回归分析的模型SPSS概要共23页文档

合集下载

spss中的回归分析

spss中的回归分析
Confidence intervals:回归系数 B的 95%可信区间(95%Confidence interval for B)。
Descriptives:变量的均数、标准差、相关系数矩阵及单尾检验。
Covariance matrix:方差——协方差矩阵。
R sqared change:R2和 F值的改变,以及方差分析 P值的改变。
Durbin-Waston:用于随机误差项的分析,以检验回归模型 中的误差项的独立性。如果误差项不独立,那么对回归模型的任何 估计与假设所做出的结论都是不可靠的。
• 计算DW值
• 给定,由n和k的大小查DW分布表,得临界值dL和dU • 比较、判断
0<D.W.<dL
dL<D.W.<dU dU <D.W.<4-dU 4-dU <D.W.<4- dL 4-dL <D.W.<4
Coefficie nts Beta
.923
系 数a
t -.781 12.694
Sig. .441 .000
模型
1
(常量)
非标准化系数
B
标准误
-53.086
67.963
income
.422
.033
a. 因变量: foodexp
标准化系 数
Beta
.923
t -.781
12.694
显著性 .441
.000
All Cases:显示每一例的标准化残差、实测值和预测值、 残差。
7、Plots(图)对话框 单击“Plots”按钮,对话框如下图所示。Plots可帮助分析
资料的正态性、线性和方差齐性,还可帮助检测奇异值或异常值。

spss中的回归分析

spss中的回归分析
All Cases:显示每一例的标准化残差、实测值和预测值、 残差。
7、Plots(图)对话框 单击“Plots”按钮,对话框如下图所示。Plots可帮助分析
资料的正态性、线性和方差齐性,还可帮助检测奇异值或异常值。
(1)散点图:可选择如下任何两个变量为Y(纵轴变量)与X (横轴变量)作图。为 获得更多的图形,可单击“Next”按钮来重 复操作过程。
Variables
Model
Entered
1
INCOMEa
Variables
Removed
Method
. Enter
a. All requested variables entered.
b. Dependent Variable: FOODEXP
输 入 / 移 去 的 变 量b
模型 1
输入的变量 移去的变量
DEPENDENT:因变量。 *ZPRED:标准化预测值。 *ZRESID: 标准化残差。 *DRESID:删除的残差。 *ADJPRED:调整残差。 *SRESID:Student氏残差。 *SDRESID: Student氏删除残差。 (2)Standardized Residual Plots:标准化残差图。 Histogram:标准化残差的直方图,并给出正态曲线。 Normal Probality Plot:标准化残差的正态概率图(P-P图)。 (3)Produce all Partial plots:偏残差图。
Coefficie nts Beta
.923
系 数a
t -.781 12.694
Sig. .441 .000
模型
1
(常量)
非标准化系数
B
标准误

《SPSS统计分析》第11章 回归分析

《SPSS统计分析》第11章 回归分析

返回目录
多元逻辑斯谛回归
返回目录
多元逻辑斯谛回归的概念
回归模型
log( P(event) ) 1 P(event)
b0
b1 x1
b2 x2
bp xp
返回目录
多元逻辑斯谛回归过程
主对话框
返回目录
多元逻辑斯谛回归过程
参考类别对话框
保存对话框
返回目录
多元逻辑斯谛回归过程
收敛条件选择对话框
创建和选择模型对话框
返回目录
曲线估计
返回目录
曲线回归概述
1. 一般概念 线性回归不能解决所有的问题。尽管有可能通过一些函数
的转换,在一定范围内将因、自变量之间的关系转换为线性关 系,但这种转换有可能导致更为复杂的计算或失真。 SPSS提供了11种不同的曲线回归模型中。如果线性模型不能确 定哪一种为最佳模型,可以试试选择曲线拟合的方法建立一个 简单而又比较合适的模型。 2. 数据要求
线性回归分析实例1输出结果2
方差分析
返回目录
线性回归分析实例1输出结果3
逐步回归过程中不在方程中的变量
返回目录

