)0x x +-=((2分),13x =-,21x =(2分). (2)(本小题4分)22(2)(2)16x x --+=(2分),2x =-,(1分).检验,2x =-是原方程的增根,所以原方程无解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新苏教版2019学年八年级数学下期期末试卷(一)一、选择题(本大题共8小题,每小题2分,共16分)1.下列图形中,是中心对称图形,但不是轴对称图形的是( ).A. B. C. D.2.下列图形中,必然事件是( )A.随意翻到一本书的某页,页码是偶数B.度量三角形的三个内角,和是180°C.掷一次骰子,向上一面的点数是2D.买一张电影票,座位号是偶数 3.下列计算正确的是( )A.33-12=B.532=+C.35-53=D.25223=+4.若分式242+-x x 的值为0,则x 的值是( )A.2±=xB.2-=xC. 2=xD.0=x5.在一次有10000名八年级学生参加的数学质量监测的成绩中,随机抽取1000名学生的数学成绩进行分析,则在该抽样中,样本指的是( )A.所抽取的1000名学生的数学成绩B.10000名学生的数学成绩C. 1000名学生D.10006.已知点()()21,2,,1y y -,()3,5y 在反比例函数xk y 12+-=的图像上,则下列关系式正确的是( )A. 123y y y <<B.132y y y <<C. 213y y y <<D.312y y y <<7.如图,将ABCD 折叠,使顶点D 落在AB 边上的点E 处,折痕为AF ,下列说法中不正确的是( )A.EF//BCB.EF=AEC. BE=CFD.AF=BC8. 如图,OAB ∆中,︒=∠90ABO ,点A 位于第一象限,点O 为坐标原点,点B 在x 轴正半轴上,若双曲线)0(>=x xky 与OAB ∆的边AO 、AB 分别交于点C 、D ,点C 为AO 的中点,连接OD 、CD .若3=∆OBD S ,则OCD S ∆为( ) A.3 B.4 C. 29D.6第7题 第8题 第14题第15题 第16题二、填空题(本大题共8小题,每小题2分,共16分) 9.如果根式1+x 有意义,那么x 的取值范围是______________. 10.分式xy 1,y x 22,xyz3的最简公分母为_________________. 11.由此估计这种作物种子发芽率约为_______________(精确到0.01)12.菱形具有而矩形不一定具有的性质是__________________________(写一条即可) 13.若两个连续整数x ,y 满足y x <+<115,则x +y 的值是________.14.如图,O 是矩形ABCD 对角线BD 的中点,M 是CD 的中点,若AB=12,AD=5,则四边形AOMD 的周长是_______________.15.如图,一次函数b kx y +=与反比例函数x m y =的图像交于A,B 两点,则b kx xm+<<0的解集是___________________.16.如图,在平面直角坐标系中,等腰直角三角形AOB 的直角顶点A 在第四象限,顶点B (0,-2),点C (0,1),点D 在边AB 上,连接CD 交OA 于点E ,反比例函数xky =的图像经过点D ,若∆ADE 和∆OCE 的面积相等,则k 的值为___________. 三、解答题 17.计算:(1)()123-272+-; (2)()()23522352+-18.(1)化简: (2)先化简,再求值:();0,02223≥+≥++y x x xy y x x 1112+-÷⎪⎭⎫ ⎝⎛-a aa a ,其中21=a .19.解方程:(1)0122=--x x ; (2)111=+-xx x20.某校为了解学生每周课外阅读时间的情况,对3000名学生采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”,“2小时~3小时”,“3小时~4小时”和“4个小时以上”四个等级,分别用A 、B 、C 、D 表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题: (1)x=_____________,样本容量是______________; (2)将不完整的条形统计图补充完整;(3)请估计该校3600学生中每周课外阅读时间在“2个小时以上”的人数.21.如图,在ABC ∆中,AB=AC ,D 为BC 的中点,AE//BC,DE//AB. 求证:四边形ADCE 为矩形.22.先阅读材料,然后回答问题.(1)小张同学在研究二次根式的化简时,遇到了一个问题:化简625- 经过思考,小张解决这个问题的过程如下:625-=33222+⨯- ①()()2233222+⨯-= ② ()232-= ③32-=④在上述化简过程中,第_______步出现了错误,化简的正确结果为_____________; (2)请根据你从上述材料中得到的启发,化简348+23.某市计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为为360万米3.(1)直接写出该公司完成任务所需的时间y (单位:天)与平均每天运送的土石方数量为x(单位:万米3)之间的函数关系式,及自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多20%,结果工期比原计划减少了24天,求实际平均每天运送土石方各是多少万米3?24.如图,在平面直角坐标系中,正比例函数y=kx (k>0)与反比例函数y=x3的图象分别交于A 、C 两点,已知点B 与点D 关于坐标原点O 成中心对称,且点B 的坐标为(m ,0).其中m>0.(1)四边形ABCD 的是 .(填写四边形ABCD 的形状) (2)当点A 的坐标为(n,3)时,四边形ABCD 是矩形,求m,n 的值.(3)试探究:随着k 与m 的变化,四边形ABCD 能不能成为菱形?若能,请直接写出k 的值;若不能,请说明理由.25. 如图,已知一次函数x y 2=的图像与反比例函数)0(2>=x x y ,)0(>=x xky 的图像分别交于P ,Q 两点,点P 为OQ 的中点,ABC R ∆t 的直角顶点A 是双曲线)0(>=x xky 上一动点,顶点B,C 在双曲线)0(2>=x xy 上,且两直角边均与坐标轴平行.(1)直接写出k 的值;(2)ABC ∆的面积是否变化?若不变,求出ABC ∆的面积;若变化,请说明理由; (3)直线x y 2=是否存在点D ,使得以A,B,C,D 为顶点的四边形是平行四边形,若存在,求出点A 的坐标;若不存在,请说明理由.新苏教版2019学年八年级数学下期期末调研试卷(二)本试卷由填空题、选择题和解答题三大题组成,共29题,满分130分。
考试时间120分钟。
注意事项:1.答题前,考生务必将学校、姓名、考场号、座位号、考试号填写在答题卷相应的位置上.2.答题必须用0.Smm 黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效,一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.)1.分式242x x -+的值为0,则A .x =-2B .x =2C .x =0D .x =±22x 的取值范围是A .x>13B .x>-13C .x ≥13D .x ≥-133.如图,在△ABC 中,点E 、F 分别为AB 、AC 的中点. 若EF 的长为2,则BC 的长为 A .1B .2C .4D .84.有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤角.将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是 A .15B .25C .35D .455.矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOD =120°,AC =8,则△ABO 的周长为 A .24 B .20C .16D .126.下列根式中,最简二次根式是ABC D7.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°, CD ⊥AB 于点D .则△BCD 与△ABC 的周长之比为A .1:2B .1:3C .1:4D .1:58.如图,函数y =a(x -3)与y =ax,在同一坐标系中的大致图象是9.如图已知双曲线y =kx(k<0)经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 交于点c .若点A 坐标为(-6,4), 则△AOC 的面积为 A .12 B .9 C .6D .410.如图,在□ABCD 中,AB =6,AD =9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,若BG =4,则△CEF 的面积是A .B .2C .3D .4二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)11= ▲ .12.若(210a b +-=则1a b+的值为 ▲ . 13.如图,在Rt △ABC 中,∠C =90°,CD ⊥AB ,垂足为D ,AD =2,DB =8,则CD 的长为 ▲ .14.某校八年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是 ▲ .15.在梯形ABCD ,AD ∥BC ,AB =DC =3,沿对角线BD 翻折梯形ABCD ,若点A 恰好落在下底BC 的中点E 处,则梯形的 周长为 ▲ .16.