线性回归分析实例1输出结果4
各步回归过程中的统计量
返回目录
线性回归分析实例1输出结果5
当前工资变量的异常值表
返回目录
线性回归分析实例1输出结果6
残差统计量
返回目录
线性回归分析实例1输出结果7
返回目录
习题2答案
使用线性回归中的逐步法,可得下面的预测商品流通费用率的回归系数表:
将1999年该商场商品零售额为36.33亿元代入回归方程可得1999年该商场 商品流通费用为:1574.117-7.89*1999+0.2*36.33=4.17亿元。

《SPSS数据分析教程》 ——回归分析..共43页

《SPSS数据分析教程》 ——回归分析..共43页
《SPSS数据分析教程》 ——回归分 析..
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙

37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯

用SPSS作回归分析

用SPSS作回归分析

xi xi
y i
2n
n 5
∑ 140 1300 2528 21040
x xi 140 14
n 10
y yi 1300 130
n 10
ˆ0 y 1 x 130 514 60
位于有16000名 学生校园附近的
=

60
516
140(千元)
yˆi 60 5xi
饭店的销售收入
y
变量间所具有的密切关联而又不能用函数关系精确表达的关系称相关关系。
具有相关关系的两 个变量可以是不同 类型的变量。本章 中所指的相关关系 是两个数值型变量 间的相关关系。
相关关系分析不强 调两变量间的先后 顺序,即不区分自 变量与因变量。
1400
1200 月 支 1000 出 ( 元 800 )
600
ˆ1
yi
ˆ0 ˆ0
ˆ1xi
2
0
yi
ˆ0 ˆ1xi ˆ1
20Βιβλιοθήκη 2yi ˆ0 ˆ1xi 0
2 yi ˆ0 ˆ1xi xi 0
n
i1
yi
nˆ0
ˆ1
n i 1
xi
n
n
n
i1
xi yi
ˆ0
i 1
xi
ˆ1
i 1
xi 2
ˆ1
xi yi
xi
y x y 月支出(元)
月收入(元)
家庭序号 月支出(元)
1148
8882
21
710
489
4558
22
937
1208
9053
23
1030
1065
8094
24

第九章SPSS回归分析

第九章SPSS回归分析

第3步:启动分析过程。点击【分析】【 回归】【线性】菜单命令,打开如图所示 的对话框。
第4步:设置分析变量。设置因变量:在左边变量 列表中选“成就动机分数”,选入到“因变量”框 中。设置自变量:在左边变量列表中选“智商分数 ”变量,选入“自变量”框中。如果是多元线性回 归,则可以选择多个自变量。
第八个表:残差统计
第九个:标准化残差的概率图
[分析]:由此图可知,所有的点都比较靠近对角线 ,结合前面第八个表中的标准化残差为0.892,小 于2,因此可以认为残差是正态的。
由于自我效能感、服从领导满意度、同事人际敏感 、工作技能水平、个人信心指数这几个变量的回归 系数所对应的sig值不显著,在回归分析中需要删 除这几个变量,然后再建立回归方程。因此在SPSS 中接着再次进行回归分析。
分析:此例属于一元线性回归,一般先做两个变量 之间的散点图进行简单地观测。若散点图的趋势大 概呈线性关系,可以建立线性方程;若不呈线性分 布,可建立其它方程模型,并比较R2来确定选择其 中一种最佳方程式。
一元线性回归方程的原假设为:所建立的回归方程 无效,回归方程中来自总体自变量的系数为0。
第9步:重复前面SPSS的操作步骤,从第2步至第6 步。在第3步将自我效能感、服从领导满意度、同 事人际敏感、工作技能水平、个人信心指数这几个 变量从自变量移出,由于SPSS软件中还保存了刚才 第4、5、6步的操作内容,此时只需要再点击【确 定】按钮,输出分析结果。其中模型摘要、回归方 程、回归系数表如下:
第4步:设置分析参数。单击【统计】按钮,打开“ 线性回归:统计”对话框,可以选择输出的统计量 如图所示。
在“回归系数”栏,选择“估算值”。
在对话框的右边,有五个复选框:
(1)“模型拟合”是系统默认项,输出复相关系数 R、R2及R2修正值,估计值的标准误,方差分析表。 (2)“R方变化量”:增加进入或剔除一个自变量时 , R2的变化。