如图,直线l1∥l 2∥l 3,另两条直线分别交l 1,l 2,l 3于点A ,B ,C 及点D ,E ,F ,且AB =3,DE =4,EF =2, 则BC = ▲ .17.若219x x ⎛⎫+= ⎪⎝⎭,则21x x ⎛⎫- ⎪⎝⎭的值为 ▲ .18.如图所示,三角形ABO 的面积为12,且AO =AB ,双曲线y =kx过AB 的中点D ,则k 的值为 ▲ .三、解答题:(本大题共11小题,共76分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明). 19.(本题满分8分,每小题4分)化简或计算:)21- ⎛ ⎝20.(本题满分8分,每小题4分)(1)化简:22211a a a a a a --⎛⎫-÷ ⎪+⎝⎭(2)解方程:2111x x x x++=+21.(本题满分6分)先化简225525xx x x x x ⎛⎫-÷⎪---⎝⎭,然后从不等式组23212x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值.22.(本题满分6分)已知a =2+3,b =2-3,试求a bb a-的值.23.(本题满分6分)己知函数y =(k -3)x 28k -为反比例函数.(1)求k 的值;(2)它的图象在第 ▲ 象限内,在各象限内,y 随x 增大而 ▲ :(填变化情况) (3)当-2≤x ≤-时,此函数的最大值为 ▲ ,最小值为 ▲ .24.(本题满分6分)某报社为了解苏州市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,其中有一个问题是:“您觉得雾霾天气对您哪方面的影响最大?”五个选项分别是;A .身体健康;B .出行;C .情绪不爽;D .工作学习;E .基本无影响,根据调查统计结果,绘制了不完整的三种统计图表.(1)本次参与调查的市民共有 ▲ 人,m = ▲ ,n = ▲ ; (2)请将图1的条形统计图补充完整;(3)图2所示的扇形统计图中A 部分扇形所对应的圆心角是 ▲ 度.25.(本题满分6分)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D 作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.26.(本题满分6分)为了构建城市立体道路网络,决定修建一条轻轨铁路,为了使工程提前6个月完成,需将原定的工作效率提高25%.原计划完成这项工程需要多少个月?27.(本题满分7分)如图,Rt△ABC中∠C=90°且AC=CD=,又E、D为CB的三等分点.(1)求证△ADE∽△BDA;(2)证明:∠ADC=∠AEC+∠B;(3)若点P为线段AB上一动点,连接PE则使线段PE的长度为整数的点的个数▲.(直接写答案无需说明理由)28.(本题满分8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(6,3).过点D(0,5)和E(10,0)的直线分别与 AB ,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标; (2)若反比例函数y =mx(x>0)的图象经过点M .求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(3)若反比例函数y =mx(x>0)的图象与△MNB 有公共点,请直接写出m 的取值范围.29.(本题满分9分)己知,如图,矩形ABCD 中,AD =3,DC =4,矩形EFGH 的三个顶点E .G 、H 分别在矩形ABCD 的边ABCD 的边AB 、CD 、DA 上,AH =1,连接CF . (1)求证:△AEH ∽△DHG ;(2)设AE =x ,△FCG 的面积=S 1,求S 1与x 之间的函数关系式及S 1的最大值;(3)在(2)的条件下,如果矩形EFGH 的顶点F 始终在矩形ABCD 内部,连接BF ,记△BEF 的面积为S 2,△BCF 的面积为S 3,求6S 1+3S 2-2S 3的值.新苏教版2019学年八年级数学下期期末试卷(三)一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.02.下列根式中,与是同类二次根式的是()A. B. C.D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B. C.D.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG 10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6 B.2 C.4 D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.15.