SPSS数据分析教程 ——回归分析课件

SPSS数据分析教程 ——回归分析课件

回归和相关分析
• 回归分析是在相关分析的基础上,确定了变量之间的相互影响关 系之后,准确的确定出这种关系的数量方法。因此,一般情况下, 相关分析要先于回归分析进行,确定出变量间的关系是线性还是 非线性,然后应用相关的回归分析方法。在应用回归分析之前, 散点图分析是常用的探索变量之间相关性的方法。
SPSS数据分析教程 ——回归分析
• Y = ¯0 +¯1 X +² • 其中变量X为预测变量,它是可以观测和控制的;Y为因变量或响应变量,
它为随机变量; ²为随机误差。 • 通常假设²~N(0,¾2),且假设与X无关。
SPSS数据分析教程 ——回归分析
回归模型的主要问题
• 进行一元线性回归主要讨论如下问题:
(1) 利用样本数据对参数¯0, ¯1和¾2,和进行点估计,得到经验回归方程 (2) 检验模型的拟合程度,验证Y与X之间的线性相关的确存在,而不是由
用回归方程预测
• 在一定范围内,对任意给定的预测变量取值,可以利用求得的拟 合回归方程进行预测。其预测值为:
ˆ0 ˆ0ˆ1x0PSS数据分析教程 ——回归分析
简单线性回归举例
• 一家计算机服务公司需要了解其用电话进行客户服务修复的计算 机零部件的个数和其电话用的时间的关系。经过相关分析,认为 二者之间有显著的线性关系。下面我们用线性回归找到这两个变 量之间的数量关系。
• F检验的 被拒绝,H 0并不能说明所有的自变量都对因变量Y有显著 影响,我们希望从回归方程中剔除那些统计上不显著的自变量, 重新建立更为简单的线性回归方程,这就需要对每个回归系数做 显著性检验。
• 即使所有的回归系数单独检验统计上都不显著,而F检验有可能 显著,这时我们不能够说模型不显著。这时候,尤其需要仔细对 数据进行分析,可能分析的数据有问题,譬如共线性等。

回归分析的模型SPSS

回归分析的模型SPSS
3 步进回归
步进回归是前向选择和后向选择的结合,它通过增加和删除自变量来优化模型,同时考 虑了模型的显著性和预测能力。
回归线性假设检验
1
线性假设
线性假设是指自变量与结果变量之间的关系是线性的。
2
显著性检验
显著性检验是用来检验模型各项参数是否显著的方法。通常是通过检验t值和p值 来判断。
3
统计量检验
结构方程模型
1 什么是结构方程模型? 2 结构方程模型的公式
3 结构方程模型的应用
结构方程模型是一种将因果 关系和回归分析相结合的统 计方法,常用于探究变量间 的因果关系。
结构方程模型可以视为多个 回归方程的组合,在模型中 既有回归方程的变量之间的 关系,还有因果关系的方程。
结构方程模型可以应用于心 理学、管理学等领域,例如 研究个体工作满意度和组织 变量对工作绩效的影响。
面板数据回归分析
什么是面板数据回归分 析?
面板数据回归分析是将多个时 间序列数据和多个交叉数据结 合起来进行建模和分析的统计 方法。
面板数据回归模型
面板数据回归模型同时考虑了 时间序列和交叉数据的影响, 通常使用固定效应模型和随机 效应模型进行建模。
面板数据回归分析的应用
面板数据回归分析可以用来研 究时间序列数据和交叉数据相 互作用的影响,例如研究地区 发展和人口迁移的关系。
多层次回归分析
什么是多层次回归分析?
多层次回归模型
多层次回归分析是研究多个层面上 变量对结果变量的影响的统计方法, 例如研究学生的个人特征和学校因 素对学科成绩的影响。
多层次回归模型包含了多个层次的 自变量和结果变量,通常是用分层 回归的形式来表示。
多层次回归分析的应用
多层次回归分析可以用来研究影响 某些群体或组织的因素,例如研究 学生的家庭背景和学校因素对学科 成绩的影响。

SPSS线性回归分析-文档资料

SPSS线性回归分析-文档资料

表示x每变化一个单位时,x与y共同变化的程度。
常数: aybx
比如通过上学年数和工资的关系计算得出下列 的回归公式:
y=472+14.8x 可知上学年数每增长1年,工资会增加14.8元; 也可推测,上学年数为15年的人,工资收入应 为472 + 14.8 *15=694元。
二、线性回归的适用条件
2
3
4 工龄 5
在统计学中,这一方程中的系数是靠x与y变量的大 量数据拟合出来的。
Y=a+bx
Y
(x,y)
X
由图中可以看出,回归直线应该是到所有数据点最 短距离的直线。该直线的求得即使用“最小二乘方 法”,使:
yi yˆi20
在拟合的回归直线方程中,回归系数:
b
(xi x)(yi y) (xi x)2
Enter:进入法。默认选项。所有所选自变量 都进入回归模型,不作任何筛选。
Stepwise:逐步法。根据在Option框中设顶 的纳入和排除标准进行变量筛选。具体做法是 首先分别计算各自变量X对Y的贡献大小,按 由大到小的顺序挑选贡献最大的一个先进入方 程;随后重新计算各自变量X对Y的贡献,引 入方程,同时考察已在方程中的变量是否由于 新变量的引入而不再有统计意义。如果是,则 将它剔除。如此重复,直到方程内没有变量可 剔除,方程外没有变量可引入为止。
SPSS线性回归
一、回归的原理
回归(Regression,或Linear Regression)和相关都用来分析两个定距变 量间的关系,但回归有明确的因果关系假设。 即要假设一个变量为自变量,一个为因变量, 自变量对因变量的影响就用回归表示。如年龄 对收入的影响。由于回归构建了变量间因果关 系的数学表达,它具有统计预测功能。

回归分析的模型SPSS讲解共23页文档

回归分析的模型SPSS讲解共23页文档

END
回归分析的模型SPቤተ መጻሕፍቲ ባይዱS讲解
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃

SPSS回归分析讲义

SPSS回归分析讲义
其取值。 • 拟合二分类变量的Logistic回归模型的参数问题可通过Logistic变换转换为拟合线性
模型的参数。
第29页/共42页
• 诊断发现运营不良的金融商业机构 下表列出了66家公司的一些运营的财务比率,其中33家在2年后破产,另外33家在同
期保持偿付能力。用变量X1、X2、X3拟合一个Logistic回归模型。
第11页/共42页
• 结果解读 • 模型拟合度检验
第12页/共42页
• 方差分析表
第13页/共42页
• 回归分析结果
第14页/共42页
• 残差统计量检验
第15页/共42页
• 雇员对其主管满意度的调查
第16页/共42页
• 结果解读
共线性检验
第17页/共42页
• 共线性检验指标
第18页/共42页
• 在金融界,最关心的是企业的“健康”状况。自变量是公司的各项财务指标。而因变量 即是公司的偿付能力(破产=0,有偿付能力=1)。
第27页/共42页
• 二分类变量Logistic回归简介
第28页/共42页
◆ 注意 • 二分类变量Logistic回归其核心思想是对因变量二值取一的概率建模而不是直接预测
第34页/共42页
6.5 非线性回归—— Nonlinear过程
• 非线性回归简介
• 线性回归模型:回归参数是线性的,【Linear】过程。
• 内蕴线性(拟线性)回归模型:其回归参数不是线性的,但是可以通过转换变为线性的 参数,【Curve Estimation】过程。
• 非线性回归模型:其回归参数不是线性的,也不能通过转换的方法将其变为线性的参数, 【Nonlinear】过程。
第35页/共42页
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档