代数式a+2﹣+3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.20.解分式方程:(1)=(2)=﹣1.21.先化简,再求值:(1﹣)÷,其中a=﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.新苏教版2019学年八年级数学下期期末试卷(四)本试卷由选择题、填空题和解答题三大题组成,共28题,满分130分.考试用时120分钟. 注意事项:1.答题前,考生务必将学校、班级、姓名、准考号填写在答题卷相应的位置上.2.答题必须用0.5 mm 黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效.一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卷上作答.)1A .-2B .2C .-4D .4 2.下面图形中是中心对称但不是轴对称图形的是A .平行四边形B .长方形C . 菱形D .正方形 3.下列说法正确的是A .某个对象出现的次数称为频率B .要了解某品牌运动鞋使用寿命可用普查C .没有水分种子发芽是随机事件D .折线统计图用于表示数据变化的特征和趋势 4.实数x 取任何值,下列代数式都有意义的是A B C D x5.某玩具厂要生产a 只吉祥物“欢欢”,原计划每天生产b 只,实际每天生产了b+c 只,则该厂提前了( )天完成任务.A .a cB .a b c +-a bC .a b c +D .a b-ab c +6.如图,设线段AC =1.过点C 作C D ⊥AC ,并且使CD =12AC :连结AD ,以点D 为圆心,DC的长为半径画弧,交AD 于点E ;再以点A 为圆心,AE 的长为半径画弧,交AC 于点B ,则AB 的长为A .51 B .12C .14D .147.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分∠BED ,AB =1,∠ABE =45°,则BC 的长为A B .1.5C D .28.如图,在正方形ABCD 中,E 是AD 的中点,F 是CD 上一点,且CF =3FD .则图中相似三角形的对数是A .1B .2C .3D .49.根据图①所示的程序,得到了如图②y 与x 的函数图像,若点M 是y 轴正半轴上任意一点,过点M 作PQ ∥x 轴交图像于点P 、Q ,连接OP 、OQ .则以下结论:① x <0时,y =2x;② △OPQ 的面积为定值;③ x >0时,y 随x 的增大而增大; ④ MQ =2PM⑤ ∠POQ 可以等于90°. 其中正确结论序号是A .①②③B .②③④C .③④⑤D .②④⑤10.如图,已知线段AB =12,点M 、N 是线段AB 上的两点,且AM=BN =2,点P 是线段MN上的动点,分别以线段AP 、BP 为边在AB 的同侧作正方形APDC 、正方形PBFE ,点G 、H 分别是CD 、EF 的中点,点O 是GH 的中点,当P 点从M 点到N 点运动过程中,OM+OB 的最小值是A .10B .12C .D .二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卷相对应的位置上) 11.约分32366ab abcc 得到的结果是 ▲ .12.若反比例函数图像经过点A (-6,-3),则该反比例函数表达式是 ▲ . 13.如图,已知:l 1∥l 2∥l 3,AB =6,DE =5,EF =7.5,则AC= ▲ .14.设a 是π的小数部分,π表示为 ▲ .15.已知a b=32,则a a b++b a b--222b a b-= ▲ .16.如图,在梯形ABCD 中,AD ∥BC ,AD =1,BC =4,AC =3,BD =4,则梯形ABCD 的面积为▲ .17.已知:x ,y .那么y x+x y= ▲ .18.如图,在边长为2的止方形ABCD 中,点E 是边AD 中点,点F 在边CD 上,且F E ⊥BE ,设BD 与EF 交于点G ,则△DEG 的面积是 ▲ .三、解答题:(本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.) 19.(本题满分6分,每小题3分)化简与计算: x ≥0,y ≥0); 620.(本题满分6分) 解方程:21x x -=2-312x-.21.(本题满分6分) 先化简,再求值:324a a --÷(a +2-52a -),其中a =-12.22.(本题满分6分) 如图,在平面直角坐标系中,△OAB 的顶点坐标分别为O (0,0),A (2,4),B (4,0),分别将点A 、B 的横坐标、纵坐标都乘以1.5,得相应的点A'、B'的坐标。